

Underground Injection Control Program Class VI Well for Geological Sequestration of Carbon Dioxide

Wells CCS#5, #6, and #7 Permit Application

Archer Daniels Midland Company Decatur, Illinois

April, 2023

Contents	
1. Executive Summary	5
1.1 Introduction 5	
1.2 Injection Plan 6	
1.3 Injection Fluid 6	
2. General Information	7
2.1 Applicant and Site Information 7	
2.2 Cross-Reference Table to Class VI Injection Well Rules 9	
2.3 List of Abbreviations Used in this Application 9	
3. Site Geologic Characterization	13
3.1 Regional geology and geologic structure 13	
3.2 Faults and fractures 20	
3.2.1 Interpreted faults based on reprocessed 3D seismic data and Structural Update	20
3.2.2 Fractures implied by microseismic recorded at IBDP	23
3.3 Injection and confining zone characteristics 24	
3.3.1 Variogram Analysis	26
3.3.2 Petrophysical Modeling of Effective Porosity and Permeability Interpolation	
3.4 Hydrologic and hydrogeologic Information 36	
3.4.1 Water quality data 38	
3.5 Geochemical Data and Compatibility of CO ₂ 41	
3.6 Geomechanical and Petrophysical Information 43	
3.6.1 Formation Pressure	43
3.6.2 Rock Strength	43
3.6.3 In-Situ Stress	43
3.6.4 Confining Zone Integrity	44
3.7 Injection & confining zone mineralogy, petrology, and lithology 47	
3.7.1 Mt Simon Sandstone	47
3.7.2 Eau Claire Shale	48
3.8 Seismic history, seismic sources, and seismic risk 50	
3.8.1 Injection Pressure and Microseismicity	53
3.9 Air and Soil Gas Monitoring 56	
3.10 Facies changes in the injection or confining zone 56	
3.11 Injection zone storage capacity 59	
3.12 Confining zone integrity 61	

4.1 Conceptual site model 64

4.2 Computational AoR delineation model 69
4.2.1 Pressure Delineation Model
4.2.2 Reservoir Modeling Results71
4.2.3 Sensitivity Discussion
4.3 Artificial penetrations within the AoR 78
4.3.1 Tabulation of Wells within the AoR78
4.4 AoR and Corrective Action Plan 79
5. Financial Responsibility Plan
5.1 Area of Review and Corrective Action Cost Estimate 84
5.2 Injection Well Plugging and Site Reclamation Estimate 84
5.3 Post-Injection Site Care Cost Estimate 84
5.5 Emergency and Remedial Response Cost Estimate 85
6. Well Construction Details
6.1 Well Hole Diameters and Injection Intervals 89
6.2 Casing Specifications 89
6.3 Tubing Specifications 91
6.4 Tubing and Packer Pressure Gauge and Compatibility 95
7. Pre-Injection/Operational Testing Plan96
7.1 Tests during well drilling/construction 96
7.1.1 Deviation Checks and casing design96
7.1.1 Deviation Checks and casing design
7.1.2 Mechanical Integrity Testing and Logging During and after Casing Installation
7.1.2 Mechanical Integrity Testing and Logging During and after Casing Installation
7.1.2 Mechanical Integrity Testing and Logging During and after Casing Installation 97 7.2 Injection zone characterization and core sampling 101 7.2.1 Historic injection zone fluid characterization and core sampling 101
7.1.2 Mechanical Integrity Testing and Logging During and after Casing Installation
 7.1.2 Mechanical Integrity Testing and Logging During and after Casing Installation
7.1.2 Mechanical Integrity Testing and Logging During and after Casing Installation
7.1.2 Mechanical Integrity Testing and Logging During and after Casing Installation .97 7.2 Injection zone characterization and core sampling 101 7.2.1 Historic injection zone fluid characterization and core sampling .101 7.2.2 Proposed Coring and Fluid Sampling Program .103 7.3 Fracture pressure and downhole hydrogeologic testing of conditions 104 7.3.1 Historic testing .105 7.3.2 Proposed CCS#5, CCS#6 and CCS#7 testing program .107
7.1.2 Mechanical Integrity Testing and Logging During and after Casing Installation .97 7.2 Injection zone characterization and core sampling 101 7.2.1 Historic injection zone fluid characterization and core sampling .101 7.2.2 Proposed Coring and Fluid Sampling Program .103 7.3 Fracture pressure and downhole hydrogeologic testing of conditions 104 7.3.1 Historic testing .105 7.3.2 Proposed CCS#5, CCS#6 and CCS#7 testing program .107 7.4 Injection and confining zone formation testing 108
7.1.2 Mechanical Integrity Testing and Logging During and after Casing Installation
7.1.2 Mechanical Integrity Testing and Logging During and after Casing Installation
7.1.2 Mechanical Integrity Testing and Logging During and after Casing Installation
7.1.2 Mechanical Integrity Testing and Logging During and after Casing Installation
7.1.2 Mechanical Integrity Testing and Logging During and after Casing Installation
7.1.2 Mechanical Integrity Testing and Logging During and after Casing Installation

8.5.1 Regulatory Requirements	110
8.5.2 Stimulation Programs or Methods and Description of Stimulation Fluids	111
8.5.3 Determination that Stimulation will not Interfere with Containment	118
8.6 CO ₂ stream characteristics 118	
8.7 Injection Well Operating Requirements 119	
8.7.1 Precautions to Prevent Well Blowouts	
8.7.2 Circumstances Under Which Injection Must Cease	
9. Testing and Monitoring Plan	121
9.1 CO ₂ stream analysis 121	
9.1.1 Sampling Methods	
9.1.2 Laboratory to be Used/Chain of Custody Procedures	122
9.2 Mechanical integrity and corrosion testing 122	
9.2.1 Sample Description	122
9.2.2 Sample Exposure	122
9.2.3 Sample Handling and Monitoring	123
9.2.4 Mechanical Integrity Testing	123
9.3 Pressure fall-off testing 123	
9.3.1 Pressure Fall-off Test Procedure	123
9.4 Groundwater quality monitoring 124	
9.4.1 Identification of Monitored Intervals	
9.4.2 Direct Monitoring Methods	
9.4.3 Indirect Monitoring Methods	127
9.4.4 Analytical and Field Parameters for Groundwater Samples	128
<u>9.5 CO₂ plume and pressure front tracking 130</u>	
9.5.1 Direct Monitoring Methods	130
9.5.2 Indirect Monitoring Methods	137
9.6 Testing and monitoring plan QASP 138	
9.7 Reporting Requirements 138	
9.7.1 Electronic Reporting	
9.7.2 Semi-Annual Reports	
9.7.3 24-Hour Reporting	139
9.7.4 Reports on Well Tests and Workovers	140
9.7.5 Advance Notice Reporting	140
9.7.6 Additional Reports	140
9.7.7 Records	141

10. Well Plugging Plan	142
10.1 Facility Information 142	
<u>10.2 Summary 142</u>	
10.3 Planned Tests or Measures to Determine Bottom-hole Reservoir Pressure 143	
10.4 Planned External Mechanical Integrity Test(s) 143	
10.5 Information on Cement Plugs 143	
10.3 Narrative Description of Plugging Procedures 148	
11. Post-Injection Site Care and Site Closure Plan	151
11.1 Pressure differential and position of the CO ₂ plume and pressure front 151	
11.2 Post-injection phase monitoring plan 153	
11.2.1 Groundwater Quality Monitoring	153
11.2.2 Carbon Dioxide Plume and Pressure Front Tracking	156
11.3 Alternative PISC timeframe 159	
11.4 Non-endangerment demonstration criteria 161	
11.5 Monitoring well plugging and site closure plan 165	
11.5.1 Plugging the Verification Monitor Wells	166
11.5.2 Plugging the Geophysical Well(s)	170
11.5.3 Planned Remedial/Site Restoration Activities	172
11.6 Quality Assurance and Surveillance Plan (QASP) 173	
12. Emergency and Remedial Response Plan	174
APPENDICIES	175
APPENDIX A: Financial Responsibility Documents	176
APPENDIX B: Area of Review Well Database	177
APPENDIX C: Quality Assurance and Surveillance Plan	178
APPENDIX D: Existing Site Wells Coring Summary	179
APPENDIX E: Stimulation Attachments and Procedures	180
APPENDIX F: Cross-Reference Table of Class VI Injection Well Rules (40 CFR Subpart H)	181
APPENDIX G: CO ₂ Resistant Cement Technical Specification	182

1. Executive Summary

1.1 Introduction

The Archer Daniels Midland (ADM) Company ("Operator") proposes an addition to the existing underground injection project at its agricultural products and biofuels production facility located in Decatur, Illinois. The goal of this additional neighboring injection site is to add three (3) underground injection wells to accept and retain industrial-scale volumes of carbon dioxide (CO₂) for permanent geologic sequestration. Two pre-existing Carbon Capture and Sequestration (CCS) wells with associated equipment have previously been constructed and operated at the main Decatur facility, and permit applications have been submitted for a third and fourth well. This permit application is being submitted for three additional wells to be located on leased property north of the ADM production facility that are named Well #5, Well #6, and Well #7 (CCS#5, CCS#6, and CCS#7) in this application document and related submissions.

Carbon Capture and Sequestration at Well #5, Well #6, and Well #7 (CCS#5, CCS#6, and CCS#7) is to begin injection upon permit approval at an approximate rate of 3,050 metric tons per day (MT/day). At least 1.1 million MT per well will be injected annually to these three wells.

The proposed sequestration site at the ADM facility will be supplied with CO₂ from ADM or 3rd party carbon capture systems, including but not limited to:

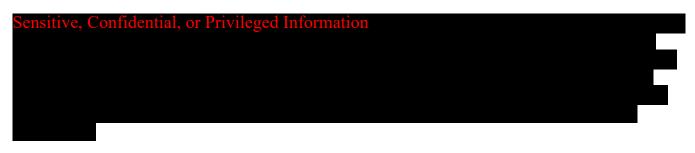
- Pre-combustion systems
- Oxy-combustion systems
- Post combustion systems
- CO₂ from ADM's various ethanol and cogeneration facilities including but not limited to Decatur, IL; Clinton, IA; and Cedar Rapids, IA.

Sensitive, Confidential, or Privileged Information

Following cessation of the operational period, ADM proposes a post-injection monitoring and site closure period of 10 years.

The new facilities include not only the injection wells CS#5, CCS#6 and CCS#7, but also injection zone monitoring/verification wells VW#4 and VW#5, a geophysical well associated with each injection well (GM#5, GM#6, and GM#7) and a pipeline to transport the CO₂ to the injection wells. The three well cluster comprised of VW#4 and VW#5 will meet CO₂ sequestration monitoring requirements for the three well aggregate (CCS#5, CCS#6, and CCS#7).

The proposed sequestration site at the ADM facility will be supplied with nearly pure CO_2 from various processes as outlined in Section <u>8.6, CO_2 stream characteristics</u>.


ADM will leverage the knowledge and experience gained from historical site characterization and existing site CCS operations to design, construct, and operate the CO₂ collection, compression, dehydration, and injection facility capable of delivering and sequestering over 1 million MTs per year of CO₂ per well into the Mt. Simon.

The construction phase of the project is expected to last 18-24 months, allowing the commissioning and operation of the new well facilities to occur beginning in January 2025.

1.2 Injection Plan

The proposed mass to be injected is to be approximately 3,050 metric tons (MT)/day of supercritical CO₂ per well (CS#5, CCS#6 and CCS#7). A cumulative CO₂ mass of 13.2 million tons per well is projected over approximately twelve years of operation, for a total of 39.6million tons combined for CCS #5-7. Including injection from CCS #1-4, total injection at the site is projected to be 95 million tons. Injection is scheduled to begin in January 2025. Injection rates will be metered and are projected to remain continuous during the injection period.

Sensitive, Confidential, or Privileged Information

During the period prior to injection, additional assessment of perforation strategies and subsequent modeling will take place to further predict the behavior of the CO₂ plume based on the data collected during injection well installation, in part, by comparing it to data already collected from the other wells at the site. Permeability-thickness and the injectivity of several sub-intervals (layers) within the Mt. Simon will be quantified and assessed, to understand the distribution of advective CO₂ within these intervals.

1.3 Injection Fluid

Information pertaining to composition, quantity, origin and other data of the proposed CO₂ streams are presented in Section <u>8.6 CO₂ stream characteristics</u>.

CCS#5, CCS#6 and CCS#7 will be operated at a maximum daily injection rate of 3,050 MT/day/well and average annual average injection rate of 1.1 million MT/year/well from the combined CO₂ sources addressed in Section 8.6, with injection beginning in February 2026. The total injection mass, over the life of the well, is anticipated to be 13.2 million tons per well.

2. General Information

2.1 Applicant and Site Information

Applicant:	Archer Daniels Midland Company – Corn Processing
USEPA Identification No.	ILD984791459
IEPA Identification No.	1150155136
Facility Contact:	Mr. Douglas Kirk, Plant Manager
Mailing Address:	4666 Faries Parkway
	Decatur, IL 62526
Phone:	217-451-6330

Injection Well Location:

CCS#5 (Proposed): +39° 57' 47.32", -89° 00' 43.33" (NAD 1983) Southwest corner of Section 32 Township 18N, Range 02E Decatur, Macon County Illinois

CCS#6 (Proposed): +39° 57' 48.15", -88° 58' 48.7" (NAD 1983) Northeast of Section 04 Township 17N, Range 02E Decatur, Macon County Illinois

CCS#7 (Proposed): +39° 56' 54.21", -88° 59' 36.19" (NAD 1983) Northeast of Section 08 Township 17N, Range 02E Decatur, Macon County Illinois

Site Information:

County:	Macon
SIC Codes:	2046 – wet corn milling
	2869 – industrial organic chemicals,
	ethanol 2075 – soybean oil mills
	2076 – vegetable oil mills
Owner/Operator:	Archer Daniels Midland Company – Corn Processing
	4666 Faries Parkway
	Decatur, IL 62526
Operator Status:	Private
Phone:	1-800-637-5843
Indian Lands:	The site is not located on Indian lands.

