

Ohio EPA Surface Water Monitoring Program

Ohio EPA's Approach

- Multiple Indicators
 - Stressors
 - DMRs, fish kills, spills, habitat, land use
 - Exposure
 - chemical water quality
 - toxicity tests
 - sediment quality
 - fish tissue
 - Response
 - fish
 - macroinvertebrates

Ohio EPA Biological Indicators

Protection Agency

Fish Communities

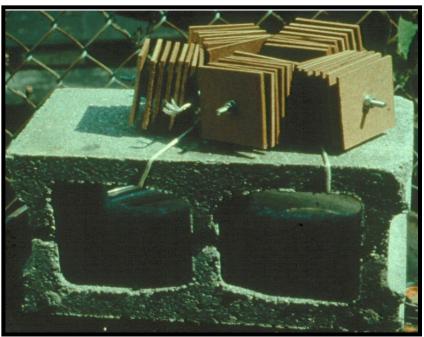
Index of Biotic Integrity Components in Ohio

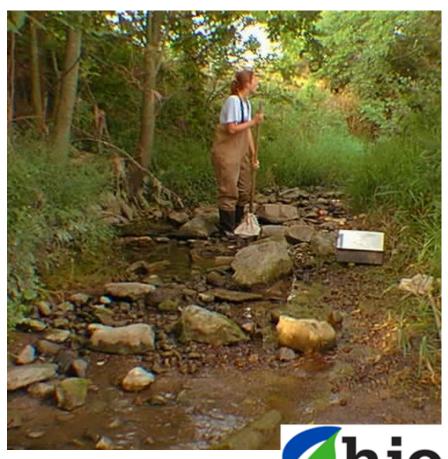
	<u>Variable Measured</u>	Type of Sit
1.	Total Number of Species	HWB
2.	Number of Darter Species	HW
	Percent Round-bodied Suckers	В
3.	Number of Sunfish Species	WB
	Number of Headwater Species	H
4.	Number of Sucker Species	WB
	Number of Minnow Species	Н
5.	Number of Intolerant Species	WB
	Number of Sensitive Species	Н
6.	Percent of Tolerant Species	HWB
7.	Percent of Omnivorous Species	HWB
8.	Percent of Insectivorous Species	HWB
9.	Percent of Top Carnivores	WB
	Percent of Pioneering Species	Н
10.	Number of Individuals	HWB
11.	Percent of Hybrids	WB
	Number of Simple Lithophilic Species	< H>
12.	Percent of DELT Anomalies	HWB

Type of Site: H-Headwater W-Wading B-Boat

DELT-Deformities, eroded fins, lesions, and tumors

IBI criteria as taken from Ohio EPA 1987a


IBI scores can range from 12-60


Macroinvertebrate Communities

Artificial Substrates

Qualitative Sample of Natural Substrates

Ohio Environmental Protection Agency

Invertebrate Community Index Components

- EPT- Ephemeroptera, Plecoptera, and Trichoptera (specific types of invertebrate taxa); ICI criteria as taken from Ohio FPA 1989
- Total maximum ICI score of 60
- Total minimum ICI score of 0

Variable Measured

- 1. Total Number of Taxa
- 2. Total Number of Mayfly Taxa
- 3. Total Number of Caddisfly Taxa
- 4. Total Number of Dipteran Taxa
- 5. Percent of Mayflies
- 6. Percent of Caddisflies
- 7. Percent of Tribe Tanutarsini Midges
- 8. Percent of Other Dipterans and Non-insects
- 9. Percent of Tolerant Organisms
- 10. Total Number of EPT Taxa

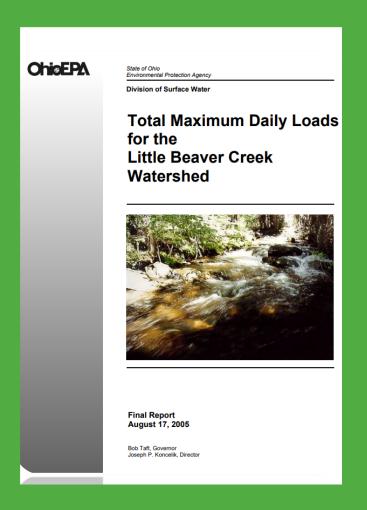
Habitat Analysis

Ohio EPA developed the Qualitative Habitat Evaluation Index to evaluate physical attributes of streams. The maximum score is 100. Streams with a score greater than 60 are expected to have the physical habitat to support a healthy fish community.

