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Executive Summary 

This report presents new estimates of the social cost of carbon (SC-CO2), social cost of methane (SC-CH4), 
and social cost of nitrous oxide (SC-N2O), collectively referred to as the “social cost of greenhouse gases” 
(SC-GHG). These estimates reflect recent advances in the scientific literature on climate change and its 
economic impacts and incorporate recommendations made by the National Academies of Science, 
Engineering, and Medicine (National Academies 2017). The SC-GHG allows analysts to incorporate the net 
social benefits of reducing emissions of greenhouse gases (GHG), or the net social costs of increasing such 
emissions, in benefit-cost analysis and, when appropriate, in decision-making and other contexts. The SC-
GHG is the monetary value of the net harm to society from emitting a metric ton of that GHG to the 
atmosphere in a given year. The SC-GHG, therefore, also reflects the societal net benefit of reducing 
emissions of the GHG by a metric ton. The SC-GHG is the theoretically appropriate value to use when 
conducting benefit-cost analyses of policies that affect GHG emissions.  

Since 2008, the EPA has used estimates of the SC-GHG in analyses of actions that affect GHG emissions. 
The values used by the EPA from 2009 to 2016, and since 2021, have been consistent with those 
developed and recommended by the Interagency Working Group on the SC-GHG (IWG), and the values 
used from 2017-2020 were consistent with those required by Executive Order (E.O.) 13783. During that 
time, the National Academies conducted a comprehensive review of the SC-CO2 and issued a final report 
in 2017 recommending specific criteria for future updates to the SC-CO2 estimates, a modeling framework 
to satisfy the specified criteria, and both near-term updates and longer-term research needs pertaining 
to various components of the estimation process. The IWG was reconstituted in 2021 and E.O. 13990 
directed it to develop a comprehensive update of its SC-GHG estimates, recommendations regarding 
areas of decision-making to which SC-GHG should be applied, and a standardized review and updating 
process to ensure that the recommended estimates continue to be based on the best available economics 
and science going forward.  

The EPA is a member of the IWG and is participating in the IWG’s work under E.O. 13990. While that 
process continues, this EPA report presents a set of SC-GHG estimates that incorporates numerous 
methodological updates addressing the near-term recommendations of the National Academies. The 
report takes a modular approach in which the methodology underlying each of the four components, or 
modules, of the SC-GHG estimation process – socioeconomics and emissions, climate, damages, and 
discounting – is developed by drawing on the latest research and expertise from the scientific disciplines 
relevant to that component. The socioeconomic and emissions module relies on a new set of probabilistic 
projections for population, income, and GHG emissions developed under the Resources for the Future 
Social Cost of Carbon Initiative (Rennert et al. 2022a). The climate module relies on the Finite Amplitude 
Impulse Response (FaIR) model (Millar et al. 2017; Smith et al. 2018, IPCC 2021b), a widely used Earth 
system model recommended by the National Academies, which captures the relationships between GHG 
emissions, atmospheric GHG concentrations, and global mean surface temperature. The socioeconomic 
projections and outputs of the climate module are used as inputs to the damage module to estimate 
monetized future damages from temperature changes. Based on a review of available studies and 
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approaches to damage function estimation, the report uses three separate damage functions to form the 
damage module. They are: 

1. a subnational-scale, sectoral damage function (based on the Data-driven Spatial Climate Impact 
Model (DSCIM) developed by the Climate Impact Lab (CIL 2022, Carleton et al. 2022, Rode et al. 
2021)),  

2. a country-scale, sectoral damage function (based on the Greenhouse Gas Impact Value Estimator 
(GIVE) model developed under RFF’s Social Cost of Carbon Initiative (Rennert et al. 2022b)), and  

3. a meta-analysis-based damage function (based on Howard and Sterner (2017)).  

The discounting module discounts the stream of future climate damages back to the year of emissions 
using a set of dynamic discount rates that have been calibrated following the Newell et al. (2022) 
approach, as applied in Rennert et al. (2022a, 2022b). This approach uses the Ramsey (1928) discounting 
formula in which the parameters are calibrated such that (1) the decline in the certainty-equivalent 
discount rate matches the latest empirical evidence on interest rate uncertainty estimated by Bauer and 
Rudebusch (2020, 2021) and (2) the average of the certainty-equivalent discount rate over the first decade 
matches a near-term consumption rate of interest. Uncertainty in the starting rate is addressed by using 
three near-term target rates (1.5, 2.0, and 2.5 percent) based on multiple lines of evidence on observed 
market interest rates. This approach results in three dynamic discount rate paths and is consistent with 
the National Academies (2017) recommendation to use three sets of Ramsey parameters that reflect a 
range of near-term certainty-equivalent discount rates and are consistent with theory and empirical 
evidence on consumption rate uncertainty. Finally, the value of aversion to risk associated with damages 
from GHG emissions is explicitly incorporated into the modeling framework following the economic 
literature. 

The estimation process generates nine separate distributions of estimates – the product of using three 
damage modules and three near-term target discount rates – of the social cost of each gas in each 
emissions year. To produce a range of estimates that reflects the uncertainty in the estimation exercise 
while providing a manageable number of estimates for policy analysis, in this report the multiple lines of 
evidence on damage modules are combined by averaging the results across the three damage module 
specifications. Table ES.1 summarizes the resulting SC-CO2, SC-CH4, and SC-N2O estimates for emissions 
years 2020 through 2080. 

The modeling implemented in this report reflects conservative methodological choices, and, given both 
these choices and the numerous categories of damages that are not currently quantified and other model 
limitations, the resulting SC-GHG estimates likely underestimate the marginal damages from GHG 
pollution. The EPA will continue to review developments in the literature, including more robust 
methodologies for estimating the magnitude of the various direct and indirect damages from GHG 
emissions, and look for opportunities to further improve SC-GHG estimation going forward. 
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Table ES.1: Estimates of the Social Cost of Greenhouse Gases (SC-GHG), 2020-2080 (2020 dollars) 

 SC-GHG and Near-term Ramsey Discount Rate 

 SC-CO2 

(2020 dollars per metric ton of CO2) 
SC-CH4 

(2020 dollars per metric ton of CH4) 
SC-N2O 

(2020 dollars per metric ton of N2O) 
Emission 

Year 2.5% 2.0% 1.5% 2.5% 2.0% 1.5% 2.5% 2.0% 1.5% 

2020 120 190 340 1,300 1,600 2,300 35,000 54,000 87,000 

2030 140 230 380 1,900 2,400 3,200 45,000 66,000 100,000 

2040 170 270 430 2,700 3,300 4,200 55,000 79,000 120,000 

2050 200 310 480 3,500 4,200 5,300 66,000 93,000 140,000 

2060 230 350 530 4,300 5,100 6,300 76,000 110,000 150,000 

2070 260 380 570 5,000 5,900 7,200 85,000 120,000 170,000 

2080 280 410 600 5,800 6,800 8,200 95,000 130,000 180,000 

Values of SC-CO2, SC-CH4, and SC-N2O are rounded to two significant figures. The annual unrounded estimates are available in 
Appendix A.4 and at: www.epa.gov/environmental-economics/scghg.
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1 Background 

A robust and scientifically founded assessment of the positive and negative impacts that an action can be 
expected to have on society facilitates evidence-based policy making. Estimates of the social cost of 
carbon (SC-CO2), social cost of methane (SC-CH4), and social cost of nitrous oxide (SC-N2O) allow analysts 
to incorporate the net social benefits of reducing emissions of each of these greenhouse gases, or the net 
social costs of increasing such emissions, in benefit-cost analysis, and when appropriate, in decision 
making and other contexts.1 Collectively, these values are referred to as the “social cost of greenhouse 
gases” (SC-GHG) in this document. The SC-GHG is the monetary value of the future stream of net damages 
associated with adding one ton of that GHG to the atmosphere in a given year. The SC-GHG, therefore, 
also reflects the societal net benefit of reducing emissions of the gas by one ton. The social benefits of 
abatement are an aggregated measure of the affected individuals’ willingness to pay to avoid those 
damages. The SC-GHG is the marginal social benefit of GHG abatement and is, therefore, the theoretically 
appropriate value to use when conducting benefit-cost analyses of policies that affect GHG emissions.2 
Estimates of the marginal social cost will differ by the type of GHG (such as CO2, CH4, and N2O) and by the 
year in which the emissions change occurs. 

In principle, the SC-GHG includes the value of all climate change impacts (both negative and positive), 
including (but not limited to) changes in net agricultural productivity, human health effects, property 
damage from increased flood risk, changes in the frequency and severity natural disasters, disruption of 
energy systems, risk of conflict, environmental migration, and the value of ecosystem services. In practice, 
because of data and modeling limitations, which prevent full representation of harmful climate impacts, 
estimates of the SC-GHG are a partial accounting of climate change impacts and, as such, lead to 
underestimates of the marginal benefits of abatement.   

1.1 Overview of SC-GHG Estimates Used in EPA Analyses to Date 

The academic literature has published estimates of the social cost of carbon and other GHGs since at least 
the early 1990s. As early as 2002 researchers began conducting reviews that combined lines of evidence 
across early SC-CO2 estimates (Clarkson and Deyes 2002). The EPA began regularly incorporating SC-CO2 
estimates in regulatory impact analyses following a 2008 court ruling in which an agency was ordered to 

 
1 Note, for example, that EPA has recommended use of SC-GHG estimates in environmental impact statements under 
NEPA when appropriate. See e.g., Letter from EPA to USPS, on the Final Environmental Impact Statement for Next 
Generation Delivery Vehicle Acquisitions, Feb. 2, 2022. 
2 These estimates of social damages should not be confused with the estimated costs of attaining a predetermined 
emissions or warming limit. Specifically, there is another strand of research that investigates the costs of setting a 
specific climate target (e.g., capping emissions or temperature increases to a certain level). The expected marginal 
cost of GHG abatement associated with meeting a specific climate target can be useful in evaluating policy cost-
effectiveness but is not an alternative way to value damages from GHG emissions in benefit-cost analysis. For more 
on how these concepts (e.g., a predetermined target-based approach and a damage (SC-GHG) based approach) can 
be used when designing climate policy and in policy evaluation, see, for example, Hänsel et al. (2020); Stern et al. 
(2022); Aldy et al. (2021); and Gundlach and Livermore (2022). 
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consider the SC-CO2 in the rulemaking process. Specifically, the U.S. Ninth Circuit Court of Appeals 
remanded a fuel economy rule to the Department of Transportation for failing to consider the value of 
reducing CO2 emissions when determining the appropriate level of the fuel economy standard, stating 
that “while the record shows that there is a range of values, the value of carbon emissions reduction is 
certainly not zero.”3 The SC-CO2 estimates initially presented in EPA analyses in 2008 and early 2009 were 
derived from the academic literature.4 
 
Beginning in September 2009, EPA’s regulatory impact analyses applied SC-CO2 estimates that were 
developed through a U.S. Government interagency working group (IWG) process. The IWG was launched 
in early 2009, under the leadership of the Office of Management and Budget (OMB) and the Council of 
Economic Advisers (CEA), to ensure that Federal agencies had access to the best available information 
when quantifying the benefits of reducing CO2 emissions in benefit-cost analyses. The IWG included 
technical experts from the EPA and other federal agencies. The IWG first developed an interim set of SC-
CO2 estimates based on an average of estimates published in the peer reviewed academic literature.5 The 
EPA chose to use these interim estimates in multiple regulatory impact analyses and sought public 
comments to inform the estimates for future use.6 In 2010, the IWG published a Technical Support 
Document (TSD) with a set of four updated SC-CO2 estimates recommended for use in regulatory analyses 
in addition to guidance on using the estimates (IWG 2010). Three of these values were based on the 
average SC-CO2 from three widely cited integrated assessment models (IAMs) in the peer-reviewed 
literature – DICE, PAGE, and FUND7 – at constant discount rates of 2.5, 3, and 5 percent. The fourth value 
was included to represent the potential for lower-probability, higher-impact outcomes from climate 
change, that would be particularly harmful to society and thus relevant to the public and policymakers. 
For this purpose, it selected the SC-CO2 value for the 95th percentile at a 3 percent discount rate. Absent 

 
3 Ctr. for Biological Diversity v. Nat'l Highway Traffic Safety Admin., 538 F.3d 1172, 1200 (9th Cir. 2008). 
4 For more information, see “Technical Support Document on Benefits of Reducing GHG Emissions” 
(https://www.regulations.gov/document/EPA-HQ-OAR-2008-0318-0078), prepared for EPA’s July 2008 Advanced 
Notice of Proposed Rulemaking for Regulating Greenhouse Gas Emissions Under the Clean Air Act, and EPA’s May 
2009 Regulatory Impact Analysis for the Renewable Fuel Standard Program (RFS2) Proposed Rule.  
5 The IWG used a meta-analysis of SC-CO2 estimates (Tol 2008) as the starting point for the development of the 
interim estimates recommended in 2009.  With that starting point, the IWG filtered the existing SC-CO2 estimates in 
the meta-analysis by using those that (1) were derived from peer-reviewed studies; (2) did not weight the monetized 
damages to one country more than those in other countries (i.e., no equity weighting); (3) used a “business as usual” 
climate scenario; and (4) were based on the most recent published version of each of the three major integrated 
assessment models (IAMs): FUND, PAGE, and DICE. See EPA and DOT (2009) for more discussion of how the filtered 
estimates were combined to form a set of five recommended interim values.  
6 See, for example, EPA and DOT’s joint September 2009 Proposed Rulemaking to Establish Light-Duty Vehicle 
Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards (EPA and DOT 2009). 
7 The DICE (Dynamic Integrated Climate and Economy) model by William Nordhaus evolved from a series of energy 
models and was first presented in 1990 (Nordhaus and Boyer 2000, Nordhaus 2008). The PAGE (Policy Analysis of 
the Greenhouse Effect) model was developed by Chris Hope in 1991 for use by European decision-makers in 
assessing the marginal impact of carbon emissions (Hope 2006, Hope 2008). The FUND (Climate Framework for 
Uncertainty, Negotiation, and Distribution) model, developed by Richard Tol in the early 1990s, was originally used 
to study international capital transfers in climate policy and was subsequently widely used to study climate impacts 
(e.g., Tol 2002a, Tol 2002b, Anthoff et al. 2009, Tol 2009). 

https://www.regulations.gov/document/EPA-HQ-OAR-2008-0318-0078
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formal inclusion of risk aversion in the modeling, considering values above the mean in a right skewed 
distribution with long tails acknowledges society’s preference for avoiding risk.  
 
The EPA chose to update the set of SC-CO2 estimates used in regulatory analyses following a May 2013 
update of the IWG SC-CO2 estimates (IWG 2013). The 2013 IWG SC-CO2 update incorporated new versions 
of the IAMs used in the peer-reviewed literature but did not revisit other IWG modeling decisions (i.e., 
the discount rates or harmonized inputs for socioeconomic and emission scenarios and equilibrium 
climate sensitivity). Improvements in the way damages are modeled were confined to those that had been 
incorporated into the latest versions of the models by the developers themselves in the peer-reviewed 
literature.8  

In June 2015, the EPA began using estimates of SC-CH4 and SC-N2O from Marten et al. (2015), which were 
consistent with the methodology underlying the IWG’s estimates of the SC-CO2 estimates. The Marten et 
al. estimates were first applied in sensitivity analyses in regulatory impact analyses of proposed 
rulemakings with CH4 and N2O emission impacts.9 Following the completion of an external peer review of 
the application of these estimates to federal regulatory analysis, the estimates were used in the main 
analysis of other proposed rulemakings with CH4 emissions impacts (EPA 2015a, 2015b).10 In August 2016, 
the Marten et al. SC-CH4 and SC-N2O estimates were adopted by the IWG in an addendum to the IWG’s 
TSD (IWG 2016a, 2016b).11 The IWG recommended these estimates as a method for improving the 
analyses of regulatory actions that are projected to influence CH4 or N2O emissions in a manner consistent 
with how CO2 emission changes were being valued. 

Over the course of developing and updating the SC-GHG estimates that have been used in EPA analyses, 
there were extensive opportunities for public input on the estimates and underlying methodologies. There 
was a public comment process associated with each proposed EPA rulemaking that used the estimates, 
and OMB initiated a separate comment process on the IWG TSD in 2013. Commenters offered a wide 
range of perspectives on all aspects of the process, methodology, and final estimates, and submitted 
diverse suggestions for improvements. The U.S. Government Accountability Office (GAO) reviewed the 
development of the IWG SC-CO2 estimates and concluded that the IWG processes and methods reflected 
three principles: consensus-based decision making, reliance on existing academic literature and models, 
and disclosure of limitations and incorporation of new information (GAO 2014). 

 
8 The IWG subsequently provided additional minor technical revisions in November of 2013 and July of 2015, as 
explained in Appendix B of the 2016 TSD (IWG 2016a). 
9 The SC-CH4 and SC-N2O estimates were first used in sensitivity analysis for the Proposed Rulemaking for 
Greenhouse Gas Emissions and Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and Vehicles–Phase 
2 (EPA and DOT 2015). 
10 For a discussion of public comments received on the valuation of non-CO2 GHG impacts in general and the use of 
the Marten et al. (2015) estimates, see, e.g., EPA (2012a, 2012b, 2016a, 2016b), EPA and DOT (2016). 
11 In 2021, the EPA developed analogous estimates of the social cost of hydrofluorocarbons (SC-HFCs) that are 
consistent with the methodology underlying the SC-CO2, SC-CH4, and SC-N2O estimates.  See, for example, EPA’s final 
Regulatory Impact Analysis for Phasing Down Production and Consumption of Hydrofluorocarbons (HFCs) for more 
information (EPA 2021a). 
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In 2015, as part of the IWG response to the public comments received in the 2013 solicitation, the IWG 
announced a National Academies review of the IWG estimates (IWG 2015). Specifically, the IWG asked 
the National Academies to conduct a multi-discipline, two-phase assessment of the IWG estimates and 
offer advice on approaching future updates to ensure that the estimates continue to reflect the best 
available science and methodologies. The National Academies’ interim (Phase 1) report (National 
Academies 2016a) recommended against a near-term update of the SC-CO2 estimates within the existing 
modeling framework. For future revisions, the National Academies recommended a broader update of 
the climate system module consistent with the most recent, best available science and offered 
recommendations for how to enhance the discussion and presentation of uncertainty in the SC-CO2 
estimates. In addition to publishing estimates of SC-CH4 and SC-N2O, the IWG’s 2016 TSD revision 
responded to the National Academies’ Phase 1 report recommendations regarding the presentation of 
uncertainty. The revisions included: an expanded presentation of the SC-GHG estimates that highlights a 
symmetric range of uncertainty around estimates for each discount rate; new sections that provide a 
unified discussion of the methodology used to incorporate sources of uncertainty; a detailed explanation 
of the uncertain parameters in the FUND and PAGE models; and making the full set of SC-CO2 estimates 
easily accessible to the public on OMB’s website. 

In January 2017, the National Academies released their final report, Valuing Climate Damages: Updating 
Estimation of the Social Cost of Carbon Dioxide and recommended specific criteria for future updates to 
the SC-CO2 estimates, a modeling framework to satisfy the specified criteria, and both near-term updates 
and longer-term research needs pertaining to various components of the estimation process (National 
Academies 2017). A description of the National Academies’ recommendations for near-term updates is 
provided in Section 1.2 below. Shortly thereafter, in March 2017, President Trump issued Executive Order 
(E.O.) 13783, which called for the rescission and review of several climate-related Presidential and 
regulatory actions as well as for a review of the SC-GHG estimates used for regulatory impact analyses.12 
Further, E.O. 13783 disbanded the IWG, withdrew the previous TSDs, and directed agencies to “ensure” 
SC-GHG estimates used in regulatory analyses “are consistent with the guidance contained in OMB 
Circular A-4”, “including with respect to the consideration of domestic versus international impacts and 
the consideration of appropriate discount rates” (E.O. 13783, Section 5(c)). The EPA’s benefit-cost 
analyses following E.O. 13783 used SC-GHG estimates that attempted to focus on the specific share of 
physical climate change damages in the U.S. as captured by the models (which do not reflect many 
pathways by which climate impacts affect the welfare of U.S. citizens and residents) and were calculated 
using two default discount rates recommended by OMB Circular A-4 (2003), 3 percent and 7 percent.13 

 
12https://www.federalregister.gov/documents/2017/03/31/2017-06576/promoting-energy-independence-and-
economic-growth 
13The EPA’s regulatory analyses under E.O. 13783 included sensitivity analyses based on global SC-GHG values and 
using a lower discount rate of 2.5%. OMB Circular A-4 (2003) recognizes that special considerations arise when 
applying discount rates if intergenerational effects are important. In the IWG’s 2015 Response to Comments, OMB—
as a co-chair of the IWG—made clear that “Circular A-4 is a living document,” that “the use of 7 percent is not 
considered appropriate for intergenerational discounting,” and that “[t]here is wide support for this view in the 
academic literature, and it is recognized in Circular A-4 itself.” OMB, as part of the IWG, similarly repeatedly 
confirmed that “a focus on global SCC estimates in [regulatory impact analyses] is appropriate” (IWG 2015). See 
Sections 1.3 and 2.3 for further discussion on both issues.  
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All other methodological decisions and model versions used in SC-GHG calculations under E.O. 13783 
remained the same as those used by the IWG in 2010 and 2013, respectively.  

On January 20, 2021, President Biden issued E.O. 13990 which established an IWG and directed the group 
to develop an update of the SC-GHG estimates that reflect the best available science and the 
recommendations of the National Academies (2017).14 In February 2021, the IWG recommended the 
interim use of the most recent SC-GHG estimates developed by the IWG prior to the group being 
disbanded in 2017, adjusted for inflation (IWG 2021). As discussed in the February 2021 TSD, the IWG 
concluded that these interim estimates reflected the immediate need to have SC-GHG estimates available 
for agencies to use in regulatory benefit-cost analyses and other applications that were developed using 
a transparent process, peer reviewed methodologies, and the science available at the time of that process. 
The February 2021 update also recognized the limitations of the interim estimates and encouraged 
agencies to use their best judgment in, for example, considering sensitivity analyses using lower discount 
rates. The IWG published a Federal Register notice on May 7, 2021, soliciting comment on the February 
2021 TSD and on how best to incorporate the latest peer-reviewed scientific literature in order to develop 
an updated set of SC-GHG estimates. The EPA has applied the IWG’s interim SC-GHG estimates in analyses 
published since the release of the February 2021 TSD (see, e.g., EPA (2021b, 2021c)) and has reviewed the 
comments submitted to the IWG in developing this report.   

1.2 Recommendations from the National Academies of Sciences, Engineering, and 
Medicine  

As previously mentioned, in 2015, the IWG requested that the National Academies review and 
recommend potential approaches for improving its SC-CO2 estimation methodology. In response, the 
National Academies convened a multidisciplinary committee, called the Committee on Assessing 
Approaches to Updating the Social Cost of Carbon. In addition to evaluating the IWG’s overall approach 
to SC-CO2 estimation, the committee reviewed its choices of IAMs and damage functions, climate science 
assumptions, future baseline socioeconomic and emission projections, presentation of uncertainty, and 
discount rates.  

In its final report (National Academies 2017), the National Academies committee recommended that the 
IWG pursue an integrated modular approach to the key components of SC-CO2 estimation to allow for 
independent updating and review and to draw more readily on expertise from the wide range of scientific 
disciplines relevant to SC-CO2 estimation. Under this approach, each step in SC-CO2 estimation is 
developed as a module—socioeconomic projections, climate science, economic damages, and 
discounting—that reflects the state of scientific knowledge in the current peer-reviewed literature. In the 
longer term, it recommended that the IWG communicate research needs and priorities to its member 
agencies to stimulate research on ways to improve accounting of interactions and feedbacks between 
these components. In addition, the committee noted that, while the IWG harmonized key inputs across 
three IAMs, shifting to the use of a single climate module in the nearer-term (2-3 years) and eventually 
transitioning to a single framework for all modules will enhance transparency, improve consistency with 
the underlying science, and allow for more explicit representation of uncertainty. It recommended these 

 
14https://www.federalregister.gov/documents/2021/01/25/2021-01765/protecting-public-health-and-the-
environment-and-restoring-science-to-tackle-the-climate-crisis 
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three criteria also be used to judge the value of other updates to the methodology. It also recommended 
that the IWG update SC-CO2 estimates at regular intervals, suggesting a five-year cycle.  

Regarding the key components of the SC-CO2, the committee recommended the following improvements:  

Socioeconomic and emissions projections: Use accepted statistical methods and elicit expert 
judgment to project probability distributions of future annual growth rates of per-capita gross 
domestic product (GDP) and population, bearing in mind the potential correlation between 
economic and population projections. Use expert elicitation, guided by information on historical 
trends and emissions consistent with different climate outcomes, to project emissions for each 
forcing agent of interest, conditional on population and income scenarios. Additional 
recommendations were offered pertaining to the time horizon, inclusion of future policies, 
disaggregation of scenarios, and feedbacks from the damage module to the socioeconomic 
module.  

Climate science: Adopt or develop a simple Earth system model (such as the Finite Amplitude 
Impulse Response (FaIR) model) to capture the relationships between CO2 emissions, atmospheric 
CO2 concentrations, and global mean surface temperature change over time while accounting for 
non-CO2 forcing and allowing for the evaluation of uncertainty. Adopt or develop a sea level rise 
component in the climate module that: (1) accounts for uncertainty in the translation of global 
mean temperature to global mean sea level rise and (2) is consistent with sea level rise projections 
available in the literature for similar forcing and temperature pathways. The committee also 
noted the importance of generating spatially and temporally disaggregated climate information 
as inputs into damage estimation. It recommended the use of linear pattern scaling (which 
estimates linear relationships between global mean temperature and local climate variables) to 
achieve this goal in the near-term. 

Economic damages: Improve and update existing formulations of individual sectoral damage 
functions when feasible; characterize damage function calibrations quantitatively and 
transparently; present spatially disaggregated market and nonmarket damages by region and 
sector in both monetary and natural units (incremental and total) and discuss how they scale with 
temperature, income, and population; and recognize any correlations between formulations 
when multiple damage functions are used. 

Discounting: Account for the relationship between economic growth and discounting; explicitly 
recognize uncertainty surrounding discount rates over long time horizons using a Ramsey-like 
approach; select parameters to implement this approach that are consistent with theory and 
evidence to produce certainty-equivalent discount rates consistent with near-term consumption 
rates of interest; use three sets of Ramsey parameters to generate a low, central, and high 
certainty-equivalent near-term discount rate, and three means and ranges of SC-CO2 estimates; 
discuss how the SC-CO2 estimates should be combined with other cost and benefit estimates that 
may use different discount rates in regulatory analysis. 

Additional details on the National Academies’ near-term recommendations are provided in Section 2 
below. The National Academies’ final report also provided longer-term recommendations pertaining to 
each module and identified research priorities for addressing these recommendations.  
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In focusing on the four categories above, the National Academies left various topics for future research. 
For example, the report pointed to future research that might enable more robust methods of capturing 
the benefits of reducing climate risks. While the National Academies report did not explicitly address 
methods to account for the disproportionate climate damages that may accrue to lower-income 
individuals in SC-GHG estimates, it did outline ways to present evidence on the possible distributional 
effects of climate change. The National Academies point to the importance of presenting spatially 
disaggregated results that could, in turn, enable methods that would better identify vulnerable 
populations and those most at risk. Additional discussion of these dimensions can be found in Section 3.3 
of this report. 

1.3 Accounting for Global Damages 

Benefit-cost analyses of U.S. Federal regulations have traditionally focused on the benefits and costs that 
accrue to individuals that reside within the country’s national boundaries and that accrue to regulated 
industries, regardless of the nationality of the owners of affected physical assets.15 This approach reflects 
the fact that for most regulations, those are the two groups primarily affected. It does not reflect any 
other scientific, legal, or other rationale. The default recommendation in OMB’s Circular A-4 (2003) is that, 
an “analysis should focus on benefits and costs that accrue to citizens and residents of the United 
States.”16 However, OMB Circular A-4 states that when a regulation is likely to have international effects, 
“these effects should be reported”; and though the guidance recommends this be done separately, the 
guidance also explains that “[d]ifferent regulations may call for different emphases in the analysis, 
depending on the nature and complexity of the regulatory issues.”17 The National Academies advised that 
“[i]t is important to consider what constitutes a domestic impact in the case of a global pollutant that 
could have international implications that affect the United States” (National Academies 2017, p. 13). 
There are many reasons, as summarized in this section – and as articulated by OMB and in IWG TSDs (IWG 
2010, 2013, 2016a, 2016b, 2021) and the 2015 Response to Comments (IWG 2015) – why the EPA uses 
the global value of climate change impacts when analyzing policies that affect GHG emissions, which have 
global effects. Courts have upheld the use of global estimates of the SC-GHG, partially in recognition of 

 
15 It is customary in the benefit-cost analyses of U.S. Federal regulations to include the full compliance costs that 
accrue to entities operating in the U.S,, even if those costs are fully or partially borne by owners, employees, or 
consumers that reside outside of the U.S.  
16 OMB’s Circular A-4 (2003) provides guidance to Federal agencies on the development of regulatory analysis 
conducted pursuant to Executive Order (E.O.) 12866. 
17 Circular A-4 also explains “You will find that you cannot conduct a good regulatory analysis according to a formula. 
Conducting high-quality analysis requires competent professional judgement.” For example, as noted above, 
benefit-cost analyses have historically often included compliance costs that are ultimately borne by owners, 
employees, or customers that reside outside of the U.S. It may therefore also be relevant that Circular A-4 generally 
recommends consistency in the analytical treatment of costs and benefits. (“The same standards of information and 
analysis quality that apply to direct benefits and costs should be applied to ancillary benefits and countervailing 
risks” (OMB 2003).) 
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the diverse ways in which U.S. interests, businesses, and residents are impacted by global climate 
change.18  

Unlike many environmental problems where the causes and impacts are distributed more locally, GHG 
emissions are a global externality making climate change a true global challenge. GHG emissions 
contribute to damages around the world regardless of where they are emitted. The global nature of GHG 
pollution and its impacts means that U.S. interests are affected by climate change impacts through a 
multitude of pathways and these need to be considered when evaluating the benefits of GHG mitigation 
to the U.S. population. For example, climate change will directly impact U.S. interests that are located 
abroad (such as U.S. citizens, investments, military bases and other assets, and resources in the global 
commons (e.g., through changes in fisheries’ productivity and location)). An estimated 9 million U.S. 
citizens lived abroad as of 2020,19 and the U.S. direct investment abroad position totaled $6.15 trillion at 
the end of 2020.20 Nearly 40% of U.S. pension assets’ equity holdings are in foreign stocks.21 Climate 
impacts occurring outside of U.S. borders have a direct impact on these U.S. citizens and the investment 
returns on those assets owned by U.S. citizens and residents. In addition, the U.S. has over 500 military 
sites abroad across 45 foreign countries.22 Climate change impacts (such as sea level rise) occurring in 
these locations already affect U.S. military infrastructure and will continue to lead to increased 
expenditures to maintain bases’ viability and readiness (USGCRP 2018a). Failure to do so can lead to 
impacts on mission execution and increased security risks. As one example, “…the United States has 
important defense assets located in…the Marshall Islands, and Palau, all of which are vulnerable to these 
[climate] hazards. Additionally, competitors such as China may try to take advantage of climate change 
impacts to gain influence” (DoD 2021). The timing and severity of climate events are already affecting 
missions in some cases and these risks are expected to increase. For example, in the Marshall Islands, the 
Ronald Reagan Ballistic Missile Defense Test Site, “a pillar of U.S. Strategic Command” used for detecting 
foreign missile launches, may be “uninhabitable in mere decades” according to a recent study conducted 
by the Center for Climate and Security’s Military Expert Panel (CCS 2018). 

The U.S. economy is also inextricably linked to the rest of the world. The U.S. exports over $2 trillion worth 
of goods and services a year and imports around $3 trillion.23 According to recent data, over 20% of 

 
18 Zero Zone, Inc. v. Dep’t of Energy, 832 F.3d 654, 678-79 (7th Cir. 2016) (rejecting a petitioner’s challenge to DOE’s 
use of a global social cost of carbon in setting an efficiency standard under the Energy Policy and Conservation Act, 
holding that DOE had reasonably identified carbon pollution as “a global externality” and concluding that, because 
“national energy conservation has global effects, . . . those global effects are an appropriate consideration when 
looking at a national policy.”).  
19 U.S. Department of State’s Bureau of Consular Affairs, https://travel.state.gov/content/dam/travel/CA-By-the-
Number-2020.pdf.  
20 BEA Direct Investment by Country and Industry 2020,  https://www.bea.gov/news/2021/direct-investment-
country-and-industry-2020.  
21 Based on Thinking Ahead Institute’s 2022 Global Pension Assets Study , available at: 
https://www.thinkingaheadinstitute.org/research-papers/global-pension-assets-study-2022/. 
22 Based on data from U.S. DOD BASE STRUCTURE REPORT – FISCAL YEAR 2018 BASELINE: A SUMMARY OF THE REAL 
PROPERTY INVENTORY DATA. See Figure 1. 
 https://www.acq.osd.mil/eie/Downloads/BSI/Base%20Structure%20Report%20FY18.pdf 
23 BEA National Income and Product Accounts Table 1.1.5. 

https://travel.state.gov/content/dam/travel/CA-By-the-Number-2020.pdf
https://travel.state.gov/content/dam/travel/CA-By-the-Number-2020.pdf
https://www.bea.gov/news/2021/direct-investment-country-and-industry-2020
https://www.bea.gov/news/2021/direct-investment-country-and-industry-2020
https://www.acq.osd.mil/eie/Downloads/BSI/Base%20Structure%20Report%20FY18.pdf
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American firms’ profits are earned on activities outside the country.24 Climate impacts that occur outside 
U.S. borders will impact the welfare of individuals and the profits of firms that reside in the U.S. because 
of their connection to the global economy. This will occur through the effect of climate change on 
international markets, trade, tourism, and other activities. Supply chain disruptions are a prominent 
pathway through which U.S. business and consumers are, and will continue to be, affected by climate 
change impacts abroad. The impact of international supply chain disruptions can be severe. For example, 
severe flooding in Thailand in 2011 disrupted production of components for global companies including 
computer disk drives and cars (USGCRP 2018a, DoD 2021). As a result, U.S. consumers faced higher prices 
for many electronic goods. The U.S.-based firm Western Digital alone posted $199 million in losses and a 
51% drop in hard drive shipments, and U.S. vehicle production had to be temporarily halted or reduced 
considerably by at least two manufacturers (USGCRP 2018a). As climate change increases the severity and 
frequency of extreme weather events, it increases the risk of supply chain disruptions.  Recent research 
finds the “probability of a hurricane of sufficient intensity to disrupt semiconductor supply chains may 
grow two to four times by 2040” and the “probability heavy rare earths production is severely disrupted 
from extreme rainfall may increase 2 to 3 times by 2030.”25  

Additional climate change-induced international spillovers can occur through pathways such as damages 
across transboundary resources, economic and political destabilization, and global migration that can lead 
to adverse impacts on U.S. national security, public health, and humanitarian concerns (DoD 2014, CCS 
2018). As articulated in a landmark 2007 study by retired three- and four-star Generals and Admirals - and 
echoed in the Department of Defense’s (DoD) 2014 Quadrennial Defense Review – the projected effects 
of climate change act as a “threat multiplier” that will exacerbate many stressors and instabilities that 
already exist in some of the most volatile regions of the world (CNA 2007, DoD 2014). A follow-up study 
emphasized that beyond being a threat multiplier, climate change impacts will also “serve as catalysts for 
instability and conflict” (CNA 2014). For example, in Sub-Saharan Africa regional environmental stressors 
exacerbated by climate change can help to transform resource competition into ethnopolitical conflict 
and enable the involvement of transnational terrorist groups (such as Al Qaeda in the Islamic Maghreb 
(AQIM) in Mali in 2012) (CNA 2014). More recent DoD reports reiterate these concerns, concluding that 
the impacts of climate change “could stress economic and social conditions that contribute to mass 
migration events or political crises, civil unrest, shifts in the regional balance of power, or even state 
failure,” with results that affect the national interests of the U.S. (DoD 2021). The key takeaway from the 
National Intelligence Council’s (NIC) 2021 National Intelligence Estimate is that “climate change will 
increasingly exacerbate risks to US national security interests as the physical impacts increase and 
geopolitical tensions mount about how to respond to the challenge” (NIC 2021). The NIC finds “the 
increasing physical effects of climate change are likely to exacerbate cross-border geopolitical flashpoints 
as states take steps to secure their interests”, and as intensifying physical effects “out to 2040 and beyond 
will be most acutely felt in developing countries, which we assess are also the least able to adapt to such 
changes…[t]hese physical effects will increase the potential for instability and possibly internal conflict in 

 
24 Bureau of Econ. Analysis, National Income and Product Accounts Table 6.16D, 
https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=2#reqid=19&step=2&isuri=1&1921=survey. 
25 https://www.mckinsey.com/business-functions/sustainability/our-insights/could-climate-become-the-weak-link-
in-your-supply-chain. 

https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=2#reqid=19&step=2&isuri=1&1921=survey
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these countries, in some cases creating additional demands on US diplomatic, economic, humanitarian, 
and military resources” (NIC 2021). 

As described by the National Academies (2017), to correctly assess the total damages to U.S. citizens and 
residents, one must account for these spillover effects on the U.S. For more discussion and examples of 
international spillover effects, including the ways that climate change spillovers are exacerbating existing 
risks and creating new security, health, and humanitarian challenges for U.S. interests, see for example, 
NIC (2021), DoD (2021), USGCRP (2018a), Freeman and Guzman (2009), Howard and Livermore (2021), 
Schwartz (2021), and IPCC (2022). 

A robust estimate of climate damages to U.S. citizens and residents that accounts for the myriad of ways 
that global climate change reduces the net welfare of U.S. populations does not currently exist in the 
literature. At present, the only quantitative characterizations of U.S. damages from GHG emissions are 
based on the share of modeled damages that physically occur within U.S. national borders as represented 
in current IAMs. Such estimates provide an underestimate of the climate change damages to the citizens 
and residents of the U.S. because these models do not fully capture the range of climate change impacts 
and exclude important regional interactions and spillovers discussed above. In addition, a 2020 GAO study 
observed that “[a]ccording to the National Academies, the integrated assessment models were not 
premised or calibrated to provide estimates of the social cost of carbon based on domestic damages, and 
more research would be required to update the models to do so” (GAO 2020). Further, the National 
Academies observed that existing models “focus primarily on global estimates and do not model all 
relevant interactions among regions.…More thoroughly estimating a domestic SC-CO2 would therefore 
need to consider the potential implications of climate impacts on, and actions by, other countries, which 
also have impacts on the United States” (National Academies 2017, p. 13). 