Existing Environmental Permits:

NPDES	Industrial Storm Water Permit IL0061425
UIC	IL-115-6A-0001
	IL-115-6A-0002
RCRA	None
Other	Various air permits, including Title V Clean Air Act Permit (#96030038)
Other	Sanitary District of Decatur Pre-Treatment, Permit #200

Nature of Business:

ADM is a manufacturer of biodiesel, ethanol, soybean oil and meal, corn sweeteners, flour, and other valueadded food and feed ingredients. The CCS#5, CCS #6 and CCS #7 wells will be used to manage CO₂ generated by these ADM manufacturing operations and for managing CO₂ generated at offsite facilities as discussed in Section 8.6 of this document.

2.2 Cross-Reference Table to Class VI Injection Well Rules

See APPENDIX F: Cross-Reference Table of Class VI Injection Well Rules (40 CFR Subpart H) for list of regulations and how this application meets applicable requirements.

2.3 List of Abbreviations Used in this Application

2.5 LIST OF AD	bicviations oscu in this Application
2D	two-dimensional
3D	three-dimensional
ADM	Archer Daniels Midland
aka	also known as
AoR	area of review
API	American Petroleum Institute
bbls	barrels
BGL	below ground level
BHA	bottom hole assembly
BHCT	bottom hole circulating temperature
BHST	bottom hole static temperature
BOD	basis of design
BOP	blow out preventer
bpm	barrels per minute
B-T gauge	Bourdon-tube gauge
BTC	buttress thread & coupling
BTU	British thermal unit
С	Celsius
CaCl2	calcium chloride
CaCO3	calcium carbonate
CBL	cement bond log
CCS	carbon capture and sequestration
cf	cubic feet
cf/sk	cubic feet per sack
CFR	Code of Federal Regulations
cm	centimeter(s)
CO ₂	carbon dioxide
ср	centipoises (viscosity unit)
csg	casing
cu	capture units
D&CWOP	Drill and complete well on paper
e.g.	for example
EMR	electronic memory recorder
EOR	enhanced oil recovery
EOT	end of tubing

est.	estimate
etc.	et cetera
EUE	external upset end
F	Fahrenheit
FIT	formation integrity test
FEED	front end engineering design
FOT	fall-off test
FS	full scale
ft	foot or feet
ft/hr	feet per hour
ft/min	feet per minute
gal/sk	gallons per sack
g/L	grams per liter
gpm	gallons per minute
GR	gamma ray
H2S	hydrogen sulfide
HAZOP	Hazard and Operability Study
hp	horsepower
hr(s)	hour(s)
IBDP	Illinois Basin – Decatur Project
IBOP	inside blowout preventer
ID	inside diameter
IEPA	Illinois Environmental Protection Agency
IL-ICCS	Illinois – Industrial Carbon Capture and Sequestration
in.	inch(es)
ISGS	Illinois State Geological Survey
KB	kelly bushing (depth referenced to)
КСІ	potassium chloride
km	, kilometer(s)
L (I)	liter(s)
Lb (lbs)	pound (pounds)
Lb/ft (lbm/ft)	pounds per foot
Lb/sk	pounds per sack
LCM	lost circulation material
LTC	long thread & coupling
M (m)	meter(s)
m/hr	meters per hour
MASIP	maximum allowable surface injection pressure
MDT	modular dynamic tester
mD	millidarcy (millidarcies)
MD	measured depth
meV	milli electronvolts
mg/L	milligrams per liter
MFC	multi-finger caliper
MGSC	Midwest Geologic Sequestration Consortium
MUSC	move in
mi.	miles
mL	milliliter
	miniter

mmscf	million standard cubic feet
MO	move out
Mol.	mole
MOSDAX	modular subsurface data acquisition system
μPa	microPascal
MPa	MegaPascal
MSL	mean sea level
MT	metric tonnes
MT/day	metric tonnes per day
MVA	monitoring, verification, and accounting
N2	nitrogen (atmospheric)
NaCl	sodium chloride
N/A	not applicable
ND	nipple down
NPDES	National Pollution Discharge Elimination System
NRC	Nuclear Regulatory Commission
NU	nipple up
02	oxygen (atmospheric)
OD	outside diameter
Ра	Pascal (pressure unit)
P&A	plugging and abandonment
P&ID	Piping & Instrument Diagram
PBTD	Plug back total depth
PCSD	Process Control Strategy Diagram
PFD	process flow diagram
PFO	pressure fall off
PISC	post-injection site care
РООН	pull out of hole
Poz	pozzolan
ppg	pounds per gallon
ppb	parts per billion
ppf	pounds per foot
ppm	parts per million
ppmv	parts per million by volume
ppmwt	parts per million by weight
psi	pounds per square inch
psia	pounds per square inch atmospheric
psig	pounds per square inch gauge
psi/ft	pounds per square inch per foot
PV	plastic viscosity
QA	quality assurance
QHSE	quality, health, safety, and environment
Qty	quantity
RCC	Richland Community College
RD	rig down
RU	rig up
RST	reservoir saturation tool
RSTPro	trademark reservoir saturation tool

S (sec)	seconds
SCS	Schlumberger Carbon Services
SCMT	slim cement mapping tool
sk(s)	sack(s)
SIP	surface injection pressure
SP	spontaneous potential
SPF	slots per foot
SRPG	surface-readout pressure gauge
SRTs	step rate tests
SS	stainless steel
STC	short thread & coupling
TBD	to be determined
tbg	tubing
TD	total depth
TDS	total dissolved solids
TEC	tri-ethylene glycol
TIH	trip in hole
TIW	Texas Iron Works (pressure valve)
ТОН	trip out of hole
TVD	true vertical depth
UIC	underground injection control
US DOE	United States Department of Energy
USEPA	United States Environmental Protection Agency
USDW	underground source of drinking water
USGS	United States Geological Survey
USIT	ultrasonic imaging tool
V (v)	volt
VFD	variable frequency drive
VSP	vertical seismic profile
WFL	water flow log
WOC	wait on cement

3. Site Geologic Characterization

3.1 Regional geology and geologic structure

The following information, previously presented in the CCS#2 submission, summarizes the regional geology associated with the ADM projects:

Regional geologic characterization of the Mt. Simon Formation has been summarized by several authors (e.g., Medina and Rupp, 2012). Sensitive, Confidential, or Privileged Information

A stratigraphic column specific to the project is shown in Figure 3.1-1 that displays the petrophysical results of characterizing the Mt Simon Formation locally using data from CCS#1. The facies of the Lower Mt. Simon are a mixture of several depositional environments that include subaqueous coast, subaerial coast, lagoon, river, plain, and eolian plain (Freiburg J. T., 2016). Sensitive, Confidential, or Privileged Information

Page 13 of 183

STRATIGRAPHIC COLUMN OF THE ILLINOIS BASIN



Figure 3.1-1. Stratigraphic Column for the Illinois Basin (ISGS, 2011)

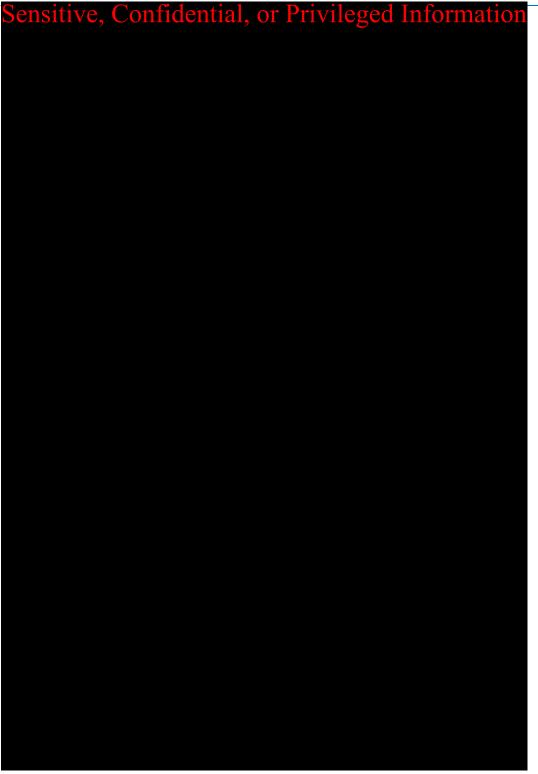
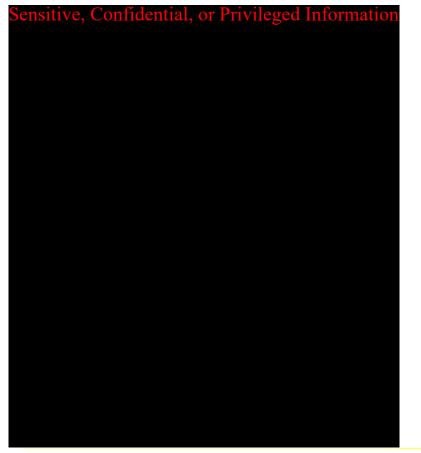


Figure 3.1-2. Petrophysics at CCS#1 (gamma ray, porosity, and permeability)


The CCS#1 and CCS#2 well submissions that were previously reviewed and approved by US EPA included a through discussion of regional and site geology. Conclusions presented in these submittals indicate that: "

Sensitive, Confidential, or Privileged Information

Figure 3.1-4 presents the location of 2D seismic lines and

Figure 3.1-5 presents interpreted faults and miscroseismic events near ADM.

Figure 3.1-3. Regional structural features map showing no regional structures within a 25-mile radius of the ADM Plant near Decatur, Macon County.

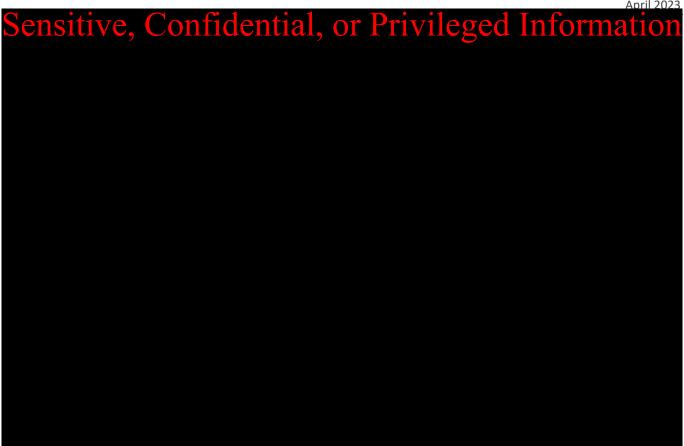

Seismic reflection data were acquired over the site to identify the presence of faults and geologic structures in the vicinity of the proposed well site. Sensitive, Confidential, or Privileged Information

Figure 3.1-4. Location of 2D and 3D Seismic and contoured Precambrian surface (depth SSTVD). 2D seismic lines are presented in blue (Knox 501, Know 101 and Knox 601). The purple square within the CCS #1-4 area is the location of 3d seismic. Red lines show the location of the modeled plumes in the CCS 5-7 and CCS 1-4 areas (95 Mt as modeled in 2088) and the white outline is the total 7 well 95 Mt pressure boundary in 2043. See Section 4 for additional information regarding plume and pressure boundary modeling and results.

Figure 3.1-5. Interpreted faults and miscroseismic events near ADM. The surface is the Precambrian basement, the orange lines represent the intersection of the interpreted faults from the 3D with the Precambrian, and the blue points are the recorded microseismic events. Extent of the 3D survey, 2D lines, and 2088 95 MT CO₂ plume are shown. The several linear cluster of events show a low degree of correlation between microseismic events and interpreted faulting.

Site geologic interpretations pertaining to regional and local stratigraphy and structure were verified and augmented by ADM's collection of log and core data at existing wells CCS#1, CCS#2, VW #1, and VW#2 that included permeability and porosity data. These data are presented on well logs included in Attachment A that summarize data obtained from geophysical logs and core data.

Well logs presented in Attachment A also present the regional thickness of the injection and confining zones gained through the analysis of data acquired via the installation of site deep monitoring wells and injection wells CCS#1, CCS#2, VW#1 and VW#2. Logs presented in Attachment A confirm stratigraphic thickness and lateral distribution at the previously logged and cored locations. Regional thickness at the proposed CCS#5, CCS#6, and CCS#7 locations will be verified through geophysical well log analysis, and will include the collection of core to further verify formation thickness.

Additionally, geologic data pertaining to intervals from 3,000 ft to ground surface are presented in geophysical logs included in Attachment A.

References

Freiburg, J. T. (2014). A Depositional and Diagenetic Characterization of the Mt . Simon Sandstone at the Illinois Basin - Decatur Project Carbon Capture and Storage Site , Decatur , Illinois , USA, 73.

Freiburg, J. T. (2016, 05 17). *Current Research on the Mt. Simon Geology; Refining the Lower Mt. Simon Depositional Interpretation.* Retrieved from

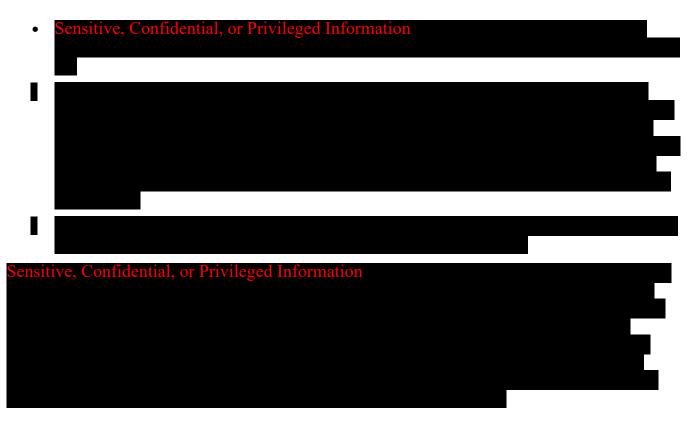
http://www.sequestration.org/resources/PAGMay2016Presentations/04-Freiburg_IBDP_PAG_2016_Mt-Simon.pdf: http://www.sequestration.org/resources/PAGMay2016Presentations/04-Freiburg_IBDP_PAG_2016_Mt-Simon.pdf

Frommelt, D., 2010. Letter to the Illinois Environmental Protection Agency, Subject: CCS Well #1 Completion Report, Archer Daniels Midland Company – UIC Permit UIC-012-ADM, dated May 5, 2010.

ISGS. (2011). Stratigraphic Column for the Illinois Basin.

Medina, C. R., & Rupp, A. J. (2012). Reservoir characterization and lithostratigraphic division of the Mount Simon Sandstone (Cambrian): Implications for estimations of geologic sequestration storage capacity. *Environmental Geosciences*, 1-15.