Qualitative Habitat Evaluation Index and Use Assessment Field Sheet

HEI Score:	
------------	--

	and Use Assessment Field She	et
Stream & Location	n:	RM: Date:// 06
	Scorers Full Name & Affiliati	
River Code:	STORET #: Lat./ Long.:	/8Office verified location
BEST TYPES BEST TYPES BUDDER [9] COBBLE [8] GRAVEL [7] SAND [6]	POOL RIFFLE OTHER TYPES POOL RIFFLE ORIGIN	Company Comp
quality; 3-Highest quali diameter log that is sta UNDERCUT BAI OVERHANGING	VER Indicate presence 0 to 3: 0-Absent; 1-Very small amounts or if more co quality; 2-Moderate amounts, but not of highest quality or in small amounts in moderate or greater amounts (e.g., very large boulders in deep or fast tible, well developed rootwad in deep / last water, or deep, well-defined, funct NKS [1] POOLS > 70cm [2] OXBOWS, BACKW VEGETATION [1] ROOTWADS [1] AQUATIC MACRO SLOW WATER) [1] BOULDERS [1] LOGS OR WOODY	water, large
SINUOSITY DI HIGH [4] MODERATE [3] LOW [2]	PHOLOGY Check ONE in each category (0r 2 & average)	
River right looking downs REROSION NONE / LITTLE [3]	WIDE > 50m [4]	ALITY CONSERVATION TILLAGE [1] CUNSERVATION TILLAGE [1] UNDAY CONSTRUCTION [0] Indicate predominant land use(s)
5] POOL / GLIDE A MAXIMUM DEPT Check ONE (ONLY!) > 1m [6] 0.7-<1m [4] 0.4-<0.7m [2] 0.2<<0.4m [1] < 0.2m [0] Comments	(f) Check ONE (Or 2 & average) Check ALL that apply □ POOL WIDTH > RIFFLE WIDTH [2] □ TORRENTIAL [-1] □ SLOW □ POOL WIDTH = RIFFLE WIDTH [1] □ VERY FAST [1] □ INTER	Primary Contact Secondary Contact Secondary Contact (circle one and comment on back) SES [1] Pool
Indicate for fur of riffle-obligat RIFFLE DEPTH BEST AREAS > 10cm BEST AREAS 5-10cm BEST AREAS < 5cm [metric	RUN DEPTH RIFFLE / RUN SUBSTRATE n [2] MAXIMUM > 50cm [2] STABLE (e.g., Cobble, Boulder) [2] MAXIMUM < 50cm [1] MOD. STABLE (e.g., Large Gravel) [1] UNSTABLE (e.g., Fine Gravel, Sand) [6]	ort a population NO RIFFLE [metric=0] RIFFLE / RUN EMBEDDEDNESS NONE [2] LOW [1]
6] GRADIENT (DRAINAGE ARI	ft/mi)	%GLIDE: Gradient Maximum 10


QHEI Field Sheet

EPA 4520 06/:

Ohio EPA most recently sampled in 2022.

A water quality report will be prepared based on the results.

Comprehensive Water Quality Surveys in:

