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Abstract
The Air Pollutants Exposure Model (APEX) is a stochastic population-based inhalation exposure model which (along with

its earlier version called pNEM) has been used by the U.S. Environmental Protection Agency (EPA) for over 30 years for

assessment of human exposure to airborne pollutants. This study describes the application of a variance decomposition-

based sensitivity analysis using the Sobol method to elucidate the key APEX inputs and processes that affect variability in

exposure and dose for the simulated population. Understanding APEX’s sensitivities to these inputs helps not only the

model user but also the EPA in prioritizing limited resources towards data-collection and analysis efforts for the most

influential variables, in order to maintain the quality and defensibility of the simulation results. This analysis examines

exposure to ozone of children ages 5–18 years. The results show that selection of activity diaries and microenvironmental

parameters (including air-exchange rate and decay rate) are the most influential to estimated exposure and dose, their

aggregate main-effect indices (MEIs) equaling 0.818 (out of a maximum of 1.0) for daily-average ozone exposure and

0.469 for daily-average inhaled ozone dose. The modeled person’s home location, sampled from national Census data, has

a modest influence on exposure (MEI = 0.079 for daily averages), while age, sex, and body mass, also sampled from

Census and other survey data, have modest influences on inhaled dose (aggregate MEI = 0.307). The sensitivity analysis

also plays a quality-assurance role by evaluating the sensitivities against our knowledge of the physical properties of the

model.

Keywords Air pollutants exposure model � Exposure assessment � Sobol analysis � Sensitivity analysis � National ambient

air quality standards

1 Introduction

The Air Pollutants Exposure Model (APEX; U.S. EPA

2019a, b), developed and maintained by the U.S. Envi-

ronmental Protection Agency (EPA), is a stochastic popu-

lation-based inhalation exposure model that can used to

simulate behaviors, home environments, and exposures

associated with ambient pollutant concentrations for a

simulated population of thousands of individuals. The

continued use of the model in regulatory applications

necessitates regular efforts by EPA to update datasets and

probability distributions associated with its inputs, includ-

ing those describing human behaviors and the indoor

environment, to ensure relevance to current conditions and

ultimate defensibility of simulation results. However, EPA

must prioritize these efforts to input variables that most

greatly influence characterization of the variability of

exposures across the population.

Such prioritization can be informed by sensitivity

analysis (SA). An SA also can serve as a quality-assurance

check to ensure that the relationships between the input and

output variables make sense, which is critical for scientific

and public confidence in the risk and exposure assessments

that support the NAAQS and other efforts addressing

public health (Saman et al., 2021). In recent years, several

authors have provided helpful reviews of SA methods:

Pianosi et al. (2016) reviewed the SA literature and
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provided practical guidelines for carrying out SA, while

Douglas-Smith et al. (2020) carried out a literature review

of SA methods and looked at trends in their use, and

Razavi et al. (2021) also discussed different methods of SA

and their uses. Methods for SA, regardless of the applica-

tion, may be broadly grouped into local and global

approaches. Local SA methods such as varying one input at

a time by small amounts or methods based on partial

derivatives commonly are used (Saltelli et al. 2000). These

quantify the effects of perturbing inputs locally around

nominal points. Global SA methods account for the sen-

sitivity of variables over their entire range and can account

for interactions between variables.

The Sobol method was proposed by Sobol’ (1990 in

Russian; 1993 reprinted in English). Here, we used the

Glen and Isaacs (2012) implementation of the Sobol

method to evaluate APEX; this implementation uses sam-

pled Pearson correlation coefficients with the removal of

spurious correlations. We conducted a simulation study

using this Sobol implementation to investigate which

APEX inputs most impact population variability in expo-

sure and dose. We conducted this study, which assessed O3

exposure in Chicago for children ages 5–18 years, with the

goal of prioritizing key future data-collection and analysis

efforts.

2 Background on APEX and Sobol
implementation

2.1 General features of APEX

EPA has used APEX to estimate human exposure to sulfur

dioxide (SO2), ozone (O3), carbon monoxide (CO), and

nitrogen dioxide (NO2) (U.S. EPA 2020, 2018, 2014, 2010

and 2008), in support of reviews of the U.S. National

Ambient Air Quality Standards (NAAQS). Other applica-

tions include modeling exposure to emissions from oil and

gas operations (Holder et al. 2019).

APEX is both data-rich and highly flexible with many

user-defined inputs. The model is provided with an exten-

sive database of time-activity diaries (U.S. EPA 2019c;

McCurdy et al. 2000), population databases (U.S. Census

Bureau 2010, 2011), and well-parameterized distributions

that capture variability in other model inputs. The APEX

algorithms and current default input data and distributions

have previously been described in detail (U.S. EPA

2019a, b), but a general description is provided here (see

also Section A of the Online Resource). APEX models the

exposure of individuals (termed ‘‘profiles’’) as they move

through different microenvironments (MEs, which are

described in more detail below), each of which has specific

time-varying pollutant concentrations based on the user-

supplied ambient data. The profiles have stochastically

generated samples of demographic, physiological, and ME

properties, intended as a representative sample of the target

population, and they are modeled for the entire simulation

period.

Apart from the air-quality and weather data (which are

deterministic once a location is specified), all APEX vari-

ables are sampled from user-specified distributions. The

variables to be assessed in this study are defined in Table 1

(we further discuss Table 1 in Sect. 3). The distributions

are randomly sampled one or more times for each profile.

The samples for each profile are independent of those for

any other profile. There are no fixed or ‘‘frozen’’ variables

in any APEX run. Some variables (e.g., age, sex) are

sampled once per profile while others are sampled at reg-

ular time intervals. While each such sample is effectively

an independent random variable, for analysis it is standard

to assess the grouped impact of all the samples of a variable

together. These account for hundreds or (for hourly)

thousands of independent random samples per profile.

Each profile visits a sequence of MEs (locations of

unique air quality, such as home or office, vehicle, out-

doors, etc.) as determined by the selected time-activity

diaries. For each indoor ME, ME parameter (MP) distri-

butions are specified for indoor emission sources, pollutant

decay rates (DEs), proximity factors (PRs) which modify

nearby outdoor concentrations, and air-exchange rates

(AERs) and penetration factors (PEs). Outdoor MEs also

have PRs. MPs can be conditional on the values of other

variables. For example, the AERs in the runs used in this

study depend jointly on the outdoor temperature and the

probability of having air conditioning. APEX has no

stratification variables, so all differences between profiles

are due to stochastic sampling differences in the inputs.

