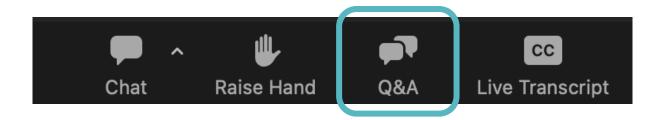


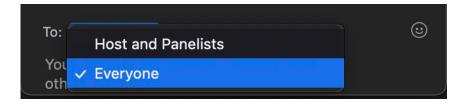
EPA Center for Computational Toxicology and Exposure (CCTE)

Generalized Read-Across (GenRA) Virtual Training

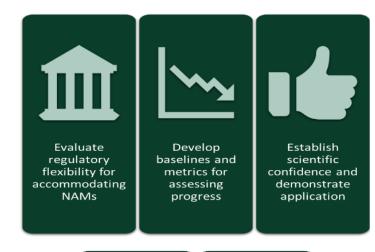
Grace Patlewicz, U.S. EPA CCTE

If you have a question for the presenters, use the Zoom Q&A feature.


If you prefer to call in by phone, please refer to the Meeting Invite to obtain the phone number and passcode.



Please update your Zoom name to your first and last name.


This webinar will be recorded and posted to the CCTE NAMs Training website.

SEPA United States Environmental Protection EPA NAMS Pilot Training Program

- New Approach Methodologies (NAMs) Training Program is a deliverable in the Agency's Work Plan, first released in 2019 and updated in 2021.
 - Previous trainings include ECOTOX, CompTox Chemicals Dashboard
- Goal: Develop, implement and maintain an engaging training program.
 - Interactive case studies to encourage active learning
 - Train the trainer
 - Obtain feedback
- More trainings are being planned
- The EPA NAMs training website includes existing training resources, including recordings and guidance documents.

- Welcome and Introductions
- Background of GenRA
- Functionalities and Features of GenRA
- A Walk Through Example
- Summary
- Breakout Session
 - A walk through with a data poor chemical
 - Practical applications of GenRA
 - Read-across predictions and interpretations
- Debrief Session

• No conflicts of interest to declare.

• Disclaimer:

The views expressed herein are those of the presenter and do not necessarily reflect the views or policies of the U.S. EPA

EPA Center for Computational Toxicology and Exposure (CCTE)

Generalized Read-Across (GenRA) Virtual Training

Grace Patlewicz, U.S. EPA CCTE

Facilitators

Dr. Grace Patlewicz Dr. Imran Shah Dr. Louis Groff

GenRA Development Team

Terry Brown* Kenta Baron-Furuyama Freddie Valone* Sean Hamilton* PK Do

Contributers

George Helman Tia Tate Willysha Jenkins Mark Nelms Matthew Adams* Brett Hagan*

*current

PA Inted States Jency Generalized Read-Across (GenRA)

- Predicting toxicity as a similarity-weighted activity of nearest neighbors based on chemistry and bioactivity descriptors (Shah et al, 2016)
- •**Goal:** To establish an objective performance baseline for read-across and quantify the uncertainty in the predictions made

$$y_{i}^{\beta,\alpha} = \frac{\sum_{j=1}^{k} s_{ij}^{\alpha} x_{j}^{\beta}}{\sum_{i=1}^{k} s_{ij}^{\alpha}}$$

Jaccard similarity:

 $s_{ij} = \frac{\sum_{l} (x_{il} \wedge x_{jl})}{\sum_{l} (x_{il} \vee x_{jl})}$

Regulatory Toxicology and Pharmacology 79 (2016) 12-24

Systematically evaluating read-across prediction and performance using a local validity approach characterized by chemical structure and bioactivity information

Imran Shah ^{a, *}, Jie Liu ^{b, c}, Richard S. Judson ^a, Russell S. Thomas ^a, Grace Patlewicz ^a

^a National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA

^b Department of Information Science, University of Arkansas at Little Rock, AR 72204, USA

⁶ Oak Ridge Institute for Science Education Fellow, National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA

ARTICLE INFO ABSTRACT

Article history: Received 25 September 2015 Beceived in revised form 20 April 2016 Accepted 3 May 2016 Available online 9 May 2016 Available online 9 May 2016 Regwords: Read-across Neurest neighbors Local validity domains (U)SAR KNN Bioactivity ToxCast	Read-across is a popular data gap filling technique within category and analogue approaches for regu- latory purposes. Acceptance of read-across remains an ongoing challenge with several efforts underway for identifying and addressing uncertainties. Here we demonstrate an algorithmic, automated approach to evaluate the utility of using in vitro bioactivity data ('bioactivity descriptors', from EPA's ToxCast program) in conjunction with chemical descriptor information to derive local validity domains (specific sets of nearest neighbors) to facilitate read-across for up to ten in vivo repeated dose toxicity study types. Over 3239 different chemical structure descriptors were generated for a set of 1778 chemicals and supplemented with the outcomes from R21 in vitro assays. The read-across predictions of toxicity for 600 chemicals with in vivo data was based on the similarity weighted endpoint outcomes of its nearest neighbors: The approach enabled a performance baseline for read-across predictions of specific word in vivo toxicity outcomes than chemical descriptors or a combination of both. This generalized read-across (GenRA) forms a first step in systemizing read-across predictions and serves as a useful component of a
ToxCast	screening level hazard assessment for new untested chemicals.

© 2016 Published by Elsevier Inc.

 $\alpha \equiv \{chm, bio, bc\}$

 $\beta \boxminus \{bio, tox\}$

 y_i = predicted activity of chemical (c_i)

 $x_{j}^{\beta} = activity of c_{j} in \beta$

 $s_{ij}^{\alpha} = Jacccard similarity between x_i^{\alpha}, x_j^{\alpha}$

k = up to k nearest neighbours

Computational Toxicology

computational foncoiogj

journal homepage: www.elsevier.com/locate/comtox

Navigating through the minefield of read-across tools: A review of in silico tools for grouping

Grace Patlewicz^{a,*}, George Helman^{a,b}, Prachi Pradeep^{a,b}, Imran Shah^a

Summary of key features of selected publicly available read-across tools.

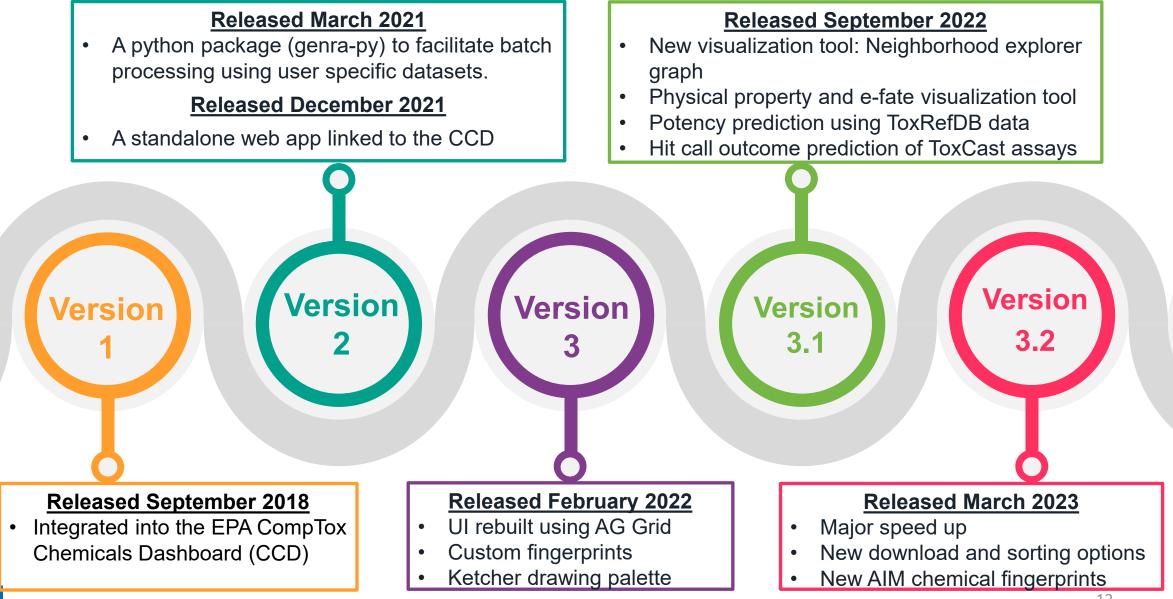
Table 1

	AIM	ToxMatch	Ambit	OECD Toolbox	CBRA	ToxRead	CIIPro	(Patlewicz et al., 2017
Development timeline	Java based version is dated 2012. Initial development of web version was 2005.	First public version released in Dec 2006	Original AMBIT tool was developed in 2004–2005	Proof of concept released in 2008	Implementation of the Low et al. [27]	Implementation of Gini et al. [22]	Implementation described in Russo et al. [45]	
Type of Tool	Standalone	Standalone	Web-based and standalone	Standalone or Client/Server	Standalone	Standalone	Web-based	
atest Version	1.01 (Nov 2013) Static	1.07 (Jan 2009) Static	3.0.3 Ongoing Enhanced in 2013–2015	3.4 (July 2016) Version 4 released April 2017 Ongoing	0.75 First release	0.11 BETA Ongoing	First release	
Developed by	SRC Inc	Ideaconsult Ltd	Ideaconsult Ltd	LMC, Bourgas	Fourches Lab at North Carolina State University	Istituto di Ricerche Farmacologiche Mario Negri	Zhu Research Group at Rutgers University	C. Pat
vailable from	https://www.epa.gov/tsca- screening-tools/analog- identification-methodology- aim-tool	https://eurl-ecvam.jrc.ec.europa. eu/laboratories-research/ predictive_toxicology/ qsar_tools/toxmatch	http://cefic-lri.org/ lri_toolbox/ambit/	www.qsartoolbox.org	http://www.fourches- laboratory.com/software	http:// www.toxread.eu/	http://ciipro. rutgers.edu/	Patlewicz et al.
ccepted Chemical Input	CAS, Name, SMILES, structure drawing/import	CAS, Name, SMILES, InChI	Name, identifiers, SMILES, InChI	CAS, Name, SMILES, structure drawing, MOL, sdf	Mol file, descriptors as txt	SMILES	PubChem CID, CAS, IUPAC, SMILES, InChI	et al./Computational
Endpoint Coverage	N/A	Any based on user input	IUCLID ^a 5-supported endpoints (43 total)	Any as per the regulatory endpoints	Any based on user input	Mutagenicity and Bioconcentration Factor (BCF)	Any based on user input	ational 1
Analogue Identification Approach	Fragment matching	Distance and correlation based similarity indices based on descriptors or fingerprints	Substructure or similarity searching using structure, name, SMILES, InChI	Category definition followed by subcategorisations	Tanimoto distance using chemical and biological descriptors	VEGA similarity algorithm	Weighted Estimated Biological Similarity	Toxicology 3
leighbour Selection	Automatic	Automatic	Manual	Automatic + Manual Filter	Automatic	Automatic	Automatic + Manual Filter	(2017)
Oata Source	Tool provides inventory index	User provided or tool provided	User and tool provided	User provided or tool provided	User provided	Tool provided as a result of the EU ANTARES project	User provided but tool provides PubChem <i>in vitro</i> data) 1-18
Quantitative vs Qualitative	N/A	Both	User determined - Qualitative	Both	Qualitative	Qualitative for mutagenicity, quantitative for BCF	Qualitative	
Visualisation	None	Standard 2D plots, histograms and similarity matrix	None	Standard 2D Plots	Radial plot of neighbours	Interactive Neighbour plot	Activity Plot	
Dutput/Export	Output reports in the form of HTML, pdf or Excel	sdf or txt files of data, image files of plots	Assessment report as docx or xlsx, data matrix as xlsx	IUCLID format, pdf and rtf files of prediction report, text files of data, image files of plots etc	NA	Image file of plot	Tabulation of predictions and image of similarity plot	