In addition to accounting for the ways that climate change impacts occurring outside of U.S. borders affect 
U.S. populations, it is also important to consider how changes in U.S. emissions affect the GHG emissions 
of other countries. This is relevant because the global nature of greenhouse gases means that damages 
caused by a ton of emissions in the U.S. are felt globally and that a ton emitted in any other country harms 
those in the U.S. This is a classic public goods problem because each country’s reductions benefit everyone 
else and no country can be excluded from enjoying the benefits of other countries’ reductions. As 
discussed by EPA and other members of the IWG in the 2015 response to comments (IWG 2015), in this 
situation, the only way to achieve an efficient allocation of resources for emissions reduction on a global 
basis—and so benefit the U.S. and its citizens and residents —is for all countries to consider estimates of 
global marginal damages. Therefore, international GHG mitigation activities taken in response to U.S. 
policies that reduce emissions will also provide a benefit to U.S. citizens and residents. A wide range of 
scientific and economic experts have emphasized the issue of reciprocity as support for assessing global 
damages of GHG emissions in domestic policy analysis (e.g., Kopp and Mignone 2013, Pizer et al. 2014, 
Howard and Schwartz 2017, Pindyck 2017, 2021, Revesz et al. 2017, Carleton and Greenstone 2022). 
Kotchen (2018) demonstrates how a country’s decision to internalize global damages in domestic 
policymaking can be individually rational (i.e., in the country’s own self-interest) because of the 
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reciprocally induced emissions reductions occurring in other countries.26 Carleton and Greenstone (2022) 
discuss examples of how accounting for global damages in past U.S. regulatory analyses may have 
contributed to additional international action. Houser and Larson (2021) estimate that under the Paris 
Agreement, other countries pledged to reduce 6.1 to 6.8 tons for every ton pledged by the U.S.  

Assessing global marginal damages of GHG emissions in U.S. analyses of regulatory and other actions 
allows the U.S. to continue to actively encourage other nations, including emerging economies, to also 
assess global climate damages of their policies and to take significant steps to reduce emissions. Many 
countries and international institutions have either already explicitly adapted the IWG’s estimates of 
global damages in their domestic analyses (e.g., Canada27, Israel28), developed their own estimates of 
global damages (e.g., Germany29), or have taken note of the IWG estimates in their assessments of climate 
policies (e.g., India’s National Green Tribunal30, the Australian Capital Territory31, New Zealand32, and the 
International Monetary Fund33). In 2016, Mexico announced its intention to “align approaches [with the 

 
26 Kotchen (2018) not only details the “efficiency argument in support of all countries internalizing the GSCC [global 
social cost of carbon] for domestic policy,” but Kotchen (2018) also introduces the concept of countries having a 
“preferred” social cost of carbon (PSCC) for setting global climate policy and shows that all countries’ PSCC exceeds 
the marginal damages to its own populations. The PSCC is shaped by a country’s expected benefits from other 
countries’ emission reductions. Kotchen’s study shows that in some countries the PSCC can even exceed the value 
of global marginal damages (e.g., in small island nations for whom the benefits of stringent worldwide abatement 
based on a high PSCC would exceed the increase in its own abatement costs due to a high PSCC). Kotchen offers 
illustrative estimates of the PSCC for several countries and regions based on research using a regionalized version of 
the DICE model (Nordhaus 2015). In this analysis Kotchen finds the U.S. PSCC to be nearly 75% of the value of global 
marginal damages. And as Kotchen has further clarified, “depending on the U.S. government’s diplomatic strategies, 
its expectations of international reciprocity, and the international distribution of costs, it can be rational for the 
United States to adopt the full global SCC values for use in policy-making.” (Kotchen 2021, comment number OMB-
2021-0006-0018, available at: https://www.regulations.gov/comment/OMB-2021-0006-0018). Such arguments for 
accounting for the global value of climate change impacts in analysis of policies affecting U.S. GHG emissions, based 
on the U.S. derived benefits from reciprocally induced emission reductions elsewhere, are distinct from and 
additional to arguments above based on spillover effects and U.S. interests beyond our geographic borders.   
27 Envt. & Climate Change Canada, Technical Update to Environment and Climate Change Canada’s Social Cost of 
Greenhouse Gas Estimates at 13 (2016), http://publications.gc.ca/collections/collection_2016/eccc/En14-202-2016- 
eng.pdf. 
28 Israel Ministry of Envtl. Protection, Green Book on External Costs of Air Pollutants (2020), 
https://www.gov.il/BlobFolder/publicsharing/pc_external_costs_of_air_pollution/he/public_comments_2020_Ext
ernal _air_pollution_costs_pc_accessible.docx 
29 See GAO (2020) for a discussion of Germany’s SC-GHG values. 
30 Additional Report of Committee on Environmental Damage Assessment Due to Air Pollution Caused on Account 
of Explosion & FIR…in the Matter of OA No. 22 of 2020, at 12 (2020), 
https://cpcb.nic.in/NGT/ADDITIONAL_REPORT_Air_OA_22_of_2020-SEP-2020.pdf. 
31 Austl. Cap. Terr. Env’t, Plan. and Sustainable Dev. Directorate, ACT Climate Change Strategy 2019-2025 (2019), 
https://perma.cc/487H-BHHC; see also Rovingstone Adv. Pty Ltd., A Social Cost of Carbon for the ACT, Report 
Prepared for the ACT Government (2021), 
 https://www.climatechoices.act.gov.au/__data/assets/pdf_file/0006/1864896/a-social-cost-of-carbon-in-the-
act.pdf (recommending adopting the U.S. valuations of the social cost of carbon). 
32 Ministry of Transp., Preliminary CBA for Vehicle Fuel Efficiency Standard (2018), https://perma.cc/Y7SS-3AG2. 
33 Benedict Clements et al., IMF, Energy Subsidy Reform: Lessons and Implications at 8 (2013), 
https://www.imf.org/en/Publications/Books/Issues/2016/12/31/Energy-Subsidy-Reform-Lessons-and-
Implications-40410  . 

https://www.regulations.gov/comment/OMB-2021-0006-0018
https://cpcb.nic.in/NGT/ADDITIONAL_REPORT_Air_OA_22_of_2020-SEP-2020.pdf
https://perma.cc/487H-BHHC
https://www.climatechoices.act.gov.au/__data/assets/pdf_file/0006/1864896/a-social-cost-of-carbon-in-the-act.pdf
https://www.climatechoices.act.gov.au/__data/assets/pdf_file/0006/1864896/a-social-cost-of-carbon-in-the-act.pdf
https://www.imf.org/en/Publications/Books/Issues/2016/12/31/Energy-Subsidy-Reform-Lessons-and-Implications-40410
https://www.imf.org/en/Publications/Books/Issues/2016/12/31/Energy-Subsidy-Reform-Lessons-and-Implications-40410
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U.S. and Canada] to account for the social cost of carbon and other greenhouse gas emissions when 
assessing the benefits of emissions-reducing policy measures”34, and references to global estimates of 
climate damages can be found in Mexican regulatory analyses in 2017.35 However, the bilateral technical 
discussions to help implement the announced plan did not occur over 2017-2021 during the time U.S. 
federal regulatory analyses stopped focusing on SC-GHG estimates that reflect global damages. 

EPA and other members of the IWG found previously and restated in their February 2021 TSD that because 
of the distinctive global nature of climate change that analysis of Federal regulations and other actions 
should center on a global measure of SC-GHG (IWG 2021). This is the same approach that was 
recommended by OMB and other members of the IWG and used by EPA and other agencies in regulatory 
analyses from 2009 to 2016. It is also consistent with guidance in OMB Circular A-4 that “[d]ifferent 
regulations may call for different emphases in the analysis, depending on the nature and complexity of 
the regulatory issues,” and National Academies’ guidance that “it is important to consider what 
constitutes a domestic impact in the case of a global pollutant that could have international implications 
that impact the United States.” In the case of this global pollutant, for all the reasons articulated in this 
section, the assessment of global net damages of GHG emissions allows analysts to fully disclose and 
contextualize the net climate benefits of domestic policies that reduce GHG emissions. The extent that 
analysis relying on these SC-GHG estimates is considered in setting the stringency of future regulatory 
actions and other policy decisions would be guided by the statutes under which those decisions are 
promulgated.36,37 The EPA will continue to review developments in the literature, including more robust 
methodologies for estimating the magnitude of the various direct and indirect damages to U.S. 
populations from climate impacts occurring abroad and reciprocal international mitigation activities.  

 
34 https://obamawhitehouse.archives.gov/the-press-office/2016/06/29/leaders-statement-north-american-
climate-clean-energy-and-environment 
35 See, e.g., Secretaria del Medio Ambiete y Recursos Naturals, Que Establece Los Limites Maximos Permisible de 
Emision de Monoxido de Carbono….Anexo: Beneficios (2017), https://perma.cc/N6YHZYTM (citing the Working 
Group’s estimates); Secretaria del Medio Ambiente y Recursos Naturales, Aviso Mediante elCual Se Dan a Conocer 
los Parametros para el Calculo de las Emisiones de Bioxido de Carbono (CO2) en los Vehiculos Automotores Ligeros 
Nuevos con Peso Bruto Vehicluar Que No Exceda Los 3857 Kilogramos, Que Utilizan Gasolina o Diesel como 
Combustible Cuyo Ano-Modelo SEA 2017 (June 15, 2016), https://perma.cc/HV8H-62GU (referencing “beneficios 
globales para las emisiones evitadas de CO2”). 
36 For example, as the Supreme Court stated in Motor Vehicle Manufacturers Ass’n. v. State Farm Mutual Auto. Ins. 
Co., 463 U.S. 29, 41-43 (1983): “Normally, an agency rule would be arbitrary and capricious if the agency has relied 
on factors which Congress has not intended it to consider, entirely failed to consider an important aspect of the 
problem, offered an explanation for its decision that runs counter to the evidence before the agency, or is so 
implausible that it could not be ascribed to a difference in view of the product of agency expertise.” This requires 
agencies to “examine the relevant data and articulate . . . a rational connection between the facts found and the 
choice made.” 
37 Public comments received on the February 2021 TSD argue that key U.S. statutes explicitly require or allow 
consideration of global climate damages in decision making. See, e.g., discussion within comments submitted by the 
Institute for Policy Integrity and the attachments and literature cited therein (comment number OMB-2021-0006-
0074, available at: https://www.regulations.gov/comment/OMB-2021-0006-0074) (discussing, for example, how 
the National Environmental Policy Act requires that “public laws of the United States shall be interpreted and 
administered in accordance with the policies set forth in this chapter, and all agencies of the Federal Government 
shall…recognize the worldwide and long-range character of environmental problems”). 
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2 Methodological Updates 

The SC-GHG is commonly estimated with the use of integrated assessment models (IAM). In the broadest 
sense IAMs are “approaches that integrate knowledge from two or more domains into a single 
framework” (Nordhaus 2017a). The literature on “IAMs” is vast and spans many sciences, e.g., earth 
sciences, biological sciences, environmental engineering, economics, and sociology. IAMs have been used 
to study environmental problems and their connection to economic systems for nearly 40 years (e.g., 
Freeman 1979, 1982; Mendelsohn 1980; Nordhaus 1993a, 1993b). The National Academies defined IAMs 
used to study climate change as “computational models of global climate change that include 
representation of the global economy and greenhouse gas emissions, the response of the climate system 
to human intervention, and impacts of climate change on the human system” (National Academies 2017). 
These IAMs vary significantly in structure, geographic resolution, the degree to which they capture 
feedbacks within and between natural and economic systems and include valuation, and application. 
Those that are used to estimate the SC-GHG are reduced-form in nature and combine climate processes, 
economic growth, and feedback between the climate and the global economy into a single modeling 
framework, providing a holistic view of the system, and include a valuation of climate change damages. 
Other climate change IAMs, often called detailed-structure IAMs, include structural representations of 
the global economy with a high level of regional and sectoral detail, and were originally developed for 
analyzing the impact of policy and technology on greenhouse gas emissions (e.g., Edmonds and Reilly, 
1983). These types of IAMs are increasingly being used to examine different climate change impact sectors 
and interactions between sectors and regions but do not yet comprehensively link physical impacts to 
monetized economic damages as needed for SC-GHG estimation (National Academies 2017).  

As illustrated in Figure 2.1, the steps necessary to estimate the SC-GHG with a climate change IAM can 
generally be grouped into four modules: socioeconomics and emissions, climate, damages, and 
discounting. The emissions trajectories from the socioeconomic module are used to project future 
temperatures in the climate module. The damage module then translates the temperature and other 
climate endpoints (along with the projections of socioeconomic variables) into physical impacts and 
associated monetized economic damages, where the damages are calculated as the amount of money the 
individuals experiencing the climate change impacts would be willing to pay to avoid them. To calculate 
the marginal effect of emissions, i.e., the SC-GHG in year 𝑡𝑡, the entire model is run twice – first as a 
baseline and second with an additional pulse of emissions in year 𝑡𝑡. After recalculating the temperature 
effects and damages expected in all years beyond 𝑡𝑡 resulting from the adjusted path of emissions, the 
losses are discounted to a present value in the discounting module. Much of the uncertainty in the 
estimation process can be incorporated using Monte Carlo techniques by taking draws from probability 
distributions that reflect the uncertainty in parameters.  

The SC-GHG estimates used by the EPA and many other federal agencies since 2009 have relied on an 
ensemble of three widely used IAMs: Dynamic Integrated Climate and Economy (DICE) (Nordhaus 2010); 
Climate Framework for Uncertainty, Negotiation, and Distribution (FUND) (Anthoff and Tol 2013a, 2013b); 
and Policy Analysis of the Greenhouse Gas Effect (PAGE) (Hope 2013). In 2010, the IWG harmonized key 
inputs across the IAMs, but all other model features were left unchanged, relying on the model 
developers’ best estimates and judgments. That is, the representation of climate dynamics and damage 
functions included in the default version of each IAM as used in the published literature was retained. 
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The SC-GHG estimates in this report no longer rely on the three IAMs (i.e., DICE, FUND, and PAGE) used 
in previous SC-GHG estimates. Instead, this report uses a modular approach to estimating the SC-GHG, 
consistent with the National Academies’ near-term recommendations. That is, the methodology 
underlying each component, or module, of the SC-GHG estimation process draws on expertise from the 
scientific disciplines relevant to that component. Under this approach, each step in the SC-GHG estimation 
improves consistency with the current state of scientific knowledge, enhances transparency, and allows 
for more explicit representation of uncertainty. This section discusses the methodological updates in each 
of the four National Academies’ recommended modules in addition to other updates in the modeling 
framework, such as the explicit incorporation of risk aversion.  

Figure 2.1: The Four Components of SC-GHG Estimation38 

 

Source: National Academies of Sciences, Engineering, and Medicine (2017) 

  

 
38 In Figure 2.1, the different shading for non-monetized impacts signifies that those impacts are outside the scope 
of the modeling and is not intended to suggest that non-monetized impacts are less relevant than monetized 
impacts. 
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2.1 Socioeconomic and Emissions Module 

The first step in the SC-GHG estimation process is the development of projections of socioeconomic 
variables and GHG emissions at the spatial and temporal resolution required by the climate and damage 
modules. Socioeconomic trajectories are closely tied to climate damages because, holding all else equal, 
increases in population and income will increase GHG emissions and lead to a greater willingness to pay 
to avoid climate change impacts. Within the SC-GHG estimation process, projections of GHG emissions 
serve as inputs to the climate module, and projections of GDP and population serve as inputs to the 
damage function and discounting modules. Disaggregation of these inputs is required when greater spatial 
and/or temporal resolution is required for the damage module. Finally, because GHG emissions and their 
effects are long lived, it is necessary to project these variables far into the future and address the many 
complex uncertainties associated with such projections. 

SC-GHG estimates used in the EPA’s analyses to date have relied on the socioeconomic and emissions 
projections selected by the IWG in 2010.  The IWG elected to use socioeconomic and emissions projections 
based on deterministic scenarios that, at the time, were recently updated, grounded in multiple well-
recognized models, used in climate policy simulations, and spanned a plausible range of outcomes for 
these variables. The socioeconomic and emission projections included five deterministic reference 
scenarios based on the Stanford Energy Modeling Forum EMF-22 modeling exercise (Clarke, et al. 2009; 
Fawcett, et al. 2009). Four of these scenarios represented business-as-usual (BAU) trajectories, while the 
fifth scenario assumed that substantive actions would be adopted to reduce future emissions. The SC-
GHG estimates gave equal weight to each scenario. The IWG also elected to use a time horizon extending 
to 2300 to try to capture the vast majority of discounted climate damages. Running the IAMs through 
2300 required extrapolations of the projections after 2100, the last year available for projections from the 
EMF-22 models.39   
  
The National Academies 2017 final report included several recommendations for how to approach 
updating the socioeconomic module to reflect newer information. The National Academies (2017) 
recommended that socioeconomic scenarios used to estimate the SC-GHG should: “extend far enough in 
the future to provide inputs for estimation of the vast majority of discounted climate damages”; “take 
account of the likelihood of future emissions mitigation policies and technological developments”; 
“provide the sectoral and regional detail in population and GDP necessary for damage calculations”; and, 
“to the extent possible…incorporate feedbacks from the climate and damages modules that have a 
significant impact on population, GDP, or emissions” (National Academies, 2017, p. 15). The National 
Academies acknowledged that it would not be possible to meet all these criteria in the near term. 

 
39 These inputs were extrapolated from 2100 to 2300 as follows: (1) population growth rate declines linearly, 
reaching zero in the year 2200; (2) GDP/ per capita growth rate declines linearly, reaching zero in the year 2300; (3) 
the decline in the fossil and industrial carbon intensity (CO2/GDP) growth rate over 2090-2100 is maintained from 
2100 through 2300; (4) net land use CO2 emissions decline linearly, reaching zero in the year 2200; and (5) non-CO2 
radiative forcing remains constant after 2100. See IWG (2010) for more discussion of each of these assumptions. In 
2016, the IWG added more specificity to the assumptions regarding post-2100 baseline CH4 and N2O emissions in 
order to calculate SC-CH4 and SC-N2O. See IWG (2016b) for more details. 
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However, the report suggested initial steps for how to achieve these goals and overcome several 
limitations in the methodology used to date. Specifically, they recommend: 

(1) working with demographers to extend existing probabilistic population projections beyond 2100, 
validated and adjusted by expert judgment; 

(2) generating probabilistic projections of annual growth rates of per-capita GDP with an appropriate 
statistical technique, informed by expert judgment; 

(3) using a set of emissions projections generated by an expert elicitation, conditioned by the set of 
scenarios of future population and income; and  

(4) developing projections of sectoral and regional GDP and regional population using scenario 
libraries, published projections, detailed-structure economic models, or other sources.  

Resources for the Future Socioeconomic and Emissions Projections (RFF-SPs). Based on a review of 
available sources of long-run projections for socioeconomic variables and GHG emissions necessary for 
damage calculations, the socioeconomic and emissions projections recently developed under the 
Resources for the Future Social Cost of Carbon Initiative (Rennert et al. 2022a) stand out as being most 
consistent with the National Academies’ recommendations. These projections (hereafter collectively 
referred to as the RFF-SPs) are an internally consistent set of probabilistic projections of population, GDP, 
and GHG emissions (CO2, CH4, and N2O) to 2300. Consistent with the National Academies’ 
recommendation, the RFF-SPs were developed using a mix of statistical and expert elicitation techniques 
to capture uncertainty in a single probabilistic approach, taking into account the likelihood of future 
emissions mitigation policies and technological developments, and provide the level of disaggregation 
necessary for damage calculations. Unlike other sources of projections, they provide inputs for estimation 
to 2300 without further extrapolation assumptions. Conditional on the modeling conducted for this 
report, this time horizon is far enough in the future to capture the majority of discounted climate damages 
(see discussion in Section 3). Including damages beyond 2300 would increase the estimates of the SC-
GHG. As discussed in Section 2.5, the use of the RFF-SPs allows for capturing economic growth uncertainty 
within a calibrated utility approach to discounting.  

The RFF-SPs were developed as follows. The country-level population projections are based on Raftery 
and Ševčiková’s (2021) extension to the Bayesian methodology that the United Nations has used since 
2015 for population forecasting (UN 2015). The extension combines the United Nations statistical 
approach with expert review and elicitation to extend the projections to 2300.  

The economic growth projections extend research by Müller et al. (2022), who refined a foundational 
statistical methodology for generating internally consistent long-term probabilistic growth projections at 
the country level. Specifically, Müller et al. were the first to extend the approach provided in Müller and 
Watson (2016) for estimating global economic growth. These probabilistic economic growth projections 
are combined with the results of a formal expert elicitation of 10 leading growth economists, conducted 
individually via videoconference in 2019-2020. As part of the elicitation, the experts first quantified their 
uncertainty for a set of calibration questions, the results of which were used to performance-weight the 
experts in their final combination. The elicitation focused on quantifying uncertainty for a representative 
frontier of economic growth in OECD countries. The combined results from the experts were then used 
to inform econometric projections based on the Müller et al. (2022) model of an evolving frontier (also 
based on the OECD), in turn providing country-level, long-run probabilistic projections.  
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GHG emissions are projected using expert elicitation techniques.40 A separate panel of 10 experts41 was 
asked to provide uncertainty quantiles for four emissions variables in five benchmark years and to indicate 
the sensitivity of the CO2 emissions responses to five GDP per capita trajectories.42 Responses were 
requested under a case incorporating views about changes in technology, fuel use, and other conditions, 
including the evolution of future policy.43 The projections from the RFF-SPs represent a state-of-the-art 
set of probabilistic socioeconomic and emissions scenarios based on high-quality data, robust statistical 
techniques, and expert elicitation. In addition, they cover a sufficient time horizon for estimating the SC-
GHG and incorporate uncertainty over future background policies. As such, the RFF-SPs are consistent 
with the National Academies’ recommendations on socioeconomic and emissions scenarios.  

Other Sources of Socioeconomic and Emissions Projections. The RFF-SPs represent a significant 
advancement over the now outdated and deterministic EMF-22 scenarios and offer improvements over 
other recently developed socioeconomic and emissions projections. The only other probabilistic 
projections identified in this review are a library of scenarios generated using MIT’s Emissions Prediction 
and Policy Analysis (EPPA) Model, coupled with expert elicitation (Abt Associates 2012, Marten 2014). 
These projections have the advantage that they rely on a comprehensive computable general equilibrium 
(CGE) model that captures key feedbacks and interdependencies across the sources of uncertainty. 
However, they were generated in 2012 and do not incorporate changes in the economy, emissions trends, 
and policies adopted over the past decade.  

Other socioeconomic and emissions projections developed since the EMF-22 exercise are deterministic 
and do not provide global projections over a time horizon sufficient for SC-GHG estimation. The most 
prominent deterministic projections come from the database of Shared Socioeconomic Pathways (SSPs) 
and Representative Concentration Pathways (RCPs).44 The SSPs and RCPs are the result of a scenario 
development effort that started in the late 2000s to replace the Special Report on Emission Scenarios 
(SRES) scenarios from the 1990s (used in the IPCC Third Assessment Report). The two components, SSPs 
and RCPS, were designed to be complementary. RCPs set pathways for GHG concentrations and, 

 
40 For greenhouse gases other than CO2, CH4, and N2O that are needed as inputs to FaIR (e.g., CF4, C2F6, HFCs, CFCs, 
HCFCs), emissions are projected using SSP2-4.5 from AR6. This scenario is also used to calibrate FaIR1.6.2 and is 
nearest to the RFF-SP median emissions for carbon dioxide and methane.   
41 The experts were nominated by their peers and/or by members of the RFF Scientific Advisory Board, and have 
expertise in, and have undertaken, long-term projections of the energy-economic system under a substantial range 
of climate change mitigation scenarios. More information about the experts is provided in Rennert et al. (2022a). 
42 Specifically, the experts were asked to provide quantiles (minimum, 5th, 50th, 95th, maximum, as well as 
additional percentiles at the expert’s discretion) for (1) fossil fuel and process-related CO2 emissions; (2) changes in 
natural CO2 stocks and negative-emissions technologies; (3) CH4; and (4) N2O, for five benchmark years: 2050, 2100, 
2150, 2200, and 2300. 
43 See Rennert et al. (2022a) for a detailed discussion of the survey methodology and the full elicitation protocol. 
44 Some organizations also regularly produce forecasts of key socioeconomic variables and emissions, but these tend 
to be only for a few decades or some countries or regions (e.g., IEA, EIA). Some IAM researchers have constructed 
deterministic projections using disparate sources. For example, the inputs used in the latest version of the DICE 
model, DICE 2016, include economic growth projections based on a survey by Christensen et al. (2018), population 
data from the United Nations, and CO2 emissions projections from Carbon Dioxide Information Analysis Center, with 
simple assumptions for extending each series post-2100 (Nordhaus 2017b). 
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effectively, the amount of warming that could occur by the end of the century.45 Many possible socio-
economic futures may lead to the same RCP, so the SSPs are scenarios of projected socioeconomic global 
changes through 2100, based on potential future changes in quantitative elements, including population, 
education, urbanization, GDP, and technology. There are five SSPs, each consisting of a set of quantified 
measures of development and an associated narrative storyline. The storylines provide a qualitative 
description of plausible future conditions that drive the quantitative elements. Pairings of these 
illustrative SSP scenarios with RCPs have been widely used by the IPCC, the global scientific community, 
and researchers spanning a wide range of disciplines. For modeling exercises requiring emissions 
projections beyond 2100, such as for SC-GHG estimation, researchers commonly use emissions extensions 
provided by the Reduced Complexity Model Intercomparison Project (Nicholls et al. 2020). When 
population and economic growth projections beyond 2100 are necessary, researchers have used various 
methods to extend the SSPs to 2300, ranging from simple extrapolation assumptions (e.g., CIL 2022, 
Benveniste et al. 2020)46 to empirically derived projection methods (e.g., Kikstra et al. 2021).47 Use of 
deterministic scenarios, such as the SSP-RCP pairings, would prevent the SC-GHG estimates from 
capturing important aspects of climate risk, including its relationship to broader socioeconomic 
uncertainty, and from valuing that risk in a way that is consistent with economic theory and observed 
human behavior related to risk aversion.  

Figure 2.1.1 and Figure 2.1.2 present the RFF-SP projections of population and economic growth through 
2300. These figures also include a comparison to the SSPs that have been used in IPCC reports and other 
applications.48 The SSP projections beyond 2100 (dashed) are based on the extrapolation method used in 
Benveniste et al. (2020) for all SSPs. To illustrate the sensitivity to this assumption, projections based on 
the SSP extrapolation method employed by the Climate Impact Lab (CIL 2022) are also displayed for SSP2 
and SSP3. The mean (black solid line) and median (black dotted line) of the RFF-SP population projections 
follow an increasing trajectory through 2100, consistent but slightly higher than the SSP2 and SSP5 
projections, peaking at 11.2 billion people (Figure 2.1.1). This is followed by a slow decline to under 10 
billion by 2300. Except for SSP1—which follows an optimistic storyline on sustainability and stabilizing 
population—all the SSPs lie within the RFF-SP distribution throughout the modeling horizon—with SSP3 
in the upper tails of the distribution. 

 
45 Four RCPs were used in the IPCC Fifth Assessment Report (2014a) that span a range of radiative forcing (watts per 
m2) in 2100 and are named for that forcing above the pre-industrial level (RCP2.6, RCP4.5, RCP6.0 and a high-end 
no-mitigation RCP8.5). The SSPs took longer to develop. The SSPs were published in 2016 and updated in 2018. The 
are available at: https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=10. The SSPs and some additional 
RCPs are being used in the IPCC Sixth Assessment Report (2021a). The three additional RCPs include RCP1.9 (which 
focuses on limiting warming to below 1.5C), RCP3.4 (an intermediate pathway between RCP2.6 and RCP4.5), and 
RCP7.0 which represents medium-to-high end of emissions range and is a baseline outcome rather than a mitigation 
target. 
46 In the components of their modeling that require extrapolation of GDP and population beyond 2100, when using 
SSPs, Climate Impact Lab (CIL 2022) modeling assumed GDP per capita growth and the level of global 
population remain constant at 2100 levels through 2300. Benveniste et al. (2020) generates country level extensions 
to 3000, based on the assumption that population growth declines linearly to 0 in 2200, and is held constant 
thereafter; GDP per capita growth is assumed to decline linearly reaching 0 in 2300. 
47 Kikstra et al. (2021) develop regional extensions based on the assumption that regional GDP per capita and 
population growth rates (in PAGE model regions) converge toward the global mean. 
48 Figures 2.1.1 and 2.1.2 contain all Tier 1 SSPs from IPCC AR6. Tier 2 scenarios, such as SSP4, were not considered.    
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Figure 2.1.1: Global Population under RFF-SPs and SSPs, 1950-2300 

 
RFF-SP projections based on RFF-SPs (Rennert et al. 2022a). Black lines represent mean (solid) and median (dotted) lines along 
with 5th to 95th (dark shade) and 1st to 99th (light shade) percentile ranges. SSP data through 2100 from International Institute for 
Applied Systems Analysis (IIASA) SSP Database (Riahi et al. 2017). SSPs beyond 2100 (dashed) are based on two recent 
extrapolation methods: Benveniste et al. (2020) and CIL (2022). 
 
  
Figure 2.1.2 presents the economic growth projections from the RFF-SPs along with comparisons to the 
SSPs in AR6.49 The mean (black solid line) and median (black dotted line) economic growth rates are 
relatively flat until 2100 at 1.6% and then decline through-out the next century. The mean economic 
growth rate levels off again after 2200 at 1.1%. The RFF-SP economic growth projections are lower but 
most consistent with SSP2, i.e., the “middle of the road” scenario in which economic trends follow 
historical patterns. All the SSP storylines lie within the RFF-SP distribution throughout the modeling 
horizon. One notable difference between the RFF-SPs and the SSPs is the high near-term growth rates in 
the SSPs. Published in 2017, the SPPs economic growth projections are based on historical data through 
2010. Between 2005 and 2010 the historical average annual growth rate was nearly 3%. The SSPs 
predicted an average annual growth rate between 2010 and 2019 of 2.89–2.96% (Riahi et al. 2017), 
whereas in the past decade average global per capita growth rates have been closer to 2% (World Bank 

 
49 The growth rates (and the uncertainty bounds around the RFF-SPs) shown in Figure 2.1.2 are plotted in a time-
averaged manner to accurately present the underlying year-on-year correlations that exist within each 
scenario/storyline. 
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2021). The estimated growth-rates in the RFF-SPs are long-run growth rates, built to eliminate short-run 
fluctuations.  

Figure 2.1.2: Long-run Projections of Growth in Global Income per Capita under RFF-SPs and SSPs, 2020-
2300 

 
RFF-SP projections based on RFF-SPs (Rennert et al. 2022a). Black lines represent mean (solid) and median (dotted) growth rates  
along with 5th to 95th (dark shade) and 1st to 99th (light shade) percentile ranges. SSP data through 2100 from International Institute 
for Applied Systems Analysis (IIASA) SSP Database (Riahi et al. 2017), OECD Env-Growth model based projections. SSPs beyond 
2100 (dashed) are based on two recent extrapolation methods: Benveniste et al. (2020) and CIL (2022). The growth rates (and the 
uncertainty bounds around the RFF-SPs) are plotted in a time-averaged manner to accurately present the underlying year-on-year 
correlations that exist within each scenario/storyline. 
 
Although the RFF-SPs displayed in the figures above are mostly consistent with the SSPs, there are notable 
advantages to the RFF-SPs. First, the economic growth and population projections are based on recent 
peer-reviewed statistical methodologies for generating long-term projections. These statistical 
projections represent advancements in the literature since the publication of the SSPs in 2017 and 
incorporate additional historical data beyond those used to calibrate the SSPs. Second, the RFF-SPs 
formally characterize the uncertainty in economic growth and population over time (less is known about 
the far-future than is known about the near-future). The SSPs are a set of deterministic scenarios and 
intentionally developed without probabilities attached to them, making them less suitable for addressing 
uncertainty. Third, the RFF-SPs provide projections over a much longer time horizon (out to 2300), which 
is relevant for capturing more of the discounted damages from climate change, whereas the SSPs provide 
projections out to 2100. Each of these advantages were highlighted by the National Academies (2017) as 
important elements in developing improved projections of socioeconomic variables and emissions. Thus, 
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the RFF-SPs more closely implement the near-term recommendations from the National Academies on 
economic growth and population projections than do the SSPs. 

In the SSPs and the mean RFF-SPs, global emissions of CO2 peak at some point this century and decline 
toward zero emissions (in some cases negative emissions). These emission peaks for the SSPs are based 
on simplistic assumptions about net emissions reaching zero in 2250. The RFF-SP projections are based 
on expert elicitation, where the experts were asked to incorporate their views on the evolution of future 
policy. This is consistent with the National Academies’ (2017) recommendations to “take account of the 
likelihood of future emissions mitigation policies.” Because the RFF-SPs are probabilistic they reflect the 
uncertainty in future policy and when this peak would occur. In the mean RFF-SP projection the peak 
occurs this decade. In some of the higher emissions scenarios this peak in emissions does not occur until 
near the end of the century.                

Figure 2.1.3 presents the RFF-SP projections for CO₂ emissions through 2300 along with a comparison to 
a range of SSP-RCPs from AR6 (Figure A.5.1 and Figure A.5.2 in the Appendix present the same information 
for CH₄ and N₂O emissions through 2300). For SSP-RCP pairings presented in the figure, emissions 
projections beyond 2100 are based on the commonly used extensions provided by the Reduced 
Complexity Model Intercomparison Project (Nicholls et al. 2020). The post-2100 SSP projections are based 
on simplistic assumptions about when global emissions reach zero (2055 for SSP1-1.9, 2075 for SSP1-2.6, 
2250 for SSP2-4.5, SSP3-7.0, and SSP5-8.5) and how global emissions reach this point after 2100. In the 
mean RFF-SPs (black solid line) global CO2 emissions continue to rise in the term near but peak at 42 GtCO2 
in 2026. Both the RFF-SP median and the mean track closely with SSP2-4.5, which is often described as a 
“middle of the road” SSP storyline. The SSP5-8.5 projection is the only SSP-RCP pairing with CO2 emissions 
projections outside the 1st to 99th percentile range of RFF-SPs. The RCP8.5 emissions scenario is a high 
emissions scenario in absence of climate change policies (Riahi et al. 2017).50 As mentioned above, the 
RFF-SPs explicitly account for the likelihood of future climate policies.51 While the SSP-RCP scenarios offer 
plausible storylines that imbed these assumptions within their trajectories, the RFF-SPs have a significant 
advantage in that they assign probabilities to these future policies and their outcomes, account for 
adoption of cleaner technologies and fuel sources, and explicitly link socioeconomic growth scenarios to 
emissions.52 

 
50 While all the RCP emissions scenarios peak and begin to decline by, or shortly after, the end of the century, it is 
important to note that CO2 concentrations, and therefore temperatures, will not stabilize until CO2 emissions decline 
to zero (Matthews and Caldeira 2008). 
51 Specifically, Rennert et al (2022a) states: “…experts viewed low economic growth as likely to reduce emissions 
overall but also lead to reduced global ambition in climate policy and slower progress to decarbonization. For median 
economic growth conditions, experts generally viewed policy and technology evolution as the primary driver of their 
emissions distributions, often offering a median estimate indicating reductions from current levels but with a wide 
range of uncertainty. Several experts said high economic growth would increase emissions through at least 2050, 
most likely followed by rapid and complete decarbonization, but with a small chance of substantial continued 
increases in emissions.” 
52 Throughout all stages of the SC-GHG modeling process, we compared the intermediate and final outputs across 
the SSP-RCP socioeconomic and emissions storylines and the RFF-SP probabilistic scenarios. In all cases (global mean 
surface temperature, sea level rise, and even the final SC-GHG estimates) the RFF-SPs lie within the full range of the 
SSP-RCP storylines and are most consistent with the SSP2-RCP4.5 pairing.  
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Figure 2.1.3: Net Annual Global Emissions of Carbon Dioxide (CO2) under RFF-SPs and SSPs, 1900-2300 

 

RFF-SP projections based on RFF-SPs (Rennert et al. 2022a). Black lines represent the mean (solid) and median (dotted) CO2 
emissions projections along with 5th to 95th (dark shade) and 1st to 99th (light shade) percentile ranges. SSP data through 2100 are 
from the International Institute for Applied Systems Analysis (IIASA) SSP Database (Riahi et al. 2017). SSPs beyond 2100 (dashed 
lines) are based on the commonly used extensions provided by the Reduced Complexity Model Intercomparison Project (Nicholls 
et al. 2020).  
 

In both the RFF-SPs and the SSPs, projections of global GDP are calculated using purchasing power parity 
(PPP). This represents a shift from the EMF-22 projections used to date, in which global GDP was based 
on combining regional GDPs using market exchange rates (MER). As discussed in the IWG’s 2010 TSD, PPP 
takes into account the different price levels and different baskets of goods consumed across countries, so 
it more accurately describes relative standards of living across countries. PPP-adjusted measures are 
increasingly available and used in climate economics research. For example, Nordhaus has argued since 
2007 that “PPP measures are superior to MER measures for representing relative incomes and outputs” 
(Nordhaus 2007), and the update to his DICE model in 2016 included a shift from MER to PPP exchange 
rates (Nordhaus 2017a, 2017b). Similarly, Anthoff and Emmerling (2019) maintain that “…using nominal 
or market exchange rates would overstate the (current) degree of inequality between countries compared 
to the measurements using PPPs.” The shift to PPP-based projections in the RFF-SPs, therefore, represents 
another advancement in the science underlying the SC-GHG framework presented in this report.  
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2.2 Climate Module 

The next step in the SC-GHG estimation process is to estimate the effect of emissions on physical climate 
variables, such as temperature, and to ensure that the outputs from the climate model are at the spatial 
and temporal resolution required by the damage module. This means the climate module must:  

(1) translate GHG and other forcing agent emission projections into atmospheric concentrations, 
accounting for the uptake of CO2 by the land biosphere and the ocean and the removal of other 
greenhouse gases through atmospheric reactions, deposition, and/or other mechanisms;  

(2) translate concentrations of greenhouse gases and other forcing agents into radiative forcing;  
(3) translate forcing into global mean surface temperature response, accounting for heat uptake by 

the ocean, and  
(4) generate other climatic variables, such as sea level rise (SLR), that may be needed by the damage 

module.53  

Together, with the projections of associated socioeconomic variables, the results from the climate module 
serve as inputs to the damage module.  