APEX produces multiple outputs for each profile. In

APEX, instantaneous exposure is the air concentration

experienced by the profile (i.e., the pollutant concentration

outside the body), and dose is the exposure multiplied by

the breathing ventilation rate (i.e., the intake of the pollu-

tant through inhalation, which depends on the profile’s

physiology and what activity they are doing). We make

distinctions between exposure and dose throughout this

study because some model inputs affect dose but not

exposure (or have a stronger effect on dose relative to

exposure). Exposure and dose are assumed to be constant

until the activity or the ME changes, up to a maximum

duration of one model timestep. Output metrics can include

time averages, maxima, and counts of exposures and doses

above user-specified thresholds.
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Table 1 Grouping in each model run for each main type of stochastic model-input variable

Input random 
variable Description

Input groups
Run 

1
Run 

2
Run 

3
Run 

4
Sex Male or female 1 0 0 1
Age Age 2 0 0 2
HomeSec Home tract 3 0 0 0
WorkSec Work tract 4 0 0 0
Race Race 0 0 0 0
Employ Employment status 4 0 0 0
ProfFactor Location-dependent profile factor 0 0 0 0
GasStove Has gas stove 0 0 0 0
GasPilot Has gas pilot on stove 0 0 0 0
AC_Home Has air conditioning at home 5 0 0 0
AC_Car Has air conditioning in car 5 0 0 0
ProfCond1-5 Profile conditional variables #1 to #5 0 0 0 0
RegCond1-5 Regional conditional variables #1 to #5 0 0 0 0
OtherD AQ district other than home or work 5 0 0 0
NearHome AQ district when in Near Home location 5 0 0 0
NearWork AQ district when in Near Work location 5 0 0 0
WindowRes Daily window status at residence (open, 

closed) 0 0 0 0

WindowCar Daily window status in car 0 0 0 0
SpeedCat Daily speed category for travel 0 0 0 0
DayCond1-3 Daily conditional variables #1 to #3 5 0 0 0
BodyMass Body mass 8 0 0 3
Height Height 8 0 0 4
BSA Body surface area 8 0 0 5
RMR Resting metabolic rate 8 0 0 6
VEAge Regression terms for breathing versus age 8 0 0 7
Disease Presence of disease 8 0 0 0
VO2max Maximum O2 consumption 8 0 0 8
ECF Energy-conversion factor 8 0 0 9
RecoveryT Recovery time for O2 debt 8 0 0 10
Hemog Hemoglobin density in blood 8 0 0 0
MaxOxD Maximum possible O2 debt 8 0 0 11
EndogCO Endogenous CO production 8 0 0 0
BloodVol Blood volume regression terms 8 0 0 12
SFast Slope of fast O2 debt recovery 8 0 0 13
FEVB1-9 dFEV terms #1 to #9 8 0 0 0
FEVreg FEV regression parameters 8 0 0 0
FEVU dFEV parameter U 8 0 0 0
FEVE1 dFEV parameter E1 8 0 0 0
FEVE2 dFEV variation parameter E2 8 0 0 0
VEBM Regression terms for breathing ventilation 8 0 0 14
MET Activity-specific MET values 8 0 0 15
AQData AQ data drawn from distributions 0 0 0 0
DiarySel Daily activity-diary selection 6 0 0 0
DAutoCor Autocorrelation of diaries 6 0 0 0
Clus1 First diary-clustering parameter 0 0 0 0
Clus2 Second diary-clustering parameter 0 0 0 0
MP1 AER inside residence 7 1 1 16
MP2 AER inside office buildings or hospitals 7 2 1 16
MP3 AER inside schools 7 3 1 16
MP4 AER inside stores 7 4 1 16
MP5 AER inside restaurants 7 5 1 16
MP6 DE inside residence 7 1 2 16
MP7 DE inside office buildings or hospitals 7 2 2 16
MP8 DE inside schools 7 3 2 16
MP9 DE inside stores 7 4 2 16
MP10 DE inside restaurants 7 5 2 16
MP11 PR factor for residence 7 1 3 16
MP12 PR for office buildings or hospitals 7 2 3 16
MP13 PR for schools 7 3 3 16
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2.2 The Sobol implementation in APEX

The goal of a variance-based SA is to apportion the vari-

ance of model output among the set of stochastic inputs.

This allows one to rank the inputs in terms of their influ-

ence on specified outputs and can provide an understand-

ing of the relative influence of different factors in the

model. Sobol analysis (Sobol’ 1990, 1993) is based on

variance decomposition. The specific implementation used

here is that of Glen and Isaacs (2012) (see also Section B of

the Online Resource). The method is well-suited for APEX

as it is amenable for any number of independent samples

per profile and allows for the straightforward collection of

individual variables into meaningful groups (for assess-

ment of collective influence). The main features of this

method are that it:

(1) Allows any number of independent samples per

profile (which is the stochastic unit).

(2) Is optimized for use with true random samples, not

for quasi-randoms.

(3) Minimizes relative error, not mean absolute error.

(4) Has grouping that is completely flexible without any

special considerations such as alterations to the

random-number generation.

With thousands of random variables, the average index

for any one is very small. Minimization of relative error

ensures these small values are still accurate. This method

gives estimates of exactly zero with no stochastic error for

variables that have no contribution at all. Saltelli et al.

(2004, 2008) discussed using SA methods for assessing

scientific models and global SAs in general, respectively,

and Mokhtari and Frey (2006) also reviewed Sobol and

other SA methods for applications simulating human

exposure and dose. Other recent applications of the Sobol

method include: Kumar et al. (2020) who implemented the

Sobol method for a risk assessment of groundwater, Wei

et al. (2020) who conducted a Sobol analysis of distributed

energy systems, Gatel et al. (2020) who conducted a Sobol

analysis of a surface-water model, and Zhang et al. (2015)

who described the use of the Sobol method for evaluation

of pharmacology models.

The Sobol implementation in APEX is discussed at

length in Chapter 11 of the APEX Technical Support

Document (U.S. EPA 2019b). An output variable with one

value per profile is selected for analysis, and each such

output will have a different set of sensitivity indices. Two

random values (called the ‘‘sample’’ and ‘‘resample’’ val-

ues) are generated for each combination of profile and

random input variable. A series of model runs are per-

formed in which selected inputs are assigned their sample

values while the remainder of inputs are assigned their

resample values. The random values are the same on each

pass but are not stored and must be regenerated using seed

control. Every random number in APEX is seed con-

trolled.1 By systematically varying the inputs assigned to

each set and comparing the outputs across pairs of runs, the

contribution of each input variable to the variance of the

output may be quantified.

