

LARGER PLASTIC

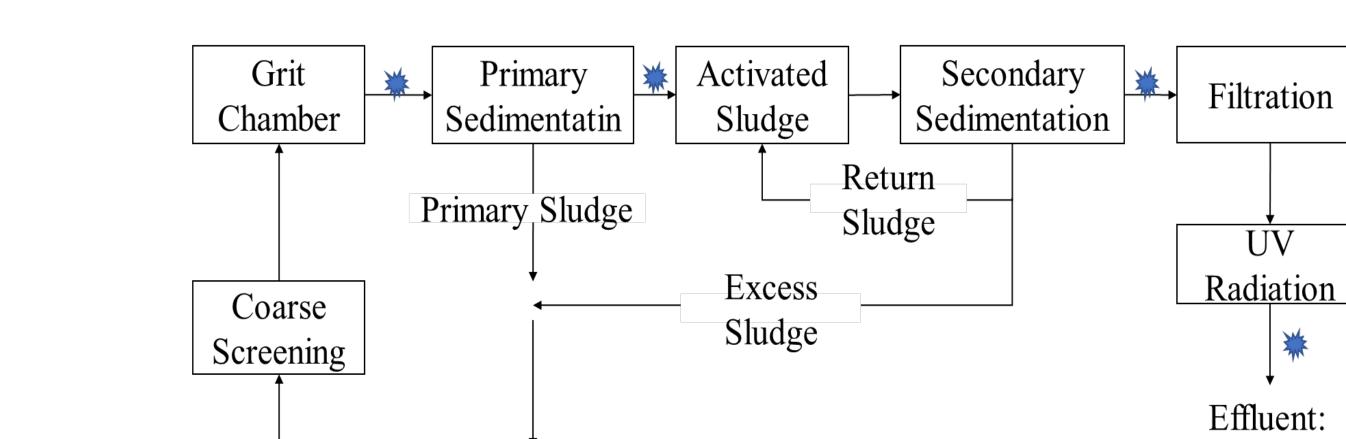
PRODUCTS

WAVE ACTION

Protection Agency

Removal of Microplastics from Domestic Wastewater Moayad Yacoub, Jaymi Godfrey, Bless Ajornor, Nadia Briddle & Dr. Bangshuai Han Environment, Geology, & Natural Resources, Ball State University, Muncie, IN, 47306

Contact Name: Bangshuai Han Ibhan@bsu.edu I 765-285-5790

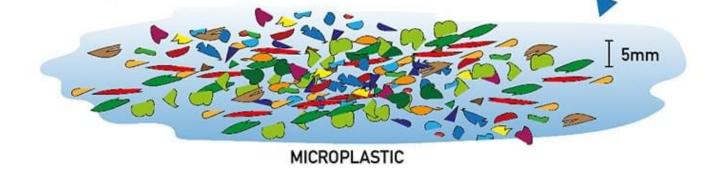

Background and motivation

Research Design & Methods

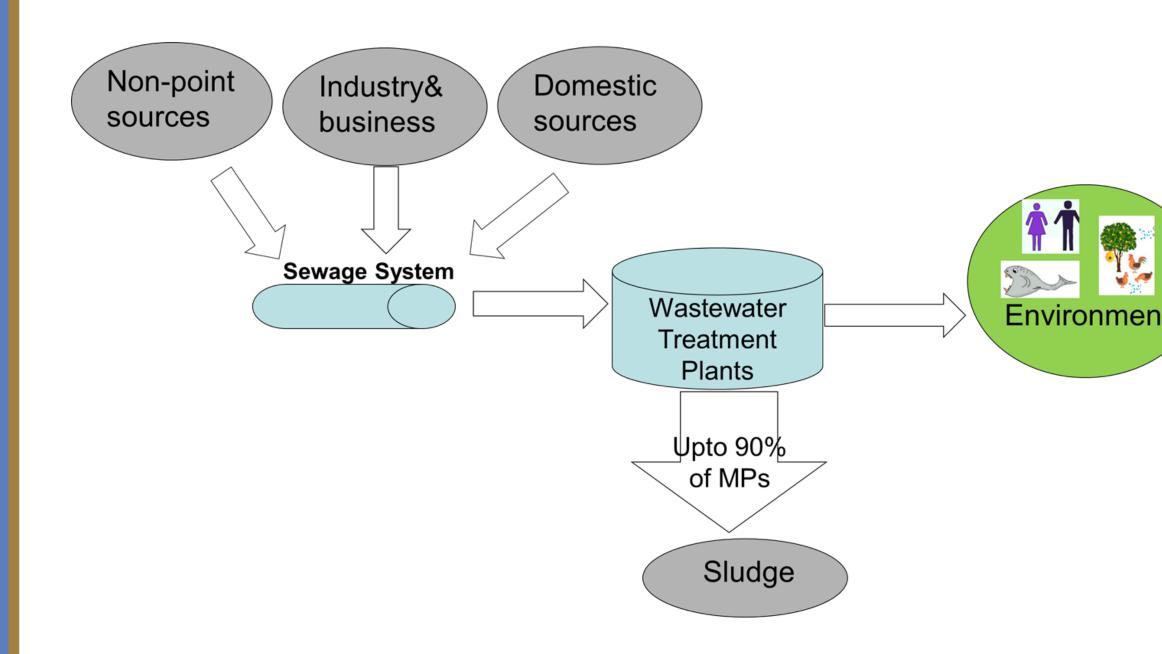
Sampling

RODUCTS

MICROBEADS


Preliminary Results

- The original content of OM in the dry peat moss was found to be 76.83 \pm 3.53 %. (No Treatment)
- The best optimal combination for high level of peat moss is Treatment 3 and for low level is Treatment 1