Nelson, W.J., 1995. Structural features in Illinois, Illinois State Geological Survey Bulletin 100, 144 p.


Smith, V. L., & Leetaru, H. E. (2014). 2D Seismic Reflection Data across Central Illinois. Schlumberger Carbon Services.

3.2 Faults and fractures

Based on the site-specific data collected and analyses that have been completed using these data, there is very low risk for faulting or fracturing being present near the proposed CCS #5, CCS #6, and CCS #7 wells that has any potential to impact the arrestment properties of the confining zone at the site. In addition to characterization of the site geology that supports the sealing properties of the cap rocks, during the injection phase of the project to date wherein CO₂ was managed in the Mt. Simon at the nearby CCS#1 and CCS#2 wells (beginning in 2012), no loss of containment has been detected and no microseismic events occurred above the injection zone.

Faulting does not and will not contribute to lack of containment because:

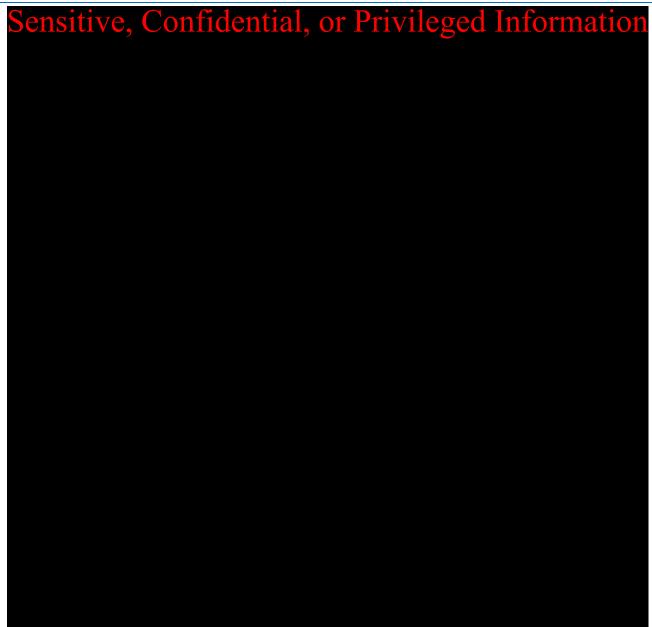
3.2.1 Interpreted faults based on reprocessed 3D seismic data and Structural Update

<u>Reprocessed Seismic Data.</u> Recent 2019 reprocessing of the 3D seismic cube was performed to boost the upper frequency band of the 3D seismic data, resulting in a crisper image of the injection zone and the Precambrian basement. The continuity observed in the original seismic section (yellow box in the lower panel of Figure 3.2-1) was disrupted by frequency boosting (in the upper panel, Figure 3.2-1). After the higher frequencies were boosted in the 3D cube, an edge detection algorithm was applied to the reprocessed data, which identified discontinuities in the 3D seismic that may be attributed to depositional changes or may be related to limited faulting. The next step was to apply an Ant-tracking algorithm to the edge detection cube to planarize these discontinuities. When constrained by a stereonet filter, Ant-tracking will produce only near-vertical features that imply faulting. However, there is significant uncertainty associated with the use of this algorithm, based on this seismic quality, to identify faults so the location of any features interpreted as faults is suspect. Also, the manual interpretation performed using the Ant-track cube as a guide is a subjective process, and interpretations can vary significantly between interpreters.

As discussed in Section 3.1 and presented in Figures 3.1-4 and 3.1-5, regional surfaces were expanded in 2021 from the original 3D seismic interpretation-based area to a 60x60 mile region using three 2D seismic lines:

he surfaces that could not be interpreted using the 2D lines: the Eau Claire

Limestone, the Eau Claire Shale, the Mt. Simon D, the Mt. Simon C, the Mt. Simon B, the Mt. Simon A Upper Conformal, the Mt. Simon A Lower Conformal, and the Argenta were conformally gridded between the interpretable surfaces to maintain thicknesses.


In 2023, the 3d geocellular model was expanded again to a 52-mile x 58-mile region (utilizing the updated 60 x 60 mile structure surfaces) to more accurately simulate the CCS5-7 proposed well injection grouping.

online sources.

The new global 3d geocellular tartan grid configuration, with variable cell sizes, is 373 x 557 x 110 cells (totaling 22,853,710) in the x, y, and z directions, respectively. The smallest grid cells around the injectors and observation wells were 200 ft × 200 ft (61m x 61m) laterally. The vertical thickness of each cell varies depending on the zone thickness.

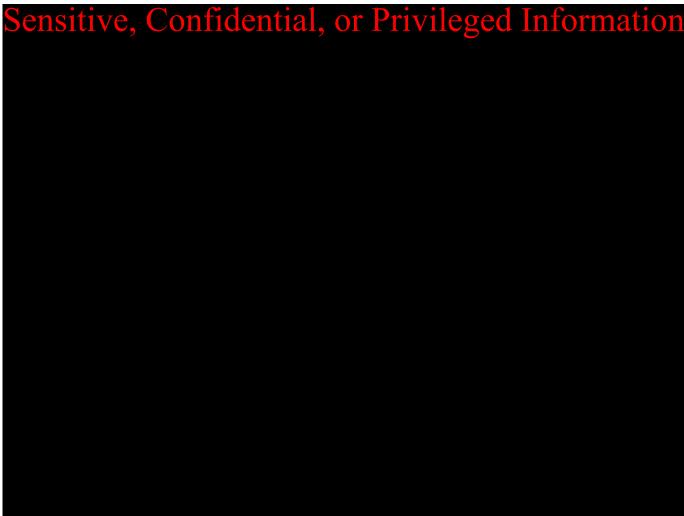


Figure 3.2-1. Original seismic processing (bottom panel) and 2019 reprocessing (top panel). Note the lateral continuity of the Mt. Simon C in the yellow box on the bottom panel, as compared to the disruption in the seismic signature in the yellow box on the upper panel.

Figure 3.2-2. Association of interpreted faults and microseismic events at or near CCS #1 (IBDP). The surface is the Precambrian basement, the white lines represent the intersection of the interpreted faults from the 3D with the Precambrian, and the blue points are the recorded microseismic events. There are several linear clusters of events which show a low degree of correlation with the interpreted faulting.

Sensitive, Confidential, or Privileged Information

Figure 3.2-3 – **Cross section through IDBP from Dando, 2021 (a) and histogram of the depth below the confining zone for microseismic events (b).** The cross section shows the majority of microseismic events occur in the Precambrian, with some in the Argenta and Lower Mt. Simon. The histogram shows the depth of events below the Eau Claire shale.

Based on information presented in the above discussions and figures, no new faults were identified in the CCS#4, CCS#5, CCS#6 and CCS#7 locations relative to those previously identified after incorporating 2D seismic data. All known regional faulting is presented in previous discussions in this section.

3.3 Injection and confining zone characteristics

The CCS#1 and CCS#2 approved permit applications included detailed information pertaining to general and specific injection and confining zone characteristics. The following information summarizes data presented in the CCS#2 submission as well as additional data provided to EPA (2022), and is included for completeness. Refer to previous applications for additional detailed information. The information presented herein extends to the CCS#5, CCS#6, and CCS#7 location.

Geologic Name(s) of Injection Zone: The proposed injection zone is the Cambrian-age Mt. Simon Sandstone. CO_2 injected through the well will be contained in the injection zone and will flow into the Mt. Simon at the injection interval. The injection interval is a portion of the Mt. Simon where the injection well is perforated, i.e., the Lower Mt. Simon A and Mt. Simon B.

Depth Interval of Injection Zone Beneath Land Surface.

Sensitive, Confidential, or Privileged Information

Characteristics of the Injection Zone: Sensitive, Confidential, or Privileged Information

EPA (2022) requested additional information regarding the clay content within the injection zone as it relates to pore filling and cementation and potential impact on injectivity at CCS#1 and CCS#2. Numerous studies have been done to understand the mineralogy of Mt. Simon Sandstone (Carroll et al., 2013; Freiburg et al., 2014; Yoksoulian et al., 2014; Davila et al., 2019; Shao et al., 2020). Sensitive, Confidential, or Privileged Information

Page 24 of 183

Batch reactor experiments conducted with Mt. Simon Sandstone generally have indicated limited dissolution of rock minerals by CO₂ (Carroll et al., 2013; Yoksoulian et al., 2014; Shao et al., 2020). In addition, results from ISGS mineralogical analyses indicated the bulk mineral composition remained unchanged for all sandstone samples after reaction (1-4 months), indicating that the influence of rock-brine-CO₂ interaction on bulk rock composition was negligible.

These studies and analyses indicate very little likely impact on injectivity at CCS#1 or CCS#2 due to K-Feldspar or the dissolution of other minerals. Operational data indicate that injectivity may be more significantly related to other factors such as inclusion of compression oils in the injectate and condition of the formation resulting from well construction, perforation, and maintenance.

Geologic Name(s) of Confining Zone: The primary confining zone (seal) is the Cambrian-age Eau Claire Formation. Sensitive, Confidential, or Privileged Information

Depth Interval of Upper Confining Zone Beneath Land Surface Sensitive, Confidential, or Privileged Information

Characteristics of Confining Zone: Sensitive, Confidential, or Privileged Information

As indicated above, site injection zone and confining zone characteristics were verified and augmented by ADM's collection of log and core data at existing wells CCS#1, CCS#2, VW #1, and VW#2 that included individual permeability and porosity data. These data are presented on well logs included in Attachment A. Provided well logs also verify the regional and local thickness of the injection and confining zones.

Figure 3.3-1 is the ADM CO₂ Storage Site Cross Sectional Log. This log presentation is an amalgamation of the information developed during well construction; i.e., mud logs, open hole logs, and analysis of well cores. The petrophysical information presented in this log is consistent with and was used in the development of the Petrel static model used to characterize the CO_2 storage site.

Sensitive, Confidential, or Privileged Information

Figure 3.3-1: ADM CO₂ Storage Site Cross Sectional Log, Existing Wells

3.3.1 Variogram Analysis

The Mt. Simon extends laterally across the entire AoR. Porosity and permeability distributions were originally developed using a process described by Senel (et.al, 2013) that was updated in 2015; a summary of the original and updated modeling is presented in Attachment A. Modeling conducted to support the CCS#5, CCS#6, and CCS#7 permit application included geophysical logs and data from nearby ADM wells CCS#1, CCS#2, VW #1 and VW#2. The porosity logs acquired from these four wells used in modeling provided relatively high vertical resolution regarding effective porosity at each well and the formation characteristics allowed for correlation of layers between wells; however, without using other data, less was known about the porosity values of the rock present between the wells. To complete geological modeling, it was necessary to interpolate the data from the wells into the interwell space in a way that represented the geological setting. Variogram analysis was used to evaluate the geological setting, and it was also used to interpolate the effective porosity of the formations in the interwell space based on the measured log data. Variograms are often determined from well data; however, due to the limited number of well logs available at the site, this analysis could not be completed in a statistically valid way with only four well data set. Therefore, to complete the modeling, variogram analysis was completed based on the upscaled 2019 Porosity Cube (Figure 3.3-2) because it has a high horizontal sampling rate. The upscaling process used an averaging algorithm to define one porosity cube value for each model cell. This provided a way to calculate a series of zone-specific parameters, which included a variogram map, major azimuth, range, sill, nugget, and function types (Figures 3.3-2 and 3.3-3Figure 3.3-). The 2019 Porosity Cube was only processed for the Eau Claire Shale down to the upper section of the Precambrian. The quantified variogram parameters that were generated for each formation are explained below and are shown in Error! Reference source not found.:

Table 3.3-1. Variogram parameters extracted from the 2019 Porosity Cube and well logs

- Variogram map: In variogram analysis, determining the direction of the variogram is one of the first decisions that must be made and was completed using variogram maps (Figure 3.3-3). Theoretically, the direction of maximum continuity (major direction) and direction of minimum continuity (minor direction) are found after the variograms are calculated in all possible directions (from 0 degree to 359°). The directions that show minimum and maximum range are selected as the variograms that represent the minor and major directions.
 - The major direction defines the direction where the sample points have the strongest correlation.
 The azimuth angle of this major direction can be changed interactively by editing the direction in the search cone. Azimuth angle is specified as the clockwise angle from the north (in degrees).
 - The minor search direction is perpendicular to the major direction.
- **Range**: The range describes where the variogram model reaches its plateau (i.e., the separation distance where there is no longer any change in the degree of correlation between pairs of data values). The range is specific in each direction for the model variogram. A large range means greater continuity and a small range means less continuity. The larger the range, the smaller the heterogeneity. Major and minor ranges were extracted from the highly horizontal sampled 2019 Porosity Cube, and the vertical range was taken from the well log analyses.
- **Sill:** The sill is the semi-variance where the separation distance is greater than the range (on the plateau). This describes the variation between two unrelated samples.
- **Nugget:** The nugget is the semi-variance where the separation distance is zero.
- Variogram types: Different methods (variogram types) exist. The types used in this project were:
 - Spherical: The curve is linear at shorter distances and then makes a sharp transition to a flat sill.
 - Exponential: The curve has an exponential behavior, with a rapid variation at shorter distances.
- **Mt. Simon Information**: The Mt. Simon properties were generated using the original variogram parameters from the 2020 simulation grid, which were interpreted using a porosity cube. The facies model used an isotropic distribution of 10,000 x 10,000ft. For the porosity and permeability models,

anisotropic variograms with a major direction of 127 degrees were used with major and minor ranges varying per zone. The major and minor ranges were as follows: for the Mt. Simon B – 2,669.664 x 1,937.288ft, Mt. Simon A Upper – 2,349.249 x 2,175.311ft, and the Mt. Simon Lower – 2,294.321 x 2,120.382ft.

