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Overview

 Generic vs. bespoke PBTK models
Models available within R package “httk”
Model parameterization
 Physiologic parameters
 Chemical-specific parameters
Model evaluation
 The Concentration vs. Time Database (CvTdb)
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HTTK:  A NAM for Exposure
 Toxicokinetics is the predictive description of the absorption, distribution, metabolism, 

and elimination (ADME) of a chemical compound

We collect in vitro, high throughput toxicokinetic (HTTK) data to provide toxicokinetics 
for larger numbers of chemicals (for example, Rotroff et al., 2010, Wetmore et al., 2012, 2015) 

HTTK methods have been used by the pharmaceutical industry to determine range of 
efficacious doses and to prospectively evaluate success of planned clinical trials 
(Jamei, et al., 2009; Wang, 2010)

 The primary goal of HTTK is to provide a human dose context for bioactive in vitro 
concentrations from HTS (that is, in vitro-in vivo extrapolation, or IVIVE) 
(for example, Wetmore et al., 2015)

 A secondary goal is to provide open-source data and models for evaluation and use by 
the broader scientific community (Pearce et al, 2017a)
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Generic vs. bespoke PBTK models
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Everyone Uses Models
 Toxicology has long relied upon model animal species

 People rely on mental models every day 
 For example, with repetitive activities like driving home from work

 Mathematical models offer some significant advantages:
 Reproducible
 Can (and should) be transparent

 …with some disadvantages:
 Sometimes reality is complex
 Sometimes the model doesn’t always work well
 How do we know we can extrapolate?

 …that can be turned into advantages:
 If we have evaluated confidence/uncertainty and know the “domain 

of applicability” we can make better use of mathematical models

EVERYONE
USES MODELS
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Fit for Purpose Models

 A “fit for purpose” model is an abstraction of a complicated problem that allows us to reach a decision.

“Now it would be very remarkable if any system existing in the real world could be exactly represented 
by any simple model. However, cunningly chosen parsimonious models often do provide remarkably 
useful approximations… The only question of interest is ‘Is the model illuminating and useful?’”
George Box

 A fit for purpose model is defined as much by what is omitted as what is included in the model.

 We must accept that there will always be areas in need of better data and models – our knowledge will 
always be incomplete, and thus we wish to extrapolate.

 How do I drive to a place I’ve never been before?
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“Since all models are 
wrong the scientist 
cannot obtain a 
‘correct’ one by 
excessive elaboration. 
On the contrary, 
following William of 
Occam, they should 
seek an economical 
description of natural 
phenomena.”

George Box

Complexity should 
match the data…

We choose to make the complexity of 
the model and the number of 

physiological processes appropriate 
given the data and the decision context

Cho et al., 1990
PK of MDMA



13 of 71

“Since all models are 
wrong the scientist 
cannot obtain a 
‘correct’ one by 
excessive elaboration. 
On the contrary, 
following William of 
Occam, they should 
seek an economical 
description of natural 
phenomena.”

George Box
Cho et al., 1990
PK of MDMA

Complexity should 
match the data…

We choose to make the complexity of 
the model and the number of 

physiological processes appropriate 
given the data and the decision context

Cho et al., 1990
PK of MDMA



14 of 71

“Since all models are 
wrong the scientist 
cannot obtain a 
‘correct’ one by 
excessive elaboration. 
On the contrary, 
following William of 
Occam, they should 
seek an economical 
description of natural 
phenomena.”

George Box
Cho et al., 1990
PK of MDMA

Complexity should 
match the data…

Jones et al., 2012
PK of Statins

We choose to make the complexity of 
the model and the number of 

physiological processes appropriate 
given the data and the decision context

Cho et al., 1990
PK of MDMA

In this case they 
had transporter-

specific data
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“Among competing hypotheses, the one with 
the fewest assumptions should be selected.” 
William of Occam

“While Occam's razor is a useful tool in the 
physical sciences, it can be a very dangerous 
implement in biology. It is thus very rash to 
use simplicity and elegance as a guide in 
biological research. “
Francis Crick

“With four parameters I can fit an elephant, 
and with five I can make him wiggle his trunk.”
John von Neumann

Lex Parsimoniae
“Law of Parsimony”

Figure from Anran Wang

Over-fitting

Linear
function

Y

X
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Fit for Purpose Toxicokinetics
 Chiu et al. (2007) “…[P]arsimony in selecting [toxicokinetic] model structures is an important and guiding 

principle in developing models for use in risk assessments.”
 Complexity is constrained by the limited data available to calibrate and test TK models and the need 

to justify both the model assumptions and predictions

Bessems et al. (2014)  At the time they suggested that we might 
neglect active metabolism. Thanks to in vitro 
measurements we can now do better

 We still neglect transport and other protein-
specific phenomena

 Bessems et al. (2014): We need “a first, relatively quick 
(‘Tier 1’), estimate” of concentration vs. time in blood, 
plasma, or cell
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Bespoke, Tailored, Custom…
Requires specific measurements

Generic, Off-the-Shelf/Rack, One-Size-Fits-Most
Approximately fits certain categories

Bespoke vs. Generic 
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Why Use Generic Models?

 Each of the models provided by the R package “httk” 
is a generic model
 Each model is designed to used standardized 

chemical-specific in vitro measurements (fraction 
unbound in plasma, intrinsic hepatic clearance)

high(er) throughput 
toxicokinetics =

In vitro toxicokinetic data + 
generic toxicokinetic model 

 Standardized physiology is assumed, regardless of chemical:
 The same parameters such as volumes, flows, and rates are used
 The same processes are included (hepatic metabolism, glomerular filtration) or omitted

 The generic model is a hypothesis
 If we have evaluation data then we can check if we need to elaborate the model (for example, create a 

bespoke model)

 We can estimate the accuracy of a generic model for a new chemical using performance across multiple 
chemicals where data happen to exist
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Generic Models as a Hypothesis
 For pharmaceuticals, in vitro data plus a model 

including hepatic metabolism and passive 
glomerular filtration (kidney) are often enough 
to make predictions within a factor of 3 of in vivo 
data (Wang, 2010)

 For other chemicals there may be complications, 
for example there is thought to be (Andersen et 
al. 2006) active transport of some per- and poly-
fluorinated alkyl substances (PFAS) in the kidney

 We could add a renal resorption process to HTTK 
(that is, add a new generic model) only if there 
was some way to parameterize the process for 
most chemicals – otherwise we are back to 
tailoring the model to a chemical

PFAS (2)

Wambaugh et al. (2015)
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Generic PBTK Models

The idea of generic PBTK has been out there for a while…
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Why Build Another Generic PBTK Tool?

*Both PLETHEM (Pendse et al., 2020) and Web-ICE (Bell et al., 2020) provide GUI’s to HTTK and other models
Pre-computed HTTK results are also available at https://comptox.epa.gov/dashboard

from Breen et al. (2021)

SimCYP ADMET Predictor 
/ GastroPlus PK-Sim IndusChem

Fate pbktool G-PBTK httk

References Jamei (2009) Parrott (2009) Eissing (2011) Jongeneelen (2011) Punt (2020) Armitage (2021) Pearce (2017)

Availability
License, but 

inexpensive for 
research

License, but 
inexpensive for 

research
Free Free Free Free Free

Open Source No No GitHub No GitHub Planned  Release CRAN and GitHub
Default PBTK Structure Yes Yes Yes Yes Yes Yes Yes
Population Variability Yes Yes Yes No No No Yes

Data Needs High/Low High/Low High High Low Low Low

Typical Use Case Drug Discovery Drug Discovery Drug Discovery Environmental 
Assessment

Food and Drug 
Safety Evaluation

Environmental 
Assessment Screening

Batch Mode Yes Yes Yes No No No Yes
Graphical User Interface Yes Yes Yes Excel No Excel No

Built-in Chemical-Specific 
Library Many Clinical Drugs No Many pharmaceutical-

specific models available
15 Environmental 

Compounds No No
Pharmaceuticals and 

ToxCast: 998 human, 226 
rat

Oral Bioavailability 
Modeling Yes Yes No No No No No (Will be available in 

the future version)
In Vitro Distribution SIVA VIVD No No No No No Armitage Model

Exposure Route Oral, IV Oral, IV Oral, IV
Oral, 

Gas Inhalation, 
Dermal

Oral Oral, IV, Inhalation
Oral, IV, Gas Inhalation 

(Dermal, Aerosol, and Fetal 
forthcoming)

Ionizable Compounds Yes Yes Yes No No Yes Yes
Export Function No No Matlab and R No No No SBML and Jarnac

R Integration No No Yes (2017) No Yes Yes Yes
Reverse Dosimetry Yes Yes Yes No No No Yes

https://comptox.epa.gov/dashboard
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Regulatory Acceptance

“…the default state of new and modernized Government information 
resources shall be open and machine readable.”

“Although publication of a PBPK model in a peer-
reviewed journal is a mark of good science, subsequent 

evaluation of published models and the supporting 
computer code is necessary for their consideration for 

use in [Human Health Risk Assessments]”



23 of 71

Why Build Another Generic PBTK Tool?
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Exquisite Systems

From: 
https://www.nasa.gov/directorates/heo/scan/services/nasas_commercial_communications_services

“Although NASA has always partnered with industry, the 
nature of that relationship is changing. Historically, NASA 
would design an exquisite system or spacecraft, select a 

commercial contractor to build it, oversee its 
construction in detail while sometimes changing its 
requirements, then own and operate the result. The 

government was the sole buyer/owner.”

