POWER SECTOR PROGRAMS PROGRESS REPORT

- Program Basics
- Emission Controls & Monitoring
- Air Quality

- Affected Units
- Program Compliance
- Acid Deposition

- Emission Reductions
- Market Activity
- Ecosystem Response

https://www3.epa.gov/airmarkets/progress/reports/

Executive Summary

Under the Clean Air Act, EPA implements several regulations that affect power plants, including the Acid Rain Program (ARP), the Cross-State Air Pollution Rule (CSAPR), the CSAPR Update, and the Mercury and Air Toxics Standards (MATS). These programs require fossil fuel-fired electric generating units to reduce emissions of sulfur dioxide (SO₂), nitrogen oxides (NO_x), and hazardous air pollutants including mercury (Hg) to protect human health and the environment. This reporting year marks the sixth year of CSAPR implementation, the fourth year of the CSAPR Update implementation, the twenty-sixth year of the ARP, and the fourth year of MATS implementation in which the majority of sources were required to report emissions for the full year. This report summarizes annual progress through 2020, highlighting data that EPA systematically collects on emissions for all four programs and on compliance for the ARP and CSAPR. Transparency and data availability are a hallmark of these programs and a cornerstone of their success.

 SO_2 , NO_X , and hazardous air pollutants (HAPs), including mercury, are fossil fuel combustion byproducts that affect public health and the environment. SO_2 and NO_X , and their sulfate and nitrate byproducts, are transported downwind and deposited as acid rain at levels harmful to sensitive ecosystems in many areas of the country. These pollutants also contribute to the formation of fine particles (sulfates and nitrates) and ground-level ozone that are associated with significant human health effects and regional haze. Atmospheric mercury deposition accumulates in fish to levels of concern for human health and the health of fish-eating wildlife.

The ARP, CSAPR, CSAPR Update, and MATS have delivered substantial reductions in power sector emissions of SO_2 , NO_X , and hazardous air pollutants, along with significant improvements in air quality and the environment. In addition to the requirements of the power sector emission control programs described in this report, a variety of power industry trends have contributed to further declines of SO_2 , NO_X , and hazardous air pollutant emissions.

EPA data in this report are current as of January 2022 and may differ from past or future reports as a result of resubmissions by sources and ongoing data quality assurance activities.

2020 ARP, CSAPR, and MATS at a Glance

Annual SO₂ emissions:

CSAPR – 497 thousand tons (94 percent below 2005) **ARP** – 778 thousand tons (95 percent below 1990)

Annual NO_X emissions:

CSAPR – 405 thousand tons (81 percent below 2005)

ARP – 721 thousand tons (86 percent below 2000)

- CSAPR ozone season NO_x emissions: 232 thousand tons (49 percent below 2015)
- Compliance: 100 percent compliance for power plants in the market-based ARP and CSAPR allowance trading programs

Executive Summary Page 2 of 100

2020 Power Sector Programs – Progress Report

https://www3.epa.gov/airmarkets/progress/reports/

- Emissions reported under MATS:
 Mercury 2.6 tons (91 percent below 2010)
- **Ambient particulate sulfate concentrations:** The eastern United States has shown substantial improvement, decreasing 76 to 79 percent between 2000-2002 and 2018–2020.
- Ozone NAAQS attainment: Based on 2018-2020 data, 89 of the 92 areas in the East originally
 designated as nonattainment for the 1997 ozone NAAQS are now meeting the standard, while
 the remaining three areas had incomplete data.
- PM_{2.5} NAAQS attainment: Based on 2018-2020 data, 35 of the 39 areas in the East originally designated as nonattainment for the 1997 PM_{2.5} NAAQS are now meeting the standard (one area has incomplete data).
- Wet sulfate deposition: All areas of the eastern United States have shown significant improvement with an overall 70 percent reduction in wet sulfate deposition from 2000-2002 to 2018–2020.
- Levels of acid neutralizing capacity (ANC): This indicator of recovery improved (i.e., increased) significantly from 1990 levels at lake and stream monitoring sites in the Adirondack region, New England and the Catskill mountains.

Executive Summary Page 3 of 100

https://www3.epa.gov/airmarkets/progress/reports/

Contents

Executive Summary	2
2020 ARP, CSAPR, and MATS at a Glance	2
Chapter 1: Program Basics	9
Highlights	9
Acid Rain Program (ARP): 1995 - present	9
Cross-State Air Pollution Rule (CSAPR): 2015 - present	10
Cross-State Air Pollution Rule Update (CSAPR Update): 2017 - present	10
CSAPR and CSAPR Update Budgets	10
Revised Cross-State Air Pollution Rule Update (Revised CSAPR Update): 2021 – present	10
Mercury and Air Toxics Standards (MATS)	11
Background Information	11
Power Sector Trends	11
Acid Rain Program	12
NO _X Budget Trading Program	12
Clean Air Interstate Rule	12
Cross-State Air Pollution Rule	13
Cross-State Air Pollution Rule Update	13
Revised Cross-State Air Pollution Rule Update	13
Mercury and Air Toxics Standards	14
More Information	14
Figures	15
Chapter 2: Affected Units	18
Highlights	18
Acid Rain Program (ARP)	18
Cross-State Air Pollution Rule (CSAPR)	18
Mercury and Air Toxics (MATS)	18
Background Information	18
More Information	18
Figures	20
Chapter 3: Emission Reductions	22
Sulfur Dioxide (SO ₂)	22

Highlights	22
Overall Results	22
SO ₂ Emission Trends	22
SO ₂ State-by-State Emissions	22
SO ₂ Emission Rates	23
Background Information	23
More Information	23
Figures	24
Annual Nitrogen Oxides	28
Highlights	28
Overall Results	28
Annual NO _x Emissions Trends	28
Annual NO _x State-by-State Emissions	28
Annual NO _x Emission Rates	28
Background Information	29
More Information	29
Figures	30
Ozone Season Nitrogen Oxides	34
Highlights	34
Overall Results	34
Ozone Season NO _X Emissions Trends	34
Ozone Season NO _X State-by-State Emissions	
Ozone Season NO _X Emission Rates	34
Background Information	35
More Information	35
Figures	30
Mercury	40
Highlights	40
Overall Results	40
Mercury and Hazardous Air Pollutant Emission Trends	40
Background Information	40
More Information	40
Figures	41
Chapter 4: Emission Controls and Monitoring	4

Highlights	43
ARP and CSAPR SO ₂ Program Controls and Monitoring	43
CSAPR NO _X Annual Program Controls and Monitoring	43
CSAPR NO _x Ozone Season Program Controls and Monitoring	43
MATS Controls and Monitoring	44
Background Information	44
Continuous Emission Monitoring Systems (CEMS)	44
SO ₂ Emission Controls	44
NO _X Emission Controls	44
Hazardous Air Pollutant Controls	44
More Information	45
Figures	46
Chapter 5: Program Compliance	5 4
Highlights	54
ARP SO ₂ Program	54
CSAPR SO₂ Group 1 Program	54
CSAPR SO₂ Group 2 Program	54
CSAPR NO _x Annual Program	54
CSAPR NO _X Ozone Season Group 1 Program	55
CSAPR NO _X Ozone Season Group 2 Program	55
Background Information	55
More Information	56
Figures	57
Chapter 6: Market Activity	63
Highlights	63
Transaction Types and Volumes	63
2020 Allowance Prices	63
Background Information	63
Transaction Types and Volumes	63
Allowance Markets	64
More Information	64
Figures	65
Chapter 7: Air Quality	67
Sulfur Dioxide and Nitrogen Oxides Trends	67

Highlights	67
National SO ₂ Air Quality	67
Regional Changes in Air Quality	67
Background Information	67
Sulfur Dioxide	67
Nitrogen Oxides	68
More Information	68
Figures	69
Ozone	72
Highlights	72
Ozone Season Changes in 1-Hour Ozone	72
Annual Trends in Rural 8-Hour Ozone	
Ozone Season Changes in 8-Hour Ozone Concentrations	
Changes in Ozone Nonattainment Areas	72
Background Information	7 3
Ozone Standards	
Regional Trends in Ozone	
Meteorologically-Adjusted Daily Maximum 8-Hour Ozone Concentrations	
Changes in Ozone Nonattainment Areas	74
More Information	75
Figures	76
Particulate Matter	81
Highlights	81
PM Seasonal Trends	81
Changes in PM _{2.5} Nonattainment	81
Background Information	81
Particulate Matter Standards	82
Changes in PM _{2.5} Nonattainment Areas	82
More Information	82
Figures	83
Chapter 8: Acid Deposition	85
Highlights	85
Wet Sulfate Deposition	85
Wet Inorganic Nitrogen Deposition	85

Regional Trends in Total Deposition	85
Background Information	86
Acid Deposition	86
Monitoring Networks	86
More Information	87
Figures	88
Chapter 9: Ecosystem Response	91
Ecosystem Health	91
Highlights	91
Regional Trends in Water Quality	91
Ozone Impacts on Forests	91
Background Information	92
Acidified Surface Water Trends	92
Surface Water Monitoring Networks	93
Forest Health	93
More Information	93
Figures	94
Critical Loads Analysis	97
Highlights	97
Critical Loads and Exceedances	97
Background Information	97
More Information	98
Figures	99

Chapter 1: Program Basics

The Acid Rain Program (ARP), the Cross-State Air Pollution Rule (CSAPR), and the CSAPR Update are implemented through cap and trade programs designed to reduce emissions of sulfur dioxide (SO2) and nitrogen oxides (NO_X) from power plants. Established under Title IV of the 1990 Clean Air Act Amendments, the ARP was a landmark nationwide cap and trade program, with a goal of reducing the emissions that cause acid rain. The undisputed success of the program in achieving significant emission reductions in a cost-effective manner led to the application of the market-based cap and trade tool for other regional environmental problems, namely interstate air pollution transport, or pollution from upwind emission sources that impacts air quality in downwind areas. The interstate transport of pollution can make it difficult for downwind states to meet health-based air quality standards for regional pollutants, particularly fine particulates (PM_{2.5}) and ozone. EPA first employed trading to address regional pollution in the NO_X Budget Trading Program (NBP), which helped northeastern states address the interstate transport of NO_X emissions causing ozone pollution in northeastern states. Next, the NBP was effectively replaced by the ozone season NO_x program under the Clean Air Interstate Rule (CAIR), which required further summertime NO_x emission reductions from the power sector, and also required annual reductions of NO_x and SO₂ emissions to address PM_{2.5} transport. In response to a court decision on CAIR, CSAPR replaced CAIR beginning in 2015 and continued to reduce annual SO₂ and NO_X emissions, as well as ozone season NO_x emissions, to facilitate attainment of the PM_{2.5} and ozone National Ambient Air Quality Standard (NAAQS). Most recently, implementation of the CSAPR Update began in 2017. The CSAPR Update further reduces ozone season NO_X emissions to help states attain and maintain a newer ozone NAAQS established in 2008.

The Mercury and Air Toxics Standards (MATS) set limits on emissions of hazardous air pollutants from power plants. EPA published the final standards in February 2012, and the compliance requirements generally went into effect in April 2015, with extensions for some plants until April 2016 and a small number until April 2017. As such, 2020 is the fourth full year for which most sources covered by MATS have reported emissions data to the EPA.

Highlights

Acid Rain Program (ARP): 1995 - present

- The ARP began in 1995 and covers fossil fuel-fired power plants across the contiguous United States. The ARP was established under Title IV of the 1990 Clean Air Act Amendments and is designed to reduce SO₂ and NO_x emissions, the primary precursors of acid rain.
- The ARP's market-based SO₂ cap and trade program sets an annual cap on the total amount of SO₂ that may be emitted by electricity generating units (EGUs) throughout the contiguous U.S.
 The final annual SO₂ emissions cap was set at 8.95 million tons in 2010, a level of about one-half of the emissions from the power sector in 1980.
- NO_X reductions under the ARP are achieved through a rate-based approach that applies to a subset of coal-fired EGUs.

Cross-State Air Pollution Rule (CSAPR): 2015 - present

- CSAPR addresses regional interstate transport of fine particle (PM_{2.5}) and ozone pollution for the 1997 ozone and PM_{2.5} NAAQS and the 2006 PM_{2.5} NAAQS. In 2015, CSAPR required a total of 28 eastern states to reduce SO₂ emissions, annual NO_x emissions, and/or ozone season NO_x emissions. Specifically, CSAPR required reductions in annual emissions of SO₂ and NO_x from power plants in 23 eastern states and reductions of NO_x emissions during the ozone season from power plants in 25 eastern states.
- CSAPR includes four separate cap and trade programs to achieve these reductions: the CSAPR SO₂ Group 1 and Group 2 trading programs, the CSAPR NO_X Annual trading program, and the CSAPR NO_X Ozone Season Group 1 trading program.

Cross-State Air Pollution Rule Update (CSAPR Update): 2017 - present

- The CSAPR Update was developed to address regional interstate transport for the 2008 ozone NAAQS and to respond to the July 2015 court remand of certain CSAPR ozone season requirements.
- As of May 2017, the CSAPR Update began further reducing ozone season NO_X emissions from power plants in 22 states in the eastern U.S.
- The CSAPR Update achieves these reductions through the CSAPR NO_X Ozone Season Group 2 trading program.

CSAPR and CSAPR Update Budgets

- The total CSAPR and CSAPR Update budget for each of the five trading programs equals the sum of the individual state budgets for those states affected by each program. In 2017, some original CSAPR budgets tightened, particularly in the SO₂ Group 1 program. Also, the CSAPR Update replaced the original CSAPR ozone season NO_X program for most states. The total budget for each program was set at the following level in 2020:
 - o SO₂ Group 1 − 1,372,631 tons
 - o SO₂ Group 2 597,579 tons
 - NO_x Annual 1,069,256 tons
 - NO_X Ozone Season Group 1 − 24,041 tons¹
 - NO_X Ozone Season Group 2 313,626 tons

Revised Cross-State Air Pollution Rule Update (Revised CSAPR Update): 2021 – present

- The Revised CSAPR Update was developed to resolve 21 states' outstanding interstate transport
 obligations for the 2008 ozone NAAQS and to respond to the September 2019 court remand of
 the 2016 CSAPR Update.
- Starting June 2021, further emission reductions will be required at power plants in 12 of the 21 states for which the CSAPR Update was previously found to be only a partial remedy. These

¹ Since the start of CSAPR Update in 2017, the CSAPR NO_X Ozone Season Group 1 program applies only to sources in Georgia.

https://www3.epa.gov/airmarkets/progress/reports/program basics.html

reductions are based on optimization of existing, already-installed selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR) controls beginning in the 2021 ozone season, and installation or upgrade of enhanced NO_X combustion controls beginning in the 2022 ozone season. EPA will also adjust these 12 states' ozone season emission budgets through 2024 to incentivize the continued use of these control technologies.

Mercury and Air Toxics Standards (MATS)

- EPA announced standards to limit mercury, acid gases, and other toxic pollution from power
 plants in December 2011 (published in February 2012). EPA provided the maximum 3-year
 compliance period, so sources were generally required to comply no later than April 16, 2015.
 Some sources obtained a one-year extension from their state permitting authority, allowed
 under the CAA, and so, were required to comply with the final rule by April 16, 2016.
- Units subject to MATS must comply with emission rate limits for certain hazardous air pollutants (or surrogates). There are several ways to demonstrate compliance, including the use of continuous monitoring or through periodic measurement of emissions. Some units may choose to demonstrate compliance through periodic performance tests.
- This 2020 progress report only provides data from affected sources that submitted hourly
 emissions data in 2020. Units not reporting data (e.g., those monitoring using periodic testing)
 are not included in this report.

Background Information

Power Sector Trends

The widespread and dramatic emission reductions in the power sector over the last few decades have come about from several factors, including changes in markets for fuels and electricity as well as regulatory programs. While most coal-fired electricity generation comes from sources with state-of-the-art emission controls, broad industry shifts from coal-fired generation to gas-fired generation, as well as increases in zero-emitting generation sources, also have reduced power sector emissions. Market factors, modest demand growth, and policy and regulatory efforts have resulted in a notable change in the last decade to the country's overall generation mix as natural gas and renewable energy generation increased while coal-fired generation decreased.

Looking ahead, the price of natural gas is expected to remain low for the foreseeable future as improvements in drilling technologies and techniques continue to reduce the cost of extraction. In addition, the existing fleet of coal-fired EGUs continues to age. With a continued (but reduced) tax credit and declining capital costs, solar capacity is projected to grow through 2050, while tax credits that phase out for plants entering service through 2023 provide incentives for new wind capacity in the near-term. Some power generators have announced that they expect to continue to change their generation mix away from coal-fired generation and toward natural-gas fired generation, renewables, and more deployment of energy efficiency measures. All these factors, in total, have resulted in declining power sector emissions in recent years, a trend that is expected to continue going forward.

_

² EIA, Annual Energy Outlook 2021.

https://www3.epa.gov/airmarkets/progress/reports/program basics.html

Acid Rain Program

Title IV of the 1990 Clean Air Act Amendments established the ARP to address acid deposition nationwide by reducing annual SO₂ and NO_x emissions from fossil fuel-fired power plants. In contrast to traditional command and control regulatory methods that establish specific emissions limitations, the ARP SO₂ program introduced a landmark allowance trading system that harnessed the economic incentives of the market to reduce pollution. This market-based cap and trade program was implemented in two phases. Phase I began in 1995 and affected the most polluting coal-fired units in 21 eastern and midwestern states. Phase II began in 2000 and expanded the program to include other units fired by coal, oil, and gas in the contiguous U.S. Under Phase II, Congress also tightened the annual SO2 emissions cap with a permanent annual cap set at 8.95 million allowances starting in 2010. The NO_X program has a similar results-oriented approach and ensures program integrity through measurement and reporting. However, it does not cap NO_x emissions, nor does it utilize an allowance trading system. Instead, the ARP NO_x program provisions apply boiler-specific NO_x emission limits – or rates – in pounds per million British thermal units (lb/mmBtu) on certain coal-fired boilers. There is a degree of flexibility, however. Units under common control, which are owned or operated by the same company, can comply using emission rate averaging plans, subject to requirements ensuring that the total mass emissions from the units in an averaging plan do not exceed the total mass emissions the units would have emitted at their individual emission rate limits.

NOx Budget Trading Program

The NBP was a market-based cap and trade program created to reduce NO_X emissions from power plants and other large stationary combustion sources during the summer ozone season to address regional air pollution transport that contributes to the formation of ozone in the eastern United States. The program, which operated during the ozone seasons from 2003 to 2008, was a central component of the NO_X State Implementation Plan (SIP) Call, promulgated in 1998, to help states attain the 1979 ozone NAAQS. All 21 jurisdictions (20 states plus Washington, D.C.) covered by the NO_X SIP Call opted to participate in the NBP. In 2009, the CAIR's NO_X ozone season program began, effectively replacing the NBP to continue achieving ozone season NO_X emission reductions from the power sector.

Clean Air Interstate Rule

CAIR required 25 eastern jurisdictions (24 states plus Washington, D.C.) to limit annual power sector emissions of SO_2 and NO_X to address regional interstate transport of air pollution that contributes to the formation of fine particulates. It also required 26 jurisdictions (25 states plus Washington, D.C.) to limit power sector ozone season NO_X emissions to address regional interstate transport of air pollution that contributes to the formation of ozone during the ozone season. CAIR used three separate market-based cap and trade programs to achieve emission reductions and to help states meet the 1997 ozone and fine particle NAAQS.

