Guidelines on Validation of Non-Regulatory Chemical and Radiochemcial Methods (EPA/600/B-22/001, 2022): Method Validation Summary for SW-846 Methods 3512 and 8327

The Guidelines provide collected information on critical areas of method performance assessment for validation studies. The Method Validation Summary Table from the Gudelines is designed to provide consistency in delivery of summary method validation results in a concise, easy-to-prepare and share format. Below is an example of the Table completed for the US EPA SW-846 Methods 3512 and 8327. Links to the complete report can be found at the end of the Table.

Α	Validation Design	Description
1	Number of Laboratories	8
2	Number of Matrices	3
3	Types of Matrices Tested (water,	Groundwater, surface water, wastewater
	soil, sediment, etc.)	

В	Method Validation Overview	Description
1	Method Title	• SW-846 Method 3512: Solvent Dilution of
		Non-Potable Waters
		• SW-846 Method 8327: Per- and Polyfluoroalkyl
		Substances (PFAS) by Liquid Chromatography-
		Tandem Mass Spectrometry (LC/MS/MS)
2	Organization	EPA/Office of Land and Emergency
		Management/Office of Resource Conservation and
		Recovery
3	Date	July 2021
4	Purpose	To validate the preparation and analysis of non-potable
		water samples for select PFAS by LC/MS/MS
5	Qualitative or Quantitative	Quantitative
6	Target Analytes/Parameters	Validated for 24 PFAS target analytes, including:
		 C4-C14 perfluorinated carboxylic acids
		• C4-C10 perfluorinated sulfonic acids,
		• 4:2, 6:2, and 8:2 Fluorotelomer Sulfonic Acids
		(FTS)
		• perfluorooctane sulfonamide
		• N-ethyl and N-methyl perfluorooctane
		sulfonamidoacetic acids
		Please refer to Method 8327 for more detail

C	Method Development Considerations	Description and/or Results
1	Sample Cost	Not Determined
2	Recommended Sample Holding	Sample collection to preparation: 14 days
	Times	Sample preparation to analysis: 30 days
3	Sample Preservation	Refrigerate at 0-6°C
4	Waste Generation	These methods generate relatively small amounts of
		waste due to:
		• Small recommended sample volumes;
		• Low volumes of reagents and solvents used for
		sample preparation; Liquid chromatography
		columns with particle sizes $\leq 2 \ \mu m$ achieve
		efficient separations at low flow rates

Notes on Section C:

-C2 Holding times are published as guidelines and were based on holding time studies conducted for other PFAS methods, including EPA methods 533 and 537.1 and ASTM D7979-20.

D	Method Performance	Description and/or Results
	Characteristic	
1	Bias/Trueness	Average (median) recovery across eight laboratories
		ranged from 80-118% at 95% confidence for every
		target analyte except 6:2 FTS in each matrix type and
		prepared concentration level.
2	Detection Capability and	Lower limits of quantitation (LLOQs) across eight
	Quantification Capability	laboratories were verified at nominal concentrations of
		10-20 ng/L at 95% confidence for all target analytes
		except for 8:2 FTS (40 ng/L) and 6:2 FTS (160 ng/L).
3	Instrument Calibration	Target analytes were calibrated by external standard
		using weighted regression.
4	Measurement Uncertainty	Not Applicable
5	Precision	Relative standard deviation (RSD) of measured
		concentrations in spiked samples was <50% in every
		matrix and spike level combination in each laboratory
		except for PFOS in one laboratory/matrix/spike level
		and 6:2 FTS in three laboratory/matrix/spike level
		combinations.
6	Range	LC/MS/MS initial calibration range was from 5 to 200
		ng/L (nominal). No attempt was made to determine an
		upper limit for quantitative analysis.
7	Ruggedness	Formal ruggedness testing was not performed as part of
		the validation study.
8	Selectivity in the Presence of	No major sources of interferences were observed that
	Interferences	impacted qualitative identification of target analytes.

Notes on Section D:

- D1 Validation study samples were tested unspiked or spiked at nominal concentrations of 60 and 200 ng/L. Each laboratory tested 5 replicate spiked samples of each matrix at each prepared concentration. Samples were prepared centrally and shipped to laboratories, which were blind to the identities of the

samples and their prepared concentrations. Half of the participating laboratories reported background contamination with 6:2 FTS.

- D2 High verified LLOQs for 6:2 FTS were attributed to background contamination in half of participating laboratories. Methods 3512 and 8327 are performance-based, and laboratories are required to establish and periodically verify LLOQs at which they can routinely meet the acceptance criteria for all categories of quality controls. Refer to Method 8000D Section 9.7 and Method 8327 Section 9.9 for more information about establishing and verifying LLOQs <u>https://www.epa.gov/hw-sw846/sw-846-compendium</u>.

- D4 Methods 3512 and 8327 are performance-based, and, like many other SW-846 methods, they recommend applying statistically-based or project-defined acceptance limits for recovery and precision in field samples and associated prepared quality control samples.

- D5 PFOS imprecision was attributed to variability in background concentrations in wastewater samples, and 6:2 FTS imprecision was attributed to laboratory contamination in half of participating laboratories.

- D7 Laboratory deviations from the method validation study protocol led to the addition cautionary measures to the methods related to ruggedness, including: 1) avoiding aqueous subsampling prior to adding sufficient organic solvent; and 2) avoiding storage of prepared samples and standards in glass containers.

- D8 Some PFAS target analytes do not make secondary product ions with sufficient relative abundance to be useful for supporting qualitative identification.

Related Links:

- 1. Executive summary: <u>https://www.regulations.gov/document/EPA-HQ-OLEM-2018-0846-0111</u>
- 2. Quality Control summary report: <u>https://www.regulations.gov/document/EPA-HQ-OLEM-2018-0846-0005</u>