After retirement of the Space Shuttle, NASA began working 
with multiple contractors who may provide their services to 

multiple customers. Once “…certified, the manufacturers 
would deliver cargo for NASA—and any other customer the 

company could engage in the growing LEO commercial 
marketplace. Rather than building, owning, and operating a 

luxury sedan, NASA now essentially hails a taxi.”
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Models available within R 
package “httk”
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Open Source Tools and Data for HTTK

R package “httk”
• Open source, transparent, and peer-

reviewed tools and data for high 
throughput toxicokinetics (httk)

• Available publicly for free statistical 
software R

• Allows in vitro-in vivo extrapolation 
(IVIVE) and physiologically-based 
toxicokinetics (PBTK)

• Human-specific data for 998 chemicals
• Described in Pearce et al. (2017a) and 

Breen et al. (2020)

https://CRAN.R-project.org/package=httk

https://cran.r-project.org/package=httk
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HTTK Models Range in Complexity

Adapted from Pearce et al. (2017a)

Model
Hepatic 

clearance
Partition 

coefficients
Fraction 
unbound Hematocrit

Molecular 
weight

Ratio of 
blood to 
plasma

Elimination 
rate1

Volume of 
distribution2

Dynamic 
prediction

Steady state 
prediction

pbtk Yes Yes Yes Yes Yes Yes No No Yes Yes

Gas_pbtk Yes Yes Yes Yes Yes Yes No No Yes
Coming 

Soon

1compartment No No No No Yes No Yes Yes Yes Yes

3compartment Yes Yes Yes Yes Yes Yes No No Yes Yes

3compartmentss Yes No Yes No Yes No No No No Yes
1Partition coefficients are needed in calculating Vdist
2Clearances and fup are needed in calculating kelim

CLmetab

CLGFR

Gut Lumen
Primary

Compartment

kabs

CLmetab

CLGFR

Portal Vein

Gut Lumen

Liver Blood

Liver Tissue

Body Blood

Rest of Body

Qhepatic artery

Qportal vein

Qliv = Qha + Qpv

kabs

Inhaled Gas

Qliver

Qgut

Qgut

Kidney Blood

Gut Blood
Gut Lumen

QGFR Kidney Tissue

Liver Blood
Liver Tissue

Qrest

Lung Blood
Lung Tissue

Qcardiac

Qmetab

Body Blood
Rest of Body

Qkidney Arterial  BloodVe
no

us
  B

lo
od
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HTTK Models Range in Complexity

Adapted from Pearce et al. (2017a)

Model
Hepatic 

clearance
Partition 

coefficients
Fraction 
unbound Hematocrit

Molecular 
weight

Ratio of 
blood to 
plasma

Elimination 
rate1

Volume of 
distribution2

Dynamic 
prediction

Steady state 
prediction

pbtk Yes Yes Yes Yes Yes Yes No No Yes Yes

Gas_pbtk Yes Yes Yes Yes Yes Yes No No Yes
Coming 

Soon

1compartment No No No No Yes No Yes Yes Yes Yes

3compartment Yes Yes Yes Yes Yes Yes No No Yes Yes

3compartmentss Yes No Yes No Yes No No No No Yes

 The simplest models often allow predictions with a 
single equation

 More complex models often require numerical solvers 
to determine the solution to a system of differential 
equations as a function of exposure (dose) and time



29 of 71

HTTK Models Range in Complexity

Adapted from Pearce et al. (2017a)

Model
Hepatic 

clearance
Partition 

coefficients
Fraction 
unbound Hematocrit

Molecular 
weight

Ratio of 
blood to 
plasma

Elimination 
rate1

Volume of 
distribution2

Dynamic 
prediction

Steady state 
prediction

pbtk Yes Yes Yes Yes Yes Yes No No Yes Yes

Gas_pbtk Yes Yes Yes Yes Yes Yes No No Yes
Coming 

Soon

1compartment No No No No Yes No Yes Yes Yes Yes

3compartment Yes Yes Yes Yes Yes Yes No No Yes Yes

3compartmentss Yes No Yes No Yes No No No No Yes

 At steady-state all compartments are at equilibrium and the 
concentrations can be predicted with a single equation, but:
 The exposure (dose) must be constant
 Enough time must pass to reach equilibrium 
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Simple Model for Steady-State Plasma 
Concentration (Css)

𝐶𝐶𝑠𝑠𝑠𝑠 =
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑜𝑜𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑟𝑟𝑑𝑑 ∗ 𝐹𝐹ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠

𝐺𝐺𝐹𝐹𝐺𝐺 ∗ 𝑓𝑓𝑢𝑢𝑒𝑒 + 𝑄𝑄𝑙𝑙 ∗ 𝑓𝑓𝑢𝑢𝑒𝑒 ∗
𝐶𝐶𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑄𝑄𝑙𝑙 + 𝑓𝑓𝑢𝑢𝑒𝑒 ∗ 𝐶𝐶𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Wilkinson and Shand (1975)

CLmetab

CLGFR

Portal Vein

Gut Lumen

Liver Blood

Liver Tissue

Body Blood

Rest of Body

Qhepatic artery

Qportal vein

Qliv = Qha + Qpv

kabs

 This equation is the steady-state solution for a three-compartment model (3compartmentss):
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Simple Model for Steady-State Plasma 
Concentration (Css)

𝐶𝐶𝑠𝑠𝑠𝑠 =
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑜𝑜𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑟𝑟𝑑𝑑 ∗ 𝐹𝐹ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠

𝐺𝐺𝐹𝐹𝐺𝐺 ∗ 𝑓𝑓𝑢𝑢𝑒𝑒 + 𝑄𝑄𝑙𝑙 ∗ 𝑓𝑓𝑢𝑢𝑒𝑒 ∗
𝐶𝐶𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑄𝑄𝑙𝑙 + 𝑓𝑓𝑢𝑢𝑒𝑒 ∗ 𝐶𝐶𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Wilkinson and Shand (1975)

CLmetab

CLGFR

Portal Vein

Gut Lumen

Liver Blood

Liver Tissue

Body Blood

Rest of Body

Qhepatic artery

Qportal vein

Qliv = Qha + Qpv

kabs

Estimated fraction not 
metabolized in first pass 
through liver before 
systemic circulation

 This equation is the steady-state solution for a three-compartment model (3compartmentss):
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Simple Model for Steady-State Plasma 
Concentration (Css)

Passive Renal Clearance
(GFR: Glomerular filtration 

rate
fup: fraction unbound in 

plasma)

𝐶𝐶𝑠𝑠𝑠𝑠 =
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑜𝑜𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑟𝑟𝑑𝑑 ∗ 𝐹𝐹ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠

𝐺𝐺𝐹𝐹𝐺𝐺 ∗ 𝑓𝑓𝑢𝑢𝑒𝑒 + 𝑄𝑄𝑙𝑙 ∗ 𝑓𝑓𝑢𝑢𝑒𝑒 ∗
𝐶𝐶𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑄𝑄𝑙𝑙 + 𝑓𝑓𝑢𝑢𝑒𝑒 ∗ 𝐶𝐶𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Wilkinson and Shand (1975)

CLmetab

CLGFR

Portal Vein

Gut Lumen

Liver Blood

Liver Tissue

Body Blood

Rest of Body

Qhepatic artery

Qportal vein

Qliv = Qha + Qpv

kabs

 This equation is the steady-state solution for a three-compartment model (3compartmentss):
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Simple Model for Steady-State Plasma 
Concentration (Css)

Hepatic Metabolism
(Clhepatic: Scaled hepatic 

clearance
Ql: Blood flow to liver)

𝐶𝐶𝑠𝑠𝑠𝑠 =
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑜𝑜𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑟𝑟𝑑𝑑 ∗ 𝐹𝐹ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠

𝐺𝐺𝐹𝐹𝐺𝐺 ∗ 𝑓𝑓𝑢𝑢𝑒𝑒 + 𝑄𝑄𝑙𝑙 ∗ 𝑓𝑓𝑢𝑢𝑒𝑒 ∗
𝐶𝐶𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑄𝑄𝑙𝑙 + 𝑓𝑓𝑢𝑢𝑒𝑒 ∗ 𝐶𝐶𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Wilkinson and Shand (1975)

CLmetab

CLGFR

Portal Vein

Gut Lumen

Liver Blood

Liver Tissue

Body Blood

Rest of Body

Qhepatic artery

Qportal vein

Qliv = Qha + Qpv

kabs

 This equation is the steady-state solution for a three-compartment model (3compartmentss):
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The “httk” General Physiologically-based 
Toxicokinetic (PBTK) Model

 Tissues are modeled by compartments:
 Some tissues (for example, arterial blood) are simple compartments 
 Others (for example, kidney) are compound compartments consisting 

of separate blood and tissue sections with constant partitioning (that 
is, tissue specific tissue:plasma partition coefficients)
 Remaining tissues (for example, fat, brain, bones) are lumped into the 

“Rest of Body” compartment
 Clearance from the body depends on two processes:
 Metabolism in the liver (estimated from in vitro clearance and binding)
 Excretion by glomerular filtration in the kidney (estimated from in vitro 

binding)
 Model parameters are either:
 Physiological: determined by species and potentially varied via Monte 

Carlo (including HTTK-pop, Ring et al. 2017)
 Chemical-specific: physico-chemical properties (Mansouri et al., 2018) 

and equilibrium partition coefficients plus plasma binding and 
metabolism rates that are determined from in vitro measurements or 
potentially predicted from structure