EPA issued CAIR on May 12, 2005, and the CAIR federal implementation plans (FIPs) on April 26, 2006. In 2008, the U.S. Court of Appeals for the DC Circuit remanded CAIR to the Agency, leaving the existing CAIR programs in place while directing EPA to replace them as rapidly as possible with a new rule consistent with the Clean Air Act. The CAIR NO_X ozone season and NO_X annual programs began in 2009, while the CAIR SO_2 program began in 2010. As discussed below, CAIR was replaced by CSAPR in 2015.

https://www3.epa.gov/airmarkets/progress/reports/program basics.html

Cross-State Air Pollution Rule

EPA issued CSAPR in July 2011, requiring 28 states in the eastern half of the United States to significantly improve air quality by reducing power plant emissions that travel across state lines and contribute to fine particle and summertime ozone pollution in downwind states. CSAPR required 23 states to reduce annual SO_2 and NO_X emissions to help downwind areas attain the 2006 and/or 1997 annual $PM_{2.5}$ NAAQS. CSAPR also required 25 states to reduce ozone season NO_X emissions to help downwind areas attain the 1997 ozone NAAQS. CSAPR divides the states required to reduce SO_2 emissions into two groups (Group 1 and Group 2). Both groups were required to reduce their SO_2 emissions in Phase I. All Group 1 states, as well as some Group 2 states, were required to make additional reductions in SO_2 emissions in Phase II in order to eliminate their significant contribution to air quality problems in downwind areas.

CSAPR was scheduled to replace CAIR starting on January 1, 2012. However, the timing of CSAPR's implementation was affected by D.C. Circuit actions that stayed and then vacated CSAPR before implementation. On April 29, 2014, the U.S. Supreme Court reversed the D.C. Circuit's vacatur, and on October 23, 2014, the D.C. Circuit granted EPA's motion to lift the stay and shift the CSAPR compliance deadlines by three years. Accordingly, the CSAPR Phase I implementation began on January 1, 2015, replacing CAIR, and CSAPR Phase II began January 1, 2017.

Cross-State Air Pollution Rule Update

On September 7, 2016, EPA finalized an update to the CSAPR ozone season program by issuing the CSAPR Update. This rule addresses the summertime ozone pollution in the eastern U.S. that crosses state lines and will help downwind states and communities meet and maintain the 2008 ozone NAAQS. In May 2017, the CSAPR Update began further reducing ozone season NO_X emissions from power plants in 22 states in the eastern U.S. When issuing the CSAPR Update, EPA found that, while the rule would result in meaningful, near-term reductions in ozone pollution that crosses state lines, the rule may not be sufficient to fully address all covered states' good neighbor obligations³ with respect to the 2008 ozone NAAQS. In December 2018, based on additional analysis conducted after issuance of the rule, EPA published a determination that the emission reductions required by the CSAPR Update in fact would fully address all covered states' good neighbor obligations with respect to this NAAQS.

In September 2019, the D.C. Circuit upheld the CSAPR Update in most respects, but remanded the rule to EPA to address the court's holding that the rule unlawfully allowed upwind states' significant contribution to downwind air quality problems to continue beyond downwind states' deadlines for attaining the NAAQS. Relatedly, in October 2019, the court vacated EPA's December 2018 determination that the CSAPR Update fully addressed covered states' good neighbor obligations with respect to the 2008 ozone NAAQS.

Revised Cross-State Air Pollution Rule Update

On March 15, 2021, EPA finalized the Revised CSAPR Update to resolve 21 states' outstanding interstate transport obligations for the 2008 ozone NAAQS. Based on EPA's analysis, the Agency determined that

_

³ Good neighbor" obligations refer to provisions in the Clean Air Act that require upwind states to reduce the emissions that affect downwind states' ability to attain or maintain NAAQS.

additional emission reductions relative to the CSAPR Update were necessary for 12 of the 21 states. These reductions are based on optimization of existing, already-installed controls beginning in the 2021 ozone season, and installation or upgrade of state-of-the-art NO_x combustion controls beginning in the 2022 ozone season. This rulemaking also adjusts these 12 states' ozone season emission budgets through 2024 to incentivize the continued use of these control technologies. The rule's effective date is June 29, 2021.

Mercury and Air Toxics Standards

On December 16, 2011, the EPA announced final standards to reduce emissions of toxic air pollutants from new and existing coal- and oil-fired electric utility steam generating units (EGUs) in all 50 states and U.S. territories. MATS established technology-based emission rate standards that reflect the level of hazardous air pollutant (HAP) emissions that had been achieved by the best-performing sources. These HAPs include mercury (Hg), non-mercury metals (such as arsenic (As), chromium (Cr), and nickel (Ni)), and acid gases, including hydrochloric acid (HCl) and hydrofluoric acid (HF). EPA provided the maximum 3-year compliance period, so sources were generally required to comply no later than April 16, 2015. Some sources obtained a one-year extension from their state permitting authority, allowed under the CAA so were required to comply with the final rule by April 16, 2016.

More Information

- Acid Rain Program (ARP) https://www.epa.gov/airmarkets/acid-rain-program
- Interstate Air Pollution Transport https://www.epa.gov/airmarkets/interstate-air-pollution-transport
- Cross-State Air Pollution Rule (CSAPR) https://www.epa.gov/csapr
- Cross-State Air Pollution Rule Update (CSAPR Update) https://www.epa.gov/airmarkets/final-cross-state-air-pollution-rule-update
- Clean Air Interstate Rule (CAIR)
 https://archive.epa.gov/airmarkets/programs/cair/web/html/index.html
- NO_x Budget Trading Program (NBP) / NO_x SIP Call https://www.epa.gov/airmarkets/nox-budget-trading-program
- National Ambient Air Quality Standards (NAAQS) https://www.epa.gov/criteria-air-pollutants
- EPA's Clean Air Market Programs https://www.epa.gov/airmarkets/programs
- Emissions Trading https://www.epa.gov/emissions-trading-resources
- MATS https://www.epa.gov/mats

Figures

History of the ARP, NBP, CAIR, CSAPR, and MATS

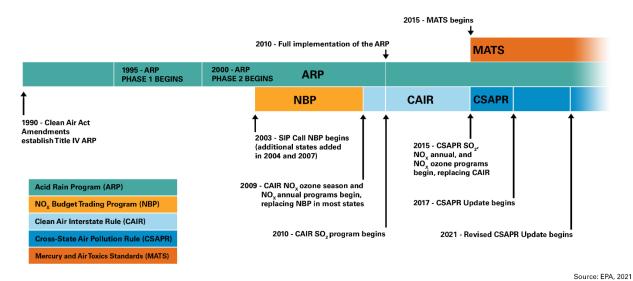


Figure 1. History of the ARP, NBP, CAIR, CSAPR, and MATS

Chapter 1: Program Basics

Source: EPA, 2021

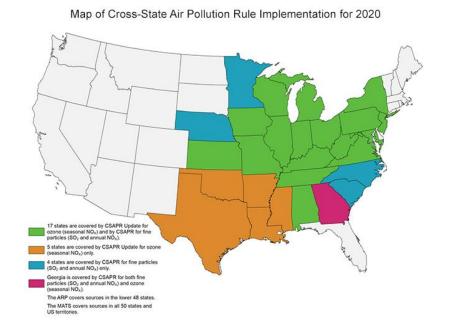



Figure 2. Map of Cross-State Air Pollution Rule Implementation for 2020

Chapter 1: Program Basics

Notes:

Source: EPA, 2021

Figure 3. Electricity Generation from ARP- and CSAPR-Affected Power Plants, 2005–2020

Notes:

• There is a small amount of generation from "Oil" or "Other" fuels. The data for these fuels is not easily visible on the full chart. To more clearly see the generation data for these fuels, use the interactive features of the figure: click on the boxes in the legend to turn off the blue and orange categories of fuels (labeled "Coal" and "Gas") and turn on the green and yellow categories of fuels (labeled "Oil" and "Other").

[•] There is a small amount of generation from "Oil" or "Other" fuels. The data for these fuels is not easily visible on the full chart. To more clearly see the generation data for these fuels, use the interactive features of the figure: click on the boxes in the legend to turn off the blue and orange categories of fuels (labeled "Coal" and "Gas") and turn on the green and yellow categories of fuels (labeled "Oil" and "Other").

Chapter 2: Affected Units

The Acid Rain Program (ARP) and the Cross-State Air Pollution Rule's (CSAPR) sulfur dioxide (SO_2) and nitrogen oxides (NO_X) emission reduction programs apply to large electricity generating units (EGUs) that burn fossil fuels to generate electricity for sale. The Mercury and Air Toxics Standards (MATS) only cover large EGUs that burn coal or oil to generate electricity for sale and excludes gas-fired units, resulting in fewer units in MATS than in the ARP and CSAPR. This section covers units affected in 2020.

Highlights

Acid Rain Program (ARP)

In 2020, the ARP SO₂ requirements applied to 3,287 fossil fuel-fired combustion units at 1,159 facilities across the country; 536 units at 246 facilities were subject to the ARP NO_x program.

Cross-State Air Pollution Rule (CSAPR)

- In 2020, there were 2,181 affected EGUs at 678 facilities in the CSAPR SO₂ programs. Of those, 1,747 (80 percent) were also covered by the ARP.
- In 2020, there were 2,181 affected EGUs at 678 facilities in the CSAPR NO_X annual program and 2,527 affected EGUs at 809 facilities in the CSAPR NO_X ozone season programs. Of those, 1,747 (80 percent) and 2,063 (82 percent), respectively, were also covered by the ARP.

Mercury and Air Toxics (MATS)

- The Mercury and Air Toxics Standards (MATS) set limits on the emissions of hazardous air
 pollutants from coal- and oil-fired electric utility steam generating units in all 50 states and U.S.
 territories. MATS was issued under section 112 of the Clean Air Act. EPA is including a summary
 of the mercury data submitted by affected sources in this report.
- In 2020, 428 units at 197 facilities reported hourly mercury emissions to EPA under MATS.

Background Information

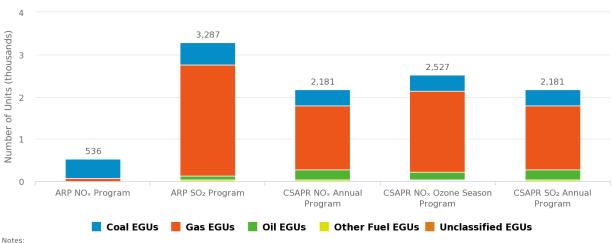
In general, the ARP and CSAPR programs apply to large EGUs – boilers, turbines, and combined cycle units – that burn fossil fuel, serve generators with nameplate capacity greater than 25 megawatts, and produce electricity for sale. MATS applies only to coal- and oil-fired steam generating EGUs (i.e., utility boilers). It does not apply to combustion turbines, combined cycle units, or to natural gas-fired utility boilers. The EGUs affected by these programs include a range of unit types, including units that operate year-round to provide baseload power to the electric grid, as well as units that provide power only on peak demand days. The ARP NO_X program applies to a subset of these units that are older and historically coal-fired.

More Information

- Acid Rain Program (ARP) https://www.epa.gov/airmarkets/acid-rain-program
- Cross-State Air Pollution Rule (CSAPR) https://www.epa.gov/csapr

2020 Power Sector Programs – Progress Report

https://www3.epa.gov/airmarkets/progress/reports/affected_units.html



• Mercury and Air Toxics Standards (MATS) https://www.epa.gov/mats

Figures

Affected Units in CSAPR and ARP, 2020

- "Unclassified" units have not submitted a fuel type in their monitoring plan and did not report emissions.
- "Other" fuel refers to units that burn fuels such as waste, wood, petroleum coke, and tire-derived fuel.

Source: EPA, 2021

Figure 1. Affected Units in CSAPR and ARP, 2020

- "Unclassified" units have not submitted a fuel type in their monitoring plan and did not report emissions.
- "Other fuel units" include units that combusted primarily wood, waste, or other non-fossil fuel (which also boost mercury and HCl removal by ACI and DSI).

Affected Units in CSAPR and ARP, 2020

Fuel			CSAPR Annual NO _x	CSAPR Ozone Season NO _x	CSAPR Annual SO ₂	
Coal EGUs	454	535	390	390	390	
Gas EGUs	79	2,618	1,526	1,924	1,526	
Oil EGUs	1	102	232	179	232	
Other Fuel EGUs	2	27	33	24	33	
Unclassified EGUs	0	5	0	10	0	
Total Units	536	3,287	2,181	2,527	2,181	

Source: EPA, 2021 Last updated: 05/2021

Figure 2. Affected Units in CSAPR and ARP, 2020

- "Unclassified" units have not submitted a fuel type in their monitoring plan and did not report emissions.
- "Other fuel units" include units that combusted primarily wood, waste, or other non-fossil fuel (which also boost mercury and HCl removal by ACI and DSI).

[&]quot;"Unclassified" units have not submitted a fuel type in their monitoring plan and did not report emissions
- "Other" fuel refers to units that burn fuels such as waste, wood, petroleum coke, and tire-derived fuel.

Chapter 3: Emission Reductions

The Acid Rain Program (ARP) and Cross-State Air Pollution Rule (CSAPR) programs significantly reduced sulfur dioxide (SO₂), annual nitrogen oxides (NO_X), and ozone season NO_X emissions from electric generating units (EGUs). The Mercury and Air Toxics Standards (MATS) set limits on the emissions of hazardous air pollutants from coal- and oil-fired electric utility steam generating unit EGUs and have led to reductions in those emissions since 2010. This section covers changes in emissions at units affected by CSAPR, ARP, and MATS between 2020 and previous years.

Sulfur Dioxide (SO₂)

Highlights

Overall Results

- Under the ARP, CAIR, and now CSAPR, power plants have significantly lowered SO₂ emissions while electricity generation has remained relatively stable since 2000.
- These emission reductions are a result of an overall increase in the environmental effectiveness at affected sources as electric generators installed controls, switched to lower emitting fuels, or otherwise reduced their SO₂ emissions. These trends are discussed further in Chapter 1.

SO₂ Emission Trends

- ARP: Units in the ARP emitted 778 thousand tons of SO₂ in 2020, well below the ARP's statutory annual cap of 8.95 million tons. The ARP sources reduced emissions by 15.0 million tons (95 percent) from 1990 levels and 16.5 million tons (95 percent) from 1980 levels.
- CSAPR and ARP: In 2020, the sixth year of operation of the CSAPR SO₂ program, sources in both the CSAPR SO₂ annual programs and the ARP together reduced SO₂ emissions by 15.0 million tons (95 percent) from 1990 levels (before implementation of the ARP), 10.4 million tons (93 percent) from 2000 levels (ARP Phase II), and 9.5 million tons (92 percent) from 2005 levels (before implementation of the CAIR and the CSAPR). All ARP and CSAPR sources together emitted a total of 788 thousand tons of SO₂ in 2020.
- CSAPR: Annual SO₂ emissions from sources in the CSAPR SO₂ programs fell from 7.7 million tons in 2005 to 497 thousand tons in 2020 (94 percent). In 2020, SO₂ emissions were about 1.5 million tons below the regional CSAPR emission budgets (0.94 million in Group 1 and 0.53 million in Group 2); the CSAPR SO₂ annual programs' 2020 regional budgets are 1,372,631 and 597,579 tons for Group 1 and Group 2, respectively.

SO₂ State-by-State Emissions

• CSAPR and ARP: From 1990 to 2020, annual SO₂ emissions from sources in the ARP and the CSAPR SO₂ program dropped in 46 states plus Washington, D.C. by a total of 15.0 million tons. In contrast, annual SO₂ emissions increased in two states (Idaho and Vermont) by a combined total of 10 tons from 1990 to 2020.

https://www3.epa.gov/airmarkets/progress/reports/emissions reductions.html

 CSAPR: All 22 states (16 states in Group 1 and 6 states in Group 2) had emissions below their CSAPR allowance budgets, collectively by 1.5 million tons.

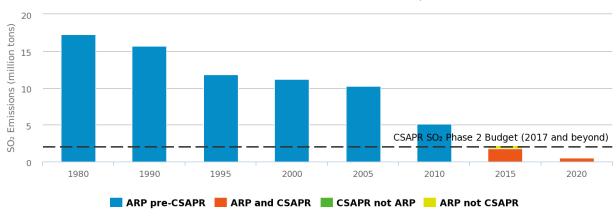
SO₂ Emission Rates

- The average SO₂ emission rate for units in the ARP or CSAPR SO₂ program fell to 0.08 pounds per million British thermal units (lb/mmBtu). This indicates a 90 percent reduction from 2005 rates, with most reductions coming from coal-fired units.
- Emissions have decreased dramatically since 2005, due in large part to greater use of control technology on coal-fired units and increased generation at natural gas-fired units that emit very little SO₂ emissions.

Background Information

 SO_2 is a highly reactive gas that is generated primarily from coal-fired power plants. In addition to contributing to the formation of acid rain and fine particle ($PM_{2.5}$) pollution, SO_2 emissions are linked with a number of adverse effects to human health and ecosystems.

The states with the highest emitting sources in 1990 have generally seen the greatest SO_2 emission reductions under the ARP, and this trend continued under CAIR and CSAPR. Most of these states are in the Ohio River Valley and are upwind of the areas the ARP and CSAPR were designed to protect. Reductions under these programs have provided important environmental and health benefits over a large region.


More Information

- Power Plant Emission Trends https://www.epa.gov/airmarkets/power-plant-emission-trends
- Power Sector Emissions, Operations, and Environmental Data https://www.epa.gov/airmarkets/data-resources
- Acid Rain Program (ARP) https://www.epa.gov/airmarkets/acid-rain-program
- Cross-State Air Pollution Rule (CSAPR) https://www.epa.gov/csapr
- Sulfur Dioxide (SO₂) Pollution https://www.epa.gov/so2-pollution
- Particulate Matter (PM) Pollution https://www.epa.gov/pm-pollution
- Power Profiler https://www.epa.gov/energy/power-profiler

Figures

SO₂ Emissions from CSAPR and ARP Sources, 1980-2020

Notes:

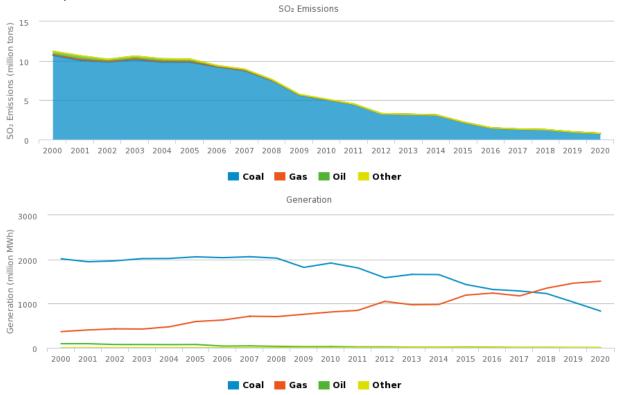
- \bullet SO2 values are shown as millions of tons.
- The data shown here reflect totals for those units required to comply with each program in each respective year. This means that the CSAPR-only SO₂ program units are not included in the SO₂ data prior to 2015.
- There are a small number of sources in CSAPR but not in the ARP. Emissions from these sources comprise about 1 percent of total emissions and are not easily visible on the full chart.

 Source: EPA, 2021

Figure 1. SO₂ Emissions from CSAPR and ARP Sources, 1980–2020

- \bullet SO_2 values are shown as millions of tons.
- The data shown here reflect totals for those units required to comply with each program in each respective year. This means that the CSAPR-only SO_2 program units are not included in the SO_2 data prior to 2015.
- There are a small number of sources in CSAPR but not in the ARP. Emissions from these sources comprise about 1 percent of total emissions and are not easily visible on the full chart.

https://www3.epa.gov/airmarkets/progress/reports/emissions_reductions.html


Figure 2. State-by-State SO₂ Emissions from CSAPR and ARP Sources, 1990–2020

Notes:

• The data shown here reflect totals for those units required to comply with each program in each respective year. This means that the CSAPR-only SO_2 program units are not included in the SO_2 data prior to 2015.

Comparison of SO₂ Emissions and Generation for CSAPR and ARP Sources, 2000-2020

Notes

Source: EPA, 2021

Figure 3. Comparison of SO₂ Emissions and Generation for CSAPR and ARP Sources, 2000–2020

- The data shown here reflect totals for those units required to comply with each program in each respective year. This means that the CSAPR-only SO₂ program units are not included in the SO₂ data prior to 2015.
- Fuel type represents primary fuel type; units might combust more than one fuel.