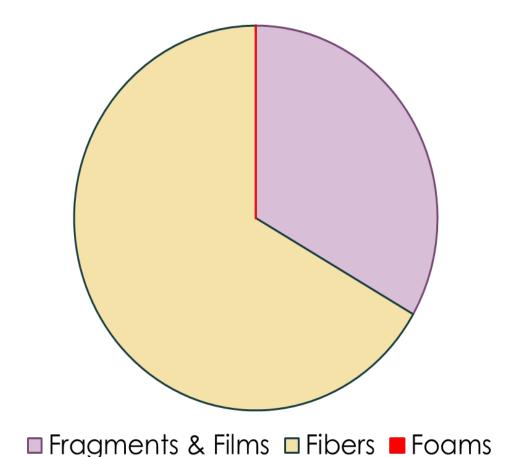

Sample weight	2.221 ± 0.11 g	0.795 ± 0.03 g	
Treatment	OM % after digestion		
Treatment 1	65.73 ± 3.51 %	48.15 ± 6.83 %	

mall plastic pellet

used in industry

- Global plastic production has been increasing;
- Microplastics (MPs) are widespread, either manufactured in small size or are degraded from macroplastics
- An emerging environmental and public health concern (picture adapted from Plastics Europe 2021)

Influent:	Sludge	
Combined Sewer	Treatment	


Sampling Treated locations Wastewater

- Grab samples taken from Feb to May 2022 from the Muncie WWTP (domestic wastewater)
- Treatment processes and MPs sampling sites are illustrated in the picture

Organic matter (OM) removal efficiency tests

Treatment 2	71.16 ± 2.23 %	62.59 ± 2.53 %
Treatment 3	62.92 ± 5.25 %	58.50 ± 3.75 %
Treatment 4	71.49 ± 2.37 %	70.40 ± 0.79 %

392 liters collected

- Fragments and Films: 1,089 in total (35.1%)
- Fibers: 2,009 in total, (64.7%)
- Foams: 7 in total (0.2%)

Next Steps

- Conduct more experiments and build a rating curve for \bullet the best Fenton dosage at various OM concentrations
- Eliminate unnecessary intermediate steps and reduce the running time
- Collect rich carbon material from wastewater treatment

- Wastewater Treatment Plants (WWTPs) receive wastes, including microplastics, from point and non-point sources
- Although not designed to treat MPs, WWTP can eliminate most of the MPs
- There are still numerous microplastic particles being released into the environment via wastewater effluent
- Current sampling and testing methods take days to complete one sample, with potential sample contaminations, microplastics loss, and inaccuracies.

Goals and Objectives

Research goals

stage

To better understand the presence and removal of microplastics in wastewater by improving current sampling and testing procedures

Specific objectives at Phase I

Improving and streamlining current microplastics

- Presence of OM interferes with visual detection of MPs
- Fenton reagent has been commonly used to digest OM for better MP visualization
- Optimal dosage of Fenton reagent unclear
- Peat moss was used as an example of rich-OM material to test OM removal efficiency
- Two levels of peat moss was digested for 30 min, each using the reagent ratio shown in the table below

Treatment #	H_2O_2 (ml)	Fe ₂ ⁺ solution (ml)
No Treatment		
Treatment 1	70	10
Treatment 2	70	5
Treatment 3	35	10
Treatment 4	35	5

- OM content left after digestion was determined using Loss on Ignition (LOI) method
 - Dry samples at 150°C for 2 hours, weigh
 - Raise temperature to 550°C for 2 hours, weigh again

for further testing.

Supporting People, Planet & Prosperity

Benefit Local Collaborators

Muncie Sanitary District, its Bureau of Water Quality (BWQ), and the WWTP by first-hand data of MPs in their water

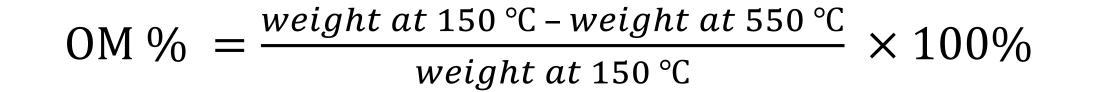
Benefit science community

- Add to the knowledge base of current MP studies to better understand their existence and removal and complement the rich water quality dataset of the BWQ
- Provide a testing protocol that is considerably more streamlined, less time-consuming, and less confusing

Benefit Ball State University

Train three graduate students, and involve undergraduate students

Benefit the Society


Provide data supporting future innovations and decision-

identifying the quantities and types of microplastics

present in the Muncie WWTP at each major treatment