As discussed in section 1.1, the methodology underlying SC-GHG estimates used in the EPA’s analyses to 
date has included a representation of climate and other earth system dynamics as provided in the default 
version of the DICE, FUND, and PAGE IAMs. The only climate variable that was harmonized across these 
three previous models was equilibrium climate sensitivity (ECS) – a measure of the globally averaged 
temperature response to increased radiative forcing (generally, the equilibrium temperature response 
resulting from a doubling of atmospheric CO2 concentrations). Each IAM was run using a probability 
distribution for the ECS, calibrated to the Intergovernmental Panel on Climate Change’s (IPCC) Fourth 
Assessment Report (AR4) (IPCC 2007a) findings using the Roe and Baker (2007) distribution.54 All other 
aspects of the modeling – such as the representation of the carbon cycle and its parameterization, sea-
level rise, regional downscaling of temperature, and treatment of non-CO2 greenhouse gases – varied 
across the three IAMs and were used as the model developers had designed them.  

To implement a modular approach to updating the representation of climate and other Earth system 
dynamics in SC-GHG estimation, it is helpful to review the available climate models capable of meeting 
the climate module requirements outlined above, the conclusions of recent scientific assessments 
published since the IPCC’s AR4 report, the public comments received on individual EPA proposed 
rulemakings and the IWG’s February 2021 TSD (IWG 2021), and the National Academies (2017) 
recommendations related to the climate module.  

The conclusions of recent scientific assessments (e.g., IPCC 2014a, 2018, 2019a, 2019b, 2021a; USGCRP 
2016, 2018a; and the National Academies 2016b, 2019) bolster the science underlying the modeling of 

 
53 This module could in future iterations also generate estimates of other climatic variables (e.g., precipitation 
changes) as well as non-climate mediated impacts of GHG emissions if needed as inputs to future damage functions. 
As discussed in Section 3.3, the only non-climate mediated effect included in SC-GHG estimates used by the EPA to 
date are plant fertilization effects from elevated CO2 concentrations. Other non-climate mediated effects of GHG 
emissions that have not yet been incorporated into SC-GHG estimation are discussed in Section 4.2. 
54 The IPCC’s Fourth Assessment Report (IPCC 2007b) was the most current IPCC assessment available at the time 
when the IWG calibrated the ECS distribution.  



EXTERNAL REVIEW DRAFT 

27 
 
 

climate dynamics. Recently, in August 2021, the IPCC released the Working Group (WG) 1 contribution to 
the IPCC Sixth Assessment Report (AR6) (IPCC 2021a). The IPCC (2021a) report brings together the most 
up-to-date physical understanding of the climate system and climate change. The report includes updated 
IPCC AR6 consensus statements on key climate parameters that are relevant for SC-GHG estimation, 
including equilibrium climate sensitivity and transient climate response. For equilibrium climate sensitivity 
(ECS)55, the AR6 assessment finds, with high confidence, that the best estimate is 3°C with a likely range 
of 2.5°C to 4°C.56 AR6 also concludes that “it is virtually certain that ECS is larger than 1.5°C, but currently 
it is not possible to rule out ECS values above 5°C” (IPCC 2021a). For the transient climate response (TCR), 
AR6 finds that the best estimate of TCR is 1.8°C, and it is very likely between 1.2 and 2.4°C.57 Additional 
discussion of scientific updates in AR6 is provided in the Appendix. In particular, Section A.1 contains a 
summary of the IPCC’s understanding of CO2, CH4, and N2O greenhouse gas radiative efficiency, 
atmospheric lifetimes, and chemistry in AR6 relative to AR4, which was the basis of the simplified lifetime 
and forcing equations underlying the IWG estimates used by the EPA and other federal agencies to date.  

Reduced-complexity climate models (RC models) offer meaningful improvements over the current 
representation of climate dynamics in existing IAMs (Nicholls et al. 2020). RC models are highly 
parameterized, computational emulators of the climate system. RC models are different from the highly 
complex and computationally demanding Earth system models (ESMs), which are the state-of-the-art 
tools for climate projections. However, the use of RC models may be preferred over ESMs for certain 
applications for at least three reasons: (1) the computational efficiency of the RC models allows for 
hundreds or thousands of simulations in a relatively short timeframe, (2) the adjustability of model 
parameters allows for the exploration of uncertainty, and (3) because RC models do not model year-to-
year variability they allow for the estimation of the difference between emission scenarios that would be 
smaller than that variability (Sarofim et al. 2021a). RC models have a long history of use in climate science 
assessments, IAM modeling applications, and analyses of climatic processes. They are ubiquitously used 
to support model inter-comparisons and diagnostics because of their ability to emulate different ESM 
components and variables, explore uncertainties in key climate parameters, analyze scenarios to provide 
concentration and temperature inputs to IAMs and other models, and estimate climate sensitivity when 

 
55 ECS is defined as “the equilibrium (steady state) change in the surface temperature following a doubling of the 
atmospheric carbon dioxide (CO2) concentration from pre-industrial conditions” (IPCC 2021a). 
56 The AR6 assessment finds “[b]ased on multiple lines of evidence, the very likely range of equilibrium climate 
sensitivity is between 2°C (high confidence) and 5°C (medium confidence). The AR6 assessed best estimate is 3°C 
with a likely range of 2.5°C to 4°C (high confidence), compared to 1.5°C to 4.5°C in AR5, which did not provide a 
best estimate” (IPCC 2021a). In IPCC statements, the terms “likely”, “very likely” and “virtually certain” are defined 
to correspond to probabilities of at least 66% (16.6-83.3 percentile), 90% (5-95 percentile), and 99% (0.5-99.5 
percentile), respectively (IPCC 2007c). In IPCC reports a level of confidence is expressed using five qualifiers (very 
low, low, medium, high, and very high) based on the type, amount, quality, and consistency of evidence (e.g., 
mechanistic understanding, theory, data, models, expert judgement) and on the degree of agreement across 
multiple lines of evidence. Statements in the AR6 WG1 report that include “best estimate” are not specific on its 
definition.  
57 TCR is defined as “the surface temperature response for the hypothetical scenario in which atmospheric carbon 
dioxide (CO2) increases at 1% yr-1 from pre-industrial to the time of a doubling of atmospheric CO2 concentration” 
(IPCC 2021a), thereby being a measure of the speed as well as the magnitude of the climate response. AR6 states 
that “Based on process understanding, warming over the instrumental record and emergent constraints the best 
estimate TCR is 1.8°C, it is likely 1.4 to 2.2°C and very likely 1.2 to 2.4°C” (IPCC 2021a). 
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coupled with historical climate observations (Nicholls et al. 2020, Nicholls et al. 2021, Sarofim et al. 
2021a).  

One of the most widely used RC models is the Finite amplitude Impulse Response (FaIR) climate model 
(Millar et al. 2017, Smith et al. 2018) to generate projections of global mean surface temperature (GMST) 
change. The FaIR model was originally developed by Richard Millar, Zeb Nicholls, and Myles Allen at Oxford 
University, as a modification of the approach used in IPCC AR5 to assess the GWP and GTP (Global 
Temperature Potential) of different gases. It is open source, widely used (e.g., IPCC 2018, IPCC 2021b), 
and was highlighted by the National Academies (2017) as an RC model that satisfies their 
recommendations for a near-term update of the climate module in SC-GHG estimation. Specifically, it 
translates GHG emissions into mean surface temperature response following the steps outlined above 
and represents the current understanding of the climate and GHG cycle systems and associated 
uncertainties within a probabilistic framework. The FaIR model’s projections of future warming are 
consistent with more complex, state of the art ESMs and can, with high confidence, be used to accurately 
characterize current best understanding of uncertainty, is easily implemented, and is transparently 
documented.  

The updated SC-GHG estimates presented in this report rely on FaIR version 1.6.2 as used by the IPCC 
(2021a, 2021b). An alternative version of the model, FaIR 2.0, was recently published (Leach et al. 2021) 
that offers some advantages with respect to simplicity and the inclusion of a flexible, state-dependent 
methane lifetime, but is less preferable for SC-GHG estimation at this time because it is not yet able to 
track ocean heat uptake (which is used as an input to help project future sea level rise in some models 
such as BRICK); importantly the calibration of its uncertain parameters is based on historical data but has 
not yet been adjusted to be consistent with the AR6 evaluation of climate characteristics such as the IPCC 
assessed likely range of 2.5 to 4°C for the climate sensitivity. FaIR 1.6.2 also has advantages over the latest 
versions of other RC models, including the Model for the Assessment of Greenhouse Gas Induced Climate 
Change (MAGICC; Meinshausen et al. 2011) and the Hector model, a U.S. Government-developed model 
(Hartin et al. 2015).58 MAGICC is widely used in science research, policy analysis, IPCC reports, and the 
latest version, MAGICC 7.5.1, has been calibrated to AR6 findings. However, the model itself is not open 
source and, therefore, less preferable to FaIR in terms of transparency and reproducibility. The Hector 
model has some additional complexity and features that could be helpful in future SC-GHG updates. For 
example, it can emulate ocean acidification, permafrost, and land carbon cycles (Woodard et al. 2021). 
However, Hector has not yet been calibrated to the AR6 assessed climate characteristic ranges, and the 
current version of Hector has no suggested parameter sets for use in uncertainty analysis. Table 2.2.1 
shows summary statistics for the ECS from the FaIR 1.6.2 model used in this report and other RC models 

 
58 FaIR and MAGICC were among the four RC models examined in IPCC (2021a), along with Oscar (Gasser et al. 2020), 
and Cicero-SCM (Skeie et al. 2021). Each of these were calibrated based on agreement with observations such as 
historical temperatures, ocean heat uptake, CO2 concentrations, and airborne fraction. The WG1 report compares 
distributions from the calibrated models to assessed values of metrics such as ECS and TCR. The latter two RC models 
are dropped from detailed consideration in this report because Cicero-SCM does not have a carbon cycle 
representation, and Oscar did not match projected future temperatures from the Coupled Model Intercomparison 
Project (CMIP) and other projections. Thompson (2018) also identified FaIR, MAGICC, and Hector as being good fits 
to the National Academies’ recommended criteria for the climate module.   
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and compares them to IPCC statements. For reference, Table 2.2.1 also includes the assumed distribution 
used in IWG SC-GHG estimates to date. Table 2.2.2 shows similar information for the TCR. 

Taken together, FaIR 1.6.2 is a fitting RC model to serve as the basis for an updated climate module in SC-
GHG estimation. It provides, with high confidence, an accurate representation of the latest scientific 
consensus on the relationship between global emissions and global mean surface temperature under the 
wide range of socioeconomic emissions scenarios discussed in Section 2.1. It also offers a code base that 
is fully transparent and available online (unlike MAGICC), and the uncertainty capabilities in FaIR 1.6.2 
have been calibrated to the most recent assessment of the IPCC (which importantly narrowed the range 
of likely climate sensitivities relative to prior assessments) (unlike FaIR2.0 or Hector at the present time). 

Table 2.2.1: Summary Statistics for Equilibrium Climate Sensitivity under Reduced-Complexity Climate 
Models and IPCC statements 

 Percentiles and Other Summary Statistics 

5% 16.6% Modea Median 
(50%) Mean 83.3% 95% 

FaIR 1.6.2d 2.05 2.37 2.78 2.95 3.18 3.87 5.03 
FaIR 2.0.0 (Leach et al. 2020) 1.94 2.36  3.24  4.74 6.59 
MAGICC7 (IPCC 2021a) 1.93   2.97   4.83 
Hector2.5 (Nicholls et al. 2021) 1.84 2.16  2.85  3.90 5.45 
AR6 statement (2022) 2.00 2.50  3.00b  4.00 5.00 
AR5 statement (2014) > 1.00   1.50    4.50 < 6.00 
IWG to date (Roe & Baker (2007), 
calibrated to AR4) (2010) 1.72 2.00 2.34 3.00 3.50 4.50 7.14 

AR4 statement (2007)  2.00  3.00c  4.50  
a Mode calculated after rounding to 2 decimal places. 
b AR6 offers a “best estimate” but is not specific on which statistic for central value most closely corresponds to “best”. 
c AR4 offers a “most likely” value. As noted in IWG (2010), strictly speaking, “most likely” refers to the mode of a distribution 
rather than the median, but common usage would allow the mode, median, or mean to serve as candidates for the central or 
“most likely” value and the IPCC report is not specific on this point. 
d Results from FaIR 1.6.2 were estimated using the 2,237 constrained parameter sets.  
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Table 2.2.2: Summary Statistics for Transient Climate Response under Reduced-Complexity Climate Models 
and IPCC Statements 

 Percentiles and Other Summary Statistics 
 5% 16.6% Modea Median 

(50%) Mean 83.3% 95% 

FaIR 1.6.2b 1.36 1.49 1.60 1.81 1.85 2.20 2.46 
FaIR 2.0.0 (Leach et al. 2020) 1.30 1.48  1.79  2.15 2.44 
MAGICC7 (IPCC 2021a) 1.27   1.88   2.61 
Hector2.5 (Nicholls et al. 2021) 1.42 1.58  1.82  2.08 2.29 
AR6 statement (2022) 1.20 1.40  1.80  2.20 2.40 
AR5 statement (2014)  1.00    2.50 3.00 
AR4 statement (2007) 1.00      3.00 

a Mode calculated after rounding to 2 decimal places. 
b Results from FaIR 1.6.2 were estimated using the 2,237 constrained parameter sets. 
 
Figure 2.2.1 shows the projected future atmospheric concentration59 of CO2 through 2300 based on the 
RFF-SP emissions projections that are used as inputs into FaIR 1.6.2. Atmospheric concentrations increase 
over time due to the accumulation of annual emissions, with excess CO2 from the atmosphere moving 
into the ocean and ecosystems slowly over time until eventually a new equilibrium is reached.60 Figure 
2.2.2 shows the corresponding projection of global mean surface temperature. The ranges in these figures 
reflect uncertainty in both emissions and physical climate processes that are consistent with the latest 
projections coming out of the Sixth Assessment Report (IPCC 2021a). 

 

 
59 Atmospheric concentration refers to the amount of a gas in the atmosphere. For CO2, it is measured in parts per 
million (ppm). Pre-industrial concentrations of CO2 were 280 ppm, and concentrations this high have not been seen 
in at least 2 million years.  
60 Figures A.5.3 and A.5.4 in the Appendix show projected atmospheric concentrations of methane (CH4) and nitrous 
oxide (N2O). CH4 and N2O concentrations are higher than at any time in at least 800,000 years. While CO2, once 
emitted into the atmosphere through combustion, is not destroyed but rather moves between the ocean, 
ecosystems, and atmosphere, other gases like CH4 and N2O are destroyed through reactions in the atmosphere. 
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Figure 2.2.1: Global Atmospheric Concentrations of Carbon Dioxide (CO2), 1900-2300 

 
Future atmospheric concentrations of carbon dioxide (CO₂) are based on the range of annual emissions projections from the 
sampled RFF-SP scenarios used as inputs into FaIR 1.6.2. FaIR 1.6.2 is run with the full, AR6 calibrated (constrained) uncertainty 
distribution. Therefore, the uncertainty ranges in this figure represent both emissions and physical carbon cycle uncertainty. Mean 
(solid) and median (dashed) lines are shown along with the 5th to 95th (dark shade) and 1st to 99th (light shade) percentile ranges. 

 
Figure 2.2.2: Global Mean Surface Temperature Change, 1900-2300 

 
The range of global mean surface temperature change relative to pre-industrial (1850-1900) as calculated by FaIR 1.6.2 
corresponding to the CO₂ concentrations from Figure 2.2.1 and the accompanying figures for CH₄ and N₂O in the Appendix. 
Uncertainty comes from emissions uncertainty from the RFF-SP projections and physical climate uncertainty from FaIR. Mean 
(solid) and median (dashed) lines are shown along with the 5th to 95th (dark shade) and 1st to 99th (light shade) percentile ranges. 
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Because the SC-GHG is calculated based on the impact of a marginal pulse of emissions, it is particularly 
relevant to investigate how the climate model responds to small changes in emissions. The response of 
the climate to a pulse of GHG emissions (i.e., CO2, CH4, or N2O) is calculated by using a reference scenario 
(baseline) and subtracting the temperatures of that reference scenario from a second scenario 
(perturbed) that is identical in all dimensions except for the marginal increase in emissions for the one 
year and one gas being examined (i.e., all characteristics of the model run, emissions levels of other gases, 
etc., are held constant for the duration of the perturbed model run). Figure 2.2.3 shows the temperature 
response resulting from a pulse of CO2 emissions in 2030 under the three RC models considered in this 
report.61 The FaIR, MAGICC, and Hector model outputs all exhibit similar dynamics in the timing of peak 
warming in response to a pulse of emissions. For most gases, a pulse of emissions leads to a peak in 
temperature within a few years following the pulse of emissions. Then, as the radiative forcing declines 
and the ocean heat uptake increases, the marginal increase in temperature begins to decline at an 
increasing rate. However, as illustrated in Figure 2.2.3, the temperature response to a pulse of CO2 is a 
little more complicated. When the rate of decrease in radiative forcing slows such that the rate of decline 
in ocean heat uptake exceeds it, atmospheric warming resumes leading to a sustained increase in 
temperature.62 The temperature dynamics of these models represents a significant scientific 
advancement over the temperature responses underlying the climate components of the three IAMs used 
in the IWG SC-GHG estimates. Specifically, Dietz et al. (2021) showed that the initial response of DICE, 
FUND, and PAGE to a pulse of CO2 emissions was slower than the response of FaIR calibrated to 256 
models involved in the fifth phase of the Coupled Model Intercomparison Project (CMIP563), 
demonstrating that FaIR and related models can better emulate the high-resolution global climate 
models. This is an important feature when estimating the SC-GHG as discussed in Section 2.4 (near term 
marginal damages are discounted less than damages far in the future). Additionally, Dietz et al. (2021) 
found that for the long-term response (200 years after the pulse) FUND and DICE 2016 were higher than 
the FaIR emulations and the response of PAGE was consistently lower. (See Figure A.5.7 in the Appendix.) 

 
61 Figures A.5.5 and A.5.6 in the Appendix show the temperature response resulting from a pulse of CH4 and N2O 
emissions. 
62 A more detailed explanation of the temporal temperature response resulting from a pulse of greenhouse gas 
emissions is as follows. The atmospheric concentration response from an emissions release is the highest at time 
zero and declines thereafter as the gas either decomposes in the atmosphere or cycles into other reservoirs. The 
radiative forcing is directly related to the increased concentration. However, the temperature response is a function 
of the accumulation of energy due to the radiative forcing, minus the heat that the ocean takes up as the atmosphere 
warms and the increased heat that is radiated to space due to a warmer planet. For most gases, this balance between 
radiative heating from the gas and heat uptake by the ocean leads to a peak in temperature within a few years of 
the emission as the radiative forcing declines and the ocean heat uptake increases. The decline in temperature lags 
the decline in radiative forcing, as the heat that went into the ocean is eventually released. However, the response 
to a pulse of CO2 is a little more complicated: because the elevated concentrations resulting from a pulse of CO2 
emissions decreases quickly to start as CO2 cycles into the ecosystems and surface oceans, but then the decrease 
slows as the timescale becomes dominated by deep ocean mixing and slows further when it is dominated by 
sedimentation. When the rate of decrease in radiative forcing slows such that the rate of decline in ocean heat 
uptake exceeds it, atmospheric warming resumes creating a second peak in temperature (Millar et al. 2017). 
63 CMIP is the Coupled (sometimes, Climate) Model Intercomparison Project. CMIP creates a framework for 
consistent application of climate models to a common set of scenarios, and with a common set of outputs, to 
facilitate assessment of these models and provide consistent inputs to impacts assessments. CMIP5 is the fifth phase 
of CMIP and was timed to provide important scientific input to the IPCC AR5 assessment.  
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As described in Section 2.3, all three of the approaches to damage function estimation in this report use 
only GMST as an input to the damage module. For the two more disaggregated approaches, any needed 
regional or more finely spatially disaggregated temperature projections are created internal to the 
damage module.   

  

Figure 2.2.3: Global Mean Surface Temperature Anomaly from a Pulse of Carbon Dioxide (1GtC) by Model, 
2020-2300 

The mean global temperature response resulting from a pulse of emissions of CO₂ in 2030 as projected by FaIR1.6.2, Hector 2.5, 
and MAGICC 7.5.3. This represents the difference between a reference scenario (using SSP2-RCP4.5 for the figure) and the same 
scenario including the pulse of emissions. The emission pulse size is 1 GtC for carbon dioxide. Mean (solid) and median (dashed) 
lines are shown along with the 5th to 95th (dark shade) and 1st to 99th (light shade) percentile ranges. 

 

Sea Level Rise. In addition to temperature change, two of the three damage modules used in this report 
require global mean sea level (GMSL) projections as an input to estimate coastal damages. Those two 
damage modules use different models for generating estimates of GMSL. Both are based off reduced 
complexity models that can use the FaIR temperature outputs as inputs to the model and generate 
projections of GMSL accounting for the contributions of thermal expansion and glacial and ice sheet 
melting based on recent scientific research. Absent clear evidence on a preferred model, the SC-GHG 
estimates presented in this report retain both methods used by the damage module developers.  
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The first damage module used in this report (discussed in Section 2.3.1) projects GMSL using an 
implementation of the Framework for Assessing Changes To Sea-level (FACTS). FACTS is a flexible 
computational framework, that can mix and match components of different models in order to further 
explore uncertainty that is being used for the IPCC AR6 SLR projections (IPCC 2021c, Garner et al. 2021).64 
In this damage module, FACTS is used to project sea level rise, relying on the parameterizations based on 
the two approaches that the IPCC characterized as “medium confidence”, and assuming that those two 
approaches were equally likely. This leads to a slightly narrower projected SLR range than the likelihood 
bounds from the IPCC medium confidence approach (given two distributions, the IPCC used the outermost 
probability for any given likelihood estimate). The choice of using only the medium confidence 
parameterizations leads to the lowest future sea level rise projections available from the FACTS model; 
the parameterization excludes the possible contributions from marine ice cliff instability (MICI) and from 
ocean forcing on basal melt rates that was also assessed to be low confidence by the IPCC.  

The additional sea level rise resulting from the emissions pulse is estimated using what is known as a 
“semi-empirical”65 sea level model (Kopp et al. 2016), which was cited by the National Academies as a 
potential approach for estimating sea level rise from an emissions pulse (National Academies 2017). The 
semi-empirical model is driven by the same probabilistic GMST projections from FaIR used in the non-
coastal sectors. It is calibrated based on historical data and has its own probability distribution that is 
generally lower than that seen in the FACTS projections. The FACTS projections account for a best 
understanding of future contributions to SLR from numerous sources but cannot be applied to an 
individual emissions pulse. Thus, to bias-correct the semi-empirical model’s projections, each probabilistic 
draw is quantile-mapped to an equivalent probabilistic draw of the FACTS projections within each SSP-
RCP. The magnitude of the SLR impact of an emissions pulse is not changed, but the baseline SLR in the 
absence of the pulse is adjusted such that it is consistent with the probabilistic distribution from FACTS 
for each SSP-RCP. To model SLR in the RFF-SPs, for which no FACTS projections are available for bias 
correction, an additional quantile-mapping step is taken. This is detailed in CIL (2022).     

The second SLR model used in this report, Building Blocks for Relevant Ice and Climate Knowledge (BRICK), 
is a semi-empirical modeling framework that simulates GMSL. Changes in global mean surface 
temperature drive changes in GMSL. The model includes contributions to GMSL from the Greenland and 
Antarctic ice sheets, thermal expansion, glaciers and ice caps, and land water storage (Wong et al. 2017, 
Vega-Westhoff et al. 2019). The parameterizations for the BRICK model include assumptions about 

 
64 Additional information about the IPCC AR6 SLR projection methods can be found at: 
https://sealevel.nasa.gov/data_tools/17. 
65 Semi-empirical models are a form of reduced complexity process models. These models are known as semi-
empirical because they are based on equations that embody physical understanding and calibrated to historical data. 
Semi-empirical models are a commonly used approach in the literature. The Kopp et al. (2016) model is based on a 
set of three differential equations: one to relate a change in sea level to a difference between projected atmospheric 
temperature and a theoretical equilibrium temperature, one to determine the change in the theoretical equilibrium 
temperature over time, and one to address the additional sea level rise from the climate response to long-term 
orbital changes. The parameters in these three equations are then calibrated against estimates of historical warming 
and sea level over the past millennia. The Kopp et al. model agreed well with process-based model and expert 
surveys available at the time. Semi-empirical models calibrated solely on historical data will not include processes 
that were not active over the historical calibration period, such as MICI processes (which are often not included in 
process-based models either).  
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Greenland and Antarctic melt that are consistent with the IPCC AR6 projections that include MICI. 
Inclusion of processes like MICI have the largest effects after 2100, and for the warmest scenarios, such 
that inclusion in the RCP8.5 scenario leads to an average increase of 15% in SLR by 2100 and 50% by 2150 
(relative to 1850-1900, Table 9.10, IPCC 2021c). By 2300, inclusions of MICI processes for the RCP8.5 
scenario results in SLR of 9.5 to 16.2 meters, which is substantially larger than the no ice-sheet 
acceleration assumption which yields a rise of 1.7 to 4.0 meters (Table 9.11, IPCC 2021c).  

Figure 2.2.4 shows the projected global sea level change resulting from the FACTS- and BRICK-based SLR 
models, as implemented in the two damage modules discussed in Section 2.3. FACTS and BRICK have 
similar projections of SLR rise through the end of the century. BRICK, as expected, projects greater SLR in 
the out years because of its inclusion of accelerated melt processes for the Antarctic and Greenland ice 
sheet, consistent with the IPCC forecasts that include MICI processes. By 2300, BRICK estimates an average 
of 4 meters, while the implementation of FACTS used in this report generates SLR projections of 2 meters, 
on average. This difference in the out years is due to the choices of (a) relying only on IPCC’s “medium 
confidence” SLR processes, and (b) taking an equal weighting rather than an outer envelope when 
combining multiple probability distributions. In the absence of a probabilistic assessment of the likelihood 
of these processes, this report retains use of both approaches.  

In addition to surface temperatures and atmospheric concentrations, FaIR also calculates CO2 uptake in 
the world’s ocean as part of its carbon cycle calculation and generates projections of measures of ocean 
acidification (pH and ocean heat). The impacts of ocean acidification are not captured in the SC-GHG 
estimates presented in this report because functions that translate the pH and ocean heat outputs from 
FaIR into monetized global damages are not yet available in the damage module. However, given current 
understanding of the impacts of CO2 emissions on the growth and survival of shellfish and coral reefs, 
coupled with the availability of market and nonmarket valuation studies on the ecosystem services they 
provide, it is likely feasible to develop damage functions that include ocean acidification impacts in future 
SC-GHG updates. See section 3.2 for more discussion of damages associated with ocean acidification and 
other impacts of climate change that are not captured in this report.  
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Figure 2.2.4: Global Sea Level Rise in FACTS and BRICK, 1950-2300 

 

The range of global mean sea level rise relative to pre-industrial (1850-1900) as calculated by FACTS (top) and BRICK (bottom). 
Uncertainty comes from emissions uncertainty from the RFF-SP projections, physical climate uncertainty from FaIR, and parameter 
uncertainty underlying each SLR module. Mean (solid) and median (dashed) lines are shown along with the 5th to 95th (dark shade) 
and 1st to 99th (light shade) percentile ranges. 
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2.3 Damage Module 

The damage module contains the core “damage functions” in the SC-GHG estimation process. Damage 
functions translate changes in temperature and other physical impacts of climate change into monetized 
estimates of net economic damages. The damage functions capture multiple net damage pathways that 
can be broadly divided into market and non-market pathways. Some net economic damages are 
experienced through markets, such as changes in net agricultural productivity, net energy expenditures, 
and property damage from increased flood risk. Examples of net damages experienced through the 
nonmarket pathways include changes in net mortality rates and changes in ecosystem services, including 
those provided by biodiversity.  

As discussed above, the SC-GHG estimates used in the EPA’s analyses to date have maintained the damage 
functions contained in the default version of the DICE, FUND, and PAGE IAMs as used in the peer-reviewed 
literature. Specifically, the damages functions underlying the IWG SC-GHG estimates used since 2013 are 
taken from DICE 2010 (Nordhaus 2010); FUND 3.8 (Anthoff and Tol 2013a, 2013b); and PAGE 2009 (Hope 
2013).66 These models all take stylized, reduced-form approaches to estimating monetized damages as a 
function of temperature change and sea level rise. They use a suite of underlying studies to calibrate their 
damage functions. FUND 3.8 takes a regional bottom-up approach to specify the damage function by 
calibrating to or building up disaggregated pieces consisting of 14 separate damage categories or sectors 
using studies and assumptions relating to each sector. Damages in DICE 2010 are an aggregate based on 
a calibration of sectoral damages (Nordhaus and Boyer 2000) and scaled using aggregate damages. PAGE 
2009 employs a regionalized hybrid approach with an estimate of four categories of damages: economic, 
sea-level rise, nonmarket, and discontinuities.  

The National Academies’ recommendations for the damage module, scientific literature on climate 
damages, updates to models that have been developed since 2010, as well as the public comments 
received on individual EPA rulemakings and the IWG’s February 2021 TSD, have all helped to identify 
available sources of improved damage functions. The IWG (e.g., IWG 2010, 2016a, 2021), the National 
Academies (2017), comprehensive studies (e.g., Rose et al. 2014), and public comments have all 
recognized that DICE 2010, FUND 3.8, and PAGE 2009 do not include all the important physical, ecological, 
and economic impacts of climate change. The climate change literature and the science underlying the 
economic damage functions have evolved, and DICE 2010, FUND 3.8, and PAGE 2009 now lag behind the 
most recent research.  

The challenges involved with updating damage functions have been widely recognized. Functional forms 
and calibrations are constrained by the available literature and need to extrapolate beyond warming 

 
66 The damages functions underlying the IWG SC-GHG estimates used from 2010 to 2013 came from earlier versions 
of each model: DICE 2007 (Nordhaus 2008), FUND 3.5 (Narita et al. 2010), and PAGE 2002 (Hope 2006). The newer 
versions of each model that have been used by the IWG since 2013 included a number of updates related to their 
damage functions. For example, DICE 2010 included a re-calibrated damage function with an explicit representation 
of economic damages from sea level rise. Updates in FUND 3.8 included revised damage functions for space heating, 
SLR, and agricultural impacts. PAGE 2009 added an explicit representation of SLR damages, revisions to ensure 
damages do not exceed 100% of GDP, a change in regional scaling of damages, revised treatment of potential abrupt 
damages, and updated adaptation assumptions. See IWG (2013) for more discussion of each of these changes. 
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levels or locations studied in that literature. Research and public resources focused on understanding how 
these physical changes translate into economic impacts have been significantly less than the resources 
focused on modeling and improving our understanding of climate system dynamics and the physical 
impacts from climate change (Auffhammer 2018). Even so, as illustrated in Figure 2.3.1, there has been a 
large increase in research on climate impacts and damages in the time since DICE 2010, FUND 3.8, and 
PAGE 2009 were published. Along with this growth, there continues to be wide variation in methodologies 
and scope of studies. Comparability issues across both methods and studies create challenges for 
synthesizing the current understanding of impacts or damages.  

Figure 2.3.1: Research on Climate Impacts, 1990-202167 

Source: Greenstone (2016), updated in 2021. 
 
Approaches to developing a damage module for SC-GHG estimation can be generally grouped into two 
broad categories: those that estimate a damage function by calibrating to or building up disaggregated 
pieces, and studies that estimate an aggregate global damage function directly. The more disaggregated 
approach typically involves spatially explicit and sector-specific modeling of relevant processes and then 

 
67 In many cases, the three IAMs used different studies for calibration. This is particularly true of FUND, which used 
studies relating to different subsectors of the model, whereas DICE and PAGE did not have as detailed a sectoral 
breakdown. That means that summing across these different models is likely valid in all but a few isolated cases. The 
blue bars include studies uncovered from a comprehensive literature review in the economics literature (and a few 
others in public health or relevant disciplines) by the Climate Impact Lab through early 2016. Each of the studies 
counted in blue was determined by CIL to have employed a research design that allowed for the causal interpretation 
of results (Greenstone 2016). 
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aggregates regional or sectoral damages.68 Alternatively, the aggregate global damage function 
estimation approach often relies on meta-analysis techniques (e.g., as in recent versions of DICE (DICE 
2013R and DICE 2016)) or total-economy empirical studies that econometrically estimate the relationship 
between GDP and a climate variable, usually temperature (e.g., used in part in the most recent version of 
the PAGE model (PAGE 2020 (Kikstra et al. 2021)). There are also more complex ways to estimate damage 
functions directly (e.g., that have been used in extensions of DICE) and through expert elicitation (e.g., 
Pindyck 2019, Howard and Sylvan 2021). Based on a review of available studies using these approaches, 
the SC-GHG estimates presented in this report rely on three damage functions. They are: 

1. a subnational-scale, sectoral damage function estimation (based on the Data-driven Spatial 
Climate Impact Model (DSCIM) developed by the Climate Impact Lab (CIL 2022, Carleton et al. 
2022, Rode et al. 2021)),  

2. a country-scale, sectoral damage function estimation (based on the Greenhouse Gas Impact Value 
Estimator (GIVE) model developed under RFF’s Social Cost of Carbon Initiative (Rennert et al. 
2022b)), and  

3. a meta-analysis-based global damage function estimation (based on Howard and Sterner (2017)).  

Each is discussed in turn.  

2.3.1 Damage Module based on the Data-driven Spatial Climate Impact Model (DSCIM)  

DSCIM was developed by the Climate Impact Lab (CIL). CIL is a multidisciplinary consortium of climate 
scientists, economists, computational experts, researchers, and analysts building empirically derived, 
local-level estimates of the net damages from climate change and empirically based SC-GHG estimates.69 
The DSCIM modeling runs performed for the estimates presented in this report are described in the 
September 2022 DSCIM User Manual (CIL 2022). DSCIM monetizes climate damages for nearly 25,000 
global impact regions using econometric methods that account for local conditions, including adaptation 
investments, when estimating the effect of climate change on sector specific outcomes. These local 
damages are aggregated to develop an estimate of global damages as a function of global temperature 
changes. The damage functions for DSCIM are constructed through a five-step process. First, researchers 
collect and harmonize historic climate and socioeconomic data for each sector. Second, using variation in 
short-run weather and cross-sectional variation in the long-run average climate and socioeconomic 
conditions, they econometrically estimate the effect of changes in local climatic conditions on sector-
specific outcomes, accounting for the adaptive effects of climate and socioeconomics, which can alter the 
sensitivity of outcomes to local climate. Third, they use a revealed preference approach to infer the 
adaptation costs incurred by populations as they adapt to warming, drawing on research by Guo and 

 
68 There are also multisectoral, multiregional economic computable general equilibrium (CGE) models. CGE models 
calibrate to region-sector impact estimates but account for more interactions among regions, impacts, supply, and 
demand factors. 
69 The Climate Impact Lab team combines experts from the University of California, Berkeley, the Energy Policy 
Institute at the University of Chicago (EPIC), Rhodium Group, Rutgers University, University of California, Santa 
Barbara, and University of Delaware. More information on the individual researchers and institutions involved in the 
Climate Impact Lab can be found at: http://www.impactlab.org/. 
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Costello (2013) and Deryugina and Hsiang (2017).70 Fourth, they project sector-specific outcomes and 
associated monetized damages into the future by combining the econometric results with a probabilistic 
ensemble of high-resolution downscaled climate projections from 33 global climate models71 and 
aggregate the local damages to global damages. Finally, they use these projections to estimate global 
damages as a time-varying reduced-form function of global mean surface temperature. The advantage to 
this approach is that global damage estimates reflect the empirically derived local impact relationships, 
and account for the uncertainty in economic growth, temperature change, and adaptation. For the DSCIM 
model runs in this report, the outputs of the socioeconomic module (Section 2.1) and the GMST output 
from the climate module (Section 2.2) are used as inputs in DSCIM.72    

At present, DSCIM includes the estimation of climate damages occurring in five sectors or impact 
categories: health, energy, labor productivity, agriculture, and coastal regions (CIL 2022).73 Table 2.3.1 
summarizes key elements of DSCIM’s damage function estimation methods in each of these five sectors. 
The health component includes the value of net changes in hot- and cold-related mortality risk (Carleton 
et al. 2022). The building block of the global mortality damage function is the estimation of temperature's 
impact on mortality rates using historical data. The mortality data is assembled from various sources at 
the subnational spatial scale74 for 40 countries covering 38 percent of the global population.75 Temporal 
coverage for each country ranges from 13 years (1997-2010) to over 40 years (e.g., 1968-2010 for the 
U.S.) across the sample. The age-specific mortality-temperature response is estimated as a linear function 
of nonlinear daily grid-level temperature and precipitation data transformations.  This specification, 
together with the inclusion of fixed effects to account for any time-varying trends or shocks to age-specific 
mortality rates unrelated to climate, allows them to isolate the impact of year-to-year, within-location 
variation in temperature and rainfall on mortality. Additionally, this model recovers the effect of climate-
driven adaptation (e.g., more cooling systems) and income growth on the shape of the temperature 
mortality relationship, as observed in the historical record using cross-sectional variation in long-run 
average conditions. These econometric estimates are combined with high-resolution projections of 
climate, income, and demographics to compute age-specific projected impacts of climate change under 

 
70 The method for estimating the costs of adaptation reflects that people invest in adaptive behaviors and 
technologies until the costs of doing so just equal the protective benefits. The protective benefits are observed 
through the changes in the estimated sensitivity of outcomes to temperature (or rainfall or sea level rise) as the 
climate gradually warms. The estimated measures of these benefits are used to back out the costs of the adaptation. 
See Carleton et al. (2022) for more discussion. 
71 See CIL (2022) for a detailed discussion of the ensemble of climate projections. 
72 To incorporate the RFF-SPs for model runs performed for this report, DSCIM uses an emulator approach that allows 
for the estimation of probabilistic socioeconomics in DSCIM’s highly complex and disaggregated damage system. 
The emulator weights the outcome of annual global aggregate damage functions that are estimated using the suite 
of SSP-RCP combinations according to how closely the socioeconomics characteristics each year match those 
contained in the RFF-SPs. See CIL (2022) for more details.  
73 CIL plans to update DSCIM regularly with representation of additional sectors (CIL 2022). 
74The mortality data is at the second administrative level (e.g., county), first administrative level (e.g., state), or 
somewhere in between.  
75 Carleton et al. (2022) also have data from India (which increases coverage to 55% of the global population) but 
are unable to include it in the main estimation of the mortality-temperature response function due to the absence 
of age-specific mortality statistics. Instead, the authors use the India data to assess external validity of their 
extrapolation methods and find the model generates conservative predictions of mortality impacts of climate change 
in India, a hot and poor region of the globe.  
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multiple emissions scenarios at the scale of ~25,000 global regions. While the main specification of DSCIM  
employs an age-adjusted valuation approach for monetizing net health damages (inclusive of adaptation 
costs), in the results presented in this report, the projected changes in premature mortality are monetized 
using country-level population-average measures of the willingness-to-pay for mortality risk reductions.76  

 
The energy component includes energy expenditures from temperature-related changes in electricity and 
direct fuel consumption across residential, commercial, and industrial end-uses (Rode et al. 2021).  Rode 
et al. provide the first estimate of the global impact of climate change on total energy consumption using 
globally comprehensive data, accounting for economic development and adaptive behavior. Energy 
consumption data for electricity and other fuels is compiled from the International Energy Agency and is 
available at the country-by-year level for 146 countries from 1971 to 2010. Daily historical climate data 
are aggregated to annual, country-level observations following the method in Carleton et al. (2022), which 
preserves local-level nonlinearities in the relationship between energy consumption and temperature. 
Modeled energy responses to temperature changes reflect income changes and climate adaptation (e.g., 
installation of air conditioning in areas that currently have little penetration and more frequent operation 
of existing air conditioning equipment). Similar to Carleton et al., the modeled energy-temperature 
relationship for a local impact region is a function of conditions at that location. This allows the authors 
to compute the additional impact of climate change on energy consumption, net of local factors (e.g., 
income) that will change in the future. Using the same income and climate projections as in Carleton et 
al. (2022), Rode et al. compute projected impacts of climate change on electricity and other fuels 
consumption under multiple emissions scenarios at the scale of ~25,000 global regions. To value these 
impacts, the results presented in this report use country-level energy prices from the International Energy 
Agency’s (IEA) World Energy Outlook and Energy Prices and Taxes dataset. Prices are extrapolated into 
the future based on the growth rates projected in the U.S. Energy Information Administration's Annual 
Energy Outlook 2021. Specifically, based on the AEO projections, prices are assumed to grow at an annual 
rate of -0.27% and 0.82% for electricity and other fuels, respectively. See CIL (2022) for more discussion.  