[•] The data shown here reflect totals for those units required to comply with each program in each respective year. This means that the CSAPR-only SO₂ program units are not included in the SO₂ data prior to 2015.

Fuel type represents primary fuel type; units might combust more than one fuel.

CSAPR and ARP SO₂ Emissions Trends

	SO ₂ Emissions (thousand tons)				SO₂ Rate (lb/mmBtu)			
Primary Fuel	2000	2005	2010	2020	2000	2005	2010	2020
Coal	10,708	9,835	5,052	788	1.04	0.95	0.53	0.18
Gas	108	91	19	5	0.06	0.03	0.01	0.00
Oil	384	292	28	1	0.73	0.70	0.19	0.04
Other	1	4	22	11	0.23	0.27	0.57	0.17
Total / Average	11,201	10,222	5,120	788	0.88	0.75	0.39	0.08

Notes:

Source: EPA, 2021

Figure 4. CSAPR and ARP SO₂ Emissions Trends, 2020

- The data shown here reflect totals for those units required to comply with each program in each respective year. This means that the CSAPR-only SO₂ program units are not included in the SO₂ emissions data prior to 2015.
- Fuel type represents primary fuel type; units might combust more than one fuel.
- Totals may not reflect the sum of individual rows due to rounding.
- The emission rate reflects the emissions (pounds) per unit of heat input (mmBtu) for each fuel category. The total SO₂ emission rate in each column of the table is not cumulative and does not equal the arithmetic mean of the four fuel-specific rates. The total for each year indicates the average rate across all units in the program because each unit influences the annual emission rate in proportion to its heat input, and heat input is unevenly distributed across the fuel categories.

[•] The data shown here reflect totals for those units required to comply with each program in each respective year. This means that the CSAPR-only SO; program units are not included in the SO; emissions data prior to 2015.

[·] Fuel type represents primary fuel type; units might combust more than one fuel.

[·] Totals may not reflect the sum of individual rows due to rounding.

[•] The emission rate reflects the emissions (pounds) per unit of heat input (mmBtu) for each fuel category. The total SO₂ emission rate in each column of the table is not cumulative and does not equal the arithmetic mean of the four fuel-specific rates. The total for each year indicates the average rate across all units in the program because each unit influences the annual emission rate in proportion to its heat input, and heat input is unevenly distributed across the fuel categories.

Annual Nitrogen Oxides

Highlights

Overall Results

- Annual NO_X emissions have declined dramatically under the ARP, CAIR, and CSAPR programs, with most reductions coming from coal-fired units. These reductions have occurred while electricity generation has remained relatively stable since 2000.
- These emission reductions are a result of an overall increase in the environmental efficiency at
 affected sources as power generators installed controls, ran their controls year-round, switched
 to lower emitting fuels, or otherwise reduced their NO_X emissions. These trends are discussed
 further in Chapter 1.
- Other programs such as regional and state NO_X emission control programs also contributed significantly to the annual NO_X emission reductions achieved by sources in 2020.

Annual NOx Emissions Trends

- ARP: Units in the ARP NO_X program emitted 721 thousand tons of NO_X emissions in 2020. Sources reduced emissions by 7.3 million tons from the projected level in 2000 without the ARP, over three times the program's NO_X emission reduction objective.
- **CSAPR and ARP:** In 2020, the sixth year of operation of the CSAPR NO_x annual program, sources in both the CSAPR NO_x annual program and the ARP together emitted 737 thousand tons, a reduction of 5.7 million tons (89 percent reduction) from 1990 levels, 4.4 million tons (86 percent reduction) from 2000, and 2.9 million tons (80 percent reduction) from 2005 levels.
- CSAPR: Emissions from the CSAPR NO_X annual program sources were 405 thousand tons in 2020. This is about 1.8 million tons (81 percent) lower than in 2005 and 664 thousand tons (62 percent) below the CSAPR NO_X annual program's 2020 regional budget of 1,069,256 tons.

Annual NOx State-by-State Emissions

- CSAPR and ARP: From 1990 to 2020, annual NO_X emissions in the ARP and the CSAPR NO_X program dropped in 47 states plus Washington, D.C. by a total of approximately 5.7 million tons. In contrast, annual emissions increased in one state (Idaho) by 331 tons from 1990 to 2020.
- **CSAPR:** 21 of 22 states had emissions below their CSAPR 2020 allowance budgets, collectively by 666 thousand tons. One state (Missouri) exceeded their 2020 state level budget by about two thousand tons.

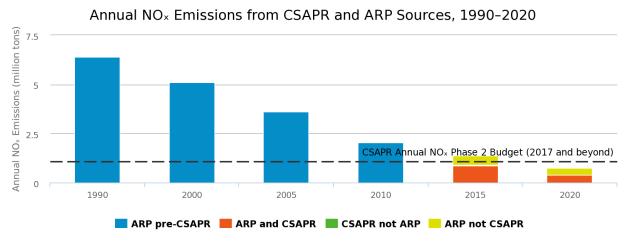
Annual NOx Emission Rates

- In 2020, the ARP and CSAPR average annual NO_X emission rate was 0.07 lb/mmBtu, a 73 percent reduction from 2005.
- Emissions have decreased dramatically since 2005, due in large part to greater use of control technology, primarily on coal-fired units, and increased generation at natural gas-fired units that emit less NO_X emissions per unit of electricity than coal-fired units.

https://www3.epa.gov/airmarkets/progress/reports/emissions reductions.html

Background Information

Nitrogen oxides (NO_X) are made up of a group of highly reactive gases that are emitted from power plants and motor vehicles, as well as other sources. NO_X emissions contribute to the formation of ground-level ozone and fine particle pollution, which cause a variety of <u>adverse health effects</u>.


More Information

- Power Plant Emission Trends https://www.epa.gov/airmarkets/power-plant-emission-trends
- Power Sector Emissions, Operations, and Environmental Data https://www.epa.gov/airmarkets/data-resources
- Acid Rain Program (ARP) https://www.epa.gov/airmarkets/acid-rain-program
- Cross-State Air Pollution Rule (CSAPR) https://www.epa.gov/csapr
- Nitrogen Oxides (NO_x) Pollution https://www.epa.gov/no2-pollution
- Particulate Matter (PM) Pollution https://www.epa.gov/pm-pollution
- Power Profiler https://www.epa.gov/energy/power-profiler

https://www3.epa.gov/airmarkets/progress/reports/emissions_reductions.html

Figures

Notes:

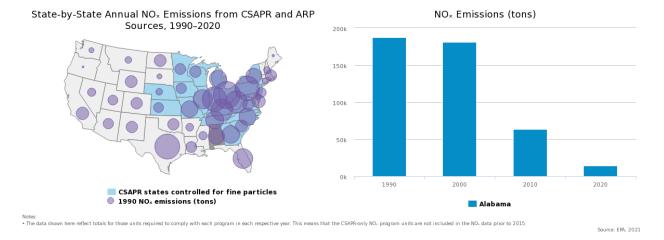
- \bullet NO $_{\!\scriptscriptstyle \times}$ values are shown as millions of tons.
- The data shown here reflect totals for those units required to comply with each program in each respective year. This means that the CSAPR-only NO_x program units are not included in the NO_x data prior to 2015.
- There are a small number of sources in CSAPR but not in the ARP. Emissions from these sources comprise about 1 percent of total emissions and are not easily visible on the full chart.

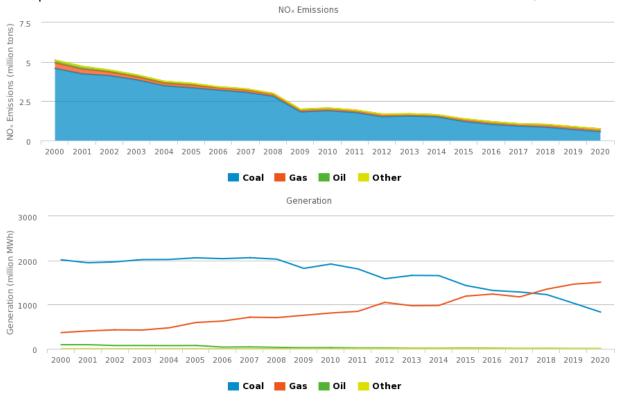
 Source: EPA, 2021

Figure 1. Annual NO_X Emissions from CSAPR and ARP Sources, 1990–2020

- NO_x values are shown as millions of tons.
- The data shown here reflect totals for those units required to comply with each program in each respective year. This means that the CSAPR-only NO_x program units are not included in the NO_x data prior to 2015.
- There are a small number of sources in CSAPR but not in the ARP. Emissions from these sources comprise about 1 percent of total emissions and are not easily visible on the full chart.

https://www3.epa.gov/airmarkets/progress/reports/emissions_reductions.html




Figure 2. State-by-State Annual NO_X Emissions from CSAPR and ARP Sources, 1990–2020

Notes:

• The data shown here reflect totals for those units required to comply with each program in each respective year. This means that the CSAPR-only NO_x program units are not included in the NO_x data prior to 2015.

Comparison of Annual NO_x Emissions and Generation for CSAPR and ARP Sources, 2000-2020

Notes:

- The data shown here for the annual programs reflect totals for those units required to comply with each program in each respective year. This means that the CSAPR NO₂ annual program units are not included in the annual NO₂ emissions data prior to 2015.
- Fuel type represents primary fuel type; units might combust more than one fuel.

Source: EPA, 2021

Figure 3. Comparison of Annual NO_X Emissions and Generation for CSAPR and ARP Sources, 2000–2020

- \bullet The data shown here for the annual programs reflect totals for those units required to comply with each program in each respective year. This means that the CSAPR NO_x annual program units are not included in the annual NO_x emissions data prior to 2015.
- Fuel type represents primary fuel type; units might combust more than one fuel.

CSAPR and ARP Annual NOx Emissions Trends

		NO _x Emissions (thousand tons)				NO _x Rate (lb/mmBtu)			
Primary Fuel	2000	2005	2010	2019	2000	2005	2010	2020	
Coal	4,587	3,356	1,896	569	0.44	0.32	0.20	0.14	
Gas	355	167	142	160	0.18	0.06	0.04	0.03	
Oil	162	104	20	2	0.31	0.25	0.13	0.10	
Other	2	6	5	6	0.26	0.42	0.14	0.09	
Total / Average	5,104	3,633	2,063	737	0.40	0.27	0.16	0.07	

Notes

- The data shown here reflect totals for those units required to comply with each program in each respective year. This means that the CSAPR-only annual NO_x program units are not included in the NO_x emissions data prior to 2015.
 Fuel type represents primary fuel type; units might combust more than one fuel.
- Totals may not reflect the sum of individual rows due to rounding.

Source: EPA, 2021

Figure 4. CSAPR and ARP Annual NO_X Emissions Trends, 2020

- \bullet The data shown here reflect totals for those units required to comply with each program in each respective year. This means that the CSAPR-only annual NO_x program units are not included in the NO_x emissions data prior to 2015.
- Fuel type represents primary fuel type; units might combust more than one fuel.
- Totals may not reflect the sum of individual rows due to rounding.
- \bullet The emission rate reflects the emissions (pounds) per unit of heat input (mmBtu) for each fuel category. The total annual NO_x emission rate in each column of the table is not cumulative and does not equal the arithmetic mean of the four fuel-specific rates. The total for each year indicates the average rate across all units in the program because each unit influences the annual emission rate in proportion to its heat input, and heat input is unevenly distributed across the fuel categories.

[•] The emission rate reflects the emissions (pounds) per unit of heat input (mmBtu) for each fuel category. The total annual NO_x emission rate in each column of the table is not cumulative and does not equal the arithmetic mean of the four fuel-specific rates. The total for each year indicates the average rate across all units in the program because each unit influences the annual emission rate in proportion to its heat input, and heat input is unevenly distributed across the fuel categories.

Ozone Season Nitrogen Oxides

Highlights

Overall Results

- Ozone season NO_X emissions have declined dramatically under the ARP, NBP, CAIR, and CSAPR programs.¹
- States with the highest emitting sources of ozone season NO_X emissions in 2000 have seen the
 greatest reductions under the CSAPR NO_X ozone season program and CSAPR Update. Most of
 these states are in the Ohio River Valley and are upwind of the areas CSAPR was designed to
 protect. Reductions by sources in these states have resulted in important environmental and
 human health benefits over a large region.
- These reductions have occurred while electricity generation has remained relatively stable since 2000. These trends are discussed further in Chapter 1.
- Other programs such as regional and state NO_X emission control programs also contributed significantly to the ozone season NO_X emission reductions achieved by sources in 2020.

Ozone Season NOx Emissions Trends

- ARP: Units in the ARP program emitted 333 thousand tons of ozone season NO_X emissions in 2020. Sources reduced emissions by 1.9 million tons (85 percent) from the 2000 ozone season and 930 thousand tons (74 percent) from the 2005 ozone season.
- **CSAPR:** In 2020, units covered under the CSAPR NO_X ozone season programs (Group 1 and Group 2) emitted 232 thousand tons, a reduction of 220 thousand (49%) since 2015.
- In 2020, the CSAPR NO_X ozone season program emissions were 31 percent below the regional emission budget of 337,667 tons (24,041 tons for Group 1 and 313,626 tons for Group 2).

Ozone Season NOx State-by-State Emissions

- Between 2005 and 2020, ozone season NO_X emissions from the CSAPR sources fell in every state participating in the CSAPR NO_X ozone season program.
- 21 states had emissions below their CSAPR 2020 allowance budgets, collectively by about 113 thousand tons. Two states (Mississippi and Missouri) exceeded their 2020 state level budget by about 7,400 tons total.

Ozone Season NOx Emission Rates

• In 2020, the average NO_X ozone season emission rate fell to 0.07 lb/mmBtu for the CSAPR ozone season program states and 0.07 lb/mmBtu nationally. This represents a 58 and 66 percent reduction, respectively, from 2005 emission rates, with the majority of reductions coming from coal-fired units.

¹ CSAPR refers to both the CSAPR and the CSAPR Update program since 2017.

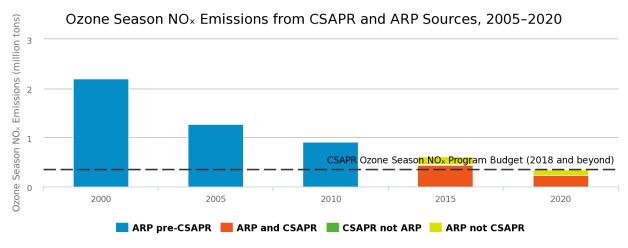
https://www3.epa.gov/airmarkets/progress/reports/emissions reductions.html

 Emissions have decreased dramatically since 2005, due in large part to greater use of control technology, primarily on coal-fired units, and increased generation at natural gas-fired units, which emit less NO_X emissions per unit of electricity than coal-fired units.

Background Information

Nitrogen oxides (NO_X) are made up of a group of highly reactive gases that are emitted from power plants and motor vehicles, as well as other sources. NO_X emissions contribute to the formation of ground-level ozone and fine particle pollution, which cause a variety of adverse human health effects.

The CSAPR NO_X ozone season program was established to reduce interstate transport of air pollution during the ozone season (May 1 – September 30), the warm summer months when ozone formation is highest, and to help eastern U.S. counties attain the 1997 ozone standard. The CSAPR Update NO_X ozone season program was similarly established to help eastern U.S. counties attain the 2008 ozone standard.


More Information

- Power Plant Emission Trends https://www.epa.gov/airmarkets/power-plant-emission-trends
- Power Sector Emissions, Operations, and Environmental Data https://www.epa.gov/airmarkets/data-resources
- Cross-State Air Pollution Rule (CSAPR) https://www.epa.gov/csapr
- Pollution from Nitrogen Oxides (NO_X) https://www.epa.gov/no2-pollution
- Pollution from Ozone https://www.epa.gov/ozone-pollution

https://www3.epa.gov/airmarkets/progress/reports/emissions_reductions.html

Figures

Notes:

- \bullet NO $_{\!\scriptscriptstyle \times}$ values are shown as millions of tons.
- The data shown here reflect totals for those units required to comply with each program in each respective year. This means that the CSAPR-only ozone season NO_x program units are not included in the ozone season NO_x data prior to 2015.
- There are a small number of sources in CSAPR but not in the ARP. Emissions from these sources comprise about 1 percent of total emissions and are not easily visible on the full chart.

 Source: EPA, 2021

Figure 1. Ozone Season NO_X Emissions from CSAPR and ARP Sources, 2005–2020

- NO_x values are shown as millions of tons.
- The data shown here reflect totals for those units required to comply with each program in each respective year. This means that the CSAPR-only ozone season NO_x program units are not included in the ozone season NO_x data prior to 2015.
- There are a small number of sources in CSAPR but not in the ARP. Emissions from these sources comprise about 1 percent of total emissions and are not easily visible on the full chart.

https://www3.epa.gov/airmarkets/progress/reports/emissions_reductions.html

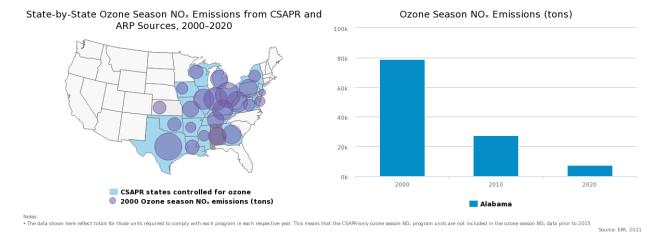
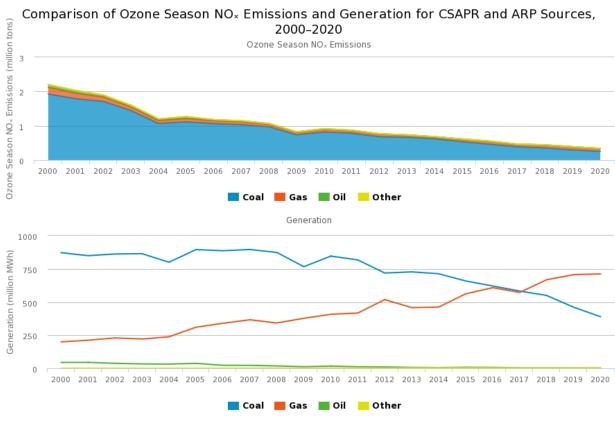



Figure 2. State-by-State Ozone Season NO_X Emissions from CSAPR and ARP Sources, 2000-2020

Notes:

• The data shown here reflect totals for those units required to comply with each program in each respective year. This means that the CSAPR-only ozone season NO_x program units are not included in the ozone season NO_x data prior to 2015.

Notes:

Source: EPA, 2021

Figure 3. Comparison of Ozone Season NO_X Emissions and Generation for CSAPR and ARP Sources, 2000–2020

- The data shown here for the ozone season program reflect totals for those units required to comply with each program in each respective year. This means that the CSAPR NO_x ozone season only program units are not included in the ozone season NO_x emissions data prior to 2015.
- Fuel type represents primary fuel type; units might combust more than one fuel.

[•] The data shown here for the ozone season program reflect totals for those units required to comply with each program in each respective year. This means that the CSAPR NO₈ ozone season only program units are not included in the ozone season NO₈ emissions data prior to 2015.