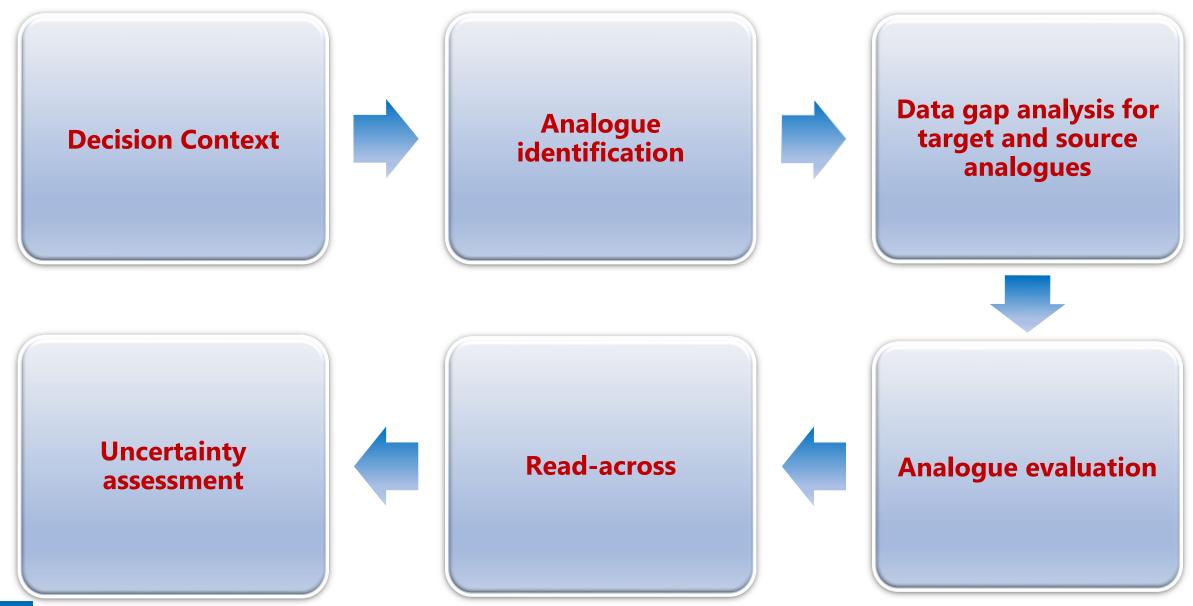
^a IUCLID stands for International Uniform Chemical Information Database. IUCLID is a software program for the administration of data on chemical substances first developed to fulfill EU information requirements under REACH.

Quantify the contribution that different similarity contexts play in toxicity prediction and how that differs depending on the toxicity endpoint of interest, the chemical of interest and whether it mirrors expert driven read-across

Quantify level of confidence for prediction made


=> objective, reproducible read-across assessments

- **Read-across** is a commonly used technique to fill data gaps.
- **Read-across** is an expert-driven approach which is challenging from a reproducibility and scalability perspective.
- **GenRA** is an algorithmic approach to permit objective and reproducible read-across predictions.
 - Presents opportunities for how NAM data can be incorporated.
- GenRA v1.0 (2018) established a baseline in performance.
 - The approach relied on chemical descriptors to predict binary toxicity values. Our ongoing research programme aims to characterize other contexts of similarity (e.g., mechanistic, reactivity, and metabolism) and quantify their contribution in predicting toxicity outcomes.
- Subsequent versions through to the current Version 3.2 have added a number of significant new features whilst addressing bug fixes.


GenRA Milestones

- **Search** for candidate source analogues based on different identifiers e.g. SMILES, CAS, Name etc. or introduce a chemical structure/SMILES using the Ketcher drawing pad;
- **Identify** candidate source analogues on the basis of chemical, bioactivity fingerprints or a combination of both using the custom hybrid option;
- **Download** the top 100 candidate source analogues, their pairwise similarities and their chemical/bioactivity fingerprint matrices;
- **View** chemical neighborhoods via a neighborhood explorer graph visualization tool and filter on the basis of ToxCast or ToxRefDB data;
- **Compare** the distribution of relevant physicochemical properties across candidate source analogues;
- Make binary in vitro predictions of ToxCast assay outcomes or binary in vivo toxicity predictions on the basis of study type-toxicity effect using ToxRefDB data;
- Make potency-based predictions of study type-toxicity effects using ToxRefDB data;
- Sort predictions based on number of positive/negative toxicity effects or on the basis of the prediction confidence. Download the predictions in a spreadsheet format for subsequent review and assessment.

EPA United States Agency Conceptual read-across workflow in GenRA



Accessing GenRA

GenRA main entry point is from the comptox portal <u>comptox.epa.gov</u>

SEPA United States Environmental Protector

Environmental Topics

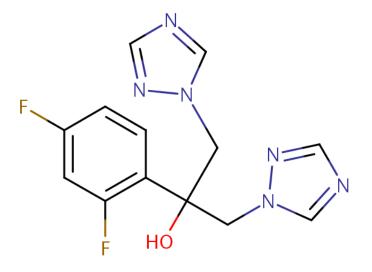
About EPA

Laws & Regulations

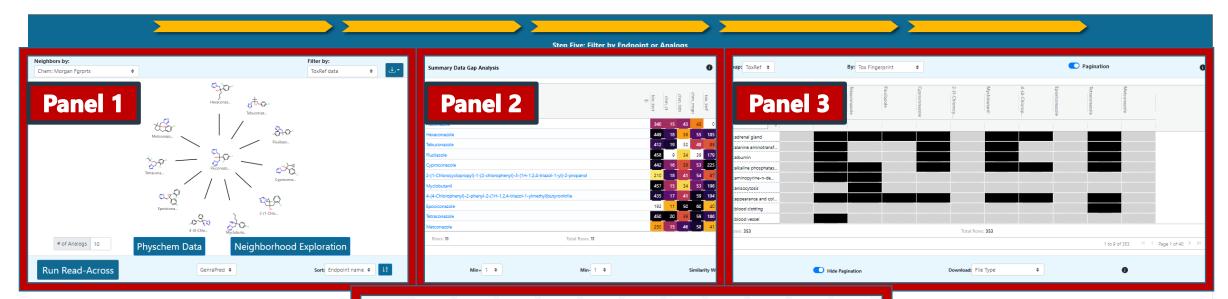
Search EPA.gov

SEPA United States Environmental Protection Agency

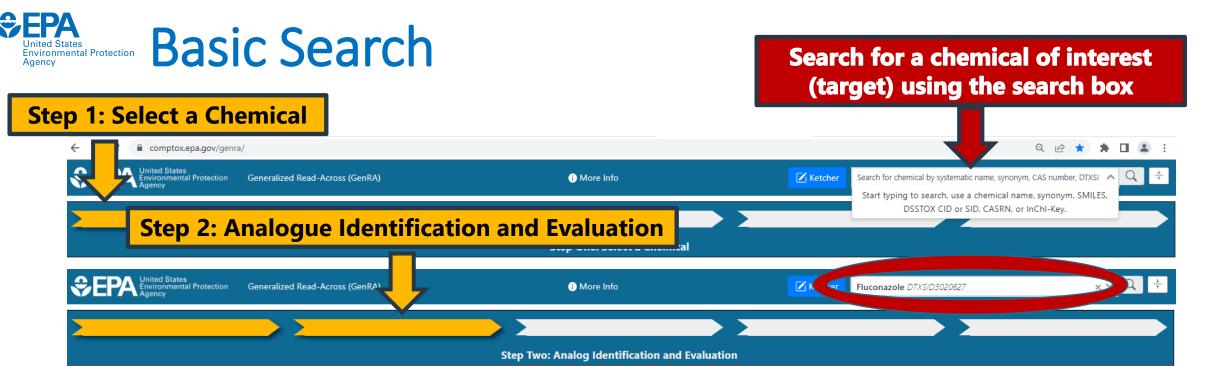
Triticona...

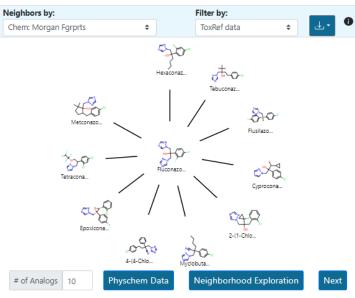

of Analogs

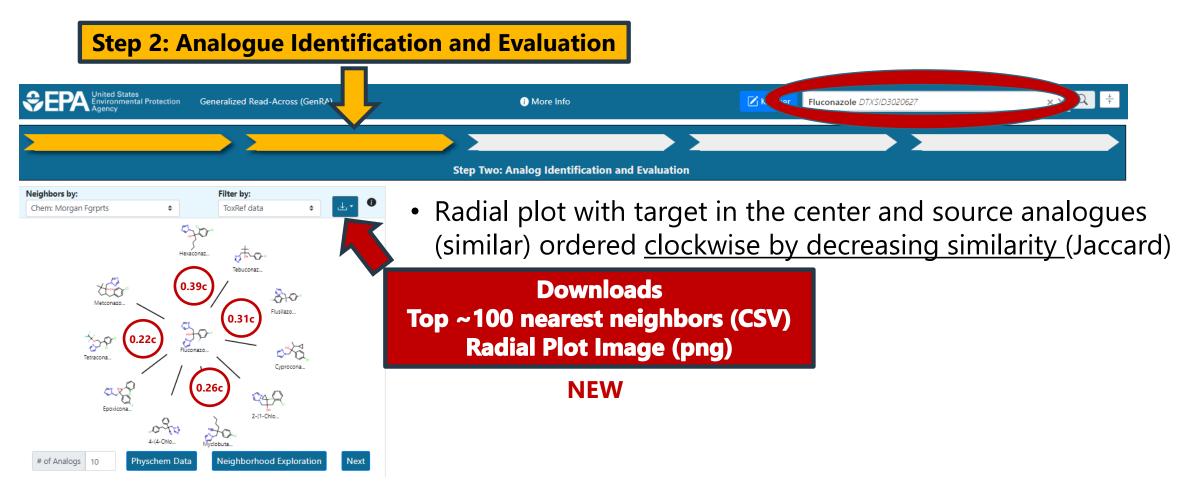
CompTox Chemicals Dashboard v2.2 Home Search • Lists • About • Tools •		CompTox Chemicals Dashboard v2.2	Home Search - Lists	➤ About ▼ Tools ▼	Submit Comments
GenRA Dredictions Abstract Sifter		Chemical Details Executive Summary Physchem Prop. Env. Fate/Transport Hazard Data Safety > GHS Data ADME > IVIVE Exposure Bioactivity GenRA	Searched by Approve	DTXSID9032113 1 Name. Wikipedia	used agriculturally to treat plant pathogenic fungi. N30 ▲ MOL FILE Q FIND ALL CHEMICALS
← → C		•			∞ @ ★ 第 □ ≗ : × √ Q ≑
Whited States Agency Neighbors by: Chem: Morgan Fgrprts	Filter by: ToxRef data	More Info Step Two: Analog Identification and Ev	Z Ketcher	Tebuconazole DTXSID9032113	
Line Contraction of the Contract	No				

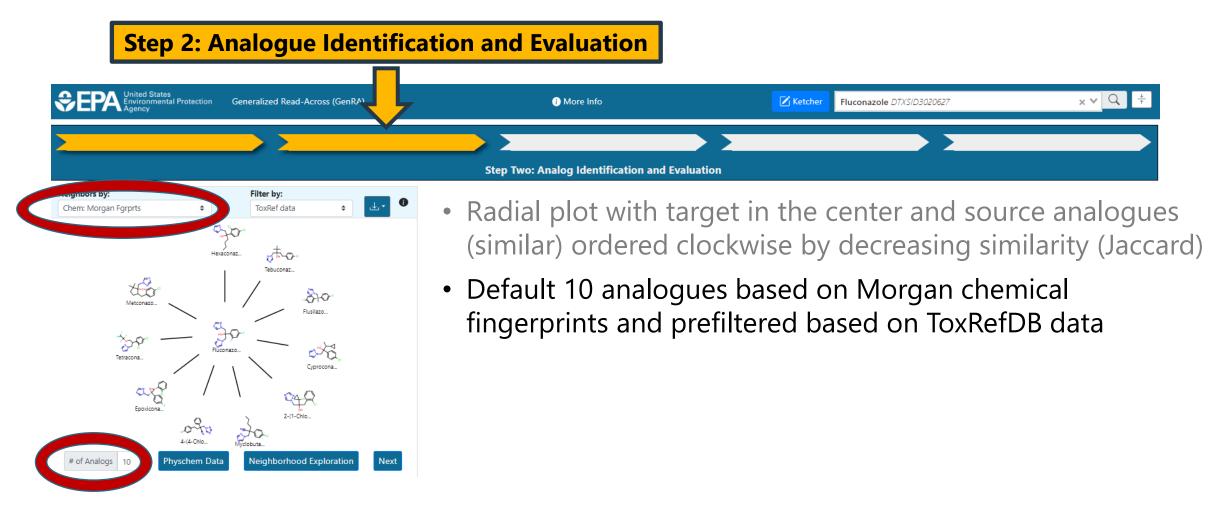

Demonstration of GenRA (Part 1) Example Walkthrough

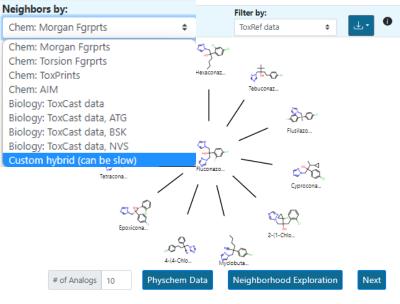
FPA United States Environmental Protection Agency Fluconazole (A Data Rich Chemical)