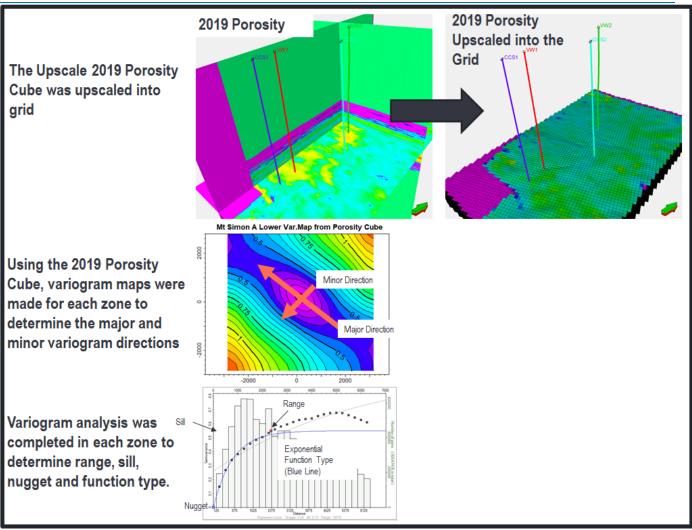


Figure 3.3-2. Steps used to generate the mini grid for geostatistical extraction.

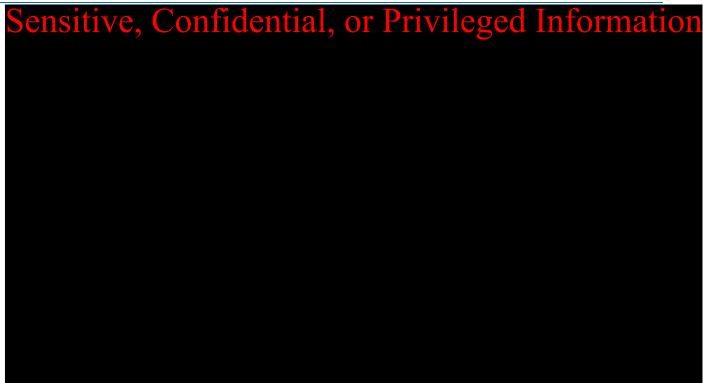


Figure 3.3-3. Variogram maps extracted from the 2019 Porosity Cube.

3.3.2 Petrophysical Modeling of Effective Porosity and Permeability Interpolation

The effective porosity logs from the four wells used in modeling (i.e., CCS#1, CCS#2, VW#1, VW#2) provided high vertical resolution at each well; however, other than the fact that correlations could be made between the wells, little was known about the porosity values between the wells. Using the variogram analysis described in Section 3.3.1, the 2019 Porosity Cube was used to guide the petrophysical modeling of effective porosity to define lateral and vertical extent formation porosity. This method was used because seismic inversion properties (porosity and acoustic impedance, AI) can be correlated with the well log properties (porosity and AI); seismic inversion requires a relationship to be defined between the AI observed in the 3D seismic survey and the total porosity in the well logs. Once defined, this relationship is then used to transform the 3D seismic acoustic impedance (AI) volume into a porosity volume (2019 Porosity Cube). A reliable correlation between the porosity well log and the 2019 Porosity Cube was found.

Effective porosity and permeability were interpolated using the above-described geostatistics. Because of the presence of reservoir and non-reservoir facies types, the porosity and permeability were modeled separately within each zone and facies type. Cokriging was used to take advantage of the covariance between the effective porosity logs and the 2019 Porosity Cube. This method is appropriate because the primary data (effective porosity logs) has high vertical resolution but is not present between wells; the related secondary data (2019 Porosity Cube) lacks high vertical resolution but has abundant horizontal sampling between the wells. Using this relationship, in 2020, a more-reliable reservoir model was developed because it capitalizes on the strengths of both the high vertical resolution well log with the higher horizontal sampling seismic data. A plot of the upscaled porosity cube can be used as a reliable cokriging variable (Figure 3.3-4. Using the geostatistics from each formation from the variogram analysis, permeability was cokriged using Gaussian random function simulation (GRFS) against the effective porosity property (Figure 3.3-4). Cokriging was used to take advantage of the known covariance between effective porosity and permeability.

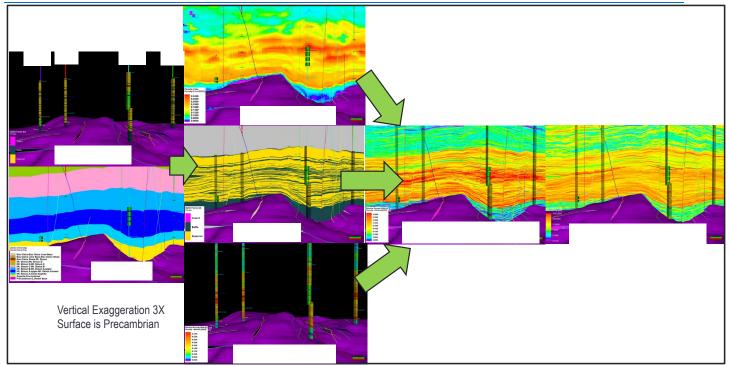


Figure 3.3-4. Property model workflow.

As presented in Section 3.2, modeling was updated in 2023 to expand the model area and more accurately simulate the proposed CCS#5-7 area. In addition to providing more structural information pertinent to the CCS #5-7 area, as the lateral extent of the modeled area was increased, the facies and petrophysical properties were rerun using the original variogram parameters to propagate the entire model. The original values in the 9.7-mile x 9.3-mile area were preserved to honor the history matching work done previously. As a result, upscaled and calibrated porosity and permeability profiles were developed that extended through the CCS# 5-7 area, as shown in Figures 3.3-5, 3.3-6, 3.3-7, 3.3-8 and 3.3-9. Attachment A includes additional porosity and permeability profile cross sections. Synthetic logs were extracted from the geocellular model at the proposed CCS#5, CCS #6, and CCS #7 well locations (Figure 3.3-10). Increased porosity and permeability are predicted in the Mt. Simon A Upper and Lower formations.

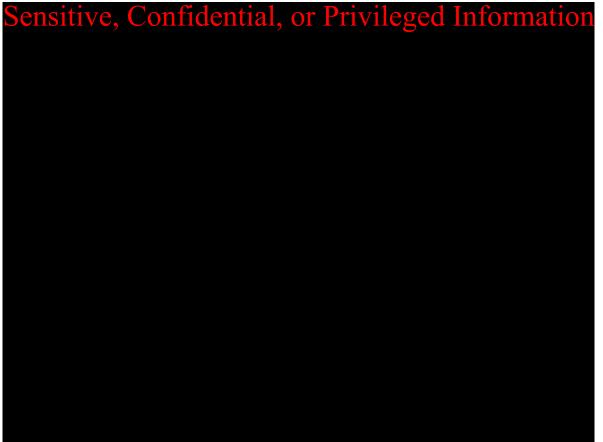


Figure 3.3-5. Location of Injection and Verification Wells, CCS#5-7 Area and Cross Section locations.

Figure 3.3-6. Upscaled and calibrated porosity profiles along the cross-section A-A' and B-B'. Vertical exaggeration is 5x.

Figure 3.3-7 Upscaled and calibrated Upscaled and calibrated permeability profiles along the cross-section A-A' and B-B'. Vertical exaggeration is 5x.

Figure 3.3-8. Upscaled and calibrated porosity profiles along the cross-section C-C' and A-A'. Vertical exaggeration is 5x.

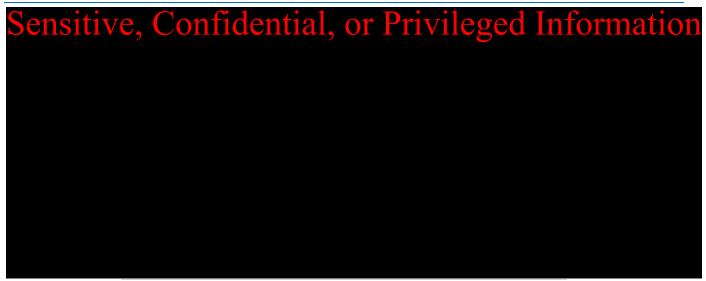


Figure 3.3-9. Upscaled and calibrated permeability profiles along the cross-section B-B' and C-C'. Vertical exaggeration is 5x.

Figure 3.3-10. Synthetic facies, porosity, and permeability at the proposed CCS#5, CCS #6 and CCS #7 well locations extracted from the 3D model.

References

Carroll, S., McNab, W., Dai, Z. and Torres, S. (2013) Reactivity of Mt. Simon sandstone and the Eau Claire shale under CO₂ storage conditions. Environ. Sci. Technol. 47, 252-261.

Dávila, G., Dalton, L., Crandall, D.M., Garing, C., Werth, C.J. and Druhan, J.L. (2020) Reactive alteration of a Mt. Simon Sandstone due to CO₂-rich brine displacement. Geochimica et Cosmochimica Acta 271, 227-247.

Frommelt, D., 2010. Letter to the Illinois Environmental Protection Agency, Subject: CCS Well #1 Completion Report, Archer Daniels Midland Company – UIC Permit UIC-012-ADM, dated May 5, 2010.

Medina, C. R., & Rupp, A. J. (2012). Reservoir characterization and lithostratigraphic division of the Mount Simon Sandstone (Cambrian): Implications for estimations of geologic sequestration storage capacity. Environmental Geosciences, 1-15.

Shao, H., Freiburg, J.T., Berger, P.M., Taylor, A.H., Cohen, H.F. and Locke, R.A. (2020) Mobilization of trace metals from caprock and formation rocks at the Illinois Basin – Decatur Project demonstration site under geological carbon dioxide sequestration conditions. Chemical Geology 550, 119758.

Yoksoulian, L., Berger, P.M., Freiburg, J.T., and Butler, S.M, 2014. Geochemical investigations of CO₂ - Brine - rock interactions of the Knox Group in the Illinois Basin, U.S. Department of Energy, Topical Report DOE/FE0002068 - 10, 58p.

3.4 Hydrologic and hydrogeologic Information

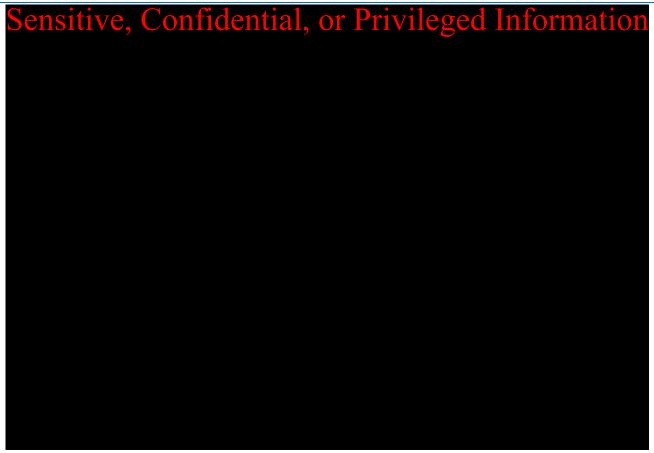
As with the currently permitted CCS#1, CCS#2 and proposed CCS#3 and CCS#4 Class VI injection wells, the CCS#5, CCS#6 and CCS #7 Class VI well targets an injection zone in the Cambrian Mt. Simon Sandstone of the Illinois Basin (see coordinates above under Section 2.1). Core data, as well as geologic and hydrologic information from the injection and confining zones was collected during the drilling and testing of the nearby injection wells CCS#1 and CCS#2, as well as the two deep monitoring wells VW#1 and VW#2. Data from an ISGS database of core sample data and additional core sample analyses from sites within approximately 30–80 miles of the injection wells were also used. Specifically, information used to help guide the geologic model were obtained from core and geophysical logging data from a stratigraphic well in the Mt. Auburn area that was installed by Podolsky Soil Company, the McMillen, T.R. Well No. 1 (API number 120212565000). Wireline log results from CCS#2 and VW#2 and core analyses from VW#2 were compared to data collected from CCS#1 and the ISGS database. The results show good agreement with respect to porosity, permeability, lithology, thickness, and other geologic characteristics, validating the local site geology and hydrogeology. Regarding the formations of interest, Table 3.4-1 details thickness and formation top information collected during the construction of the sites four current deep wells.

The following present elevation information for existing CCS, VW, and GM wells. Ground Elevation, Rig Kelly Bushing (RKB) height, and Kelly Bushing Elevation (KBE) for each well is presented. Note that depths are generally measured from the Rig Kelly Bushing Elevation.

Sensitive, Confidential, or Privileged Information

Because the specific rig to be used for drilling and testing the CCS #5, #6 and #7 wells has not been identified yet, the exact RKB is still unknown

The Mt. Simon Sandstone is the first formally recognized sedimentary unit overlying the Precambrian granitic basement rock. Sensitive, Confidential, or Privileged Information



Directly overlying the Mt. Simon Sandstone is the Cambrian Eau Claire Formation.

. Two other regional shale units are identified as secondary and tertiary confining zones are the Ordovician Maquoketa Formation and the Devonian New Albany Shale, respectively. Although these units protect the locally used sources of underground drinking water, they lie above the designated lowermost USDW.

Only limited data and modeling results are available for characterizing ground water flow in the deep Illinois Basin. Based on modeling results from Gupta and Bair (1997), flow patterns in the Mt. Simon are "influenced by the geologic structure with flow away from arches such as the Kankakee Arch and toward the deeper parts of the Illinois Basin." In the model, an initial fluid pressure of 3,205 psi (at elevation -6,345 ft MSL), an initial temperature of 112°F (at elevation - 5,365 ft MSL; gradient 1°F/ft), and an initial salinity of 200,000 ppm were used. MSL is defined as mean sea level. Like other areas with humid climates (Freeze and Cherry, 1979), the water table in central Illinois is expected to generally reflect the elevation of the land surface. Steady-state ground water flow modeling for the IBDP site indicates that shallow ground water flows toward the east and southeast toward the Sangamon River and Lake Decatur. Figure 3.4-1 is a map of the observed head in the Mt Simon and details the location of the proposed injection well.

Figure 3.4-1. Observed head in the Mt. Simon Sandstone. The red dot represents the location of the Decatur IL CO₂ storage site (potentiometric surface = 76 m/249 ft above mean sea level).

The lowermost USDW in the AoR is the Ordovician St. Peter Sandstone. Sensitive, Confidential, or Privileged Information Because of the formation depth and high TDS, the St. Peter is not currently exploited as a local source of drinking water.

3.4.1 Water quality data

Based on ISGS data from eight shallow compliance wells monitored from 2010 to 2022, TDS values in Quaternary strata have ranged from about 300 to 700 mg/L, and TDS values in Pennsylvanian strata have ranged from about 600 to 1,400 mg/L. See Figure 3.4-2 that presents the TDS values from the eight shallow compliance wells since monitoring began.