- 1985
- 1999
- 2022

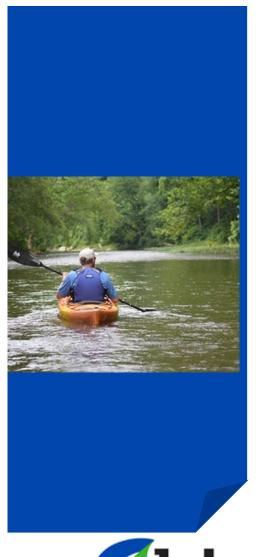
Biological Criteria

Index	Modifie	ed warmwate	Warmwater	Exceptional			
Sampling site	Channel	Mine	Impounded	habitat	warmwater		
Sampling site	modif.	affected	impounded	павна	habitat		
Ecoregion ¹							
(A) Index of biotic integrit	y (fish)		•				
(1) Wading sites ²							
HELP	22			32	50		
IP	24			40	50		
EOLP	24			38	50		
WAP	24	24		44	50		
ECBP	24			40	50		
(2) Boat sites ²							
HELP	20		22	34	48		
IP	24		30	38	48		
EOLP	24		30	40	48		
WAP	24	24	30	40	48		
ECBP	24		30	42	48		
(3) Headwater sites ³							
HELP	20			28	50		
IP	24			40	50		
EOLP	24			40	50		
WAP	24	24		44	50		
ECBP	24			40	50		
(B) Modified index of well	being (fish)4						
(1) Wading sites ²							
HELP	5.6			7.3	9.4		
IP	6.2			8.1	9.4		
EOLP	6.2			7.9	9.4		
WAP	6.2	5.5		8.4	9.4		
ECBP	6.2			8.3	9.4		
(2) Boat sites ²							
HELP	5.7		5.7	8.6	9.6		
IP	5.8		6.6	8.7	9.6		
EOLP	5.8		6.6	8.7	9.6		
WAP	5.8	5.4	6.6	8.6	9.6		
ECBP	5.8		6.6	8.5	9.6		

Ohio was the first state to adopt numeric biocriteria

Index	Modifie	ed warmwater	Warmwater	Exceptional		
Sampling site	Channel modif.	Mine affected	Impounded	habitat	warmwater habitat	
Ecoregion ¹						
(C) Invertebrate communit(1) Artificial substrate s		roinvertebrate	es)			
HELP	22			34	46	
IP	22			30	46	
EOLP	22			34	46	
WAP	22	30		36	46	
ECBP	22			36	46	

					•
Station Name	RM	DA	IBI	QHEI	
LESLIE RUN AT NEGLEY @ ST. RT. 154	0.09	14.30	54	64.00	
LESLIE RUN UPST EAST PALESTINE WWTP	3.30	10.80	44	56.00	Upstream
					Downstream
BULL CREEK W OF NEGLEY, ADJ. ST. RT. 154	1.90	39.40	52	57.00	
BULL CREEK SE OF NEW WATERFORD @ ST. RT.					
46	6.05	15.10	50	74.30	
BULL CREEK @ TWP. RD. 923	9.30	11.40	38	47.50	
N. FK. L. BEAVER CREEK AT FREDERICKTOWN @					
FREDERICKTOWN RD.	0.13	193.00	56	83.50	
N. FK. L. BEAVER CREEK DST CONFL OF	00	100.00		00.00	
STATELINE CREEK	7.26	109.00	54		
N. FK. L. BEAVER CREEK @ OHIO/PA STATE LINE	7.20	100100			
(NORTH CROSSING)	30.12	19.50	42	65.70	
(NOTHIT ORGESTIVE)	00.12	10.00		00.70	
L. BEAVER CREEK NEAR EAST LIVERPOOL @					
GRIMMS BRIDGE RD.	4.50	496.00	56	77.00	
L. BEAVER CREEK NEAR FREDERICKTOWN @	7.00	+50.00		11.00	
ST. RT. 170	7.95	294.00	54	83.00	
01.10	1.35	234.00	- 54	03.00	
L. BEAVER CREEK @ STATE PARK PICNIC AREA	15.00	261.00	54	72.50	
L. BLAVEN CHEEK W STATE FANK FIGNIC AREA	RM	201.00	34	72.50	•
Sulfur Run enters Leslie Run	3 37				


Sulfur Run enters Leslie Run
Leslie Run enters Bull Creek
Bull Creek enters NF LBC
NF LBC enters LBC
7.95

