Georgia’s Experience in Ethylene Oxide Monitoring

DeAnna Oser
Ambient Air Monitoring Program Manager

August 25, 2022
National Ambient Air Monitoring Conference
Air Toxics – EtO Session
GEORGIA EPD ETHYLENE OXIDE MONITORING LOCATIONS

<table>
<thead>
<tr>
<th>Location</th>
<th>Number of Sites</th>
<th>Monitoring Began</th>
<th>Site Selection Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>South Dekalb Monitoring Station</td>
<td>1 site</td>
<td>June 2019</td>
<td>Urban Background and NATTS site. EPA required all NATTS sites to begin monitoring for ethylene oxide in January 2020</td>
</tr>
<tr>
<td>Cobb County</td>
<td>4 sites (additional sites for spatial)</td>
<td>September 2019</td>
<td>Near Sterigenics</td>
</tr>
<tr>
<td>City of Covington</td>
<td>4 sites (additional sites for spatial)</td>
<td>October 2019</td>
<td>Near Becton Dickinson</td>
</tr>
<tr>
<td>General Coffee State Park</td>
<td>1 site</td>
<td>September 2019</td>
<td>Rural Background</td>
</tr>
<tr>
<td>Fulton County</td>
<td>4 sites</td>
<td>January 2020</td>
<td>Near Sterilization Services of GA</td>
</tr>
</tbody>
</table>

Data presented is collected through May 31, 2021.
COLLECTION METHODS

Outdoor Xonteck 911
ATEC at NATTS Site

Entech passive sampler with timer module

Indoor Xonteck 910

Picarro G2920
EPD MONITORING PLAN OBJECTIVES

• On-going monitoring study
• Characterize air around the facilities of concern
• High Quality Study under EPA Approved QAPP (Level II)
• Collect samples once every 6 days a 24-hour period
• Gain understanding of background concentrations— at an urban (NATTS site) and rural site
• EPA’s contract laboratory – Eastern Research Group (ERG) for consistency in analytical analysis
• Monthly Quality Assurance samples and trip blanks collected
• 75% Data Completeness per quarter for study
• Inter-laboratory comparisons with GA EPD Laboratory
• CDC’s Agency for Toxic Substances and Disease Registry (ATSDR) and the GA Department of Public Health will utilize data for health assessments
MONITORING SITE SELECTION

Looking at upwind and downwind in the primary and secondary air flow directions Comparing concentrations at ¼ mile, ½ mile, and 1 mile at each location over course of study

For the Fulton County area, there were no predominant wind directions – sites chosen in same wind direction
MONITORING DESIGN

- Sample in 4 quadrants within ¼ mile of facility fenceline each sample day
- Once a month – sample one location side by side
- Once a month – compare ¼ mile and ½ or 1-mile concentrations
- Sample at NATTS site on passive sampler each sample day
- Sample at background site every twelve days

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Distance from facility</th>
<th>Why this site was selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>About ¼ mile</td>
<td>Captures primary upwind and secondary downwind directions</td>
</tr>
<tr>
<td>S2</td>
<td>About ¼ mile</td>
<td>Captures primary upwind and secondary downwind directions</td>
</tr>
<tr>
<td>S3</td>
<td>About ½ mile</td>
<td>Captures secondary upwind and primary downwind directions</td>
</tr>
<tr>
<td>S4</td>
<td>Less than ¼ mile</td>
<td>Proximity to the facility</td>
</tr>
<tr>
<td>S5</td>
<td>About ½ mile</td>
<td>Captures secondary upwind and primary downwind directions</td>
</tr>
<tr>
<td>Note: site location was discontinued due to unstable roof</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S6</td>
<td>About ¼ mile</td>
<td>Captures primary upwind and secondary downwind directions</td>
</tr>
<tr>
<td>S7</td>
<td>About ¼ mile</td>
<td>Captures primary upwind and secondary downwind directions</td>
</tr>
</tbody>
</table>
QUESTIONS TO BE ANSWERED

Initial Study
• How does the concentration vary over time?
• What is the spatial gradient of the concentration?
• Does the sample collection method impact the concentration?
• What are the background levels?
• Can two labs get the same result?

Community Scale Air Toxics Monitoring Grant
• Compare multiple laboratories in same canister analysis
 (ERG, GA EPD Laboratory, EPA R4 LSASD)
• Compare concentrations collected by passive, active, and continuous
 samplers
• Evaluate change in ethylene oxide concentration with wind direction
MONITORING INITIAL STEPS

• Quality Assurance Project Plan (Category II) approved by EPA

• Develop SOPs for new equipment

• Find suitable locations for sampling (~6 sites per facility)

• Equipment zero-checked for ethylene oxide concentration
 • Conducted by ERG initially; inhouse annually

• Learn how to calibrate passive samplers

• Develop system to protect from flooding

• Develop the validation checksheets and set up AirVision file
 import templates
ANALYTICAL CHALLENGES

