Collection and extraction of PFAS using styrene-divinylbenzene resin and Accelerated Solvent Extraction (ASE)

Jason Hoisington
State of Environmental PFAS Analysis

- Volatile PFAS are present in air
 - Neutral PFAS such as fluorotelomer alcohols (FTOH), perfluorinated sulfonamides (FOSA) and sulfonamideethanols (FOSE) are volatile and capable of long-range atmospheric transport
 - Neutral PFAS are precursors to ionic PFAS compounds such as perfluoroalkyl carboxylates (PFCA) and perfluoroalkane sulfonates (PFSA)

Annika Jahnke, Urs Berger, Trace analysis of per- and polyfluorinated alkyl substances in various matrices—How do current methods perform?, Journal of Chromatography A,
State of Environmental PFAS Analysis

• PFAS can be present in indoor air
 • Off gassing of volatile PFAS from consumer products
 • Airborne dust containing PFAS from product wear and tear

Source Air Sampling – OTM-45

- Combines filter, XAD-2, and liquid impingers
- Suitable for \(C_4 \) to \(C_{18} \) PFAS compounds
- Many different PFAS classes (PFCA, PFSA, FOSA, FOSE, etc.)
OTM-45 – ASE Extraction

• OTM-45 sample prep for XAD-2 fraction is two rounds of 16-hour shakeouts using 360 mL total solvent
 • 32-hour extraction plus time for solvent blowdown

• Accelerated Solvent Extraction (ASE) advantages
 • Reduced time – ~45 minutes/sample
 • Reduced solvent use – <100mL solvent/sample
 • Higher extraction efficiency – 1.4 to 55 times more response on ASE
OTM-45 – ASE Extraction

• Dionex ASE 350 Extraction Parameters
 • Pressure – 1500 psi
 • Temperature – 120°C
 • Heating time – 6 minutes
 • Static time – 15 minutes
 • Cycles – 2
 • Rinse volume – 60%
 • Solvent – 4:1 Methanol:Acetonitrile
OTM-45 – ASE Extraction Efficiency

ASE:SHAKE AREA

% ASE:SHAKE AREA COUNTS

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>501%</th>
<th>598%</th>
<th>377%</th>
<th>268%</th>
<th>377%</th>
<th>384%</th>
<th>342%</th>
<th>342%</th>
<th>321%</th>
<th>379%</th>
<th>377%</th>
<th>337%</th>
<th>354%</th>
<th>342%</th>
<th>667%</th>
<th>598%</th>
<th>501%</th>
<th>377%</th>
<th>400%</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFBA</td>
<td>426%</td>
<td>416%</td>
<td>570%</td>
<td>384%</td>
<td>394%</td>
<td>409%</td>
<td>499%</td>
<td>378%</td>
<td>400%</td>
<td>377%</td>
<td>397%</td>
<td>400%</td>
<td>364%</td>
<td>365%</td>
<td>384%</td>
<td>342%</td>
<td>459%</td>
<td>378%</td>
<td>364%</td>
</tr>
<tr>
<td>PFPEA</td>
<td>416%</td>
<td>416%</td>
<td>570%</td>
<td>384%</td>
<td>394%</td>
<td>409%</td>
<td>499%</td>
<td>378%</td>
<td>400%</td>
<td>377%</td>
<td>397%</td>
<td>400%</td>
<td>364%</td>
<td>365%</td>
<td>384%</td>
<td>342%</td>
<td>459%</td>
<td>378%</td>
<td>364%</td>
</tr>
</tbody>
</table>
OTM-45 – ASE Extraction Accuracy

100 ppb Spike Recovery

[Bar chart showing spike recovery for various analytes comparing ASE and Shake methods]
OTM-45 – ASE Extraction Precision