RM
3.37

Leslie Run enters Bull Creek
0.84

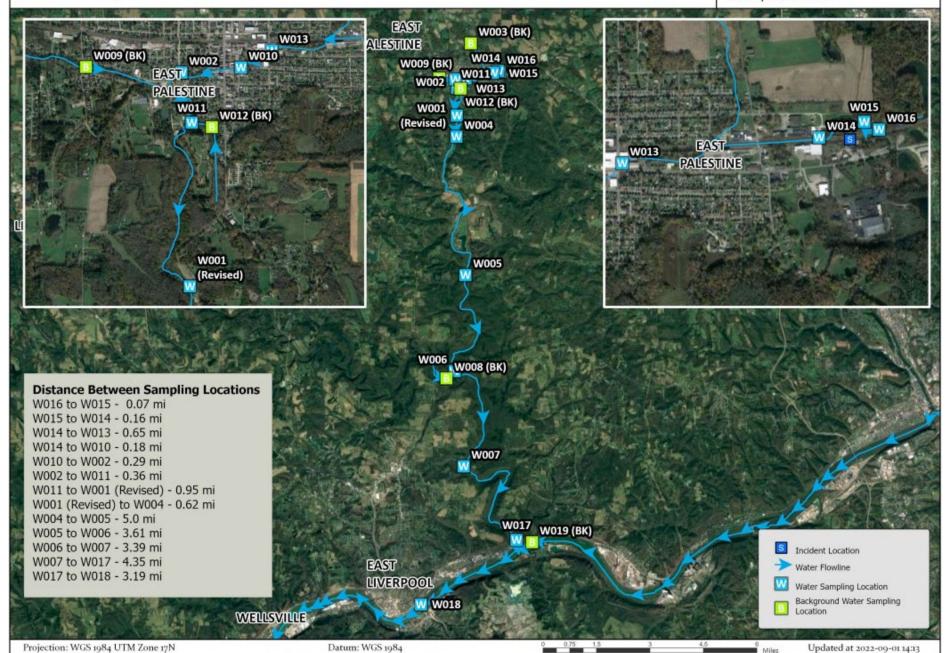
Ohio Environmental
Protection Agency

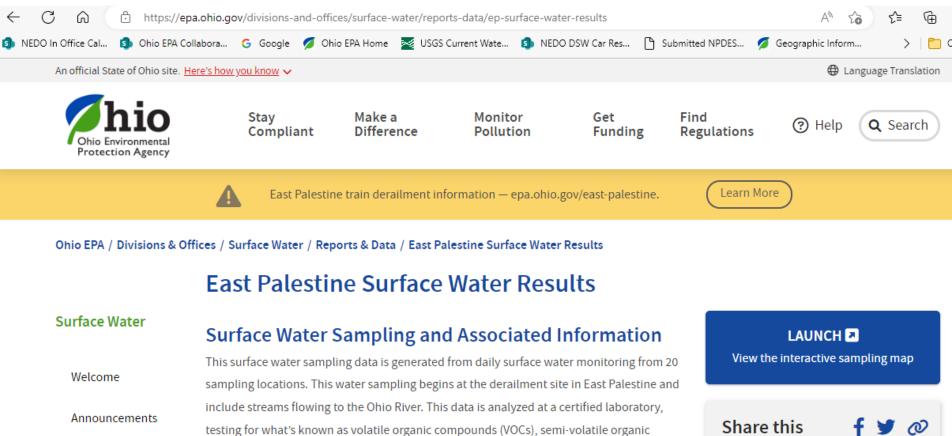
RIVER MILE		Mod.			Use Attain	
Fish/Macro.	IBI	Iwb	ICI ^a	QHEI	ment Status	sa Comments
North Fork Lit	tle Bea	ver Cree	k (198.	5)		
		West	tern All	legheny	Plateau–WW	H Use Designation
$7.6^{(W)}/7.6^{R}$	45	7.3*	40	80.0	PARTIAL	Ust. Stateline Creek
7.3 ^(W) /7.4	43^{ns}	7.9^{ns}	38	88.0	FULL	Dst Stateline Creek/Ust. Bull Creek
5.6 ^(W) /5.6	42^{ns}	8.3ns	34^{ns}	79.0	FULL	Dst. Bull Cr./Carmel-Anchor Rd.
$0.4^{(W)}/0.1$	37*	6.1*	44	75.5	PARTIAL	Near mouth @ Frederickstown
Brush Run (19	99)					
		Eri	e Onta	rio Lake	Plain- WWF	I Use Designation
$0.1^{(H)}/0.4$	50	NA	38	81.5	FULL	Near Mouth
Bull Creek (19	99)					
		Eri	e Onta	rio Lake	Plain- WWI	I Use Designation
9.3 ^(H) /9.3	34*	NA	VG	71.5		Bull Creek Rd.
$6.0^{(H)}/6.0$	52	NA	58	64.5	FULL	Dst. N. Waterford WWTP/SR 558
1.9 ^(W) /1.9 ^R	44	8.7	VG	59.5	FULL	Ust. Leslie Run/Pioneer Rd.
$0.6^{(W)}/0.5$	52	9.2	34	63.5	FULL	Dst. Leslie Run/adj. SR 170
Bull Creek (19	85)					-
		Eri	e Onta	rio Lake	Plain- WWF	I Use Designation
1.9 ^(W) /1.9 ^R	38	8.0	E	85.0	FULL	Ust. Leslie Run/Pioneer Rd.
$0.6^{(W)}/0.6$	38	8.4	F*	70.0	PARTIAL	Dst. Leslie Run/adj. SR 170
Leslie Run (19	99)					-
		Eri	e Onta	rio Lake	Plain- WWI	I Use Designation
$4.1^{(H)}/4.2$	46	NA	VG	41.5	FULL	Kemple Rd.
$3.3^{(H)}/3.3$	29*	NA	F*	44.5	NON	Dst. Roshel Trib./Ust. E. Palestine WWT
1.9 ^(H) /1.9	35*	NA	<u>P</u> *	49.5	NON	Dst. E. Palestine WWTP
$0.2^{(H)}/0.1$	47	NA	26*	71.5	PARTIAL	Bye Rd.
Leslie Run (19	85)					•
		Eri	e Onta	rio Lake	Plain- WWI	I Use Designation
4.1 ^(H) /4.1	36 ^{ns}	NA	MG	60.0	FULL	Kemple Rd.
3.3 ^(H) /3.3	16*	NA	VP*	60.0	NON	Dst. Roshel Trib./Ust. E. Palestine WWI
1.9 ^(H) /1.9	15*	NA	VP*	54.0	NON	Dst. E. Palestine WWTP
$0.2^{(H)}/0.2$	33*	NA	P*	56.0	NON	Bye Rd.