Inhaled Gas

Qliver

Qgut

Qgut

Kidney Blood

Gut Blood

Gut Lumen

QGFR
Kidney Tissue

Liver Blood

Liver Tissue

Qrest

Lung Blood
Lung Tissue Qcardiac

Qmetab

Body Blood

Rest of Body

Qkidney

Arterial  B
loodVe

no
us

  B
lo

od

Pearce et al. (2017a)
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Generic Gas Inhalation Model

Lung Tissue

Lung Blood

Alveolar Space

Gut Tissue

Gut Blood

Gut Lumen

Liver Tissue

Liver Blood

Body Tissue

Body Blood

Kidney Tissue

Kidney Blood

Qcardiac

Arterial Blood

Qkidney

Qrest

Qliver

Qgut
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Qalv Qalv

Inhaled Air

kgutabs

Clmetabolism

Qgfr

Exhaled Breath

(MM Elim)

Mucous
 Inhalation is an important route of exposure, particularly for 

occupational settings
 The structure of the inhalation model was developed from 

two previously published physiologically-based models from 
Jongeneelen et al. (2011) and Clewell et al. (2001) 

 The model can be parameterized with chemical-specific in 
vitro data from the HTTK package for 917 chemicals in 
human and 181 chemicals in rat
 Model was made publicly available with the release of httk 

v2.0.0 in February 2020

Linakis et al. (2020)



36 of 71

Model parameterization
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Parameter Definition Value 
(Mean) Units Reference

Qliverc
Total blood flow to liver 
(arterial, gut) 3.6 1/h/kg BW Davies and Morris (1993)

QGFR
Flow to glomerulus 
(glomerular filtration rate) 0.32 1/h/kg BW Davies and Morris (1993)

ncell_density Hepatocellularity 110 Millions of cells 
/ g Liver Carlile et al. (1997)

Vliverc
Liver volume (scaled to kg 
body weight) 0.0245 1/kg BW Davies and Morris (1993)

dliver Liver density 1.05 g/ml
International Commission 
on Radiological Protection 
(1975)

Hematocrit Fraction of blood that is red 
blood cells 0.43 Unitless Davies and Morris (1993)

Model parameters are either:

Physiological: determined 
by species and potentially 
varied via Monte Carlo 
(including HTTK-pop, Ring et 
al. 2017)

Chemical-specific: physico-
chemical properties 
(Mansouri et al., 2018) and 
equilibrium partition 
coefficients plus plasma 
binding and metabolism 
rates that are determined 
from in vitro measurements 
or potentially predicted 
from structure

Key Physiological Parameters for In Vitro-In Vivo Extrapolation

Breen et al. (2021)

𝐶𝐶𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑛𝑛𝑒𝑒𝑒𝑒𝑙𝑙𝑙𝑙 𝑑𝑑𝑒𝑒𝑑𝑑𝑠𝑠𝑒𝑒𝑒𝑒𝑑𝑑 × 𝑉𝑉𝑙𝑙𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒 × 𝑑𝑑𝑙𝑙𝑒𝑒𝑙𝑙𝑒𝑒𝑒𝑒 × 𝐶𝐶𝑜𝑜𝑒𝑒𝑑𝑑𝑒𝑒
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Species-Specific Physiological Parameters for 
Physiologically-Based Toxicokinetics

• Davies, Brian, and Tim Morris. "Physiological parameters in laboratory animals and humans." Pharmaceutical research 10.7 (1993): 1093-1095.
• Brown, Ronald P., et al. "Physiological parameter values for physiologically based pharmacokinetic models." Toxicology and industrial health 13.4 (1997): 407-484.
• Birnbaum, L., et al. "Physiological parameter values for PBPK models." International Life Sciences Institute, Risk Science Institute, Washington, DC (1994).
• Robertshaw, D., Temperature Regulation and Thermal Environment, in Dukes' Physiology of Domestic Animals, 12th ed., Reece W.O., Ed. Copyright 2004 by Cornell University.
• Stammers, Arthur Dighton. "The blood count and body temperature in normal rats." The Journal of physiology 61.3 (1926): 329.
• Gordon, Christopher J. Temperature regulation in laboratory rodents. Cambridge University Press, 1993.
• Gauvin, David V. "Electrocardiogram, hemodynamics, and core body temperatures of the normal freely moving cynomolgus monkey by remote radiotelemetry", Journal of Pharmacological 

and Toxicological Methods

Parameter Units Mouse Rat Dog Human Rabbit Monkey
Total Body Water ml/kg 725.000 668.000 603.600 600.000 40.812 693.000
Plasma Volume ml/kg 50.000 31.200 51.500 42.857 110.000 44.800
Cardiac Output ml/min/kg^(3/4) 150.424 209.304 213.394 231.401 266.576 324.790
Average BW kg 0.020 0.250 10.000 70.000 2.500 5.000
Total Plasma Protein g/ml 0.062 0.067 0.090 0.074 0.057 0.088
Plasma albumin g/ml 0.033 0.032 0.026 0.042 0.039 0.049
Plasma a-1-AGP g/ml 0.013 0.018 0.004 0.002 0.001 0.002
Hematocrit fraction 0.450 0.460 0.420 0.440 0.360 0.410
Urine Flow ml/min/kg^(3/4) 0.013 0.098 0.037 0.040 0.042 0.151
Bile Flow ml/min/kg^(3/4) 0.026 0.044 0.015 0.010 0.083 0.004
GFR ml/min/kg^(3/4) 5.265 3.705 10.901 5.165 3.120 2.080
Average Body Temperature C 37.000 38.700 38.900 37.000 39.350 38.000
Plasma Effective Neutral Lipid Volume Fraction unitless 0.004 0.002 0.001 0.007 0.002 0.007
Plasma Protein Volume Fraction unitless 0.060 0.059 0.090 0.070 0.057 0.070
Pulmonary Ventilation Rate l/h/kg^(3/4) 24.750 24.750 24.750 27.750 24.750 27.750
Alveolar Dead Space Fraction unitless 0.330 0.330 0.330 0.330 0.330 0.330

 Rates, volumes, and tissue-specific information (not shown) are needed for a species
 Users can choose to add new species to HTTK by providing this information
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PBTK Partition Coefficients
 Although in our model there are really three separate 

concentrations (C) that describe a tissue, we assume that 
they are related to each other by constants

 We assume that the ratio between the blood and plasma 
(𝐺𝐺𝑏𝑏𝑙𝑙𝑏𝑏𝑏𝑏𝑑𝑑:𝑒𝑒𝑙𝑙𝑒𝑒𝑠𝑠𝑝𝑝𝑒𝑒) is a uniform constant throughout the body

 We assume that all the tissues are “perfusion limited”, which 
means that the tissue concentration instantly comes to 
equilibrium with the free fraction in plasma (concentration is 
limited by flow to the tissue)  

Tissue

Arterial 
Plasma

Venous 
Plasma

Tissue 
Plasma

Venous 
RBCs

Tissue 
RBCs

Arterial 
RBCs

tissueQtissueQ

𝐶𝐶𝑒𝑒𝑏𝑏𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒𝑑𝑑𝑒𝑒,𝑏𝑏𝑙𝑙𝑏𝑏𝑏𝑏𝑑𝑑 = 𝐺𝐺𝑏𝑏𝑙𝑙𝑏𝑏𝑏𝑏𝑑𝑑:𝑒𝑒𝑙𝑙𝑒𝑒𝑠𝑠𝑝𝑝𝑒𝑒𝐶𝐶𝑒𝑒𝑏𝑏𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒𝑑𝑑𝑒𝑒,𝑒𝑒𝑙𝑙𝑒𝑒𝑠𝑠𝑝𝑝𝑒𝑒

𝐶𝐶𝑒𝑒𝑏𝑏𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒𝑑𝑑𝑒𝑒,𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑢𝑢𝑒𝑒 = 𝐾𝐾𝑒𝑒𝑒𝑒𝑠𝑠𝑠𝑠𝑢𝑢𝑒𝑒:𝑒𝑒𝑙𝑙𝑒𝑒𝑠𝑠𝑝𝑝𝑒𝑒 ∗ 𝑓𝑓𝑢𝑢𝑒𝑒 ∗ 𝐶𝐶𝑒𝑒𝑏𝑏𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒𝑑𝑑𝑒𝑒,𝑒𝑒𝑙𝑙𝑒𝑒𝑠𝑠𝑝𝑝𝑒𝑒

Ktissue:plasma is the tissue 
partition coefficient 

which we either 
measure experimentally 

or predict in silico (for 
example Schmitt’s 

method)
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Tools for Chemical-Specific PBTK 
Parameters

Physiological parameters depend on species, but we must also make chemical-specific estimates of tissue 
partitioning…
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Schmitt’s Method (2008)
 Depending on its structure a chemical partitions differently into water, fats, and charged materials
 Schmitt’s method predicts chemical affinity based on the composition of a tissue
 Users can choose to add new tissue to HTTK by providing this information

Fraction of total 
volume Fraction of cell volume Fraction of total lipid

Tissue Cells Interstitium Water Lipid Protein Neutral Lipid
Neutral 

Phospholipid
Acidic 

Phospholipid pH
Adipose 0.86 0.14 0.02 0.93 0.05 0.94 0.06 0.01 7.10

Bone 0.90 0.10 0.26 0.02 0.21 0.85 0.11 0.04 7.00
Brain 1.00 0.01 0.80 0.11 0.08 0.37 0.46 0.17 7.10
Gut 0.90 0.10 0.78 0.07 0.15 0.69 0.26 0.05 7.00

Heart 0.75 0.25 0.70 0.14 0.17 0.89 0.08 0.03 7.10
Kidney 0.84 0.17 0.77 0.06 0.17 0.64 0.29 0.07 7.22
Liver 0.77 0.23 0.72 0.09 0.18 0.72 0.23 0.05 7.23
Lung 0.80 0.20 0.80 0.01 0.18 0.30 0.56 0.14 6.60

Muscle 0.85 0.15 0.80 0.02 0.18 0.54 0.38 0.08 6.81
Skin 0.40 0.60 0.43 0.28 0.29 0.36 0.50 0.14 7.00

Spleen 0.75 0.26 0.77 0.04 0.19 0.53 0.39 0.07 7.00
Red blood cells 1.00 0.00 0.66 0.01 0.33 0.40 0.50 0.10 7.20
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HTTK Partition Coefficients
 We use a modified Schmitt (2008) 

method with elements of                 
Peyret et al. (2010)

 Pearce et al. (2017b) analyzed 
literature measurements of chemical-
specific partition coefficients (PC) in rat
• 945 tissue-specific PC
• 137 unique chemicals
• Mostly pharmaceuticals

 We use tissue-specific calibrations for 
the in silico predictors

 Pearce et al. (2017b) evaluated with 
human measured volumes of 
distribution for 498 chemicals from 
Obach (2008) – root mean squared 
error was 0.48
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Review: HTTK model parameters
Chemical-specific parameters
Intrinsic hepatic clearance rate (CLint) Measured in HT in vitro assays (Rotroff et al. 