Fuel type represents primary fuel type; units might combust more than one fuel.

https://www3.epa.gov/airmarkets/progress/reports/emissions reductions.html

CSAPR and ARP Ozone Season NO_x Emissions Trends, 2020

	Ozone Season NO _x Emissions (thousand tons)				Ozone Season NO _x Rate (lb/mmBtu)			
Primary Fuel	2000	2005	2010	2020	2000	2005	2010	2020
Coal	1,926	1,117	821	253	0.43	0.25	0.19	0.13
Gas	196	96	79	85	0.19	0.07	0.04	0.03
oil	78	52	12	1	0.31	0.25	0.13	0.09
Other	1	2	2	2	0.25	0.40	0.11	0.08
Total / Average	2,201	1,267	914	341	0.38	0.20	0.15	0.07

Notes:

Source: EPA, 2021

Figure 4. CSAPR Ozone Season NO_X Emissions Trends, 2020

- The data shown here reflect totals for those units required to comply with each program in each respective year. This means that the CSAPR NO_x ozone season only program units are not included in the ozone season NO_x emissions data prior to 2015.
- Fuel type represents primary fuel type; units might combust more than one fuel.
- Totals may not reflect the sum of individual rows due to rounding.
- The emission rate reflects the emissions (pounds) per unit of heat input (mmBtu) for each fuel category. The total NO_x ozone season emission rate in each column of the table is not cumulative and does not equal the arithmetic mean of the four fuel-specific rates. The total for each year indicates the average rate across all units in the program because each unit influences the annual emission rate in proportion to its heat input, and heat input is unevenly distributed across the fuel categories.

[•] The data shown here reflect totals for those units required to comply with each program in each respective year. This means that the CSAPR NO_x ozone season only program units are not included in the ozone season NO_x emissions data prior to 2015.

[·] Fuel type represents primary fuel type; units might combust more than one fuel.

Totals may not reflect the sum of individual rows due to rounding.

[•] The emission rate reflects the emissions (pounds) per unit of heat input (mmBlu) for each fuel category. The total NO_x ozone season emission rate in each column of the table is not cumulative and does not equal the arithmetic mean of the four fuel-specific rates. The total for each year indicates the average rate across all units in the program because each unit influences the annual emission rate in proportion to its heat input, and heat input is unevenly distributed across the fuel categories.

Mercury

Highlights

Overall Results

- Mercury and other hazardous air pollutant (HAP) emissions have declined significantly since 2010 estimates. These emission reductions were driven by the installation of new pollution controls and enhancements of existing pollution controls that reduce multiple pollutants.
 Emissions have also decreased due to operational changes, such as fuel switching and increased generation at natural gas-fired units that emit very little mercury and other HAPs. These trends are discussed in Chapter 1.
- Other programs such as regional and state SO₂ and NO_X emission control programs also contributed to the mercury and other HAP emission reductions achieved by covered sources in 2020.

Mercury and Hazardous Air Pollutant Emission Trends

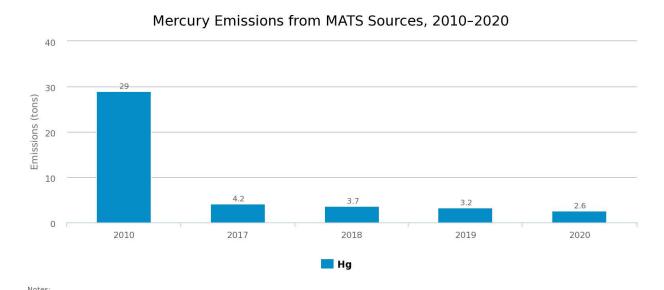
Compared to 2010¹, units covered under MATS in 2020 emitted 26 fewer tons of mercury (91% reduction).

Background Information

Hazardous air pollutants (HAPs) emitted by power plants include mercury, acid gases (e.g., hydrochloric acid, hydrofluoric acid), non-mercury metallic toxics (e.g., arsenic, nickel, and chromium), and organic HAPs (e.g., formaldehyde, dioxin/furan). Exposure to these pollutants at certain concentrations and durations can increase chances of cancer and immune system damage, along with neurological, reproductive, developmental, respiratory, and other health problems.

In 2011, EPA issued MATS, establishing national emission standards for mercury and other hazardous air pollutants for new and existing coal- and oil-fired power plants. The standards were finalized under section 112 of the Clean Air Act. The MATS emission standards were established using data from a 2010 information collection request (ICR) that was sent to selected coal- and oil- fired EGUs.

More Information


- Power Sector Emissions, Operations, and Environmental Data https://www.epa.gov/airmarkets/data-resources
- MATS https://www.epa.gov/mats
- HAPs https://www.epa.gov/haps

¹ Emissions from 2010 are estimated as described in *Memorandum: Emissions Overview: Hazardous Air Pollutants in Support of the Final Mercury and Air Toxics Standard.* EPA-454/R-11-014. November 2011; Docket ID No. EPA-HQ-OAR-2009-0234-19914.

Source: EPA, 2021

Figures

Figure 1. Mercury Emissions from MATS Sources, 2010–2020

• Data do not include emissions from low emitting electric generating units (LEEs). Mercury emissions from 87 LEEs are estimated to be 326 pounds. Emissions

Notes:

from 24 additional LEEs are not available.

• Data do not include emissions from low emitting electric generating units (LEEs).

https://www3.epa.gov/airmarkets/progress/reports/emissions_reductions.html

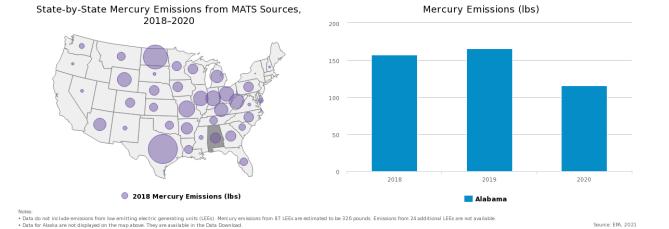


Figure 2. State-by-State Mercury Emissions from MATS Sources, 2020

- Data do not include emissions from low emitting electric generating units (LEEs).
- Data for Alaska are not displayed on the map above. They are available in the Data Download.

Chapter 4: Emission Controls and Monitoring

Many sources opted to install control technologies to meet the Acid Rain Program (ARP) and Cross-State Air Pollution Rule (CSAPR) emission reduction targets. A wide range of controls is available to help reduce emissions. Affected units under the Mercury and Air Toxics Standards (MATS) also have several options for reducing hazardous air pollutants and have some flexibility in how they monitor emissions. These programs hold sources to high standards of accountability for emissions. Accurate and consistent emissions monitoring data is critical to ensure program results. Most emissions from affected sources are measured by continuous emission monitoring systems (CEMS).

Highlights

ARP and CSAPR SO₂ Program Controls and Monitoring

- Units with advanced flue gas desulfurization (FGD) controls (also known as scrubbers) accounted for 79 percent of coal-fired units and 86 percent of coal-fired electricity generation, measured in megawatt hours, or MWh, in 2020.
- In 2020, 21 percent of the CSAPR units (including 100 percent of coal-fired units) monitored SO₂ emissions using CEMS. Ninety-nine percent of SO₂ emissions were measured by CEMS.

CSAPR NOx Annual Program Controls and Monitoring

- Eighty-one percent of fossil fuel-fired generation was produced by units with advanced add-on controls (either selective catalytic reduction [SCR] or selective non-catalytic reduction [SNCR]).
- In 2020, the 258 coal-fired units with advanced add-on controls (either SCRs or SNCRs) generated 78 percent of coal-fired electricity. At oil- and natural gas-fired units, SCR- and SNCR-controlled units produced 84 percent of electricity generation.
- In 2020, 67 percent of the CSAPR units (including 100 percent of coal-fired units) monitored NO_X emissions using CEMS. Ninety-eight percent of NO_X emissions were measured by CEMS.

CSAPR NOx Ozone Season Program Controls and Monitoring

- Seventy-two percent of all the fossil fuel-fired generation was produced by units with advanced add-on controls (either SCRs or SNCRs).
- In 2020, 233 units with advanced add-on controls (either SCR or SNCR) accounted for 72 percent of coal-fired electricity generation. At oil- and natural gas-fired units, SCR- and SNCR-controlled units produced 72 percent of electricity generation.
- In 2020, 73 percent of the CSAPR units (including 100 percent of coal-fired units) monitored ozone season NO_X emissions using CEMS. Ninety-seven percent of ozone season NO_X emissions were measured by CEMS.

https://www3.epa.gov/airmarkets/progress/reports/emission controls and monitoring.html

MATS Controls and Monitoring

- In 2020, forty-five percent of the MATS units reporting mercury emissions and 50 percent of the electricity generation at the MATS reporting units used activated carbon injection (ACI), a mercury-specific pollution control method to reduce mercury emissions and SO₂.
- About 82 percent of units that reported continuous mercury emissions data (or 82 percent of the total electricity generation from units that reported data) reported the use of advanced controls, such as wet scrubbers, dry scrubbers, or ACI, to reduce hazardous air pollutant emissions in 2020. These controls also reduce other pollutants, including SO₂. Some oil-fired units can meet the MATS emission limits through the use of particulate matter (PM) controls such as electrostatic precipitators (ESPs) or fabric filters (FFs).

Background Information

Continuous Emission Monitoring Systems (CEMS)

EPA has developed detailed procedures codified in federal regulations (40 CFR Part 75) to ensure that sources monitor and report emissions with a high degree of precision, reliability, accuracy, and timeliness. Sources are required to use CEMS or other approved methods to record and report pollutant emissions data. Sources conduct stringent quality assurance tests of their monitoring systems to ensure the accuracy of emissions data and to provide assurance to market participants that a unit of emissions measured at one facility is equivalent to a quantity measured at a different facility. EPA conducts comprehensive electronic and field data audits to validate the reported data. While some units with low levels of SO_2 or NO_X emissions are allowed to use other approved monitoring methods, the vast majority of SO_2 and NO_X emissions are measured by CEMS.

Under the MATS measurement regulations (40 CFR part 63), affected units can continuously measure emissions using CEMS for mercury, SO₂, hydrochloric acid (HCl), PM, and hydrofluoric acid (HF), or sorbent traps for mercury (Hg). Some qualifying units with low emissions can conduct periodic stack tests in lieu of continuous monitoring.

SO₂ Emission Controls

Sources in the ARP or the CSAPR SO_2 programs have a number of SO_2 emission control options available. These include switching to low sulfur coal or natural gas, employing various types of FGDs, or, in the case of fluidized bed boilers, injecting limestone into the furnace. FGDs – also known as scrubbers – on coal-fired electricity generating units are the principal means of controlling SO_2 emissions and tend to be present on the highest generating coal-fired units.

NOx Emission Controls

Sources in the ARP or the CSAPR NO_X annual and ozone season programs have a variety of options by which to reduce NO_X emissions, including advanced add-on controls such as SCR or SNCR, and combustion controls, such as low NO_X burners.

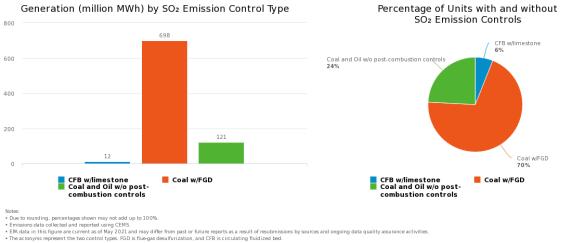
Hazardous Air Pollutant Controls

Sources in MATS have a number of options available to reduce hazardous air pollutants (HAPs), including mercury, PM (a surrogate for toxic non-mercury metals), HCl, HF, and other acid gases. Sources can

2020 Power Sector Programs - Progress Report

https://www3.epa.gov/airmarkets/progress/reports/emission controls and monitoring.html

improve operation of existing controls, add pollution controls, and switch fuels (including coal blending). Specific pollution control devices that reduce mercury and HCl include wet FGDs (scrubbers), activated carbon injection (ACl), dry sorbent injection (DSI), and fabric filters.


More Information

- Power Plant Emission Trends https://www.epa.gov/airmarkets/power-plant-emission-trends
- Power Sector Emissions, Operations, and Environmental Data https://www.epa.gov/airmarkets/data-resources
- Emissions Monitoring https://www.epa.gov/airmarkets/emissions-monitoring-and-reporting
- Plain English guide to 40 CFR Part 75 https://www.epa.gov/airmarkets/plain-english-guide-part-75-rule
- Continuous Emission Monitoring Systems (CEMS) https://www.epa.gov/emc/emc-continuous-emission-monitoring-systems

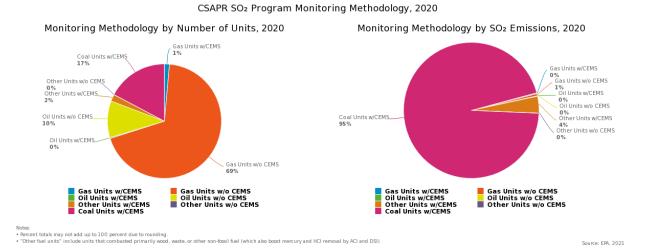
Figures

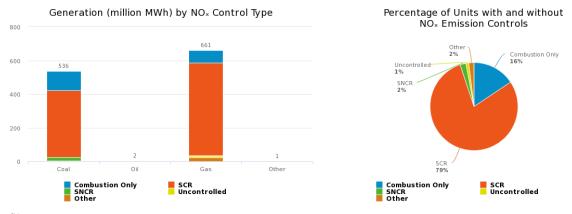
Source: EPA, 2021

Figure 1. SO₂ Emissions Controls in the ARP and CSAPR SO₂ Program, 2020

- Due to rounding, percentages shown may not add up to 100%.
- The acronyms represent the two control types. FGD is flue-gas desulfurization, and CFB is circulating fluidized bed.

https://www3.epa.gov/airmarkets/progress/reports/emission_controls_and_monitoring.html




Figure 2. CSAPR SO₂ Program Monitoring Methodology, 2020

- Percent totals may not add up to 100 percent due to rounding.
- "Other fuel units" include units that combusted primarily wood, waste, or other non-fossil fuel (which also boost mercury and HCl removal by ACl and DSI).

https://www3.epa.gov/airmarkets/progress/reports/emission controls and monitoring.html

- Notes: Due to rounding, percentages shown may not add up to 100%.

 "SCR" refers to selective catalytic reduction: "SNCR" fuel refers to sel as waste, wood, petroleum coke, or tire-derived fuel.

 Emissions data collected and reported using CEMS.
 ER data in this figure are current as of May 2021.

Source: EPA, 2021

Figure 3. NO_X Emissions Controls in CSAPR NO_X Annual Program, 2020

- Due to rounding, percentages shown may not add up to 100%.
- "SCR" refers to selective catalytic reduction; "SNCR" fuel refers to selective non-catalytic reduction; "Combustion Only" refers to low NO_x burners, combustion modification/fuel reburning, and/or overfire air; and "Other" fuel refers to units that burn fuels such as waste, wood, petroleum coke, or tire-derived fuel.
- "Other fuel units" include units that combusted primarily wood, waste, or other non-fossil fuel (which also boost mercury and HCl removal by ACI and DSI).

https://www3.epa.gov/airmarkets/progress/reports/emission_controls_and_monitoring.html

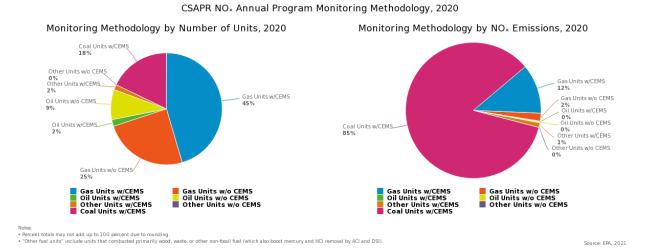
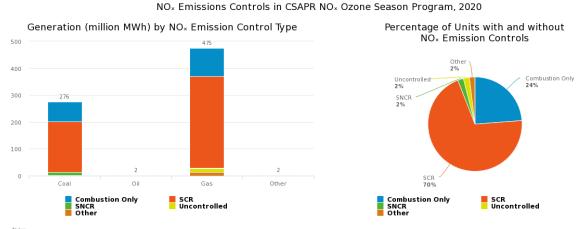



Figure 4. CSAPR NO_X Annual Program Monitoring Methodology, 2020

- Percent totals may not add up to 100 percent due to rounding.
- "Other fuel units" include units that combusted primarily wood, waste, or other non-fossil fuel (which also boost mercury and HCI removal by ACI and DSI).

Notes:

• Due to munding percentages shown may not add up to 100%.

- * "SCR" refers to selective catalytic reduction; "SNCR" feel refers to selective non-catalytic reduction; "Combustion Only" refers to low NO., burners, combustion modification/fuel reburning, or overfire air; and "Other" fuel refers to units that burn fuels sur as wards assets and extension of performance of the per
- Emirrions data collected and reported using CEMS
- EPA data in this figure are current as of May 2021 and may differ from past or future reports as a result of resubmissions by sources and ongoing data quality assurance activities.
- * There is a small amount of generation from funits with "Other" controls and from "Uncontrolled" units. The data for these units is not easily visible on the full chart. To more clearly see the generation data for these units, especially for Uncontrolled and Other fulled types, use the interactive features of the figure. Cick on the boxes in the legend to Unrun off the blue, dark roange, and green categories of control types (falseled" Combustion Only, "SCR," and Lord, "SCR,") and Lord Tolk (Figure 1) and the second of the seco

ss of control types (labeled "Uncontrolled" "Other").

Figure 5. NO_X Emissions Controls in the CSAPR NO_X Ozone Season Program, 2020

- Due to rounding, percentages shown may not add up to 100%.
- "SCR" refers to selective catalytic reduction; "SNCR" fuel refers to selective non-catalytic reduction; "Combustion Only" refers to low NO_x burners, combustion modification/fuel reburning, and/or overfire air; and "Other" fuel refers to units that burn fuels such as waste, wood, petroleum coke, and tire-derived fuel.
- "Other fuel units" include units that combusted primarily wood, waste, or other non-fossil fuel (which also boost mercury and HCl removal by ACl and DSI). There is a small amount of generation from units with "Other" controls and from "Uncontrolled" units. The data for these units is not easily visible on the full chart. To more clearly see the generation data for these units, especially for Uncontrolled and Other fuel types, use the interactive features of the figure: click on the boxes in the legend to turn off the blue, dark orange, and green categories of control types (labeled "Combustion Only," "SCR," and "SNCR") and turn on the yellow and light orange categories of control types (labeled "Uncontrolled" "Other").

https://www3.epa.gov/airmarkets/progress/reports/emission_controls_and_monitoring.html

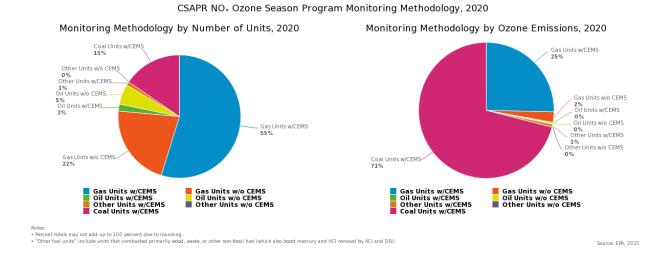


Figure 6. CSAPR NO_X Ozone Season Program Monitoring Methodology, 2020

- Percent totals may not add up to 100 percent due to rounding.
- "Other fuel units" include units that combusted primarily wood, waste, or other non-fossil fuel (which also boost mercury and HCl removal by ACl and DSI).

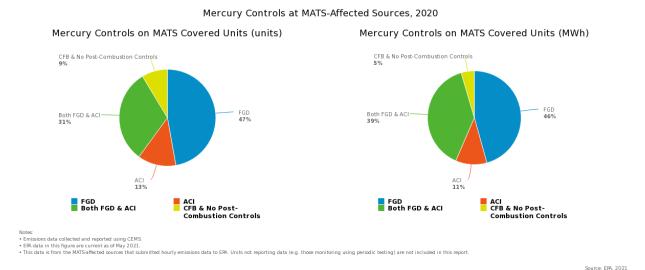


Figure 7. Mercury Controls at MATS-Affected Sources, 2020

- Percent totals may not add up to 100 percent due to rounding.
- This data is from the MATS-affected sources that submitted hourly emissions data to EPA. Units not reporting data (e.g. those monitoring using periodic testing) are not included in this report.