The labor productivity component of the model captures the value of labor losses, as measured in labor 
disutility, from responses in daily temperature (Rode et al. 2022). Evidence shows that workers in 
industries such as agriculture, construction, manufacturing, transport, and utilities reduce their hours 
worked when outdoor temperatures deviate from average temperatures.77 Daily variation in weather for 
seven countries representing about 30 percent of the global population is used to econometrically 

 
76 Specifically, projected changes in premature mortality in the U.S. are monetized using the same value of mortality 
risk reduction as in the EPA’s regulatory analyses ($4.8 million in 1990 (1990USD)) and adjusted for income growth 
and inflation following current EPA guidelines and practice (EPA 2010) and consistent with EPA Science Advisory 
Board (SAB) advice (see e.g., EPA 2011, OMB 2003), resulting in a 2020 value of $10.05 million (2020USD). Valuation 
of mortality risk changes outside the U.S. is based on an extrapolation of the EPA value that equalizes willingness-
to-pay as a percentage of per capita income across all countries (i.e., using an assumed income elasticity of 1). The 
use of a benefits transfer approach based on a positive income elasticity is consistent with the approach used in the 
default version of the models and published studies used in this report (e.g., Rennert et al. 2022b, Carleton et al. 
2022, Diaz 2016), and other academic literature. See Appendix A.6 for more discussion.   

77 See Rode et al. (2021) for a listing of literature across many disciplines that have studied the effects of temperature 
on worker performance and labor, dating back to Huntington (1922).  
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estimate subnational labor supply responses to temperature changes. The labor response is estimated to 
be an inverted U-shaped relationship, with lost labor occurring at extreme hot and cold temperatures, for 
high-risk, weather-exposed sectors and low-risk sectors. The labor supply temperature response is 
projected globally and over time, following Carleton et al. (2022) and Rode et al (2021). It includes 
predicted shifts towards less weather-exposed industries as a function of average income per capita and 
long-run average temperature, analogous to other forms of adaptation accounted for in Carleton et al. 
(2022) and Rode et al (2021). The value of lost productivity is monetized as the compensating wage 
increase needed to offset the temperature change's disutility. 

DSCIM captures the net production impact of climate change in the agriculture sector by computing 
projected impacts for six globally and regionally important staple crops that represent two thirds of global 
crop caloric production: maize, wheat, rice, soybean, sorghum, and cassava (Hultgren et al. 2022). The 
DSCIM reduced-form econometric approach simultaneously captures the combined impact of biophysical 
crop responses and producer decision-making to account for the costs, benefits, and adoption rates of 
producer adaptations as they are observed in practice around the world. This contrasts with prior analyses 
that rely on agronomic process-based models to explicitly characterize the biophysical processes to 
project yields. DSCIM accounts for several types of adaptation. First, the model allows for within-crop 
adaptations such as varietal switching and other changes in production methods, such as irrigation, 
fertilization, and planting dates. Second, in the monetization step, the results are multiplied by 0.45 to 
account for crop switching and trade protective effects, from frictionless trade within continents and 
global trade networks, based on an average of the estimates in prior research documenting these 
quantities (e.g., Rising and Devineni 2020; Costinot et al. 2016; Gouel and Laborde 2021; Stefanović et al. 
2016). The DSCIM results presented in this report also account for the fertilization benefits of CO2 
emissions on crop yields based on established estimates in the literature (Moore et al. 2017).   

Finally, the coastal component of DSCIM estimates damages resulting from sea level rise inundation in 
coastal regions. As described in Section 2.2, the GMSL projections are based on the probabilistic FACTS 
model that is being used in IPCC’s AR6 report (Kopp et al. 2016, Garner et al. 2021). To generate a damage 
function relating GMSL to welfare loss, probabilistic local mean sea level (LMSL) projections are used as 
inputs to an updated version (Depsky et al. 2022) of the Coastal Impact and Adaptation Model (CIAM) 
(Diaz 2016). These projections come from LocalizeSL (Kopp et al. 2017), using AR5 emissions trajectories. 
The updated CIAM model (pyCIAM) estimates highly localized SLR related damages (Diaz 2016). CIAM is a 
deterministic optimization model that chooses the least-cost adaptation strategy for each of the 9,000 
coastal segments defined in the Sea Level Impacts Input Dataset by Elevation, Region, and Scenario 
(SLIIDERS, Depsky et al. 2022)78 after accounting for local physical and socioeconomic characteristics.79 

 
78 The SLIIDERS dataset provides details on local physical and socioeconomic characteristics. The original CIAM uses 
12,148 coastal segments in the Dynamic Interactive Vulnerability Assessment (DIVA) database. The use of 9,000 
segments in DSCIM is just the result of Depsky et al. (2022)’s re-optimization of the coastal segment choices (e.g., in 
the original CIAM inputs, 10% of the 12,000 global segments were in French Polynesia). 

79 In CIAM the adaptation choice set includes: (1) retreating inland from the coastline, (2) protecting coastal 
communities and infrastructure, or (3) taking no adaptive measures. The decision maker first selects the lowest-cost 
combination of these and then chooses the degree of investment in coastal defense against several different return 
periods, under the assumption of perfect foresight about SLR conditions. Ongoing research is being developed by 
Diaz and collaborators to refine the foresight assumptions and the resulting coastal damages from SLR. 
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Damages are then estimated as the costs associated with the selected adaptation strategy plus the 
residual damages due to inundation, wetland loss, and flooding.   

 
Table 2.3.1: Current Coverage of Climate Damages in DSCIM 

Sector 
Damage 

Categories 
Represented 

Empirical Basis for 
Damage Function 

Estimation 

Accounting for 
Adaptation Documentation 

Health Heat- and cold-
related mortality 

Subnational annual 
mortality statistics for 40 
countries covering 38% 

of global population; 
1990-2010 or longer for 

most countries 

Accounts for adaptative 
effects of income 

growth and estimates 
the costs of adaptive 
investments using a 
revealed preference 

approach 

Carleton et al. 
(2022) 

Energy 

Expenditures for 
electricity and 

other direct fuel 
consumption 

Annual country-level 
energy consumption 

data (residential, 
commercial, and 

industrial) by energy 
source for 146 countries, 

1971-2010 

Accounts for both 
climate- and 

socioeconomics-driven 
adaptive responses  

Rode et al. (2021) 

Labor 
Productivity 

Labor disutility 
costs from labor 
supply responses 

to increased 
temperature 

Daily worker-level labor 
supply data (minutes 

worked) from 7 
countries representing 

nearly 30% of global 
population 

Accounts for shifts in 
workforce composition 

to less weather-exposed 
industries 

Rode et al. (2022) 

Agriculture 

Production 
impacts for six 

crops: maize, rice, 
wheat, soybeans, 

sorghum, and 
cassava 

Subnational crop 
production data for over 

12,658 sub-national 
administrative units 
from 55 countries 

Accounts for CO2 

fertilization effects, 
varietal switching, 

changes in production 
methods (e.g., irrigation, 

fertilization, planting 
dates), crop switching, 

and trade effects  

Hultgren et al. 
(2022) 

Coastal 
regions 

Impacts of SLR as 
realized through 

inundation, 
migration, 

protection, dry 
and wetland loss, 
and mortality and 

physical capital 
loss from SLR 

Numerous empirical 
findings are used to 

parameterize the CIAM 
process model for 9,000 
coastal segments. (Low 

levels of SLR in the 
historical record prohibit 

the use of a fully 
empirical model) 

Reflects retreat or 
protective infrastructure 

and costs under an 
optimal adaptation 

scenario with perfect 
foresight of SLR 

Kopp et al. (2016) 
and Garner et al. 

(2021) for SLR; Diaz 
(2016) and Depsky 

et al. (2022) for 
damages 

 



EXTERNAL REVIEW DRAFT 

44 
 
 

2.3.2 Damage Module Based on the Greenhouse Gas Impact Value Estimator (GIVE)  

The second damage module used in this report is taken from the GIVE integrated assessment model (IAM). 
GIVE is an open-source IAM developed under the Resources for the Future Social Cost of Carbon Initiative 
in collaboration with dozens of researchers from private and public institutions across the globe, spanning 
a wide range of disciplines (Rennert et al. 2022b). The model was developed in direct response to the 
National Academies (2017) recommendations surrounding needed improvements in the estimation of the 
SC-GHG. The damage function component of the model is structured in such a way that it can 
accommodate additional damage sectors underlying the estimation of the SC-GHG, making it particularly 
attractive for incorporating future research and findings.80 Moreover, the model can accommodate 
components with differing temporal and spatial resolutions. The model can be estimated deterministically 
(fixed parameter) or in a Monte Carlo (random parameter) setting, sampling from socioeconomic, climate, 
and damage function distributions to allow for uncertainty within and across each of its components. In 
the model runs performed for this report, the outputs of the socioeconomic module and the GMST 
projections from the climate module described above serve as inputs to the damage function components 
of GIVE.  

At present, GIVE includes estimation of climate damages occurring in four sectors or impact categories: 
health, energy, agriculture, and coastal regions.81 The damage functions reflect recent scientific 
advancements in the peer-reviewed literature. Table 2.3.2 summarizes key elements of GIVE’s damage 
function estimation methods in in each of these four sectors. The health damage function is based on a 
recent study authored by a collaboration of public health, epidemiology, climatology, and economics 
experts in response to the 2017 National Academies’ recommendations (Cromar et al. 2022). The authors, 
along with an additional panel of convening experts, conducted a systematic review and meta-analysis of 
health impacts related to climate change. Then, regionally resolved all-cause mortality estimates from 
increases in temperature were generated through a random-effects pooling of studies that were 
identified in the systematic review.82 Net changes in mortality risk associated with increased average 
annual temperatures were estimated for all global regions varying in their effect size and uncertainty 
across each of the 9 regions. The resulting changes in premature mortality are mapped to country-specific 
baseline mortality projections and rates such that premature mortality from global climate change is 
unique to all 184 countries. Uncertainty in the mortality damage function is parametric and sampled from 
the region-specific coefficient that relates GMST to changes in premature mortality. The GIVE model 
monetizes the projected changes in premature mortality using country-level population-average 
measures of the willingness-to-pay for mortality risk reduction (Rennert et al. 2022b), consistent with 
methodology used in the DSCIM model runs presented in this report and described above.  

 
80 The GIVE model is built on the Mimi.jl platform, an open-source package for constructing modular integrated 
assessment models, www.mimiframework.org. GIVE is written using the Julia programming language which allows 
for extremely fast estimation times. 
81 The modular nature of GIVE offers a straightforward way to add other damage functions and sectors. For example, 
nonuse biodiversity losses are currently under development based on an approximation of Brooks and Newbold 
(2014). 
82 A total of 33 unique health studies, most of which were extensive multi-locational studies, were included in Cromar 
et al. (2022). Studies were predominately from North America, Europe, and East Asia and thus some of the more 
populous parts of the world were underrepresented (Cromar et al. 2022).         

http://www.mimiframework.org/
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The energy damage function component of GIVE is based on a recent multidisciplinary study that 
estimates the relationship between changes in building energy expenditure (net heating and cooling 
expenses) and changes in local temperature and climate (Clarke et al. 2018). That study used the Global 
Change Analysis Model (GCAM) that models regional changes in heating and cooling expenditures as a 
proportion of regional gross domestic product resulting from changes in regional temperatures. That is, 
for each of the 12 GCAM regions, Clarke et al. (2018) find an approximately linear relationship between 
degrees of temperature change and net change in energy expenditures. Reflecting this, the climate-
expenditure relationship from Clarke et al. (2018) is estimated within GIVE by a regional linear regression 
that yields region-specific damage functions to estimate changes in net energy expenditures within each 
of the 184 countries in the model.  

The agriculture damage function component of GIVE follows Moore et al. (2017). It is derived using (1) a 
meta-analysis of over 1,000 published temperature-yield response estimates from 55 unique studies, and 
(2) an open-source computable general equilibrium (CGE) model that estimates the welfare consequences 
(as equivalent variation) of climate-induced productivity changes, accounting for adjustments in 
agricultural markets including trade patterns, consumption, and production. The productivity changes (for 
maize, rice, wheat, and soybeans) are based on biophysical crop impacts documented in the literature. 
Productivity impacts include both within-crop adaptations (e.g., varietal and planting date changes) as 
well as CO2 fertilization using estimates of the size of these effects from the meta-analysis. Welfare 
changes at 1, 2 and 3 degrees of warming calculated from the CGE model give damage functions for 140 
regions. GIVE maps the regions to all 184 countries for country-level effects on crop production. Within 
GIVE, the non-parametric uncertainty provided in Moore et al. (2017) is converted to parametric 
uncertainty and used in the Monte Carlo estimation.  

The fourth damage sector in GIVE connects the BRICK sea level rise (SLR) model (Wong et al. 2017) and 
the CIAM model (Diaz 2016) to estimate SLR induced coastal damages from temperature change. As 
described in Section 2.2, GMST and ocean heat content from FaIR 1.6.2 are used as inputs to BRICK to 
generate projections of GMSL. As in the damage module described above based on DSCIM, the GMSL 
projections are downscaled to a 1-degree grid (Slangen et al. 2014) and used as inputs to CIAM to estimate 
local adaptation decisions and their associated costs.83 Since CIAM is a deterministic model, uncertainty 
in coastal damages is the result of uncertainty in BRICK that arises due to the RFF-SP probabilistic emission 
scenarios and sampled climate and sea-level parametric uncertainty.  

 
83 As noted in Section 2.3.1, CIAM includes 12,148 unique coastal segments. Of these 11,835 correspond to countries 
included in the GIVE model. See Rennert et al. (2022b) for a full description.  
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Table 2.3.2: Current Coverage of Climate Damages in GIVE 

Sector Damage Categories 
Represented 

Empirical 
Basis/Methodology Accounting for Adaptation Documentation 

Health Heat- and cold-
related mortality risk 

Pooled effect estimates 
(36 studies across 9 

regions) for changes in 
temperature on 

mortality risk, by region 

Observed responses to 
changes in temperature 

are assumed to persist into 
the future 

Cromar et al. 
(2022) 

Energy 
Expenditures for 

space heating and 
cooling in buildings 

Regional costs of energy 
consumption, 

temperature, and 
climate 

Implicit in the regional 
relationship between 
increases in energy 
expenditures and 

temperature 

Clarke et al. 
(2018) 

Agriculture 

Welfare changes 
from temperature 
driven changes in 
production of four 
crops: maize, rice 

wheat, and soybeans 

Meta-analysis of 1010 
yield effect estimates 
from 55 studies and 
computable general 

equilibrium (CGE) model 
of trade 

Explicit in the estimation of 
the damage function 

through assumed changes 
in on-farm, within-crop, 
management practices. 
Adaptive adjustments in 

agricultural markets 
through changes in crops, 
trade, consumption, and 

production patterns. 

Moore et al. 
(2017) 

Coastal 
regions 

Impacts of SLR as 
realized through 

inundation, 
migration, protection, 
dry and wetland loss, 

and mortality and 
physical capital loss 

from SLR 

Numerous empirical 
findings are used to 

parameterize the CIAM 
process model for 

11,835 coastal segments 

Reflects retreat or 
protective infrastructure 

and costs under an optimal 
adaptation scenario with 
perfect foresight of SLR 

Wong et al. 
(2017) for SLR; 
Diaz (2016) for 

damages 

 
The damage functions in DSCIM and GIVE represent substantial improvements relative to the damage 
functions underlying the SC-GHG estimates used by the EPA to date in reflecting the forefront of scientific 
understanding about how temperature change and SLR lead to monetized net (market and nonmarket) 
damages for several categories of climate impacts. The models’ spatially explicit and sector-specific 
modeling of relevant processes allows for improved understanding and transparency about mechanisms 
through which climate impacts are occurring and how each sector contributes to the overall results, 
consistent with the National Academies’ recommendations. DSCIM addresses common criticisms related 
to the damage functions underlying current SC-GHG estimates (e.g., Pindyck 2017) by developing multi-
sector, empirically grounded damage functions.84 The damage functions in the GIVE model offer a direct 
implementation of the National Academies’ near-term recommendation to develop updated sectoral 
damage functions that are based on recently published work and reflective of the current state of 
knowledge about damages in each sector. Specifically, the National Academies noted that “[t]he literature 
on agriculture, mortality, coastal damages, and energy demand provide immediate opportunities to 

 
84 Note that Pindyck has consistently noted that modeling and damage category considerations are not a reason to 
abandon the social cost of greenhouse gases; Pindyck has consistently supported updating the IWG’s past estimates 
(Pindyck 2013, 2017, 2019, 2021). 
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update the [models]”  (National Academies 2017, p. 199), which are the four damage categories currently 
in GIVE. A limitation of both models is that the sectoral coverage is still limited. Neither DSCIM nor GIVE 
yet accommodate estimation of other categories of temperature driven climate impacts (e.g., storm 
damage, morbidity, conflict, migration, biodiversity loss); damages that result from physical impacts other 
than temperature and SLR (e.g., changes in precipitation, ocean acidification, non-temperature-related 
mortality such as diarrheal disease and malaria); or many feedbacks and interactions across sectors and 
regions that can lead to additional damages.85,86 DSIM and GIVE do account for the most commonly cited 
benefits associated with CO2 emissions and climate change – CO2 crop fertilization and declines in cold 
related mortality.  As such, the GIVE- and DSCIM-based results presented in this report provide a partial 
estimate of future climate damages resulting from incremental changes in CO2, CH4, and N2O. DSCIM and 
GIVE developers have work underway on other sectors that may be ready for consideration in future 
updates (e.g., morbidity and biodiversity). DSCIM and GIVE are structured so that future research can be 
reasonably incorporated into their damage modules.  

2.3.3 Damage Module Based on a Meta-Analysis Approach  

Given the still relatively narrow sectoral scope of the recently developed DSCIM and GIVE models, this 
report includes a third damage function that reflects a synthesis of the state of knowledge in other 
published climate damages literature. Studies that have employed meta-analytic techniques87 offer a 
tractable and straightforward way to combine the results of multiple studies into a single damage function 
that represents the body of evidence on climate damages that pre-date CIL and RFF’s research initiatives.  

Meta-analysis is a common tool in empirical research. Within the climate change literature, meta-analyses 
have been used to analyze physical and sector impacts (e.g., Moore et al. 2017, Hoffmann et al. 2020, 
Cromar et al. 2022) and to directly estimate aggregate global damage functions. The first use of meta-
analysis to combine multiple climate damage studies was done by Tol (2009) and included 14 studies. The 
studies in Tol (2009) served as the basis for the global damage function in DICE starting in version 2013R 
(Nordhaus 2014). The damage function in the most recent version of DICE, DICE 2016, is from an updated 
meta-analysis based on a rereview of existing damage studies and included 26 studies published over 
1994-2013 (Nordhaus and Moffat 2017). Howard and Sterner (2017) provide a more recent peer-reviewed 
meta-analysis of existing damage studies (published through 2016) and account for additional features of 
the underlying studies. They address differences in measurement across studies by adjusting estimates 
such that the data are relative to the same base period. They also address issues related to double 
counting by removing duplicative estimates. Dependence across climate-damage estimates can arise over 
time due to the common practice of calibrating climate-model damage functions based on previous 
estimates in the climate damage literature. Howard and Sterner’s review identified 35 studies that meet 

 
85 The one exception is that the agricultural damage function in DSCIM and GIVE reflects the ways that trade can 
help mitigate damages arising from crop yield impacts. 
86 See Section 4.2 for more discussion of omitted categories of climate impacts and associated damages. 
87 Meta-analysis is a statistical method of pooling data and/or results from a set of comparable studies of a problem. 
Pooling in this way provides a larger sample size for evaluation and allows for a stronger conclusion than can be 
provided by any single study. Meta-analysis yields a quantitative summary of the combined results and current state 
of the literature.  
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their a priori selection criteria, of which 15 were dropped because they duplicated studies already in the 
sample. Their final sample is drawn from 20 studies that were published through 2015.  

Howard and Sterner (2017) present results under several specifications, and their analysis shows that their 
estimates are somewhat sensitive to defensible alternative modeling choices. Howard and Sterner’s main 
specifications vary across two dimensions: (1) whether the sample includes estimates from studies that 
consider large temperature changes (i.e., above 4°C), and (2) whether the econometric specification 
explicitly accounts for different damage channels underlying  the studies, such as studies that attempt to 
account for the effect of climate impacts on economic productivity, and whether or not the estimates of 
those damage channels should be additive to the primary damage estimate in the model.  

Regarding the first dimension, this report focuses on a specification that includes estimates across the full 
range of temperature changes considered in the underlying studies. Howard and Sterner’s reasoning for 
considering only estimates for temperature changes below 4°C is that, in their modeling, most present 
value damages occur before 2100 and at or below 4°C.88 Applying the same logic would lead to the 
opposite conclusion in the current modeling framework. After incorporating major advancements in the 
socioeconomics, climate and discounting modules, as discussed in sections 2.1, 2.2, and 2.4, a significant 
share of the temperature anomaly distribution exceeds 4°C based on RFF-SPs and FAIR1.6.2 over the 
modeling horizon (2020 to 2300) and a significant amount of estimated discounted damages occur after 
2100 (see Section 3). The coefficient estimate on the temperature variable in the specification in Howard 
and Sterner (2017) used in this report (i.e., the specification that includes estimates of damages at all 
temperatures, including those above 4°C) is smaller in magnitude than in the specification which limits 
the analysis to studies that estimate damages at temperatures less than 4°C. Thus, the specification used 
in this report reflects a more conservative estimate of the relationship between temperature and climate 
damages, and thereby leads to a lower estimate of the SC-GHG, all else equal.  

Regarding the second dimension, this report focuses on Howard and Sterner’s estimation of combined 
damage channels—the primary damage coefficient in their model. This choice, to exclude the coefficients 
on catastrophic and productivity effects, is consistent with the authors’ recommendations in the 
published paper and follows the method Nordhaus (2019) uses to adjust the default damage function in 
DICE 2016 to reflect the findings of Howard and Sterner's meta-analysis. The authors’ rationale for 
excluding the estimated coefficients on the control variables89 for catastrophic damages and productivity 
impacts in the primary specification of the damage function was “because of their mixed [statistical] 
significance and volatility across the various specifications.” The catastrophic damages coefficient is 
identified by five older studies which, while illustrative about the potential importance of such effects, are 
not grounded in empirical evidence or explicit modeling of tipping elements and other effects 
contemplated by the authors to lead to catastrophes.90 There is a need for improved methods for 

 
88 As noted in the published paper, “…the majority (approximately two-thirds) of the 2015 SCC estimate for DICE-
2013R correspond to impacts occurring this century.…for which estimates for approximately 4°C or less are more 
germane” (Howard and Sterner 2017, p. 220). 
89 These control variables indicate Howard and Sterner’s categorization of whether the underlying damage estimates 
account for potential for “catastrophic” impacts or account for the effects of climate change on economic growth. 
90 The 5 studies from which Howard and Sterner (2017) take damage estimates that were considered to include 
catastrophic damages were: Nordhaus (2014), Nordhaus (2008), Weitzman (2012) via Ackerman et al. (2012), 
Ackerman at al. (2012) adjusting Hanemann (2008), Meyer and Cooper (1995). 
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quantifying and incorporating these types of important elements of damages in future updates (e.g., 
through modeling specific tipping points and earth system feedback effects). See section 3.2 for further 
discussion of these considerations. 

Productivity damages in Howard and Sterner (2017) are identified by four studies (2 statistical and 2 CGE) 
and the coefficient on the productivity indicator is estimated to be positive but not statistically different 
from zero in any of the specifications.91 There is an ongoing investigation in the literature of whether 
temperature effects on the economy are only temporary or persistent—with empirical findings sensitive 
to model specification. Over the past decade, a host of empirical studies have found evidence of 
temperature changes having persistent effects on the economy (e.g., Dell et al. 2012; Burke et al. 2015; 
Deryugina and Hsiang 2017; Burke and Tanutama 2019; Colacito et al. 2019; Henseler and Schumacher 
2019; Kahn et al. 2021; Kumar and Khanna 2019; Bastien-Olvera et al. 2022); this is an important finding 
because even small changes in economic growth rates accumulate into large economic impacts over time. 
However, other recent studies have failed to identify conclusive evidence of persistent effects of 
temperature changes (Newell et al. 2021, Kalkuhl and Wenz 2020). Given that the question of impact 
persistence remains largely unresolved in the empirical literature to date, and given the statistical 
insignificance of the estimated coefficient on the productivity indicator in the published Howard and 
Sterner meta-analysis, the SC-GHG estimates presented in this report do not rely on Howard and Sterner’s 
specifications that include productivity effects. This is consistent with the authors’ recommendations in 
the published paper, to only consider the inclusion of the productivity impact in sensitivity analysis.92 

However, this potentially important effect is worthy of additional study and the EPA will continue to follow 
advances in the literature on methodologies for identifying productivity effects of climate change. Finally, 
unlike Howard and Sterner (2017), the model runs performed for this report do not adopt a 25% adder 
(as used in the DICE model (e.g., Nordhaus 2017b)) to account for unknown or missing damages for the 
meta-analysis based damage module. Taken together, this report uses the most conservative damage 
function specification (that excludes duplicate studies) from Howard and Sterner (2017).93 

2.3.4 Comparing the Three Damage Modules   

Each of the three damage modules – based on DSCIM, GIVE, and the Howard and Sterner (2017) meta-
analysis – is separately estimated in combination with the socioeconomics, climate, and discounting 
modules described elsewhere in this section. The sectoral damage modules in GIVE and DSCIM are based 

 
91 The term “productivity” used in the Howard and Sterner (2017) damage function is distinct from the empirically 
grounded micro-economic labor productivity described in the DSCIM damages model. Instead, productivity in 
Howard and Sterner (2017) relates to the ongoing debate about persistence in damages as measured by changes in 
economic growth over time.  
92 Howard and Sterner (2017) conclude that “…given the debate over the impact of climate change on productivity 
and economic growth (Dell et al. 2012; Burke et al. 2015; Howard [and Sylvan] 2015), we recommend conducting an 
analysis of sensitivity to the inclusion of the productivity impact.” 
93 This specification of Howard and Sterner’s results (i.e., using the estimated temperature coefficient in specification 
7 presented in Table 2 of their paper) is also provided as an alternative damage function option in the GIVE model 
(Rennert et al. 2022b). That is, when the Howard and Sterner (2017) damage function is used within the GIVE model, 
the other damage sectors (agriculture, mortality, energy, and coastal) are turned off and the Monte Carlo simulation 
samples from all relevant model parameter distributions including those underlying the Howard and Sterner (2017) 
meta-analysis damage parameters. 
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on different underlying information, data sources, and estimation methods.94  GIVE and DSCIM are both 
independent lines of evidence from the meta-analysis-based damage module since the studies underlying 
each sectoral damage modules in GIVE and DSCIM are not included in Howard and Sterner’s (2017) final 
sample of studies.   Figure 2.3.2 illustrates the shape of the damage function across the three models. 
Specifically, the figure presents projections of total damages from climate change in 2100 as a function of 
GMST change. The points represent each trial of the Monte Carlo simulation where the socioeconomic 
and climate module parameters are consistent across damage modules (i.e., the first trial of DSCIM takes 
the same socioeconomic pathways and climate parameters as the first trial of GIVE and the meta-analysis-
based damage function). The global damage functions shown here are generated using estimated 
damages in 2100 (the points) and regressing on temperature and temperature squared in 2100 at the 
mean (solid line), and quantile regressions at the median (dashed lines), 5th to 95th (dark shade) and 1st to 
99th (light shade) percentiles.  

As seen in Figure 2.3.2, there are notable differences between the damage functions. On average, DSCIM 
estimates lower damages but predicts a more rapidly increasing damage function beyond 4 degrees 
Celsius, compared to GIVE that has increasing but consistent damages throughout the temperature range. 
The meta-analysis-based damage function reflects the explicit quadratic nature of the published Howard 
and Sterner (2017) damage function. Section 3 presents the resulting SC-GHG estimates based on each 
damage module combined with the socioeconomic and climate modules and discusses the importance of 
omitted climate impacts and associated damages.   

 
94 Only one component of the methodology for calculating coastal damages is common across the two models. Both 
DSCIM and GIVE rely on the CIAM model developed by Diaz (2016) to estimate the economic damages resulting from 
projections of SLR. 
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Figure 2.3.2: Annual Consumption Loss as a Fraction of Global GDP in 2100 Due to an Increase in Annual 
Global Mean Surface Temperature in the three Damage Modules 

 
GDP loss functions are generated using estimated damages in 2100 (points) and regressing on temperature and temperature 
squared at the mean (solid line), and quantile regressions at the median (dashed lines), 5th to 95th (dark shade) and 1st to 99th 
(light shade). 5,000 of the 10,000 points for each module are randomly selected to simplify the presentation of damages. DSCIM 
estimates damages relative to global mean surface temparatures between 2000-2010 and was normalized here to 1850-1900 to 
be consistent with GIVE and the Meta-Analysis. GIVE and the Meta-Analysis presented here include the full uncertainty underlying 
each module in the Monte Carlo analysis, DSCIM observations present climate and socioeconomic uncertainty (no statistical 
uncertainty from the underlying damage functions). The IPCC (2021a) notes that present day global mean surface temperatures 
in the year 2020 are around 1.1 °C above preindustrial (1850-1900) levels.  
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2.4 Discounting Module 

GHG emissions are stock pollutants, where damages result from the accumulation of the pollutants in the 
atmosphere over time. Because GHGs are long-lived, subsequent damages resulting from emissions today 
occur over many decades or centuries, depending on the specific GHG under consideration.95 In 
calculating the SC-GHG, the stream of future marginal damages, as estimated by the damage modules 
discussed in Section 2.3, is calculated in terms of reduced consumption (or monetary consumption 
equivalents). Then that stream of future damages is discounted to its present value in the year when the 
additional unit of emissions was released. Given the long time horizon over which the damages are 
expected to occur, the approach to discounting greatly influences the present value of future damages.  

Arrow et al. (1995) outlined two main approaches to determine the discount rate for climate change 
analysis, which they labeled “descriptive” and “prescriptive.” The descriptive approach reflects a positive 
(non-normative) perspective based on observations of people’s actual choices – e.g., savings versus 
consumption decisions over time, and allocations of savings among more and less risky investments. 
Advocates of this approach generally call for inferring the discount rate from market rates of return 
because “no justification exists for choosing [a social welfare function] different from what 
decisionmakers actually use” (Arrow et al. 1995).  

In addition, the Kaldor-Hicks potential compensation test – one theoretical foundation for the benefit-
cost analyses in which the SC-GHG will be used – suggests that market rates should be used to discount 
future benefits and costs. This is because the market interest rate would govern the returns potentially 
set aside today to compensate future individuals for the climate damages that they bear (e.g., Just et al. 
2004). The word “potentially” indicates that there is no assurance that returns will be set aside to provide 
compensation, and the very idea of compensation is difficult to define in the intergenerational context. 
On the other hand, societies provide compensation to future generations through investments in human 
capital and the resulting increase in knowledge, infrastructure and other physical capital, and the 
maintenance and preservation of natural capital.  

In contrast, the prescriptive (normative) approach specifies a social discount rate that formalizes the 
normative judgments that the decision-maker wants to incorporate into the policy evaluation. That is, it 
defines from the decision-maker’s perspective how interpersonal comparisons of utility should be made 
and how the welfare of future generations should be weighed against that of the present generation. 
Ramsey (1928), for example, argued that it is “ethically indefensible” to apply a positive pure rate of time 
preference to discount values across generations.  

Additional concerns motivate adjusting descriptive discount rates. Future generations' preferences 
regarding consumption versus environmental amenities may not be the same as those today, raising 
concerns about using the current market rate on consumption to discount future climate-related 
damages. Furthermore, markets for relatively riskless assets with a maturity similar to an 
intergenerational horizon, akin to the horizon over which climate change impacts are realized, do not exist 
(Gollier and Hammit 2014). Others argue that the discount rate should be below market rates to correct 

 
95 “GHGs, for example, CO2, methane, and nitrous oxide, are chemically stable and persist in the atmosphere over 
time scales of a decade to centuries or longer, so that their emission has a long-term influence on climate. Because 
these gases are long lived, they become well mixed throughout the atmosphere” (IPCC 2007b). 
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for market distortions and uncertainties or inefficiencies in intergenerational transfers of wealth 
(Schwartz and Howard 2022).  

Further, a concern about discount rates developed using both the descriptive and prescriptive approaches 
is that they tend to obscure important heterogeneity in the population. For instance, many individuals 
smooth consumption by borrowing with credit cards that have relatively high rates. Some are unable to 
access traditional credit markets and rely on payday lending operations or other high-cost forms of 
smoothing consumption. This behavior may reflect rational intertemporal preferences, or it may reflect 
other factors such as present bias, lack of financial literacy, and other distortionary effects of poverty 
(Haushofer and Fehr 2014; Lusardi and Mitchell 2014). Nevertheless, whether one puts greater weight on 
the prescriptive or descriptive approach, the high interest rates that credit-constrained individuals accept 
suggest that some account should be given to the discount rates revealed by their behavior.  

The EPA’s analyses rely primarily on the descriptive approach to inform the choice of a discount rate for 
SC-GHG estimation, consistent with the rationale outlined in IWG TSDs (e.g., IWG 2010, 2021) and EPA’s 
economic analysis guidelines (EPA 2010). With a recognition of its limitations, the IWG found this 
approach to be the most defensible and transparent given its consistency with both the standard 
contemporary theoretical foundations of benefit-cost analysis and the approach recommended by OMB’s 
existing guidance.  

In 2010, the IWG specifically elected to use three constant discount rates: 2.5, 3, and 5 percent per year. 
The 3 percent rate was included as consistent with the default recommendation provided in OMB’s Circular 
A-4 (OMB 2003) guidance for the consumption rate of interest. The IWG found that the consumption rate 
of interest is the correct discounting concept to use when the future damages from climate change are 
estimated in consumption-equivalent units, as is done in the IAMs used to estimate the SC-GHG.96 The 3 
percent rate was roughly consistent with the average rate of return for long-term Treasury notes 
calculated at the time the OMB guidance was published. The upper rate of 5 percent was included to 
represent the possibility that climate-related damages are positively correlated with market returns, 
which would imply a certainty-equivalent97 risk-adjusted rate higher than the consumption rate of 
interest. The low rate, 2.5 percent, was included to incorporate the concern that interest rates are highly 
uncertain over time, which would imply a risk-free certainty equivalent rate lower than the consumption 
rate of interest. Additionally, a rate below the consumption rate of interest would also be justified if the 
return to investments in climate mitigation is negatively (or weakly) correlated with the overall market 
rate of return. The use of this lower rate was also deemed responsive to certain judgments based on the 
prescriptive or normative approach for selecting a discount rate and related ethical objections about rates 
of 3 percent or higher. Further details about selecting these rates are presented in the 2010 TSD (IWG 
2010). 

Based on a review of the literature and data on consumption discount rates, the public comments received 
on individual EPA rulemakings, and the February 2021 TSD (IWG 2021), and the National Academies (2017) 

 
96 Appendix A.2 provides additional detail on why the consumption discount rate is the appropriate rate to be used 
in estimating the SC-GHG. 
97 The certainty-equivalent discount rate is the certain discount rate that is equivalent to an uncertain discount rate 
in terms of the discount factor over a particular horizon. See National Academies (2017) for more explanation of this 
and other discounting terminology. 