Further, other shallow (non-compliance) wells were monitored by the ISGS from 2008 to 2017. Data from those wells verify that TDS values from Quaternary strata were in the range of 200-2,000mg/L, and TDS values from Pennsylvanian strata were in the range of 700-4,000 mg/L.

Figure 3.4-2. Total Dissolved Solids concentrations in shallow groundwater compliance wells from 2010 to 2022.

Sampling of the St. Peter Sandstone has occurred in GM2 from 2015 to 2022. Results from sampling are provided in the table below and show a range of TDS values in the St. Peter Sandstone of 4,200 to 5,200 mg/L.

Table 3.4-2. Total Dissolved Solids concentrations in ISGS St. Peter Sandstone samples from well GM2 (2015 to 2022).

The Table 3.4-3 presents TDS concentration of fluid samples collected from the Mt. Simon for the CCS#1 well:

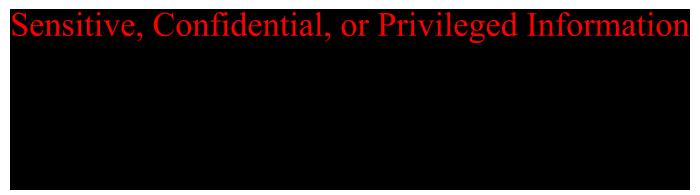


Table 3.4-3. Mt. Simon Total Dissolved Solids Data, CCS#1 (Frommelt, 2010 and ADM, 2010)

References

Frommelt, D., 2010. Letter to the Illinois Environmental Protection Agency, Subject: CCS Well #1 Completion Report, Archer Daniels Midland Company – UIC Permit UIC-012-ADM, dated May 5, 2010.

Freiburg, J. T. (2014). A Depositional and Diagenetic Characterization of the Mt. Simon Sandstone at the Illinois

Basin - Decatur Project Carbon Capture and Storage Site. Decatur, Illinois, USA.

Gupta, N. & Bair, E.S. (1997). Variable-density flow in the mid-continent Basins and Arches region of the United States. *Water Resources Research*, v. 33, n. 8.

Freeze, R. A. and Cherry, J. A. (1979). Groundwater. Prentice-Hall.

3.5 Geochemical Data and Compatibility of CO₂

The Mt. Simon formation water is dominated by Na-Ca-Cl type chemistry and has total dissolved solids (TDS) concentration of approximately 195 g/L (Labotka et al, 2015). Geochemical modeling was used to predict the effects of the geochemical reactions of supercritical CO_2 with Mt. Simon Sandstone and the formation water (Berger et al., 2009). It was predicted that illite and glauconite would dissolve initially, followed by precipitation of kaolinite and smectite. The study concluded that the volume of pore space would not be significantly altered (Berger et al., 2009) and no compatibility problems, such as a major reduction in injection-formation permeability resulting from chemical precipitates, are expected.

Carroll et al. (2013) conducted a combined experimental and modeling study using Mt. Simon Sandstone and Eau Claire Shale samples under CO₂ storage conditions. The study showed that dissolution of illitic clays and K-feldspar, and precipitation of montmorillonite, amorphous silica, and kaolinite, are the major reaction paths initiated by addition of CO₂. Significant increase in Fe concentration was noticed after CO₂ is introduced, with iron-bearing clays interpreted to be the source of Fe release. The authors suggest that these reactions could alter reservoir and seal permeability by clogging pores and fracture networks. However, the effects of dissolution and precipitation on petrophysics are two sided. Dissolution of the iron clays could increase porosity and permeability locally and promote long-term mineral trapping of CO₂ as Fe carbonates, while precipitation of Fe-carbonates, clays and hydroxides could reduce reservoir and seal permeability by clogging pores and fracture networks.

Monitoring data indicate that CO₂ injected to date has been contained within the Mt. Simon Sandstone, especially the lower Mt. Simon Sandstone, and has not been in contact with the Eau Claire Formation. Therefore, dissolution of minerals within the Eau Claire Formation should not be occurring. Also, laboratory experiments have been conducted to understand the general behavior of Eau Claire Formation samples when exposed to CO₂ in a batch reactor (Carroll et al., 2013; Shao et al., 2020). While the Eau Claire samples did chemically interact with CO₂ in the laboratory experiments, those experiments are not accurate analogs for in situ conditions. For example, the Eau Claire Formation is a highly laminated, fissile shale to silty shale with the shaliest section directly overlying the Mt. Simon Sandstone. Roy et al (2014) noted that the advective flow from the Mt. Simon Sandstone, as well as ionic diffusion, into the Eau Claire is expected to be insignificant.

A recent flow-through experiment study (Dávila, et al., 2020) using a Mt. Simon core sample from the site coupled with reactive transport modeling also showed changes in flow properties induced by mineral reactions. Rock-water reactions similar to those identified by Carroll, et.al, are documented, including dissolution of K-feldspar, calcite, minor illite and pyrite combined with the precipitation of montmorillonite, mesolite, muscovite, and alunite. Particularly, calcite dissolution at the inlet of the core sample was clearly noted, leading to increased porosity at the inlet. However, overall permeability of the core sample decreased at the end of the flow experiment.

Attachment A includes a document entitled "CCS CO_2 Storage Behavior" containing plots and the raw data that show how the current CO_2 is captured subsurface. These plots show the mass of CO_2 that is mobile, immobile, and dissolved in water as a function of time. The attachment contains the following:

The injection simulation results for operating CCS#1, CCS#2, and CCS#3 that were used to submit the original permit. An error regarding how vertical flow was treated as occurring through the injection zone was identified in these simulation results that has been corrected in newer versions of the modeling predictions. These results are being provided nonetheless as they were the basis of the original application and because they continue to be valid illustrations of the mechanisms that capture the injected CO₂ in the subsurface.

2) The updated injection simulation results for operating CCS#1, CCS#2, CCS#3 CCS#4, CCS#5, CCS#6, and CCS#7, which include the more robust treatment of vertical movement within the injection zone, also show that injected CO₂ will be captured in the subsurface.

In summary, results show that the CO₂ mobile in the gas phase decreases over time, while the CO₂ trapped in a gas phase increases and the CO₂ dissolved in the water phase tends to slightly increase over time.

Overall, these site-specific studies as well as those by Shao et. al (2020) and Yoksoulian et. al. (2014) show similar geochemical reaction pathways to the previous studies from other sedimentary reservoirs and seals. The effects on rock properties, though somewhat varied at the core scale, do not show significant differences from previous studies. Therefore, because previous and current (2020) studies are in general agreement, it is not expected that injection of CO₂ into the proposed CCS#5, CCS#6 and CCS#7 wells would lead to drastic geochemical reactions within the reservoir and seal that compromise injectivity and long-term security.

References:

Berger, P.M., Mehnert, E., & Roy, W.R., 2009, Geochemical modeling of carbon sequestration in the Mt. Simon Sandstone. In *Abstracts with Programs - Geological Society of America*, v. 41, pp. 4, Geological Society of America (GSA), Boulder, CO, United States (USA).

Carroll, S.A., McNab, W.W., Dai, Z., & Torres, S.C., 2013. Reactivity of Mount Simon Sandstone and the Eau Claire Shale Under CO₂ Storage Conditions. Environmental Science & Technology, v. 47, p. 252-261.

Dávila, G., Dalton, L., Crandall, D.M., & Garing, C., Werth, C.J., & Druhan, J.L., 2020, Reactive alteration of a Mt. Simon Sandstone due to CO₂-rich brine displacement. Geochimica et Cosmochimica Acta, v. 271, p. 227-247.

Labotka, D. M., Panno, S. V., Locke, R. A., & Freiburg, J. T. (2015). Isotopic and geochemical characterization of fossil brines of the Cambrian Mt. Simon Sandstone and Ironton-Galesville Formation from the Illinois Basin, USA. *Geochimica et Cosmochimica Acta*, v. *165*, p.342-360. <u>https://doi.org/10.1016/j.gca.2015.06.013</u>

Shao, H., Freiburg, J.T., Berger, P.M., Taylor, A.H., Cohen, H.F. and Locke, R.A. (2020) Mobilization of trace metals from caprock and formation rocks at the Illinois Basin – Decatur Project demonstration site under geological carbon dioxide sequestration conditions. Chemical Geology 550, 119758.

Yoksoulian, L., Berger, P.M., Freiburg, J.T., and Butler, S.M, 2014. Geochemical investigations of CO₂-Brine-rock interactions of the Knox Group in the Illinois Basin, U.S. Department of Energy, Topical Report DOE/FE0002068-10, 58p.

In

3.6 Geomechanical and Petrophysical Information

3.6.1 Formation Pressure

Mt. Simon fluid sampling and testing were conducted in August 2015 in the VW#2. These tests included in-situ measurements of formation pressure and temperature, and the collection of eight fluid samples at five depths. A temperature log was run in the CCS#2 in 2015. Sensitive, Confidential, or Privileged Information

this permit application, the original formation pressure gradient for CCS#5, CCS#6 and CCS#7 was assumed to be the same based on the proposed completion of the well within the same injection zone. Note that no formation pressure data were collected at the existing CCS #1 and CCS #2 locations for the Eau Claire.

As conducted for previously drilled and tested CCS and VM wells, injection zone characteristics and confirmation of confining zone integrity via site-specific measurements will be obtained during drilling of injection well CCS#5, CCS#6 and CCS#7 (including capillary pressure; information on fractures, stress, ductility, rock strength, elastic properties; and in situ fluid pressures). The following tests/ measurements will be performed/collected for the CCS#5, CCS#6, and CCS#7 wells, within the limits of technical feasibility and recovered core quality: capillary pressure, fracture pressure information on fractures, stress, ductility, rock strength, elastic properties; and in situ fluid pressures. In addition, these data will be correlated with the existing well and core data from the project.

3.6.2 Rock Strength

A 1-dimensional (1D) mechanical earth model (MEM) has been created using log data, core data, pressure, and stress measurements to calibrate a model of the rock properties and stresses at the wellbore (Plumb, et al, 2000). Due to the abundance of data acquired for this project, the 1D MEM properties were well constrained. Data from Three wells, CCS#1, VM#1, VM#2, were evaluated using the 1D MEM workflow (Lee et al., 2014).

3.6.3 In-Situ Stress

In-situ stress fields consist of three stress components: vertical, minimum horizontal, and maximum horizontal. The overburden/vertical stress is determined by integrating the density of the rock with depth. The horizontal stresses are estimated using the poro-elastic stress model which assumes that the rocks are a semi-infinite poro-elastic medium subjected to overburden and horizontal strain loadings (Higgins et al., 2008). The Mt. Simon and Eau Claire in-situ stress field results are summarized in Table 3.6-1. The stress regime is strike-slip ($\sigma_{Hmax} > \sigma_V > \sigma_{hmin}$) with localized normal faulting ($\sigma_V > \sigma_{Hmax} > \sigma_{hmin}$) for intervals with relatively low elastic moduli. This is consistent with earthquake source mechanisms in other parts of Illinois which indicates dominate strike slip stress regime (Lahann et al., 2017). The maximum horizontal stress direction is N68°E based on the drilling induced fractures and breakout orientation. This direction is also consistent with the fast shear azimuth from the dipole shear log.

Table 3.6-1. In-situ stress from 1D MEMs – CCS#1, VM#1, VM#2 (Lee et al., 2014)

Sensitive, Confidential, or Privileged Information

3.6.4 Confining Zone Integrity

Caprock integrity was examined using the in-situ stress and rock mechanical properties from the 1D MEMs for CCS#1, VM#1, and VM#2. The formation was assumed to be intact since no faults within the confining zone were interpreted from 2D and 3D seismic data. Using the geomechanical properties as described above, stress state in the Eau Claire Shale is below the Coulomb failure line both at the initial state and after CO₂ injection (Figure 3.6-1). The stress path moves toward the shear failure line after CO₂ injection, but the magnitude of stress change is small and the caprock is still within the stable region with minimum risk of shear failure. A pore pressure increase of 650 psi was assumed in this analysis, which represents the highest pressure increase that will be possible directly below Eau Claire Shale from reservoir simulation. Poroelasticity was not accounted for in this analysis. Both assumptions make this analysis more conservative for shear failure evaluation. No tensile failure is expected in the caprock as well due to the high fracture gradient in Eau Claire Shale. A more detailed analysis on the caprock integrity can be performed if small-scale fractures or faults below the current seismic resolution are identified in the future.

Confining zone integrity with respect to occurrence of microseismic events was also examined. Analysis of the available seismic event catalog as well as re-processing using advanced processing techniques (such as doubledifference techniques) provide evidence that few, if any events occurred at depths shallower than the lower Mt. Simon Formation (Dando et al., 2021). Refer to Fig 3.2-3 in section 3.2.2 for visual confirmation. These observations also provide evidence that the confining zone integrity remains intact.

Sensitive, Confidential, or Privileged Information

Figure 3.6-1. Stress state in the Eau Claire Shale is below the Coulomb failure line both at the initial state (black dots) and after CO_2 injection (grey dots). p' – effective mean stress, q – deviatoric stress. Dark black line represents in failure line using rock strength properties from core analysis in Eau Claire Shale as described in previous section. Two light-colored lines represent failure lines using p10 and p90 rock strength values from log analysis. Poroelasticity was not accounted for, and thus this represents a more conservative evaluation.

3.6.5 Fracture/Fault Stability Analysis

Clusters of microseismic events were observed in pre-Cambrian, Argenta and lowest units of the Mt. Simon away from the wellbores during and after of the CCS#1 and CCS#2 injection periods. Based on the working assumption that microseismic events are caused by incremental failure along pre-existing critically stressed zones of weakness, a total of 12 zones of discontinuity were identified and modeled as fault planes (Lee et al., 2014). These pre-existing weakness zones exist near or at their critical stress rate, and a small variation in injection pressure can result in strain relief along these zones. The finite element model (FEM) combines previous model properties to determine rock strain change with associated change in pressure and generates synthetic microseismic events. These synthetic events compared well with the measured microseismic events for both location and occurrence (Figure 3.6-2). The use of seismic moment to estimate the length of seismogenic slip planes in the local subsurface suggests that faults large enough to produce felt seismicity are unlikely to be present at or near the Decatur site. (Williams-Stroud et.al., 2020).