Mercury Compliance and Monitoring Methods used by Units Reporting Hourly Data under MATS, 2020

Reporting	Hourly Data	Compliance Method (# of Units)		Monitoring Method		
Number of reporting units	Number of reporting facilities	Electrical Output	Heat Input	Sorbent Trap	CEMS	CEMS and Sorbent Trap
463	211	142	321	204	212	47

- Emissions data collected and reported using CEMS.
- EPA data in this figure are current as of May 2021.
 This data is from the MATS-affected sources that submitted hourly emissions data to EPA and does not show complete data from all the MATS-affected sources because many sources received compliance extensions or chose to demonstrate compliance through methods other than continuously monitored emissions

Figure 8. Mercury Compliance and Monitoring Methods used by Units Reporting Hourly Data under MATS, 2020

Notes:

• This data is from the MATS-affected sources that submitted hourly emissions data to EPA and does not show complete data from all the MATS-affected sources because many sources received compliance extensions or chose to demonstrate compliance through methods other than continuously monitored emissions.

Chapter 5: Program Compliance

This section shows how the Acid Rain Program (ARP) and Cross-State Air Pollution Rule (CSAPR) allowances were used for compliance under the allowance trading programs in 2020. In contrast to the ARP and CSAPR, MATS is issued under section 112 of the Clean Air Act and is not an allowance trading program.

Highlights

ARP SO₂ Program

- The reported 2020 SO₂ emissions by the ARP sources totaled 778,120 tons.
- About 66 million SO₂ allowances were available for compliance (9 million vintage 2020 and nearly 57 million banked from prior years).
- EPA deducted over 775,000 allowances for the ARP compliance. After reconciliation, just about 65 million ARP SO₂ allowances were banked and carried forward to the 2021 ARP compliance year.
- All ARP SO₂ facilities were in compliance in 2020 (holding sufficient allowances to cover their SO₂ emissions).

CSAPR SO₂ Group 1 Program

- The reported 2020 SO₂ emissions by the CSAPR Group 1 sources totaled 432,224 tons.
- Over 6.3 million SO₂ Group 1 allowances were available for compliance.
- EPA deducted over 432,000 allowances for the CSAPR SO₂ Group 1 compliance. After reconciliation, about 6 million CSAPR SO₂ Group 1 allowances were banked and carried forward to the 2021 compliance year.
- All CSAPR SO₂ Group 1 facilities were in compliance in 2020 (holding sufficient allowances to cover their SO₂ emissions).

CSAPR SO₂ Group 2 Program

- The reported 2020 SO₂ emissions by the CSAPR Group 2 sources totaled 64,688 tons.
- Over 3 million SO₂ Group 2 allowances were available for compliance.
- EPA deducted almost 65,000 allowances for the CSAPR SO₂ Group 2 compliance. After reconciliation, about 3 million CSAPR SO₂ Group 2 allowances were banked and carried forward to the 2021 compliance year.
- All CSAPR SO₂ Group 2 facilities were in compliance in 2020 (holding sufficient allowances to cover their SO₂ emissions).

CSAPR NOx Annual Program

- The reported 2020 annual NO_X emissions by the CSAPR sources totaled 405,334 tons.
- Over 3.2 million NO_X Annual allowances were available for compliance.

- EPA deducted over 405,000 allowances for the CSAPR NO_X Annual Program compliance. After reconciliation, about 3 million CSAPR NO_X Annual Program allowances were banked and carried forward to the 2021 compliance year.
- All CSAPR NO_x Annual Program facilities were in compliance in 2020 (holding sufficient allowances to cover their NO_x emissions).

CSAPR NOx Ozone Season Group 1 Program

- The reported 2020 ozone season NO_x emissions by the CSAPR sources totaled 5,164 tons.
- Over 93,000 NO_X Ozone Season Group 1 allowances were available for compliance.
- EPA deducted over 5,100 allowances for the CSAPR NO_X Ozone Season Group 1 compliance. After reconciliation, almost 88,000 CSAPR NO_X Ozone Season Group 1 allowances were banked.
- All CSAPR NO_X Ozone Season Group 1 facilities were in compliance (holding sufficient allowances to cover their NO_X emissions).

CSAPR NOx Ozone Season Group 2 Program

- The reported 2020 ozone season NO_x emissions by the CSAPR sources totaled 227,255 tons.
- Over 492,000 NO_X Ozone Season Group 2 allowances were available for compliance.
- EPA deducted over 227,000 allowances for the CSAPR NO_X Ozone Season Group 2 compliance. After reconciliation, over 265,000 CSAPR NO_X Ozone Season Group 2 allowances were banked.
- All CSAPR NO_X Ozone Season Group 2 facilities were in compliance (holding sufficient allowances to cover their NO_X emissions).
- In 2020, Mississippi and Missouri units covered by the CSAPR Ozone Season NO_x Group 2
 Program reported emissions exceeding the respective states' assurance levels, triggering the
 assurance provisions. Emissions in Mississippi and Missouri exceeded each state's assurance
 levels by 260 and 2,448 tons, respectively, resulting in the surrender of 5,416 additional
 allowances.¹

Background Information

The year 2020 was the sixth year of compliance for the CSAPR SO_2 (Group 1 and Group 2), NO_X Annual and NO_X Ozone Season Group 1 programs, while it was the fourth year of compliance for both the CSAPR NO_X Ozone Season Group 2 program and CSAPR Update. Each program has its own distinct set of allowances, which cannot be used for compliance with the other programs (e.g., CSAPR SO_2 Group 1 allowances cannot be used to comply with the CSAPR SO_2 Group 2 Program). Each CSAPR trading program contains "assurance provisions" to guarantee that each covered state achieves the required emissions reductions. If a state's covered units exceed the state's assurance level under the specific trading program, then the state must surrender two allowances for each ton of emissions exceeding the assurance level.

2020 Power Sector Programs - Progress Report

https://www3.epa.gov/airmarkets/progress/reports/program_compliance.html

The compliance summary emissions number cited in "Highlights" may differ slightly from the sums of emissions used for reconciliation purposes shown in the "Allowance Reconciliation Summary" figures because of variation in rounding conventions, changes due to resubmissions by sources, and compliance issues at certain units. Therefore, the allowance totals deducted for actual emissions in those figures differ slightly from the number of emissions shown elsewhere in this report.

More Information

- Allowance Markets https://www.epa.gov/airmarkets/allowance-markets
- Air Markets Business Center https://www.epa.gov/airmarkets/business-center
- Air Markets Program Data (AMPD) https://ampd.epa.gov/ampd/
- Emissions Trading https://www.epa.gov/emissions-trading-resources

Figures

Acid Rain Program SO₂ Program Allowance Reconciliation Summary, 2020						
		Held by Affected Facility Accounts	40,297,580			
Total Allowance Held (1995 - 2020 Vintage)	65,822,753	Held by Other Accounts (General and Non-Affected Facility Accounts)	25,525,173			
Allowances Deducted for Acid Rain Compliance*	775,291					
Penalty Allowance Deductions	0					
		Held by Affected Facility Accounts	39,522,289			
Banked Allowances	65,047,462	Held by Other Accounts (General and Non-Affected Facility Accounts)	25,525,173			
* Includes allowances deducted from opt-in for re	duced utilization.					
Acid Rain Program Compliance Results						
Reported Emissions (tons)			778,120			
Compliance issues, rounding, and report resubmission	adjustments (tons)		-2,829			
Emissions not covered by allowances (tons)			0			
Total allowances deducted for emissions			775,291			

Source: EPA, 2021

Figure 1. Acid Rain Program SO₂ Program Allowance Reconciliation Summary, 2020

- Compliance emissions data may vary from other report sections as a result of variation in rounding conventions, changes due to resubmission by sources, or allowance compliance issues at certain units.
- Reconciliation and compliance data are current as of May 2021 and subsequent allowance deduction adjustments and penalties are not reflected.

[•] Compliance emissions data may vary from other report sections as a result of variation in rounding conventions, changes due to resubmissions by sources, or allowance compliance issues at certain units.

• Reconciliation and compliance data are current as of May 2021 and subsequent allowance deduction adjustments and penalties are not reflected.

Cross-State Air Pollution Rule SO₂ Group 1 Program Allowance Reconciliation Summary, 2020

	Held by Affected Facility Account		4,989,9
Total Allowance Held (2015 - 2020 Vintage)	6,357,857	Held by Other Accounts (General, State Holding and Non-Affected Facility Accounts)	1,367,91
Allowances Deducted for Cross-State Air Pollution Rule SO ₂ Group 1 Program	432,185		
Penalty Allowance Deductions	0		
		Held by Affected Facility Accounts	4,557,76
Banked Allowances	5,925,672	Held by Other Accounts (General, State Holding and Non-Affected Facility Accounts)	1,367,91
CSAPR SO ₂ Group 1 Program Compliance Res	uits		
Reported Emissions (tons)			432,2
Compliance issues, rounding, and report resubmission adju	ustments (tons)		-3
Emissions not covered by allowances (tons)			

Notes:

• Compliance emissions data may vary from other report sections as a result of variation in rounding conventions, changes due to resubmissions by sources, or allowance compliance issues at certain units.

• Reconciliation and compliance data are current as of May 2021 and subsequent allowance deduction adjustments and penalties are not reflected.

Heconciliation and compliance data are current as of May 2021 and subsequent allowance deduction adjustments and penalties are not reflected

Source: EPA, 2021

Figure 2. Cross-State Air Pollution Rule SO₂ Group 1 Program Allowance Reconciliation Summary, 2020

- Compliance emissions data may vary from other report sections as a result of variation in rounding conventions, changes due to resubmission by sources, or allowance compliance issues at certain units.
- Reconciliation and compliance data are current as of May 2021 and subsequent allowance deduction adjustments and penalties are not reflected.

Cross-State Air Pollution Rule SO₂ Group 2 Program Allowance Reconciliation Summary, 2020

	Held by Affected Facility Account	Held by Affected Facility Accounts	2,366,66
Total Allowance Held (2015 - 2020 Vintage)	3,023,540	Held by Other Accounts (General, State Holding and Non-Affected Facility Accounts)	656,87
Allowances Deducted for Cross-State Air Pollution Rule SO ₂ Group 2 Program	64,685		
Penalty Allowance Deductions	0		
		Held by Affected Facility Accounts	2,301,97
Banked Allowances	2,958,855	Held by Other Accounts (General, State Holding and Non-Affected Facility Accounts)	656,87
CSAPR SO ₂ Group 2 Program Compliance Res	uits		
Reported Emissions (tons)			64,68
Compliance issues, rounding, and report resubmission adju	ustments (tons)		
Emissions not covered by allowances (tons)			

• Compliance emissions data may vary from other report sections as a result of variation in rounding conventions, changes due to resubmissions by sources, or allowance compliance issues at certain units.

• Reconciliation and compliance data are current as of May 2021 and subsequent allowance deduction adjustments and penalties are not reflected.

Source: EPA, 2021

Figure 3. Cross-State Air Pollution Rule SO₂ Group 2 Program Allowance Reconciliation Summary, 2020

- Compliance emissions data may vary from other report sections as a result of variation in rounding conventions, changes due to resubmission by sources, or allowance compliance issues at certain units.
- Reconciliation and compliance data are current as of May 2021 and subsequent allowance deduction adjustments and penalties are not reflected.

Cross-State Air Pollution Rule NO, Annual Program Allowance Reconciliation Summary, 2020

	Held by Affected Facility Account		2,624,608
Total Allowance Held (2015 - 2020 Vintage)	3,294,773	Held by Other Accounts (General, State Holding and Non-Affected Facility Accounts)	670,165
Allowances Deducted for Cross-State Air Pollution Rule NO _x Annual Program	405,415		
Penalty Allowance Deductions	0		
		Held by Affected Facility Accounts	2,219,193
Banked Allowances	2,889,358	Held by Other Accounts (General, State Holding and Non-Affected Facility Accounts)	670,16
CSAPR NO _x Annual Program Compliance Res	ults		
Reported Emissions (tons)			405,334
Compliance issues, rounding, and report resubmission adju	ustments (tons)		8
Emissions not covered by allowances (tons)			
Total allowances deducted for emissions			405,41

Notes:

• Compliance emissions data may vary from other report sections as a result of variation in rounding conventions, changes due to resubmissions by sources, or allowance compliance issues at certain units.

• Reconciliation and compliance data are current as of May 2021 and subsequent allowance deduction adjustments and penalties are not reflected.

Source: EPA, 2021

Figure 4. Cross-State Air Pollution Rule NO_X Annual Program Allowance Reconciliation Summary, 2020

- Compliance emissions data may vary from other report sections as a result of variation in rounding conventions, changes due to resubmission by sources, or allowance compliance issues at certain units.
- Reconciliation and compliance data are current as of May 2021 and subsequent allowance deduction adjustments and penalties are not reflected.

Cross-State Air Pollution Rule NO, Ozone Season Program Group 1 Allowance Reconciliation Summary, 2020

	93,155	Held by Affected Facility Accounts	40,21
Total Allowance Held (2015 - 2020 Vintage)		Held by Other Accounts (General, State Holding and Non-Affected Facility Accounts)	52,94
Allowances Deducted for Cross-State Air Pollution Rule NO _x Ozone Season Program Group 1	5,172		
Penalty Allowance Deductions	0		
		Held by Affected Facility Accounts	35,0
Banked Allowances	87,983	Held by Other Accounts (General, State Holding and Non-Affected Facility Accounts)	52,9
CSAPR NO_{x} Ozone Season Program Group 1 Co	ompliance R	esults	
Reported Emissions (tons)			5,1
Compliance issues, rounding, and report resubmission adjus	tments (tons)		
Emissions not covered by allowances (tons)			
Total allowances deducted for emissions			5,1

Notes:

• Compliance emissions data may vary from other report sections as a result of variation in rounding conventions, changes due to resubmissions by sources, or allowance compliance issues at certain units.

• Reconciliation and compliance data are current as of May 2021 and subsequent allowance deduction adjustments and penalties are not reflected.

Heconciliation and compliance data are current as of May 2021 and subsequent allowance deduction adjustments and penalties are not reflected

Source: EPA, 2021

Figure 5. Cross-State Air Pollution Rule NO_X Ozone Season Program Group 1 Allowance Reconciliation Summary, 2020

- Compliance emissions data may vary from other report sections as a result of variation in rounding conventions, changes due to resubmission by sources, or allowance compliance issues at certain units.
- Reconciliation and compliance data are current as of May 2021 and subsequent allowance deduction adjustments and penalties are not reflected.

Cross-State Air Pollution Rule NO, Ozone Season Program Group 2 Allowance Reconciliation Summary, 2020

		Held by Affected Facility Accounts	428,72
Total Allowance Held (2017 - 2020 Vintage)	492,574	Held by Other Accounts (General, State Holding and Non-Affected Facility Accounts)	63,84
Allowances Deducted for Cross-State Air Pollution Rule NO _x Ozone Season Program Group 2	227,479		
Penalty Allowance Deductions	0		
		Held by Affected Facility Accounts	201,24
Banked Allowances	265,095	Held by Other Accounts (General, State Holding and Non-Affected Facility Accounts)	63,84
$\mathbf{CSAPR} \ \mathbf{NO_x} \ \mathbf{Ozone} \ \mathbf{Season} \ \mathbf{Program} \ \mathbf{Group} \ 2 \ \mathbf{C}$	ompliance R	esults	
Reported Emissions (tons)			227,2
Compliance issues, rounding, and report resubmission adjusted	stments (tons)		22
Emissions not covered by allowances (tons)			
Total allowances deducted for emissions			227.4

• Compliance emissions data may vary from other report sections as a result of variation in rounding conventions, changes due to resubmissions by sources, or allowance compliance issues at certain units.

• Reconciliation and compliance data are current as of May 2021 and subsequent allowance deduction adjustments and penalties are not reflected.

Source: EPA, 2021

Figure 6. Cross-State Air Pollution Rule NO_X Ozone Season Program Group 2 Allowance Reconciliation Summary, 2020

- Compliance emissions data may vary from other report sections as a result of variation in rounding conventions, changes due to resubmission by sources, or allowance compliance issues at certain units.
- Reconciliation and compliance data are current as of May 2021 and subsequent allowance deduction adjustments and penalties are not reflected.

Chapter 6: Market Activity

Cap and trade programs allow participants to independently determine their best compliance strategy. Participants that reduce their emissions below the number of allowances they hold may trade allowances, sell them, or bank them for use in future years. While the ARP and CSAPR are cap and trade programs, MATS is not a market-based program; therefore, this section does not discuss MATS.

Highlights

Transaction Types and Volumes

- In 2020, more than 1.3 million allowances were traded across all five of the CSAPR trading programs.
- Thirty-nine percent of the transactions within the CSAPR programs were between distinct organizations.
- In 2020, over 1.8 million ARP allowances were traded.
- Twenty percent of the transactions within the ARP program were between distinct organizations.

2020 Allowance Prices1

- The ARP SO₂ allowance prices averaged less than \$1 per ton in 2020.
- The CSAPR SO₂ Group 1 allowance prices started 2020 at \$2.31 per ton and ended 2020 at \$1.56 per ton.
- The CSAPR SO₂ Group 2 allowance prices started 2020 at \$2.56 per ton and ended 2020 at \$2.31 per ton.
- The CSAPR NO $_{\rm X}$ annual program allowances started 2020 at \$2.75 per ton and ended 2020 at \$2 per ton.
- The CSAPR NO_X ozone season program allowances started 2020 at \$93.75 per ton and ended 2020 at \$200 per ton.²

Background Information

Transaction Types and Volumes

Allowance transfer activity includes two types of transfers: EPA transfers to accounts and private transactions. EPA transfers to accounts include the initial allocation of allowances by states or EPA, as well as transfers into accounts related to set-asides. This category does not include transfers due to

-

¹ Allowance prices as reported by S&P Global Market Intelligence, 2021.

² These prices reflect the CSAPR Update ozone season NO_X allowances. In October 2016, EPA published an update to the CSAPR ozone season allowance trading programs. On October 26th, 2016, most CSAPR ozone season NO_X allowances were converted to the CSAPR Update ozone season NO_X allowances. On April 30th, 2021, EPA published an update to the CSAPR Update ozone season allowance trading program, the Revised CSAPR Update Rule.

2020 Power Sector Programs – Progress Report

https://www3.epa.gov/airmarkets/progress/reports/market activity.html

allowance retirements. Private transactions include all transfers initiated by authorized account representatives for any compliance or general account purposes.

To better understand the trends in market performance and transfer history, EPA classifies private transfers of allowance transactions into two categories:

- Transfers between separate and unrelated parties (distinct organizations), which may include companies with contractual relationships (such as power purchase agreements) but excludes parent-subsidiary types of relationships.
- Transfers within a company or between related entities (e.g., holding company transfers between a facility compliance account and any account held by a company with an ownership interest in the facility).

While all transactions are important to proper market operation, EPA follows trends in transactions between distinct economic entities with particular interest. These transactions represent an actual exchange of assets between unaffiliated participants, which reflect companies making the most of the cost-minimizing flexibility of emission trading programs. Companies accomplish this by finding the cheapest emission reductions not only among their own generating assets, but across the entire marketplace of power generators.

Allowance Markets

The 2020 emissions were below emission budgets for the Acid Rain Program (ARP) and for all five Cross-State Air Pollution Rule (CSAPR) programs. As a result, the CSAPR allowance prices were well below the marginal cost for reductions projected at the time of the final rule, and are subject, in part, to downward pressure from the <u>available banks of allowances</u>.

More Information

- Allowance Markets https://www.epa.gov/airmarkets/allowance-markets
- Air Markets Business Center https://www.epa.gov/airmarkets/business-center
- Air Markets Program Data (AMPD) https://ampd.epa.gov/ampd/
- Emissions Trading https://www.epa.gov/emissions-trading-resources

https://www3.epa.gov/airmarkets/progress/reports/market_activity.html

Figures

2020 Allowance Transfers under CSAPR and ARP

	Transactions Conducted	Allowances Transferred	Share of Program's Allowances Transferred		
	Transactions Conducted	Attowances transferred	Related (%)	Distinct (%)	
ARP SO ₂	544	1,837,918	93%	7%	
CSAPR SO ₂ Group 1	204	249,754	40%	60%	
CSAPR SO₂ Group 2	57	634,495	99%	1%	
CSAPR NO _x Annual	400	326,533	80%	20%	
CSAPR NO _x Ozone Season Group 1	26	17,032	98%	2%	
CSAPR NO _x Ozone Season Group 2	802	122,871	52%	48%	

Source: EPA, 2021 Last updated: 05/2021

Figure 1. 2020 Allowance Transfers under CSAPR and ARP

- The breakout between distinct and related organizations is not an exact value as relationships are often difficult to categorize in a simple bifurcated manner. EPA's analysis is conservative and the "Distinct Organizations" percentage is likely higher.
- Percentages may not add up to 100% due to rounding.