Grouping of input variables allows faster evaluation

because the full set of thousands of profiles must be

1 Every combination of profile and random variable is assigned two

‘‘seeds’’ (32-bit integers) which are derived from an overall run seed

using a special random generator with a period of (2^32) - 2. When

one or more random values are required for a modeling variable, the

standard Fortran uniform random generator is used. This generator

uses two 32-bit seeds, so if the sample value is desired the two 32-bit

seeds allotted to this profile-variable combination are used in the

order AB, but if the resample value is desired the BA order is used.

Exhaustive testing has confirmed that the values A and B are always

different until the entire period of length (2^32) - 2 has been

sampled.

Table 1 continued

MP14 PR for stores 7 4 3 16
MP15 PR for restaurants 7 5 3 16
MP14 PR for stores 7 4 3 16
MP15 PR for restaurants 7 5 3 16

Input random 
variable Description

Input groups
Run 

1
Run 

2
Run 

3
Run 

4

MP16 PR for outdoors - general 7 6 3 16
MP17 PR for outdoors - near major road 7 7 3 16
MP18 PR for vehicles 7 8 3 16
MP19 PE for vehicles 7 8 4 16

Group numbers are arbitrary, and within each ‘‘Run’’ column we use shading for easier distinguishing between group numbers. We further

explain all variables in this table in U.S. EPA (2019a, b). For MPs not shown here, we held them constant and they did not contribute to output

variance

AQ = air quality; O2 = oxygen; CO = carbon monoxide; dFEV = lung-function loss; O3 = ozone; MET = metabolic equivalent of task;

MP = microenvironmental parameter; AER = indoor-outdoor air-exchange rate; DE = hourly decay rate; PR = proximity factor; PE = pene-

tration factor
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generated (2 N ? 2) times, where N is the number of

groups, creating many millions of independent random

samples. Every pass through the code, regardless of

grouping, is an equally valid representative sampling of the

model space and could be used as a standalone variability

run. The downside to input grouping is that the contribu-

tions of each member of a group cannot be separated out.

Therefore, multiple runs with different groupings may be

used to obtain such details. While the modeling variables

may be grouped arbitrarily in APEX, the code assumes that

samples pertaining to the same modeling variable (such as

the samples that are applied at different simulation times)

are automatically grouped. Variable groups may contain

continuous or categorical variables, or both, without

restriction.

APEX has a built-in mode to conduct all the necessary

runs in a single submission, and it reports both the main-

effect index (MEI) and total-effect index (TEI) for each

input grouping, for a series of output variables. Both MEI

and TEI are unitless. The Sobol indices are not affected by

the units used for the inputs and do not depend on an

imposed ordering for categorical variables. Each MEI

reflects the impact (as a decimal fraction) one input vari-

able has by itself on the variance of the output, so each

MEI must be between zero and one, and their sum cannot

exceed one. Each TEI measures the influence one input has

either by itself (the MEI) or in interactions with other

inputs, so TEI C MEI. The sum of all TEIs exceeds one

because interaction terms are counted once for each con-

tributing variable. Stochastic error may occasionally result

in estimates that violate these limits if the number of

profiles is too small. Since such results cannot be correct,

the number of profiles should be increased to resolve this

issue.

3 Methods

We applied APEX (version 5.2) to the Chicago area for the

O3 season (April–October) in 2011, modeling children ages

5–18 years. The APEX input data fall into the following

general categories: human-activity data; population,

employment, and commuting data; air-quality data; tem-

perature data; physiological distributions; and ME distri-

butions. The human-activity data are from the Consolidated

Human Activity Database (CHAD) (McCurdy 2000; U.S.

EPA 2019c), which contains over 179,000 daily activity

diaries. We used tract-level population data from the 2010

census (U.S. Census Bureau 2010) in conjunction with

employment and home-to-work commuting flows. We used

hourly O3 air-quality data from 16 fixed-site monitors

within and around Cook County, each covering the entire

April–October period; therefore, the model timestep was

one hour. We obtained hourly temperature measurements

from the National Weather Service data files (Integrated

Surface Database). In Section C of the Online Resource,

we provide a map of the monitors (i.e., air quality districts),

meteorological stations, and an illustration of the local

population density. We used the default APEX physio-

logical data, which are based on Isaacs and Smith (2005).

We used eight MEs: inside residence, inside office/hospi-

tal, inside school, inside store, inside restaurant, outdoor

general, outdoor near road, and in vehicle. We also briefly

examined the Los Angeles air basin as a comparative

example.

APEX converts the population data to probabilities and

randomly samples age, sex, race, and home tract for each

profile. Other profile variables are conditional on these.

One activity diary is selected on each modeled day for each

profile. Each tract is assigned hourly outdoor concentra-

tions from the air-quality-monitoring site closest to each

tract center. Similarly, each tract uses data from the closest

weather station. Temperatures affect the selection of

activity diaries and the estimation of AERs for indoor MEs.

We used a mass-balance AER model for the indoor MEs

and a regression-based PE model for in-vehicle MEs (these

models are described in the APEX User’s Guide and

Technical Support Document: U.S. EPA 2019a, b). To

capture the variability relating to spatial interpolation

between air-quality-monitoring sites, the PR MPs were

fitted to the empirical distribution of concentration ratios

between adjacent monitors. The details of the MP distri-

butions are listed in Section D of the Online Resource. The

data underlying the ME variables are described in U.S.

EPA (2014).

This study presents results from one modeling exercise,

divided into four ‘‘runs’’ each with identical inputs apart

from Sobol grouping. All four runs had identical sample

(and resample) values for every random variable; the only

difference was when the sample or resample value was

chosen to represent the variable. All variables within a

group always make this choice the same way. See Table 1

for the assignments of input variables to groups in each run

(see Section E of the Online Resource for fuller descrip-

tions of these variables). The numbering of the groups was

arbitrary, though Group 0 in each run contained the input

variables of lesser interest in that run. The Sobol indices

are unaffected by the choice of group numbers, provided

the group membership remains unchanged. Variables

grouped together are still sampled independently. The

groupings determine whether each variable uses its ‘‘sam-

ple’’ values or its ‘‘resample’’ values in a particular APEX

iteration, but all random values are independent of each

other. The number of groups ‘‘N’’ ranged from 5 to 17, and

each run comprised (2 N ? 2) sets of 25,000 profiles.