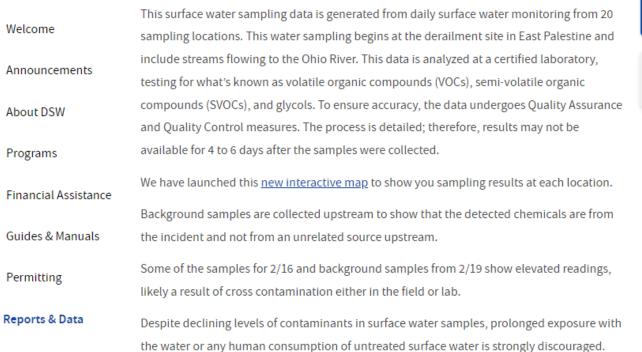
Average of Value	Watershed	Leslie Run	
Ammonia	0.06	0.04	mg/L
Hardness, Total	278.93	288.89	mg/L
Iron	387.18	191.84	ug/L
Nitrate	2.60	3.16	mg/L
Total Dissolved Solids	504.51	463.37	mg/L
Total Phosphorous	0.07	0.09	mg/L

Ohio EPA 2022

Table 35-1. Statewide water quality criteria for the protection of aquatic life. Page 1 of 2											
Chemical	Form ¹	Units ²	IMZM ³	OMZM ³	OMZA ³						
Ammonia-N (WWH)	T	mg/l		Table 35-2	Table 35-5						
Ammonia-N (EWH)	T	mg/l		Table 35-3	Table 35-6						
Ammonia-N (MWH)	T	mg/l		Table 35-2	Table 35-7						
Ammonia-N (SSH4)	T	mg/l		Table 35-4	a						
Ammonia-N (CWH)	T	mg/l		Table 35-4	Table 35-8						
Ammonia-N (LRW)	T	mg/l		Table 35-2							


3745-1-35

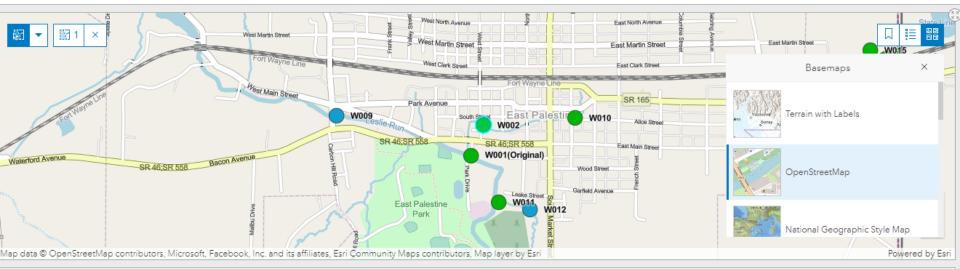

Table 35-3.
Exceptional warmwater habitat outside mixing zone maximum total ammonia-nitrogen criteria (mg/l).