2010; Wetmore et al. 2012, 2014, 2015; Wambaugh 
et al. 2019) or predicted in silico (Sipes et al. 
2017)

Fraction unbound to plasma protein (Fup)

Tissue:blood partition coefficients (for 
compartmental models)

Predict from phys-chem properties and 
tissue properties (Pearce et al., 2017)

Physiological parameters
Tissue masses (including body weight)

Gathered from data available in the 
published literature [Wambaugh et al. 2015; 

Pearce et al. 2017a]

Tissue blood flows
Glomerular filtration rate 
(passive renal clearance)
Hepatocellularity
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Model evaluation
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Verifying 
PBTK Models

Process for the Evaluation of PBPK Models
1. Assessment of Model Purpose
2. Assessment of Model Structure and 

Biological Characterizations
3. Assessment of Mathematical Descriptions
4. Assessment of Computer Implementation
5. Parameter Analysis and Assessment of 

Model Fitness
6. Assessment of any Specialized Analyses

McLanahan et al. (2012)

Clark et al. (2004)
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Why Build Another Generic PBTK Tool?

*Both PLETHEM (Pendse et al., 2020) and Web-ICE (Bell et al., 2020) provide GUI’s to HTTK and other models
Pre-computed HTTK results are also available at https://comptox.epa.gov/dashboard

from Breen et al. (2021)

SimCYP ADMET Predictor 
/ GastroPlus PK-Sim IndusChem

Fate pbktool G-PBTK httk

References Jamei (2009) Parrott (2009) Eissing (2011) Jongeneelen (2011) Punt (2020) Armitage (2021) Pearce (2017)

Availability
License, but 

inexpensive for 
research

License, but 
inexpensive for 

research
Free Free Free Free Free

Open Source No No GitHub No GitHub Planned  Release CRAN and GitHub
Default PBTK Structure Yes Yes Yes Yes Yes Yes Yes
Population Variability Yes Yes Yes No No No Yes

Data Needs High/Low High/Low High High Low Low Low

Typical Use Case Drug Discovery Drug Discovery Drug Discovery Environmental 
Assessment

Food and Drug 
Safety Evaluation

Environmental 
Assessment Screening

Batch Mode Yes Yes Yes No No No Yes
Graphical User Interface Yes Yes Yes Excel No Excel No

Built-in Chemical-Specific 
Library Many Clinical Drugs No Many pharmaceutical-

specific models available
15 Environmental 

Compounds No No
Pharmaceuticals and 

ToxCast: 998 human, 226 
rat

Oral Bioavailability 
Modeling Yes Yes No No No No No (Will be available in 

the future version)
In Vitro Distribution SIVA VIVD No No No No No Armitage Model

Exposure Route Oral, IV Oral, IV Oral, IV
Oral, 

Gas Inhalation, 
Dermal

Oral Oral, IV, Inhalation
Oral, IV, Gas Inhalation 

(Dermal, Aerosol, and Fetal 
forthcoming)

Ionizable Compounds Yes Yes Yes No No Yes Yes
Export Function No No Matlab and R No No No SBML and Jarnac

R Integration No No Yes (2017) No Yes Yes Yes
Reverse Dosimetry Yes Yes Yes No No No Yes

https://comptox.epa.gov/dashboard
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Statistical Analysis with HTTK

 If we are to use HTTK, then we need confidence in its predictive ability

 In drug development, HTTK methods estimate therapeutic doses for clinical studies – predicted 
concentrations are typically on the order of values measured in clinical trials (Wang, 2010)
 For most compounds in the environment there will be no clinical trials 

 Uncertainty must be well characterized
 We compare to in vivo data to get empirical estimates of HTTK uncertainty
 ORD has both compiled existing (literature) TK data (Wambaugh et al., 2015) and conducted 

new experiments in rats on chemicals with HTTK in vitro data (Wambaugh et al., 2018)
 Any approximations, omissions, or mistakes should work to increase the estimated uncertainty 

when evaluated systematically across chemicals
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Building Confidence in TK Models

Predicted Concentrations
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Chemical 
Specific 
Model

 To evaluate a chemical-specific TK model for “chemical x” you 
can compare the predictions to in vivo measured data
 Can estimate bias
 Can estimate uncertainty
 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

Cohen Hubal et al. (2019)
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Building Confidence in TK Models
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 To evaluate a chemical-specific TK model for “chemical x” you 
can compare the predictions to in vivo measured data
 Can estimate bias
 Can estimate uncertainty
 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

 However, we do not typically have TK data

Cohen Hubal et al. (2019)
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Building Confidence in TK Models
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 To evaluate a chemical-specific TK model for “chemical x” you 
can compare the predictions to in vivo measured data
 Can estimate bias
 Can estimate uncertainty
 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

 However, we do not typically have TK data

 We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
 We do expect larger uncertainty, but also greater confidence 

in model implementation 
 Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties

Cohen Hubal et al. (2019)
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Building Confidence in TK Models
 To evaluate a chemical-specific TK model for “chemical x” you 

can compare the predictions to in vivo measured data
 Can estimate bias
 Can estimate uncertainty
 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

 However, we do not typically have TK data

 We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
 We do expect larger uncertainty, but also greater confidence 

in model implementation 
 Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties
 Can consider using model to extrapolate to other situations 
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Building Confidence in TK Models

Predicted Concentrations

O
bs

er
ve

d 
Co

nc
en

tr
at

io
ns

x
x

x
x

x

x

x

y

y
y y

y
y

y

z

z z
z

Generic
Model

Predicted Concentrations

O
bs

er
ve

d 
Co

nc
en

tr
at

io
ns

x
x

x
x

x

x

x

Chemical 
Specific 
Model

Cohen Hubal et al. (2019)

 To evaluate a chemical-specific TK model for “chemical x” you 
can compare the predictions to in vivo measured data
 Can estimate bias
 Can estimate uncertainty
 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

 However, we do not typically have TK data

 We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
 We do expect larger uncertainty, but also greater confidence 

in model implementation 
 Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties
 Can consider using model to extrapolate to other situations 

(chemicals without in vivo data)

z

z

All of the 
values for z

are over-
predicted!
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Evaluation Example: Observed Total Clearance

Pharmaceuticals
Other Chemicals

Wambaugh et al. (2018)

 We estimate clearance from two 
processes – hepatic metabolism 
(liver) and passive glomerular 
filtration (kidney)

 This appears to work better for 
pharmaceuticals than other 
chemicals:
 ToxCast chemicals are 

overestimated

 Non-pharmaceuticals may be 
subject to extrahepatic metabolism 
and/or active transport
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CvTdb:  An In Vivo TK Database

 EPA has developed a public database of concentration 
vs. time data for building, calibrating, and evaluating 
TK models

 Curation and development is ongoing, but to date 
includes:
 198 analytes (EPA, National Toxicology Program, 

open literature)
 Routes: Intravenous, dermal, oral, sub-cutaneous, 

and inhalation exposure

 Standardized, open-source curve fitting software 
invivoPKfit used to calibrate models to all data:

54

https://github.com/USEPA/CompTox-PK-CvTdb

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit

Sayre et al. (2020)

# Studies
# Test Substances

https://github.com/USEPA/CompTox-PK-CvTdb
https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit
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Developing Models with the CvT Database

 USAF and EPA developed generic gas inhalation 
physiologically-based toxicokinetic (PBTK) model 
 Evaluated HTTK with CvTdb: 142 exposure 

scenarios across 41 volatile organic chemicals 
were modeled and compared to published in 
vivo data for humans and rat

 R2 was 0.69 for predicting peak concentration
 R2 was 0.79 for predicting time integrated plasma 

concentration (Area Under the Curve, AUC)

Linakis et al. (2020)
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Units on axis in 
literature figure 

caption were 
wrong

 Access to in vivo concentration vs. time data 
made it easier to identify coding and other 
modeling errors
 Access to in vivo concentration vs. time data 

also made it easier to find fault with specific 
data sets

Linakis et al. (2020)

1:1 Perfect Prediction

Developing Models with the CvT Database
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 World Health Organization (2010): PBTK models are “adequate” when predictions “are, on average, 
within a factor of 2 of the experimental data” 

 Predictions of full concentration vs. time curve (that is, all time points for all chemicals):
 Linakis et al. (2020): For forty volatile, non-pharmaceutical chemicals root mean squared error 