Notes:

• The breakout between distinct and related organizations is not an exact value as relationships are often difficult to categorize in a simple bifurcated manner. EPA's analysis is conservative and the "Distinct Organizations" percentage is likely

Percentages may not add up to 100% due to rounding.

https://www3.epa.gov/airmarkets/progress/reports/market activity.html

- Prompt vintage is the vintage for the "current" compliance year
- Prompt vintage is the vintage for the "current" compliance year.

 *The CSAPR Update Rule, published October 2016, created two geographically distinct state trading groups: Group 1, comprised only of Georgia, and Group 2, comprised of 22 states. The allowance price shown as the CSAPR Update NO. Seasonal represents the allowance price for Group 2.

 *There is a small value for the allowance price for "CSAPR SO2 Group 1", "CSAPR SO2 Group 2", and "CSAPR NO. Annual". The data for these items is not easily visible on the full chart. To more clearly see the allowance price for these items, use the interactive features of the figure: click on the lines in the legend to turn off the yellow category (labeled "CSAPR Update NO. Seasonal") and keep all of the other legend items on.

Source: S&P Global Market Intelligence, 2021

Figure 2. Allowance Spot Price (Prompt Vintage), January-December 2020

- Prompt vintage is the vintage for the "current" compliance year.
- The CSAPR Update Rule, published October 2016, created two geographically distinct state trading groups: Group 1, comprised only of Georgia, and Group 2, comprised of 22 states. The allowance price shown as the CSAPR Update NO_x Seasonal represents the allowance price for Group 2.
- There is a small value for the allowance price for "CSAPR SO2 Group 1", "CSAPR SO2 Group 2", and "CSAPR NOx Annual". The data for these items is not easily visible on the full chart. To more clearly see the allowance price for these items, use the interactive features of the figure: click on the lines in the legend to turn off the yellow category (labeled "CSAPR Update NOx Seasonal") and keep all of the other legend items on.

Chapter 7: Air Quality

The Acid Rain Program (ARP), NO_X Budget Trading Program (NBP), Clean Air Interstate Rule (CAIR), Cross-State Air Pollution Rule (CSAPR), and CSAPR Update were designed to reduce sulfur dioxide (SO_2) and nitrogen oxides (NO_X) emissions from power plants. These pollutants contribute to the formation of ground-level ozone and particulate matter, which cause a range of serious health effects and degrade visibility in many American cities and scenic areas, including National Parks. The dramatic emission reductions achieved under these programs have improved air quality and delivered significant human health and ecological benefits across the United States.

To evaluate the impact of emission reductions on air quality, scientists and policymakers use data collected from long-term national air quality monitoring networks. These networks provide information on a variety of indicators useful for tracking and understanding temporal trends in regional air quality.

Sulfur Dioxide and Nitrogen Oxides Trends

Highlights

National SO₂ Air Quality

- Based on EPA's air trends data, the national average of SO₂ annual mean ambient concentrations decreased from 12.0 parts per billion (ppb) to 0.7 ppb (94 percent) between 1980 and 2020.
- The two largest single-year reductions (over 20 percent) occurred in the first year of the ARP, between 1994 and 1995, and between 2008 and 2009, just prior to the start of the CAIR SO₂ program (CAIR was replaced by CSAPR beginning in 2015).

Regional Changes in Air Quality

- Regional average ambient SO₂ concentrations declined in the eastern United States by 95 percent from the 1989–1991 to the 2018–2020 observation periods.
- Average ambient particulate sulfate concentrations have decreased by 49 to 84 percent in observed regions from 1989–1991 to 2018–2020.
- Average annual ambient total nitrate concentrations declined 58 percent from 1989–1991 to 2018–2020 in the eastern United States, with the most significant decreases occurring after 2002, coinciding with the implementation of the NO_X Budget Trading Program, followed by CAIR, CSAPR, and CSAPR Update.

Background Information

Sulfur Dioxide

Sulfur oxides are a group of highly reactive gases that can travel long distances in the upper atmosphere and predominantly exist as sulfur dioxide (SO₂). The primary source of SO₂ emissions is fossil fuel combustion at power plants. Smaller sources of SO₂ emissions include industrial processes, such as

https://www3.epa.gov/airmarkets/progress/reports/air quality.html

extracting metal from ore, as well as the burning of high sulfur-containing fuels by locomotives, large ships, and non-road equipment. SO_2 emissions contribute to the formation of fine particle pollution (PM_{2.5}) and are linked with adverse effects on the respiratory system.¹ In addition, particulate sulfate degrades visibility and, because sulfur compounds are typically acidic, can harm ecosystems when deposited.

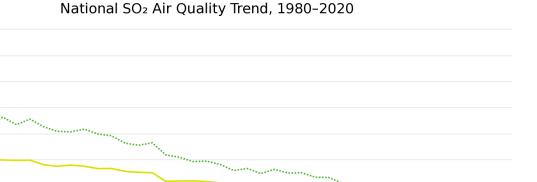
Nitrogen Oxides

Nitrogen oxides are a group of highly reactive gases including nitric oxide (NO) and nitrogen dioxide (NO₂). In addition to contributing to the formation of ground-level ozone and PM_{2.5}, NO_X emissions are linked with adverse effects on the respiratory system.^{2,3} NO_X also reacts in the atmosphere to form nitric acid (HNO₃) and particulate ammonium nitrate (NH₄NO₃). HNO₃ and nitrate (NO₃), reported as total nitrate, can also lead to adverse health effects and, when deposited, cause damage to sensitive ecosystems.

Although the ARP and CSAPR programs have significantly reduced NO_X emissions (primarily from power plants) and improved air quality, emissions from other sources (such as motor vehicles and agriculture) contribute to total nitrate concentrations in many areas. Ambient nitrate levels can also be affected by emissions transported via air currents over wide regions.

More Information

- Clean Air Status and Trends Network (CASTNET) https://www.epa.gov/castnet
- Air Quality System (AQS) https://www.epa.gov/aqs
- National Ambient Air Quality Standards (NAAQS) https://www.epa.gov/criteria-air-pollutants
- Sulfur Dioxide (SO₂) Pollution https://www.epa.gov/so2-pollution
- Nitrogen Oxides (NO_X) Pollution https://www.epa.gov/no2-pollution
- EPA's Clean Air Market Programs https://www.epa.gov/airmarkets/programs
- EPA's 2020 National Air Quality Trends Report https://www.epa.gov/air-trends


¹ Katsouyanni, K., Schwartz, J., Spix, C., Touloumi, G., Zmirou, D., Zanobetti, A., Wojtyniak, B., Vonk, J.M., Tobias, A., Pönkä, A., Medina, S., Bachárová, L., & Anderson, H.R. (1996). Short term effects of air pollution on health: a European approach using epidemiologic time series data: the APHEA protocol. J. of Epidemiol Community Health, 50: S12–S18.

² Peel, J.L., Tolbert, P.E., Klein, M., Metzger, K.B., Flanders, W.D., Todd, K., Mulholland, J.A., Ryan, P.B., & Frumkin, H. (2005). Ambient air pollution and respiratory emergency department visits. *Epidemiology*, 16: 164–174.

³ Hong, C., Goldberg, M.S., Burnett, R.T., Jerrett, M., Wheeler, A.J., & Villeneuve, P.J. (2013) Long-term exposure to traffic-related air pollution and cardiovascular mortality. *Epidemiology*, 24: 35–43.

Figures

2005

— Average Concentration \cdots 90% of sites have concentrations below this line \cdots 10% of sites have concentrations below this line

2000

1995

Notes:

0

SO₂ Annual Mean Ambient Concentration

1985

1990

Source: EPA, 2021

2020

2015

Figure 1. National SO₂ Air Quality Trend, 1980-2020

Notes:

• Data based on state, local, and EPA monitoring sites which are located primarily in urban areas.

[•] Data based on state, local, and EPA monitoring sites which are located primarily in urban areas.

Regional Changes in Air Quality

Measurement	Region	Annual Average, 2000– 2002	Annual Average, 2018– 2020	Percent Change	Number of Sites
	Mid-Atlantic	4.8	1	-79	13
	Midwest	4.3	1.1	-74	16
	North Central	1.3	0.6	-54	2
Ambient Particulate Sulfate	Northeast	2.6	0.6	-77	6
Concentration (μg/m³)	Pacific	0.8	0.5	-37	5
	Rocky Mountain	0.7	0.4	-45	10
	South Central	2.9	1.2	-59	2
	Southeast	4.2	1	-76	12
	Mid-Atlantic	8	1	-88	13
	Midwest	6.8	0.6	-91	16
	North Central	1	0.4	-60	2
Ambient Sulfur Dioxide	Northeast	3.4	0.3	-91	6
Concentration (μg/m³)	Pacific	0.4	0.3	-32	5
	Rocky Mountain	0.5	0.2	-60	10
	South Central	1.1	0.4	-64	2
	Southeast	3.4	0.3	-91	12
	Mid-Atlantic	3	1.3	-57	13
	Midwest	4.1	1.9	-54	16
	North Central	1.2	0.8	-33	2
Ambient Total Nitrate	Northeast	1.9	0.8	-58	6
Concentration (μg/m³)	Pacific	1.8	0.9	-50	5
	Rocky Mountain	0.8	0.5	-38	10
	South Central	1.5	0.9	-40	2
	Southeast	2.3	0.9	-61	12

Source: EPA, 2021

Figure 2. Regional Changes in Air Quality

- Averages are the arithmetic mean of all sites in a region that were present and met the completeness criteria in both averaging periods. Thus, average concentrations for 2000 to 2002 may differ from past reports.
- Data are from CASTNET monitoring sites which are typically located away from stationary emissions sources. Percent change is calculated from the base period of 2000–2002 to coincide with the deposition changes in Chapter 8.

[•] Data are from CASTNET monitoring sites which are typically located away from stationary emissions sources. Percent change is calculated from the base period of 2009-2002 to coincide with the deposition changes in Chapter 8.

• Bolded numbers indicate a statistically significant percent change. Statistical significance was determined at the 95 percent confidence level (p < 0.05) using a Student's t-test. Because changes that are not statistically significant may be unduly influenced by measurements having large variability or insufficient data completeness, regional results must include at least five sites to evaluate statistical significance.

2020 Power Sector Programs - Progress Report

https://www3.epa.gov/airmarkets/progress/reports/air_quality.html

• Bolded numbers indicate a statistically significant percent change. Statistical significance was determined at the 95 percent confidence level (p < 0.05) using a Student's t-test. Because changes that are not statistically significant may be unduly influenced by measurements having large variability or insufficient data completeness, regional results must include at least five sites to evaluate statistical significance.

Ozone

Highlights

Ozone Season Changes in 1-Hour Ozone

- There was an overall regional reduction in ozone levels between 2000–2002 and 2018–2020, with a 23 percent reduction in the highest (99th percentile) ozone concentrations in CSAPR and CSAPR Update states.
- Results demonstrate how NO_X emission reduction policies have affected 1-hour ozone concentrations in the eastern United States – historically, the region that the ozone policies were designed to target.

Annual Trends in Rural 8-Hour Ozone

- From 2018 to 2020, rural ozone concentrations averaged 62 ppb in CSAPR states, a decrease of 27 ppb (30 percent) from the 1990 to 2002 average period.
- The Autoregressive Integrated Moving Average (ARIMA) model shows how the reductions in rural ozone concentrations correlate with the implementation of the NBP in 2003 (two-year 10 ppb reduction from 2002) and the start of the CAIR NO_X Ozone Season program in 2009 (two-year 6 ppb reduction from 2007).
- Eight of the nine lowest observed annual ozone concentrations were between 2013 and 2020.
 Ozone season NO_X emissions fell steadily under CAIR and continued to drop after implementation of CSAPR in 2015 and CSAPR Update in 2017. In addition, implementation of the mercury and air toxics standards (MATS), which began in 2015, achieves co-benefit reductions of NO_X emissions.

Ozone Season Changes in 8-Hour Ozone Concentrations

- The average reduction in seasonal mean ozone concentrations (not adjusted for weather) in the CSAPR Update region from 2000–2002 to 2018–2020 was about 9 ppb (18 percent), while the average reduction in the 98th percentile concentrations was about 21 ppb (25 percent) before adjusting for weather-related effects.
- The average reduction in the meteorologically-adjusted seasonal mean ozone concentrations in the CSAPR Update region from 2000–2002 to 2018–2020 was about 10 ppb (20 percent), while the average reduction in the 98th percentile concentrations was about 20 ppb (24 percent) after adjusting for weather-related effects.¹

Changes in Ozone Nonattainment Areas

Ninety-two of the 113 areas originally designated as nonattainment for the 1997 8-hour ozone
 National Ambient Air Quality Standard (NAAQS) (0.08 ppm) are in the eastern United States and

Chapter 7: Air Quality - Ozone

¹ Wells, B. et al. (2021). Improved Estimation of Trends in U.S. Ozone Concentrations Adjusted for Interannual Variability in Meteorological Conditions. *Atmospheric Environment*, 248 (2021): 118234.

are home to about 122 million people.² These nonattainment areas were designated in 2004 using air quality data from 2001 to 2003.³

- Based on data from 2018 to 2020, 89 of the eastern ozone nonattainment areas now show concentrations below the level of the 1997 standard, while the remaining three areas had incomplete data.
- Twenty-two of the 46 areas originally designated as nonattainment for the 2008 8-hour ozone NAAQS (0.075 ppm) are in the eastern United States and are home to about 80 million people.² These nonattainment areas were designated in 2012 using air quality data from 2008 to 2010 or 2009 to 2011.²
- Based on data from 2018 to 2020, 82 percent (18 areas) of the eastern ozone nonattainment
 areas now show concentrations below the level of the 2008 standard. While four areas continue
 to show concentrations above the 2008 standard, three of those areas made progress toward
 meeting the standard in the 2018–2020 period. It is reasonable to conclude that ozone season
 NO_X emission reductions from the NBP, CAIR, CSAPR, and CSAPR Update have significantly
 contributed to these improvements in ozone air quality.
- Twenty-two of the 52 areas originally designated as nonattainment for the 2015 8-hour ozone NAAQS (0.070 ppm) are in the eastern United States and are home to about 76 million people.² These nonattainment areas were designated in 2018 using air quality data from 2014 to 2016 or 2015 to 2017.³
- Based on data from 2018 to 2020, three of the 22 eastern ozone nonattainment areas now show concentrations below the level of the 2015 standard, and an additional 12 areas have made progress toward meeting the standard in the 2018-2020 period.

Background Information

Ozone pollution – also known as smog – forms when NO_X and volatile organic compounds (VOCs) react in the presence of sunlight. Major anthropogenic sources of NO_X and VOC emissions include electric power plants, motor vehicles, solvents, and industrial facilities. Meteorology plays a significant role in ozone formation and hot, sunny days are most favorable for ozone production. For ozone, EPA and states typically regulate NO_X emissions during the summer when sunlight intensity and temperatures are highest.

Ozone Standards

In 1979, EPA established NAAQS for 1-hour ozone at 0.12 parts per million (ppm), or 124 parts per billion (ppb). In 1997, a more stringent 8-hour ozone standard of 0.08 ppm (84 ppb) was finalized, revising the 1979 standard. CSAPR was designed to help downwind states in the eastern United States achieve the 1997 ozone NAAQS. Based on extensive scientific evidence about ozone's effects on public health and welfare, EPA strengthened the 8-hour ozone standard to 0.075 ppm (75 ppb) in 2008. Finalized in 2016, the CSAPR Update was designed to help downwind states meet and maintain the 2008 ozone NAAQS. EPA further strengthened the 8-hour NAAQS for ground-level ozone to 0.070 ppm (70 ppb) in 2015. EPA

2

² U.S. Census. (2010).

³ 40 CFR Part 81. Designation of Areas for Air Quality Planning Purposes.

https://www3.epa.gov/airmarkets/progress/reports/air quality.html

revoked the 1-hour ozone standard in 2005 and more recently revoked the 1997 8-hour ozone standard in 2015.

Regional Trends in Ozone

EPA investigated trends in daily maximum 8-hour ozone concentrations measured at rural Clean Air Status and Trends Network (CASTNET) monitoring sites within the states requiring ozone season reductions under CSAPR and CSAPR Update, as well as in adjacent states. Rural ozone measurements are useful in assessing the impacts on air quality resulting from regional NO $_{\rm X}$ emission reductions because they are typically less affected by local sources of NO $_{\rm X}$ emissions (e.g., industrial and mobile) than urban measurements. Reductions in rural ozone concentrations are largely attributed to reductions in regional NO $_{\rm X}$ emissions and transported ozone.

The Autoregressive Integrated Moving Average (ARIMA) model is an advanced statistical analysis tool used to visualize the trend in regional ozone concentrations following implementation of various programs geared toward reducing ozone season NO_X emissions. To show the shift in the highest daily ozone levels, EPA modeled the average of the 99th percentile of the daily maximum 8-hour ozone concentrations measured at CASTNET sites (as described above).

Meteorologically-Adjusted Daily Maximum 8-Hour Ozone Concentrations

Variations in weather conditions play an important role in determining ozone concentrations. Ozone is more readily formed on warm, sunny days when the air is stagnant. Conversely, ozone production is more limited when it is cloudy, cool, rainy, or windy. EPA uses statistical models to adjust for the variability in seasonal ozone concentrations due to weather to provide a more accurate assessment of the underlying trend in ozone caused by emissions.

Meteorologically–adjusted ozone trends provide additional insight on the influence of CSAPR NO_X Ozone Season program and CSAPR Update emission reductions on regional air quality. EPA retrieved daily maximum 8-hour ozone concentration data from the Air Quality System (AQS) and daily meteorology data from the National Weather Service for 390 ozone monitoring sites located in the CSAPR Update region. EPA uses these data in statistical models to account for the influence of weather on seasonal average and 98^{th} percentile ozone concentrations at each monitoring site.³

Changes in Ozone Nonattainment Areas

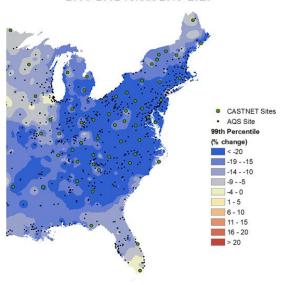
The majority of ozone season NO_X emission reductions in the power sector after 2003 are attributable to the NBP, CAIR, CSAPR, and CSAPR Update. As power sector emissions are an important component of the NO_X emission inventory, it is reasonable to conclude that the reduction in ozone season NO_X emissions from these programs have significantly contributed to improvements in ozone concentrations and attainment of the 1997 ozone health-based air quality standard.

Emission reductions under these power sector programs have helped many areas in the eastern United States reach attainment for the 2008 ozone NAAQS. However, several areas continue to be out of attainment with the 2008 ozone NAAQS, and additional ozone season NO_X emission reductions are needed to attain that standard as well as the strengthened ozone standard that was finalized in 2015.

https://www3.epa.gov/airmarkets/progress/reports/air quality.html

In order to help downwind states and communities meet and maintain the 2008 ozone standard, EPA finalized the CSAPR Update in September 2016 to address the transport of ozone pollution that crosses state lines in the eastern United States. Implementation began in May 2017 to further reduce ozone season NO_X emissions from power plants in 22 states in the eastern US. Starting June 2021, further emission reductions will be required under the Revised CSAPR Update at power plants in 12 of the 21 CSAPR Update states.

