
Contributions of Non-tailpipe Emissions 
to PM2.5 and PM10 near Highways

Xiaoliang Wang1, Steve Gronstal1, Brenda Lopez2, Heejung Jung2, L.-W. 
Antony Chen3, Steven Sai Hang Ho1,4, Judith C. Chow1, John G. Watson1, 

Chas Frederickson2, David Mendez-Jimenez2, Tianyi Ma2, Ling Cobb2, 
Qi Yao5, Seungju Yoon5

1Desert Research Institute
2University of California-Riverside
3University of Nevada, Las Vegas
4Hong Kong Premium Services and Research Laboratory
5California Air Resources Board

2022 National Ambient Air Monitoring Conference
August 24, 2022

1



Outline
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• Field measurement

• Locations, instruments, and measurements.
• Results and discussion

• Chemical composition
• Source apportionment

• Takeaways
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Non-tailpipe emissions are becoming a larger fraction 
of total vehicle emissions
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Study Objectives

• Characterize PM2.5 and PM10 concentration and compositions 
near highways. 

• Seek source markers for non-tailpipe emissions.
• Conduct source apportionment analysis to determine 

contributions of non-tailpipe particles to PM2.5 and PM10. 
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Measurements were made near Southern California I-5 
and I-710
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Samples were taken from both sides of 
highways
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PM2.5 and PM10 filter pairs were collected 
upwind and downwind of highways
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Typical sampling periods:
• 0600-1000; 1000-1400; 1400-1800
• 1/28/2020–2/3/2020 (I-5); 18 sets
• 2/4/2020–2/10/2020 (I-710); 14 sets
• A total of 128 filters.
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Filters were analyzed for source markers
Measurement Method Species Potential Markers

Gravimetry PM mass

X-ray Fluorescence (XRF) Elements from sodium (Na) to 
uranium (U)

• Mineral dust: Al, Si, Ca, and K; 
• Brake wear: Cu, Sb, Ba, Fe, Zr, Mo, and Sn; 
• Tire wear: Zn; 
• Concrete road wear: Ca and S

Thermal/Optical Analysis Organic, elemental carbon (OC and
EC) and thermal fractions • Tailpipe emissions

Ion Chromatography Water soluble ions Cl‐, NO3
‐, SO4

2-, 
NH4

+, Na+, Mg2+, K+, and Ca2+

• Primary salt: Cl‐ and Na+

• Secondary salts: NO3
‐, SO4

2-, and NH4
+

• Biomass burning: K+

Thermal desorption 
GC/MS

Nonpolar organics, including PAHs 
alkanes, cycloalkanes, hopanes, 
steranes, phthalates

• Tire wear: alkanes (C34‐C36)
• Tire wear: pyrene, benzo(ghi)perylene, 

fluoranthene, phenanthrene, and dibenzopyrenes
• Motor oil emissions: hopanes and steranes

pyrolysis-GC/MS
Rubber markers, including styrene, 
isoprene, butadiene, dipentene, and 
vinylcyclohexene 

• NR: isoprene, dipentene
• BR: butadiene, vinylcyclohexene
• SBR: styrene, butadiene, vinylcyclohexene

Ultra-performance liquid 
chromatography (UPLC) Benzothiazole and derivatives • Tire wear

(Pant and Harrison, 2013)
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PM10 concentrations were 2-3 times those of of 
PM2.5; Up/downwind differences were small
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Average PM Concentrations (µg/m3)

Site
Upwind 

PM2.5

Upwind
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Downwind
PM2.5

Downwind
PM10

I-5 9.56 28.47 10.88 32.49
I-710 11.00 30.37 14.36 31.87
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Mineral dust and carbon were major PM components

Main composition:
• PM2.5: Organic matter (OM; ~30–

40%), mineral dust (~30%), and 
elemental carbon (EC; ~10–15%)

• PM10: mineral dust (>40%), OM 
(~25%); coarse NO3

- due to Cl 
replacement 

• More OM and EC% in PM2.5 than 
PM10; more dust and others 
(elements and ions) in PM10

⁎ OM=1.2 × OC
⁎ Mineral dust  = 2.2×Al + 2.49×Si + 

1.63×Ca + 2.42×Fe + 1.94×Ti

10
(Chow et al., 2015)



Differences were found between 
upwind/downwind and I-5/I-710
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• Downwind > Upwind
• EC is ~20% higher 

at I-710 than I-5
• SO4

2- is similar → 
regional distribution

• NO3
- and NH4

+ are 
much higher at I-
710, due to two high 
NH4NO3 events
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High correlations were found among 
elements from common sources