EXTERNAL REVIEW DRAFT 

54 
 
 

recommendations for updating the discounting module, this report uses a new set of discount rates that 
reflect more recent data on the consumption interest rate. The approach presented in this report 
continues to rely on a descriptive approach to discounting but more fully captures the role of uncertainty 
in the discount rate in a manner consistent with the other modules. Specifically, rather than using a 
constant discount rate, the evolution of the discount rate over time is defined following the latest 
empirical evidence on interest rate uncertainty and using a framework originally developed by Ramsey 
(1928) that connects economic growth and interest rates. The Ramsey approach explicitly reflects (1) 
preferences for utility in one period relative to utility in a later period and (2) the value of additional 
consumption as income changes. The resulting dynamic discount rate provide a notable improvement over the 
constant discount rate framework for SC-GHG estimation. Specifically, it provides internal consistency within the 
modeling and a more complete accounting of uncertainty98, consistent with economic theory (Arrow et al. 2013, 
Cropper et al. 2014) and the National Academies (2017) recommendation to employ a more structural, Ramsey-
like approach to discounting that explicitly recognizes the relationship between economic growth and discounting 
uncertainty. The following sections provide an overview of the Ramsey discounting formula and then describe the 
calibration of the new set of dynamic discount rates. 

2.4.1 The Ramsey Formula 

The Ramsey formula for discounting is derived from work by Frank Ramsey (1928) and others (Cass 1965, 
Koopmans 1963) on the optimal level of consumption and saving. The formula describes the optimal 
consumption discount rate as a function that explicitly reflects: (1) preferences for utility in one period 
relative to utility in a later period (called the “pure rate of time preference”); and (2) the value of additional 
consumption as income changes. These factors are combined in the equation 

𝑟𝑟𝑡𝑡 = ρ+ η𝑔𝑔𝑡𝑡 ,                                                                       (2.4.1)  

where 𝑟𝑟𝑡𝑡 is the consumption discount rate in year t, ρ is the pure rate of time preference, η is the elasticity 
of marginal utility with respect to consumption, and 𝑔𝑔𝑡𝑡 is the representative agent’s consumption growth 
rate in year t.99  

The pure rate of time preference, ρ, is the rate at which the representative agent discounts utility in future 
periods due to a preference for utility sooner rather than later. The elasticity of marginal utility with 
respect to consumption, η, defines the rate at which the well-being from an additional dollar of 
consumption declines as the level of consumption increases. In this context, it is common to assume that 

 
98 As noted in Circular A-4, “the longer the horizon for the analysis,” the higher the “uncertainty about the 
appropriate value of the discount rate” (OMB 2003). 
99 The economic framework in this report implicitly assumes an exogenous fixed savings rate. With this assumption 
consumption growth and income (GDP) growth are equivalent. A more restrictive assumption that leads to the same 
result would be to assume that the savings rate is zero and consumption is equivalent to income. Relaxing the fixed 
savings rate assumption would require adding further complexity to calculate the optimal savings rate in each year.        
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well-being can be described by an isoelastic utility function, where utility, u, is a power function with 
respect to consumption, 𝑐𝑐𝑡𝑡, such that 

𝑢𝑢(𝑐𝑐𝑡𝑡) =  
𝑐𝑐𝑡𝑡

1−𝜂𝜂

1− 𝜂𝜂
 .                                                                       (2.4.2) 

This function implies that the elasticity of marginal utility with respect to consumption is a constant value 
(i.e., for a given percent increase in baseline consumption the benefit of an additional unit of consumption 
decreases proportionally). The per capita consumption growth rate, 𝑔𝑔𝑡𝑡, defines the projected change in 
consumption per capita over time. Under the common assumption of a constant savings rate, 𝑔𝑔𝑡𝑡 would 
be expected to change with income over time.100 When using the Ramsey formula to estimate the SC-
GHG, the per capita consumption growth rate, 𝑔𝑔𝑡𝑡 is calculated net of baseline climate change damages as 
estimated by the damage modules described in Section 2.3. 

The use of the Ramsey formula provides internal consistency within the modeling between the socio-
economic scenarios and the discount rate. With uncertainty in the per capita consumption growth rate, 
the Ramsey discount rate becomes a dynamic parameter within the modeling framework that reflects 
how uncertainty about future conditions has implications for how future impacts are valued. Gollier 
(2014) showed that when there is uncertainty in future consumption growth, the distribution of discount 
rates defined by the Ramsey formula will have a certainty-equivalent risk-free discount rate path that 
declines over time, under standard assumptions about individual preferences. This is particularly true 
when shocks to consumption growth are positively correlated over time, as they are in the probabilistic 
scenarios described in Section 2.1. The declining certainty-equivalent risk-free discount rate implied by 
the Ramsey formula reflects that additional climate change damages are a greater burden to society in 
future states of the world with relatively lower economic growth. Damages in low economic growth states 
of the world are given greater weight than if those same damages were realized in a future state of the 
world with relatively higher economic growth, all else equal (Gollier and Weitzman 2010). The declining 
certainty-equivalent discount rate implied by the Ramsey formula is also consistent with the empirical 
literature on discount rates under uncertainty (e.g., Newell and Pizer 2003, Bauer and Rudebusch 2021).101 

The use of the Ramsey formula also provides internal consistency when accounting for the effect of 
correlations between climate change damages and economic growth. The correlation between climate 
change damages and future economic uncertainty is important in determining the appropriate discount 
rate. If climate change damages are positively correlated with economic growth (e.g., if the willingness to 
pay to avoid climate impacts increases with income or emissions), then the risk of climate change impacts 
being worse than expected is greater when the world is relatively wealthier than anticipated. In this case, 
less weight should be placed on those future impacts. Conversely, if climate change damages are 
negatively correlated with economic growth (e.g., if less adaptation is available at lower incomes or if 
climate damages slow economic growth), then the risk of climate change impacts being worse than 

 
100 More information on the derivation of the Ramsey formula can be found in Dasgupta (2020). 
101 The approach employed in this report should not be confused with applying an exogenously specified declining 
discount rate. There are similarities, in that incorporating economic uncertainty in the Ramsey equation yields a 
declining certainty-equivalent discount rate. However, the application of an exogenously specified declining discount 
rate would fail to capture the way in which correlations between uncertain climate damages and uncertain economic 
growth affect estimates of the SC-GHG. 
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expected is greater when the world is relatively less wealthy than expected. In this converse case, more 
weight should be placed on those future impacts. Using the Ramsey formula for discounting in conjunction 
with probabilistic scenarios and modeling climate change damages under uncertainty ensures that the 
correlation between climate change damages and economic growth within the model is appropriately 
captured in the SC-GHG estimates. It allows for an internally consistent approach to capturing these 
effects, and exogenous adjustments to the discount rate are not required.  

Incorporating dynamic discount rates through the application of the Ramsey formula remains widely used 
in the peer reviewed literature and is consistent with the National Academies’ (2017) recommendations 
on discounting. It provides important improvements over the use of a static discount rate and 
incorporates connections between important components of the modeling. While offering an important 
improvement, the Ramsey formula is an approximation of complex economic processes and future 
research may provide methodological advancements that further improve the representation of those 
processes within dynamic discount rates. 

2.4.2 Calibration of Discount Rate Distributions 

The National Academies (2017) recommended that the IWG “choose parameters for the Ramsey formula 
that are consistent with theory and evidence and that produce certainty-equivalent discount rates 
consistent, over the next several decades, with consumption rates of interest.” The SC-GHG estimates 
presented in this report adopt a descriptive approach to calibrating the Ramsey parameters, meaning that 
the parameters are calibrated based on observed interest rate data, consistent with the National 
Academies’ recommendation. Specifically, the parameters are calibrated following the Newell et al. (2022) 
calibration approach, as applied in Rennert et al. (2022a, 2022b). Under this approach, the parameters 
are calibrated such that the decline in the certainty-equivalent discount rate path matches the latest 
empirical evidence on interest rate uncertainty estimated by Bauer and Rudebusch (2020, 2021). The 
parameters are also calibrated such that the average of the certainty-equivalent discount rate over the 
first decade matches a specified near-term consumption rate of interest. As described below, given the 
uncertainty about the appropriate starting rate, three near-term target rates (1.5, 2.0, and 2.5 percent) 
are used based on multiple lines of evidence on observed interest rate data. The calibration of the 
parameters is carried out using the same probabilistic socioeconomic scenarios presented in Section 2.1 
to ensure internal consistency. This approach results in three discount rate paths and is consistent with 
the National Academies (2017) recommendation to use three sets of Ramsey parameters that reflect a 
range of near-term certainty-equivalent discount rates consistent with theory and empirical evidence on 
consumption rate uncertainty, and uncertainty surrounding long-run socioeconomic and emissions 
projections.  

Specifying the near-term target rates. The near-term certainty-equivalent discount rate is calibrated 
based on observed interest rate data. Estimates of the risk-free consumption interest rate – used to 
represent temporal preferences in benefit-cost analysis – have generally focused on historical returns to 
long-term Treasury securities backed by the faith and credit of the U.S. Government. In particular, the 
estimates of the consumption interest rate published in OMB’s Circular A-4 in 2003 are based on the real 
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rate of return on 10-year Treasury Securities102 from the prior 30 years (1973 through 2002). However, 
there has been a substantial and persistent decline in real interest rates over the past four decades. Recent 
research has found that the decline in real interest rates reflects a reduction in the equilibrium real 
interest rate, suggesting that lower real interest rates are expected to persist (Bauer and Rudebusch 
2020). These changes indicate the need for new estimates of the near-term consumption rate of interest 
that incorporate recent data. 

From 2003 onwards, it is possible to use the 10-Year Treasury Inflation-Protected Securities (TIPS)103 as a 
measure of the real rate of return on 10-Year Treasury Securities. Prior to the TIPS introduction, nominal 
returns on Treasury securities needed to be adjusted for inflation. To use the consumption interest rate 
as an estimate of social preferences for trading off consumption over time, the inflation adjustment 
should reflect investor expectations about inflation over the maturity period to produce an estimate of 
the tradeoff investors believe they are making. There are multiple approaches to adjusting the nominal 
rate for inflation expectations over the maturity of the security at the time of purchase. Three measures 
of inflation expectations are considered. The first is a ten-year moving average of the consumer price 
index (CPI)104 prior to the year of the security issuance. This measure assumes that recent trends in 
inflation inform expectations over future inflation. The second is a ten-year moving average of inflation 
expectations as measured by the Livingston Survey, which is a survey of forecasters about key economic 
variables.105 This approach has been used in the economics literature to measure inflation expectations 
when examining real rates of return (e.g., Newell and Pizer, 2003). The third is the perceived inflation 
target rate (PTR) from the Federal Reserve’s FRB/US model. The PTR is an expectation of long-run inflation 
estimated from the Survey of Professional Forecasters (SPF). For years before the inception of the SPF, 
the PTR is estimated econometrically.106 The PTR has also been used in the economics literature as a 
measure of inflation expectations when examining real rates of return (e.g., Fuhrer et al. 2012, Bauer and 
Rudebusch 2017, Bauer and Rudebusch 2020).   

 
102 Board of Governors of the Federal Reserve System (US), Market Yield on U.S. Treasury Securities at 10-Year 
Constant Maturity, Quoted on an Investment Basis, Series name: DGS10, retrieved from FRED, Federal Reserve Bank 
of St. Louis; https://fred.stlouisfed.org/series/DGS10  
103 Board of Governors of the Federal Reserve System (US), Market Yield on U.S. Treasury Securities at 10-Year 
Constant Maturity, Quoted on an Investment Basis, Inflation-Indexed, Series name: DFII10, retrieved from FRED, 
Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/DFII10  
104 U.S. Bureau of Labor Statistics, Consumer Price Index for All Urban Consumers: All Items in U.S. City Average, 
Series name: CPIAUCSL, retrieved from FRED, Federal Reserve Bank of St. Louis; 
https://fred.stlouisfed.org/series/CPIAUCSL  
105 Federal Reserve Bank Philadelphia, Consumer Price Index seasonally adjusted, rate of growth over the period 
from the last monthly or quarterly historical value to the month that is 12 months beyond the survey date or four 
quarters beyond the survey date, Series name: G_BP_To_12M; https://www.philadelphiafed.org/-
/media/frbp/assets/surveys-and-data/livingston-survey/historical-data/meangrowthrate.xlsx. Additional 
information available at https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/livingston-
survey  
106 Board of Governors of the Federal Reserve System (US), Trend price inflation measured using survey data on 
ten-year inflation expectations, Series name: PTR; 
https://www.federalreserve.gov/econres/files/data_only_package.zip. Additional information on the FRB/US 
model and the PTR are available from the U.S. Federal Reserve at https://www.federalreserve.gov/econres/us-
models-about.htm  

https://fred.stlouisfed.org/series/DGS10
https://fred.stlouisfed.org/series/DFII10
https://fred.stlouisfed.org/series/CPIAUCSL
https://www.philadelphiafed.org/-/media/frbp/assets/surveys-and-data/livingston-survey/historical-data/meangrowthrate.xlsx
https://www.philadelphiafed.org/-/media/frbp/assets/surveys-and-data/livingston-survey/historical-data/meangrowthrate.xlsx
https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/livingston-survey
https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/livingston-survey
https://www.federalreserve.gov/econres/files/data_only_package.zip
https://www.federalreserve.gov/econres/us-models-about.htm
https://www.federalreserve.gov/econres/us-models-about.htm
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Table 2.4.1 presents the average real return on 10-Year Treasury securities for two time periods. The first 
is a 30-year period (1991-2020) following the approach taken by OMB (2003) in developing Circular A-4. 
The second is 48-years long (1973-2020) and includes all the years originally used by OMB (2003) in 
developing Circular A-4 as well as more recent data (2003-2020). The average real returns are lower under 
the shorter time period, reflecting the decline in real interest rates over recent decades.107  

Table 2.4.1: Average Real Return on 10-Year Treasury Securities 
 Time Period 
Inflation Measure 1991-2020 1973-2020 
Consumer Price Index (CPI) 1.55% 2.12% 
Livingston Survey 1.62% 2.48% 
Perceived Inflation Target Rate (PTR) 1.98% 2.80% 

 

The consideration of more recent versus older data depends on whether the downward trend in real 
interest rates is due to structural changes in the economy that are expected to persist. Bauer and 
Rudebusch (2021) estimate the current equilibrium real interest using three empirical models for the 
interest rate process that allows for an evolution in the equilibrium real interest rate over time. Using a 
time series of 10-Year Treasury securities they estimate current equilibrium real interest rates of 1.3, 1.9, 
and 2.4 percent.108 When using a longer time series of long-term government securities, Bauer and 
Rudebusch (2021) estimate current equilibrium real interest rates of 1.5, 2.3, and 3.0 percent.109 

Other government assessments of consumption interest rates suggest a focus on a similar range. The U.S. 
Congressional Budget Office’s Long-Term Economic Projections forecast real rates on 10-Year Treasury 
securities returning to levels of 2.0% and higher over the next couple of decades (CBO 2021a, 2021b). The 
most recent Social Security Administrations Trustees report (SSA 2021) uses three estimates of the long-
run real interest rate of 1.8%, 2.3%, and 2.8% based on their assessment of interest rates over the next 
couple of decades.  

The empirical evidence on central tendencies for the consumption interest rate is also consistent with 
recent surveys of economists and technical experts on the appropriate discount rate. Drupp et al. (2018) 
surveyed economists who have published at least one paper on discounting in a leading economics journal 

 
107 The average real return on 10-Year Treasury securities has, in general, trended downwards since the 1990s. The 
average real return on 10-Year Treasury securities in the period 2001-2020 was 1.1 percent and in the period 2011-
2020 it was 0.2 percent. Based on empirical evidence, Bauer and Rudebusch (2021) utilize the year 1991 as a 
breakpoint when considering potential shifts in long-run mean of the interest rate process, which coincide with the 
start of the 30-year period considered in Table 2.4.1. The focus on a 30-year period is also consistent with the 
approach used by OMB (2003) used in developing guidance on consumption discount rates in Circular A-4. In 
addition, under the Ramsey approach used in this report, the certainty-equivalent discount rate for the first 30 years 
remains close to the near-term target, suggesting shorter time periods may not be adequately capturing the interest 
rate characteristics over the relevant time period.    
108 Time series of 10-Year Treasury securities from 1968-2019 with a PTR based inflation adjustment. When using 1-
Year Treasury securities Bauer and Rudebusch (2021) find lower estimates of the equilibrium real interest rate 
ranging from 0.7 to 1.3 percent. 
109 Bauer and Rudebusch (2021) use a time series of long-term government securities from Newell and Pizer (2003), 
updated to include more recent data, that spans 1798-2019 and uses a ten-year moving average of the Livingston 
Survey CPI expectation as inflation adjustment after 1954.  
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about the appropriate social discount rate, finding a mean of 2.3% and a median of 2%. Howard and Sylvan 
(2020) surveyed experts who have published at least one article related to climate change in a leading 
economics or environmental economics journal about the appropriate discount rate for calculating the 
SC-GHG, also finding a mean of 2.3% and a median of 2%. Pindyck (2019) also surveyed economists on 
discounting and other topics related to the SC-GHG and found a mean discount rate of 2.7% and a median 
of 2.0%. 

The National Academies (2017) recommended the use of “three sets of Ramsey parameters, generating a 
low, central, and high certainty-equivalent near-term discount rate, and three means and ranges of SC-
CO2 estimates.” Recent studies have found empirical evidence suggestive of a structural break in the 
interest rate process sometime during the 1990s that has been associated with declining equilibrium 
interest rates in recent decades (e.g., Del Negro et al. 2017, Christensen and Rudebusch 2019, and Bauer 
and Rudebusch 2020). Based on empirical evidence, Bauer and Rudebusch (2021) utilize the year 1991 as 
a breakpoint when considering potential shifts in long-run mean of the interest rate process. Given the 
evidence of structural shifts in the interest process beginning in the 1990s, and the precedent for using 
1991 as a reasonable and empirically formed breakpoint, this report places greater focus on the range of 
mean interest rate estimates from 1991-2020 presented in Table 2.4.1. To cover that range, this report 
includes a half a point spread in certainty-equivalent near-term target rates of 1.5 to 2.0 percent. Given 
the potential value in considering a longer time series, this report also considers a third near-term target 
rate of 2.5 percent reflective of the average of the Table 2.4.1 estimates using the longer time series110, 
which is also consistent with the lines of evidence above suggesting a consumption interest rate of slightly 
above 2 percent. Therefore, considering the multiple lines of evidence on the appropriate certainty-
equivalent near-term rate, the modeling results presented in this report consider a range of near-term 
target rates of 1.5, 2.0, and 2.5 percent. This range of rates allows for a symmetric one point spread around 
2.0 percent. 

Calibration of Ramsey parameters. Calibration of the Ramsey parameters follows Rennert et al. (2022a, 
2022b) using the specified set of near-term discount rates to generate a certainty-equivalent discount 
rate path. Rennert et al. (2022a, 2022b) apply the Newell et al. (2022) calibration approach to the same 
set of probabilistic socioeconomic scenarios presented in Section 2.1 and adopted in this report. The 
Ramsey parameters, ρ and η, were calibrated to meet two conditions. First, the average certainty-
equivalent rate over the first 10 years is equal to the near-term target rate. Second, the shape of the 
certainty-equivalent discount rate path over the time horizon fits the empirical estimates of Bauer and 
Rudebusch (2021).111 The resulting calibrated values of the Ramsey formula parameters are presented in 
Table 2.4.2. 

 
110 The average across the estimate in Table 2.4.1 form the window 1973-2020 using different approaches to adjust 
for inflation is 2.47 percent, which rounded to one significant digit is 2.5 percent.  
111 Additional details of the calibration methodology are available in Newell et al. (2022). 
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Table 2.4.2: Calibrated Ramsey Formula Parameters 
Near-Term Target 

Certainty-Equivalent Rate ρ η 

1.5% 0.01% 1.02 
2.0% 0.20% 1.24 
2.5% 0.46% 1.42 

     Source: Rennert et al. (2022b) 

Figure 2.4.1 presents the resulting distribution of time-averaged discount rates using the calibrated ρ and 
η associated with each of the three near-term target rates. The mean and 95th percentile range of the 
discount rate used to discount climate damages back to 2020 for the RFF-SPs probabilistic growth 
scenarios are presented using dashed and dotted lines. The solid lines illustrate the certainty-equivalent 
risk-free discount rate that would lead to the same average discount factor over a specific time horizon 
as using the full distribution of dynamic discount rates to calculate a distribution of discount factors. This 
path is the same as the calibrated certainty-equivalent risk-free term structures presented in Rennert et 
al. (2021a).  

Figure 2.4.1: Distribution of the Dynamic Discount Rates 

 
The range of the dynamic discount rates used to discount climate damages back to 2020 in any one year for the three near-term 
target rates is summarized by the mean (dashed lines) and 5th to 95th percentiles (dotted lines). Also shown here is an illustration 
of the corresponding certainty-equivalent risk-free path (solid lines) implied by the calibration procedure described in Section 2.4.2. 
During the calibration, Newell et al.(2022) place additional  constraints on the rates in each trial such that rates are allowed to go 
negative but cannot remain negative for the duration of the time period (2020-2300). 
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While the certainty-equivalent path illustrates the declining certainty-equivalent risk-free discount rate 
implied by the Ramsey formula, it is important to emphasize that this does not illustrate the discount rate 
used to estimate the SC-GHG values. First, an exogenous, certainty-equivalent declining discount rate is 
not used to discount climate damages; each scenario is discounted using the calibrated ρ and η values 
presented here and the specific consumption growth rate for that scenario. Second, the consumption 
growth rate used for discounting is net of baseline climate damages for each model (Kelleher and Wagner 
2019).  

The calibration approach and resulting Ramsey parameters presented above are consistent with the 
National Academies’ (2017) recommendation to use a descriptive calibration based on empirical interest 
rate data. The resulting parameters presented in Table 2.4.2 are also within the ranges of values of ρ and 
η used in the peer-reviewed literature, including many studies that state their parameter choices are 
based on prescriptive reasoning. For example, the IWG (2010) noted that most papers in the climate 
change literature adopt values for η in the range of 0.5 to 3, although not all authors articulate whether 
their choice is based on prescriptive or descriptive reasoning (IWG 2010). The IPCC AR5 report found 
values of η in the literature in the range of 1 to 4 (IPCC 2014b). Values between 1 and 1.45, consistent 
with the calibrated range in Table 2.4.2, have been commonly used in recent peer-reviewed studies 
(Lemoine 2021, Hänsel et al. 2020, Glanemann et al. 2020, Tol 2019, Dietz and Venmans 2019, Nordhaus 
2018, Burke et al. 2018, Adler et al. 2017). The Drupp et al. (2018) survey asked economists about the 
most appropriate values for η, and found a median (mean) value of 1 (1.35), and a mode value (i.e., the 
most frequently provided response) of 1.  

With respect to the pure rate of time preference, the calibrated values presented in Table 2.4.2 are also 
within the ranges of ρ used in the peer-reviewed literature. The vast majority of papers in the climate 
change literature adopt values for ρ in the range of 0 to 2 percent per year, with most studies in the lower 
end of the range (IPCC 2014a). The selection of rates on the lower end of that range tend to emerge from 
ethical concerns. Some have argued that to use any value other than ρ = 0 would unjustly discriminate 
against future generations (e.g., Arrow et al. 1995, Stern 2006). When Drupp et al. (2018) surveyed 
economists about the most appropriate values for ρ, the experts’ responses had a median (mean) value 
of 0.5 (1.1) percent, and a mode value of 0. However, even under the case of intergenerational neutrality, 
a small positive pure rate of time preference may be appropriate to account for the probability of 
unforeseen cataclysmic events (Stern 2006).112 Furthermore, it has been argued that very small values of 
ρ can lead to an unreasonable rate of optimal savings (Arrow et al. 1995), particularly with η around 1 
(Dasgupta 2008, Weitzman 2007). 

Regardless of the theoretical approach used to derive the discount rate(s), there remain inherent 
conceptual and practical difficulties of adequately capturing consumption trade-offs over many decades 
or even centuries. While this report relies on the descriptive approach for selecting specific discount rates 
based on observed preferences for temporal tradeoffs of consumption, the EPA is aware of the normative 
dimensions of both the debate over discounting in the intergenerational context and the consequences 
of selecting one discount rate over another.   

 
112 Stern (2006) assumes a pure rate of time preference of 0.1%. This reflects a 91% probability of the human race 
surviving 100 years. 
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2.5 Risk Aversion 

The impacts associated with GHG emissions present substantial new risks and exacerbate existing risks to 
human health and welfare (USGCRP 2018b, NIC 2021). This raises the question of how to account for 
individuals’ preferences over these risks in the valuation of climate damages. Individuals are typically not 
indifferent between a situation with a certain outcome and a situation with a risky outcome whose 
expected value is the same as the certain outcome. That is, in most decision-making processes individuals 
tend to be risk averse. This is evident by the existence of voluntary insurance markets where individuals 
demonstrate a positive willingness to pay to reduce risk exposure.  

U.S. regulatory benefit-cost analyses to date commonly assume risk neutrality (i.e., zero risk aversion). 
This assumption is justified in cases where idiosyncratic risks can be pooled across regulations, are 
uncorrelated with baseline economic uncertainty, or are shared across large populations (OECD 2018). 
However, the largest climate change risks are collective in nature, affecting large shares of the population, 
and, therefore, may not be diversifiable (Heal & Kriström 2002). The marginal damages are also expected 
to be correlated with baseline consumption (inclusive of baseline climate change damages) and may add 
to society’s overall risk (National Academies 2017, Dietz et al. 2018). Therefore, in the case of climate 
change risk reductions, individuals are expected to have a positive willingness to pay for that reduced risk 
exposure beyond the value of the mean damages. The peer reviewed climate economics literature has 
demonstrated the importance of accounting for risk aversion in estimates of the SC-GHG (e.g., Anthoff et 
al. 2009, Cai et al. 2016, Lemoine 2021, van den Bremar and van der Ploeg 2021).  

In the EPA’s analyses relying on the IWG SC-GHG estimates to date risk aversion was incorporated through 
adjustments to the discount rate and through consideration of the fourth estimate reflecting the 95th 
percentile for a 3% discount rate. However, in the IWG’s 2010 TSD, the IWG acknowledged the limitations 
of these approaches to provide a unified framework for valuing risk changes. For the SC-GHG estimates 
presented in this report, the value of risk associated with marginal GHG emissions is explicitly 
incorporated into the modeling following the economic literature and consistent with the National 
Academies’ (2017) recommendations.   

Assuming a time separable welfare function for a population of size 𝐿𝐿𝑡𝑡 with representative agent utility 
𝑢𝑢(∙) and per capita consumption 𝑐𝑐𝑡𝑡, the SC-GHG is defined as  

SC-GHG =
𝐸𝐸 �∫ 𝑒𝑒−𝜌𝜌𝑡𝑡𝑢𝑢′(𝑐𝑐𝑡𝑡)𝛥𝛥𝑡𝑡𝑑𝑑𝑡𝑡

𝑇𝑇
0 �

𝑢𝑢′(𝑐𝑐0) , (2.5. 1) 

 

where Δ𝑡𝑡 are the marginal damages associated with emissions in a given year. That is, the SC-GHG is the 
expected marginal changes in utility normalized by the marginal utility of consumption to convert to a 
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willingness to pay in monetary units. Setting aside uncertainty in future populations for ease of exposition, 
a second order Taylor expansion of 𝑢𝑢′ around 𝐸𝐸[𝑐𝑐𝑡𝑡] allows the SC-GHG to be decomposed as  

SC-GHG ≈ ∫ 𝑒𝑒−𝜌𝜌𝜌𝜌

𝑢𝑢′(𝑐𝑐0) �𝑢𝑢
′(𝐸𝐸[𝑐𝑐𝑡𝑡])𝐸𝐸[𝛥𝛥𝑡𝑡] + 1

2𝑢𝑢
′′′(𝐸𝐸[𝑐𝑐𝑡𝑡])𝐸𝐸[𝛥𝛥𝑡𝑡]𝑉𝑉𝑉𝑉𝑟𝑟(𝑐𝑐𝑡𝑡) + 𝐶𝐶𝐶𝐶𝐶𝐶�𝑢𝑢′(𝑐𝑐𝑡𝑡),𝛥𝛥𝑡𝑡��𝑑𝑑𝑡𝑡

𝑇𝑇
0 . (2.5. 2)  

                                                               
                                                      Expected                       Precautionary                      Insurance 
                                                      Damages 

The first term in the braces on the right-hand side of equation (2) is the change in utility from the expected 
marginal damages, which drives the willingness to pay for the expected marginal damages. The second 
two terms incorporate the way in which risk impacts the SC-GHG estimates and have been referred to as 
the precautionary and insurance channels, respectively (Kimball 1990).113 The precautionary term 
captures the result that climate damages are more impactful when consumption is lower, all else equal, 
leading the returns to mitigation to increase with uncertainty in future consumption. The insurance term, 
also referred to as the risk premium, captures the covariance between marginal utility along the baseline 
and marginal damages. This term incorporates the degree to which mitigation provides a hedge against 
future economic uncertainty, sometimes referred to as the “climate beta” (e.g., Dietz et al. 2021). In other 
words, the precautionary channel represents the willingness to pay  to avoid the additional climate change 
risk itself and the insurance channel represents the willingness to pay to avoid the broader change in 
society’s risk based on how climate change damages intersect with economic growth.  

The IWG SC-GHG estimates used by EPA to date have focused on explicitly quantifying the first component 
in equation (2). Incorporating the precautionary and insurance channels into the estimation requires 
probabilistic socioeconomic scenarios, which were not available at the time those estimates were 
developed. Instead, the IWG partially incorporated the impact of risk into the estimates through 
adjustments to the discount rates. The motivation for using a lower 2.5 percent discount rate to capture 
risk in future economic conditions was premised on the precautionary channel. The motivation for using 
a higher 5.0 percent discount rate was premised on the insurance channel if there is a positive covariance 
between economic conditions and climate change damages.114 The fourth value (the 95th percentile at a 
3 percent discount rate) was included to represent the extensive evidence in the scientific and economic 
literature of the potential for lower-probability, higher-impact outcomes from climate change, which 
would be particularly harmful to society. Absent formal inclusion of risk aversion in the modeling, 
considering values above the mean in a right skewed distribution with long tails acknowledges society’s 
preference for avoiding risk. 

Accounting for risk aversion more explicitly in the analysis allows valuation of the precautionary and 
insurance channels based on the specific evidence of future economic uncertainty and the correlation 
with marginal climate change damages presented in Sections 2.1 and 2.3. That is, the value of risk aversion 
is incorporated into the SC-GHG estimates based on the marginal climate change risk reductions identified 
by the modeling as opposed to through exogenous adjustments. Explicitly incorporating risk aversion into 

 
113 The second and third components on the right-hand side of equation (2) are sometimes also referred to as the 
diversifiable and non-diversifiable components of risk valuation (OECD 2018). 
114 If there is a negative covariance between economic growth and climate change damages a downward adjustment 
in the discount rate would be warranted. 
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the analysis requires a functional form for the representative agent’s utility function. The most commonly 
used utility function in the climate economics literature and one consistent with the approach to 
discounting identified in Section 2.4, is the isoelastic utility function, 𝑢𝑢(𝑐𝑐𝑡𝑡) = 𝑐𝑐𝑡𝑡

1−𝜂𝜂 (1− 𝜂𝜂)� , where utility 
is a power function with respect to consumption. If the utility function is assumed to follow an isoelastic 
function, the definition of the SC-GHG in equation (2.5.1) reduces to the expected value of the marginal 
damages discounted using the Ramsey formula, 

 

𝑆𝑆𝐶𝐶 − 𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐸𝐸 �∫ 𝑒𝑒−(𝜌𝜌+𝜂𝜂𝑔𝑔𝜌𝜌)𝑡𝑡𝛥𝛥𝑡𝑡𝑑𝑑𝑡𝑡
𝑇𝑇

0 � , (2.5. 3)  
 

where 𝑔𝑔𝑡𝑡 is the time averaged per capita consumption continuous growth rate through time 𝑡𝑡. Therefore, 
by discounting via the Ramsey formula as detailed in Section 2.4 and incorporating uncertainty throughout 
the modeling process as detailed in Sections 2.1-2.3, the SC-GHG estimates incorporate the climate risk 
through the precautionary and insurance channels.  

Within the isoelastic utility function, the single parameter, 𝜂𝜂, has a role in reflecting both intertemporal 
and risk preferences which can present challenges in calibrating the utility function. As noted in Section 
2.4, the calibrated values for 𝜂𝜂 presented in Table 2.4.2 are consistent with the calibrated range (1 to 1.45) 
that has been commonly used in recent peer reviewed studies employing an isoelastic utility function 
(Lemoine 2021, Hänsel et al. 2020, Glanemann et al. 2020, Tol 2019, Dietz and Venmans 2019, Nordhaus 
2018, Burke et al. 2018, Adler et al. 2017). However, while that range of values may be appropriate for 𝜂𝜂 
in its role representing intertemporal preferences, they may be too conservative for 𝜂𝜂 in its role 
representing risk preferences. Some have suggested that values of  𝜂𝜂 between 2 and 10 would be required 
to match empirical and experimental evidence on rates of risk aversion (Crost and Traeger 2014, Jensen 
and Traeger 2014, Cai et al. 2016, Cai and Lontzek 2019, Daniel et al. 2019, Okullo 2020, Lemoine 2021, 
Jensen and Traeger 2021, Van den Bremer and Van der Ploeg 2021). To address this calibration challenge, 
some recent SC-GHG studies have used alternative utility function specifications (e.g., Epstein-Zin 
specifications) that allow for the separation of intertemporal and risk preferences (Cai et al. 2016, Daniel 
et al. 2019, Cai and Lontzek 2019, Okullo 2020, Lemoine 2021, Van den Bremer and Van der Ploeg 2021). 
These studies can incorporate a higher rate of relative risk aversion without affecting the calibration of 
the intertemporal preferences. While these approaches have promise for improving the calibration of risk 
preferences, they are relatively new in the climate economics literature, computationally complex, and 
require additional assumptions (e.g., timing of uncertainty resolution) for which there is no consensus in 
the literature. For these reasons, these alternative utility functions are not used in this report, but they 
are worthy of additional investigation, consistent with recommendations of the National Academies 
(2017). Furthermore, the use of an isoelastic utility function via equation (2.5.3) remains widely used in 
the peer reviewed literature and is consistent with the National Academies’ (2017) recommendations on 
robustly capturing the value uncertainty through probabilistic scenario, climate, and damage function 
models in conjunction with a Ramsey-like approach to discounting. However, because the calibrated 
values of 𝜂𝜂 using the isoelastic utility function may be low from a risk aversion perspective, the value of 
reducing climate change risk included in the SC-GHG estimates will likely be an underestimate, holding all 
else equal.  
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When using the damage module based on GIVE and Howard and Sterner (2017), the SC-GHG is calculated 
using equation (2.5.3) for a global representative agent. Implicit in the use of a global representative agent 
is that all risks can be pooled at the global level. This is the model developers’ default approach in GIVE, 
and the global nature of the Howard and Sterner (2017) damage module precludes other assumptions. 
However, when using the DSCIM damage module, a conceptually similar approach is applied but, 
following the model developers’ default approach, a different assumption on risk pooling is applied. 
Specifically, when the DSCIM damage module is used, it is assumed that risks associated with uncertainty 
in the climate response and future socioeconomic conditions can be pooled globally, but damage function 
risks (conditional on a given level of climate change and RFF-SP socioeconomic realization) are pooled at 
the damage function’s impact region level. All else equal, assuming that risk can be pooled across broader 
geographic areas reduces the value of risk reductions within the SC-GHG estimates.  
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3 Modeling Results 

3.1 Social Cost of Carbon (SC-CO2), Methane (SC-CH4), and Nitrous Oxide (SC-N2O) 
Estimates by Damage Module  

This section presents the SC-GHG values estimated using the methodological updates described in Section 
2. The combination of using three specifications of the damage module over the modeling time horizon115 
and three near-term target discount rates produces nine separate distributions of SC-GHG estimates for 
each emissions year and GHG. Each distribution consists of 10,000 estimates based on draws from the 
distributions of uncertain parameters in each module.116 Given the consideration of multiple lines of 
evidence in the damage module and multiple near-term discount rates, the results are first presented 
separately for each of the three damage modules by discount rate.117 Table 3.1.1, Table 3.1.2, and Table 
3.1.3 show the certainty-equivalent SC-CO2, SC-CH4, and SC-N2O estimates, respectively, in ten-year 
increments for emissions years 2020-2080 by damage module and near-term discount rate.118 As 
expected, estimates based on a higher near-term discount rate are consistently lower, while lower near-
term discount rates result in higher SC-GHG estimates independent of the damage module. There is some 
variation in the SC-GHG estimates across the three damage modules. This is expected given that the 
damage modules are, at least to some extent, measuring different categories of damages and with 
different approaches. The SC-GHG estimates based on the meta-analysis damage module tend to be 
higher than those based on damage modules from the DSCIM or GIVE models for CO2 and N2O. For CH4, 
which has a notably shorter atmospheric lifetime than the other two gases, the SC-GHG estimates based 
on the GIVE damage module tends to have higher estimates. This suggests differences across the models 
as to the damage from climate change in the near-term.  
 
The near-term SC-CO2 estimates reported in Table 3.1.1 are comparable in magnitude to recent published 
SC-CO2 estimates that were developed using non-IAM based approaches.  For example, Pindyck’s (2019) 
recent survey of several hundred experts in climate science and climate economics yielded mean SC-CO2 
estimates around or above $200 per metric ton CO2 for various subsets of his sample of respondents.119 

 
115 As mentioned in Section 1.2, the National Academies recommended that the modeling time horizon “extend far 
enough in the future to provide inputs for estimation of the vast majority of discounted climate damages.” In the 
case of models presented here, the discounted streams of marginal damages in all models and discount rates peak 
by the end of the century (2100) and begin to steadily decline through the end of the modeling time horizon (2300)—
capturing the majority of the quantified discounted damages associated with the emissions of a metric ton of CO2, 
CH4, and N2O. 
116 Monte Carlo methods are used to run the combined suite of modules 10,000 times. In each simulation the 
uncertain parameters are represented by random draws from their defined probability distributions. 
117 Estimates in this report are discounted back to the year of emissions and presented as certainty-equivalent values 
that account for uncertainty in the socioeconomic scenarios. See Appendix A.3 for more information on how those 
transformations were made and Section 4 for how they can be used in analyses. 
118 Values in Table 3.1.1, Table 3.1.2, and Table 3.1.3 are rounded to two significant figures.  
119 Pindyck’s (2019) full sample of respondents yielded mean SC-CO2 estimates above $200/mtCO2, after dropping 
responses where values fell outside the 5th or 95th percentiles. Responses from economists were lower (on average 
$174) while the mean SC-CO2 for other groups was close to $300. To further illustrate the heterogeneity in responses, 
Pindyck (2019) also reported results based on further trimming of responses, e.g., to 10th through 90th percentile 
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Studies using other types of survey techniques have found similar ranges of SC-CO2 estimates. For 
example, based on the results of a vehicle choice experiment, Hulshof and Mulder (2020) derived a mean 
willingness-to-pay estimate for CO2 emission reduction of $236 per metric ton CO2.120 An earlier vehicle 
choice survey by Achtnicht (2012), using a different population and a somewhat different method to 
translate the WTP for clean cars into WTP for emission reductions, found car buyers to be willing to pay 
between $130 and $372 per metric ton of CO2 reduced.121 
 
For all damage modules, the SC-GHG estimates increase over time – i.e., the societal harm in 2030 from 
one metric ton emitted in 2030 is greater than the harm in 2020 caused by one metric ton emitted in 
2020. Emissions further in the future produce larger incremental damages as physical and economic 
systems become more stressed in response to greater climatic change and because income is growing 
over time. As income grows so does the willingness to pay to avoid economic damages. The growth rate 
of the SC-GHG is generally larger in the case of the DSCIM climate module than the other damage modules. 
In the case of longer-lived CO2 and N2O emissions, this can lead the SC-GHG estimates based on the DSCIM 
damage module to eventually exceed those based on one or both of the other damage modules. This is 
reflective of the marginal damages in the DSCIM damage module being more sensitive to baseline climate 
change than in the other damage modules (see Figure 2.3.2).   
 