100 ppb Spike % RSD

ASE
Shake
OTM-45 – ASE Extraction MDL

<table>
<thead>
<tr>
<th>Name</th>
<th>OTM 45 MDL</th>
<th>Restek MDL</th>
<th>Name</th>
<th>OTM 45 MDL</th>
<th>Restek MDL</th>
<th>Name</th>
<th>OTM 45 MDL</th>
<th>Restek MDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFBA</td>
<td>2.08</td>
<td>0.06</td>
<td>FHEA</td>
<td>0.09</td>
<td></td>
<td>FDEA</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>PF4OPeA</td>
<td>0.02</td>
<td></td>
<td>ADONA</td>
<td>0.14</td>
<td>0.02</td>
<td>PFUnA</td>
<td>0.33</td>
<td>0.08</td>
</tr>
<tr>
<td>3:3 FTCA</td>
<td>0.05</td>
<td></td>
<td>PFeCHS</td>
<td>0.03</td>
<td></td>
<td>11Cl-PF3OuDS</td>
<td>0.18</td>
<td>0.04</td>
</tr>
<tr>
<td>PFPeA</td>
<td>0.2</td>
<td>0.03</td>
<td>6-2 FTS</td>
<td>0.29</td>
<td>0.02</td>
<td>FOSA-I</td>
<td>0.27</td>
<td>0.13</td>
</tr>
<tr>
<td>PFBS</td>
<td>0.17</td>
<td>0.07</td>
<td>PFHpS</td>
<td>0.08</td>
<td>0.03</td>
<td>10:2 FTS</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>PF5OHxA</td>
<td>0.01</td>
<td></td>
<td>PFOA</td>
<td>0.43</td>
<td>0.22</td>
<td>PFDoA</td>
<td>0.12</td>
<td>0.10</td>
</tr>
<tr>
<td>PFEESA</td>
<td>0.01</td>
<td></td>
<td>PFOS</td>
<td>0.35</td>
<td>0.04</td>
<td>PFDoS</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>3,6-OPFHpA</td>
<td>0.02</td>
<td></td>
<td>FOUEA</td>
<td>0.07</td>
<td></td>
<td>N-MeFOSA-M</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>4-2 FTS</td>
<td>0.20</td>
<td>0.02</td>
<td>PFNA</td>
<td>0.15</td>
<td>0.06</td>
<td>N-Me-FOSE-M</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>PFHxA</td>
<td>0.31</td>
<td>0.02</td>
<td>FHpPA</td>
<td>0.14</td>
<td></td>
<td>N-MeFOSAA</td>
<td>0.4</td>
<td>0.05</td>
</tr>
<tr>
<td>PFPeS</td>
<td>0.14</td>
<td>0.02</td>
<td>FEOA</td>
<td>0.18</td>
<td></td>
<td>PFHxDA</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>HFPO-DA</td>
<td>2.77</td>
<td>0.22</td>
<td>9Cl-PF3OnS</td>
<td>0.17</td>
<td>0.03</td>
<td>N-EtFOSA-M</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>PFHpA</td>
<td>0.21</td>
<td>0.10</td>
<td>PFNS</td>
<td>0.14</td>
<td>0.18</td>
<td>N-EtFOSE-M</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>5:3 FTCA</td>
<td>0.07</td>
<td></td>
<td>PFDA</td>
<td>0.13</td>
<td>0.05</td>
<td>N-EtFOSAA</td>
<td>0.39</td>
<td>0.08</td>
</tr>
<tr>
<td>FHUEA</td>
<td>0.06</td>
<td></td>
<td>8-2 FTS</td>
<td>0.27</td>
<td>0.07</td>
<td>PFDoA</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>PFHxS</td>
<td>0.17</td>
<td>0.06</td>
<td>PFDS</td>
<td>0.17</td>
<td>0.32</td>
<td>PFTDIA</td>
<td>0.12</td>
<td>0.8</td>
</tr>
</tbody>
</table>

MDL values in ng/m3 air
Ambient and Indoor Air Sampling

- Resin sampling from OTM-45 can be adapted to ambient and indoor air
- 8 g of Ultra-Clean Resin was packed into a small volume air sampler
- 20 µm frit to catch particulates
- TD tube used to catch any potential breakthrough compounds
Ambient and Indoor Air Sampling

- Small volume sampler can be fit into a 100 mL ASE cell for cleaning and extraction

- Removes the need to separately clean and extract resin, frits, and glass holder
Questions?

Jason Hoisington
jason.hoisington@restek.com