More Information

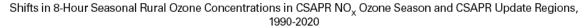

- Clean Air Status and Trends Network (CASTNET) https://www.epa.gov/castnet
- Air Quality System (AQS) https://www.epa.gov/aqs
- National Ambient Air Quality Standards (NAAQS) https://www.epa.gov/criteria-air-pollutants
- Ozone Pollution https://www.epa.gov/ozone-pollution
- Nitrogen Oxides (NO_X) Pollution https://www.epa.gov/no2-pollution
- Nonattainment Areas https://www.epa.gov/green-book
- EPA's Clean Air Market Programs https://www.epa.gov/airmarkets/programs
- EPA's 2020 National Air Quality Trends Report https://www.epa.gov/air-trends

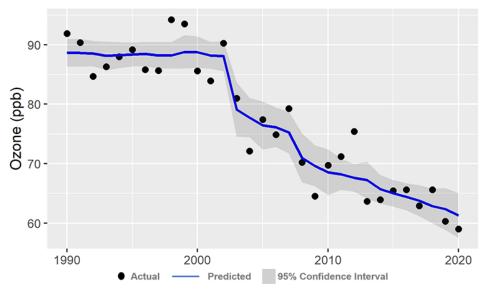
https://www3.epa.gov/airmarkets/progress/reports/air_quality.html

Figures

Percent Change in the Highest Values (99th percentile) of 1-hour Ozone Concentrations during the Ozone Season. 2000-2002 versus 2018-2020

- Data are from State and Local Air Monitoring Stations (SLAMS) AQS and CASTNET monitoring sites with two or more years of data within each three-year monitoring period.
 The 99th percentile represents the highest 1% of hourly ozone measurements at a given monitor.


Source: EPA, 2022


Figure 1. Percent Change in the Highest Values (99th percentile) of 1-hour Ozone Concentrations during the Ozone Season, 2000–2002 versus 2018–2020

- Data are from State and Local Air Monitoring Stations (SLAMS) AQS and CASTNET monitoring sites with two or more years of data within each three-year monitoring period.
- The 99th percentile represents the highest 1% of hourly ozone measurements at a given monitor.

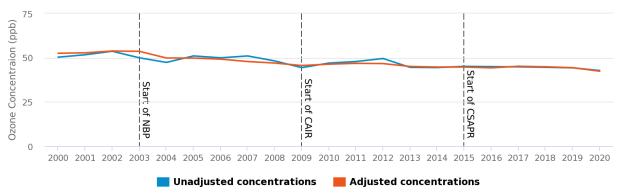
https://www3.epa.gov/airmarkets/progress/reports/air_quality.html

Notes:

Source: EPA, 2021

Figure 2. Shifts in 8-Hour Seasonal Rural Ozone Concentrations in CSAPR NO_X Ozone Season and CSAPR Update Regions, 1990–2020

Notes:


• Ozone concentration data are an average of the 99th percentile of the 8-hour daily maximum ozone concentrations measured at rural CASTNET sites that meet completeness criteria and are located in or adjacent to the CSAPR NO_x ozone season program region.

[•] Ozone concentration data are an average of the 99th percentile of the 8-hour daily maximum ozone concentrations measured at rural CASTNET sites that meet completeness criteria and are located in or adjacent to the CSAPR NO_x Ozone Season and CSAPR Update regions.

https://www3.epa.gov/airmarkets/progress/reports/air quality.html

Seasonal Average of 8-Hour Ozone Concentrations in CSAPR and CSAPR Update States, Unadjusted and Adjusted for Weather

Notes

- 8-Hour daily maximum ozone concentration data from EPA's AQS and daily meteorology data from the National Weather Service were retrieved for 390 ozone monitoring sites in the CSAPR Update region.
- For a monitor to be included in this trends analysis, it had to provide complete and valid data for 75 percent of the days in the May to September period, for each of the years from 2000 to 2015. In urban areas with more than one monitoring site, the highest observed ozone concentration in the area was used for each day.

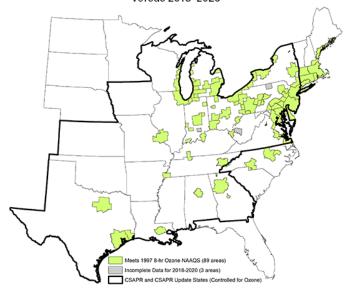

Source: EPA, 2021

Figure 3. Seasonal Average of 8-Hour Ozone Concentrations in CSAPR and CSAPR Update States, Unadjusted and Adjusted for Weather

- \bullet 8-Hour daily maximum ozone concentration data from EPA's AQS and daily meteorology data from the National Weather Service were retrieved for 78 urban areas and 37 rural CASTNET monitoring sites located in the CSAPR NO_X ozone season program region.
- For a monitor to be included in this trends analysis, it had to provide complete and valid data for 75 percent of the days in the May to September period, for each of the years from 2000 to 2020. In urban areas with more than one monitoring site, the highest observed ozone concentration in the area was used for each day.

Changes in 1997 Ozone NAAQS Nonattainment Areas in CSAPR Region, 2001–2003 (Original Designations) versus 2018–2020

Source: EPA, 2021

Figure 4. Changes in 1997 Ozone NAAQS Nonattainment Areas in CSAPR Region, 2001–2003 (Original Designations) versus 2018–2020

Changes in 2008 Ozone NAAQS Nonattainment Areas, 2008–2010 (Original Designations) versus 2018–2020

Source: EPA, 2021

Figure 5. Changes in 2008 Ozone NAAQS Nonattainment Areas, 2008–2010 (Original Designations) versus 2018–2020

Particulate Matter

Highlights

PM Seasonal Trends

- The Air Quality System (AQS) includes average PM_{2.5} concentration data for 129 sites located in the CSAPR SO₂ and annual NO_x program region. Trend lines in PM_{2.5} concentrations show decreasing trends in both the warm months (April to September) and cool months (October to March) unadjusted for the influence of weather.
- The seasonal average PM_{2.5} concentrations have decreased by about 49 and 50 percent in the warm and cool season months, respectively, between 2000 and 2020.

Changes in PM2.5 Nonattainment

- 36 of the 39 designated nonattainment areas for the 1997 annual average PM_{2.5} NAAQS are in the eastern United States and are home to about 75 million people.^{1,2} The nonattainment areas were designated in January 2005 using 2001 to 2003 data.
- Based on data gathered from 2018 to 2020, 35 of these eastern areas originally designated nonattainment have concentrations below the level of the 1997 $PM_{2.5}$ standard (15 $\mu g/m^3$), indicating improvements in $PM_{2.5}$ air quality. One area has incomplete data.
- Given that power sector emissions are an important component of the SO₂ and annual NO_X emission inventory and that the majority of power sector SO₂ and annual NO_X emission reductions occurring after 2003 are attributable in part to the ARP, NBP, CAIR, and CSAPR, it is reasonable to conclude that these emission reduction programs have significantly contributed to these improvements in PM_{2.5} air quality.

Background Information

Particulate matter—also known as soot, particle pollution, or PM—is a complex mixture of extremely small particles and liquid droplets. Particle pollution is made up of several components, including acid-forming nitrate and sulfate compounds, organic compounds, metals, and soil or dust particles. Fine particles (defined as particulate matter with aerodynamic diameter < 2.5 μ m, and abbreviated as PM_{2.5}) can be directly emitted or can form when gases emitted from power plants, industrial sources, automobiles, and other sources react in the air.

Particle pollution—especially fine particles—contains microscopic solids or liquid droplets so small that they can get deep into the lungs and cause serious health problems. Numerous scientific studies have linked particle pollution exposure to a variety of problems, including the following: premature death; increased respiratory symptoms, such as irritation of the airways, coughing, or difficulty breathing;

¹ 40 CFR Part 81. Designation of Areas for Air Quality Planning Purposes.

² U.S. Census. (2010).

https://www3.epa.gov/airmarkets/progress/reports/air quality.html

decreased lung function; aggravated asthma; development of chronic bronchitis; irregular heartbeat; and nonfatal heart attacks.^{3,4,5}

Particulate Matter Standards

The CAA requires EPA to set NAAQS for particle pollution. In 1997, EPA set the first standards for fine particles at 65 micrograms per cubic meter ($\mu g/m^3$) measured as the three-year average of the 98th percentile for 24-hour exposure, and at 15.0 $\mu g/m^3$ for annual exposure measured as the three-year annual mean. EPA revised the air quality standards for particle pollution in 2006, tightening the 24-hour fine particle standard to 35 $\mu g/m^3$ and retaining the annual fine particle standard at 15.0 $\mu g/m^3$. In December 2012, EPA strengthened the annual fine particle standard to 12.0 $\mu g/m^3$.

CSAPR was promulgated to help downwind states in the eastern United States achieve the 1997 annual average $PM_{2.5}$ NAAQS and the 2006 24-hour $PM_{2.5}$ NAAQS; therefore, analyses in this report focus on those standards.

Changes in PM2.5 Nonattainment Areas

In the eastern US, recent data indicate that no areas are violating the 1997 or 2006 PM $_{2.5}$ NAAQS. One area in the eastern US (Allegheny County, PA) is violating the 2012 annual PM $_{2.5}$ NAAQS. The majority of SO $_2$ and annual NO $_X$ emission reductions in the power sector that occurred after 2003 are attributable to the ARP, NBP, CAIR, and CSAPR. As power sector emissions are an important component of the SO $_2$ and annual NO $_X$ emission inventory, it is reasonable to conclude that these emission reduction programs have significantly contributed to these improvements in PM $_{2.5}$ air quality.

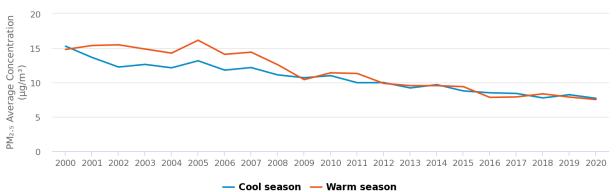
More Information

- Air Quality System (AQS) https://www.epa.gov/aqs
- National Ambient Air Quality Standards https://www.epa.gov/criteria-air-pollutants
- Particulate Matter (PM) Pollution https://www.epa.gov/pm-pollution
- Sulfur Dioxide (SO₂) Pollution https://www.epa.gov/so2-pollution
- Nitrogen Oxides (NO_X) Pollution https://www.epa.gov/no2-pollution
- Nonattainment Areas https://www.epa.gov/green-book
- EPA's Clean Air Market Programs https://www.epa.gov/airmarkets/programs
- EPA's 2020 National Air Quality Trends Report https://www.epa.gov/air-trends

_

³ Dockery, D.W., Speizer F.E., Stram, D.O., Ware, J.H., Spengler, J.D., & Ferris Jr., B.G. (1989). Effects of inhalable particles on respiratory health of children. American Review of Respiratory Disease 139: 587–594.

⁴ Schwartz, J. & Lucas, N. (2000). Fine particles are more strongly associated than coarse particles with acute respiratory health effects in school children. I 11: 6–10.


⁵ Bell, M.L., Dominici, F., Ebisu, K., Zeger, S.L., & Samet, J.M. (2007). Spatial and temporal variation in PM_{2.5} chemical composition in the United States for health effects studies. *Environmental Health Perspectives* 115: 989–995.

https://www3.epa.gov/airmarkets/progress/reports/air quality.html

Figures

Notes:

- For a PM25 monitoring site to be included in the trends analysis, it had to meet all of the following criteria: 1) each site-year quarterly mean concentration value had to encompass at least 11 or more samples, 2) all four quarterly mean values had to be valid for a given year (i.e., meet criterion #1), and 3) all 21 years of site-level seasonal means had to be valid for the given site (i.e. meet criteria #1 and #2).
- Annual "cool" season mean values for each site-year were computed as the average of the first and fourth quarterly mean values. Annual "warm" season mean values for each site-year were computed as the average of the second and third quarterly mean values. For a given year, all of the seasonal mean values for the monitoring sites located in the CSAPR region were then averaged together to obtain a single year (composite) seasonal mean value.

Source: EPA, 2021

Figure 1. PM_{2.5} Seasonal Trends, 2000-2020

- For a PM_{2.5} monitoring site to be included in the trends analysis, it had to meet all of the following criteria: 1) each site-year quarterly mean concentration value had to encompass at least 11 or more samples, 2) all four quarterly mean values had to be valid for a given year (i.e., meet criterion #1), and 3) all 21 years of site-level seasonal means had to be valid for the given site (i.e. meet criteria #1 and #2).
- Annual "cool" season mean values for each site-year were computed as the average of the first and fourth quarterly mean values. Annual "warm" season mean values for each site-year were computed as the average of the second and third quarterly mean values. For a given year, all of the seasonal mean values for the monitoring sites located in the CSAPR region were then averaged together to obtain a single year (composite) seasonal mean value.

https://www3.epa.gov/airmarkets/progress/reports/air_quality.html

Changes in 1997 Annual PM_{2.5} NAAQS Nonattainment Areas in CSAPR States, 2001–2003 (Original Designations) versus 2018–2020

Source: EPA, 2021

Figure 2. Changes in the 1997 Annual PM_{2.5} NAAQS Nonattainment Areas in CSAPR States, 2001–2003 (Original Designations) versus 2018–2020

Chapter 8: Acid Deposition

Acid deposition, commonly known as "acid rain," is a broad term referring to the mixture of wet and dry deposition from the atmosphere containing higher than normal amounts of sulfur and nitrogen-containing acidic pollutants. The precursors of acid deposition are primarily the result of emissions of sulfur dioxide (SO_2) and nitrogen oxides (NO_x) from fossil fuel combustion; however, natural sources, such as volcanoes and decaying vegetation, also contribute a small amount.

Highlights

Wet Sulfate Deposition

- All areas of the eastern United States have shown significant improvement, with an overall 70 percent reduction in wet sulfate deposition from 2000–2002 to 2018–2020.
- Between 2000–2002 and 2018–2020, the Northeast and Mid-Atlantic experienced the largest reductions in wet sulfate deposition, a 77 and 74 percent reduction, respectively.
- SO₂ emissions reductions and the consequent decrease in the formation of sulfates that are transported long distances have resulted in reduced sulfate deposition in the Northeast. The sulfate reductions documented in the region, particularly across New England and portions of New York, were also affected by lowered SO₂ emissions in eastern Canada.¹

Wet Inorganic Nitrogen Deposition

- Wet deposition of inorganic nitrogen decreased an average of 19 percent in the Mid-Atlantic and 32 percent in the Northeast but increased in the central regions from 2000–2002 to 2018–2020. Increases in wet deposition of inorganic nitrogen in the North Central and South Central regions are attributed to 17 and 9 percent increases in wet deposition of reduced nitrogen (NH₄⁺), respectively, between 2000 and 2020.
- Reductions in nitrogen deposition recorded since the early 1990s have been less pronounced than those for sulfur. Emissions from other source categories (e.g., mobile sources, agriculture, and manufacturing) contribute to air concentrations and deposition of nitrogen.

Regional Trends in Total Deposition

- The reduction in total sulfur deposition (wet plus dry) in the eastern U.S. has been of similar magnitude to that of wet deposition with an overall average reduction of 81 percent from 2000– 2002 to 2018–2020.
- Decreases in oxidized nitrogen (NOx) have generally been greater than that of reduced nitrogen (NHx) deposition. Total oxidized nitrogen deposition decreased 57 percent in the east. In contrast, total deposition of reduced nitrogen increased by an average of 38 percent in the east from 2000–2002 to 2018–2020.

_

¹ Government of Canada, Environment Canada. (2018). Canada-United States Air Quality Agreement Progress Report 2016. ISSN: 1910–5223: Cat. No.: En85-1E-PDF.

https://www3.epa.gov/airmarkets/progress/reports/acid deposition.html

Background Information

Acid Deposition

As SO_2 and NO_X gases react in the atmosphere with water, oxygen, and other pollutants, they form acidic compounds that are deposited to the earth's surface in the form of wet and dry deposition.

Long-term monitoring network data show significant improvements in the primary indicators of acid deposition. For example, wet sulfate deposition (sulfate that falls to the earth through rain, snow, and other forms of precipitation) has decreased in much of the eastern United States due to SO₂ emission reductions achieved through implementation of the Acid Rain Program (ARP), the Clean Air Interstate Rule (CAIR) and the Cross-State Air Pollution Rule (CSAPR). Some of the most dramatic reductions have occurred in the mid-Appalachian region, including Maryland, New York, West Virginia, Virginia, and most of Pennsylvania. Along with wet sulfate deposition, precipitation acidity, expressed as hydrogen ion (H⁺ or pH) concentration, has also decreased by similar percentages.

Reductions in nitrogen deposition compared to the early 1990s have been less pronounced than those for sulfur. As noted earlier, emissions from source categories other than ARP and CSAPR regulated sources contribute to changes in air concentrations and deposition of nitrogen.

Monitoring Networks

The Clean Air Status and Trends Network (CASTNET) provides long-term monitoring of regional air quality to determine trends in atmospheric concentrations and deposition of nitrogen, sulfur, and ozone in order to evaluate the effectiveness of national and regional air pollution control programs. CASTNET now operates 100 regional sites throughout the contiguous United States, Alaska, and Canada. Sites are located in areas where urban influences are minimal.

The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) is a nationwide, long-term network tracking the chemistry of precipitation. The NADP/NTN provides concentration and wet deposition data on hydrogen ion (acidity as pH), sulfate, nitrate, ammonium, chloride, and base cations. The NADP/NTN has grown to more than 250 sites spanning the United States, Canada, Puerto Rico, and the Virgin Islands.

Together, these complementary networks provide long-term data needed to estimate spatial patterns and temporal trends in total deposition. Maps and regional trends provided in this chapter were produced using the measurement-model fusion method developed by NADP's Total Deposition Science Committee. Briefly, CASTNET and NADP/NTN data are combined with modeled deposition results from EPA's Community Multiscale Air Quality Model (CMAQ) to produce gridded estimates of total deposition. The deposition values provided in this report have been updated using CMAQv5.3.2, incorporating the state of the science input data for emissions, meteorology, and air quality over the

-

² Schwede, DB and Lear, GG. (2014). A novel hybrid approach for estimating total deposition in the United States. Atmosphere Environment 92: 207-220.

2020 Power Sector Programs - Progress Report

https://www3.epa.gov/airmarkets/progress/reports/acid deposition.html

timeseries (2002-2017)³. Improvements to the model have resulted in significant changes to the modeled deposition (eg. reduced dry nitrogen deposition, non-measured oxidized nitrogen deposition).

More Information

- Acid Rain https://www.epa.gov/acidrain
- Clean Air Status and Trends Network (CASTNET) https://epa.gov/castnet
- EPA's Air QUAlity TimE Series (EQUATES) for the Community Multi-Scale Air Quality Modeling System (CMAQ) https://www.epa.gov/cmaq/equates
- National Atmospheric Deposition Program (NADP) https://nadp.slh.wisc.edu/

-

³ Appel, K.W., Bash, J.O., Fahey, K.M., Foley, K.M., Gilliam, R.C., Hogrefe, C., Hutzell, W.T., Kang, D., Mathur, R., Murphy, B.N., Napelenok, S.L., Nolte, C.G., Pleim, J.E., Pouliot, G.A., Pye, H.O.T., Ran, L., Roselle, S.J., Sarwar, G., Schwede, D.B., Sidi, F.I., Spero, T.L., and Wong, D.C. The Community Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3.1: system updates and evaluation, Geosci. Model Dev., 14, 2867-2897, https://doi.org/10.5194/gmd-14-2867-2021, 2021.