Table 3.1.1: Social Cost of Carbon (SC-CO2) by Damage Module, 2020-2080 (in 2020 dollars per metric ton 
of CO2) 

 Near-Term Ramsey Discount Rate and Damage Module 

 2.5% 2.0% 1.5% 
Emission 

Year DSCIM GIVE Meta-
Analysis  DSCIM GIVE Meta-

Analysis  DSCIM GIVE Meta-
Analysis  

2020 110 120 120 190 190 200 330 310 370 

2030 140 150 150 230 220 240 390 350 420 

2040 170 170 170 280 250 270 440 390 460 

2050 210 200 200 330 290 310 500 430 520 

2060 250 220 230 370 310 350 550 470 570 

2070 280 240 250 410 340 380 600 490 610 

2080 320 260 280 450 360 410 640 510 650 

 

 
values (which reduces mean SC-CO2 estimates to $147-243/mtCO2), or to the experts who reported high confidence 
in their impact probabilities (which reduced mean SC-CO2 estimates to $108-138/mtCO2). 
120 We convert the results reported in Hulshof and Mulder (2020) to U.S. dollars using December 2017 exchange 
rates (1.1836 USD/Euro (https://www.federalreserve.gov/datadownload/Choose.aspx?rel=H10)), the month the 
survey was administered. 
121 We convert the results reported in Achtnicht (2012) to U.S. dollars using the average exchange rate during the 
time period when the survey was administered, August 2007 through March 2008 (1.4502 USD/Euro 
(https://www.federalreserve.gov/datadownload/Choose.aspx?rel=H10)). 

https://www.federalreserve.gov/datadownload/Choose.aspx?rel=H10
https://www.federalreserve.gov/datadownload/Choose.aspx?rel=H10
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Table 3.1.2: Social Cost of Methane (SC-CH4) by Damage Module, 2020-2080 (in 2020 dollars per metric 
ton of CH4) 

 Near-Term Ramsey Discount Rate and Damage Module 

 2.5% 2.0% 1.5% 
Emission 

Year DSCIM GIVE Meta-
Analysis  DSCIM GIVE Meta-

Analysis  DSCIM GIVE Meta-
Analysis  

2020 470 1,600 1,700 850 1,900 2,200 1,500 2,500 2,900 

2030 1,100 2,300 2,300 1,600 2,800 2,800 2,400 3,500 3,700 

2040 1,900 3,300 2,900 2,500 3,800 3,500 3,300 4,700 4,500 

2050 2,700 4,200 3,700 3,400 4,900 4,400 4,300 5,900 5,600 

2060 3,500 5,000 4,400 4,200 5,800 5,300 5,200 7,000 6,700 

2070 4,200 5,700 5,100 5,100 6,600 6,200 6,100 7,900 7,800 

2080 5,100 6,300 5,900 6,000 7,300 7,100 7,100 8,800 8,900 

 
Table 3.1.3: Social Cost of Nitrous Oxide (SC-N2O) by Damage Module, 2020-2080 (in 2020 dollars per 
metric ton of N2O) 

 Near-Term Ramsey Discount Rate and Damage Module 

 2.5% 2.0% 1.5% 
Emission 

Year DSCIM GIVE Meta-
Analysis  DSCIM GIVE Meta-

Analysis  DSCIM GIVE Meta-
Analysis  

2020 30,000 38,000 38,000 49,000 55,000 58,000 81,000 85,000 96,000 

2030 40,000 47,000 46,000 63,000 67,000 69,000 98,000 100,000 110,000 

2040 52,000 57,000 55,000 77,000 78,000 81,000 120,000 110,000 130,000 

2050 64,000 67,000 66,000 93,000 91,000 95,000 140,000 130,000 150,000 

2060 77,000 75,000 76,000 110,000 100,000 110,000 150,000 140,000 160,000 

2070 89,000 82,000 84,000 120,000 110,000 120,000 170,000 150,000 180,000 

2080 100,000 89,000 94,000 140,000 120,000 130,000 190,000 160,000 200,000 

 

For a given near-term target discount rate, the certainty-equivalent SC-GHG estimate is the value applied 
to GHG emission changes in benefit-cost analysis (see Section 2.5 for a definition of the SC-GHG). These 
certainty-equivalents are calculated over a distribution of SC-GHG estimates reflecting the full range of 
quantified uncertainties incorporated into the modeling (see Section 2 for a description of the quantified 
uncertainty in each module). Figure 3.1.1 shows the full distribution of SC-GHG estimates for emissions in 
2030, where the boxes span the inner quartile range (25th to 75th quantile), whiskers extend to the 5th 
(left) and the 95th (right) quantiles. The vertical lines inside of the boxes mark the median of each 
distribution, and the points inside of the boxes and dollar estimates on top of the boxes mark the simple 
mean (average). In these distributions, the uncertainty that is explicitly characterized includes the 
socioeconomics and emissions projections from the RFF-SPs and the GHG concentrations and 
temperature changes generated from the FaIR model. Explicit characterization in these distributions of 
uncertain parameters in the modeling of SLR and the parametric uncertainty captured in the estimation 
of each damage function varies across the three damage modules. 
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It is important to note that the distributions presented here do not fully characterize uncertainty about 
the SC-GHG due to impact categories omitted from the models and sources of uncertainty that have not 
been fully characterized due to data limitations. These limitations are discussed in Section 3.2 below. 

Uncertainty grows over the modeled time horizon. Therefore, under cases with a lower near-term target 
discount rate – that give relatively more weight to impacts in the future – the distribution of the SC-GHG 
is wider (see Figure 3.1.1). Across damage modules, the DSCIM based runs generate the widest 
distribution of results. The DSCIM damage module has a greater degree of curvature in the damage 
function mapping temperature to economic damages than the GIVE and H&S specifications (see Figure 
2.3.2). The interquartile ranges overlap across the three damage modules.  

Figure 3.1.1: Distribution of Social Cost of Carbon Dioxide (SC-CO2) Estimates for 2030, by Near-term 
Ramsey Discount Rate and Damage Module 

 

Boxes span the inner quartile range (25th to 75th percentiles), whiskers extend to the 5th (left) and the 95th (right) percentiles. The 
vertical lines inside of the boxes mark the median of each distribution, and the points inside of the boxes and dollar estimates on 
top of the boxes mark the simple mean (average). 
 

Table 3.1.4 provides a disaggregation of the SC-CO2 results by sector or impact category for emissions in 
2030 under the GIVE and DSCIM based damage modules – alongside the meta-analysis-based damage 
module that does not permit a sectoral disaggregation. The GIVE and DSCIM damage modules are 
consistent in that net mortality risk increases are the largest share of marginal damages across the sectors 
considered in each damage module. However, the share of marginal damages due to net mortality risk 
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increases is larger for the DSCIM damage module compared to the GIVE damage module. Variation across 
the two damage modules for the other sectors reflects uncertainty in the underlying scientific literature 
and differences in the sectors included in the models (e.g., labor productivity). See Section 2 for detailed 
descriptions of the methodological differences across models. The differences in results are the aggregate 
effect of these different methodologies. 

Table 3.1.4: Sectoral Disaggregation of Social Cost of Carbon (SC-CO2) for 2030 under a 2.0% Near-Term 
Ramsey Discount Rate (in 2020 dollars per metric ton of CO2) 

  Damage Module  
Damage sector or category DSCIM GIVE Meta-Analysis 
Health $179 $104 - 
Energy -$4 $10 - 
Labor productivity $47 - - 
Agriculture $4 $103 - 
Coastal $3 $2 - 
Total $233 $219 $238 

 

3.2 Omitted Damages and Other Modeling Limitations 

The research community’s considerable progress in developing new data and methods have helped to 
bring the SC-GHG estimates presented in Section 3.1 closer to the frontier of climate science and 
economics and address many of the National Academies’ (2017) near-term recommendations. However, 
the SC-GHG estimates presented in this report still have several limitations, as would be expected for any 
modeling exercise that covers such a broad scope of scientific and economic issues across a complex global 
landscape. There are still many important categories of climate impacts and associated damages that are 
not yet reflected in these estimates due to data and modeling limitations. There is also incomplete 
coverage of some categories that are represented, including important sectoral and regional interactions. 

Table 3.2.1 below highlights some of these limitations. For important categories within climate science, 
impacts and associated damages, and methodology, the table denotes those that the SC-GHG estimates 
in this report have been able to incorporate, those only partially incorporated, and those that are not yet 
included. For example, the damage modules currently focus on climate change damages driven by 
changes in annual average temperatures or sea level rise. The damage modules have not yet explicitly 
incorporated damages associated with other changes in the temperature distribution such as variability 
and changes in the probability of extreme temperatures throughout the year. Nor have the damage 
modules explicitly considered damages associated with changes in precipitation or humidity due to 
climate change.  

The climate module considered in this report omits some potentially large-scale Earth system changes 
(e.g., from tipping elements) or non-climate mediated effects of GHG emissions (e.g., ocean acidification, 
tropospheric ozone formation due to CH4 emissions). Climate change impacts described as resulting from 
tipping elements are often associated with crossing a threshold in an Earth system, or ‘tipping point’, after 
which a relatively small perturbation in radiative forcing results in a large, often irreversible change in the 
climate or other Earth systems (see, e.g., Kopits et al. (2014) for a review of this literature). A few of these 
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processes (e.g., Arctic Sea ice loss and surface albedo feedback, slowdown of the Atlantic Meridional 
Overturning Circulation (AMOC)) are captured in the underlying CMIP6 models in which FaIR v1.6.2 was 
calibrated to and are thus implicitly reflected in the climate module used in this report (Weijer et al. 2020). 
For other processes – such as Amazon Forest dieback, melting of permafrost, changes in the Indian 
summer monsoon (ISM) – it is less certain how well their behavior is captured in CMIP6 models or whether 
they are implicitly included in FaIR1.6.2 (see, e.g., Arora et al. 2020, IPCC 2021d). Lastly, methane hydrates, 
Greenland (GIS) and Antarctic icesheet (AIS) collapse are not included at all within FaIR. However, GIS and 
AIS are simulated within the sea-level models used in this report.  

Recent studies have started to make progress on incorporating more of the tipping elements discussed 
above in the estimation of SC-GHG. In particular, Dietz et al. (2021) developed a response function that 
maps increases in global mean surface temperature (GMST) to additional warming that is realized through 
feedbacks in the underlying biophysical systems such as permafrost thaw, ocean methane hydrates, 
Amazon rainforest dieback, GIS and AIS collapse, the AMOC slowdown, and ISM variability. This allows for 
an improved, more explicit accounting of the temperature-driven damages resulting from these types of 
large-scale feedback effects within SC-GHG estimation. The EPA will continue to follow progress in this 
line of research and look for opportunities to better reflect tipping elements and other Earth system 
changes and to account for non-climate mediated GHG effects in future updates of the SC-GHG estimates.  
Additional discussion of these is provided in Section 3.2.1 below. 

The bottom-up damage modules from the DSCIM and GIVE models provide a transparent accounting of 
which climate change damages are incorporated into the modules, as discussed in Section 2.3.122 While 
the advancements in these newer damage modules is laudable, it is clear that many categories of climate 
change damages are not yet represented. Examples include changes in the demand for water resources, 
the costs and feasibility of providing safe drinking water, changes in ecosystem services, and the 
productivity of the livestock, aquaculture, and forestry industries just to name few. 

For those damage categories that are represented, they may only be a partial accounting. For example, 
the estimated health damages in GIVE and DSCIM only include temperature- and SLR-related mortality, 
and exclude other sources of mortality impacts (e.g., climate mediated changes in storms, wildfire, 
flooding, air pollution), and morbidity impacts (e.g., infectious diseases, malnutrition, allergies). Studies 
are available on how climate-relate changes impact infectious diseases (Levy et al. 2016, Trinanes et al. 
2021, Colón-González et al. 2021, Ryan et al. 2019, Ryan et al. 2015, Mordecai et al. 2020) but additional 
work in needed to both model metrological conditions (e.g., humidity, precipitation patterns, length of 
transmission seasons, and daily temperature ranges) under climate change and link these to infectious 
disease damage functions (Cromar et al. 2022). Importantly, none of the damage modules incorporate 
cross-country or regional spillovers that occur through migration, national security concerns, tourism, or 
supply chain disruptions. The physical and economic pathways that drive many of these omitted or 
partially included categories are well documented in key scientific assessments, such as those developed 

 
122 For the GIVE model, Rennert et al. (2022b) illustrate the impact that the updated damage functions have on the 
SC-CO2 estimates relative to damages functions used in earlier studies. The authors find the SC-CO2 estimate is 
notably larger when using GIVE’s updated four-sector damage function ($185/mtCO2 in 2020 under 2% Ramsey 
discounting compared to using the aggregate top-down damage function approach used in the latest version of the 
DICE model (DICE 2016) ($152/mtCO2 in 2020), which was stated to be more comprehensive in scope and included 
a 25% adder for omitted impacts (holding all else equal in the modeling).   
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by the IPCC (e.g., IPCC 2008, 2014a, 2018, 2019a, 2019b, 2021a) and the U.S. Global Change Research 
Program (e.g., USGCRP 2016, 2018a). However, key data and research gaps currently prevent 
incorporating these damage categories into global damage modules for the purpose of estimating the SC-
GHG. 

While the SC-GHG estimates presented in this report provide numerous methodological improvements 
over the previous estimates, as detailed in Section 2, there are opportunities for future improvements. 
For example, none of the damage modules explicitly consider potential interactions among damage 
categories. For example, the modules do not account for how climate change-mediated impacts to water 
supply will interact with climate-mediated changes in the demand for water resources by the agricultural 
and electric power sectors that may be in competition in similar water markets.  

Equally important to note among the methodological limitations is the valuation of risk aversion in the 
updated SC-GHG estimates. As noted in Section 2.5, the SC-GHG estimates provide an improved 
accounting of risk aversion over the estimates used in the EPA’s analyses to date. However, the approach 
relies on an isoelastic utility function in which a single parameter has a role in reflecting both 
intertemporal and risk preferences. In this report, the utility function parameter is calibrated based on its 
role representing intertemporal preferences leading to lower values than would be expected if it was 
calibrated based on its role representing risk preferences. As a result, the SC-GHG estimates likely 
underestimate the damages associated with increased climate risk resulting from a marginal ton of 
emissions, all else equal.  As noted in Section 2.5, to address this calibration challenge, some recent SC-
GHG studies have used alternative utility function specifications (e.g., Epstein-Zin specifications) that 
allow for the separation of intertemporal and risk preferences (Cai et al. 2016, Daniel et al. 2019, Cai and 
Lontzek 2019, Okullo 2020, Lemoine 2021, Van den Bremer and Van der Ploeg 2021). 

Although not all omitted climate change impacts work in the same direction in terms of their influence on 
the SC-GHG estimates, taken together, the numerous omitted damage categories, modeling assumptions 
that go in the direction of being conservative, and other limitations discussed above and throughout 
Section 2, make it likely that the SC-GHG estimates presented in this report underestimate the damages 
from GHG emissions. For example, first, as discussed above, many categories of damages are only partially 
modeled or omitted altogether in the DSCIM- and GIVE-based damage modules. Second, many 
interactions and feedback effects are not yet represented, both in modeling physical earth system changes 
(e.g., feedback effects of tipping elements) and economic damages. For the GIVE model-based results, 
Rennert et al. (2022b) “expect that, in total, the future inclusion of additional damage sectors and tipping 
elements is likely to raise the estimates of the SC-CO2, and that therefore the estimates from the present 
study are likely best viewed as conservative.” Third, as noted in Section 2.3, data limitations have been 
pointed out as a likely cause of the estimated response function in DSCIM to be generating conservative 
predictions of mortality risk increases in some low income regions. Fourth, under the meta-analysis-based 
damage module, the results are based on a Howard and Sterner (2017) specification to which those 
authors and other researchers (e.g., Nordhaus and Sztorc 2013, Nordhaus 2017b) have routinely added a 
generic 25% increase in recognition of omitted damages that are likely significant. Fifth, coastal damages 
in both GIVE and DSCIM are estimated based on an optimistic assumption that optimal, lowest cost 
adaptation opportunities will be realized globally under perfect foresight about SLR. Finally, the method 
employed to account for risk aversion likely underestimates the damages associated with increased 
climate risk resulting from a marginal ton of emissions.   
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Table 3.2.1: Scope of Climate Science, Impacts, and Damages Included in the Updated SC-GHG Estimates123 
Climate Science  Impacts and Associated Damages  
Temperature change   Human Health and Well-being  

Averages  Heat and cold related mortality  

Extremes  
Mortality and morbidity from extreme weather events (e.g., 
storms, wildfire, flooding), and sea level rise  

Variability  
Mortality and morbidity from climate mediated changes in the 
formation of criteria air pollutants (e.g., ozone, PM2.5)  

Sea level rise   Infectious diseases  
From average temperature change  Other morbidity (e.g., malnutrition, allergies)   
Non-linear effects (e.g., ice-sheet collapse)  Displacement and migration  

Precipitation   Labor  
Averages  Labor supply (i.e., hours worked)  
Extremes  Labor productivity (i.e., output per hour worked)  
Variability  Energy  

Humidity – wet-bulb temperature  Energy consumption (e.g., heating, cooling)   
Large scale Earth system changes (tipping elements, 
etc.)  

Energy production and provision (e.g., hydroelectric, thermal 
power generation)   

Additional changes in temperature  Water  
Sea level rise  Water consumption (residential, industrial, commercial)  
Precipitation  Provision of safe drinking water  
Extreme weather events  Water storage and distribution  
Ecosystems  Land  
Other impacts  Coastal land loss from sea level rise  

Non-climate mediated effects (e.g.)   Buildings, transportation, and infrastructure  
Carbon fertilization (CO2)  Sea level rise  
Ocean acidification (CO2)  Intensity or frequency of coastal storms  
Tropospheric ozone formation (CH4)  Extreme weather inland (e.g., storms, wildfire, flooding)   

Stratospheric ozone destruction (N2O)  
Environmental conditions (e.g., melting permafrost, air 
temperature and moisture)   

  Food production  
Methodology  Agriculture/Crop production  
Explicit treatment of uncertainty  Animal and livestock health and productivity  
Accounting for adaptation and costs of adaptation  Fisheries and aquaculture production  
Interactions/feedbacks across sectors  Forestry  
Feedbacks from damages to socioeconomics and 
emissions  Timber, pulp, and paper production  

Valuation of risk  Tourism, recreation, aesthetics  
  Visitation, locations, and opportunities (e.g., recreational fishing, 

skiing, scuba diving, scenic views)  

  Ecosystem services  
  Availability and quality of natural capital used in the production of 

marketable goods  

  Biodiversity and wildlife habitat (e.g., aquatic environments, 
breeding grounds)   

 
 

Other provisioning and regulating services (e.g., water filtration, 
wildfire and flood mitigation, medicinal resources, pest control, 
pollination) 

 

  Cultural services  
 Legend   Crime (property, violent)   
  Incorporated   National Security  
  Partially Incorporated   Military base impacts  
  Not Yet Incorporated   Military mission impacts from international civil conflict  
  International development, humanitarian assistance    
  Trade and logistics  

 
123 Table 3.2.1 presents a general indication of the climate science, impacts, and damages included across the three 
damage modules used in this analysis and may not be reflective of any one specific damage module. 
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  Supply chain disruption (e.g., from extreme weather)  
  Supply chain transitions (e.g., altering trade routes)  

 

One way to illuminate the potential magnitude of some omitted damage categories is to consider the 
current spatial distribution of global population and climate indicators. Figure 3.2.1 shows that a 
substantial portion of the world’s population lives in latitudes that are projected to experience some of 
the highest temperatures. And although not explicitly captured in the figure, within each country most 

these populations are located near the 
coasts in areas expected to experience 
significant sea level rise. The spatial 
correlations that exist between 
population centers and known damage 
pathways highlight how temperature- 
and SLR-related damages will impact a 
significant share of the world’s 
population. This further underlines the 
significance of impacts not currently 
reflected in the estimates, such as 
geopolitical and regional tensions, 
conflict, scarcity, displacement, and 
migration, all of which are issues that 
affect an interconnected global 
economy. 

3.2.1 Further Discussion of Ocean 
Acidification and Other Non-
Climate Mediated Impacts of GHG 
Emissions 

SC-GHG estimation to date has 
primarily focused on the climate-
mediated effects: e.g., the pathway 
from emissions, to concentration, to 
radiative forcing, to temperature, to 
climate change, and to economic 
damages. However, there are other 
impacts of GHG emissions. The only 
non-climate-mediated effect included 
in SC-GHG estimates to date and those 
in this report is the crop fertilization 
effects resulting from elevated CO2 
concentrations.  

Figure 3.2.1: Population, Temperature, and Sea Level Rise in 2100 
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However, there are several other potentially important non-climate mediated GHG effects. These include, 
for example, the ecosystem effects of ocean acidification and aragonite undersaturation resulting from 
elevated concentrations of CO2, the health and agricultural impacts of tropospheric ozone generated 
through chemical conversion of methane in the atmosphere, and the health effects of stratospheric ozone 
destruction resulting from elevated concentrations of N2O. Several studies have investigated these effects 
and are discussed here. 

Ocean acidification from carbon dioxide (CO2) concentrations. In addition to its effects on temperature 
and other climate endpoints, CO2 emissions contribute to ocean acidification, which will likely result in 
substantial changes to marine ecosystems. The ocean absorbs about 30 percent of the CO2 released into 
the atmosphere. Higher atmospheric levels of CO2 cause the ocean to absorb more, which affects the 
carbonate chemistry of seawater. Water and carbon dioxide combine to form carbonic acid, contributing 
to ocean acidification (i.e., the pH decreases and the ocean becomes more acidic). As noted in Section 2.2, 
the FaIR reduced complexity climate model calculates carbon dioxide uptake in the world’s ocean as part 
of its carbon cycle calculation and provides projections of pH and ocean heat uptake. Specifically, the 
model estimates the changes in pH with a simple function to approximate globally averaged surface ocean 
pH from atmospheric CO2 concentrations (National Academies 2017) and accounts for uncertainty in the 
atmospheric CO2 concentrations. Figure 3.2.2 depicts the range of ocean pH and ocean heat that is 
predicted by the coupling of the RFF-SPs with FaIR1.6.2. Under these projections, mean ocean pH is 
expected to decrease by 0.11 pH units by 2100 relative to 2020. 

Figure 3.2.2: Global Ocean pH and Ocean Heat, 2020-2300 

Uncertainty is represented by the emissions uncertainty from the RFF-SP projections and physical climate uncertainty from 
FaIR1.6.2. Mean (solid) and median (dashed) lines along with 5th to 95th (dark shade) and 1st to 99th (light shade) percentile ranges. 

 

One of the impacts of ocean acidification is a reduction in the concentration of carbonate ions available 
to calcifying marine organisms to build and maintain skeletons, shells, and other carbonate structures. 
Among the affected organisms are mollusks, bivalves, reef building corals, and microorganisms at the base 
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of the marine food web. Commercially valuable shellfish including oysters, clams, and abalone exhibit 
reduced growth and survival rates under conditions expected by mid-century (Ries et al. 2009).  The 
synergistic effects of marine heatwaves and acidification on coral reefs will inhibit corals’ ability to recover 
from increasingly frequent bleaching events (Klein et al. 2022). The scale of follow-on effects of ocean 
acidification on marine ecosystems (including fisheries) resulting from a reduced availability of habitat 
and prey is much more uncertain and difficult to quantify.  

Studies estimating the economic impacts of ocean acidification necessarily focus on those for which the 
biophysical outcomes are best understood. Several studies forecast producer and consumer welfare 
losses in commercial shellfish markets in the US (Cooley and Doney 2009, Cooley et al. 2015, Moore 2015), 
in Europe (Fernandes et al. 2017, Narita and Rehdanz 2017), and globally (Narita et al. 2012).  Some of the 
largest forecasted welfare impacts of ocean acidification arise from the recreational and existence value 
of coral reefs (Brander et al. 2012, Lane et al. 2013) while other studies include the impacts of lost coral 
reef habitat on finfish (Colt and Knapp 2016, Kite-Powell 2009, Speers et al. 2016).The impacts of ocean 
acidification are not included in the damage modules used in this report because work remains to upscale 
existing regional studies to capture global economic impacts. Among the challenges is accounting for 
synergistic effects between temperature and seawater chemistry and how the ecological impacts differ 
across economically important species. With the current understanding of pH and temperature effects on 
growth and survival of shellfish and corals, and existing market and nonmarket valuation data for the 
ecosystem services they provide, we expect that it will be feasible to develop damage functions for some 
ocean acidification impacts in future SC-GHG updates.   

Tropospheric ozone formation from methane (CH4) emissions. In addition to its climate effects, methane 
oxidation in the atmosphere leads to the production of tropospheric ozone, which has harmful effects for 
human health and plant growth (USGCRP 2018c). Due to methane’s atmospheric perturbation lifetime of 
about 12 years (IPCC 2021e), methane is well-mixed globally and therefore the effects on ozone are also 
global (in contrast to regional ozone effects from NOx and VOC emissions). Studies have estimated that 
half of the increase in global annual mean ozone concentrations since preindustrial times is due to 
anthropogenic methane emissions (IPCC 2013).  

One study estimated the monetized increase in human mortality risk from the ozone produced due to 
methane emissions to be $800 to $1800 per ton of methane emissions (Sarofim et al. 2017), using a 
methodology similar to that of the IWG SC-GHG estimates at the time the paper was written. A more 
recent study estimated that sustained reductions of a million tons of methane emissions per year could 
prevent about 1,430 premature deaths annually, along with preventing the loss of 145,000 tons of wheat, 
soybeans, maize and rice (UNEP 2021). The UNEP results are larger than the Sarofim et al. (2017) estimate 
of 239 to 591 premature deaths avoided due to the mitigation of a million tons of methane. UNEP used 
an improved methodology to estimate the ozone changes resulting from methane mitigation, but also 
used an estimate of the cardiovascular mortality risk due to elevated ozone concentrations that may be 
larger than estimates used by the EPA (EPA 2020).  

Stratospheric ozone destruction from nitrous oxide (N2O) emissions. In addition to its climate effects, N2O 
has impacts on stratospheric ozone. When N2O is in the stratosphere, high-energy photons break it apart 
resulting in the production of nitric oxide (NO). Like the chlorine atoms from CFCs, NO can catalytically 
destroy ozone. Because of this reaction, it has become clear that as CFC emissions are eliminated, N2O 
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emissions have become the largest anthropogenic contributor to the destruction of stratospheric ozone 
(Ravishankara et al. 2009, Portmann et al. 2012, WMO 2018). A recent article (Kanter et al. 2021) 
estimated the monetized impacts of the stratospheric ozone loss due to N2O emissions on human health 
and crop damages as $2,000 per ton N2O (2020 dollars)124, or over 11% of the value of the SC-N2O estimate 
for 2020 emissions in the IWG February 2021 TSD.  

Other effects. As discussed in Section 2, the SC-GHG estimates presented in this report include the 
monetized value of carbon dioxide fertilization effects on agriculture. There may be additional benefits of 
carbon dioxide fertilization for ecosystems. However, elevated CO2 concentrations can also lead to 
reductions in the nutrient content (such as protein, iron, and zinc) of some crops, with potential negative 
effects on diets (Beach et al. 2019). Elevated CO2 concentrations can also change the production and 
allergenicity of aeroallergens (Ziska, 2020). These additional impacts have not been monetized.  

One approach for accounting for non-climate mediated GHG effects in SC-GHG estimates would be to use 
the estimates of the dollar impacts of a ton of emissions of a given gas from existing studies and add those 
impacts to the appropriate social cost. Another approach would be to estimate the monetized damages 
within the existing SC-GHG modeling framework. For example, as recommended in Kanter et al. (2021), 
this might involve estimating the change in stratospheric ozone concentrations over time resulting from 
an additional ton of N2O emissions, and then calculating the increase in the risk of health effects resulting 
from the increased ozone concentration (e.g., skin cancer morbidity and mortality). The health effects can 
then be valued within the framework in the same way that mortality resulting from extreme heat events 
or other climate effects is valued.  

3.3 Distribution of Modeled Climate Impacts  

As discussed in detail in Section 1, benefit-cost analysis of Federal regulations and other actions include 
the global net damages from expected changes in GHG emissions. The distinctive global nature of GHG 
emissions combined with an increasingly interconnected world means that climate change impacts 
occurring on one side of the world can directly and indirectly affect the welfare of citizens and residents 
of a country located on the other side of the world through a multitude of pathways. As the prominent 
2014 CNA study concluded, the increasing political complexity and economic integration across the world 
makes it “no longer adequate to think of the projected climate impacts to any one region of the world in 
isolation. Climate change impacts transcend international borders and geographic areas of responsibility” 
(CNA 2014). 

However, there is heterogeneity in the distribution of climate change damages across the globe and within 
the U.S. The SC-GHG by design, and consistent with the economic theory and methods for benefit-cost 
analysis, is an aggregation across individuals of their willingness to pay to avoid the marginal damages of 
climate change. As such the SC-GHG is not designed to assess the important distributional considerations 

 
124 Kanter et al. (2021) estimate a median value of US$2.66 per kg N2O–N (in 2008 dollars) for the ozone impacts of 
N2O emissions. We convert this estimate to $/ton N2O using the N2O-N to N2O factor of 1.57 and adjust for inflation 
to 2020 dollars using the annual GDP Implicit Price Deflator values in the U.S. Bureau of Economic Analysis (BEA) 
NIPA Table 1.1.9 (specifically, using 2020USD = 2008USD x (113.648 / 94.419, accessed February 7th, 2022). See 
https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=3&isuri=1&select_all_years=0&nipa_table_list=13&series
=a&first_year=2005&last_year=2020&scale=-99&categories=survey&thetable= . 

https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=3&isuri=1&select_all_years=0&nipa_table_list=13&series=a&first_year=2005&last_year=2020&scale=-99&categories=survey&thetable=
https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=3&isuri=1&select_all_years=0&nipa_table_list=13&series=a&first_year=2005&last_year=2020&scale=-99&categories=survey&thetable=
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of climate change damages.125 Therefore, it is important for the results of analyses using the SC-GHG to 
be placed in context with respect to how the impacts of climate change are expected to be distributed 
across populations. This section presents the available evidence on the distribution of climate change 
impacts based on the results from the SC-GHG modeling above. 

The spatial distribution of climate impacts is the result of complex physical and economic dynamics 
interacting with the existing heterogeneity in physical and socioeconomic conditions. As discussed at 
length in Section 2.3 and emphasized in Section 3.2, the damage modules used in this report do not 
capture all of the pathways through which climate change impacts public health and welfare and hence 
only cover a subset of potential climate change impacts. Furthermore, the damage modules do not 
capture spillover or indirect effects whereby climate impacts in one country or region can impact the 
welfare of residents in other countries or regions, as detailed in Section 1.3.  Only two modules, the DSCIM 
and GIVE damage modules, have spatial resolution that allows for any geographic disaggregation of future 
climate impacts across the world.  Hence, the results from the SC-GHG modeling in this report are only 
able to provide partial evidence of the global distribution of climate change impacts. Conditional on these 
critical caveats, the spatial resolution in both models does allow for the calculation of a partial SC-GHG 
measure of damages resulting from climate impacts physically occurring within a particular country. For 
example, the DSCIM damage module, which includes net impacts on temperature-related mortality, 
agriculture, energy expenditures, labor productivity, and sea level rise, estimates damages from climate 
change impacts physically occurring within the U.S. of $11/mtCO2 for a 2020 emissions year, rising to 
$27/mtCO2 for a 2080 emissions year (under a near-term target discount rate of 2%).126 The GIVE damage 
module, which includes net impacts on temperature related mortality, agriculture, energy expenditures, 
and sea level rise, estimates damages from climate change impacts physically occurring within the U.S. of 
$14/mtCO2 for 2020 CO2 emissions, rising to $24/mtCO2 for 2080 CO2 emissions (under a near-term target 
discount rate of 2%).127 These estimates are not equivalent to an estimate of the benefits of GHG 
mitigation accruing to U.S. citizens and residents even for the 4-5 damage categories included in GIVE and 
DSCIM. First, due to technical modeling limitations these estimates do not include damages from physical 
impacts occurring in all U.S. territories. For example, damages occurring in Guam, a U.S. territory which is 
already being affected by climate change, are not captured in these estimates. As highlighted in a recent 
DoD report, “[a]t Naval Base Guam, recurrent flooding limits capacity for a number of operations and 
activities including Navy Expeditionary Forces Command Pacific, submarine squadrons, 
telecommunications, and a number of other specific tasks supporting mission execution” (DoD 2019). 
Second, for the reasons discussed in Section 1, these estimates exclude the myriad of pathways through 
which global climate impacts directly and indirectly impact the interests of U.S. citizens and residents. For 
example, climate change is likely to worsen public health, change migration patterns, and disrupt aspects 
of the global supply chain. Changing economic and health conditions across countries will impact U.S. 

 
125 Some analysts (e.g., Azar and Sterner 1996, Anthoff et al. 2009, Anthoff and Emmerling 2019) employ “equity 
weighting” to incorporate distributional equity objectives into estimates of the SC-GHG. As noted by Anthoff and 
Emmerling (2019), “[e]xisting equity weighting studies assume a social welfare function (SWF) that exhibits 
inequality aversion over per capita consumption levels.”    
126 The analogous DSCIM results for 2020 emissions of CH4 and N2O (under a near-term Ramsey discount rate of 2%) 
are $22/mtCH4 and $2,900/mtN2O, rising to $382/mtCH4 and $8,500/mtN2O by 2080. 
127 The analogous GIVE results for 2020 emissions of CH4 and N2O (under a near-term Ramsey discount rate of 2%) 
are $223/mtCH4 and $4,400/mtN2O, rising to $534/mtCH4 and $7,900/mtN2O by 2080. 
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business, investments, and travel abroad. In addition to the economic consequences, unrest and political 
instability in foreign countries are expected to have national security ramifications for the U.S. (DoD 2021). 
Empirical estimates of some international spillover impacts have started to appear in the academic 
literature. For example, as noted in IPCC (2022), “Schenker (2013) estimated that the climate impacts on 
trade from developing to developed countries could be responsible for 16.4% of the total expected cost 
of climate change in the US in 2100.”For these reasons, and those discussed in Section 1, such estimates 
of damages from climate change impacts physically occurring within the U.S. do not provide a robust 
estimate of damages to U.S. populations. 

These GIVE and DSCIM estimates of damages physically occurring within the U.S. are subject to the 
broader set of limitations discussed in Section 3.2, including the omission of important damage categories. 
Additional modeling efforts can shed further light on some of these categories. For example, the 
Framework for Evaluating Damages and Impacts (FrEDI) is a modeling framework developed by the EPA 
to facilitate the characterization of net climate change impacts in numerous sectors within the contiguous 
U.S. and monetize the associated net damages (EPA 2021d, Sarofim et al. 2021b). FrEDI includes 20 
sectoral impact categories, many with multiple adaptation scenarios and sub-impacts, across seven U.S. 
regions.128 FrEDI was originally developed to calculate impacts through the end of the 21st Century.  
Developments are underway to extend the estimates from within FrEDI out to 2300. Results from the 
most recent version of FrEDI that show that damages resulting from climate change impacts within U.S. 
borders and in sectors not represented in GIVE and DSCIM are expected to be substantial. For example, 
under the RFF-SPs and FaIR model outputs used within this report,  FrEDI estimates total net damages 
(undiscounted) across 20 sectors in 2060 to be over $300 billion annually, growing to over $600 billion per 
year by 2090 (2020$).129 Some of the sectors not appearing in DSCIM or GIVE but having large economic 
damages estimated in FrEDI for 2090 include: transportation related damages from hightide flooding 

 
128 The FrEDI model uses estimates of physical and economic impacts of climate change by degree of warming 
developed using existing sectoral impacts models to project impacts and damages resulting from any emission 
scenario. It is designed to synthesize the results of a broad range of peer-reviewed climate change impact and 
damage projections, including those derived from econometric approaches and detailed, processed-based 
simulation models. These include various impacts to human health, coastal and inland property (e.g., from SLR, 
flooding and storms), transportation and other infrastructure, energy demand and supply, water resources, labor, 
and winter recreation. Currently, all impacts in FrEDI are based on changes in temperature or SLR, although the 
relationship between climate and impacts in the underlying models often includes other factors, such as 
precipitation; the framework employ a variety of assumptions regarding adaptive responses to climate impacts. EPA 
(2021d) provides a complete list of endpoints and details regarding the scope and assumptions for each sector. For 
additional description of FrEDI please see www.epa.gov/cira/fredi and www.github.com/USEPA/FrEDI. 
129 Inputs to FrEDI include a time series of global mean temperature from the baseline scenario calculated the mean 
over an ensemble of 10,000 FaIR v1.6.2, U.S. population in each of the 7 National Climate Assessment regions (i.e., 
Northeast, Southeast, Midwest, Northern Great Plains, Southern Great Plains, Southwest, Northwest) and U.S. GDP 
in 2015$ from the RFF-SPs. Regional population was calculated as a percentage of total national population from 
FrEDI. FrEDI provides damage estimates in 2015USD. These were brought to 2020USD for this report using U.S. 
Bureau of Economic Analysis (BEA) Table 1.1.9 (specifically, using 2020USD = 2015USD x (113.648 / 104.691), 
accessed February 7th, 2022). See 
https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=3&isuri=1&select_all_years=0&nipa_table_list=
13&series=a&first_year=2005&last_year=2020&scale=-99&categories=survey&thetable= . 

http://www.epa.gov/cira/fredi
http://www.github.com/USEPA/FrEDI
https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=3&isuri=1&select_all_years=0&nipa_table_list=13&series=a&first_year=2005&last_year=2020&scale=-99&categories=survey&thetable=
https://apps.bea.gov/iTable/iTable.cfm?reqid=19&step=3&isuri=1&select_all_years=0&nipa_table_list=13&series=a&first_year=2005&last_year=2020&scale=-99&categories=survey&thetable=
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($142 billion annually in 2090), premature mortality from climate-driven changes in ozone and PM2.5 ($90 
billion annually in 2090), and property damage from hurricane winds ($28 billion annually in 2090).  