- **IUPAC Name:** 2-(2,4-Difluorophenyl)-1,3-bis(1H-1,2,4-triazol-1-yl)propan-2-ol
- CAS RN: 86386-73-4
- DSSTox substance identifier (DTXSID): DTXSID3020627
- Molecular Formula: C₁₃H₁₂F₂N₆O
- **SMILES:** OC(CN1C=NC=N1)(CN1C=NC=N1)C1=C(F)C=C(F)C=C1
- InChIKey: RFHAOTPXVQNOHP-UHFFFAOYSA-N

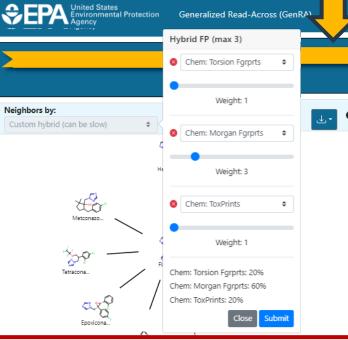

SEPA United States Environmental Protection GenRA Workflow Overview


Assay endpoint ≡	3p	30	0 *~0~	30		CZP?	30.	ofo	aze	20	ter.
	Eluconazolo	Hevaconazole	Tebuconazole	Flusilazole	Cyproconaz	2-(1-Chloroc	Myclobutanil	4-(4-Chloro	Epoxiconazo	Tetraconazol	Metconazole
Pan	el 4										
									-		
CHR:albumin											
CHR:alkaline phosp											
CHR:aminopyrine-n											
CHR:anisocytosis											
CHR:appearance an											
CHR:blood clotting											
CHR:blood vessel											
CHR:body weight											
CHRibone											
CHR:bone marrow											
CHR:brain											
CHR:calcium											
CHR:cholesterol											
CHR:clinical signs											
CHR:cytochrome p4											
CHR:ear											
CHR-anididumis											►





 Radial plot with target in the center and source analogues (similar) ordered <u>clockwise by decreasing similarity</u> (Jaccard)


- Radial plot with target in the center and source analogues (similar) ordered clockwise by decreasing similarity (Jaccard)
- Default 10 analogues based on Morgan chemical fingerprints and prefiltered based on ToxRefDB data
- Can update to change what features are used to characterize substances and the number of analogues returned

Analogue Identification and Evaluation Environmental Protection

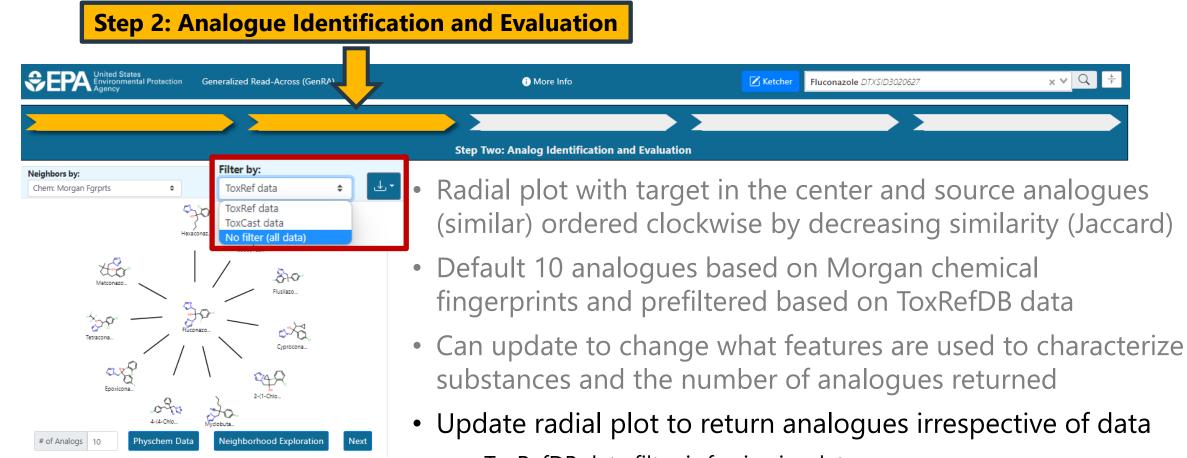
(i) More Info

Step Two: Analog Identification and Evaluation

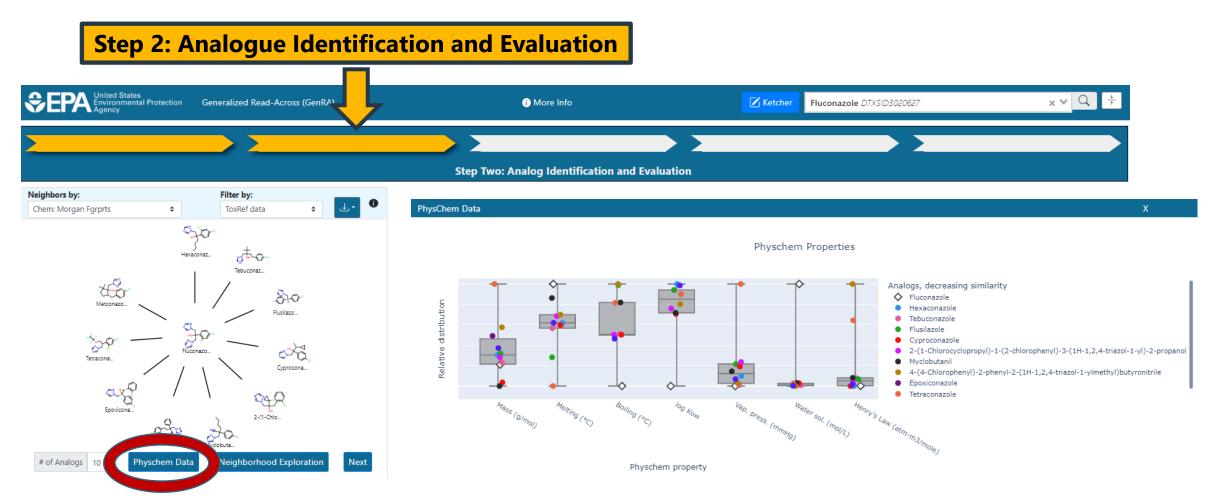
Radial plot with target in the center and source analogues (similar) ordered clockwise by decreasing similarity (Jaccard)

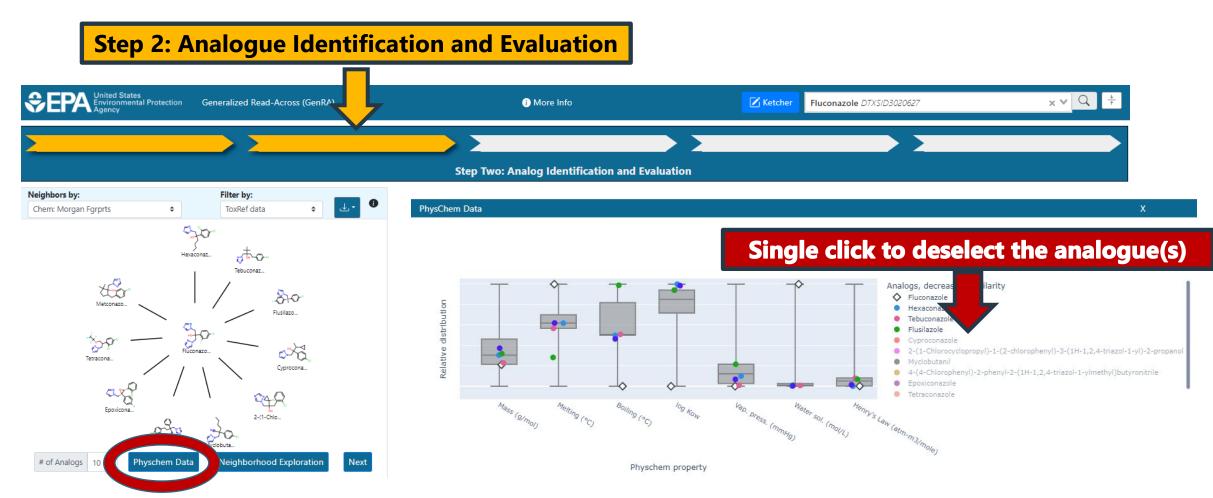
Fluconazole DTXSID3020627

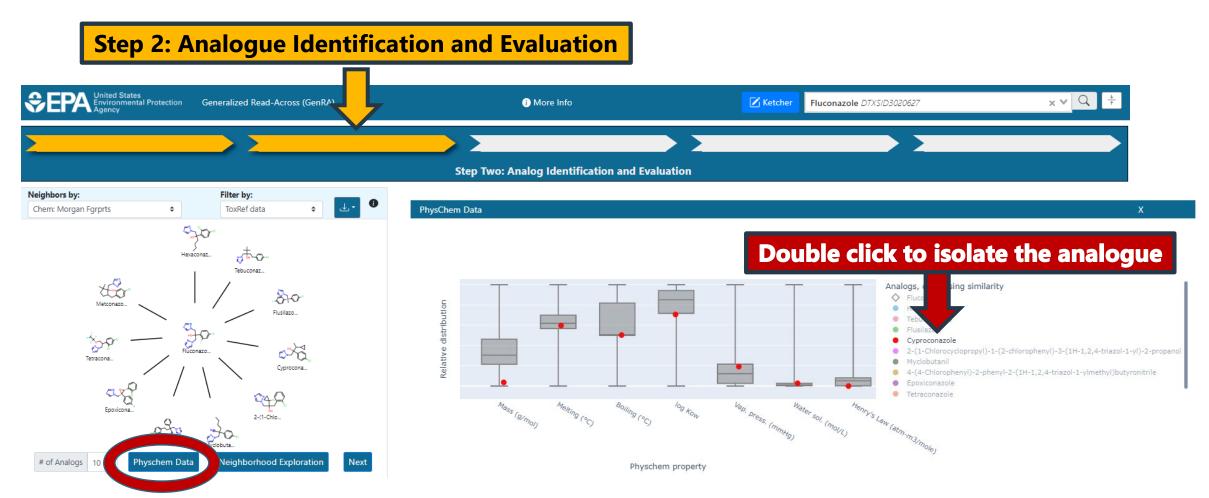
Ketcher

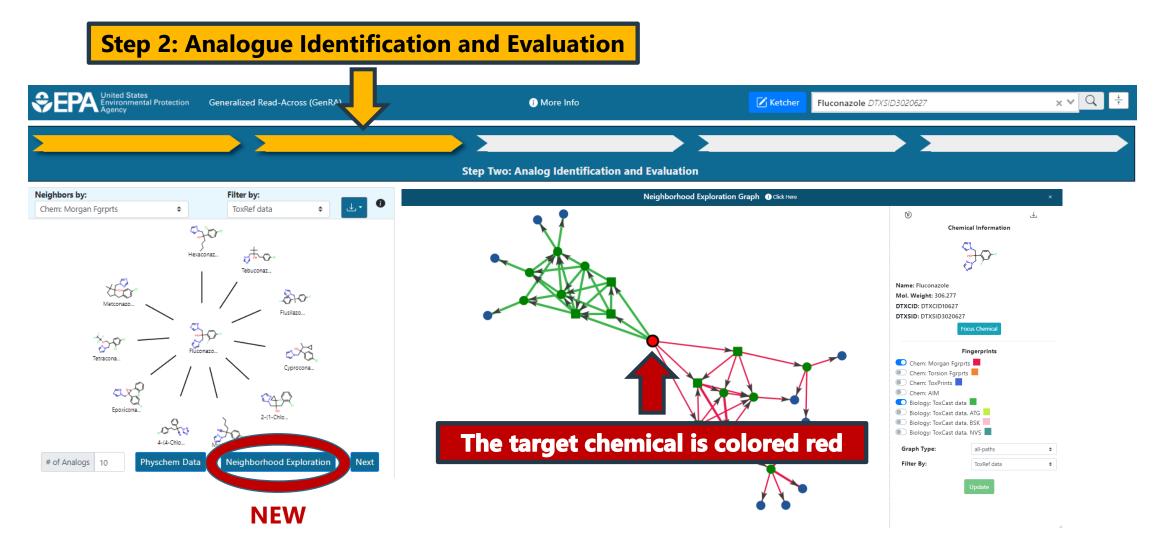

- Default 10 analogues based on Morgan chemical fingerprints and prefiltered based on ToxRefDB data
- Can update to change what features are used to characterize substances and the number of analogues returned