Preliminary SA runs of APEX (not shown) have
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demonstrated that the stochastic error in the Sobol indices

was about 1% of their value when 25,000 APEX profiles

were used; we considered this error to be acceptable for the

current analysis. The modeling error is harder to assess and

is beyond the scope of this study.

In these runs, more than 15,000 samples and 15,000

resamples (i.e., more than 30,000 random samples) are

needed per profile. With 25,000 profiles, each run requires

over 750,000,000 independent random samples per pass.

Our ‘‘Run 4’’ in this study, for example, has 16 input

groups and therefore requires 34 such passes. The model

runtime of each set was about 20 min, so the longest run

(Run 4) was about 12 h.

Run 1 examined the main demographic variables in

detail. Age and sex are physiological in nature but were

included here grouped separately (i.e., Group 1 and Group

2, respectively) because they determine activity-diary

selection and hence influence the set of MEs visited, thus

affecting exposure and dose. Group 3 was the home-tract

assignment of the profile, while Group 4 was the employ-

ment status and work-tract assigned to the profile, and so

on. Run 1 otherwise grouped together all the MPs (MP1–

MP19; Group 7) and grouped together all the physiological

variables (Group 8). Group 0 held variables that cannot

affect the results, so MEI and TEI for Group 0 should both

be zero for all output statistics. Note that APEX still

assigns sample and resample values to these variables,

although they logically should not affect the output.

Demonstrating that the indices are zero serves as a quality

check.

Runs 2 and 3 focused on the MPs, with Run 2 grouping

them by ME (e.g., all ‘‘inside residence‘‘ MPs in Group 1,

all ‘‘office buildings or hospitals’’ MPs in Group 2, etc.)

and Run 3 grouping them by variable type (e.g., all AER

MPs in Group 1, all DE MPs in Group 2, etc.). All other

input variables were in Group 0.

Run 4 examined the physiological variables in detail,

with body mass in Group 3, height in Group 4, etc. Age and

sex are grouped separately (Groups 1 and 2) because they

determine activity-diary selection and hence influence the

set of MEs visited, thus affecting exposure and dose; all the

other physiology variables can affect dose (i.e., intake of

pollutant directly outside the body) but have no effect on

exposure (i.e., concentration outside the body). Metabolic

equivalent of task (MET) is one such variable: it is the

activity-specific ratio of energy expenditure to the resting

rate for that individual (e.g., the energy expenditure of

running, cleaning the house, watching television, etc., rel-

ative to the person’s resting baseline), which directly affect

the profile’s breathing ventilation rate and, thus, intake of

pollutant.

The daily output statistics subject to Sobol analysis in

these runs are presented in Table 2. For each daily statistic

there were two ‘‘day types’’ of summaries over the simu-

lation period: the maximum day and the average day

(midnight to midnight). The maximum day was profile-

specific, so it did not have to be the same day for different

profiles. Each of the four APEX runs produced MEI and

TEI estimates for all the output statistics in Table 2.

4 Results

The results for each of the four runs are presented in

Tables 3, 4, 5, 6 and 7. These tables cover multiple daily

statistics and day types, although due to space limitations

not all combinations are shown. Within each (daily statis-

tic, day-type) combination, the groups are ranked by

decreasing TEI. Values are rounded to three decimal pla-

ces. Refer to Table 1 for the specific variables in each

group.

4.1 Run 1: influence of demographic variables

Table 3 presents the results for Run 1, which focused on the

influence of demographic variables plus age and sex

because they impact exposure through influencing selec-

tions of activity diaries. We placed the remaining variables

in broad groups, and these included the other physiological

variables which have no effect on exposure but impact

dose.

The first section (AvgExp) of Table 3 reports the vari-

ables affecting the variation of average exposure over the

simulation (the overall average of the individual daily

averages). The MP values (MEI = 0.426, TEI = 0.441) and

diary selection (MEI = 0.392, TEI = 0.410) together

accounted for over 80% of the variation. The home tract

(where the profile lives) was next in importance (MEI =

0.079, TEI = 0.108). Age and sex had some minor influ-

ence (about 3% cumulative MEI) through their impact on

diary selection. The work tract and employment would be

expected to have more influence for adults, but for the

modeled age group (ages 5–18 years) only a small per-

centage (all age 16 or more) were employed, leading to

little influence. The results confirm that the other physio-

logical variables have no effect on exposure.

The influence of activity diaries manifests itself in two

ways. Each diary is labeled by the age and sex of the

person who supplied it. The diary sex must match that of

the profile, and age has a ± 15% tolerance for matching.

These effects of restricting the pool of available diaries are

attributed to ‘‘age’’ and ‘‘sex’’ in the Sobol indices. The

stochastic selection of specific diaries within those diary

pools is attributed to ‘‘diary selection’’, whose effect

(MEI = 0.392, TEI = 0.410) was much larger than the age

and sex terms, indicating that the variability in behavior
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Table 2 Daily output statistics

used
Daily Statistic Description

AvgExp Average exposure for the day

Max1Exp Maximum 1 h exposure for the day

Max8Exp Maximum 8 h running-average exposure ending on the day

AvgDose Average inhaled dose for the day

Max1Dose Maximum 1 h inhaled dose for the day

Table 3 Sensitivity of selected exposure metrics to the groups of input variables in Run 1

Daily statistic
Day 
type

Main-effect
index (MEI)

Total -effect
index (TEI)

TEI
rank Group # and label

24-hour-average 
exposure (AvgExp)

Aver-
age

0.426 0.441 1 7 MP1–MP19 
0.392 0.410 2 6 Diary selection
0.079 0.108 3 3 Home tract
0.017 0.049 4 2 Age

0.028 0.030 5 5 Other location 
variables

0.011 0.025 6 1 Sex

0.000 0.002 7 4 Work tract and 
employment

0.000 0.000 8 8 Other physiological 
variables

0.000 0.000 9 0 All variables not in 
other groups

Maximum 8-hour 
exposure (Max8Exp)

Aver-
age

0.614 0.646 1 6 Diary selection
0.231 0.252 2 7 MP1–MP19
0.041 0.061 3 3 Home tract
0.030 0.059 4 2 Age
0.018 0.038 5 1 Sex