Due to the limitations associated with the DSCIM and GIVE damage modules these models significantly 
underestimate the benefits of GHG mitigation to U.S. citizens and residents. The EPA will continue to 
review developments in the literature, including robust methodologies for estimating the magnitude of 
the various direct and indirect damages to U.S. populations from climate impacts occurring abroad and 
reciprocal international mitigation activities.  

Just as there is heterogeneity in the distribution of climate change damages across the globe, the scope 
and magnitude of climate change impacts is not uniform across the U.S. Although subnational detail on 
the distribution of impacts and associated monetized damages is not available from the SC-GHG modeling 
presented in Section 3.1,130 scientific assessment reports and additional modeling efforts can shed further 
light on the distribution of damages expected to occur within the U.S.  For example, scientific assessment 
reports on climate change produced over the past decade by the U.S. Global Change Research Program 
provide detailed findings as to the distribution of climate changes impacts across the U.S. (e.g., USGCRP 
2016, 2018a). Modeling efforts using a predecessor of DSCIM (e.g., Hsiang et al. 2017) and using the FrEDI 
model provide additional information about how damages are expected to be substantial and distributed 
unevenly across U.S. regions. For example, of the sectors examined in FrEDI in 2021, the largest source of 
modeled damages differed from region to region, with wildfire impacts the largest for the Northwest, air 
quality impacts on the East Coast and the Southwest, temperature-related mortality in the Midwest, wind 
damage in the Southern Plains, and damages to rail infrastructure in the Northern Plains. In addition, a 
growing body of literature is focusing on the disproportionate and unequal risks that climate change is 
projected to have on communities that are least able to anticipate, cope with, and recover from adverse 
impacts. National Academies of Science, Engineering, and Medicine reports provide evidence of how the 
impacts of climate change create potential environmental justice concerns (NRC 2011, National 
Academies 2017). For a recent detailed discussion of climate change impacts in the U.S. and their 
intersection with environmental justice concerns, see the 2021 Climate Change and Social Vulnerability 
report (EPA 2021e). 

4 Using SC-GHG Estimates in Policy Analysis 

This section discusses how the SC-GHG results presented in Section 3.1 can be used in the EPA analysis of 
policies that affect GHG emissions. Section 4.1 presents a combination of the multiple lines of evidence 
on damages into a manageable number of values for policy analysis. Section 4.2 describes how the SC-
GHG values are applied to a stream of estimated emissions changes in an analysis.  

 
130 The GIVE damage module is only resolved at the country level, such that subnational detail on the distribution of 
impacts is not available. The DSCIM damage module is resolved at a spatial resolution resembling counties, though 
that level of detail is unavailable for the model results based on the probabilistic socioeconomic scenarios used in 
this report. 



EXTERNAL REVIEW DRAFT 

81 
 
 

4.1 Combining Lines of Evidence on Damages 

The SC-GHG estimation process in this report produces nine separate estimates of the SC-CO2, SC-CH4, 
and SC-N2O for a given year, the product of three damage modules and three discount rates. To produce 
a range of estimates that reflects the uncertainty in the estimation exercise while providing a manageable 
number of estimates to incorporate into policy analysis, the multiple lines of evidence on damage modules 
can be combined by averaging the results presented in Table 3.1.1, Table 3.1.2, and Table 3.1.3 across the 
three damage module specifications. In assigning equal weight to each damage module specification no 
underlying line of evidence is given greater weight than another. As discussed in Section 2.3, the sectoral 
damage modules in GIVE and DSCIM are based on different underlying information, data sources, and 
estimation methods.131 GIVE and DSCIM are both independent lines of evidence from the meta-analysis-
based damage module since the studies underlying each sectoral damage modules in GIVE and DSCIM are 
not included in Howard and Sterner’s (2017) final sample of studies.  

Table 4.1.1 presents the resulting SC-GHG estimates for each emissions year, gas, and near-term target 
discount rate after averaging across three damage module specifications. This table displays the rounded 
values; the annual unrounded values for use in calculations are available for all emissions years over 2020-
2080 in Table A.4.1 in the Appendix.  

Table 4.1.1:  Estimates of the Social Cost of Greenhouse Gases (SC-GHG), 2020-2080 (in 2020 dollars per 
metric ton) 

 SC-GHG and Near-term Ramsey Discount Rate 

 SC-CO2 

(2020 dollars per metric ton of CO2) 
SC-CH4 

(2020 dollars per metric ton of CH4) 
SC-N2O 

(2020 dollars per metric ton of N2O) 
Emission 

Year 2.5% 2.0% 1.5% 2.5% 2.0% 1.5% 2.5% 2.0% 1.5% 

2020 120 190 340 1,300 1,600 2,300 35,000 54,000 87,000 

2030 140 230 380 1,900 2,400 3,200 45,000 66,000 100,000 

2040 170 270 430 2,700 3,300 4,200 55,000 79,000 120,000 

2050 200 310 480 3,500 4,200 5,300 66,000 93,000 140,000 

2060 230 350 530 4,300 5,100 6,300 76,000 110,000 150,000 

2070 260 380 570 5,000 5,900 7,200 85,000 120,000 170,000 

2080 280 410 600 5,800 6,800 8,200 95,000 130,000 180,000 

 

Note, given the relatively modest variation in the SC-GHG estimates across the three damage modules in 
Tables 3.1.1-3.1.3, the values presented in Table 4.1.1 are similar to what would be obtained under 
alternative approaches for drawing on the multiple lines of evidence represented by the three damage 
modules. For example, if the estimates for each model were weighted in such in way that the weighted 

 
131 Only one component of the methodology for calculating coastal damages is common across the two models. Both 
DSCIM and GIVE rely on the CIAM model developed by Diaz (2016) to estimate the economic damages resulting from 
projections of SLR. This small degree of overlap across the two modules is unlikely to affect the representation of 
structural uncertainty when pooling estimates across the two damage modules.  
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average is the certainty-equivalent across the models,132 the average (unrounded) SC-CO2 in emissions 
year 2020 would change by less than 1% for all three near-term discount rates. The SC-GHG estimates 
resulting from averaging across the models (as presented in Table 4.1.1) are also similar to the central 
estimates presented in Tables 3.1.1-3.1.3. That is, the unrounded estimates based on the DSCIM damage 
module for the 2.5% discount rate, and the GIVE damage module for the 2.0% and 1.5% discount rates, in 
emissions year 2020 differ from the three-model average estimates by only 2% (2.5% discount rate), -1% 
(2.0% discount rate), and -1% (1.5% discount rate).  

4.2 Application of SC-GHG Estimates in Benefit-Cost Analysis 

The SC-GHG reflects the future stream of damages associated with an additional ton of emissions 
discounted back to the year of the emissions. Several steps are necessary when using the SC-GHG 
estimates in an analysis that includes GHG emissions changes in multiple future years in addition to other 
benefits and costs. First, the gas-specific SC-GHG estimates corresponding to the year of estimated 
emissions change need to be applied and discounted to the year of analysis to monetize the emissions. 
Second, the monetized GHG emissions impacts need to be incorporated with other costs and benefits 
considered in the analysis.  

The SC-GHG estimates presented in Table 4.1.1 represents the damages associated with each additional 
ton of emissions released discounted back to the year of emissions. To calculate the monetized value of 
damages from emissions in year 𝜏𝜏 discounted back to the year of analysis, denoted as year 0, two steps 
are required. First, the emissions changes in the future year, 𝑥𝑥𝜏𝜏, are multiplied times the SC-GHG in that 
future year, 𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔𝜏𝜏, to the obtain the future monetized net damages associated with those emissions. 
Second, that value needs to be discounted back to the year of analysis to obtain the present value of the 
damages, pv0, using the discount factor 𝛿𝛿𝜏𝜏� . Mathematically, these two steps can be written as  

𝑝𝑝𝐶𝐶0 = 𝑥𝑥𝜏𝜏 ∙ 𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔𝜏𝜏 ∙ 𝛿𝛿𝜏𝜏�  .                                                                   (4.2.1)  

The correct discount factor to use when discounting the SC-GHG estimates presented in this report is the 
certainty-equivalent discount factor, 𝛿𝛿𝜏𝜏� . This is because the SC-GHG estimates are certainty-equivalent 
values that account for the uncertainty in future consumption per capita. As described more fully in 
Appendix A.3, the certainty-equivalent discount factor incorporates the uncertainty in future 
consumption using the RFF-SP probabilistic growth scenarios. Discounting the SC-GHG estimates using a 
constant discount rate equal to the near-term target rate would not capture the uncertainty in 
consumption per capita for that year. This means that precise discounting of a stream of future emissions 

 
132 Specifically, the weight is estimated for each module, near-term discount rate and emission year using: 𝑤𝑤𝜏𝜏,𝑚𝑚,𝜂𝜂 =
𝐸𝐸��𝐶𝐶𝜏𝜏,𝑚𝑚�

−𝜂𝜂
�

∑ 𝐸𝐸[(𝐶𝐶𝜏𝜏.𝑚𝑚)−𝜂𝜂]𝑀𝑀
𝑚𝑚

, where 𝑐𝑐 is consumption net climate change, 𝜏𝜏 is emission year, 𝑚𝑚 is damage module, and 𝜂𝜂 is the 

elasticity of marginal utility with respect to consumption. The resulting weights given to the damage module based 
on DSCIM, GIVE, and Howard and Sterner (2017) are: 0.331, 0.334, 0.334, respectively, under Ramsey discounting 
with a 2.0% near-term target rate. These weights are close to an equal weight (0.333) on modules. These three 
modules share the same distributions of GDP and have estimates of damage under climate change that are 
comparable. Therefore, the distributions of net consumption across the three modules are similar, leading to similar 
weights.        



EXTERNAL REVIEW DRAFT 

83 
 
 

requires the SC-GHG for each year (provided in Table A.4.1) together with the certainty-equivalent 
discount factor for that year. 

While applying the certainty-equivalent discount factor would ensure a full accounting of scenario 
uncertainty, this process introduces substantial complexity in the calculations, which may not be 
warranted in all situations. If the stream of future emissions being evaluated is moderate (e.g., 30 years 
or less), the difference between discounting from the year of emissions to the year of analysis using a 
constant discount rate equal to the near-term target rate, and discounting using the certainty-equivalent 
discount factor, 𝛿𝛿𝜏𝜏�  will be small. For example, if the year of analysis is 2022 using the near-term target 
rate to discount back from the year of emissions instead of the certainty-equivalent discount factor will 
underestimate the present value emission reductions by less than 1% for the first ten years of future 
emissions. The present value of emission reductions 30 years in the future will be underestimated by 
slightly over 2% yielding a conservative approximation to the more complete calculation.133 (The 
differences from using a constant discount rate rather than the certainty-equivalent discount factor for 
each year in the future are provided in Figure A.3.1.) Therefore, discounting the monetized value of 
emission reductions over the first 30 years of the analysis using the near-term target rate provides a close 
approximation.  

  

 
133 This example is based on the SC-GHG estimates using a 2 percent near-term Ramsey discount rate. The 
quantitative results will vary slightly across the near-term target rates considered in this report, but the difference 
between the two approaches remains relatively small over the first 30 years.  
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5 Summary 

This report presents new estimates of the SC-GHG that reflect recent advances in the scientific literature 
on climate change and its economic impacts and recommendations made by the National Academies of 
Science, Engineering, and Medicine in 2017.  

Since 2008, the EPA has used estimates of the SC-GHG in analyses of actions that affect GHG emissions. 
The values used by the EPA from 2009 to 2016, and since 2021, have been consistent with those 
developed and recommended by the Interagency Working Group on the SC-GHG (IWG), and the values 
used from 2017-2020 were consistent with those required by E.O. 13783. During that time, the National 
Academies conducted a comprehensive review of the social cost of carbon and issued a final report in 
2017 that recommended specific criteria for future updates to the SC-CO2 estimates, a modeling 
framework to satisfy the specified criteria, and both near-term updates and longer-term research needs 
pertaining to various components of the estimation process. The IWG was reconstituted in 2021 and E.O. 
13990 directed it to develop a comprehensive update of its SC-GHG estimates, recommendations 
regarding areas of decision-making to which SC-GHG should be applied, and a standardized review and 
updating process to ensure that the recommended estimates continue to be based on the best available 
economics and science going forward.  

The EPA is a member of the IWG and is participating in the IWG’s work under E.O. 13990. While that 
process continues, this report presents a set of SC-GHG estimates that incorporates recent research 
addressing the near-term recommendations of the National Academies. The report takes a modular 
approach in which the methodology underlying each of the four components, or modules, of the SC-GHG 
estimation process – socioeconomics and emissions, climate, damages, and discounting – is developed by 
drawing on the latest research and expertise from the scientific disciplines relevant to that component. 
Table 5.1 summarizes the key elements of the National Academies’ near-term recommendations for each 
module and how the methodological updates employed in this report addressed those recommendations.  

The modeling implemented in this report reflects conservative methodological choices, and, given both 
those choices and the numerous categories of damages that are not currently quantified and other model 
limitations, the resulting SC-GHG estimates likely underestimate the marginal damages from greenhouse 
gas pollution. The EPA will continue to review developments in the literature, including more robust 
methodologies for estimating the magnitude of the various direct and indirect damages from GHG 
emissions, and look for opportunities to further improve SC-GHG estimation going forward.  
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Table 5.1: Implementation of National Academies Recommendations in this Report 
Near-term National Academies’ recommendations Methodological updates employed in this report 

Overarching  

  Framework: Adopt a modular approach to allow 
relevant disciplinary expertise to shape each 
part of the analysis. 
 

 Adopted a modular modeling framework that unbundled the 
socioeconomic-emissions scenarios, climate modeling, damage 
function modeling, and discounting to allow each component to 
be informed by high-quality science from the relevant disciplines. 

  Scientific basis: Modules should be consistent 
with scientific knowledge in the current, peer-
reviewed literature. 

 Selected modeling frameworks and parameters for each module 
based on recent peer-reviewed scientific literature and scientific 
consensus reports.  

  Uncertainty characterization: Key uncertainties, 
including functional forms, parameter 
assumptions, and data inputs, should be 
adequately represented and uncertainties not 
quantified should be identified. 

 Expanded upon past estimates used by the EPA by incorporating a 
quantitative consideration of uncertainty into all modules and 
using a Monte Carlo approach to develop SC-GHG distributions 
that captures interactions across modules’ uncertainties.  

  Transparency: Documentation should allow 
readers to understand and assess the modules, 
including which features are evidence-based or 
judgment-based. Model code should be 
available to researchers. 

 Documented modeling features in detail, including within 
replication instructions and computer code that has been made 
publicly available.   

Socioeconomic module  

  Use statistical methods and expert elicitation for 
projecting probability distributions of GDP, 
population growth and emissions into the 
future. 

 Adopted the probabilistic RFF-SPs, which provide multi-century 
projections of population, GDP per capita, and GHG emissions 
based on statistical and structured expert judgment methods that 
account for future policies and connections between variables. 

Climate module  

  Employ a reduced complexity Earth system 
model that satisfies well-defined diagnostic 
tests, such as the FaIR model, to represent 
temperature change over time, and include sea-
level rise and ocean pH components. 

 Adopted FaIR 1.6.2 to serve as the basis for an updated climate 
module, which provides an accurate representation of the latest 
scientific consensus on the relationship between global emissions 
and global mean surface temperature under a wide range of 
socioeconomic emissions scenarios, complemented by the BRICK 
and FACTS models of sea-level rise.  

Damages module  

  Improve and update existing damage functions 
to reflect recent scientific literature. 

 Adopted a suite of three updated damage functions (GIVE, 
DSCIM, and the meta-analysis), which together represent the 
major scientific lines of evidence on the economic impacts of 
climate change that are available, capture uncertainty, and, in the 
cases of GIVE and DSCIM, provide transparent bottom-up 
modeling that map Earth system changes to damages. 

Discounting module  

  Incorporate the relationship between discount 
rates and economic growth using a Ramsey-like 
framework and parameters chosen consistent 
with theory and empirical evidence on 
consumption interest rates. 

 Adopted a Ramsey discounting approach that endogenously 
connects the discount rate and the socioeconomic scenarios and 
where the parameters are empirically calibrated based on 
observed behavior of interest rates and economic growth. 
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A. Appendix  
A.1.  Additional Discussion of Scientific Updates in IPCC’s Sixth Assessment Report 
Several updates to the science of greenhouse gas radiative efficiency134, atmospheric lifetimes, and 
chemistry have been made since the IWG published its first set of recommended SC-GHG estimates in 
2010. In this report projections of temperature change from a pulse of GHG emissions are based on the 
FaIR climate model, version 1.6.2, rather than using the simplified lifetime and forcing equations from the 
IPCC AR4 assessment that were embedded in the IAMs underlying the SC-GHG estimates used to date. 
While FaIR is a more complex model that includes internal feedbacks and chemistry such that gas lifetimes 
and interactions are not constant, it can be instructive to examine how the more simplistic equations have 
been updated between AR4 (IPCC 2007b) and AR6 (IPCC 2021b) as FaIR 1.6.2 reflects many of the same 
scientific advances in understanding. 

The radiative efficiency of all gases has been updated, in part because of updates to the science and in 
part because radiative efficiency is a function of background concentrations. The radiative efficiency of 
CO2 has decreased by 5% relative to AR4, while the radiative efficiencies of CH4 and N2O have both 
increased by about 5%. AR6 also updated the indirect effects of CH4 and N2O that occur through 
atmospheric chemistry. The indirect radiative effects of CH4 that occur through increases in ozone and 
stratospheric water vapor decreased by about 6%. Meanwhile, the radiative effects of N2O now include 
the impact of N2O on CH4 and stratospheric ozone, leading to a decrease in N2O radiative efficiency of 
almost 13%. When accounting for all radiative changes, the effective radiative efficiency of CH4 has 
increased by about 10%, while that of N2O has decreased by almost 8%, relative to AR4.  

Separately, the AR6 estimate of lifetime of CH4 decreased by about 2%, and that of N2O by about 4%, 
relative to AR4. The changes in the CO2 lifetime are more complex, but over 100 years, the effective 
lifetime of CO2 increased by about 13%. AR6 also included the possibility of accounting for the CO2 
produced through the oxidation of CH4 of fossil origins in the atmosphere, using an oxidation factor of 
0.75 to account for CH4 that does not oxidize to CO2 but rather leaves the atmosphere through a 
deposition process.135,136 AR6 also accounts for the climate-carbon feedbacks that result from non-CO2 

greenhouse gases warming the atmosphere and impacting the carbon cycle; in AR4, this effect was only 
included for CO2.  

Including all these scientific updates to lifetimes, atmospheric chemistry interactions, and radiative 
efficiency, the AR6 assessment estimates that the 100-year global warming potential (GWP) of CH4 has 
increased by almost 9% relative to the estimates from AR4 (from 25 to 27.2), whereas the 100-year GWP 
of N2O has decreased by about 8% (from 298 to 273). Between AR4 and AR6 there was also a discussion 

 
134 Radiative efficiency is a measure of a gas’ greenhouse gas strength, defined as the change in radiative forcing for 
a unit change in the atmospheric concentration of a gas (in W/m2/ppb). 
135 While FaIR 1.6.2 reflects the advances in understanding presented in AR6, the CH4 oxidization factor in FaIR 1.6.2 
was still set to 0.60 (based on AR5) in the model runs conducted for this report. In corresponding with the FaIR model 
developers, they have stated that it will be updated to the AR6 value in the next version of FaIR 2.0.  
136 Note that inventories based on using GWPs often use the non-fossil value for all CH4 emissions because in some 
cases there is a potential for CO2 double counting: for example, if complete combustion is assumed when calculating 
CO2 emissions from a natural gas turbine, then the carbon from any methane leakage has already been accounted 
for.   
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of climate-carbon feedbacks. Including the climate-carbon feedback means taking into account the effect 
that a changing climate has on the carbon cycle. AR4 GWPs were calculated with climate-carbon feedbacks 
included for CO2, but not for non-CO2 greenhouse gases. This inconsistent treatment of climate-carbon 
feedbacks can lead to underweighting the non-CO2 greenhouse gases relative to their actual impacts. The 
publication of more studies using climate-carbon feedbacks for all gases, and the determination that a 
consistent approach was superior, led AR6 to include the climate-carbon feedbacks for all gases in the 
only GWP that was presented.  

Another way of considering the impact of different greenhouse gases is to attribute the temperature 
changes of the last decade (2010-2019) to historical emissions of each gas. According to the AR6 
assessment, historical emissions of carbon dioxide have contributed almost 0.8 degrees of warming to 
those temperatures, compared to about half a degree for historical emissions of CH4, and almost one 
tenth of a degree for historical emissions of N2O. These attributed temperature increases sum to more 
than the observed temperature change of almost 1.1 degrees because some of the warming is masked by 
various cooling influences, the most important of which is about half a degree of cooling resulting from 
historical emissions of sulfur dioxide.  

 

A.2.  Consumption Rate of Interest and Integration into Benefit-Cost Analysis 
When analyzing policies and programs that result in GHG emission reductions, it is important to account 
for the difference between the social and private rate of return on any capital investment affected by the 
action. Market distortions, such as taxes on capital income, cause private returns on capital investments 
to be different from the social returns. In well-functioning capital markets, arbitrage opportunities will 
be dissipated, and the cost of investments will equal the present value of future private returns on those 
investments. Therefore, an individual forgoing consumption or investment of equal amounts as the 
result of a regulation will face an equal private burden. However, because the social rate of return on 
the investment is greater than the private rate of return, the overall social burden will be greater in the 
case where investment is displaced. Thus, society is not indifferent between a regulation that displaces 
consumption versus investment in equal amounts.  

OMB’s Circular A-4 points out that “the analytically preferred method of handling temporal differences 
between benefits and costs is to adjust all the benefits and costs to reflect their value in equivalent units 
of consumption and to discount them at the rate consumers and savers would normally use in discounting 
future consumption benefits” (OMB 2003). The damage estimates developed for use in the SC-GHG are 
already estimated in consumption-equivalent terms. Therefore, an application of this OMB guidance would 
use the consumption discount rate to calculate the SC-GHG, while also developing a more complete 
estimate of social costs to account for the difference in private and social rates of return on capital for 
any investment displaced as a result of the action being analyzed. This more complete estimate of social 
costs could be developed using either the shadow price of capital approach or by estimating costs in a 
general equilibrium framework, for example by using a computable general equilibrium model. In both 
cases, displaced investment would be converted into a flow of consumption equivalents that could be 
discounted at the consumption rate. 
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In cases where the costs are not adjusted to be in consumption-equivalent terms, OMB’s Circular A-4 
recommends that analysts provide a range of estimates for net benefits based on two approaches. The 
first approach is based on using the consumption rate of interest to discount all costs and benefits. This 
approach is consistent with the case where costs are primarily borne as reduced consumption. The second 
approach, the opportunity cost of capital approach, focuses on the case where the main effect of an action 
is to displace or alter the use of capital in the private sector (OMB 2003). When interpreting the 
opportunity cost of capital approach from the point of view of whether to invest in a single government 
project, it is asking whether the benefits from the project would at least match the returns from investing 
the same resources in the private sector. Interpreting the approach from the standpoint of a benefit-
cost analysis of a regulation, the approach focuses on adjusting estimates of benefits downward by 
discounting at a higher rate to offset additional social costs not reflected in the private value of displaced 
investment used to develop the cost estimate (assuming the costs of the regulation are borne upfront). 

Harberger (1972) derived a general version of the opportunity cost of capital approach, recognizing that 
policies will most likely displace a mix of consumption and investment and therefore, a blended discount 
rate would be needed to adjust the benefits to account for the omitted costs. In his partial equilibrium 
approach, the blended discount rate is a weighted average of the consumption interest rate and rate of 
return on capital, where the weights are the share of a policy’s costs borne by consumption versus 
investment. This general result has been applied to the general equilibrium context by Sandmo and Drèze 
(1971) and Drèze (1974) and can be extended to account for changes in foreign direct investment (CEA 
2017). This highlights that using the opportunity cost of capital to discount benefits and costs is, at best, 
creating a lower bound on the estimate of net benefits that would only be met in an extreme case where 
regulatory costs fully displace investment. If the beneficial impacts of the regulation induce private 
investment whose returns have not been quantified and fully converted to consumption equivalents, then 
this approach would not even be a lower bound, as the net benefits calculated using the opportunity cost 
of capital would be even lower than the theoretically correct lower bound.  

An important limitation of the opportunity cost of capital approach is that its correct application depends 
heavily on the temporal patterns of the displaced capital returns and future benefits, including the lifetime 
of the displaced capital investment versus the lifetime of the benefit stream being valued (Li and Pizer 
2021). In fact, using the opportunity cost of capital approach is only an accurate approximation of the 
correct shadow price of capital approach if these patterns are exactly the same. Li and Pizer (2021) show 
that a rate lower than the rate of return to capital is appropriate when displaced investment is relatively 
short-lived compared to the benefits stream and a higher rate is appropriate when displaced investment 
is relatively long-lived compared to benefits. 

In benefit-cost analysis of policy actions whose benefits and costs occur over a relatively short time frame, 
the range of net benefits computed using the two discounting approaches may be relatively narrow. In 
this case, there may not be much error in presenting the opportunity cost of capital discounting approach 
side-by-side with consumption discounting as an effort to represent an uninformed prior over the share 
of regulatory costs that will displace investment and using the potential bounding cases for net benefits. 
However, for cases where the costs are borne early in the time horizon and benefits occur for decades 
or even centuries, such as with GHG mitigation, the two estimates of net benefits will differ significantly. 
Importantly, in this circumstance, the opportunity cost of capital approach will substantially 
underestimate net benefits even for the case where the policy fully displaces investment. In this case, 
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there is high risk of uninformative results from an analysis when using this two-discount-rate approach 
to provide an uninformed prior over the share of regulatory costs borne by investment. The preferred 
approach (OMB 2003, Li and Pizer 2021) is to develop more complete consumption-equivalent  measure of 
costs and benefits, accounting for any effects on investment either by using a shadow price of capital 
approach or a general equilibrium framework, and then discounting those streams at the consumption 
rate of interest alone.  

The "shadow price of capital" approach, described below, provides a method of ensuring that any 
additional social costs of displaced capital are accounted for in an analysis, as has been widely recognized 
in the academic literature (Lind 1990; Lyon 1990; Moore et al. 2013; Li and Pizer 2021) and in domestic 
and foreign government guidance documents (OMB 1972, 2003; EPA 2010; OECD 2018) as more 
appropriate than using the opportunity cost of capital approach. The most straightforward, although 
extreme, illustration of this approach is to consider the consumption value of a marginal dollar of 
displaced investment that persists forever. A permanent loss of investment is a very strong assumption 
because we would expect the displaced investment to be replaced eventually, but it is an instructive 
example of the approach. If this dollar had been invested, it would have earned a return on capital, 𝑟𝑟𝑖𝑖, 
every period into the future. If that yield was returned as consumption (or taxes that ultimately benefit 
households), the infinite stream of 𝑟𝑟𝑖𝑖 should be discounted at the consumption rate of interest 𝑟𝑟c. The 
present value of this infinite stream is 𝑟𝑟𝑖𝑖/𝑟𝑟𝑐𝑐.137 Under this strong assumption of a permanent displacement 
of capital, the shadow price of capital (SPC) would be calculated as the opportunity cost of capital divided 
by the consumption rate of interest. Because 𝑟𝑟𝑖𝑖 > 𝑟𝑟𝑐𝑐, the SPC is greater than one, reflecting the additional 
cost of the displaced capital. Multiplying any portion of costs (and/or benefits) that affect investment in 
this way, and then discounting using the consumption rate of interest would appropriately account for 
the displaced investment. 

However, 𝑟𝑟𝑖𝑖/𝑟𝑟𝑐𝑐  would only be the correct SPC to use in the extreme case where changes in the productive 
capital stock persist in perpetuity. A more realistic version of the SPC accounts for how savings and 
depreciation cause the impact of displaced capital to dissipate in the future. In particular, with a savings 
(or reinvestment) rate of 𝑠𝑠 from gross income and a depreciation rate of 𝜇𝜇, an invested dollar returns (1−
𝑠𝑠)(𝑟𝑟𝑖𝑖 + 𝜇𝜇) in consumption in the first period. Each period after that, the amount of investment that 
continues to be displaced is determined by the savings rate, assuming a closed economy. However, the 
invested capital also declines according to the depreciation rate. This creates a stream of consumption 
benefits equal to  

𝐶𝐶𝑡𝑡 = � (1− 𝑠𝑠)(𝑟𝑟𝑖𝑖 + 𝜇𝜇)[1 + 𝑠𝑠(𝑟𝑟𝑖𝑖 + 𝜇𝜇) − 𝜇𝜇]𝑡𝑡 ,                                          (𝐴𝐴. 2.1) 
∞

𝑡𝑡=0
 

 
137 An infinite stream of return is a type of annuity called a perpetuity. The present value of a perpetuity, 𝑟𝑟𝑖𝑖, that 
begins in year 1 and is discounted at a rate of 𝑟𝑟c is 𝑃𝑃𝑉𝑉 = 𝑟𝑟𝑖𝑖

(1+𝑟𝑟𝑐𝑐)
+ 𝑟𝑟𝑖𝑖

(1+𝑟𝑟𝑐𝑐)2 + 𝑟𝑟𝑖𝑖
(1+𝑟𝑟𝑐𝑐)3 + ⋯ =  𝑟𝑟𝑖𝑖

𝑟𝑟𝑐𝑐
. That is, the present value 

of a perpetuity is the annual return, 𝑟𝑟𝑖𝑖, divided by the rate of discount, 𝑟𝑟𝑐𝑐 . 
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which is discounted at the consumption discount rate 𝑟𝑟c. Including constant savings and depreciation rates 
yields a shadow price of capital138 equal to 

𝑆𝑆𝑃𝑃𝐶𝐶 =
(1− 𝑠𝑠)(𝑟𝑟𝑖𝑖 + 𝜇𝜇)
𝑟𝑟𝑐𝑐 + 𝜇𝜇 − 𝑠𝑠(𝑟𝑟𝑖𝑖 + 𝜇𝜇) .                                                       (𝐴𝐴. 2.2)  

Equation A.2.2 can be updated to include a capital tax rate that explicitly defines a difference between 
𝑟𝑟𝑖𝑖 and 𝑟𝑟𝑐𝑐, but the result of the analysis would not change if the tax revenue was used to benefit society.139 
In the analysis, the portion of costs (and/or benefits) that displace investment would be multiplied by the 
SPC to adjust for any missing social impacts and then all costs and benefits would be discounted at the 
consumption rate of interest. 

Estimates of the closed economy SPC in the academic literature are in the range of 1.1 to 2.2 (Groom et 
al. 2005, Boardman et al. 2010, Moore et al. 2013, Li and Pizer 2021). In an open economy model the SPC 
may be closer to 1.0 (Lind 1990). Implementing this approach in practice can be challenging because it 
requires an assessment of the portion of costs (and/or benefits) that displace investment. However, even 
in the absence of information as to the share of costs that displace consumption, multiplying the full cost 
estimate by the SPC and discounting all costs and benefits at the consumption rate of interest likely 
provides a more informative lower-end bounding case for net benefits than using the opportunity cost of 
capital approach under the premise of full displacement. 
A.3.  Derivations of the SC-GHG Values for use in Analyses 
This report presents SC-GHG estimates as certainty-equivalent values that account for the uncertainty (a 
range of possible outcomes) in future consumption underlying the RFF-SP probabilistic growth scenarios. 
To recover a discounted present value of climate damages from future emissions, analysts consider the 
SC-GHG associated with future emissions and then discount that value to the year of their analysis. For 
example, an analyst interested in the present value in the year 2022 of changes in future emissions in the 
year 2030 would use the 2030 SC-GHG and discount back to recover a present value in the year 2022. 
However, there is uncertainty in future consumption such that analysts should account for the range of 

 
138 When including depreciation, 𝜇𝜇, the gross return on a capital stock k0 will be (𝑟𝑟𝑖𝑖+μ)k0, where μ is the depreciation 
rate. With a savings or reinvestment rate of s, a capital stock of k0 in period 0 will return (1-s)(𝑟𝑟𝑖𝑖+μ)k0 as consumption 
and s(𝑟𝑟𝑖𝑖+μ)k0 will be saved for reinvestment. In period 1, the capital stock will be the original capital less depreciation, 
plus the amount reinvested, k1 = {(1-μ)ko}+{s(𝑟𝑟𝑖𝑖+μ)k0} = [1+s(𝑟𝑟𝑖𝑖+μ)-μ]k0 . This will return (1-s)(𝑟𝑟𝑖𝑖+μ)[1+s(𝑟𝑟𝑖𝑖+μ)-μ]k0 as 
consumption in period 1 and s(𝑟𝑟𝑖𝑖+μ)[1+s(𝑟𝑟𝑖𝑖+μ)-μ]k0 will be reinvested. The capital stock in period 2 will be k2 = {(1-
μ)[1+s(𝑟𝑟𝑖𝑖+μ)-μ]ko}+{s(𝑟𝑟𝑖𝑖+μ)[1+s(𝑟𝑟𝑖𝑖+μ)-μ]k0} = [1+s(𝑟𝑟𝑖𝑖+μ)-μ]2k0, which will return (1-s)(𝑟𝑟𝑖𝑖+μ)[1+s(𝑟𝑟𝑖𝑖+μ)-μ]2k0  as 
consumption. This creates an infinite consumption stream of C = (1-s)(𝑟𝑟𝑖𝑖+μ)k0 + (1-s)(𝑟𝑟𝑖𝑖+μ)[1+s(𝑟𝑟𝑖𝑖+μ)-μ]k0 + (1-
s)(𝑟𝑟𝑖𝑖+μ)[1+s(𝑟𝑟𝑖𝑖+μ)-μ]2k0  + … This is a perpetuity of [(1-s)(𝑟𝑟𝑖𝑖+μ)k0] with a growth rate of [s(𝑟𝑟𝑖𝑖+μ)-μ], and should be 
discounted at the consumption rate of discount 𝑟𝑟c.  The present value of perpetuity A, growing at a rate of g, and 

discounted at rate r is 𝑃𝑃𝑉𝑉 = 𝐴𝐴
(1+𝑟𝑟)

+ 𝐴𝐴(1+𝑔𝑔)
(1+𝑟𝑟)2 + 𝐴𝐴(1+𝑔𝑔)2

(1+𝑟𝑟)3 + ⋯ =  𝐴𝐴
(𝑟𝑟−𝑔𝑔)

. So, the present value of the perpetuity described 

above would be 𝑃𝑃𝑉𝑉 = (1−𝑠𝑠)(𝑟𝑟𝑖𝑖+𝜇𝜇)𝑘𝑘0
(𝑟𝑟𝑐𝑐−[𝑠𝑠(𝑟𝑟𝑖𝑖+𝜇𝜇)−𝜇𝜇])

= (1−𝑠𝑠)(𝑟𝑟𝑖𝑖+𝜇𝜇)
𝑟𝑟𝑐𝑐+𝜇𝜇−𝑠𝑠(𝑟𝑟𝑖𝑖+𝜇𝜇)

𝑘𝑘0.              

 
139 If a portion of the tax revenues affect investments, then it requires an analogous adjustment to account for the 
fact that it creates a current period consumption value greater than one according to the “marginal value of public 
funds,” νG. In this case, the numerator in the SPC equation would be equal to (1 − 𝑠𝑠)(𝑟𝑟𝑖𝑖 + 𝜇𝜇) + (𝜈𝜈𝐺𝐺 − 1)𝜏𝜏𝑟𝑟𝑖𝑖, where 
τ is the tax rate on capital (Li and Pizer 2021). 
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possible outcomes. This is because risk-averse agents value the costs of future emissions differently than 
risk-neutral agents by accounting for the range of uncertain outcomes. There are several ways to account 
for this uncertainty. The approach taken in this report provides certainty-equivalent SC-GHG values that 
can be easily used by analysts with a conventional discounting approach, as described in Section 4.2. This 
section describes the equations used to recover those certainty-equivalent SC-GHG estimates for an 
emissions year 𝜏𝜏, denoted as 𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔𝜏𝜏. 

To begin with a motivating example, imagine a hypothetical regulation that reduces 𝑥𝑥 tons of greenhouse 
gas emissions in year 𝜏𝜏, and the regulation will be in place for the years 2040 through 2050. An analyst 
wants to calculate the present value 𝑝𝑝𝐶𝐶 of the regulation’s benefits from future reductions in greenhouse 
gas emissions in the year of analysis 𝑗𝑗, where 𝑗𝑗 is some year between now and 2040. The analyst would 
use the SC-GHG estimates found in this report for each of the years from 2040 through 2050, each 
denoted as 𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔𝜏𝜏. In addition, the analyst would need the certainty-equivalent discount rate path 
specific to the year of analysis, �̃�𝑟𝑡𝑡, from year 𝑗𝑗 to year τ (see Figure 2.4.1 for one example path). The analyst 
then calculates the present value of the regulation’s benefits as 

𝑝𝑝𝐶𝐶𝑗𝑗 = � 𝑥𝑥𝜏𝜏. ∙ 𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔𝜏𝜏 ∙ 𝑒𝑒−�̃�𝑟𝜌𝜌(𝜏𝜏−𝑗𝑗)
2050

𝜏𝜏=2040

                                                       (𝐴𝐴. 3.1)  

The 𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔𝜏𝜏 values presented in this report yield the present value when discounted using the certainty-
equivalent discount factor 𝑒𝑒−�̃�𝑟𝜌𝜌(𝜏𝜏−𝑗𝑗). This discount factor was written as 𝛿𝛿𝜏𝜏�  in Section 4.2 but is defined in 
more detail below. 