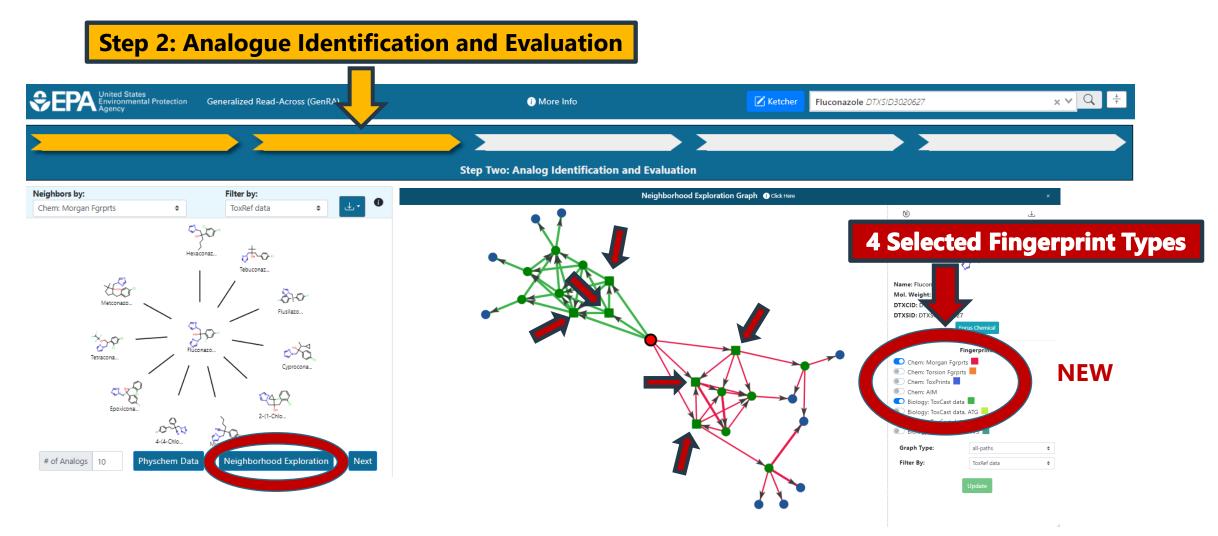
Custom Hybrid

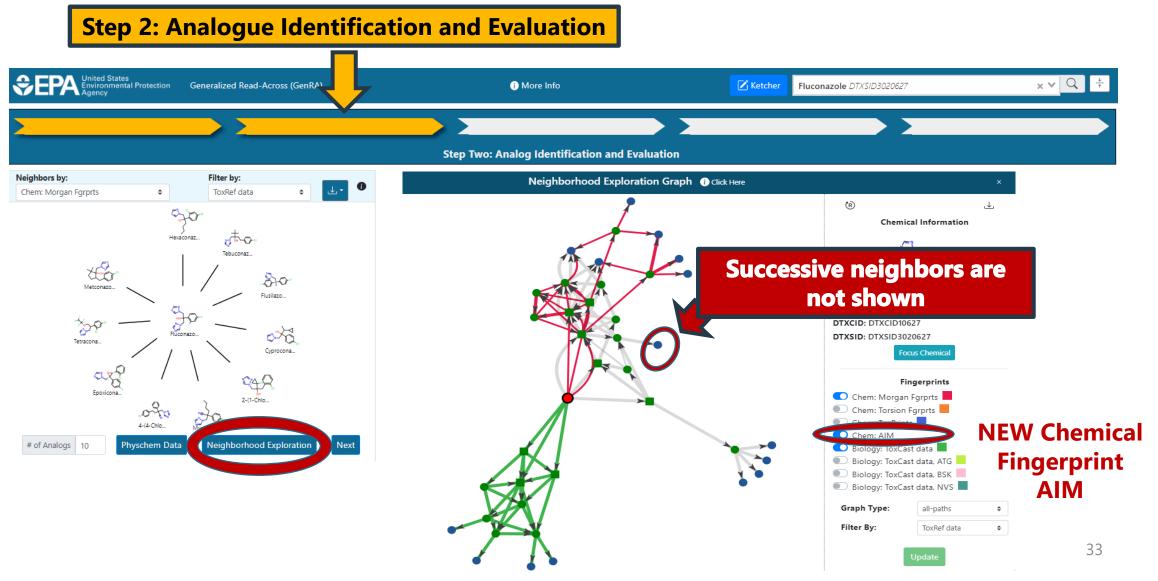

Generalized Read-Across (GenRA)

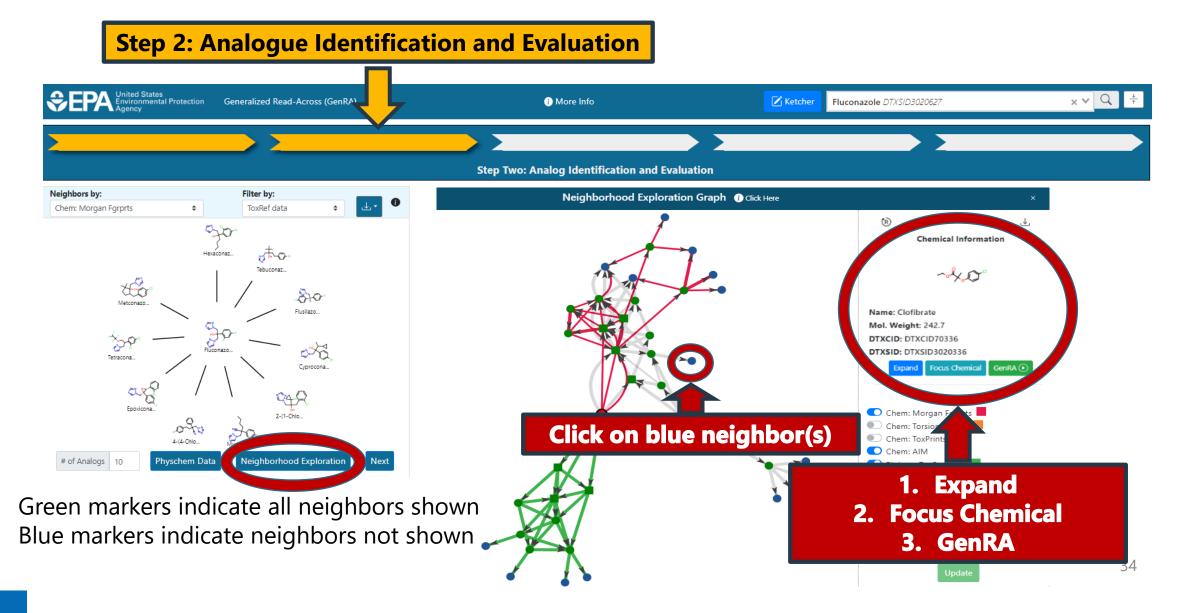

Choose up to 3 fingerprints e.g. 20% Torsion Fingerprints, 60% Morgan Fingerprints, and 20% ToxPrints


xv Q

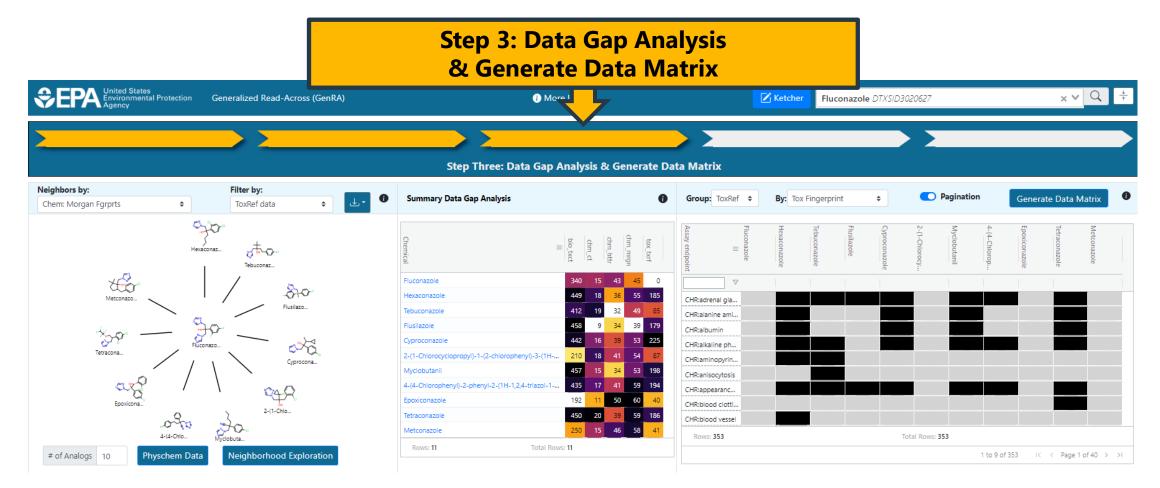


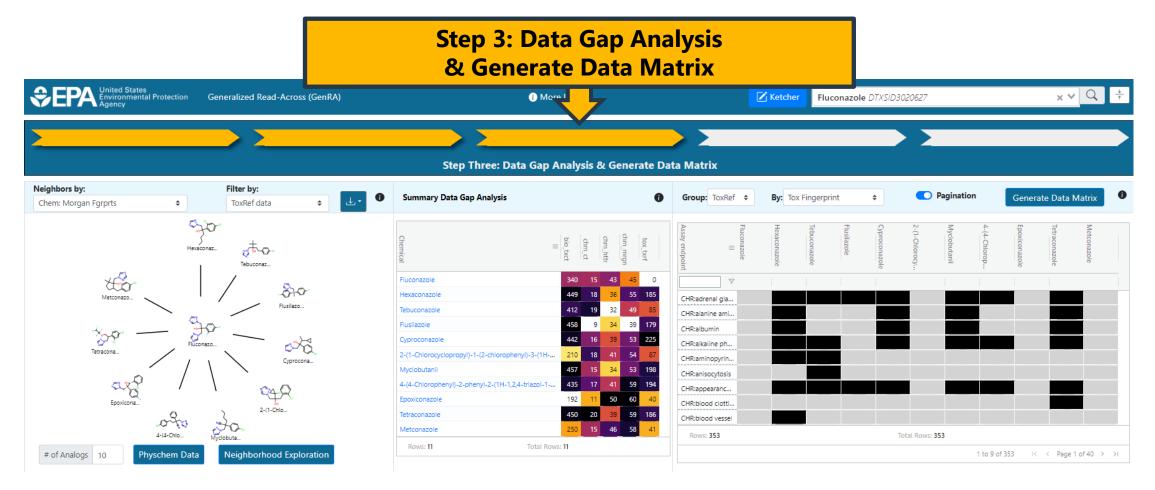

- ToxRefDB data filter is for *in vivo* data
- ToxCast data filter is for in vitro data
- No filter returns the most similar analogues irrespective of data