0.015 0.016 6 5 Other location 
variables

0.000 0.003 7 4 Work tract and 
employment

0.000 0.000 8 8 Other physiological 
variables

0.000 0.000 9 0 All variables not in 
other groups

Maximum 1-hour 
exposure (Max1Exp)

Max-
imum

0.325 0.763 1 6 Diary selection
0.073 0.460 2 7 MP1–MP19
0.043 0.367 3 3 Home tract
0.042 0.343 4 1 Sex
0.017 0.209 5 2 Age

0.000 0.028 6 4 Work tract and 
employment

0.000 0.001 7 5 Other location 
variables

0.000 0.000 8 8 Other physiological 
variables

0.000 0.000 9 0 All variables not in 
other groups

We use conditional shading on the index values to better distinguish larger index values (darker shade) from smaller ones (lighter shade). We

shade the MEI and TEI columns independently

MP microenvironmental parameter
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within age-sex groups greatly exceeds the differences

between those groups. The Sobol indices for any variable

conditional on others do not include the effects of selec-

tions made earlier.

The second section of Table 3 (Max8Exp) presents

results for the largest 8 h running-average exposure on

each day, averaged over all simulation days for each pro-

file. The main contrast with the AvgExp results, which

were daily, was the increased importance of diary variables

(MEI = 0.614, TEI = 0.646) with the 8-h results. This is

reasonable since the diaries determine when the profiles are

outdoors (where exposures are usually higher), and there is

more variability in the fraction of outdoor time over shorter

time windows. Home tract is a constant over time for each

profile and its effect (MEI = 0.041, TEI = 0.061) here was

smaller than it was for AvgExp, which indicates that the

other factors were producing greater variability.

The third section of Table 3 (Max1Exp) presents results

for the largest hourly exposure for each profile. The MEI

was large (0.763) only for diary selection. The peak O3

concentrations are at fixed times, so the variation in max-

imum hourly exposure depends largely on where the diary

places the profile during those times. The top five groups

(by TEI ranking) all exhibited much larger total indices

than their corresponding main indices, indicating the

dominance of interaction terms. Age, sex, and home tract

had similar MEIs to those in AvgExp and Max8Exp, but

they all had much larger TEIs in Max1Exp. This indicates

that these variables matter only if that profile is assigned

other stochastic variables with certain values at the same

point in time. The determination of which interactions

(combinations of variables) drive the exposure variability

of short-term exposures is outside the scope of this work.

Table 4 shows the Run 1 results for average inhaled

dose. Dose is the product of air concentration (that is,

exposure) and breathing ventilation rate, both of which

change with time, so dose is also a time-series at the diary-

event level for each profile. This definition of dose is not

normalized by body weight, so heavier persons tend to

have larger intake doses. The variable groupings are the

Table 4 Sensitivity of selected dose metrics to the groups of input variables in Run 1

Daily statistic
Day 
type

Main-effect
index (MEI)

Total -effect
index (TEI)

TEI 
rank Group # and label

24-hour-average dose
(AvgDose)

Average 0.400 0.456 1 6 Diary selection

0.185 0.215 2 8 Physiological 
variables

0.120 0.190 3 2 Age
0.093 0.156 4 1 Sex
0.069 0.077 5 7 MP1–MP19
0.018 0.034 6 3 Home tract

0.004 0.005 7 5 Other location
variables

0.000 0.004 8 4 Work tract and 
employment

0.000 0.000 9 0 All variables not in 
other groups

Maximum 1-hour 
dose (Max1Dose)

Max-
imum

0.243 0.485 1 2 Age

0.230 0.360 2 8 Physiological 
variables

0.106 0.328 3 6 Diary selection
0.111 0.249 4 1 Sex
0.010 0.146 5 7 MP1–MP19
0.010 0.141 6 3 Home tract

0.000 0.025 7 4 Work tract and 
employment

0.000 0.000 8 5 Other location
variables

0.000 0.000 9 0 All variables not in 
other groups

We use conditional shading on the index values to better distinguish larger index values (darker shade) from smaller ones (lighter shade). We

shade the MEI and TEI columns independently

MP microenvironmental parameter
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same as in Table 3. The two cases shown are for the longest

and shortest averaging times: the overall simulation

average, and the highest single-hour inhaled dose for each

profile.

Table 5 Sensitivity of daily-average exposure to the groups of input variables in Run 2

Day 
type

Main-effect
index (MEI)

Total -effect
index (TEI)

TEI 
rank Group # and label

Aver-
age

0.559 0.574 1 0 All variables not in other groups
0.398 0.408 2 1 AER, DE, PR indoor-residences
0.018 0.020 3 3 AER, DE, PR indoor-school
0.008 0.009 4 8 PR, PE in-vehicle
0.002 0.002 5 4 AER, DE, PR indoor-stores/other

0.001 0.002 6 2 AER, DE, PR indoor-office 
buildings/hospitals

0.001 0.002 7 6 PR outdoor-general
0.000 0.000 8 7 PR outdoor-near road
0.000 0.000 9 5 AER, DE, PR indoor-restaurants

Max-
imum

0.311 0.680 1 0 All variables not in other groups
0.306 0.613 2 1 AER, DE, PR indoor-residences
0.004 0.120 3 6 PR outdoor-general
0.001 0.018 4 3 AER, DE, PR indoor-school
0.000 0.010 5 2 AER, DE, PR indoor-office 

buildings/hospitals
0.000 0.009 6 4 AER, DE, PR indoor-stores/other
0.001 0.002 7 8 PR, PE in-vehicle
0.000 0.001 8 5 AER, DE, PR indoor-restaurants
0.000 0.001 9 7 PR outdoor-near road

We use conditional shading on the index values to better distinguish larger index values (darker shade) from smaller ones (lighter shade). We

shade the MEI and TEI columns independently

AER air-exchange rate, DE hourly decay rate, PR proximity factor, PE penetration factor

Table 6 Sensitivity of daily-average exposure to the groups of input variables in Run 3

Day type
Main-effect index 

(MEI)
Total -effect index 

(TEI )
TEI 

rank Group # and label
Average 0.559 0.574 1 0 All variables not in other 

groups
0.380 0.391 2 2 DE in indoor MEs
0.033 0.037 3 1 AER in indoor MEs
0.006 0.009 4 3 PR in all MEs
0.006 0.007 5 4 PE in vehicles