	pH	6.5	6.7	6.9	7.0	7.1	7.2	7.3	7.4	7.5	7.6	7.7	7.8	7.9	8.0	8.1	8.2	8.3	8.4	8.5	8.6	8.8	9.0
Tem	p. (°C)																						
0 1		13.0 13.0	12.6 12.4	10.9 10.7	9.3 9.1	7.8 7.7	6.6 6.5	5.2 5.2	4.2 4.1	3.3 3.3	2.6 2.6	2.1 2.1	1.7 1.7	1.1 1.1	0.7 0.7								
2		13.0 13.0	12.2 12.1	10.6 10.4	9.0 8.9	7.6 7.5	6.4	5.1 5.0	4.1 4.0	3.2 3.2	2.6	2.1	1.6 1.6	1.1 1.1	0.7 0.7								
4		13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	11.9	10.3	8.8	7.4	6.2	5.0	4.0	3.2	2.5	2.0	1.6	1.0	0.7
5		13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	11.8	10.2	8.7	7.3	6.2	4.9	3.9	3.1	2.5	2.0	1.6	1.0	0.7
6		13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	11.6	10.1	8.6	7.3	6.1	4.9	3.9	3.1	2.5	2.0	1.6	1.0	0.7
7		13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	11.5	9.9	8.5	7.2	6.0	4.8	3.8	3.1	2.5	2.0	1.6	1.0	0.7
8		13.0 13.0	13.0 12.9	11.4 11.3	9.8 9.8	8.4 8.3	7.1 7.1	6.0 5.9	4.8 4.7	3.8 3.8	3.0 3.0	2.4	2.0 1.9	1.6 1.6	1.0 1.0	0.7 0.7							
10		13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	12.8	11.2	9.7	8.3	7.0	5.9	4.7	3.7	3.0	2.4	1.9	1.6	1.0	0.7
11		13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	12.7	11.1	9.6	8.2	6.9	5.8	4.7	3.7	3.0	2.4	1.9	1.5	1.0	0.7
12		13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	12.6	11.0	9.5	8.1	6.9	5.8	4.6	3.7	3.0	2.4	1.9	1.5	1.0	0.7
13		13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	12.5	10.9	9.4	8.1	6.8	5.8	4.6	3.7	2.9	2.4	1.9	1.5	1.0	0.7
14		13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	12.4	10.8	9.4	8.0	6.8	5.7 5.7	4.6	3.7	2.9	2.4	1.9	1.5	1.0	0.7
15		13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	12.3	10.8	9.3	8.0	6.8	5.7	4.6	3.6	2.9	2.4	1.9	1.5	1.0	0.7
16		13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	12.2	10.7	9.3	7.9	6.7	5.7	4.5	3.6	2.9	2.4	1.9	1.5	1.0	0.7
17		13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	12.2	10.7	9.2	7.9	6.7	5.6	4.5	3.6	2.9	2.4	1.9	1.5	1.0	0.7
18 19		13.0 13.0	12.1 12.1	10.6 10.6	9.2 9.2	7.9 7.9	6.7 6.7	5.6 5.6	4.5 4.5	3.6 3.6	2.9 2.9	2.4	1.9 1.9	1.6 1.6	1.0 1.1	0.7 0.7							
20		13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	12.0	10.5	9.2	7.8	6.7	5.6	4.5	3.6	2.9	2.4	1.9	1.6	1.1	0.7
21		13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	12.0	10.5	9.1	7.8	6.6	5.6	4.5	3.6	2.9	2.4	1.9	1.6	1.1	0.8
22 23		13.0 13.0	12.0 11.9	10.5 10.5	9.1 9.1	7.8 7.8	6.6 6.6	5.6 5.6	4.5 4.5	3.6 3.6	2.9 2.9	2.4	1.9 2.0	1.6 1.6	1.1 1.1	0.8							
24		13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	11.9	10.5	9.1	7.8	6.6	5.6	4.5	3.6	3.0	2.4	2.0	1.6	1.1	0.8
25		13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0	11.9	10.5	9.1	7.8	6.6	5.6	4.5	3.7	3.0	2.4	2.0	1.6	1.1	0.8
26		13.0	13.0	13.0	13.0	13.0	13.0	13.0	12.5	11.1	9.8	8.5	7.3	6.2	5.3	4.2	3.4	2.8	2.3	1.9	1.5	1.1	0.8
27		13.0	13.0	13.0	13.0	13.0	13.0	13.0	11.7	10.4	9.1	7.9	6.8	5.8	4.9	4.0	3.2	2.6	2.1	1.8	1.5	1.0	0.8
28		13.0	13.0	13.0	13.0	13.0	13.0	12.1	10.9	9.7	8.5	7.4	6.4	5.4	4.6	3.7	3.0	2.5	2.0	1.7	1.4	1.0	0.7
29		13.0	13.0	13.0	13.0	13.0	12.4	11.3	10.2	9.1	8.0	6.9	6.0	5.1	4.3	3.5	2.8	2.3	1.9	1.6	1.3	0.9	0.7
30		13.0	13.0	13.0	13.0	12.6	11.6	10.6	9.5	8.5	7.5	6.5	5.6	4.8	4.1	3.3	2.7	2.2	1.8	1.5	1.2	0.9	0.7