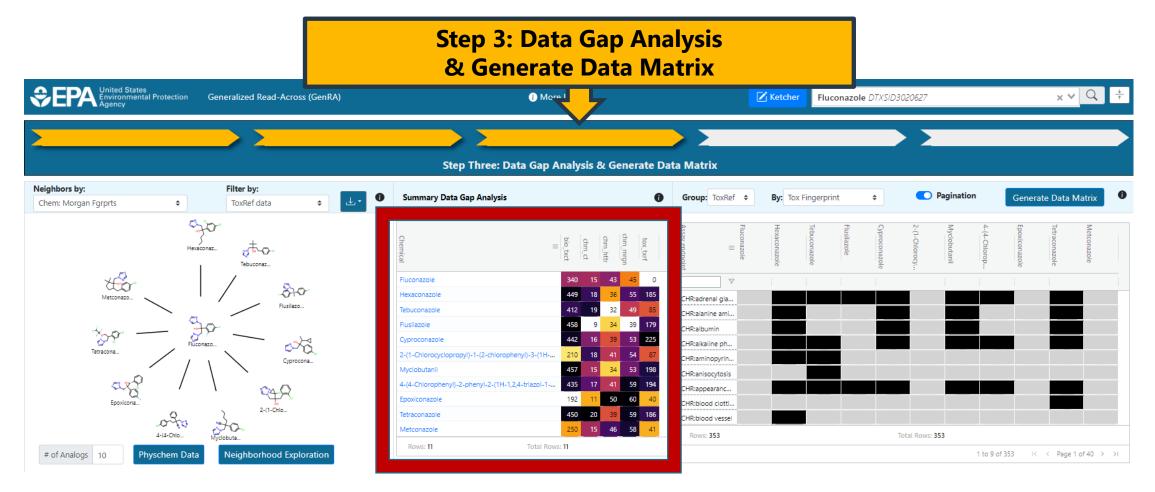


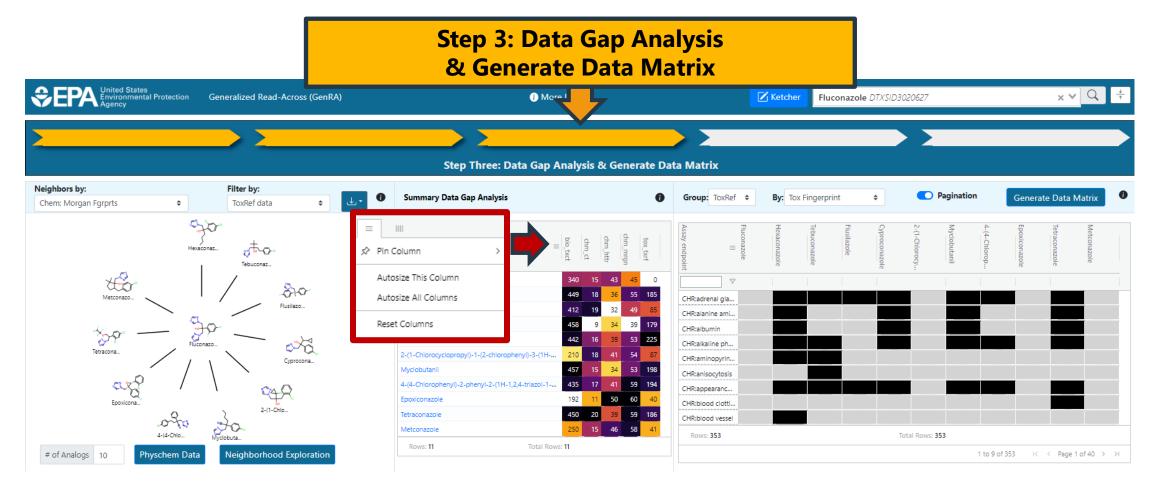


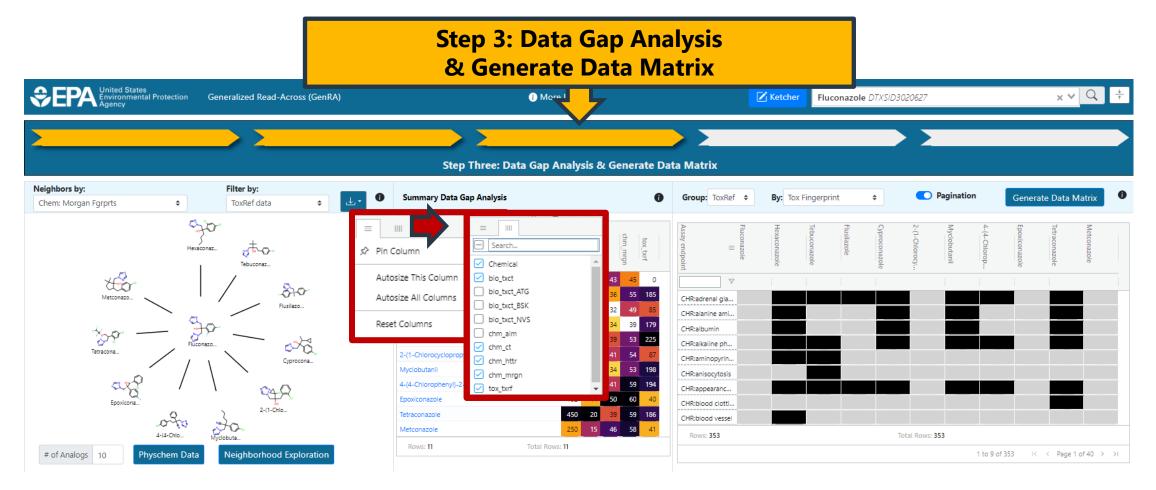
- Line thickness proportional to similarity between analogues (thicker=more similar)
- Squares are top 3 highest similarity analogues to your target for the chosen fingerprint type

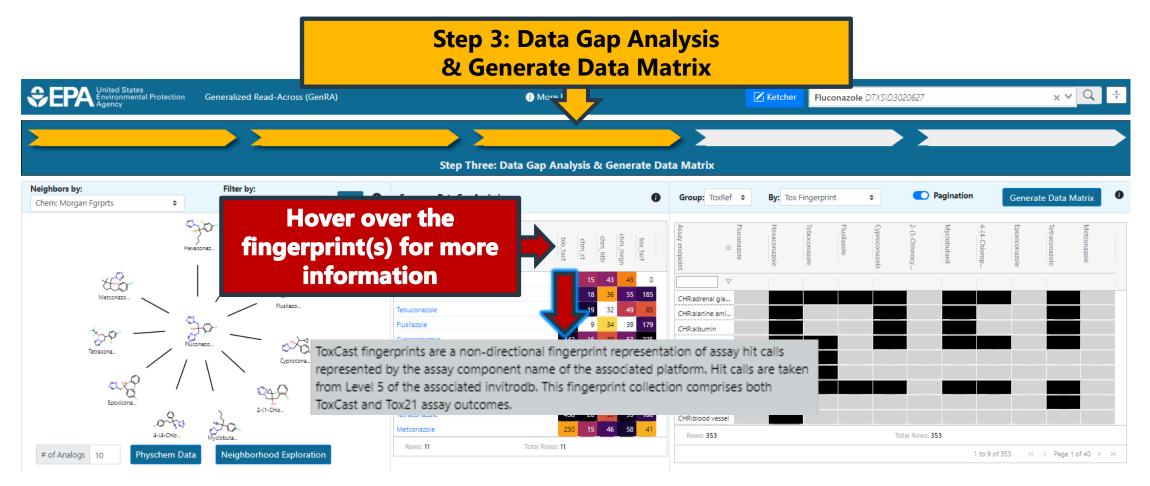




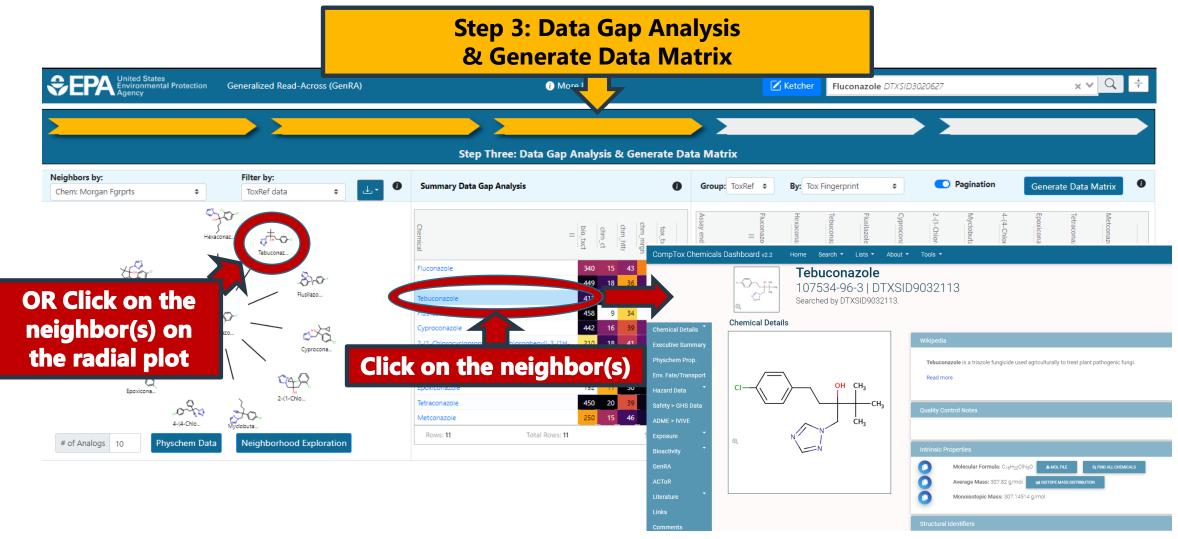


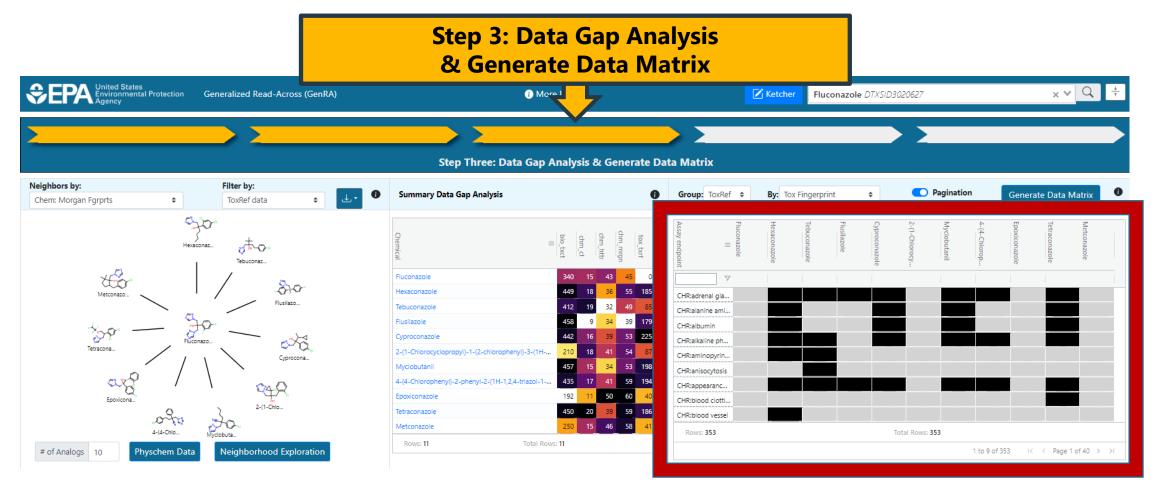

- How data poor is my target and what data exists for the source analogues identified?
- Do the data for the source analogues address the data gaps of interest for the target chemical?


- Summary of the data availability associated with the target chemical and its identified source analogues.
- The quantity of data associated with a given chemical is indicated by the number of records and ³⁸ the darkness of the associated box.