Maximum 0.311 0.680 1 0 All variables not in other 
groups

0.061 0.385 2 1 AER in indoor MEs
0.018 0.354 3 3 PR in all MEs
0.178 0.220 4 2 DE in indoor MEs
0.001 0.002 5 4 PE in vehicles

We use conditional shading on the index values to better distinguish larger index values (darker shade) from smaller ones (lighter shade). We

shade the MEI and TEI columns independently

DE hourly decay rate, ME microenvironment, AER air-exchange rate, PR proximity factor, PE penetration factor
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The physiological variables matter for dose, as they

directly affect the breathing rate. Age (MEI = 0.120,

TEI = 0.190) was more important than sex (MEI = 0.093,

TEI = 0.156) in accounting for variability in AvgDose. For

the Max1Dose, age (MEI = 0.243, TEI = 0.485) and sex

(MEI = 0.111, TEI = 0.249) both were elevated in

Table 7 Sensitivity of selected dose metrics to the groups of input variables in Run 4

Daily statistic
Day 
type

Main-effect
index (MEI)

Total -effect 
index (TEI )

TEI 
rank Group # and label

24-hour-
average
dose
(AvgDose)

Aver-
age 0.423 0.492 1 0 All variables not in 

other groups
0.120 0.190 2 1 Sex
0.093 0.156 3 2 Age
0.094 0.112 4 3 Body mass 

0.068 0.078 5 7 Breathing vs. age 
coefficients

0.069 0.077 6 16 MP1–MP19 
0.018 0.021 7 6 Resting metabolic rate 

0.002 0.004 8 8 Maximum O2

consumption 

0.000 0.001 9 11 Maximum possible O2

debt 

0.001 0.001 10 9 Energy-conversion 
factor 

0.000 0.001 11 13 Slope of fast O2 debt 
recovery

0.000 0.000 12 15 Activity-specific MET 
values

0.000 0.000 13 10 Recovery time for O2

debt 

0.000 0.000 14 14 Breathing vs. body 
mass coefficients

Maximum 1-
hour dose
(Max1Dose)

Max-
imum

0.243 0.485 1 2 Age

0.120 0.354 2 0 All variables not in 
other groups

0.111 0.249 3 1 Sex
0.136 0.173 4 3 Body mass 
0.010 0.146 5 16 MP1–MP19

0.000 0.070 6 15 Activity-specific MET 
values

0.055 0.064 7 7 Breathing vs. age 
coefficients

0.019 0.041 8 8 Maximum O2

consumption 

0.000 0.031 9 14 Breathing vs. body 
mass coefficients

0.008 0.019 10 13 Slope of fast O2 debt 
recovery

0.006 0.013 11 11 Maximum possible O2

debt 
0.003 0.012 12 6 Resting metabolic rate 

0.000 0.001 13 10 Recovery time for O2

debt 

0.000 0.001 14 9 Energy-conversion 
factor 

We use conditional shading on the index values to better distinguish larger index values (darker shade) from smaller ones (lighter shade). We

shade the MEI and TEI columns independently

MP microenvironmental parameter, O2 oxygen, MET metabolic equivalents of task
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importance compared to their AvgDose effects. For both

dose metrics (AvgDose and Max1Dose), the same four

groups (age, sex, diary selection, and physiological vari-

ables) were the most important in both MEI and TEI.

The other large change for dose variability relative to

exposure variability was the reduced importance of the

MPs. This indicates that indoor time is of less importance

in variability of dose than it is for variability of exposure.

Breathing rates are generally higher when outdoors, giving

increased relative importance to outdoor events. Diaries are

important in determining whether a profile spends a lot of

time outdoors (hence their high importance).

4.2 Run 2: influence of microenvironmental
parameters stratified by microenvironment

Run 2 uses the same model settings as Run 1, including

random-number seed, but with different variable groupings

(see Table 1) to focus on the collective effect of MPs for

each ME. The exposure results for the daily (24 h) average

from Run 2 are presented in Table 5. See Section D of the

Online Resource for the distributions assigned to these

MPs. Values for each profile and each ME are sampled

independently. AER was resampled daily, while DE was

sampled once. PR was sampled daily, except in vehicles

and outdoors near roads were sampled once. PE was used

only in vehicles and sampled once. The distribution for DE

was the same in all indoor MEs.

Group 0 included diary selection and, while influential,

that group is not of interest for examining the effects of

MPs by ME. The indoor-residence ME (MEI = 0.398,

TEI = 0.408) dominated the others in its influence on

average exposure (the top section of Table 5). Much more

time is spent in the home (an average of nearly 18 h/day

according to the diaries) compared to any other ME. The

second section of Table 5 reports effects on the maximum

daily exposure per profile. Here, the MEIs tended to be

smaller, but TEIs larger, than for the average day. Group 6

(outdoor-general) had a substantial effect (TEI = 0.12) on

maximum daily exposure (unlike average exposure), but

still considerably less effect than Group 1 (indoor-resi-

dence; TEI = 0.613), again due to relatively large amounts

of time spent indoors at home.

Since this run is for (primarily) school-age children, the

presence of MP for schools is expected, but those had

relatively little effect (TEI = 0.018) on exposure. The

coefficient of variation for AER was much lower for

schools (0.42) than for homes (0.60–1.5, depending on

outdoor temperature and air conditioning). Children’s

exposures also exhibit little variation when they are in

school. Overall, while exposures at school are important

considerations for children, schools were not the driver of

exposure differences between children (indoor-residences

and to a certain extent outdoor-general were the drivers).

Vehicles and other MEs each account for 1% or less toward

the overall variability in exposure.

4.3 Run 3: influence of microenvironmental
parameters stratified by variable type

The results of Run 3 are shown in Table 6. Run 3 splits

MPs by variable type. Since Group 0 contained the same

variables as in Run 2, the indices were the same as before.

The top section of Table 6 shows that DE was the dominant

type of MP for the overall average exposure (MEI = 0.380,

TEI = 0.391). The bottom section of Table 6 presents the

results for the maximum day of exposure, and while DE

still had the largest main effect (MEI = 0.178) among MPs,

the total effects for AER (TEI = 0.385) and PR (TEI =

0.354) were larger than that of DE (TEI = 0.220).

The large TEIs for AER and PR for maximum daily

exposures (relative to their MEI) indicate strong interac-

tions with other variables. For example, the interaction

terms that include AER accounted for 32.4% (that is, TEI-

MEI = 0.385–0.061, expressed as a percentage) of total

variation in the maximum day’s exposure, and the PR

interaction terms were even greater at 33.6%. Since inter-

action terms contribute equally to all the variables in the

interaction, AER and PR are either interacting with each

other or with diary selection, or both. The evaluation of

specific interaction effects has not been coded into APEX.