(RMSE) of 1.11 (on a log10 scale, therefore a factor of 13x) and a coefficient of determination (R2) 
of 0.47

 Prediction of TK summary statistics such as peak concentration and time-integrated (“area under the 
curve” or AUC) concentration:
 Wang (2010): For 54 pharmaceutical clinical trials the predicted AUC differed from observed by 

2.3x
 Linakis et al. (2020): RMSE = 0.46 or 2.9x for peak concentration and RMSE = 0.5 or 3.2x for AUC
 Wambaugh et al. (2018): For 45 chemicals of both pharmaceutical and non-pharmaceutical nature, 

RMSE of 2.2x for peak and 1.64x for AUC
 Pearce et al. (2017b):The calibrated method for predicting tissue partitioning that is included in 

httk similarly predicted human volume of distribution with a RMSE of 0.48 (3x)

Review of HTTK Evaluations

Breen et al. (2020) 
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Conclusions
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Verifying the HTTK R Package

Clark et al. (2004) 
Process for the Evaluation 
of PBPK Models

Evaluation of HTTK R Package

Assessment of Model 
Purpose

Assessment of Model 
Structure and Biology

Assessment of Mathematical 
Descriptions

Assessment of Computer 
Implementation

Parameter Analysis and 
Assessment of Model Fitness

Assessment of any 
Specialized Analyses
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Verifying the HTTK R Package

Clark et al. (2004) 
Process for the Evaluation 
of PBPK Models

Evaluation of HTTK R Package

√ Assessment of Model 
Purpose

Rapidly parameterized in vitro-in vivo extrapolation

Assessment of Model 
Structure and Biology

Assessment of Mathematical 
Descriptions

Assessment of Computer 
Implementation

Parameter Analysis and 
Assessment of Model Fitness

Assessment of any 
Specialized Analyses
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Verifying the HTTK R Package

Clark et al. (2004) 
Process for the Evaluation 
of PBPK Models

Evaluation of HTTK R Package

√ Assessment of Model 
Purpose

Rapidly parameterized in vitro-in vivo extrapolation

√ Assessment of Model 
Structure and Biology

Consistent model structure evaluated across a diverse chemical library

Assessment of Mathematical 
Descriptions

Assessment of Computer 
Implementation

Parameter Analysis and 
Assessment of Model Fitness

Assessment of any 
Specialized Analyses



62 of 71

Verifying the HTTK R Package

Clark et al. (2004) 
Process for the Evaluation 
of PBPK Models

Evaluation of HTTK R Package

√ Assessment of Model 
Purpose

Rapidly parameterized in vitro-in vivo extrapolation

√ Assessment of Model 
Structure and Biology

Consistent model structure evaluated across a diverse chemical library

√ Assessment of Mathematical 
Descriptions

Model structures added and revised through peer-reviewed journal articles

Assessment of Computer 
Implementation

Parameter Analysis and 
Assessment of Model Fitness

Assessment of any 
Specialized Analyses
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Verifying the HTTK R Package

Clark et al. (2004) 
Process for the Evaluation 
of PBPK Models

Evaluation of HTTK R Package

√ Assessment of Model 
Purpose

Rapidly parameterized in vitro-in vivo extrapolation

√ Assessment of Model 
Structure and Biology

Consistent model structure evaluated across a diverse chemical library

√ Assessment of Mathematical 
Descriptions

Model structures added and revised through peer-reviewed journal articles

√ Assessment of Computer 
Implementation

Open-source code available from GitHub (https://github.com/USEPA/CompTox-ExpoCast-httk) and 
CRAN (https://CRAN.R-project.org/package=httk) where bugs can be reported and patched

Parameter Analysis and 
Assessment of Model Fitness

Assessment of any 
Specialized Analyses

https://github.com/USEPA/CompTox-ExpoCast-httk
https://cran.r-project.org/package=httk
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Verifying the HTTK R Package

Clark et al. (2004) 
Process for the Evaluation 
of PBPK Models

Evaluation of HTTK R Package

√ Assessment of Model 
Purpose

Rapidly parameterized in vitro-in vivo extrapolation

√ Assessment of Model 
Structure and Biology

Consistent model structure evaluated across a diverse chemical library

√ Assessment of Mathematical 
Descriptions

Model structures added and revised through peer-reviewed journal articles

√ Assessment of Computer 
Implementation

Open-source code available from GitHub (https://github.com/USEPA/CompTox-ExpoCast-httk) and 
CRAN (https://CRAN.R-project.org/package=httk) where bugs can be reported and patched

√ Parameter Analysis and 
Assessment of Model Fitness

Model fitness quantified through comparison with CvTdb

Assessment of any 
Specialized Analyses

https://github.com/USEPA/CompTox-ExpoCast-httk
https://cran.r-project.org/package=httk


65 of 71

Verifying the HTTK R Package

Clark et al. (2004) 
Process for the Evaluation 
of PBPK Models

Evaluation of HTTK R Package

√ Assessment of Model 
Purpose

Rapidly parameterized in vitro-in vivo extrapolation

√ Assessment of Model 
Structure and Biology

Consistent model structure evaluated across a diverse chemical library

√ Assessment of Mathematical 
Descriptions

Model structures added and revised through peer-reviewed journal articles

√ Assessment of Computer 
Implementation

Open-source code available from GitHub (https://github.com/USEPA/CompTox-ExpoCast-httk) and 
CRAN (https://CRAN.R-project.org/package=httk) where bugs can be reported and patched

√ Parameter Analysis and 
Assessment of Model Fitness

Model fitness quantified through comparison with CvTdb

√ Assessment of any 
Specialized Analyses

Population variability simulator httk-pop has been published (Ring et al., 2017) 
and is being revised with most recent NHANES biometrics (Breen et al., in prep.)

https://github.com/USEPA/CompTox-ExpoCast-httk
https://cran.r-project.org/package=httk
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Testing Predictions 
with CvTdb

IVIVE for
Risk Prioritization

Conclusions

 The in vitro-measured chemical specific 
parameters may be used to build a 
variety of models ranging in complexity 
from steady-state to full PBTK

 Chemical-independent information on 
physiology and tissue composition 
allow predictions of chemical 
distribution

The views expressed in this presentation are those of the author 
and do not necessarily reflect the views or policies of the U.S. EPA

Generic models allow for verification of model implementation
 Comparing model predictions for chemicals with in vivo data allows estimation of 

confidence in predictions for chemicals without in vivo data
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There is time for questions now 
followed by a BREAK

Talk Three will begin at 2:00 PM EST

Feel free to contact me at:
wambaugh.john@epa.gov
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Overview
• Uncertainty vs. Variability in HTTK model parameters
• Characterizing key uncertainty in chemical-specific TK parameters

• Fraction unbound in plasma protein (Fup)
• Intrinsic hepatic clearance rate (Clint)

• Characterizing variability: HTTK-Pop for human TK variability
• Relative contributions of uncertainty and variability to TK model 

predictions
• Simulating sensitive subpopulations



Uncertainty vs. variability in HTTK 
model parameters



Review: HTTK model parameters
Chemical-specific parameters
Intrinsic hepatic clearance rate (CLint) Measured in HT in vitro assays (Rotroff et al. 

2010; Wetmore et al. 2012, 2014, 2015; Wambaugh 
et al. 2019) or predicted in silico (Sipes et al. 
2017)

Fraction unbound to plasma protein (Fup)

Tissue:blood partition coefficients (for 
compartmental models)

Predict from phys-chem properties and 
tissue properties (Pearce et al., 2017)

Physiological parameters
Tissue masses (including body weight)

Gathered from data available in the 
published literature [Wambaugh et al. 2015; 

Pearce et al. 2017a]

Tissue blood flows
Glomerular filtration rate 
(passive renal clearance)
Hepatocellularity



Chemical-specific parameters measured in vitro
carry measurement uncertainty

Chemical-specific parameters
Intrinsic hepatic clearance rate (CLint) Measured in HT in vitro assays (Rotroff et al. 

2010; Wetmore et al. 2012, 2014, 2015; Wambaugh 
et al. 2019)

Fraction unbound to plasma protein (Fup)

.
.

.
.

..
.

.
. .1 2

CLint: Cryo-preserved 
hepatocyte suspension
Shibata et al. (2002)

Fup: Rapid Equilibrium 
Dialysis (RED) 
Waters et al. (2008)



Parameters represent biology — so they have 
population variability

Chemical-specific parameters
Intrinsic hepatic clearance rate (CLint) Represent chemical-body interactions —

vary with individual genetics, environmental 
factors, age, etc.

Fraction unbound to plasma protein (Fup)

Tissue:blood partition coefficients (for 
compartmental models)
Physiological parameters
Tissue masses (including body weight)

Represent physiology — vary with individual 
genetics, environmental factors, age, etc.