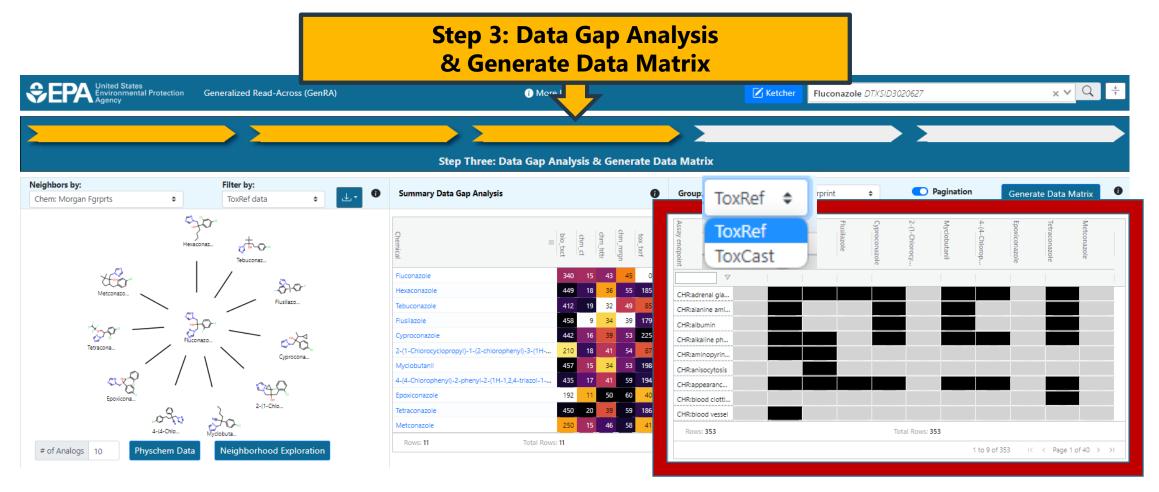

• To see more data streams click the ≡ icon at the top of the Chemicals column, then the III icon.

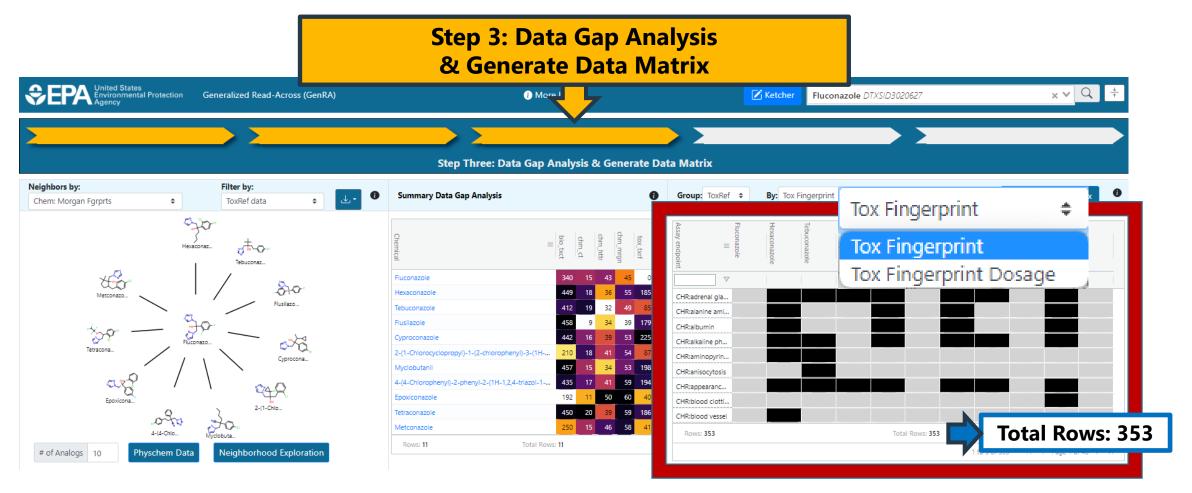
- This panel starts to provide a perspective to inform data gaps.

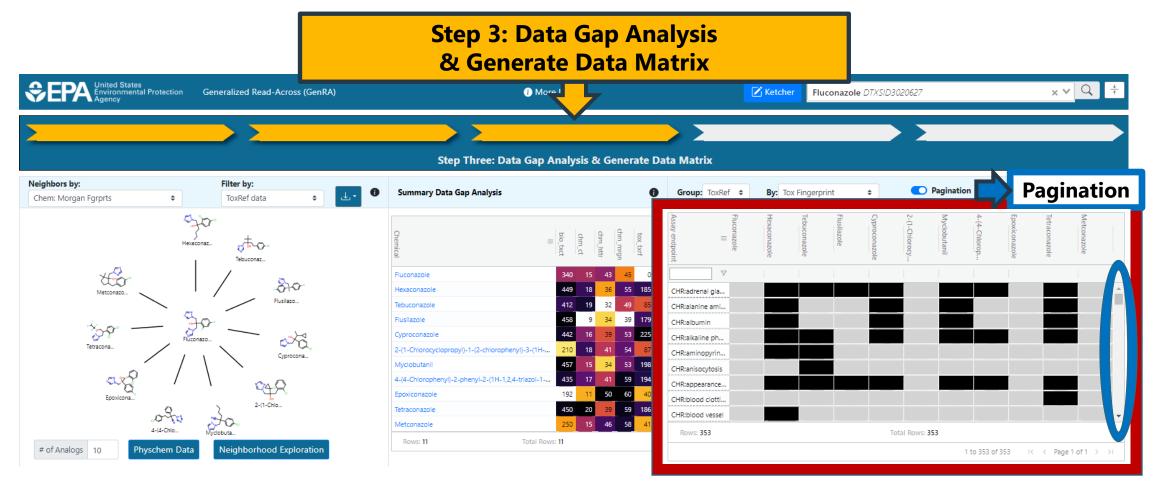


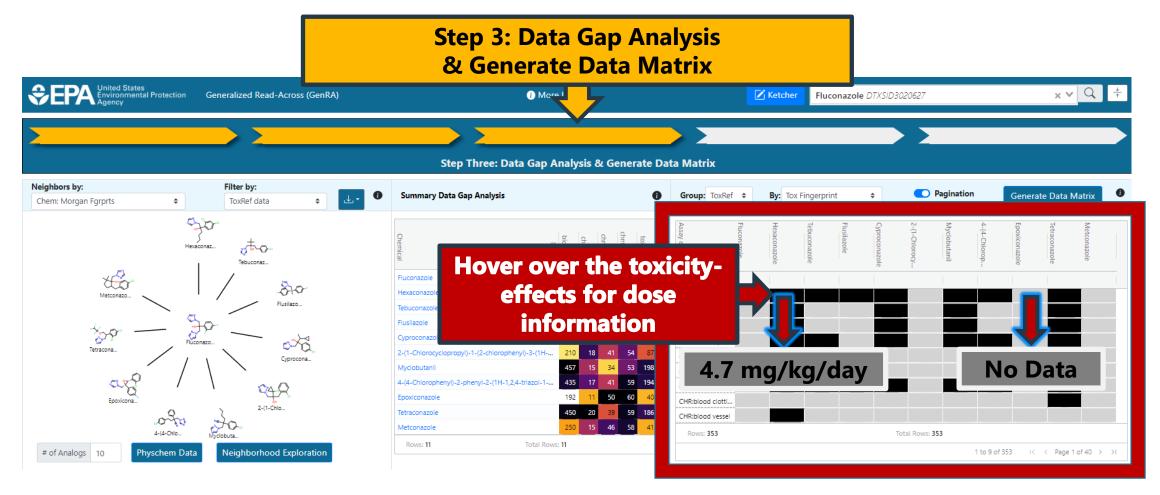

- To see more data streams click the ≡ icon at the top of the Chemicals column, then the icon.
- This panel starts to provide a perspective to inform data gaps.

41

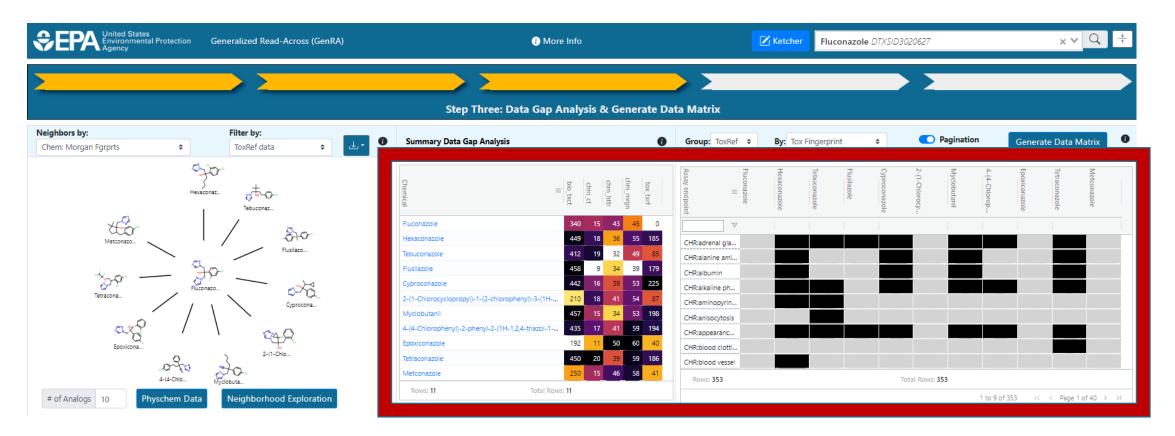



• The toxicity information by default is an expanded grid view of which types of toxicity effect information are available across the analogues.

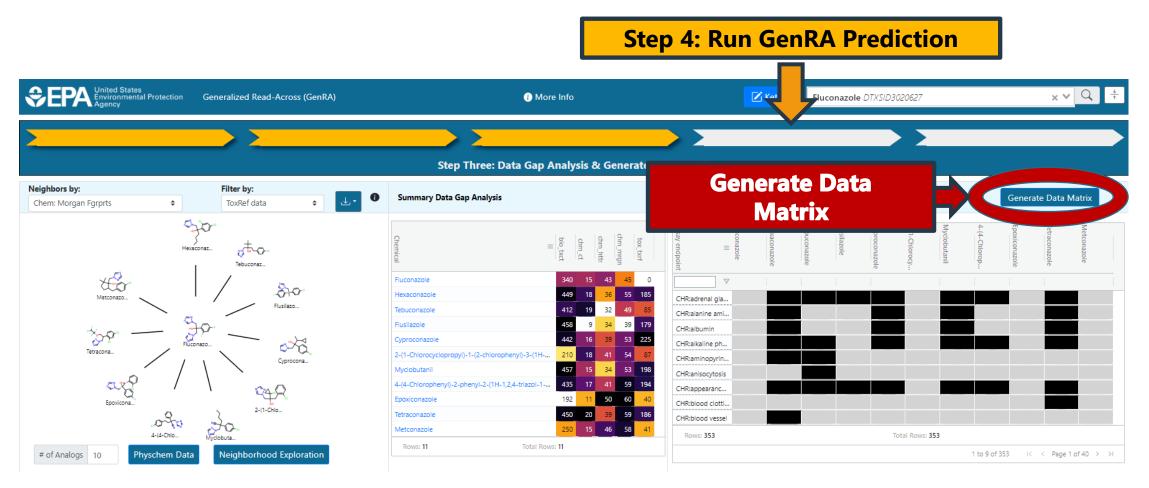

- Default binary representations of toxicity data arising from ToxRefDB
- Consistent with the filter by option in the Panel 1

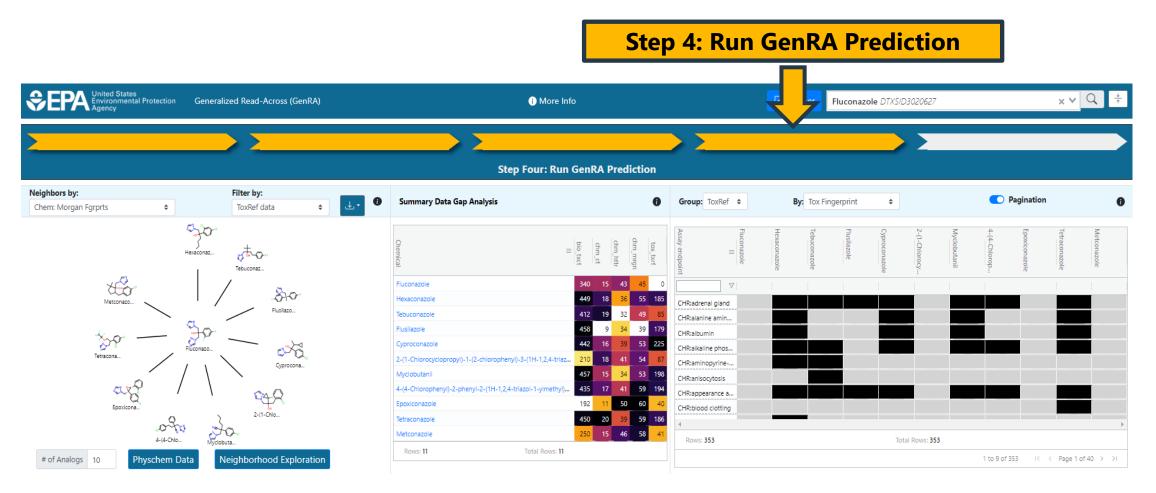

- Tox fingerprint reflects the toxicity effects within each study type.
- Over 300 different study type-toxicity combinations