4.4 Run 4: influence of physiological variables
on dose

Run 4 split the group of physiological variables, as they

can affect dose. Here, each relevant physiological variable

was a separate group (totaling 15), with one combined

group for all MPs and one group for all other variables,

making 17 groups in all. The role of these specialized

physiological variables is discussed in Chapters 7 and 10 of

U.S. EPA (2019b). Group 0 included variables not appli-

cable to O3 and certain physiological-response variables

such as lung-function loss that cannot alter the inhaled

dose. Height, body surface area, and blood volume (Groups

4, 5, and 12) also have no effect on inhaled dose (in APEX)

but we included them as test cases of performance; how-

ever, given that their effect indices were 0 for all output

variables, they are excluded from the results in Table 7.

Table 7 compares directly with Table 4. The age and sex

results are the same in both tables. Here, Group 0 contains

all the variables from Groups 0, 3, 4, 5, and 6 from Table 4.

Among the physiological variables (apart from age and

sex), body mass (MEI = 0.094, TEI = 0.112) and the

regression coefficients for breathing ventilation as a func-

tion of age (MEI = 0.068, TEI = 0.078) were the most
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important for the AvgExp output. The resting metabolic

rate (MEI = 0.018, TEI = 0.021) was of minor importance,

and the rest of the physiological variables contributed very

little.

The second section of Table 7 (Max1Exp) also shows

body mass (MEI = 0.136, TEI = 0.173) to be the most

important physiological variable. Next in total effect was

the activity-specific MET values (MEI = 0.000, TEI =

0.070). Note that MET is conditional on the type of

activity, so variations in activity are attributed to the diary

selection, and the Sobol indices for MET reflect only the

variation in dose within given activities. The MEI was

negligible for MET because in isolation most of the vari-

ation in MET occurs during passive activities or away from

the worst air-quality. For MET to matter it must be paired

with high-ventilation activities and poor air quality.

Therefore, the interaction terms for MET were far greater

than the main effect.

For children, age and sex matter more than MET in

determining extreme intake dose because a young child

aged 5 or 6 years cannot match the breathing ventilation

volume of a teenager. The MET index was smaller than

might be expected for another reason: a child exercising

outdoors is likely to do that on multiple days. The Max1-

Dose output selects the highest intake dose over these

events, which (if the activity is the same) is likely to be the

one with the highest MET. Thus, the MET variability

between children on these selected events is less than the

overall variation in MET.

4.5 Los Angeles example

We repeated the same four APEX runs but in a five-county

area centered on Los Angeles, California and for June–

August 2010. This study area includes multiple air basins

separated by mountains, so the O3 levels show much

greater geographical variation than in Chicago. The results

(not shown) indicate that the home tract had substantially

more importance in Los Angeles than in Chicago, but all

other variables were close to their rankings in the Chicago

runs. The rankings of the variables in Tables 5 through 7

also aligned closely in both study areas, indicating that the

same ME and physiological variables were influential in

both study areas.

5 Discussion

Exposure models such as APEX quantify the intersection

of people and pollutants. APEX has supported regulatory

action at EPA for nearly twenty years (e.g., U.S. EPA,

2007, 2008, 2010, 2014, 2018 and 2020) The APEX Sobol

methodology has been validated using known functions

(see Glen and Isaacs 2012). In the present runs, certain

results can be anticipated due to the model structure. For

example, the physiological variables have indices of zero

for exposure but not for dose. Another check is that the

same variables have the same MEI and TEI regardless of

the grouping of other variables; for example, the indices for

age and sex in Table 7 are the same as in Table 4. Because

we chose the four runs to highlight different groupings,

there are just a few such examples. Other tests have con-

firmed that the indices for a group are completely unaf-

fected by any change in other groupings, provided the same

overall random seed is used for reproducibility (otherwise,

the indices will show stochastic differences).

While the model accepts many inputs and can produce

myriad outputs of exposure metrics, Sobol SA can illumi-

nate which inputs are most influential over the desired

output metrics. Utilizing simulations of the ozone season in

Chicago and Los Angeles, we have demonstrated that diary

selection and the MP variables (namely, AER, DE, and PR)

for indoor residences are the main drivers of variability of

daily-average exposures for children, which is not sur-

prising as those parameters largely determine exposure

location and the air quality there, and children in the diary

database spend on average 74.4% of their time at home.

Diary selection has similar importance for dose, but the

MPs are reduced in influence and are replaced by physio-

logical variables which impact pollutant intake. Age, sex,

and body mass also have a degree of importance in dose

estimates. Age and sex are assigned first and have rela-

tively high indices; they influence both the time spent in

each ME (through the diaries) and the breathing ventilation

rate. The body mass reflects variation only within given

age-sex combinations, yet it still accounts for 10–20% of

the variation in dose (depending on the dose metric). In

observing similar rankings of the importance of model

variables utilizing two different modeling scenarios, this

suggests that the rankings are features of the model struc-

ture and pollutant rather than being driven by idiosyn-

crasies of one scenario’s data. Improvements in the

characterization of these variables of exposure factors,

through refined input data and/or model algorithms, would

have substantial benefit in estimating the variability in

exposure and the frequency of high-end exposures, the

latter being particularly important in regulatory contexts

for human health. It remains to be seen how important

employment status and work location would be for a

population of workers.

For the inhaled dose, we additionally expected breathing

ventilation-age regression terms and resting metabolic rate

to be influential. However, these had relatively low influ-

ence, each accounting for less than 8% of the variation in

dose, although breathing rates depend on several variables

and the Sobol indices give an indication of the (low)
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importance of each. A somewhat surprising result is the

minimal effect of MET on daily-average dose. The influ-

ence of MET as shown here reflects only the variation in

breathing ventilation rate for a fixed activity; any variation

in activities is attributed to the diaries. The MET index

reflects the variability in energy consumption for a fixed

activity type, given age, sex, body mass, and resting

metabolic rate. This accounted for 7% of the dose vari-

ability for the maximum hour, but for longer averaging

times many random samples of MET are being averaged,

which reduces their influence.