The remainder of this section describes the derivation of the certainty-equivalent SC-GHG 𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔𝜏𝜏. The 
certainty-equivalent discount factor for the Ramsey framework is  

𝑒𝑒−𝑡𝑡∙�̃�𝑟𝜌𝜌 = 𝐸𝐸[𝑒𝑒−∑ (𝜌𝜌+𝜂𝜂𝑔𝑔𝑠𝑠)𝜌𝜌
𝑠𝑠=0 ],                                                                  (𝐴𝐴. 3.2)  

where �̃�𝑟𝑡𝑡 is the certainty-equivalent discount rate. This is the single, time-averaged discount rate that 
produces the same discount factor over a specific time horizon as the distribution of uncertain discount 
rates. This certainty-equivalent discount rate is defined as 

�̃�𝑟𝑡𝑡 = 𝜌𝜌 − �
1
𝑡𝑡
� �ln𝐸𝐸 �𝑒𝑒−∑ (𝜂𝜂𝑔𝑔𝑠𝑠)𝜌𝜌

𝑠𝑠=0 �� =  𝜌𝜌 + �
1
𝑡𝑡
�𝐸𝐸 �𝑙𝑙𝑙𝑙 �

𝑐𝑐𝑡𝑡
𝑐𝑐0
�
𝜂𝜂
�                             (𝐴𝐴. 3.3)  

and 

𝑒𝑒−𝑡𝑡∙�̃�𝑟𝜌𝜌 = 𝑒𝑒
−𝑡𝑡∙� 𝜌𝜌+�1𝑡𝑡�𝐸𝐸�𝑙𝑙𝑙𝑙�

𝑐𝑐𝜌𝜌
𝑐𝑐0
�
𝜂𝜂
��

= 𝑒𝑒−𝑡𝑡𝜌𝜌 ∙ 𝐸𝐸 ��
𝑐𝑐𝑡𝑡
𝑐𝑐0
�
−𝜂𝜂
� =  𝐸𝐸 ��

1
1 + 𝜌𝜌�

�
𝑡𝑡

∙ �
𝑐𝑐𝑡𝑡
𝑐𝑐0
�
−𝜂𝜂
� .            (𝐴𝐴. 3.4)  

Here, as described in Section 3.4, 𝑟𝑟𝑡𝑡 is the consumption discount rate in year t, ρ is the pure rate of time 
preference and η is the elasticity of marginal utility with respect to consumption. 𝑐𝑐𝑡𝑡 and 𝑔𝑔𝑡𝑡 are the 
representative agent’s year 𝑡𝑡 consumption and consumption growth rate, respectively. Importantly, 𝑐𝑐𝑡𝑡 is 
consumption net of climate change damages. Also, 𝜌𝜌� = 𝑒𝑒𝜌𝜌 − 1 is the discrete annual pure rate of time 
preference. 
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Consider a stream of marginal damages 𝑚𝑚𝑑𝑑𝑡𝑡  from a single emissions year 𝜏𝜏. The 𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔0 is the present 
value of the social cost of GHG emissions for year 𝑡𝑡 = 0 and is given by 

𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔0 = �𝐸𝐸�
1

(1 +  𝜌𝜌�)𝑡𝑡
�
𝑐𝑐𝑡𝑡
𝑐𝑐0
�
−𝜂𝜂
𝑚𝑚𝑑𝑑𝑡𝑡�

𝑇𝑇

𝑡𝑡=0

,                                                 (𝐴𝐴. 3.5) 

where 𝑚𝑚𝑑𝑑𝑡𝑡  is the marginal damage in year 𝑡𝑡 from a pulse of emissions in year 𝜏𝜏. Because 𝑚𝑚𝑑𝑑𝑡𝑡  is the 
marginal damage from a single emissions year τ, 𝑚𝑚𝑑𝑑𝑡𝑡 = 0 for t=0 to τ-1. The  𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔0 is the SC-GHG in the 
present year 𝑡𝑡 = 0. This is not equal to 𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔𝜏𝜏, which is the SC-GHG in year 𝜏𝜏.  

The present value 𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔0 for any emission year 𝜏𝜏 should also be equal to the 𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔𝜏𝜏 discounted back to 
current period 𝑡𝑡 = 0 using the certainty-equivalent discount rate 

𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔0 = 𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔𝜏𝜏 ∙ 𝐸𝐸 �
1

(1+ 𝜌𝜌�)𝜏𝜏 �
𝑐𝑐𝜏𝜏
𝑐𝑐0
�
−𝜂𝜂
� .                                              (𝐴𝐴. 3.6)   

So 

𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔𝜏𝜏 =
𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔0

𝐸𝐸 � 1
(1 +  𝜌𝜌�)𝜏𝜏 �

𝑐𝑐𝜏𝜏
𝑐𝑐0
�
−𝜂𝜂
�

= �
𝐸𝐸� 1

(1 +  𝜌𝜌�)𝑡𝑡 �
𝑐𝑐𝑡𝑡
𝑐𝑐0
�
−𝜂𝜂
𝑚𝑚𝑑𝑑𝑡𝑡�

𝐸𝐸 � 1
(1 +  𝜌𝜌�)𝜏𝜏 �

𝑐𝑐𝜏𝜏
𝑐𝑐0
�
−𝜂𝜂
�

𝑇𝑇

𝑡𝑡=0

.                             (𝐴𝐴. 3.7)     

Assuming that consumption is certain in the present year (t=0), 𝑐𝑐0 can be canceled 

𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔𝜏𝜏 = �
𝐸𝐸� 1

(1 +  𝜌𝜌�)𝑡𝑡 (𝑐𝑐𝑡𝑡)−𝜂𝜂𝑚𝑚𝑑𝑑𝑡𝑡�

𝐸𝐸 � 1
(1 +  𝜌𝜌�)𝜏𝜏 (𝑐𝑐𝜏𝜏)−𝜂𝜂�

𝑇𝑇

𝑡𝑡=0

.                                                       (𝐴𝐴. 3.8)  

Simplifying this expression yields 

𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔𝜏𝜏 =
1

𝐸𝐸[(𝑐𝑐𝜏𝜏)−𝜂𝜂]�𝐸𝐸�
1

(1 + 𝜌𝜌�)𝑡𝑡−𝜏𝜏
(𝑐𝑐𝑡𝑡)−𝜂𝜂𝑚𝑚𝑑𝑑𝑡𝑡� .

𝑇𝑇

𝑡𝑡=0

                                  (𝐴𝐴. 3.9) 

 

Note that equation (A.3.9) is not the same as simply discounting the marginal damages back to the year 
of emissions, which would be the expected value  

𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔𝜏𝜏′ = �𝐸𝐸�
1

(1 +  𝜌𝜌�)𝑡𝑡−𝜏𝜏
�
𝑐𝑐𝑡𝑡
𝑐𝑐𝜏𝜏
�
−𝜂𝜂
𝑚𝑚𝑑𝑑𝑡𝑡� .

𝑇𝑇

𝑡𝑡=𝜏𝜏

                                  (𝐴𝐴. 3.10) 

The 𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔𝜏𝜏 estimates based on the GIVE model (Rennert et al. 2022b) and the Meta-Analysis (Howard 
and Sterner 2017) are directly estimated using equation (A.3.9). The 𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔𝜏𝜏 estimates under the DSCIM 
damage module, however, are adjusted post-estimation to exactly equal equation (A.3.9). The remainder 
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of this section describes this adjustment alongside its analogue for GIVE. Consider trial 𝑖𝑖, year 𝑡𝑡, emissions 
year 𝜏𝜏, net consumption per capita 𝑐𝑐𝑖𝑖𝑡𝑡, and marginal damages 𝑚𝑚𝑑𝑑𝑖𝑖𝑡𝑡. A trial 𝑖𝑖 is a unique socioeconomic 
pathway and FaIR1.6.2 climate scenario pairing. For each trial GIVE estimates 

𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔𝑖𝑖𝜏𝜏 =
∑ � 1

𝑐𝑐𝑖𝑖𝑡𝑡
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𝜂𝜂 1

(1 + 𝜌𝜌�)𝑡𝑡−𝜏𝜏 𝑚𝑚𝑑𝑑𝑖𝑖𝑡𝑡2300
𝑡𝑡=𝜏𝜏 

𝐸𝐸�𝑐𝑐𝜏𝜏
−𝜂𝜂�

,                                        (𝐴𝐴. 3.11) 

and the 𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔𝜏𝜏 from equation (A.3.9) results from applying the expectation operator to equation (A.3.11). 

In contrast to equation (A.3.11), DSCIM estimates 

𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔𝑖𝑖𝜏𝜏′ = � �
𝑐𝑐𝑖𝑖𝜏𝜏
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2300

𝑡𝑡=𝜏𝜏 

.                                (𝐴𝐴. 3.12) 

Equations  (A.3.11) and (A.3.12) can be equated by 

𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔𝑖𝑖𝜏𝜏 =
1

 𝑐𝑐𝑖𝑖𝜏𝜏
𝜂𝜂 𝐸𝐸�𝑐𝑐𝜏𝜏

−𝜂𝜂�     
𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔𝑖𝑖𝜏𝜏′                                                                (𝐴𝐴. 3.13) 

The first expression on the right-hand side of Equation (A.3.13) is the adjustment factor that is used to 
convert the values provided by DSCIM for use in the report. This adjustment equation is trial-specific, so 
the values presented in this report are the means across trials (i.e., applying expectation operator to 
equation (A.3.11)).  

The full derivation of a certainty-equivalent discount rate path involves damage-module-specific net 
consumption paths, damage-module-specific SC-GHG estimates, and a unique certainty-equivalent rate 
path for each analysis year. However, as noted in Section 4.2, the error associated with using a constant 

discount rate rather than the certainty-equivalent rate path (i.e.,  𝐸𝐸 � 1
(1+ 𝜌𝜌�)𝜏𝜏 �

𝑐𝑐𝜏𝜏
𝑐𝑐0
�
−𝜂𝜂
� in equation A.3.6) to 

calculate the present value of a future stream of monetized climate benefits is small for analyses with 
moderate time frames (e.g., 30 years or less). In other words, for analyses with a moderate time frame, 
the present value of the regulation’s benefits can be calculated as 

𝑝𝑝𝐶𝐶𝑗𝑗 = � 𝑥𝑥𝜏𝜏. ∙ 𝑠𝑠𝑐𝑐𝑔𝑔ℎ𝑔𝑔𝜏𝜏 ∙ 𝑒𝑒−�̅�𝑟(𝜏𝜏−𝑗𝑗),
2050

𝜏𝜏=2040

                                                       (𝐴𝐴. 3.14)  

where �̅�𝑟 is simply the near-term (2.5%, 2%, and 1.5%) corresponding to the SC-GHG value used. Figure 
A.3.1 provides an illustration of the amount that climate benefits from reductions in future emissions will 
be underestimated by using a constant discount rate relative to the more complicated certainty-
equivalent rate path. 
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Figure A.3.1 The Difference Between using a Certainty-Equivalent Rate and Constant Discount Rate to 
Discount Climate Benefits from Future Reductions in GHG Emissions Back to the Year of the Analysis 

 
When using a constant discount rate (CDR) to discount climate benefits from future GHG emissions reductions back to the year of 
the analysis, the resulting present value of climate benefits will be underestimated (i.e., future emissions reductions will be valued 
using a lower SC-GHG than they would be if the analyst used a certainty-equivalent rate (CER) to discount those same future 
emission reductions. The lines represent the average percent that these future values would be undervalued at three near-term 
Ramsey discount rates. For example, if the analyst discounts the monetized value of a 2080 emissions reduction back to the year 
2030 using a constant discount rate (i.e., 2.5%, 2.0%, or 1.5%) as shown in the middle panel, that present value would be 
approximately 13% lower than when using the 2.5% CER, 10% lower than when using the 2.0% CER, and 6% lower than when 
using the 1.5% CER.  
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A.4.  Annual Unrounded SC-CO2, SC-CH4, and SC-N2O Values, 2020-2080 
Table 4.2.1: Unrounded SC-CO2, SC-CH4, and SC-N2O Values, 2020-2080 

 SC-GHG and Near-term Ramsey Discount Rate 

 SC-CO2 

(2020 dollars per metric ton of CO2) 
SC-CH4 

(2020 dollars per metric ton of CH4) 
SC-N2O 

(2020 dollars per metric ton of N2O) 
Emission 

Year 2.5% 2.0% 1.5% 2.5% 2.0% 1.5% 2.5% 2.0% 1.5% 

2020 117 193 337 1,257 1,648 2,305 35,232 54,139 87,284 

2021 119 197 341 1,324 1,723 2,391 36,180 55,364 88,869 

2022 122 200 346 1,390 1,799 2,478 37,128 56,590 90,454 

2023 125 204 351 1,457 1,874 2,564 38,076 57,816 92,040 

2024 128 208 356 1,524 1,950 2,650 39,024 59,041 93,625 

2025 130 212 360 1,590 2,025 2,737 39,972 60,267 95,210 

2026 133 215 365 1,657 2,101 2,823 40,920 61,492 96,796 

2027 136 219 370 1,724 2,176 2,910 41,868 62,718 98,381 

2028 139 223 375 1,791 2,252 2,996 42,816 63,944 99,966 

2029 141 226 380 1,857 2,327 3,083 43,764 65,169 101,552 

2030 144 230 384 1,924 2,403 3,169 44,712 66,395 103,137 

2031 147 234 389 2,002 2,490 3,270 45,693 67,645 104,727 

2032 150 237 394 2,080 2,578 3,371 46,674 68,895 106,316 

2033 153 241 398 2,157 2,666 3,471 47,655 70,145 107,906 

2034 155 245 403 2,235 2,754 3,572 48,636 71,394 109,495 

2035 158 248 408 2,313 2,842 3,673 49,617 72,644 111,085 

2036 161 252 412 2,391 2,929 3,774 50,598 73,894 112,674 

2037 164 256 417 2,468 3,017 3,875 51,578 75,144 114,264 

2038 167 259 422 2,546 3,105 3,975 52,559 76,394 115,853 

2039 170 263 426 2,624 3,193 4,076 53,540 77,644 117,443 

2040 173 267 431 2,702 3,280 4,177 54,521 78,894 119,032 

2041 176 271 436 2,786 3,375 4,285 55,632 80,304 120,809 

2042 179 275 441 2,871 3,471 4,394 56,744 81,714 122,586 

2043 182 279 446 2,955 3,566 4,502 57,855 83,124 124,362 

2044 186 283 451 3,040 3,661 4,610 58,966 84,535 126,139 

2045 189 287 456 3,124 3,756 4,718 60,078 85,945 127,916 

2046 192 291 462 3,209 3,851 4,827 61,189 87,355 129,693 

2047 195 296 467 3,293 3,946 4,935 62,301 88,765 131,469 

2048 199 300 472 3,378 4,041 5,043 63,412 90,176 133,246 

2049 202 304 477 3,462 4,136 5,151 64,523 91,586 135,023 

2050 205 308 482 3,547 4,231 5,260 65,635 92,996 136,799 
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Table 4.2.2: Unrounded SC-CO2, SC-CH4, and SC-N2O Values, 2020-2080 (continued…) 

 SC-GHG and Near-term Ramsey Discount Rate 

 SC-CO2 

(2020 dollars per metric ton of CO2) 
SC-CH4 

(2020 dollars per metric ton of CH4) 
SC-N2O 

(2020 dollars per metric ton of N2O) 
Emission 

Year 2.5% 2.0% 1.5% 2.5% 2.0% 1.5% 2.5% 2.0% 1.5% 

2050 205 308 482 3,547 4,231 5,260 65,635 92,996 136,799 

2051 208 312 487 3,624 4,320 5,363 66,673 94,319 138,479 

2052 211 315 491 3,701 4,409 5,466 67,712 95,642 140,158 

2053 214 319 496 3,779 4,497 5,569 68,750 96,965 141,838 

2054 217 323 500 3,856 4,586 5,672 69,789 98,288 143,517 

2055 220 326 505 3,933 4,675 5,774 70,827 99,612 145,196 

2056 222 330 510 4,011 4,763 5,877 71,866 100,935 146,876 

2057 225 334 514 4,088 4,852 5,980 72,904 102,258 148,555 

2058 228 338 519 4,165 4,941 6,083 73,943 103,581 150,235 

2059 231 341 523 4,243 5,029 6,186 74,981 104,904 151,914 

2060 234 345 528 4,320 5,118 6,289 76,020 106,227 153,594 

2061 236 348 532 4,389 5,199 6,385 76,920 107,385 155,085 

2062 239 351 535 4,458 5,280 6,480 77,820 108,542 156,576 

2063 241 354 539 4,527 5,361 6,576 78,720 109,700 158,066 

2064 244 357 543 4,596 5,442 6,671 79,620 110,857 159,557 

2065 246 360 547 4,666 5,523 6,767 80,520 112,015 161,048 

2066 248 363 550 4,735 5,604 6,862 81,419 113,172 162,539 

2067 251 366 554 4,804 5,685 6,958 82,319 114,330 164,030 

2068 253 369 558 4,873 5,765 7,053 83,219 115,487 165,521 

2069 256 372 562 4,942 5,846 7,149 84,119 116,645 167,012 

2070 258 375 565 5,011 5,927 7,244 85,019 117,802 168,503 

2071 261 378 569 5,085 6,013 7,344 86,012 119,027 170,013 

2072 263 382 573 5,160 6,099 7,444 87,006 120,252 171,523 

2073 266 385 576 5,234 6,184 7,545 87,999 121,477 173,033 

2074 269 388 580 5,309 6,270 7,645 88,992 122,702 174,543 

2075 271 391 583 5,383 6,355 7,745 89,985 123,926 176,053 

2076 274 394 587 5,458 6,441 7,845 90,978 125,151 177,563 

2077 276 398 591 5,532 6,527 7,946 91,971 126,376 179,073 

2078 279 401 594 5,607 6,612 8,046 92,964 127,601 180,582 

2079 282 404 598 5,681 6,698 8,146 93,958 128,826 182,092 

2080 284 407 601 5,756 6,783 8,246 94,951 130,050 183,602 
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A.5.  Additional Figures, Tables, and Results  
Figure A.5.1: Net Annual Global Emissions of Methane (CH4) under the RFF-SPs and the SSPs, 1900-2300 

 

Figure A.5.2: Net Annual Global Emissions of Nitrous Oxide (N2O) under the RFF-SPs and the SSPs, 1900-2300 

 
RFF-SP projections based on RFF-SPs (Rennert et al. 2022a). Black lines represent the mean (solid) and median (dotted) projections 
along with the 5th to 95th (dark shade) and 1st to 99th (light shade) percentile ranges. SSP data through 2100 from International 
Institute for Applied Systems Analysis (IIASA) SSP Database (Riahi et al. 2017). SSPs beyond 2100 (dashed) are based on the 
commonly used extensions provided by the Reduced Complexity Model Intercomparison Project (Nicholls et al. 2020).  
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Figure A.5.3: Global Atmospheric Concentrations of Methane (CH4), 1900-2300 

 

Figure A.5.4: Global Atmospheric Concentrations of Nitrous Oxide (N2O), 2020-2300 

 

Historical and future concentrations of methane (CH4, top) and nitrous oxide (N2O, bottom) are based on the range of emissions 
from the sampled RFF-SP scenarios used as inputs into FaIR 1.6.2. FaIR 1.6.2 is run with the full, AR6 calibrated (constrained) 
uncertainty distribution. Therefore, the uncertainty ranges in this figure represent both emissions and physical carbon cycle 
uncertainty. Mean (solid) and median (dashed) lines along with 5th to 95th (dark) and 1st to 99th (light) percentile ranges.  
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Figure A.5.5: Global Temperature Anomaly from a Pulse of Methane (1MtCH4) Emissions, 2020-2300 

 

Figure A.5.6: Global Temperature Anomaly from a Pulse of Nitrous Oxide (1MtN2) Emissions, 2020-2300 

 

The global temperature response resulting from a pulse of emissions of CH4 (top) and N2O (bottom) in 2030 as projected by 
FaIR1.6.2, Hector 2.5, and MAGICC 7.5.3. This represents the difference between a reference scenario (using SSP2-RCP4.5 for the 
figure) and the same scenario including the pulse of emissions. The emission pulse size is 1 GtC for carbon dioxide. Mean (solid) 
and median (dashed) lines are shown along with the 5th to 95th (dark shade) and 1st to 99th (light shade) percentile ranges. 
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Figure A.5.7: Dynamic temperature response of 256 climate science models (the CMIP5 ensemble) and 
seven IAMs 

 
Source: Dietz et al. (2021). The figure displays the dynamic temperature response of 256 climate science models (the CMIP5 
ensemble) and seven IAMs to an instantaneous 100 GtC emission impulse against a constant background atmospheric CO2 
concentration of 389 ppm. The temperature response of the IAMs is much slower than the climate science models, except Golosov 
et al. (2014). After 200 years, the temperature response of the IAMs is often well outside the range of the climate science models. 
The CMIP5 model responses are emulated/fitted by combining the Joos et al. (2013) carbon cycle model and the Geoffroy et al. 
(2013) warming model. 
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Figure A.5.8: Distribution of SC-CH4 Estimates for 2030, by Damage Module and Discount Rate 

 

Figure A.5.9: Distribution of SC-N2O Estimates for 2030, by Damage Module and Discount Rate 

 

Boxes span the inner quartile range (25th to 75th percentiles), whiskers extend to the 5th (left) and the 95th (right) quantiles. The 
vertical lines inside of the boxes mark the median of each distribution, and the points inside of the boxes and dollar estimates on 
top of the boxes mark the simple mean (average). 
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A.6.   Valuation Methodologies to Use in Estimating the Social Cost of GHGs 
 
The EPA will continue to review developments in the literature, including new and robust methodologies 
for estimating the magnitude of the various direct and indirect damages from climate impacts.  EPA will 
also continue to assess whether there are other parts of this literature or other methodologies to evaluate 
for potential inclusion in SC-GHG estimation.   

Both DSCIM and the GIVE model incorporate sector-specific damage functions published in the peer-
reviewed literature. One advantage of the modular approach used by these models is that new or 
alternative damage functions can be incorporated in a relatively straightforward way, while maintaining 
the state-of-the-science modules dealing with socioeconomic scenarios, emission trajectories, 
discounting, and climate modeling used in this report.    

As explained in Section 2.3, the damage module component of SC-GHG estimation translates changes in 
temperature and other physical impacts of climate change into monetized estimates of net economic 
damages based on the willingness to pay of individuals to avoid those damages. The developers of the 
damage functions used in this report applied valuation methods that are consistent with the theoretical 
underpinning of EPA’s benefit-cost analysis (BCA) – the Kaldor-Hicks criterion.140 For example, in DSCIM 
and GIVE, changes in agricultural output due to climate change are valued using expected market prices 
for key agricultural commodities. Use of prices to value commodities traded in markets is generally 
consistent with the Kaldor-Hicks criterion, sometimes called an economic efficiency test. For damage 
categories that involve non-market impacts (commodities or services not traded in the market, like 
changes in mortality risks) there is no readily observed price information and there are challenges in 
capturing the value of something as precious as changes in life expectancy. However, economists have 
developed a robust literature to infer values for these non-market commodities using methods that are 
consistent with the economic efficiency test. Because of data limitations and other constraints to 
performing original research to develop location- and context- specific values to assign to each non-
market impact, analysts regularly need to draw upon existing value estimates for use in benefits analysis 

 
140 The Pareto criterion maintains that if an economic change does not harm any individual and makes at least one 
individual better off, there is an increase in social welfare. The Kaldor-Hicks criterion captures the intuition of the 
Pareto criterion, but allows for the identification of potential improvements in social welfare under conditions where 
some may be made worse off by the economic change. For a potential increase in social welfare, there needs to be 
a “potential” Pareto improvement, which occurs when those who gain from the economic change would be willing 
to fully compensate those made worse off from the economic change. From this criterion, the rules of BCA as an 
economic efficiency test follow, including the use of the consumer sovereignty principle whereby BCA must value 
benefits and costs based on individuals’ willingness to pay. If the impacts to individuals are measured using a value 
other than their willingness to pay, the results of the BCA will be unable to identify potential Pareto improvements 
under the Kaldor-Hick criterion and their interpretation may be unclear. The discipline of the private market to 
allocate resources cannot work for pollution, so the BCA helps provide this information as one input, amongst many, 
in the decision-making process. As in a private market, the price in the simulated market test should equal the 
willingness to pay of individuals on the margin, as any other valuation would cause the test to fail in answering its 
question. See EPA (2010) for more discussion.  
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through “benefits transfer.”141  The benefits transfer methods used by the developers of the DSCIM and 
GIVE damage functions used in this report are also consistent with the economic efficiency test. 

The challenge of valuing climate-related mortality risks provides an illuminating application of these 
methods. As shown in Section 3.1, net costs of expected premature mortality associated with climate 
change driven changes in hot- and cold weather comprise the largest share of the DSCIM and GIVE based 
SC-GHG estimates presented in this report.142 It is worth noting that valuing premature mortality risks in 
EPA BCAs is a routine occurrence. Particulate matter, ozone, lead, and many other environmental 
contaminants can increase mortality risks through various modes of action including, increased 
cardiovascular disease, cancer, and respiratory disease. To value changes in these mortality risks, EPA uses 
published research that estimates individuals’ willingness to pay to reduce mortality risks in their own 
lives – a number that is inaptly termed the “Value of Statistical Life” (VSL) 143 – and then transfers these 
willingness to pay (WTP) estimates to the risk reductions expected from EPA policy options.144,145  

EPA’s benefit transfer also recognizes that as per capita income increases, willingness to pay for mortality 
risk reductions also increases. This parallels the fact that as their income increases individuals are willing 
to pay more for most goods and services.146 EPA increases the willingness to pay estimate over time to 
reflect projected per capita income growth (i.e., by applying a positive income elasticity) as a way to 
capture that the wealthier we are, the greater our willingness to pay to avoid mortality risks consistent 
with the empirical evidence. For example, applying an income elasticity of one implies that for every one 
percent increase in per capita income, the value of mortality risk reductions increases by one percent, 
such that the willingness to pay for mortality risk reductions remains a constant share of people’s income. 
EPA’s VSL methodology is peer reviewed by its Science Advisory Board (SAB). EPA periodically engages in 
a consultation with the SAB on the appropriate range of income elasticities.  

In estimating the SC-GHG, the question becomes what VSL to use to monetize expected mortality risk 
reductions occurring in other countries. Given the small number of high-quality VSL studies in many 
countries, the vast majority of countries do not have their own official recommended VSL estimates or 

 
141 Benefits transfer is the process of applying values estimated in previous studies to a new context. See EPA (2010) 
for an overview of current EPA guidance on best practices in benefits transfer.  
142 Mortality risk changes are also partially captured in the coastal damage category in each model. See Section 2.3 
for more discussion. 
143 As noted by the SAB, “the conventional term used to describe the value of risk reduction (the “value of a statistical 
life,” or VSL) is easily misinterpreted, leading to confusion about key concepts” (EPA 2011). As explained in OMB 
Circular A-4 the “phrase can be misleading because it suggests erroneously that the monetization exercise tries to 
place a "value" on individual lives”; “…. these terms refer to the measurement of willingness to pay for reductions 
in only small risks of premature death. They have no application to an identifiable individual or to very large 
reductions in individual risks. They do not suggest that any individual's life can be expressed in monetary terms. Their 
sole purpose is to help describe better the likely benefits of a regulatory action” (OMB 2003).  Put another way, the 
VSL “represents the rate at which an individual views a change in the money he or she has available for spending as 
equivalent to a small change in his or her own mortality risk within a specific time period, such as one year” (Robinson 
et al. 2019b). 
144 For more details on the derivation of EPA’s values for mortality risk reductions, see EPA’s Guidelines for Preparing 
Economic Analyses (2010), p. 7-8.   https://www.epa.gov/sites/default/files/2017-09/documents/ee-0568-07.pdf   
145 A willingness to pay to reduce mortality risk is a ratio, where the numerator reflects the marginal disutility of 
(usually small) increases in probability of experiencing premature mortality, usually within the next year, and the 
denominator is the marginal utility associated with additional income/consumption. 
146 In economics, goods for which individuals increase their demand as their income rises, signifying an increased 
willingness to pay, are called normal goods. 

https://www.epa.gov/sites/default/files/2017-09/documents/ee-0568-07.pdf
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estimates from the empirical literature that can be readily adopted (Robinson et al. 2019a). Therefore, 
analysts must rely on benefits transfer techniques to develop VSL estimates for other countries that are 
extrapolated from existing estimates in the U.S. or other countries with robust empirical estimates. 

With respect to this report, both the GIVE and DSCIM based damage modules explicitly model changes in 
the risk of premature mortality due to GHG emissions driven climate change and monetize these climate-
related mortality risks consistent with the economic efficiency paradigm. Specifically, as described in 
Section 2.3, projected changes in premature mortality in the U.S. are monetized using the same value of 
mortality risk reduction as in the EPA’s regulatory analyses ($4.8 million in 1990 (1990USD)) and adjusted 
for income growth and inflation following current EPA guidelines and practice (EPA 2010) and consistent 
with SAB advice (see e.g., EPA 2011, OMB 2003), resulting in a 2020 value of $10.05 million (2020USD). 
Valuation of mortality risk changes outside the U.S. is based on an extrapolation of the EPA value that 
equalizes willingness-to-pay as a percentage of per capita income across all countries (i.e., using an 
assumed income elasticity of 1). The use of a benefits transfer approach based on a positive income 
elasticity is consistent with the approach used in the default version of the damage functions and 
published studies used in this report (e.g., Rennert et al. 2022b, Carleton et al. 2022, and Diaz 2016), other 
academic literature (e.g., Hasegawa et al. 2016, Springmann et al. 2016, Sarofim et al. 2017, Markandya 
et al. 2018, and the Lancet Commission on pollution and health (Landrigan et al. 2018)), advice given to 
the IWG by experts at the 2011 U.S. EPA and U.S. DOE Workshop on Improving the Assessment and 
Valuation of Climate Change Impacts for Policy and Regulatory Analysis (ICF International 2011), and other 
prominent domestic and international guidance documents that speak to international mortality risk 
reduction valuation. See, for example, the 2019 Gates Foundation Reference Case Guidelines for Benefit-
Cost Analysis in Global Health and Development Guidelines (Robinson et al. 2019a) and literature cited 
therein (e.g., Robinson et al. 2018, 2019b, OECD 2016, World Bank and IHME 2016, Viscusi and Masterman 
2017a, 2017b, Masterman and Viscusi 2018), and the U.S. Millennium Challenge Corporation guidance for 
conducting benefit-cost analysis (MCC 2021). Many international organizations also regularly use country-
level measures of the willingness-to-pay for mortality risk reductions based on a positive income elasticity 
in cross country analyses (see, for example, Tan-Soo 2021, Roy and Braathen 2017, Roy 2016, 
Laxminarayan et al. 2007). 

Given that the methodology in this report is grounded in a willingness to pay concept and the empirical 
evidence shows a positive relationship between income and the willingness to pay for mortality risk 
reductions, the willingness to pay for mortality risk reductions in countries with lower average incomes is 
less than the willingness to pay for mortality risk reductions in higher income countries. It is important to 
stress that this metric does not reflect the “value” that this approach places on mortality risks in different 
parts of the world. Rather, it reflects an estimate of the willingness to pay for mortality risk reductions by 
the average resident of countries or regions conditional on their income. EPA’s Science Advisory Board, 
while reviewing our methodology to assign monetized estimates to mortality risk reductions also 
recognized this challenge:  

 “While it is clear from economic theory that individual WTP may vary with individual and risk 
characteristics, the SAB acknowledges that the objectives, methods, and principles underlying benefit cost 
analysis and particularly the values of mortality risk reductions and other non-market goods are often 
misunderstood or rejected as inappropriate by many participants and commentators on the policymaking 
process. In the past, for example, the Agency was criticized for considering VRRs [VSL] that differ by 
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individuals’ age. However, as acknowledged in the White Paper, values for health risk reductions are not 
“one size fits all.” Applying a willingness to pay value to a targeted population (such as low income or 
elderly) that exceeds that group’s willingness to pay for reduced risk could result in decisions that 
ultimately reduce the well-being of the targeted group. The proposed change of terminology and 
application of VRRs [VSL] that differ with individual and risk characteristics provide an opportunity for 
constructive engagement with the public and other interested parties concerning these topics.”147 (EPA 
2011).       

It is important to note that EPA’s BCAs, based on the economic efficiency criterion, is one of several 
economic analyses done to inform decision making and the public. Notably, distributional considerations 
are also paramount. In general, when a BCA is undertaken, EPA also conducts an environmental justice 
analysis, examining the incidence of environmental impacts both in the baseline and those that would 
result from the policy options under review.148 This is in addition to economic impact analyses that are 
conducted by EPA to examines how different populations are affected by other expected outcomes of the 
policy options.    

There is also a separate literature that argues that equity and other concerns should be addressed directly 
throughout all elements of a BCA (e.g., Scitovsky 1951, Lutz 1995, Farrow 1998, Persky 2001, Little 2002). 
This issue comes up with regard to climate change, since the impacts of climate change are not 
manifesting uniformly across space and populations, as highlighted in Section 3.2, with some of the most 
vulnerable populations living in locations that will experience some of the most severe effects. These 
facets of climate change have led some analysts (e.g., Azar and Sterner 1996; Fankhauser et al. 1997; Azar 
1999; Anthoff et al. 2009; Anthoff and Tol 2010; Dennig et al. 2015, Anthoff and Emmerling 2019) to 
employ “equity weighting” to incorporate distributional equity objectives into estimates of the SC-GHG. 
As noted by Anthoff and Emmerling (2019), “[e]xisting equity weighting studies assume a social welfare 

 
147 In that same review, the SAB opined more specifically on whether EPA should use a country-wide average VSL or 
more granular VSL estimates. While this SAB review was addressing how mortality risks for domestic EPA regulations 
should be valued, the insight is easily extended to how the mortality risks in other countries are valued in this report. 
"Recognizing that VRR [VSL] is a metric that can vary with both individual and risk characteristics, the conceptually 
appropriate method to estimate the benefits to the U.S. population of a change in mortality risk that results from 
environmental policy is to estimate the risk changes faced by each individual over time, value these changes using 
the appropriate individual VRRs [VSLs], and sum the results over the population. In contrast, an alternative “short-
cut” approach is conventionally applied. The short-cut approach is to multiply the number of people in the 
population by the population-mean risk reduction (yielding the number of “lives saved”) and multiply that by the 
population-mean VRR [VSL]. The short-cut approach yields an approximation to the conceptually appropriate 
method. It requires information on only the average VRR [VSL] and risk reduction, not on how VRR [VSL] and risk 
reduction vary across individuals. The approximation is exact when any of three conditions hold: (a) all individuals 
face the same risk reduction; (b) all individuals have the same VRR; or (c) individual risk reductions and VRRs 
[VSLs]are uncorrelated in the population. If none of these conditions holds, the short-cut approach introduces bias 
as a result of “premature aggregation” (Cameron 2010, Hammitt and Treich 2007)” EPA (2011).  

148 EPA has detailed technical guidance on conducting environmental justice analyses.  See Technical Guidance for 
Assessing Environmental Justice in Regulatory Analysis, EPA 2015.  
https://www.epa.gov/environmentaljustice/technical-guidance-assessing-environmental-justice-regulatory-
analysis    

https://www.epa.gov/environmentaljustice/technical-guidance-assessing-environmental-justice-regulatory-analysis
https://www.epa.gov/environmentaljustice/technical-guidance-assessing-environmental-justice-regulatory-analysis
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function (SWF) that exhibits inequality aversion over per capita consumption levels.” As defined by EPA’s 
SAB “[a] social welfare function essentially involves two stages. In the first stage, each group has its own 
definition of welfare, which is impacted by the various effects set out in this chapter. In the second stage, 
the groups are weighted to account for distributional concerns” (EPA 2021f). The argument for equity 
weighting in this strand of literature is “that a given (say one dollar) cost which affects a poor person (in 
a poor country) should be valued as a higher welfare cost than an equivalent cost affecting an average 
[high income country] citizen” to reflect a decreasing marginal utility of income (Azar and Sterner 1996). 
The degree to which the valuations differ across those individuals will, in part, be dependent upon the 
degree of society’s intra-temporal inequality aversion specified within the SWF. 

In place of directly incorporating distributional equity objectives through the specification of a SWF, a 
couple of studies have explored the impact of alternative VSL assumptions within the analysis of mortality 
impacts of climate change. Bressler (2021), in an effort to reflect distributional concerns, considered the 
use of a constant VSL across all countries in place of an income adjusted VSL designed to reflect willingness 
to pay. This approach weights the value of mortality risk changes to residents of lower income countries 
such that it is higher than their willingness to pay and weights mortality risk changes to higher income 
countries such that they are valued less than their willingness to pay. Carleton et al. (2022) included an 
empirical exploration in sensitivity analyses of how climate-related mortality damages change under a 
variety of valuations. They found net damages from climate change mortality risk changes of $15-$65 per 
ton CO2 when using a WTP-based VSL (similar to the approach used in this report) and damages of $46-
$144 per ton CO2 when using a global average VSL, where the range is across the socioeconomic-emissions 
scenario modeled.149  

While EPA will continue to assess the broader literature on BCA, social welfare, and equity as it seeks to 
apply the best available science in its analyses, this report develops SC-GHG estimates that are consistent 
with the Kaldor-Hicks criterion that underlies all the other elements of the EPA’s BCAs. In addition, this 
approach is consistent with the benefits transfer approaches used in the default versions of the damage 
functions and published studies used in this report. This approach also ensures that U.S. mortality risks 
from climate impacts are valued consistently with how EPA values U.S. mortality risks from other causes. 
In addition to conducting a Kaldor-Hicks based BCA, EPA has and will continue to conduct detailed analyses 
of environmental justice concerns of climate change in its rulemakings as required and appropriate150 and 
the distributional outcomes of climate change in detailed quantitative analyses,151 so as to ensure that 
decision-makers and the public have robust information as to the damages of climate change and their 
distributional effects. 

 

 
149 These values were calculated using a constant 2% discount rate and only reflect damages from net changes in 
mortality risks from climate change using a different scenarios and climate modeling than was applied in this report. 
150 For example, https://www.epa.gov/regulations-emissions-vehicles-and-engines/final-rule-revise-existing-
national-ghg-emissions. 
151 For example, 2021 Climate Change and Social Vulnerability report (EPA 2021e). 
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