- Tox fingerprint reflects the toxicity effects within each study type.
- Over 300 different study type-toxicity combinations
- Pagination option to scroll through the toxicity effects

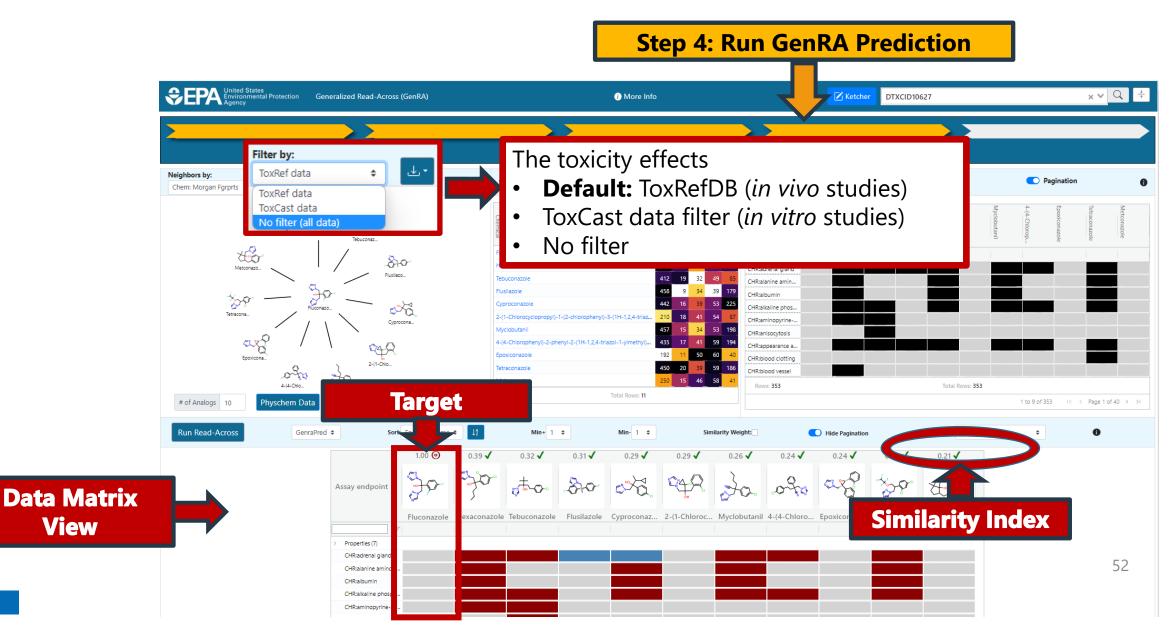

- Represents presence or absence of toxicity endpoint data
- Informs the data gap analysis step of the workflow

SEPA United States Environmental Protection Agency	on Generalized Read-Across (GenRA)	() More Info			Ketcher Flue	conazole DTXSIL	D3020627	×vQ		
		Step Three: Data Gap Analysis & (Generate Dat	a Matrix						
Neighbors by: Chem: Morgan Fgrprts \$	Filter by: ToxRef data	Summary Data Gap Analysis	0	Group: ToxRef 🗢	By: Tox Fingerprint		Pagination	Generate Data Matrix		
0	Heiaconaz	chm_httr bio_txct II Chemical	3	Fluconazole III Assay endpoint	Tebuconazole Hexaconazole	Cyproconazole Flusilazole	4-(4-Chlorop Myclobutanil 2-(1-Chlorocy	Metconazole Tetraconazole Epoxiconazole		
Metconazo	Flusilazo	Hexaconazole 449 18 17 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	13 45 0 36 55 185 32 49 85	CHR:adrenal gla CHR:alanine ami						
Tetracona_	Fluconazo	Flusilazole 458 9 1 Cyproconazole 442 16 2 2-(1-Chlorocyclopropyl)-1-(2-chlorophenyl)-3-(1H 210 18 4	34 39 179 39 53 225 41 54 87	CHR:albumin CHR:alkaline ph CHR:aminopyrin						
Epoxicona		4-(4-Chlorophenyl)-2-phenyl-2-(1H-1,2,4-triazol-1 435 17 4	34 53 198 41 59 194 50 60 40	CHR:anisocytosis CHR:appearanc CHR:blood clotti						
4-(4-Chlo.	2-(1-Chio		89 59 186 46 58 41	CHR:blood vessel Rows: 353			Total Rows: 353			
# of Analogs 10 Physchem	Data Neighborhood Exploration	Rows: 11 Total Rows: 11					1 to !	9 of 353 I< < Page 1 of 40 > >		

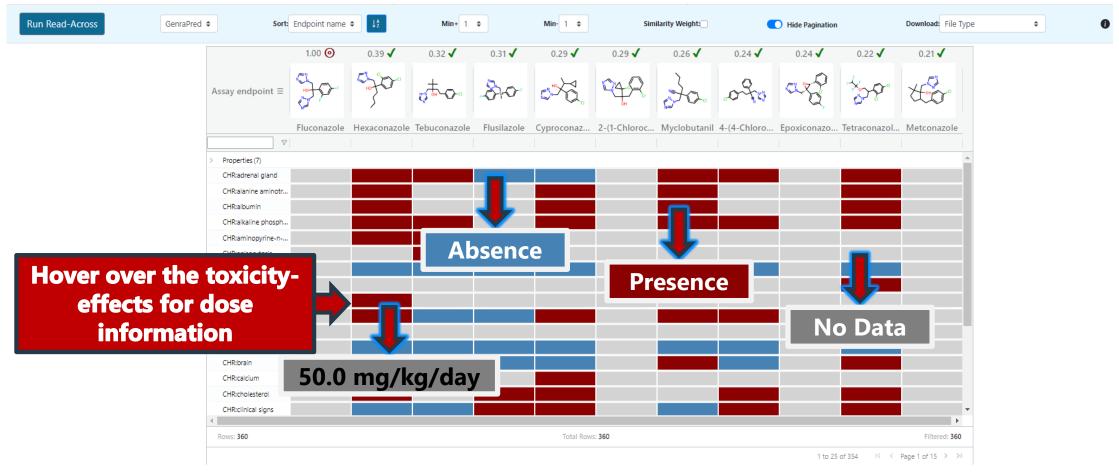

- Evaluating the suitability and relevance of the source analogues identified
- Data gap analysis across the source analogues and the target
- Little data for the source analogues or they fail to address the data gaps of interest
 - Change the number of neighbors or select a different similarity context.



- Both Panels 2 and 3 provide a context of available data for the source analogues
 - the quantity of data and its type (Panel 2)
 - across study type on the basis of the toxicity effects (Panel 3)

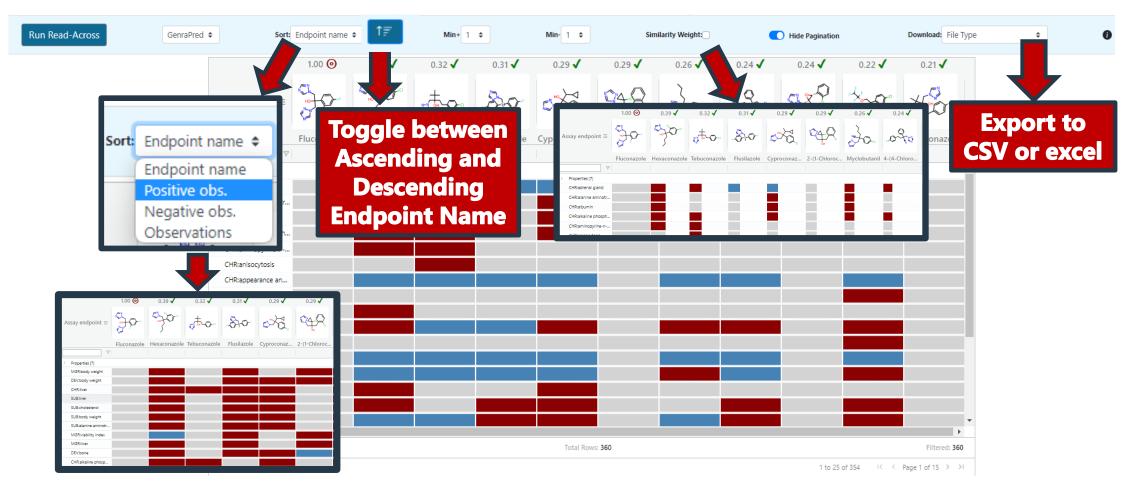


- More detailed evaluation of the source analogues
 - Click the Generate Data Matrix button
 - Evaluate source analogues' concordance and consistency within and across the study types



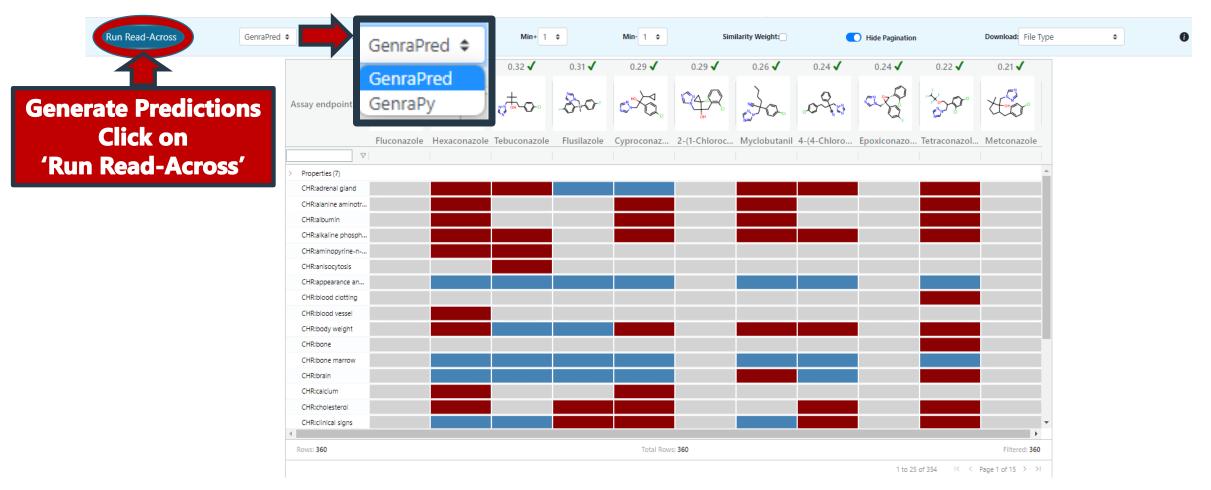
• This creates a DATA MATRIX VIEW in Panel 4

- The source analogues are ordered by their pairwise similarity relative to the target chemical
- The toxicity effects (in vivo studies from ToxRefDB) are populated across the analogues 53
- ToxCast data filter is for in vitro data and no filter is without considering any data
- Binary data / predictions and Potency data / predictions


- Blue indicates 'Absence' of toxicity effects
- Red indicates 'Presence' of toxicity effects
- Grey represents 'No Data'
- Endpoints are measured in mg/kg/day=minimum dose for observed effects

n Read-Across	GenraPred 🗢	 ♦ Sort: Endpoint name ↓⁴/₂ 			Min+	1 \$	Min-1	\$	Similarity We	eight:	🚺 Hid	e Pagination	De	wnload: File Typ	e	\$
			1.00 🗿	0.		1.00 🗿	0.39 🗸	0.32 🗸	0.31 🗸	0.29 🗸	0.29 🗸	0.26 🗸	0.24 🗸	0.24 🗸	0.22 🗸	0.21 🗸
	,	Assay endpoint ≡	30	5	Assay endpoint ≡	\$2	sigo.	0 [‡] ∼0∘	30			30.	ofo	azf	×~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
			Fluconazole	Hexa		Fluconazole	Hexaconazole	e Tebuconazole	Flusilazole	Cyproconaz	2-(1-Chloroc.	. Myclobutani	l 4-(4-Chloro	Epoxiconazo	. Tetraconazol	Metconazol
			Theometore		7	7										
		Properties (7)			 Properties (7) 											
		Toperaes (7)				293.1	321.2	321.7	348.8	321.4	321.5	339.2	349.4	N/A	339.1	319.2
		Ningtra			Henry's Law (at.		5.47e-10	3.1e-07	2.7e-07	5.48e-10	1.37e-07	3.18e-07	3.93e-06	N/A	2.53e-06	5.76e-08
		Ct n			Mass (g/mol) Melting (°C)	306.28 176.1	314.21 111.1	307.82 102.5	315.40 54.0	291.78	312.19 122.6	288.78	336.82 125.1	329.76 N/A	372.14 6.1	319.83
					Vap. press. (m		1.36e-07	1.29e-08	2.93e-07	2.61e-07	3.19e-07	1.96e-07	3.74e-08	N/A	1.35e-06	9.27e-08
	С	lick on			Water sol. (mol.		5.58e-05	0.000117	0.000149	0.000429	0.000114	0.000481	1.13e-06	N/A	0.000417	6.7e-05
					log Kow	0.501	3.899	3.700	3.701	2.902	3.081	2.939	3.229	N/A	3.560	3.850
	Dr	opertie	S		CHR:adrenal gland											
		CHR:blood clotting			CHR:alanine aminotr.											
		CHR:blood vessel														
		CHR:body weight														
		CHR:bone														
		CHR:bone marrow														
		CHR:brain														
		CHR:calcium														
		CHR:cholesterol														
	4	CHR:clinical signs														
		Rows: 360			Total Rows: 360							Filtered: 360				
												1 to 25 of 35	4 IK K Page	e1of15 > >I	-	

 Click on the 'Properties' arrow to evaluate (OPERA predicted) physical property and efate information across analogues



- Removing Analogues within the Data Matrix:
- De-select directly from analogue bar

- Toggle between ascending and descending endpoint name
- The data displayed can be filtered by specific effects (Sort by Observations)
- Similarity Weight checkbox modifies the size of the box to reflect the pairwise similarity ⁵⁷ metric.