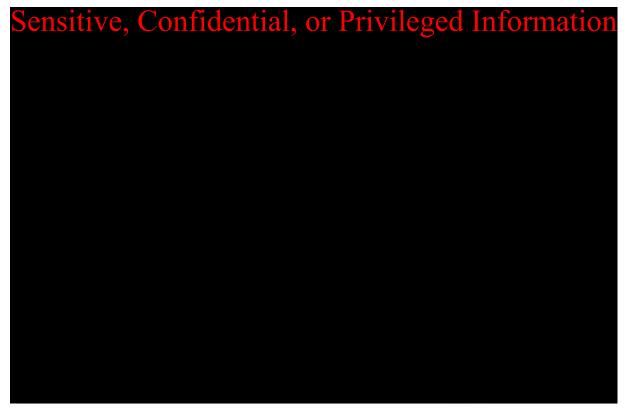


Figure 3.6-2. Location of modelled microseismic events (yellow) and measured microseismic events (red). (Lee et al., 2014)

References

Dando, B.D.E, B. P. Goertz-Allmann, D. Kuhn, N. Langet, A. M. Dichiarante, V. Oye. 2021. Relocating microseismicity from downhole monitoring of the Decatur CCS site using a modified double-difference algorithm. Geophys J. Int., 227, 1094-1122.

Higgins, S.M., Goodwin, S. A,, Donald, A., Bratton, T.R., and George W.T., 2008, Anisotropic stress models improve completion design in the Baxter Shale, Paper SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA, September 2008, doi: https://doi.org/10.2118/115736-MS

Lahann, R. W., Rupp, J. A., Medina, C. R., Carlson, G., and Johnson, K. M., 2017, State of stress in the Illinois Basin and constraints on inducing failure. Environmental Geosciences, 24(3), p. 123-150.

Lee, D. W., Mohamed, F., Will, R., Bauer, R., and Shelander, D., 2014, Integrating mechanical earth models, surface seismic, and microseismic field observations at the Illinois Basin-Decatur Project, Energy Procedia, 63, p. 3347-3356.

Plumb, R., Edwards, S., Pidcock, G., Lee, D., and Stacey, B., 2000, The mechanical earth model concept and its application to high-risk well construction projects, IADC/SPE Drilling Conference, New Orleans, Louisiana, February 23 – 25, 2000, doi: https://doi.org/10.2118/59128-MS

Williams-Stroud, S., Bauer, R., Leetaru, H., Oye, V., Stanek, F., Greenberg, S., and Langet, N. 2020, Analysis of microseismicity and reactivated fault size to assess the potential for felt events by CO₂ injection in the Illinois Basin. Bulletin of the Seismological Society of America, 110(5), p. 2188-2204.

3.7 Injection & confining zone mineralogy, petrology, and lithology

3.7.1 Mt Simon Sandstone

The Cambrian Mt. Simon Sandstone is a transgressive terrestrial to shallow marine sequence deposited in the proto-Illinois and Illinois basins, and the Michigan and Appalachian basins (Kolata and Nelson, 1990). Depositional environments in the Mt. Simon are highly variable; the numerous interpretations include shallow-marine, deltaic, fluvial, eolian, sabkha, and coastal (Driese et al., 1981; Hagadorn et al., 2002; Fischietto, 2009; Bowen et al., 2011; Freiburg et al., 2014). At the storage site, the Mt Simon Sandstone is over 457 m (1500 ft thick) and can be divided into an upper, middle, and lower unit. The formation consists of well sorted, fine- to coarse-grained sandstone, poorly sorted conglomerates, and minor siltstones and mudstones.

Stratigraphic and petrographic analysis of the whole cores and sidewall cores from three project wells, CCS#1, VW#1, and VW#2, provides detailed site-specific data (Leetaru & Freiburg, 2014; Freiburg et al., 2014). The Lower Mt. Simon contains four major facies originating in various depositional environments that include subaqueous coast, subaerial coast, lagoon, river, plain, and eolian plain (Leetaru & Freiburg, 2014; Freiburg, 2014; Freiburg et al., 2016). Major lithologies include fine- to coarse-grained sandstone and granule to pebble conglomerates that are interbedded with low- porosity and permeability, siltstones and mudstones.

The Middle Mt Simon exhibits two distinct lithofacies. The lower facies is composed dominantly of maroon to dark brown subarkose arenite and quartz arenite, interbedded with thin mudstones and wackes (sandstones with clay matrix). This facies also contains planar to cross-bedded coarse-grained poorly sorted sandstones and granule to pebble conglomerates with trace amounts of lithics and clay minerals. The upper facies consists dominantly of quartz arenite and lesser amounts of quartz wacke and occasional thin laminae of allogenic green clay. Hematite cements, in the form of Leisigang bands, are common in both the top and bottom facies (Leetaru & Freiburg, 2014).

The upper Mt Simon Sandstone comprises two interbedded lithofacies (Leetaru & Freiburg, 2014). The first facies is composed of mudstones and pink arkose wacke and subarkose arenites. Sandstones are commonly well cemented with clay and authigenic feldspar. The second facies is comprised of tan to white quartz arenites which are commonly mottled, homogenous, planar, or crossbedded. XRD data show the predominate mineral phase in the Mt Simon sandstone is quartz, generally over 70%, followed by minor amounts of potassium feldspar (up to 20%) and clay (up to 15%), and small to trace amounts of plagioclase, calcite, siderite, ankerite, dolomite, pyrite, barite, fluorapatite, and hematite. (Freiburg et al., 2014). The most common clays within the Mt. Simon are illite and mixed layered illite-smectite, with small fractions of chlorite and kaolinite (Freiburg et al., 2014). Clay occurs as grain coatings on both quartz and feldspar grains, as pore filling and cement, and as bedded detrital laminae. Iron oxides, primarily hematite and goethite, commonly occur as grain coats, Liesegang bands, residues in stylolites, and at unconformity surfaces within the Mt. Simon (Bowen et al., 2011; Freiburg et al., 2014). Authigenic clays appear most commonly near weathered feldspar grains and casts of dissolved feldspar grains, indicating that the feldspars may be one possible source of the authigenic clays (Bowen et al., 2011).

The highest reservoir quality occurs in the unconsolidated to partially consolidated, coarser grained quartz arenite and subarkosic sandstone in the Lower Mt. Simon, which exhibits preserved, excellent, primary porosity. Porosity is further enhanced by secondary porosity derived from feldspar dissolution. Some mineral grains are coated by thin layer of clay which prevents quartz overgrowths. Authigenic quartz is the most common cement in

the Mt. Simon and is the most significant factor of porosity reduction, along with consolidation (Freiburg et al., 2014).

3.7.2 Eau Claire Shale

The primary seal for the Mt Simon carbon sequestration reservoir is the overlying Eau Claire formation which is approximately 244 m (800 ft) thick at the storage site (CCS#5, CCS #6 and CCS#7). Within the Eau Claire Formation is deposited within a tidally influenced, shallow marine depositional environment with four major facies, including (Unit A) intertidal mixed sand/mud flats and tidal channels of the foreshore environment; (Unit B) subtidal deposits of the offshore transition zone; (Unit C) subtidal deposits of the upper shoreface environment; and (Unit D) subtidal mixed carbonate/siliciclastic deposits (Palkovic, 2015). At the proposed site, the lower part of the Eau Claire formation consists of gray to dark gray, highly laminated, fissile shale to silty shale with abundant siltstone beds. The upper part consists of very fine-grained dolomitic limestone interbedded with thin siltstone layers (Leetaru & Freiburg, 2014).

The mineralogy varies widely throughout the Eau Claire. Quartz, K-feldspar, and clays are the most common minerals and comprises the majority of the mineral makeup for most lithologies. Small amounts of plagioclase, calcite, siderite, ankerite, dolomite, and pyrite are commonly present (Palkovic, 2015). The predominant clay minerals are mixed layered illite/smectitie, illite, with small amounts of kaolinite and chlorite. Glauconite is also detected (Leetaru & Freiburg, 2014; Palkovic, 2015).

The mineral phases in the reservoir and seal are all common minerals found in sedimentary rocks. Their reactivity with CO_2 -rich formation water has been extensively examined by rock-water- CO_2 reaction experiments and geochemical simulation. Additionally, a number of field projects of large-scale CO_2 injection into sedimentary rock formations with similar mineral compositions have been conducted during the last decades. Due to the relatively low mineral reaction kinetics, no drastic rock-water- CO_2 interactions which could pose threats to the viability of the injection projects have been documented. Therefore, we do not expect compatibility issues with the mineral composition at the proposed injection site.

References:

Bowen, B.B., Ochoa, R.I., Wilkens, N.D., Brophy, J., Lovell, T.R., Fischietto, N., Medina, C.R., & Rupp, J.A., 2011, Depositional and diagenetic variability within the Cambrian Mount Simon Sandstone: Implications for carbon dioxide sequestration. Environmental Geosciences, v. 18, p. 69–89.

Driese, S. G., Byers, C. W., and Dott, R. H., Jr., 1981, Tidal deposition in the basal upper Cambrian Mt. Simon Formation in Wisconsin: Journal of Sedimentary Petrology, v. 51, no. 2, p. 367–381.

Fischietto, N.E.1, Bowen, B.B.1, and Rupp, J.A., Facies analysis and Reservoir Characterization of the Cambrian Mount Simon Formation in the Illinois Basin: Implications for CO₂ Sequestration and Storage Earth and Atmospheric Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN, 47907

Freiburg, J.T., D.G. Morse, H.E. Leetaru, R.P. Hoss, and Q. Yan, 2014, A depositional and diagenetic characterization of the Mt. Simon Sandstone at the Illinois Basin - Decatur Project carbon capture and storage site, Decatur, Illinois, USA: Illinois State Geological Survey, Circular 583, 59 p. and 3 digital appendices.

Freiburg, J.T., Ritzi, R.W., & Kehoe, K.S., 2016. Depositional and diagenetic controls on anomalously high porosity within a deeply buried CO₂ storage reservoir—The Cambrian Mt. Simon Sandstone, Illinois Basin, USA. International Journal Greenhouse Gas Control 55, 42–54.

Leetaru, H.E., & Freiburg, J.T., 2014, Litho-facies and reservoir characterization of the Mt Simon Sandstone at the Illinois Basin – Decatur Project. GHG Greenhouse gases Science and Technology, Greenhouse Gas Science & Technology, v. p. 580–595.

Palkovic, M. J., 2015, Depositional characterization of the Eau Claire Formation at the Illinois Basin – Decatur Project: facies, mineralogy and geochemistry. Thesis for degree of Master of Science in Geology, University of Illinois at Urbana-Champaign, 2015.

3.8 Seismic history, seismic sources, and seismic risk

While injection at CCS#1 from 2012-2014 was associated with clear induced microseismic activity (Section 3.2.2), injection at CCS#2 has not resulted in any increase in activity despite no significant change in the scale and quality of active receiver networks used (Dando, et.al., 2021). Monitoring began 18 months prior to injection at CCS#2 to record background microseismicity, during this period only 8 local events were detected that were not associated with anthropogenic activity. These eight events ranged in magnitude from -2.16 to -1.52 (Bauer, et.al., 2016).

Injection at CCS#1 began in 2011 and 4,747 microseismic events occurred between 2011 and the end of 2014 (Bauer, et.al, 2016). Induced microseismicity at CCS#1 started two months after injection began, and by 6 months post injection the activity decreased from around 50-200 events per month to around 20 per month – see Figure 3.8-1(a). Ninety-four percent of the events prior to 2016 were less than magnitude 0, and only two events were above magnitude 1 at 1.07 and 1.17 prior to 2016 (Bauer, et.al., 2016). Approximately half of the microseismic events were in the Precambrian basement with the rest in the Mt. Simon and Argenta. Events were grouped into four clusters that tended to follow a northeasterly trend or nearly the direction of S_{HMax} . Microseismic events were not considered large enough to endanger caprock integrity (Bauer, et.al., 2016).

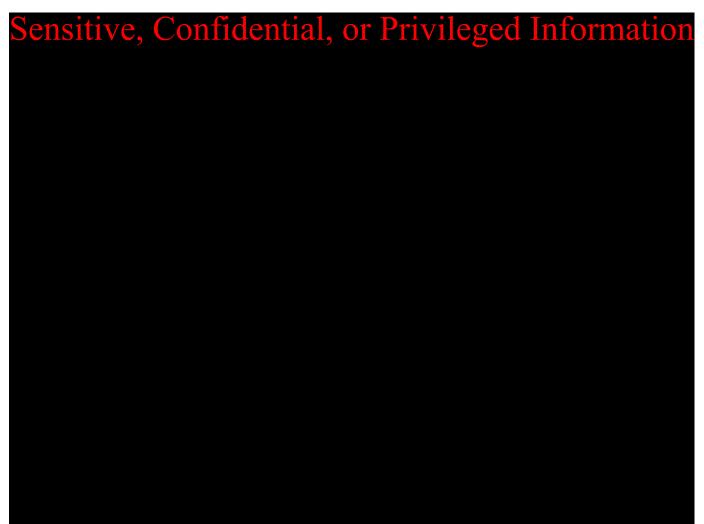

Injection began at CCS#2 in April 2017, and through November 2019 there were only 220 microseismic events located during the injection period, even though CO₂ was being injected at 1.7 times the CCS#1 injection rate (Stanek, et.al., 2020) (Figure 3.8-1. The reduction in event rate is credited with a shallower injection interval depth, further from the crystalline Precambrian basement and the deepest Mt. Simon that accommodated a significant portion of microseismic events during CCS#1 injection. Induced microseismicity was not considered significant for CCS#2 because many of the injection events were in the same cluster locations as for CCS#1, and the rate of events detected did not change from the period between CCS#1 and CCS#2 injection, and after injection began at CCS#2.

Figure 3.8-1 - Event count timeline (a) and magnitude histogram (b) of all events (Stanek, et.al., 2020; Dando, et.al., 2021). From the timeline, the events (mainly occurring in the Precambrian basement) dropped off significantly after injection ceased at CCS#1. The number of events did not noticeably increase with the commencement of injection at CCS#2.