Tissue blood flows
Glomerular filtration rate 
(passive renal clearance)
Hepatocellularity



HTTK model parameters determine the slope relating 
Css to daily dose –
need to propagate both uncertainty & variability

St
ea

dy
-s
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te

 C
on

ce
nt

ra
tio

n 
(µ

M
)

Daily Dose (mg/kg/day)0

Prediction (line)

Slope = Css for 1 mg/kg/day:
determined by values of TK model parameters

Wambaugh et al. (2019)



Approach to uncertainty & variability: Monte Carlo

• Characterize uncertainty in chemical-specific parameters Fup and 
Clint in terms of probability distributions

• Characterize population variability in physiological parameters in 
terms of (correlated) probability distributions

• Draw samples from distributions: “simulated population”
• Evaluate HTTK model for each “simulated individual” in the 

“simulated population”
• Describe resulting distribution of HTTK model predictions



Characterizing key uncertainty in 
chemical-specific TK parameters



General approach to uncertainty quantification

Error

Unknown true value Observed (measured) value



General approach to uncertainty quantification

Error

Unknown true value Observed (measured) value

• Identify sources of error
• Develop mathematical model of 

error



General approach to uncertainty quantification

Error

Unknown true value Observed (measured) value

• Identify sources of error
• Develop mathematical model of 

error

Bayesian inference:
Find a distribution of possible true values compatible 
with the observed values, under this error model



Uncertainty in Fup



Understanding sources of error in Fup: How to 
measure in vitro using Rapid Equilibrium Dialysis 
(RED)

.

.

.

.
..

.

.
. .

1 2

Protein 
free 
side

Protein-
containing
side

Semi-permeable 
membrane 
(chemical can pass, 
but not protein)

Add 
plasma to 
one side

Add 
chemical

Let equilibrate 
(until unbound 
conc. equal on 
both sides)

Use mass 
spectrometry 
to measure 
chemical conc. 
from each side

(Some 
chemical 
will bind 
to protein)

𝐹𝐹𝑢𝑢𝑢𝑢 =
Protein−free conc.

Protein−containing conc.
Waters et al. (2008); Rotroff et al. (2010); Wambaugh et al. (2019)



https://commons.wikimedia.org/wiki/File:ObwiedniaPeptydu.gif
(GPL)

Sources of measurement uncertainty: 
Mass spectrometry

• Instrument noise
• Limit of quantification (LOQ)
• Instrument calibration

Kkmurray, CC BY-SA 3.0 via Wikimedia 
Commons

Peak area
Calibration: Area vs. concentration

Background noise

Wambaugh et al. (2019)

https://commons.wikimedia.org/wiki/File:ObwiedniaPeptydu.gif
http://creativecommons.org/licenses/by-sa/3.0/


LOQ is a problem in the RED assay for highly-
bound chemicals

44% of chemicals in Wambaugh et al. (2019)

<LOQ

https://commons.wikimedia.org/wiki/File:ObwiedniaPeptydu.gif
(GPL)

https://commons.wikimedia.org/wiki/File:ObwiedniaPeptydu.gif


Approach to <LOQ problem: 
Repeat RED assay with varying amounts of protein

<LOQ

100%

Estimate dissociation constant Kd
(strength of binding affinity between chemical and protein) 

30%

>LOQ

10%

>LOQ

Wambaugh et al. (2019)



Additional source of uncertainty: 
Non-specific chemical binding to membrane or walls

Wambaugh et al. (2019)



Bayesian inference model for 
Fup uncertainty

Error

Unknown true value:
Fup for a chemical

Observed (measured) value:
MS peak areas for protein-
free and protein-containing 

sides

• MS noise
• MS calibration
• LOQ
• Non-specific binding

Result: Distribution of Fup values for a 
chemical

Wambaugh et al. (2019)



Uncertainty in CLint



CLint: How to measure in vitro using pooled human 
hepatocytes

Add known 
amount of 
chemical

Measure chemical concentration remaining at
0, 15, 30, 60, and 120 minutes

Culture donated 
human hepatocytes 
from 10 adult 
volunteers

CLint can be estimated 
from fitting a decaying 
exponential

Rotroff et al. (2010); Wetmore et al. (2012, 2015); Wambaugh et al. (2019)



Mass spec uncertainties also apply to CLint

https://commons.wikimedia.org/wiki/File:ObwiedniaPeptydu.gif
(GPL)

Kkmurray, CC BY-SA 3.0 via 
Wikimedia Commons

• Uncertainty in peak 
area

• LOQ
• Calibration curve

Wambaugh et al. (2019)

https://commons.wikimedia.org/wiki/File:ObwiedniaPeptydu.gif
http://creativecommons.org/licenses/by-sa/3.0/


Additional uncertainty source: 
Is chemical really metabolized at all? 

(simulated data for illustration purposes)

“p-value”: Is there really a 
trend here at all?

Wambaugh et al. (2019)



Additional uncertainty source: 
Saturable metabolism

Km

10 uM

1 uM

figure adapted from supplemental material of 
Wambaugh et al. (2019)



Bayesian inference model for 
Clint uncertainty

Error

Unknown true value:
Clint for a chemical

Observed (measured) value:
MS peak areas at 5 time 

points

• MS noise
• MS calibration
• LOQ
• Probability of no metabolism
• Probability of saturation

Result: Distribution of Clint values for a 
chemical

Wambaugh et al. (2019)



Characterizing variability: HTTK-
Pop for human TK variability



HTTK physiological parameters

Physiological parameters
Tissue masses (including body weight)
Tissue blood flows
Glomerular filtration rate 
(passive renal clearance)
Hepatocellularity



Data source for population physiology: CDC 
NHANES

CDC NHANES = Centers for Disease Control National Health and 
Nutrition Examination Survey

Large, representative, ongoing survey of US population:
demographics, body measures, medical examination data….

NHANES does 
measure:
Sex
Age
Height
Weight
Serum creatinine

NHANES does not 
measure:
Tissue masses
Tissue blood flows
GFR (kidney function)
Hepatocellularity

Ring et al. (2017)



Correlated Monte Carlo approach to simulating 
population variability in physiology: HTTK-Pop

Predict physiological TK 
quantities (as used by 
generic TK model) for 
each individual:

Tissue masses
Tissue blood flows
GFR (kidney function)
Hepatocellularity

Sample NHANES measured 
quantities for actual 
NHANES individuals 
(capturing covariance):

Sex
Age
Height
Weight
Serum creatinine Regression equations from 

literature (McNally et al., 2014)
(+ residual marginal variability) 

(Similar approach used in SimCYP [Jamei et al. 2009], GastroPlus, 
PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB 

[Bosgra et al. 2012], etc.)
Ring et al. (2017) 29



Chemical-specific parameters have both 
uncertainty and variability

Chemical-specific parameters
Intrinsic hepatic clearance rate (CLint) Carry uncertainty from in vitro

measurements

Also have population variability: represent 
chemical-body interactions — vary with 

individual genetics, environmental factors, 
age, etc.

Fraction unbound to plasma protein (Fup)



Chemical-specific TK parameters: Two-stage Monte Carlo approach to 
modeling both measurement uncertainty and population variability

Step 2: Assume population 
variability (30% CV) around the 
sampled  “population average” value 
from Step 1, and draw 1 sample 

Repeat Steps 1 and 2 for each simulated 
individual to get sampled values that 
include both uncertainty & variability

For CLint: Add 5% “poor 
metabolizers” (10% of 
original pop. average) 31

Step 1: Draw 1 sample from 
uncertainty distribution and 
treat as “population average” 
value

Wambaugh et al. (2019)



Putting it all together: A table of HTTK model 
parameters for each “simulated individual” in a 
“simulated population”

SEQN Demographics Body 
measures

Tissue 
volumes

Blood 
flows

GFR Hepatocell
ularity

Fup Clint

Sex Age Ht Wt

67184 M 42 171 55 […] […] […] […] […] […]

52034 M 0.5 73 9 […] […] […] […] […] […]

64847 F 11 154 47 […] […] […] […] […] […]

51787 F 22 166 87 […] […] […] […] […] […]

49889 M 9 147 50 […] […] […] […] […] […]

64606 F 59 169 115 […] […] […] […] […] […] 

45549 F 50 165 80 […] […] […] […] […] […]

[…] […] […] […] […] […] […] […] […] […] […]



httk R package automates this Monte Carlo 
sampling & model evaluation process
> library(httk)
> set.seed(42)
> #Css for 1 mg/kg/day = slope
calc_mc_css(chem.name="benzo(a)pyrene", 

which.quantile = c(0.95, 0.5, 0.05))

Human plasma concentration returned in mg/L units 
for 0.95 0.5 0.05 quantile.

95%    50%     5% 
68.510 13.070  3.742 



Result: Percentiles of predicted Css vs. dose slope
95th %ile

5th %ile

C
ss

(µ
M

)

Dose0

Median
Slope = Css for 1 mg/kg/day



Another way to visualize: ratio of 95th percentile to median 
(roughly, how wide is the Css slope distribution?)



Relative contributions of 
variability & uncertainty



Figure adapted from Wambaugh et al. (2019)

For most chemicals, population variability 
produces more difference between 95th and 
50th percentile Css slopes than uncertainty 
does.



Simulating sensitive 
subpopulations



Identifying potentially sensitive sub-populations

95th %ile
(Most Sensitive 
5%)

5th %ile (Least 
Sensitive 5%)

C
ss

(µ
M

)

Dose0

Median

Slope = Css for 1 mg/kg/day

Who is in the most sensitive portion 
of the population?

What does this slope distribution look 
like for kids, for example?

Or people over 65?