SEPA United States Environmental Protection Agency

- This step generates GenRA predictions.
 - GenraPred: Legacy prediction engine, binary only, reports confidence
 - GenraPy: Binary and continuous prediction, no confidence reporting (Yet!)

SEPA United States Environmental Protection Data Gap Filling Predictions

Step 5: Filter by Endpoint or Analogue

United States Environmental Protection Agency	Generalized Read-Across (GenRA)		👔 More Info	Ketc	her Fluconazole DTXSID3020	627	× V Q ‡
2							
		Step Fi	ve: Filter by Endpoint or A	Analogs			
Neighbors by: Chem: Morgan Fgrprts	Filter by: ToxRef data 🗢 🕹 🗸	Summary Data Gap Analysis		Group: ToxRef ♀	By: Tox Fingerprint	¢ 💽 Pa	gination 👔
	Tebuconaz	Fluconazole Fluconazole Hexaconazole Flusilazole Cyproconazole 2-(1-Chlorocyclopropyi)-1-(2-chlorop Myclobutanii 4-(4-Chlorophenyi)-2-phenyi-2-(1H- Epoxiconazole Tetraconazole Metconazole	412 19 32 44 458 9 34 33 442 16 39 53 9 44 18 41 54 442 16 39 53 10 18 41 54 457 15 34 53 1,2,4-triazol-1 435 17 41 50 192 11 50 66 450 20 39 59 250 15 46 54	185 CHR:adrenal gl 65 CHR:alanine a 179 CHR:albumin 225 CHR:akaline p 67 CHR:aninopyri 198 CHR:aninopyri 194 CHR:appearanc 40 CHR:blood clet 186 CHR:blood yes	Periodicial and a second secon	2-(1-Chlorop	Metconazole Tetraconazole
# of Analogs 10 Physchem Data	Neighborhood Exploration	Rows: 11	Total Rows: 11			1 to 9 of 353	I< < Page 1 of 40 > >I
Run Read-Across GenraPred	♦ Sort: Endpoint name ♦ ↓	Min+ 1 ¢	Min-1 🗢 Simil	rity Weight: H	ide Pagination Downlo	ad: File Type 🗢	0
	1.00 💿 0.39 🗸	0.32 🗸 0.31 🗸	0.29 🗸 0.29 🗸	0.26 🗸 0.24 🗸	0.24 🗸 0.22 🗸	0.21 🗸	
Assay e		to so		do ofo	and so	XEE .	
CHR:a	Fluconazole Hexaconazol V Image: state stat	e Tebuconazole Flusilazole	Cyproconaz 2-(1-Chloroc.	Myclobutanil 4-(4-Chloro	Epoxiconazo Tetraconazol	. Metconazole	
CHR:a	bumin						

EPA United States Environmental Protection Agency Data Gap Filling Predictions

- The opacity of the predictions reflects the confidence in the prediction
- A faint colored prediction will denote lower confidence in the prediction.

United States Environmental Protection Agency Data Gap Filling Predictions

- Endpoints can be sorted
- Predictions can be exported by clicking on the 'Download' button

chem id	DTXCID10627	DTXCID10627 uni	ared class	ACT	AUC	pval	G H DTXCID2014653	DTXCID2014652	TYCID7012112	DTXCID7012113 UD	TYCID704225	M	N r DTXCID8012601	O DTXCID80126
role	0	DIVCIDT0051_001	pred_class	ACI	AUC	pval		-		-		DIACID704235_0		DTXCID80126
	target						analog		inalog		nalog		analog	
preferred name	Fluconazole						Hexaconazole				usilazole		Cyproconazole	
dsstox_sid	DTXSID3020627						DTXSID4034653	DTXSID9032113 DTX			TXSID3024235		DTXSID0032601	
dsstox_cid	DTXCID10627						DTXCID201465				CID704235 0.3125		DTXCID8012601	
similarity	1.00001						0.388888	7.1. SOIL SINGLEST TO LARGEST					0.28947368	
Mass g/mol	306.277						314						291.7	
Melting °C	176.083						111.						107.54	
Boiling °C	293.102						321.						321.42	
log Kow	0.501414						3.89	Sort by Color		>	3.70142		2.9019	
Vap. press. mmHg	8.71859E-10						1.357518	- /			2.9314E-07		2.60598E-0	7
Water sol. mol/L	0.0158043						5.575878	Sheet View		>	0.000149013		0.00042912	9
Henry's Law atm-m3/mole	7.66143E-09						5.470376				2.70159E-07		5.47602E-1)
Hydrogen Bond Donors								Clear Filter	From "nyal"					
Hydrogen Bond Acceptors			-					IX Creat Hitter	from pro					
chem id 🔽	DTXCID10627 💌	DTXCID10627 (*)	ored cla	ACT	AUC	pval		Filter by Colo	r	>	CID704235 💌	DTXCID704235 -	DTXCID801260: *	DTXCID80126
CHR:adrenal gland	pos effect		Pos	· /0-			0.2	Tinter by colo		,	effect		no_effect	
CHR:alanine aminotransferas	pos effect		Pos	1		0	1	Number Filters >						l mg/kg/day
CHR:albumin	pos effect		Pos	1		0	1	_			lata			l mg/kg/day
CHR:alkaline phosphatase (a			Pos	1		0	1	Search 🔎						2 mg/kg/day
CHR:aminopyrine-n-demeth			Pos	1		0	1	ocuren		~	lata		no data	
CHR:anisocytosis	pos effect		Pos	1		0	1 no data	🗹 (Selec	t All)		lata		no data	
CHR:appearance and color	no effect		Neg	0		0	1 no_effect						no effect	
CHR:blood clotting	pos effect		Pos	1		0	1 no data				effect lata		no data	
CHR:blood vessel	pos_effect		Pos	1		0	1						no data	
CHR:body weight	pos_effect		Pos	0.687		0	0.96	 0.795 0.8						2 mg/kg/day
CHR:bone	pos_effect		Pos	0.007		0	1 no data						no data	ing/kg/uay
CHR:bone marrow	no effect			1		0	1 no effect				effect		no_data	
	-		Neg	-		0								
CHR:brain	no_effect		Neg	0.236			0.945 no_effect				effect		no_effect	
CHR:calcium	pos_effect		Pos	1		0	1				lata			l mg/kg/day
CHR:cholesterol	pos_effect		Pos	1		0	1					mg/kg/day		L mg/kg/day
CHR:clinical signs	pos_effect		Pos	0.523		0	0.955 no_effect				27	mg/kg/day		2 mg/kg/day
CHR:cytochrome p450, nos	pos_effect		Pos	1		0	1 no_data				lata			2 mg/kg/day
CHR:ear	no_effect		Neg	0		0	1 no_effect				effect		no_effect	
CHR:epididymis	no_effect		Neg	0.269		0	0.965 no_effect				effect			7 mg/kg/day
CHR:erythrocyte (rbc) count			Neg	0.344		0	0.9 no_effect				lata		no_effect	
CHR:esophagus	no_effect		Neg	0		0	1 no_effect				effect		no_effect	
CHR:eye	no_effect		Neg	0.159		0	0.89 no_effect				effect		no_effect	
CHR:food consumption	no_effect	I	Neg	0.46		0	0.975	i			effect		12.	l mg/kg/day
CHR:full gross necropsy	no_effect	1	Neg	0		0	1 no_effect				effect		no_effect	
CHR:gamma glutamyl transfe	pos_effect	1	Pos	1		0	1 no_data		ОК	Cancel	lata		no_data	
CHR:globulins	pos_effect		Pos	1		0	1 no_data				lata		12.	l mg/kg/day
CHR:glucose	no_effect	1	Neg	0.11		0	0.825 no_effect				effect		no_effect	
CHR:glutathione-s-transferas	pos_effect		Pos	1		0	1 no_data	r	no data	n	o data			2 mg/kg/day
CHR:heart	no effect		Neg	0.11		0	0.84 no effect		no effect		no effect		no effect	
CHR:hematocrit (hct)	pos effect		Pos	1		0	1 no data		no data		o data		no data	
CHR:hemoglobin (hgb)	pos effect		Pos	1		0	1 no data	no data no d					no data	

- Snapshot of a sample prediction output produced in the Excel (xlsx) export file
- The **AUC** performance measure and the **p-value** that is associated with the prediction are provided
- P values can be sorted. (High p-values = non-significant confidence in the predictions)
- The actual experimental data for the source analogues is also reflected.

- GenRA is an attempt to move towards an objective read-across approach where uncertainties and performance can be quantified.
- Provides opportunities for different NAM data to be incorporated.
- GenRA v1.0 established a baseline in performance. Research has continued to evaluate performance using other contexts of similarity e.g. physicochemical similarity, targeted transcriptomic similarity, metabolic similarity.
- New features coming include defined categories and/or user specific neighbourhoods, other similarity contexts and other *in vivo* toxicity data streams.

epa.gov/chemical-research/generalized-read-across-genra

🖻 🖈 🕇 🗖 😩

Related Topics: Safer Chemicals Research

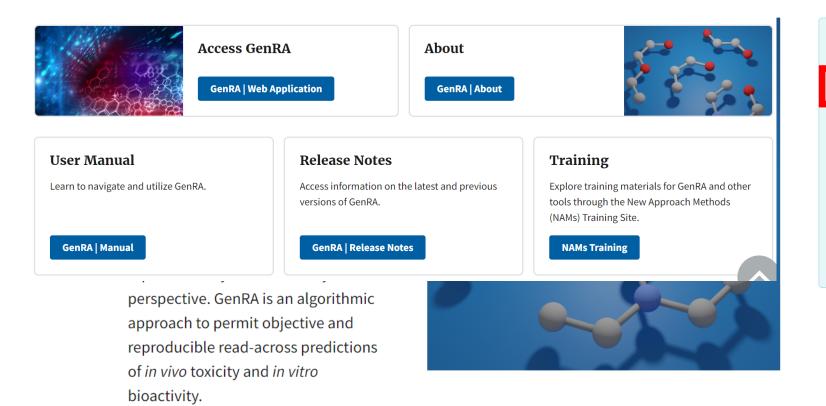
CONTACT US

More Resources

Access GenRA

• GenRA: About

• GenRA: Resource Hub


• GenRA: User Manual

• GenRA: Release Notes

New Approach

Methods Training

Generalized Read-Across (GenRA)

United States Environmental Protection Agency

Contact us if you have

- GenRA questions: <u>genra.support@epa.gov</u>
- Future NAMs training questions: <u>NAM@EPA.gov</u>