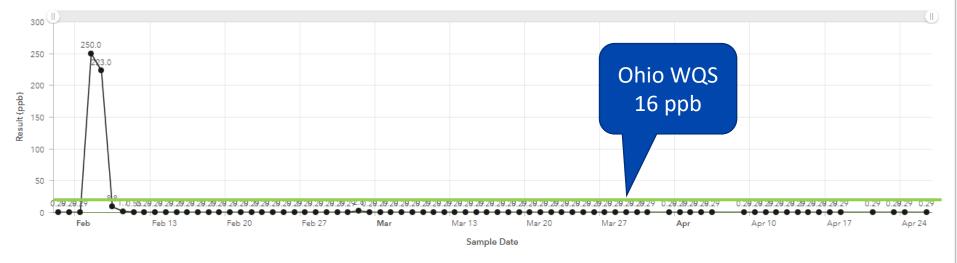
Project: PROJ-024579 Client: Norfolk Southern City: East Palestine, OH County: Columbiana

Dogulations

East Palestine Surface Water Sampling


Click the contact the contact icon on the map then select a sampling point (green or blue dot). Be sure to only select on the point. Then, click on the arrows (mobile) or tabs (desktop) at the bottom of the screen to see the levels of each chemical at the selected site.

- Use bookmarks to view various map areas by clicking the 🗓 icon.
- Display the map legend by clicking the != icon.
- Change the basemap by clicking the icon.

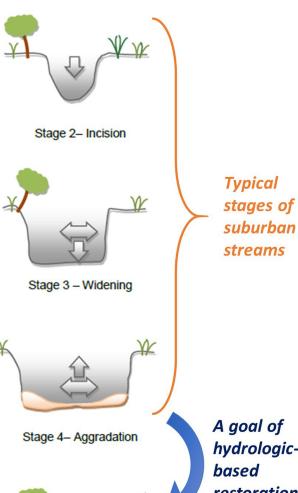

East Palestine Surface Water Sampling

Points that fall within the green area at or below the method detection limit (0.29) and are considered non-detects. Some of the samples for 2/16 and background samples from 2/19 show elevated readings, likely a result of cross contamination either in the field or lab.

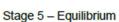
Intro Vinyl Chloride Butyl Acrylate 2-ethylhexyl Acrylate Benzene 2-butoxyethanol Polypropylene Glycol Diproplylene Glycol Diethylene Glycol Methyl acrylate

What is next?

- Sediment cleaning in Leslie Run
- Water Chemistry Sampling will continue
- Ecological sampling will be done in 2023
- Sediment sampling will continue


Questions?

Bill Zawiski
Water Quality Supervisor
bill.zawiski@epa.ohio.gov
330-963-1134



Stage1 - Equilibrium

A goal of hydrologicbased restoration is to facilitate a transition to Stage 5