To answer this question: Need to 
model TK variability for specified sub-
populations

Ring et al. (2017)



HTTK-Pop can generate simulated subpopulations 
with user-specified demographics

Name of list element User can specify… Example Default if not 
specified

agelim_years Age limits in years c(6,11) Ages 6-11 years All NHANES (0-79 
years)

agelim_months Age limits in months c(0,36) Ages 0-36 months All NHANES (0-79 
years)

gendernum # of males and 
females

list(Male = 
1000, Female = 
0)

1000 males, 0 females Randomly selected 
from NHANES

weight_category BMI category c('Overweight', 
'Obese')

BMI > 25 (overweight 
& obese)

c('Underweight', 
'Normal', 
'Overweight', 'Obese')

Use httkpop.generate.args argument to calc_mc_css()function: Takes a named list of arguments

HTTK-Pop generates physiology based on NHANES respondents in the specified demographic groups



Example of Css95 
differences by 
subpopulation

10 subgroups of interest

Heatmap: Css95 difference 
(subgroup vs. Total population) for 
50 chemicals with largest Css95 
difference in any subgroup



Conclusions



Conclusions
• Uncertainty vs. Variability in TK model parameters

• Measurement uncertainty: Chemical-specific parameters measured in vitro
• Population variability: Physiological & chemical-specific parameters

• Characterizing key uncertainty in chemical-specific TK parameters using Bayesian 
inference

• Fraction unbound in plasma protein (Fup)
• Intrinsic hepatic clearance rate (Clint)

• Characterizing variability: HTTK-Pop for human TK variability
• Correlated Monte Carlo approach based on CDC NHANES data

• Relative contributions of uncertainty and variability to TK model predictions
• For most chemicals, population variability has larger effect

• Simulating sensitive subpopulations
• HTTK-Pop can simulate populations with user-specified demographics



Thank you!
Questions?
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Overview

• Reverse dosimetry for in vitro to in vivo extrapolation (IVIVE)
• Key assumptions
• Operationalizing library(httk)

• Impacts of choices made in IVIVE on a NAM-based point of departure 
(PODNAM)

• What are the key choices to be made in using library(httk)
• Continuing uncertainties

• Case studies using the bioactivity:exposure ratio (BER)

2



Reverse dosimetry for in vitro to 
in vivo extrapolation (IVIVE)

3
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 Swap the axes (this is the “reverse” part of reverse dosimetry)
 Can divide bioactive concentration by Css for for a 1 mg/kg/day 

dose to get oral equivalent dose

Slope = mg/kg/day per Css
1 mg/kg/day

Steady state in vitro-in vivo extrapolation assumption: blood::tissue 
partitioning ≈ cells::medium partitioning



Derivation of PODs from NAMs: IVIVE that 
employs toxicokinetic extrapolation of dose

Reverse dosimetry can be leveraged in IVIVE to estimate the exposure that would 
produce the plasma concentration corresponding to bioactivity

High-throughput toxicokinetic (HTTK) approaches make it possible to predict doses 
corresponding to in vitro bioactivity for thousands of chemicals.

2012
A subset of the papers 

describing the 
development of a high-

throughput toxicokinetic 
approach

2017

2017

2017

2014 2015

2019

2014

5



High throughput toxicokinetics (HTTK)
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Led by John Wambaugh, Barbara Wetmore, Caroline Ring, and colleagues

Hepatic clearance from suspended hepatocytes

Plasma protein binding

Generic 
toxicokinetic 

models
in vitro toxicokinetic data

Some high-level assumptions commonly 
employed: 

(1) bioactive nominal in vitro assay 
concentration ~ in vivo plasma 
concentration that would correspond to a 
similar effect;

(2) external exposures (in mg/kg/day units) 
that may have resulted in that plasma 
concentration can be constructed using 
estimates of species-specific physiology 
and Phase I and Phase II enzyme-driven 
hepatic clearance; and,

(3) Often, we expect that plasma 
concentration can be approximated by 
steady-state kinetics (unless we have 
enough information to use other dose 
metrics). 6



Simplifying assumptions for a steady-state 
model

• 100% bioavailability (all of an oral dose is received by the liver through the portal vein);
• No extrahepatic metabolism: the liver is the only source of chemical clearance from the body by metabolism; 
• Hepatic metabolism is first order (proportional to concentration) and does not saturate;
• Renal clearance is proportional to fraction unbound in plasma and glomerular filtration rate (i.e., no active 

transport); and,
• No biliary excretion or enterohepatic recirculation occurs.

With these assumptions, HTTK models have demonstrated reasonable accuracy in predicting 
relevant TK endpoints, for example plasma concentrations over time (AUC) (R2 = 0.62) and 

maximum plasma concentrations (Cmax) (R2 = 0.48) (Wambaugh et al., 2018).

AED values in mg/kg/day units were calculated using the following equation:

Eq.2:   𝐴𝐴𝐴𝐴𝐴𝐴50
𝑚𝑚𝑚𝑚
𝑘𝑘𝑚𝑚

𝑑𝑑𝑑𝑑𝑑𝑑
= 𝐴𝐴𝐴𝐴50 µ𝑀𝑀 ∗

1𝑚𝑚𝑚𝑚
𝑘𝑘𝑚𝑚

𝑑𝑑𝑑𝑑𝑑𝑑

𝐶𝐶𝐶𝐶𝐶𝐶50

Where the Css (steady-state concentration) values for the median individual based on Monte Carlo 
simulation of species-specific physiological parameters (Css50) (Pearce et al. 2017) were generated 

using the 3-compartment steady state model. 7



A simple approach for using the CompTox Chemicals 
Dashboard to estimate a PODNAM

• Operationally, the httk R package (v 2.0.4) can be downloaded from CRAN or GitHub for reproducible generation of administered 
equivalent doses (AEDs).

• AC50 or LEC (micromolar) * (1 mg/kg/day/Css (micromolar)) = AED prediction 

• Httk package optionally implements multiple models that can have increasing complexity based on data available (e.g., using 
pbtk model or including interindividual toxicokinetic variability).

8

3.3 mg g mol 1e6 µmol

L 1000 mg 228.291 g mol
= 14.45523 µmol/L = µM 

0.1 µM 1 mg/kg/day

14.45523 µM = 0.007 mg/kg/day = AED95

Css here is from 95th quantile (Note that 
95th concentration quantile is the same 
population as the 5th dose quantile).



A simple operational use of library(httk)

9

Default micromolar 
concentration; this 
is the in vitro point 
of departure you 

want to use

Which quantile from Monte 
Carlo steady-state 

simulation (for Css). 95th

concentration quantile 
produces the 5th dose 

quantile.

‘Rat’, ‘Rabbit’, ’Dog’, 
’Mouse’ or default ‘Human’

Restrictive clearance indicates that chemical 
bound to protein is relatively unavailable for 

hepatic metabolism or renal excretion 
(whereas non-restrictive clearance assumes 

that chemical bound to protein rapidly 
disassociates from that protein for metabolism 

and excretion). 

Which generic toxicokinetic model to use?



Impacts of choices in the IVIVE 
approach to PODNAM

10



Some key choices

• What species physiology should be considered for the application?
• Which generic HTTK model is fit-for-purpose?
• How should interindividual variability be considered?
• What assumptions should be made about restrictive clearance and 

bioavailability of a chemical for bioactivity?
• To what extent will our predictions of POD be inaccurate because of 

differential in vitro partitioning of the chemical?

11



On selection of the species for the 
physiology

• Does the application require 
comparison to animal-based PODs or 
human exposure predictions or both?

• How much in vitro toxicokinetic data is 
available for the species in 
question/how many chemicals can 
IVIVE be performed?

• Another approach: is allometric 
scaling (based on body surface area) 
useful for converting human 
administered equivalent doses to 
other species?

12

With this paper came the introduction of a larger set of 
rat intrinsic hepatic clearance and fraction unbound in 
plasma data, but there is still more data available for 
humans.



What to do when data is missing by species?

• In the absence of hepatic clearance values from rat hepatocytes, rat liver microsomes, or rat liver Phase I enzymes, would the use 
of human hepatocyte-derived hepatic clearance values be a reasonable substitute? 

• The Cmax values obtained from the rat PBTK model, using either rat or human HTTK data for Fup and Clint, result in values that 
are similar (generally within ± 0.5 log10-µM) for the 151 substances compared. Similarly, the plasma AUC values that result from 
using rat or human HTTK data in a rat PBTK model generally were within ± 1 log10-µM. 

Supplemental Appendix Figure 2, https://www.regulations.gov/docket/EPA-HQ-OPP-2020-0263/document

13



On selection of a generic HTTK model

• How many chemicals of interest have sufficient data 
for the model? 

• Can in silico predictions of Fup or other parameters 
be used?

• Because the fraction unbound in plasma (Fup) assay 
fails for highly bound chemicals (Wambaugh et al., 
2015), the steady state model can be used with the 
assumption that plasma protein binding is simply 
“small,” i.e., typically 0.5% (Wetmore et al., 2012).

14

Models: 3-compartment steady 
state  (3compss)

PBTK

Chemical-specific 
parameters

Clint only Clint, Fup, logP, pKa

Model inputs A single oral dose A single oral dose
Model outputs Steady-state blood 

concentrations
Time course of blood 
concentrations; estimate 
Cmax, AUC (24 hr), Cmean 
(AUC/time) from time course 
simulations

Human interindividual 
variability

Human physiological parameters (first order hepatic 
metabolic clearance; plasma protein binding; liver volume, 
blood flow, and cell density; and glomerular filtration rate) 
can be varied in a Monte Carlo simulation to estimate the 
dose required to achieve equivalent blood concentrations 
for the most to least sensitive individuals. 

Rat interindividual 
variability

Rat physiological parameters (rat liver volume and 
glomerular filtration rate) can be varied in a Monte Carlo 
simulation to estimate the dose required to achieve 
equivalent blood concentrations for the most to least 
sensitive individuals. 



On consideration of population 
toxicokinetic variability

15

For the 448 chemicals in Paul Friedman et al., 
2020, AED50 was typically 2-5 times larger than 
AED95, though in some cases the differences 
was much greater.

What is the application: screening or 
assessment?