Figures

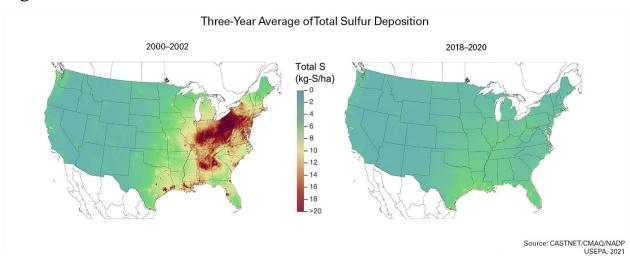


Figure 1. Three-Year Average of Total Sulfur Deposition

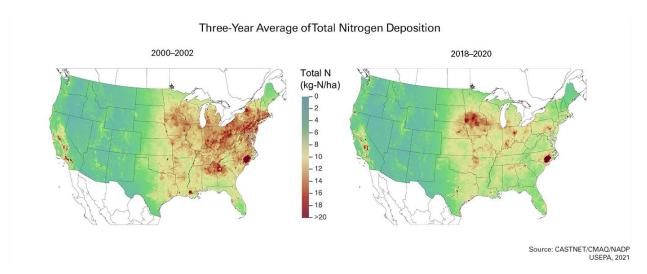


Figure 2. Three-Year Average of Total Nitrogen Deposition

Regional Trends in Deposition - Nitrogen

North Central Northeast Pacific

https://www3.epa.gov/airmarkets/progress/reports/acid_deposition.html

Regional Trends in Deposition - Sulfur

Mid-Altanic	84	47	44	
Midered	63	44	37	44
Midered	63	44	37	46
Midered	63	47	47	
Midered	63	47	47	
Midered	63	47	47	
Midered	63	47	47	
Midered	63	47	47	
Midered	63	47	47	
Midered	63	47	47	
Midered	63	64	67	
Midered	63	67		

Total Deposition of Reduced Northwest 2.7 3.2 18 Northwest (kg-N/ha) Pacific 1.4 1.8 3.1 Northwest 1.1 1.5 4.1 Northwest 1.1 1.5 4.1 Northwest 1.1 Northwest

Source: EPA, 2021

Figure 3. Regional Trends in Deposition

Notes:

• Averages are the arithmetic mean of all spatial grids in a region for each time period.

Chapter 9: Ecosystem Response

Acidic deposition resulting from sulfur dioxide (SO_2) and nitrogen oxides (NO_X) emissions may negatively affect the biological health of lakes, streams, forests, grasslands, and other ecosystems in the United States. Trends in measured chemical indicators allow scientists to determine whether water bodies are improving and heading towards recovery or if they are still acidifying. Assessment tools, such as critical loads analysis, provide a quantitative estimate of whether decreases in acidic deposition levels of sulfur and nitrogen resulting from SO_2 and NO_X emission reductions are sufficient to protect aquatic resources.

Ground-level ozone is an air pollutant that can impact ecological systems like forests, altering a plant's health and leading to changes in individual tree growth (e.g., biomass loss) and to the biological community. Analyzing the biomass loss of certain trees before and after implementation of NO_X emission reduction programs provides information about the effect of reduced NO_X emissions and ozone concentrations on forested areas.

Ecosystem Health

Highlights

Regional Trends in Water Quality

- Between 1990 and 2020, improved lake and stream health was demonstrated by significant decreasing trends in sulfate concentrations in water at all long-term monitoring (LTM) program lake and stream monitoring sites in New England, the Adirondacks, and the Catskill mountains.
- On the other hand, between 1990 and 2020, streams in the central Appalachian region have experienced mixed results due in part to their soils and geology. Only 60 percent of monitored streams show lower sulfate concentrations (and statistically significant trends), while 6 percent show increased sulfate concentrations.
- Nitrate concentrations and trends are highly variable and many sites do not show consistent improving trends between 1990 and 2020, despite reductions in NO_x emissions and inorganic nitrogen deposition.
- In 2020, levels of acid neutralizing capacity (ANC), a key indicator of aquatic ecosystem recovery
 from acidification, have increased significantly from 1990 in lake and stream sites in the
 Adirondack Mountains, New England, and the Catskill mountains. In the central Appalachian
 region, sites with increasing ANC remain low at 10 percent.

Ozone Impacts on Forests

 Between 2000–2002 and 2018–2020, the area in the eastern United States with significant forest biomass loss (> 2 % biomass loss) decreased from 30.1 percent to 5.3 percent for seven tree species combined – black cherry, yellow poplar, sugar maple, eastern white pine, Virginia pine, red maple, and quaking aspen. https://www3.epa.gov/airmarkets/progress/reports/ecosystem response.html

- For black cherry and yellow poplar individually (the tree species most sensitive to ground-level ozone), the total land area in the eastern United States with significant biomass loss decreased from 17.2 percent to 5.3 percent for black cherry, and from 6.2 percent to 0 percent for yellow poplar between 2000–2002 and 2018–2020.
- For the period 2018–2020, total land area in the eastern United States with significant biomass loss for the remaining five species combined (red maple, sugar maple, quaking aspen, Virginia pine, and eastern white pine) is now zero. This is in contrast to 6.9% for the period of 2000– 2002.
- While this change in biomass loss cannot be exclusively attributed to the implementation of the NBP, CAIR, CSAPR and CSAPR Update, it is likely that NO_x ozone season emission reductions achieved under these programs, and the corresponding decreases in ozone concentration, contributed to this environmental improvement.

Background Information

Acidified Surface Water Trends

Acidified precipitation can impact lakes and streams by mobilizing toxic forms of aluminum from soils, (particularly in clay rich soils) and/or by lowering the pH of the water, harming fish and other aquatic wildlife. In a healthy well-buffered lake or stream, decreased acid deposition would be reflected by decreasing trends in surface water acidity. Four chemical indicators of aquatic ecosystem response to emission changes are presented here: trends in sulfate and nitrate anions, acid neutralizing capacity (ANC), and sum of base cations. Improvement in surface water status is generally indicated by decreasing concentration of sulfate and nitrate anions and increasing base cations and ANC. The following is a description of each indicator:

- **Sulfate** is the primary anion in most acid-sensitive waters and has the potential to acidify surface waters (lower the pH) and leach base cations and toxic forms of aluminum from soils, leaving soils depleted of their ability to neutralize acidic inputs.
- Nitrate has the potential to acidify surface waters. However, nitrogen is an important nutrient
 for plant and algae growth, and most of the nitrogen inputs from deposition are quickly taken
 up by plants and algae, leaving less in surface waters.
- ANC is a key indicator of ecosystem recovery and is a measure of overall buffering capacity of surface waters against acidification; it indicates the ability to neutralize strong acids that enter aquatic systems from deposition and other sources.
- Base cations neutralize both sulfate and nitrate anions, thereby preventing surface water
 acidification. Base cation availability is largely a function of underlying geology, soil type, and the
 vegetation community. Surface waters with fewer base cations are more susceptible to
 acidification.

In the central Appalachian region, some watersheds have soils which have also accumulated and stored sulfate over the past decades of high sulfate deposition. As a result, the substantial decrease in acidic deposition has not yet resulted in comparably lower sulfate concentrations in many of the monitored Appalachian streams. A combination of low base cation availability and stored sulfate in the soils means

https://www3.epa.gov/airmarkets/progress/reports/ecosystem response.html

that stream sulfate concentrations in some areas are not changing, or may be increasing, as the stored sulfate slowly bleeds out without adequate base cation concentrations to neutralize sulfate anions.¹

Surface Water Monitoring Networks

In collaboration with other federal and state agencies and universities, EPA administers the Long-term Monitoring (LTM) program which provides information on the impacts of acidic deposition on otherwise pristine lakes and streams. This program is designed to track changes in surface water chemistry in the four regions sensitive to acid rain in the eastern United States: New England, the Adirondack Mountains, the Northern Appalachian Plateau, and the central Appalachians (the Valley, Ridge, and Blue Ridge geologic provinces).

Forest Health

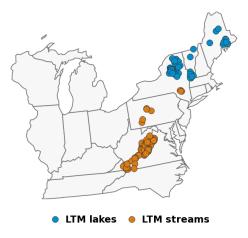
Ground-level ozone is one of many air pollutants that can alter a plant's health and ability to reproduce and can make the plant more susceptible to disease, insects, fungus, harsh weather, etc. These impacts can lead to changes in the biological community, both in the diversity of species and in the health, vigor, and growth of individual species. As an example, many studies have shown that ground-level ozone reduces the health of commercial and ecologically important forest tree species throughout the United States. ^{2,3} By looking at the distribution and abundance of seven sensitive tree species and the level of ozone at particular locations, it is possible to estimate reduction in growth – or biomass loss – for each species. The EPA evaluated biomass loss for seven common tree species in the eastern United States that have a higher sensitivity to ozone (black cherry, yellow poplar, sugar maple, eastern white pine, Virginia pine, red maple, and quaking aspen) to determine whether decreasing ozone concentrations are reducing biomass loss in forest ecosystems.

More Information

- Surface water monitoring at EPA https://www.epa.gov/airmarkets/clean-air-markets-monitoring-surface-water-chemistry
- Acid Rain https://www.epa.gov/acidrain/
- Ozone W126 Index https://www.epa.gov/air-quality-analysis/ozone-w126-index

_

¹ Burns, D.A., Lynch, J.A., Cosby, B.J., Fenn, M.E., & Baron, J.S. (2011). National Acid Precipitation Assessment Program Report to Congress 2011: An Integrated Assessment. U.S. EPA, National Science and Technology Council, Washington, D.C.: 114 p


² Chappelka, A.H. & Samuelson, L.J. (1998). Ambient ozone effects on forest trees of the eastern United States: A review. New Phytologist 139: 91–108.

³ Ollinger, S.V., Aber, J.D., & Reich, P.B. (1997). Simulating ozone effects on forest productivity: interactions among leaf-canopy and stand-level processes. Ecological Applications 7(4), 1237–1251.

Figures

Long-term Monitoring Program Sites and Trends, 1990–2020

Notes:

- Notes:

 Trends are significant at the 95 percent confidence interval (p < 0.05).

 Base cations are calculated as the sum of calcium, magnesium, potassium, and sodium ions.

 Trends are determined by multivariate Mann-Kendall tests.

Source: EPA, 2021

Figure 1. Long-term Monitoring Program Sites and Trends, 1990–2020

- Trends are significant at the 95 percent confidence interval (p < 0.05).
- Base cations are calculated as the sum of calcium, magnesium, potassium, and sodium ions.
- Trends are determined by multivariate Mann-Kendall tests.

https://www3.epa.gov/airmarkets/progress/reports/ecosystem_response.html

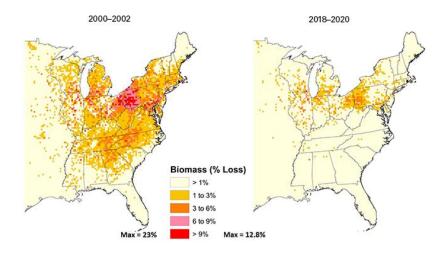
Regional Trends in Sulfate, Nitrate, ANC, and Base Cations at Long-term Monitoring Sites, 1990–2020

Region	Water Bodies Covered	% of Sites with Improving Sulfate Trend	% of Sites with Improving Nitrate Trend	% of Sites with Improving ANC Trend	% of Sites with Improving Base Cations Trend
Adirondack Mountains	58 lakes in NY*	98%	76%	86%	93%
New England	26 lakes in ME and VT	100%	15%	77%	65%
Catskills/ N. Appalachian Plateau	9 streams in NY and PA**	78%	44%	67%	89%
Central Appalachians	70 streams in VA	60%	79%	10%	46%

- Trends are determined by multivariate Mann-Kendall tests
- Trends are significant at the 95 percent confidence interval (p < 0.05)
 DOC is not routinely measured in Central Appalachian streams
- Sum of Base Cations calculated as (Ca+Mg+K+Na)
- * Data for Adirondack lakes from 1992

 ** Data for PA streams in N. Appalachian Plateau is only through 2015

Source: EPA, 2021


Figure 2. Regional Trends in Sulfate, Nitrate, ANC, and Base Cations at Long-term Monitoring Sites, 1990–2020

- Trends are determined by multivariate Mann-Kendall tests
- Trends are significant at the 95 percent confidence interval (p < 0.05)
- DOC is not routinely measured in Central Appalachian streams
- Sum of Base Cations calculated as (Ca+Mg+K+Na)
- * Data for Adirondack lakes from 1992
- ** Data for PA streams in N. Appalachian Plateau is only through 2015

https://www3.epa.gov/airmarkets/progress/reports/ecosystem response.html

Estimated Black Cherry, Yellow Poplar, Sugar Maple, Eastern White Pine, Red Maple, and Quaking Aspen Biomass Loss Due to Ozone Exposure, 2000–2002 versus 2018–2020

Notes:

- Biomass loss was calculated by incorporating each tree's C-R functions with the three-month, 12-hour W126 exposure metric.
- . The W126 exposure metric is a cumulative exposure index that is biologically based and emphasized hourly ozone concentrations taken from 2000-2020 data.

Source: EPA, 2021

Figure 3. Estimated Black Cherry, Yellow Poplar, Sugar Maple, Eastern White Pine, Virginia Pine, Red Maple, and Quaking Aspen Biomass Loss Due to Ozone Exposure, 2000–2002 versus 2018–2020

- Biomass loss was calculated by incorporating each tree's C-R (Cauchy–Riemann) functions with the three-month, 12-hour W126 exposure metric.
- The W126 exposure metric is a cumulative exposure index that is biologically based and emphasizes hourly ozone concentrations taken from 2000-2020 data. This evaluation incorporated the W126 method which measures cumulative ozone exposures during the growing season when daytime ozone concentrations are the highest and plant growth is most likely to be affected.

Critical Loads Analysis

Highlights

Critical Loads and Exceedances

- For the period from 2018 to 2020, 5.5 percent of the 7,871 studied lakes and streams still
 received levels of combined total sulfur and nitrogen deposition exceeding their calculated
 critical load. This is an 86 percent improvement over the period from 2000 to 2002 when 40
 percent of all studied lakes and streams exceeded their calculated critical load.
- Emission reductions achieved between 2000 and 2020 have contributed and will continue to contribute to broad surface water improvements and increased aquatic ecosystem protection across the five LTM regions along the Appalachian Mountains.
- Based on this analysis, current sulfur and nitrogen deposition loadings in 2020 still exceed levels
 required for recovery of some lakes and streams, indicating that some additional emission
 reductions are necessary for some acid-sensitive aquatic ecosystems along the Appalachian
 Mountains to recover and be protected from acid deposition.

Background Information

A critical loads analysis is an assessment used to provide a quantitative estimate of whether acid deposition levels resulting from SO_2 and NO_X emissions are sufficient to protect ecosystem health. The analysis here focuses on aquatic biological resources. If acidic deposition is less than the calculated critical load, harmful ecological effects (e.g., reduced reproductive success, stunted growth, loss of biological diversity) are not expected to occur, and ecosystems damaged by past exposure are expected to eventually recover.¹

Lake and stream waters having an ANC value greater than $50 \,\mu\text{eq/L}$ are classified as having a moderately healthy aquatic biological community; therefore, this ANC concentration is often used as a goal for ecological protection of surface waters affected by acidic deposition. In this analysis, the critical load represents the amount of combined sulfur and nitrogen that could be deposited annually to a lake or stream and its watershed and still support a moderately healthy aquatic ecosystem (i.e., having an ANC greater than $50 \,\mu\text{eq/L}$). Surface water samples from 7,871 lakes and streams along acid-sensitive regions of the Appalachian Mountains and some adjoining northern coastal plain regions were collected through a number of water quality monitoring programs. Critical load exceedances were calculated using the Steady-State Water Chemistry model. 2,3

_

¹ Dupont, J., Clair, T.A., Gagnon, C., Jeffries, D.S., Kahl, J.S., Nelson, S.J., & Peckenham, J.M. (2005). Estimation of critical loads of acidity for lakes in the northeastern United States and eastern Canada. Environmental Monitoring and Assessment, 109:275–291.

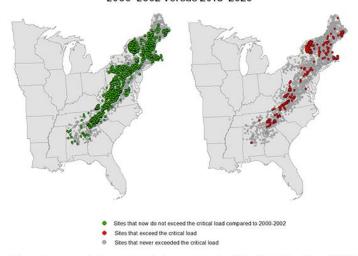
² Sullivan, T.J., Cosby, B.J., Webb, J.R., Dennis, R.L., Bulger, A.J., & Deviney, Jr. F.A. (2007). Streamwater acid-base chemistry and critical loads of atmospheric sulfur deposition in Shenandoah National Park, Virginia. Environmental Monitoring and Assessment, 137: 85–99.

³ Nilsson, J. & Grennfelt, P. (Eds) (1988). Critical loads for sulphur and nitrogen. UNECE/Nordic Council workshop report, Skokloster, Sweden. Nordic Council of Ministers: Copenhagen.

2020 Power Sector Programs - Progress Report

https://www3.epa.gov/airmarkets/progress/reports/ecosystem_response.html

More Information


- Surface water monitoring at EPA https://www.epa.gov/airmarkets/monitoring-surface-water-chemistry
- National Acid Precipitation Assessment Program (NAPAP) Report to Congress https://ny.water.usgs.gov/projects/NAPAP/

https://www3.epa.gov/airmarkets/progress/reports/ecosystem response.html

Figures

Lake and Stream Exceedances of Estimated Critical Loads for Total Nitrogen and Sulfur Deposition, 2000-2002 versus 2018-2020

Source: EPA, 2021

Figure 1. Lake and Stream Exceedances of Estimated Critical Loads for Total Nitrogen and Sulfur Deposition, 2000-2002 versus 2018-2020

- Surface water samples from the represented lakes and streams complied from surface monitoring programs, such as National Surface Water Survey (NSWS), Environmental Monitoring and Assessment Program (EMAP), Wadeable Stream Assessment (WSA), National Lake Assessment (NLA), Temporally Integrated Monitoring of Ecosystems (TIME), Long Term Monitoring (LTM), and other water quality monitoring programs.
- Steady state exceedances calculated in units of meg/m²/yr.

[•] Surface water samples from the represented lakes and streams compiled from surface monitoring programs, such as National Surface Water Survey (NSWS), Environmental Monitoring and Assessment Program (EMAP). Wadeable Stream Assessment (WSA), National Lake Assessment (NLA), Temporally Integrated Monitoring of Ecosystems (TIME), LongTerm Monitoring (LTM), and other water quality monitoring programs.

• Steady state exceedances calculated in units of meq/m²/yr.

Critical Load Exceedances by Region, 2000–2002 versus 2018–2020

	Number of Water Bodies Modeled	Water Bodies in Exceedance of Critical Load				
Region		2000-2002		2018-2020		Percent Reduction
		Number of Sites	Percent of Sites	Number of Sites	Percent of Sites	
New England (CT, MA, ME, NH, RI, VT)	2,309	652	28%	96	4%	85%
Adirondack (NY)	1,581	834	53%	156	10%	81%
Northern Mid-Atlantic (NY, NJ, PA)	1,200	364	30%	22	2%	94%
Southern Mid-Atlantic (KY, MD, VA, WV)	1,841	974	53%	103	6%	83%
Southern Appalachian Mountains (AL, GA, SC, TN)	940	320	34%	54	6%	83%
Total Units	7,871	3,144	40%	431	5.5%	86%

Notes

Source: EPA, 2021

Figure 2. Critical Load Exceedances by Region, 2000–2002 versus 2018–2020

Notes:

• Surface water samples from the represented lakes and streams complied from surface monitoring programs, such as National Surface Water Survey (NSWS), Environmental Monitoring and Assessment Program (EMAP), Wadeable Stream Assessment (WSA), National Lake Assessment (NLA), Temporally Integrated Monitoring of Ecosystems (TIME), Long Term Monitoring (LTM), and other water quality monitoring programs.

Surface water samples from the represented lakes and streams complied from surface monitoring programs, such as National Surface Water Survey (NSWS), Environmental Monitoring and Assessment Program (EMAP), Wadeable Stream Assessment (WSA), National Lake Assessment (NLA), Temporally Integrated Monitoring of Ecosystems (TIME), Long Term Monitoring (LTM), and other water quality monitoring programs.