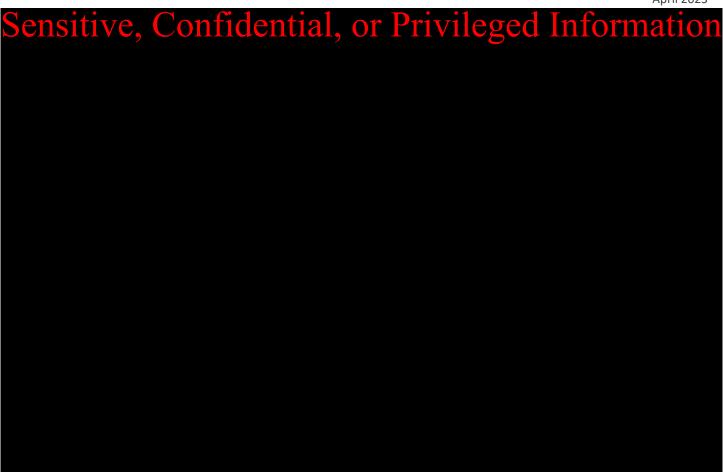

Figure 3.8-2 shows the microseismic events recorded at the IDBP site through June 2018. The events tend to lie in well-defined clusters, and the moment magnitudes for these events are all below the threshold where an event can be felt at the surface. The cross section shown in Figure 3.8-3 shows all recorded events and well locations along a direction perpendicular to S_{HMax} . The events fall almost exclusively in the Precambrian basement, with some events also occurring in the lower Mt. Simon and Argenta formations.

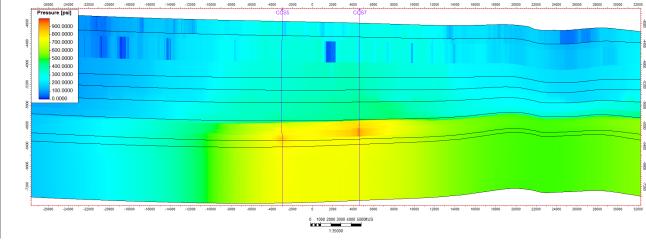
Figure 3.8-2. Locations of 5037 microseismic events recorded during injection period of CCS#1 and CCS#2 (December 2011 – June 2018). The events are colored by Moment Magnitude. The blue line represents the position of the cross section in Figure 3.8-3.

Figure 3.8-3. Cross section with all wells and microseismic events projected to the plane (shown in blue in Figure 3.8-2). Note most of the events are in the Precambrian basement.

Historically, ADM mitigated known risks by applying the information obtained from the previous wells to the subsequent well design and operations. With respect to microseismic events within the basement rock, ADM increased the standoff between the basement and the injection zone for CCS#2, which greatly decreased the number of recorded microseismic events. That information has been leveraged in the design of the CCS#5, CCS#6 and CCS#7wells, and via the recompletion of CCS#1 to mitigate microseismic risk by duplicating the CCS#2 standoff between the basement and the proposed injection zone for CCS#3, CCS#6, CCS#6 and CCS#7.

In addition, ADM will maintain a robust monitoring program (Section 9.4.3), as provided in the AoR and Corrective Action Plan (Section 4.4.), and the Emergency and Remedial Response Plan. Table F-2a in the ERRP outlines the actions to be implemented in each seismic risk case wherein the response actions for progressively serious operating states (i.e., green, yellow, orange, and magenta) as will be implemented based on seismic threshold conditions.

As indicated in Section 3.6.3, the local stress regime is assumed to be strike-slip with regard to in-situ stress analyses. Although the stress regime in the area is strike-slip, and this is the mechanism for earthquakes observed in other parts of Illinois, Section 3.6.4 outlines that there are no observable faults that penetrate to the Eau Claire. In addition, geomechanical testing shows that the rock in the Eau Claire is below Coulomb failure both initially and after injection. With respect to the injection zone, per Lee, et al. (2014), microseismic events associated with the CCS#1 well were clustered in areas showing higher curvature at the Precambrian Basement, with some in the Argenta and the lowest Mt. Simon. These areas were not noted to be associated with any



observable faults, and this was confirmed by the low correlation between the possible interpreted faults from the reprocessed seismic seen and noted in Figure 3.2-2. In addition, work by Williams-Stroud et al. (2020) indicates that the use of seismic moment to estimate the length of seismogenic slip planes in the local subsurface suggests that faults large enough to produce felt seismicity are unlikely to be present at or near the Decatur site. (Williams-Stroud et al., 2020). Considered together, this evidence indicates that strike-slip conditions within the county will not have adverse effects on the confining and injection zones.

3.8.1 Injection Pressure and Microseismicity

Data also indicate that the additional injection pressures from CCS#5, CCS#6 and CCS#7 will not increase microseismicity in basement rock. Based on observed historic microseismicity within the basement rocks associated with the CCS#1 and CCS#2 injection wells, the largest magnitude events within the Precambrian strata have been limited to below Mw 1.0. Based on microseismic event distributions, various zones of discontinuity were identified at the site [Section 3.6.5]. Slip plane dimensions (as calculated from observed seismic moments from existing catalog) suggest that faults large enough to produce felt seismicity are unlikely at this site (Williams-Stroud et.al., 2020).

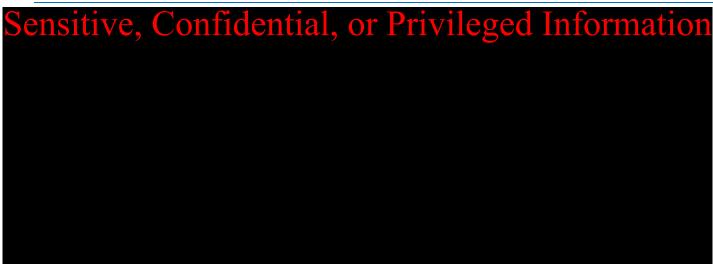

Empirical data from the VW1 monitored zone below CCS2 injection interval shows that the pressure increased is less than 40 psi after 4 years of CCS2 injection. Injection modeling studies indicate that the pressure perturbation within the basement at the end of injection period based on the proposed injection plan will stay at or below 600-700 psi (see Figure 3.8-4).

Figure 3.8-4. Example Pressure Perturbation across CCS#5-CCS#7 injection zone at year 2038 (end of injection) 95 MT

In addition, lab studies and failure analysis using Precambrian samples from IBDP project have shown that the basement rock is highly stable and the necessary change in pore pressure needed to cause failure of basement rock is more than 2400 psi (17 MPa) (see Figure 3.8-5). From injection modeling studies, the maximum pressure change within the basement at the end of injection are estimated to be at or below 600-700 psi (4.8 MPa). This suggests that even with the maximum pressure perturbation estimated during the life of these new wells, we expect to stay below the Mohr-Coulomb failure envelop. Therefore, modeling, theoretical, experimental, and empirical data support the conclusion that higher magnitude microseismicity is unlikely to increase due to CCS#5, CCS #6, or CCS #7 injection.

Figure 3.8-5. Mohr-Coulomb failure envelope constructed for the basement rock assuming zero cohesion on preexisting weak planes. Orange envelop shows the initial state prior to any injection. [Makhnenko et al. 2020].

As discussed in Section 3.1, CCS#1 will be recompleted using the Mt Simon B/A-Upper as the injection interval. Figure 3.8-6 shows the petrophysical properties for the 4 completed deep wells at the Decatur CO₂ storage site. The figure details the low porosity and permeability layers and provides interpretation of low vertical permeability baffle facies. Examination of the Mt Simon A-lower indicates the presence of four (4) low permeability baffles within this zone. These facies appear in all four wells and are considered to be spatially extensive within the AoR. These baffles facies will prevent the injection pressure from being transmitted to the Precambrian basement. During construction of the proposed injection wells, interpretation of the logs and testing of the core samples will guide the well's final completion.

Based on this information, increased risk of microseismicity is not expected due to injection activities at CCS #5, CCS#6 or CCS #7.

Figure 3.8-6. Petrophysics, completions, and baffle facies interpretation on low-porosity and low-permeability layers.

References

Bauer, R., Carney, M., and Finley, R.,. "Overview of microseismic response to CO₂ injection into the Mt.Simon saline reservoir at the Illinois Basin-Decatur Project." *International Journal of Greenhouse Gas Control* (2016): 378-388.

Dando, B.D.E., et al. "Relocating microseismicity from downhole monitoring of the Decatur CCS site using a modified double-difference algorithm." *Geophysical Journal International* (2021): 1094-1122. Lee, D. W., Mohamed, F., Will, R., Bauer, R., and Shelander, D., 2014, Integrating mechanical earth models, surface seismic, and microseismic field observations at the Illinois Basin-Decatur Project, Energy Procedia, 63, p. 3347-3356.

Makhnenko, R. Y., Bondarenko, N. B., Kim, K., Whittaker, S. 2020. Laboratory Modeling of Induced Microseismicity in the Illinois Basin. Paper presented at the 54th U.S. Rock Mechanics/ Geomechanics Symposium (ARMA-2020-2040).

Stanek, Frantisek, Sherilyn Williams-Stroud and Robert Bauer. "Importance of monitoring seismicity induced by CO₂ sequestration at Illinois Basin – Decatur." *SEG International Exposition and 90th Annual Meeting*. Society of Exploration Geophysicists, 2020. 2226-2230.

At the Decatur CCS site, CO₂ air monitoring is conducted at any well that penetrates the Eu Claire seal formation. Currently CCS#1, CCS#2, VW#1, and VW#2, have CO₂ air monitoring at the well site. CO₂ air monitoring will be conducted at proposed CCS#3, CCS#4, CCS#5, CCS#6, CCS#7 and proposed VW#3, VW#4 and VW #5. Because there are no other wells within the AoR that penetrate the injection zone seal formation, no additional air monitoring is planned.

Soil gas and flux monitoring networks were initiated for the Decatur CCS project site in 2009 for the IBDP Project (CCS#1) and 2012 for the IL-ICCS Project (CCS#2). The soil flux monitoring network consisted of approximately 70 soil flux collars installed within the project area and were co-located with approximately 50 soil gas nests. Monitoring of these networks continued through 2015 collecting about six years of background and operational data (during CCS#1 injection period 2011-2014).

Soil CO₂ flux was measured on a monthly basis. Soil gas was sampled on a quarterly basis and analyzed using gas chromatography for CO₂, N2, O2 and light hydrocarbons (C1 to C6). In addition, selected samples were be analyzed for isotope composition δ 13C, δ 18O and radiocarbon (Δ 14C) of CO₂ to help determine the source of CO₂ in the soil. In addition, background concentrations were measured to determine statistical variations of CO₂ with respect to sample temperature, seasonal variations, diurnal variations and other factors. Soil gas samples were initially collected on a monthly basis and were reduced to quarterly after sufficient baseline information was collected to characterize the seasonal variability in gas composition and isotopic signatures. All analytical results have been archived and are available to the USEPA upon request.

Because sufficient baseline and operational data has been generated for the Decatur CCS Site and no statistical changes were observed during the injection period for CCS#1 and the pre-injection period for CCS#2, no further soil gas or flux monitoring is planned at this time.

3.10 Facies changes in the injection or confining zone

Reservoir simulation modeling brought forward challenges between observed and simulated data. When the reservoir simulations began in 2008, there were challenges with history matching between the observed data and the simulation results. The history matching helped refine the geomodel by using the discrepancies between the observed and the simulated CO₂ migration to highlight regions of the geomodel that required modification. These model modifications were changes to structure and property distribution (porosity and permeability) that were not clear or had been uncertain earlier.

In the 2018 model update, adding baffle facies layers became necessary for history matching. These baffle facies layers are areas of relatively lower porosity and relatively lower permeability barriers identified on well logs, which were interpreted litho-facies or facies changes within the Mt. Simon Formation. When the reservoir simulations were run, the baffle layers were used as discontinuous barriers to CO₂ and pressure migration. From this log interpretation, the baffles were not always continuous between wells (dark green baffles with yellow reservoir on track 6 of Figure 3.10-1). Some baffles could be correlated from well to well and some could not. The justification for adding these baffle facies into the model was as follows:

• The first recognized influence of layered baffles was the pressure reactions at VW#1 during the CCS#1 injection, with the highest formation pressure increases of about 5.1% in the lowest three gauges, highs of only about 1.7% increase in gauge 4, and less formation pressure increases in upper gauges. Also, CO₂ was detected in VW#1 at Zone 3 and lower, but not at Zone 4 and higher.

- When CCS#2 injection began in the lowest perforation, a higher-pressure response occurred at the CCS#1 injection interval than was modeled. This indicates there may be a preferential pathway from CCS#2 to CCS#1; however, a similar high-pressure response at VW#1 compared to the previous modeled response did not occur, suggesting a different degree of connection between CCS#2 to CCS#1 and CCS#2 to VW#1. A directional preferential pathway was seen by CCS#2, as the pressure response first arrived at VW#1 far before VW#2, the later of which is closer to CCS#2.
- The pressure response at VW#2 (Zone 2) indicated that reservoir interval including VW#2 (Zone 2) and CCS#2 might be locally confined by the low-permeability baffles.
- Although the Mt. Simon A-Lower was believed to be undifferentiated, repeat pulsed neutron logs at VW#1 show that high-permeability sand packages and interlayered low-porosity and low-permeability layers (baffles) strongly control vertical CO₂ plume geometry at distance from the injector.
- These observed preferential pathways/flow barriers suggested that strong heterogeneity (porosity and permeability) exists in the reservoir. Adding the baffle facies allowed for better history matching results in all the simulation scenarios.

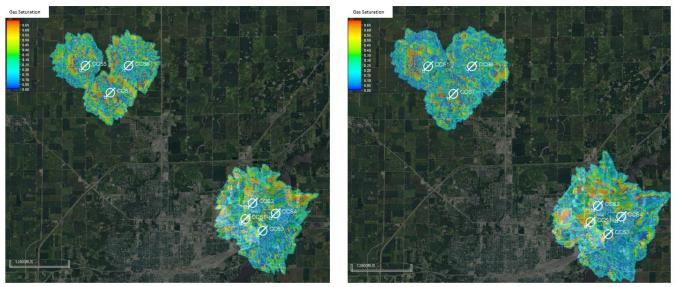


Figure 3.10-1. Petrophysics, completions, and baffle facies interpretation on low-porosity and low-permeability layers.

3.11 Injection zone storage capacity

For the injection scenarios lateral extent of plumes are mapped and area of plume calculated at year 2038 (end of injection) and fifty year after injection stops in year 2088. Figure 3.11-1 show the plume for each case superimposed on satellite image.