For the physiological variables, our testing quantified

the importance of the variables as a group as well as the

importance of the individual variables, and a comparison of

the breakdown of those indices reveals the importance of

interaction terms. For daily exposures, the sums of the

individual indices of physiological variables (MEI = 0.183,

TEI = 0.218) were very close to the indices of the group of

physiological variables (MEI = 0.185, TEI = 0.215) this is

consistent with the expectation that splitting the variables

may decrease (but never increase) the total MEI and

increase (but never decrease) the TEI, due to the way the

interactions are tallied. The interaction terms for average

dose are likewise quite small. For maximum hourly dose,

on the other hand, while the sum of the individual MEIs of

physiological variables was close to the MEI of the group

(0.227 and 0.230, respectively), the TEIs were quite dif-

ferent (0.425 and 0.360, respectively), indicating substan-

tial higher-order interactions. For example, a third-order

interaction between two group members with a third vari-

able outside the group is counted once if the group is

merged, but it is counted twice if the group is split. Split-

ting the physiological variable group added 0.065 (about

20%) to the total effects of that group, reflecting the

importance of higher-order interactions.

The Sobol indices measure the importance of population

variability but not uncertainty (unless incorporated into the

input distributions). For example, a few activities have

MET distributions set to a point value with no variability,

so those contributions to the MET Sobol indices are zero.

This does not mean that the MET value is correct, or that it

has no effect on dose. Any shift in the input point value

would create a corresponding shift in the dose distribution

that cannot be estimated from the current runs. Instead of

using a point input, one could supply a distribution that

captured the uncertainty. The Sobol indices would then

quantify the importance of that uncertainty.

There are several ways to characterize the importance of

uncertainty in input variables. One option, which is com-

patible with Sobol analysis, would be to combine vari-

ability and uncertainty into one distribution. Some

variables such as age and sex effectively have no uncer-

tainty. Most variables are not as well characterized. For

example, the average MET value for certain activities

could be off by 20% or more, but most such activities occur

rarely, so the influence of one activity is small. A 20% error

in the average AER or DE (if such an error existed) would

matter much more due to their larger Sobol indices and

because those variables operate throughout the simulation.

Refinements to the APEX inputs could reduce uncer-

tainty but not variability as that is a characteristic of the

population. This work can help prioritize the places where

refinements would be most productive. Currently, AER in

APEX is dependent on outdoor temperature and the use of

air conditioning, but it could be characterized by house age,

type, or size, or by creating autocorrelation across days in

AER. The DE distributions could be treated similarly. The

PR could be geographically localized with suitable infor-

mation on spatial variability within the study area. Models

such as APEX can use far more data than it is practical to

collect, so the prioritization of data needs through SA may

lead to more efficient allocation of limited resources.

While the Sobol indices measure variability and could in

principle be indicators of very low extremes (not just high

extremes), in practice exposures and doses tend to be

lognormal and are skewed to the right, so the main drivers

of variance are in the upper tail. Thus, variables (or groups)

that create high-end exposures or doses will have relatively

high Sobol indices. The output could be log-transformed

before applying the Sobol analysis, but this is not desirable

because then the lower-tail exposures would drive the

indices as much as the upper-tail exposures, making the

prioritization of inputs more difficult.

The SA methodology used here potentially is applicable

to a wide variety of complex stochastic models. It is not

necessary (or possible) in APEX to sample all parts of the

model input hyperspace to determine the influential vari-

ables. Nearly all the variation in APEX comes from a

relatively small number of random choices, with the vast

majority contributing very little to variability. This has

some similarity to principal components analysis, in which

a many-dimensional system can be reduced to a much

smaller number of influential dimensions by an appropriate

rotation in hyperspace. The number of profiles needed for

stable indices depends on the effective (rather than nomi-

nal) dimensionality. If more variables were sampled more

frequently in APEX, it could require over one million

random samples to define one profile, but the same SA

method would work without any alteration. Furthermore,

without a fundamental change to the model structure it is

unlikely that more profiles would be needed to obtain

stable estimates of the sensitivity indices.

There are no applications of Sobol’s method to proba-

bilistic inhalation exposure models with which to compare

our results. In another application to a complex model,

Mokhtari et al. (2006) applied seven sensitivity analysis
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techniques to a multipathway, probabilistic human expo-

sure model for pesticides, a simplified version of the model

SHEDS (Zartarian et al. 2000). The output variable of

interest was the total exposure, from inhalation and dermal

exposures and ingestion pathways. They singled out the

Fourier amplitude sensitivity test (FAST) (Helton and

Davis 2002) and Sobol’s method as more advanced

methods, and they focused their paper on Sobol’s method

since the FAST method has limitations with respect to

applicability to models with large numbers of inputs. They

listed 26 probabilistic input variables, two of which stood

out as being the most important: the fraction of pesticide

available for transfer from surface to body or hands and the

fraction of pesticide residue that dissipates daily. Interac-

tion effects also contributed to a large part of the variance

of the estimated exposure. It is fairly typical of applications

of Sobol’s method to complex models that only a few input

variables contribute to the majority of the output variance

(for example, Karunanidhi et al. 2021; Kumar et al. 2020;

Nossent et al. 2011). In our application, we also found that

a small number of the stochastically sampled inputs con-

tribute most of the variability in the output.

6 Conclusions

Sobol analysis of APEX exposure and dose output vari-

ables demonstrates that a small number of the stochasti-

cally sampled inputs contribute most of the variability in

the output. The selection of activity diaries is important for

both exposure and dose, with even more effect when

looking at the maximum day rather than the average day.

For this reason, APEX would benefit from the collection of

additional activity diaries, allowing for more precise tar-

geting of diaries to each profile. The MP values which

characterize the O3 concentrations in MEs are also

important for the exposure metrics. Some MPs such as

AER are dependent on the type of housing and climate in

the study area, so the collection of site-specific data for

these variables would improve the model. The home-tract

location, which in a default APEX run is created by sam-

pling from Census data, has a modest effect in Chicago, but

it could be larger is a less homogeneous area. Age and sex,

assigned based on Census sampling, and body mass, sam-

pled from national survey data, also have modest effects on

dose. With the division of MET into about 300 activity-

specific distributions, the variability in MET within activ-

ities is no longer a major factor in the dose calculations,

especially over longer averaging times. By contrast, the

variability across activities is ascribed to diary selection,

and is much larger. Finally, the physiological variables that

most affect dose are age, sex, body mass, and (on short

time scales) MET, with all other randomly sampled

variables contributing relatively little to the overall vari-

ability in exposure or dose.
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