Paul Friedman et al., 2020 Supplemental Appendix; 10.1093/toxsci/kfz201

https://doi.org/10.1093/toxsci/kfz201


On consideration of restrictive clearance

16

The degree to which a protein bound chemical is available for 
metabolism and excretion is likely chemical specific and a 
continuous function (i.e., not binary).

Currently, there is no way to predict or measure this property for a 
chemical.  Restrictive clearance has been used as a conservative 
assumption. 

Because the amount of chemical bound to protein can vary from 0-
100%, the AEDs produced using a non-restrictive clearance 
assumption may be as much as two or three orders of magnitude 
greater than those produced using a restrictive clearance 
assumption (on a log10-mg/kg/day scale and based on current 
measurement ability). The amount of difference observed depends 
on how much of the chemical is thought to be protein-bound; the 
more highly protein-bound the chemical, the greater the shift 
observed.

Paul Friedman et al., 2020 Supplemental Appendix; 
10.1093/toxsci/kfz201

https://doi.org/10.1093/toxsci/kfz201


Restrictive clearance with the free ‘bioactive’ fraction 
in the media may perform best

17
Honda et al. 2019, Figure 8; 10.1371/journal.pone.0217564

In predicting in vivo PODs, restrictive clearance with the 
modeled mean free (media) concentration may perform 
the better.

One would need good curated information and models for 
in vitro disposition of the chemical – here we have ongoing 
work to apply an existing model (Armitage model) to more 
data.

The Armitage 2014 model operationalized in Honda et al. 
2019 is available in library(httk).

https://doi.org/10.1371/journal.pone.0217564


What factors really influence in vitro 
partitioning?

• Armitage et al. (2014) suggest that in 
vitro partitioning relates strongly to 
logKow and concentration of serum in 
the medium

• Sorption to plastic played a smaller 
role in determining the cellular 
concentration

Mass-balance model

Diagram of in vitro compartments

Armitage et al. 2014; 10.1021/es501955g

https://doi.org/10.1021/es501955g


Others reinforce that lipid and protein  content of media 
formulations may be an important determinant

Fischer et al. 2017; Modeling Exposure in the Tox21 in Vitro 
Bioassays | Chemical Research in Toxicology (acs.org)

• Fischer et al. (2017) suggest that in vitro partitioning 
relates strongly to medium formulation (lipid and protein 
content)

• Time may play a role; perhaps equilibrium is not always 
reached rapidly?

• What we really need are some additional empirical 
measures and refinements to models to understand the 
extent to which differential partitioning is leading to large 
differences in cellular and media concentrations for the 
chemical space.

https://pubs.acs.org/doi/10.1021/acs.chemrestox.7b00023


Bioactivity:exposure ratios

20



Bioactivity:exposure ratios are not new

21

Rotroff et al., 2010 10.1093/toxsci/kfq220



Many works apply HTTK to prioritization and 
assessment case studies

2019

2018

20152011 2018

2019

2020

2020

2020

A subset of the papers describing 
the application of a high-

throughput toxicokinetic approach 
– too many to fit 22



A retrospective case study with the 
Accelerating the Pace of Chemical 

Risk Assessment (APCRA)

23



Why is the retrospective case study important? 

• Clear need to demonstrate in practical terms, for as many chemicals as 
possible, how preliminary screening level risk assessment using a new 
approach methodologies (NAM) based approach would perform when 
compared to traditional approaches to deriving points-of-departure 
(PODs).

• Illustrate the current state-of-the-science. 
• Evaluate the specific strengths and weaknesses of rapid, screening level 

risk assessment using NAMs.
• Approach: Take a retrospective look at the traditional and NAM data for as 

many chemicals as possible (448 at the time).

24



The big question: 

Can in vitro bioactivity be used to derive 
a conservative point-of-departure (POD) 
for prioritization and screening level risk 
assessment?

25

See the forest for the trees



PODtrad

EPA - ToxValDB

Health Canada

EFSA

ECHA 

PODNAM

ToxCast AC50s 
(µM)

Apply high-
throughput 

toxicokinetics
(httk) to get 
mg/kg/day

Exposure

EPA - ExpoCast

Health Canada
Bioactivity-exposure 

ratio PODtrad : PODNAM ratio

Is log10-POD ratio > 0 for most chemicals?
Can we learn from log10-POD ratio < 0?

Is BER useful for prioritization?
Are there addressable weaknesses? • NOEL, LOEL, 

NOAEL, or 
LOAEL

• Oral exposures
• Mg/kg/day

5th %0-5th %95th %
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Case study workflow
ASTAR HIPPTox

EC10s (µM)

Figure 1, Paul Friedman et al. 2019
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48/448 chemicals = 
11% where PODNAM > PODtraditional

400/448 chemicals = 
89% of the time this 
naïve approach appears 
conservative

PODNAM < 
PODtraditional

(most of the time) 

Figure 3, Paul Friedman et al. 2019



The log10-POD ratio distribution shows PODNAM is 
generally conservative and adjustable.

28

• log10POD ratio is illustrated for the PODNAM,95 and the PODNAM, 50. 
• Using the more conservative (i.e., lower) PODNAM,95, 48 of the 448 substances (10.7%) demonstrated a log10POD 

ratio < 0 (to the left of the solid vertical line), whereas 92 of the 448 substances (20.5%) demonstrated a log10-
POD ratio < 0 using the PODNAM,50. 

• The medians of the log10-POD ratio distributions are indicated by dashed lines for PODNAM, 95 and PODNAM, 50 as 
2 and 1.2, respectively.

PODNAM,95 includes interindividual 
variability in the in vitro to in vivo 
extrapolation process to a greater 

extent and is more often a conservative 
estimate of PODtraditional .

This should trigger thinking regarding 
uncertainty and uncertainty 

factors/safety factors. In the NAM-
based process, we have quantitatively 

informed uncertainty that can be 
included explicitly at multiple steps in 

the screening assessment process.



The bioactivity:exposure ratio (BER) provides a way of 
prioritizing substances for further review. 

29

More conservative Less conservative

• Make choices based on tolerable
uncertainty (i.e., based on use case).

• BER95 used 95th percentile from the
credible interval to predict median total
US population exposure (ExpoCast
SEEM2);BER50 the 50th percentile.

• BER95 and BER50 values were calculated
as the “95th%-ile” and “50th%-ile,” using
the PODNAM,95 and PODNAM,50,
respectively.

BER95 , 95th percentile did not prioritize an unreasonable number of 
substances; the BER selected reflects the level of conservatism and uncertainty 

considered within a screening assessment.



Conclusions and limitations
• An approach to using in vitro bioactivity data as a POD appears to 

be a conservative estimate ~ 90% of the time for 448 chemicals.

• PODNAM estimates appear conservative with a margin of ~100-fold. 

• PODNAM may provide a refinement of a TTC approach.

• When combined with high-throughput exposure estimates, this 
approach provides a reasonable basis for risk-based prioritization 
and screening level risk assessments.

• Specific types of chemicals may be currently outside the domain of 
applicability due to assay limitations, e.g., organophosphate 
insecticides: how do we identify these in the future?

• This is the largest retrospective look at this to-date; but what if new 
chemicals perform differently? What will be the prospective 
approach?

• Additional research to include expanded and improved high-
throughput toxicokinetics and in vitro disposition kinetics may help 
improve PODNAM estimates.

30



Application of hazard-specific 
NAMs to specific questions 
about the potential 
developmental neurotoxicity

31

https://beta.regulations.gov/document/EPA-HQ-OPP-2020-0263-0006
Code here: https://www.epa.gov/sap/use-new-approach-methodologies-
nams-derive-extrapolation-factors-and-evaluate-developmental

ORD DNT NAMs Team: Josh Harrill, Tim Shafer, Katie Paul Friedman

September 15-18, 2020 Federal Insecticide, Fungicide, and Rodenticide Act 
Scientific Advisory Panel met to review this Issue Paper and presentations

https://beta.regulations.gov/document/EPA-HQ-OPP-2020-0263-0006
https://www.epa.gov/sap/use-new-approach-methodologies-nams-derive-extrapolation-factors-and-evaluate-developmental


Assays should allow quantitative measurements of  key neurodevelopmental events in vitro

Phenotypic Screening for DNT Hazard

32



Example: AED50 to BMD/BMDL10 comparisons

33



Employing toxicokinetic and toxicodynamic 
NAMs

34

• How much uncertainty can be tolerated?
• Can BER be informative for the problem?
• Are there specific hazards of interest?
• How should toxicokinetic modeling be tuned?

https://www.epa.gov/chemical-research/epa-new-approach-methods-work-plan-reducing-use-animals-chemical-testing

• Chemical safety assessment with fewer resources is a motivator for rapid data acquisition and model 
development. 

• There is a lot more work to do, and case studies will help build confidence and identify gaps to fill.



Conclusions
• Reverse dosimetry is a powerful tool for deriving NAM-based points-of-

departure for different chemical screening and assessment applications.
• The details of the choices made in the IVIVE approach have impacts on the 

PODNAM derived, and uncertainties and assumptions should be explained.
• R library(httk) provides a simple way for users to operationalize generic HTTK models and in 

vitro toxicokinetic data to derive PODNAM from in vitro bioactivity data such as ToxCast data.
• For some applications, conservative assumptions can be more tolerated.
• Ongoing research will further inform sets of decisions for specific chemicals chemical 

assessment contexts (e.g., improvements and application of in vitro chemical disposition 
modeling).

• Ongoing work to compare PODNAM to existing PODs as well as to values obtained 
through other PBTK approaches will provide important benchmarks on HTTK 
approaches to increase the acceptance of PODNAM and BERs.
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