Species OC EC Mg Al Si K Ca Ti Mn Fe Co Cu Zn Sr Zr Ba W
EC 0.74
Mg 0.36 0.19
Al 0.56 0.51 0.58
Si 0.57 0.49 0.57 0.99
K 0.62 0.53 0.62 0.96 0.97
Ca 0.60 0.52 0.62 0.96 0.98 0.95
Ti 0.62 0.63 0.37 0.78 0.73 0.70 0.70

Mn 0.64 0.65 0.47 0.91 0.91 0.90 0.90 0.78
Fe 0.69 0.69 0.52 0.90 0.91 0.91 0.94 0.76 0.92
Co 0.61 0.57 0.44 0.76 0.77 0.76 0.80 0.60 0.85 0.85
Cu 0.68 0.63 0.45 0.68 0.70 0.73 0.76 0.61 0.75 0.89 0.78
Zn 0.29 0.44 0.22 0.42 0.44 0.51 0.51 0.33 0.52 0.55 0.46 0.51
Sr 0.52 0.43 0.62 0.86 0.86 0.86 0.84 0.67 0.81 0.82 0.73 0.71 0.44
Zr 0.66 0.60 0.44 0.66 0.68 0.70 0.74 0.59 0.73 0.87 0.78 0.98 0.49 0.69
Ba 0.66 0.63 0.43 0.72 0.74 0.76 0.79 0.63 0.78 0.90 0.77 0.93 0.53 0.71 0.90
W 0.26 0.40 0.20 0.38 0.41 0.46 0.47 0.30 0.45 0.51 0.37 0.46 0.92 0.37 0.45 0.51

Tire Tread 0.65 0.40 0.57 0.62 0.65 0.71 0.69 0.44 0.62 0.69 0.63 0.68 0.24 0.61 0.67 0.67 0.19

• Blue: 0.6<r≤0.8
• Red: 0.8<r≤1.0
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Vehicle-wear related elements were 
enriched

Element
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*□ shows wear-related elements
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I-710 had higher PAHs from diesel emissions
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• I-710 PAH concentrations are 47% higher than I-5
• Both highways have similar PAH distributions, but I-710 has higher fluoranthene and pyrene
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n-Alkanes indicate sources from lubricating oil 
and unburnt diesel fuel
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• I-5 n-alkanes were dominated by lubricating oil (Cmax = 29)

• I-710 shows increased contributions from unburnt diesel fuel (Cmax = 23). 
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Tire tread was ~8.0% (I-5) and 5.5% (I-710) of PM2.5
and PM10
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• Over half of the rubber is in coarse PM (2.5-10 µm)

• Natural rubber concentrations at I-5 were higher than I-710

NR: natural rubber
BR: butadiene rubber
SBR: styrene–butadiene rubber
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Different tire manufacturers show different elemental and 
organic abundances
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Examples of Source Profiles Explored
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• Brake profiles: 
Dynamometer studies 
(CRPAQS, 2004; CARB, 2020)

• Tire profiles: Tire dust 
collected in the lab and 
analyzed by DRI

• Dust profiles: Dust samples 
collected at monitoring sites, 
and analyzed after 
resuspension by DRI

• Exhaust Profiles: 
Dynamometer studies (Gas-
Diesel Split Study 2001, 
CARB database)

*Potential markers for each 
profile marked 
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(Brake + Tire wear) ≥ (Gasoline + 
Diesel) in PM2.5
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(Brake + Tire wear) ≥ 2× (Gasoline + 
Diesel) in PM10
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Challenges in upwind/downwind sampling
• Varying wind and vehicle 

induced turbulence
• Small differences between 

upwind and downwind PM2.5
and PM10 concentrations

• Interferences from other 
sources Hour of Day
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(Fuzzi et al., 2015) (Lai et al., 2020)
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Takeaways
• Average concentrations of near-road PM2.5 and PM10 were 10-15 and ~30 µg/m3, 

respectively.

• Higher concentrations of EC, PAHs, and lower molecular weight n-alkanes were found 
near I-710 than I-5, likely due to more diesel vehicles. 

• High correlations were found for elements with common sources, such as markers for 
brake wear (e.g., Ba, Cu, and Zr) and road dust (e.g., Al, Si, K, and Ca ). 

• For PM2.5, non-exhaust (brake + tire) contributions exceeded exhaust (diesel + 
gasoline) for I-5 (29–30% vs. 19–21%); they were comparable for I-710 (15–17% 
vs. 15–19%).

• For PM10, the non-exhaust contributions were 2 – 3 times the exhaust contributions. 
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