• Contract laboratory changed analytical methods (29 ion rather than 44 ion to quantify ethylene oxide)

• Flexibility in T0-15 (target ion, cleaning with humidified air versus nitrogen) can result in differences in concentrations reported
 • Two laboratories using same procedures result in significantly different concentrations
 • Entech noted that cleaning with zero air destroys the lining of the canisters – newer canister coating procedure now available – may not have same impact

• Issues with calibration gas standard stability

• **Measuring at or near detection limit very challenging** - especially with precision measurements

Can two labs get the same result?
PRECISION CHALLENGES

South Dekalb Sampling Precision

Fulton Sampling Precision
CANISTER BIAS

- Some canisters potentially “grow” ethylene oxide while in the canister
- More prevalent in certain series, but not every canister in the series
- GA EPD Laboratory found that cleaning the canisters ~150 times with humidified air prior to use will eliminate bias
- ERG canisters subject to a “flag check” – reviewing the history of the canister (at all sampling sites) for history of high concentrations
- Approximately 30% of our samples were impacted

Ethylene Oxide Data September 24, 2019-May 28, 2021

- **All data collected**
- **Data excluding samples impacted by canister bias**
PASSIVE SAMPLER ZERO END PRESSURE

- Some samples reached ambient pressure by collection
- Collocated samples indicated that concentration was not affected
 - Average concentration of samples was not significantly affected by inclusion of zero end pressure samples
- Data reported to AQS does not include zero end pressure samples
- Data in report presented with and without zero end pressure samples
GA EPD RESULTS THROUGH MAY 31, 2021

Data includes samples impacted by canister bias

2019 data: August – December
2021 data: January – May
SEASONAL VARIATIONS

How does the concentration vary over time?

Seasonal variation seen nationwide with EPA data

August – December 2019
January – December 2020
January – May 2021
PRELIMINARY CONCLUSIONS FROM AQS DATA TO DATE

• EPA method needs refinement – too much variability in data; method is not sensitive enough

• All sites in Georgia and in the US are measuring ethylene oxide concentration well above the levels that EPA considers acceptable

• EPA continues to assert that not all ethylene oxide in ambient air is coming from commercial sterilizers and chemical manufacturers. Research is ongoing.
EFFECT OF FACILITY CONTROLS

As of February 2021, each of the facilities had fugitive ethylene oxide emission controls (in addition to previously installed emission controls on the backvents and sterilization process)*.

To show how the controls impacted the ethylene oxide concentration measurements in the communities, we graphed the concentration and wind speed in polar plots.

Comparison of Fulton area F2 Monitoring Site near Sterilization Services

*Back vent controls were added at SSG on January 18, 2020. Negative pressure systems were installed with dry bed controls at SSG on January 26, 2021.
SPATIAL VARIATION

What is the spatial gradient of the concentration?

Inconclusive - Depending on the area monitored, we observed the ethylene oxide concentration changes as you moved further out from the source.
IMPACT OF SAMPLER TYPE

Does the sample collection method impact the concentration?

• Passive samplers (method code 149) appear to result in higher concentration than the pressurized (active) samplers (method code 150).

• More comparisons need to be done.
What are our background levels?

Average Concentration

- South DeKalb - Urban Background (NATTS site) – 0.37 µg/m³
- General Coffee – Rural Background – 0.27 µg/m³
METHOD DEVELOPMENT – PICARRO G2920

- Installed at NATTS Site April 2021 – November 2021
- Linearity verified at GA EPD Laboratory for zero and span prior to deployment
- Instrument installed February 2021
- AirVision Integration – major challenge
 - ~14 diagnostic channels to be validated
- Significant instrument drift observed
- Identification of frequency of zero check – hourly, daily, weekly? Hourly was chosen
- Span check used CO₂ gas as surrogate – correlates well with EtO
METHOD DEVELOPMENT – PICARRO G2920

• Multiple Discussions with OAQPS and ORD on Picarro performance
• Picarro installed an updated zero-reference scrubbing system – July 2021
• Zero Reference Module installed October 2021 to automatically “correct” for zero values
• Picarro manually corrected hourly data collected April 2021 – October 2021 for zero checks
• Final study verification at EPD lab November 2021 – drift within EPD’s original QAPP specifications
• Zero Reference Module encountered cavity pressure error December 2021
• Unit decommissioned – December 2021
EVALUATIONS ONGOING FOR COMMUNITY SCALES AIR TOXICS MONITORING GRANT

- Community sampling continues to date
- Comparison of ERG, GA EPD Laboratory, and R4 LSASD Canister data using TO15
- Comparison of passive versus pressurized (active) sampling
- Comparison of canister data to Picarro continuous data
- Evaluation of continuous ethylene oxide data relative to meteorology
QUESTIONS?

DeAnna Oser
Ambient Air Monitoring Program Manager
Georgia Environmental Protection Division
DeAnna.Oser@dnr.ga.gov
470-524-0541