Yr. 2038

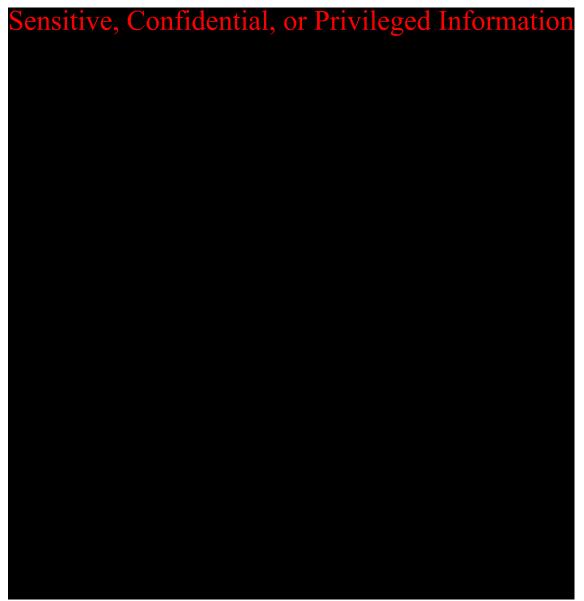


Figure 3.11-1. 95Mt injection. Image on the left represents the plume extent at the end of injection in year 2038. Image on the right represents the plume extent in year 2088. The CCS#5-CCS#7 plume covers an area of 5,519 acres and 6,874 acres, respectively.

The current simulation presented in Figure 3.11-1 accounts for pressure front interactions at all seven injection wells. The modeled CO_2 plumes and resulting pressure front considers the total formation storage capacity, and accounts for the total CO_2 injection volume from CCS#1, CCS#2, CCS#3, CCS#4, CCS#5, CCS#6 and CCS#7.

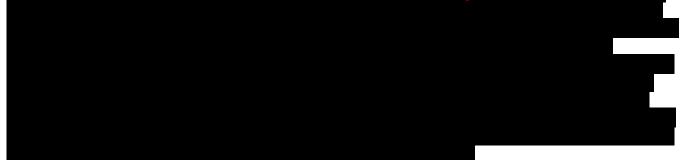


Figure 3.11-3. Reproduced layers of the geologic model and average porosity/permeability values, as identified by ADM based on log analysis, along with the approximate screened intervals of CCS #1 and CCS #2.

3.12 Confining zone integrity

The median porosity of the Eau Claire Formation is 4.7%, based on information from an ISGS database of UIC well core samples. Pre-injection testing in CCS#2 and VW#2 indicated very small pore sizes based on CMR data, resulting in generally very low permeability. During pre-operational testing, ADM collected 33 horizontal and 3 vertical whole core samples, and 2 rotary sidewall core samples, all from VW#2. Three hundred fifty-one (351) core plugs were drilled from the whole core collected from VW#2 and were suitable for routine core property measurements. The rock properties derived from these samples were primarily used to validate and calibrate the ELAN petrophysical model based on well logs. While no core samples were taken from the shale zone of the Eau Claire A at VW#2, 36 plugs of the upper interval Eau Claire C (very fine sandstone, microcrystalline limestone, and siltstone) were available for testing. Sensitive, Confidential, or Privileged Information

ADM also cited a median permeability value of 0.000026 mD from the ISGS UIC core database. In addition, based on a set of core samples from a site approximately 80 miles to the north of the proposed Class VI location, of the 110 analyses conducted, most were in the range of < 0.001 to 0.001 mD, with five in the range of 0.100 to 0.871 mD (the maximum value in the data set). This indicates that even the more permeable beds in the Eau Claire Formation are expected to be relatively tight and tend to act as sealing lithologies.

A "mini-frac" field test was used to determine in-situ fracture pressure in the confining zone.

As maximum injection pressure is limited at 90% of the fracture pressure gradient at Mt Simon formation, Eau Claire will not be exposed to pressures which could create induced fractures.

As presented in previous sections, microseismicity events have occurred, primarily in association with CCS#1 injection. However, analysis of the available catalog as well as re-processing using advanced processing techniques (such as double-difference techniques) provide evidence that few, if any events occurred at depths shallower than the lower Mt. Simon Formation (Dando et al., 2021). Refer to Figure 3.2-5 in section 3.2.2 for additional information. These observations also provide evidence that the confining zone integrity remains intact although microseismic events occurred.

Additionally, modeling results with respect to cumulative pressure and potential occurrence of seismic events indicate that injection into CCS#5, CCS#6, and CCS#7 will not impact the confining capabilities of the Eau Claire. Modeling results have shown limited plume height growth within the Mt. Simon Formation indicating no breach within the Primary seal (Eau Claire) as shown in Figures 3.12-1, 3.12-2 and 3.12-3, below.

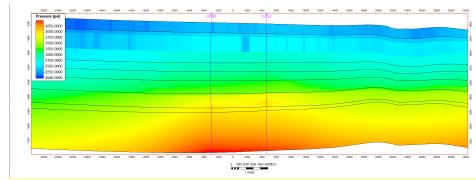


Figure 3.12-1. CO₂ Pressure Jan 2038 (end of Injection) along CCS#5-CCS#7 cross section (95Mt).

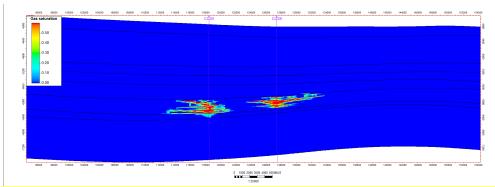


Figure 3.12-2. CO₂ saturation along CCS#5-CCS#6 cross section (95Mt injection case). See section 4.

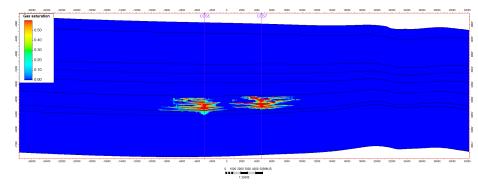


Figure 3.12-3. CO₂ saturation along CCS#5-CCS#7 cross section (95Mt injection case).

Moreover, as discussed in Section 4.1 (simulation results), the modeling study conducted used the maximum injection rate as the primary constraint to define projections. The maximum rate was reduced if necessary by a secondary constraint such that the maximum allowable injection pressure (90% of the fracturing pressure of the Mt. Simon) was not exceeded. The Mt. Simon injection zone is as per the identified fracture gradients (0.715 psi/ft) from step rate tests at CCS#1. The fracture pressure from these four CCS#1 tests ranged from 5,078 to 5,324 psig, corresponding to a fracture gradient ranging from 0.93 to 0.98 psi/ft in the Eau Claire shale. This provides basis for the expectation of seal containment for the new CCS#5, CCS#6, and CCS#7 wells. Refer to operational plan limits (Section 8).

In addition, the absence of evidence of interpreted faults from the 2D and 3D seismic data as outlined in section 3.6.4., indicates that the Eau Claire Formation is regionally intact as a seal. The stress state for the Eau Claire

resides below coulomb failure, both pre-and post-injection, and the risk of breaching the failure envelope is minimal based on limiting the injection pressures to 90% of the fracturing pressure of the Mt. Simon.

Finally, Table F-2a in the Emergency and Remedial Response Plan, which outlines the risks and mitigations associated with seismic activity, along with the monitoring program (Section 8), will inform future operational conditions. Accordingly, the available evidence shows that bringing a third and fourth injection well online will not contribute to cumulative pressure or seismic events that have the potential to impact the confining zone

References

Dando, B.D.E., et al. "Relocating microseismicity from downhole monitoring of the Decatur CCS site using a modified double-difference algorithm." *Geophysical Journal International* (2021): 1094-1122.

4. Area of Review (AoR) Delineation and Corrective Action Plan

4.1 Conceptual site model

The Midwest Geological Sequestration Consortium's (MGSC) Illinois Basin-Decatur Project (IBDP) started injecting CO₂ through CCS#1 injector well in lower sections of Mt. Simon sandstone formation in November 2011. In November 2014, IBDP reached its goal of injecting one million metric tons of CO₂. The Illinois Industrial Carbon Capture and Storage (ICCS), led by ADM, expanded the site's CO₂ injection and storage capability with the objective to inject up to one million metric tons per year through CCS#2 injector well.

During the course of both projects, in addition to the data acquired during drilling and completion, an extensive data set was also established through various monitoring activities. The data obtained includes but is not exclusive of injection wells bottomhole pressures (BHP), multi-zone pressure data from in-zone verification wells VW#1 and VW#2, spinner data to quantify flow-splits, i.e., injection profile logs and reservoir saturation tools (RST) from both injectors. These datasets allowed calibration of various reservoir parameters including intrinsic permeabilities, relative permeabilities, wellbore skin values, vertical to horizontal permeability ratios, and rock compressibility. These calibrations allow the model to be updated periodically to improve the accuracy between the model predictions versus the actual result.

The previous studies compiled by Zaluski & Lee (2018, 2020) described the steps taken to create the history matched (calibrated) model of CO_2 injection into the wells at the site. The calibrated model includes the injection data acquired until June 2021. The dynamic model includes the entire Mt. Simon and the overlying seal (the Eau Claire), spanning a 38 × 47 mile area. The final reservoir model was represented by a 348 × 532 × 110 grid in a Cartesian system with 348 grid points in the x-direction, 532 grid points in the y- direction, and 110 grid points in the z-direction, for a total of 20,364,960 grid points.

Description of Software

ECLIPSE 300 is a compositional finite-difference solver that is commonly used to simulate hydrocarbon production and has various other applications including carbon capture and storage modeling. The CO₂ STORE module of the simulator can be used to account for the thermodynamic interactions between three phases: an H2O-rich phase (i.e., 'liquid'), a CO₂-rich phase (i.e., 'gas'), and a solid phase, which is limited to several common salt compounds (e.g., NaCl, CaCl2, and CaCO3). Mutual solubilities and physical properties (e.g., density, viscosity, enthalpy, etc.) of the H2O and CO₂ phases are calculated to match experimental results through a range of typical storage reservoir conditions, including temperature ranges between 12°C-100°C and pressures up to 60 MPa. Details of this method can be found in Spycher & Pruess (2005). Additional assumptions governing the phase interactions throughout the simulations are as follows:

- The salt components may exist in both the liquid and solid phases.
- The CO₂-rich phase (i.e., 'gas') density is obtained by using the Redlich-Kwong equation of state. The model was accurately tuned and modified as further described below (Redlich and Kwong, 1949).
- The brine density is first approximated as pure water then corrected for salt and CO₂ concentration by using Ezrokhi's method (Zaytsev & Aseyev, 1992).
- The CO₂ gas viscosity is calculated per the methods described by Vesovic et al. (1990) and Fenghour et al. (1998).

The gas density was obtained using a modified Redlich-Kwong equation of state following a method developed by Spycher and Pruess (2005, 2009), where the attraction parameter is made temperature dependent.

The transition between liquid CO_2 and gaseous CO_2 can lead to rapid density changes of the gas phase; the simulator uses a narrow transition interval between the liquid and gaseous density to represent the two-phase CO_2 region. The effects of CO_2 solubility in water are captured in the simulator. The simulator follows the Spycher and Pruess procedure for fugacity equilibration between water and free CO_2 . Water fugacity is obtained by Henry's law and CO_2 fugacity is calculated using a modified Redlich-Kwong equation of state.

Because the compression facility controls the CO₂ delivery temperature to the injection well to remain between 80°F and 120°F, the temperature of the injectate will be comparable to the reservoir formation temperature within the injection interval. Therefore, the simulations were carried out based on isothermal operating conditions. With respect to time step selection, the software algorithm optimizes the time step duration based on specific convergence criteria designed to minimize numerical artifacts. For these simulations, time step size ranged from 8.64x101 to 8.64x105 seconds or 0.001 to 10 days. In all cases, the maximum solution change over a time step is monitored and compared with the specified target. Convergence is achieved once the model reaches the maximum tolerance where small changes of temperature and pressure calculation results occur on successive iterations. New time steps are chosen so that the predicted solution change is less than a specified target.

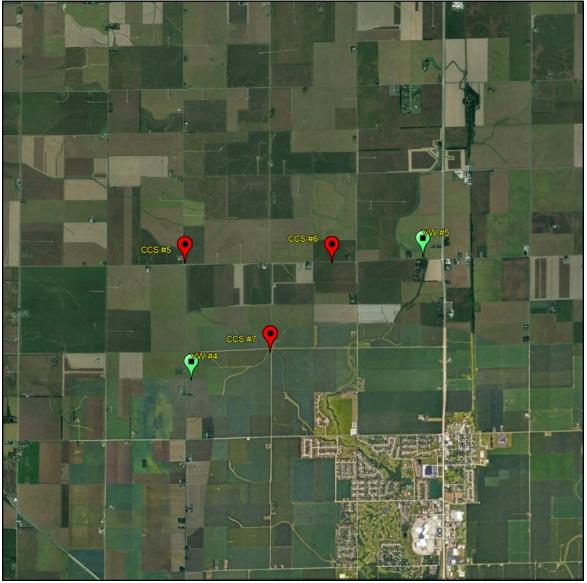
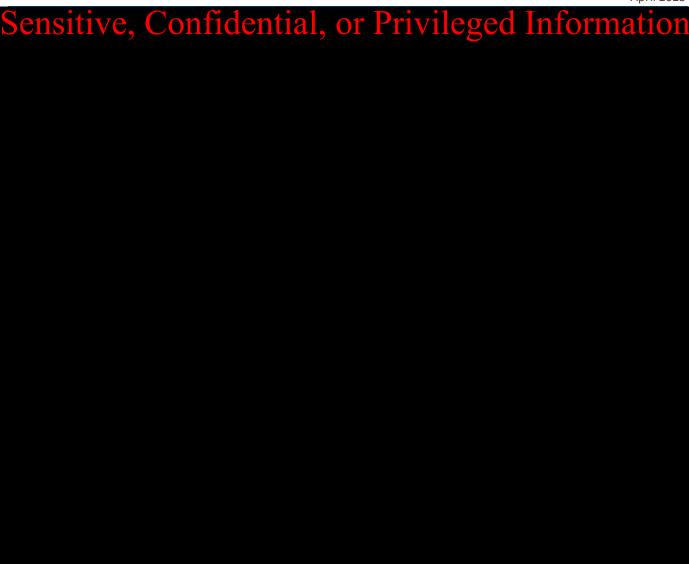
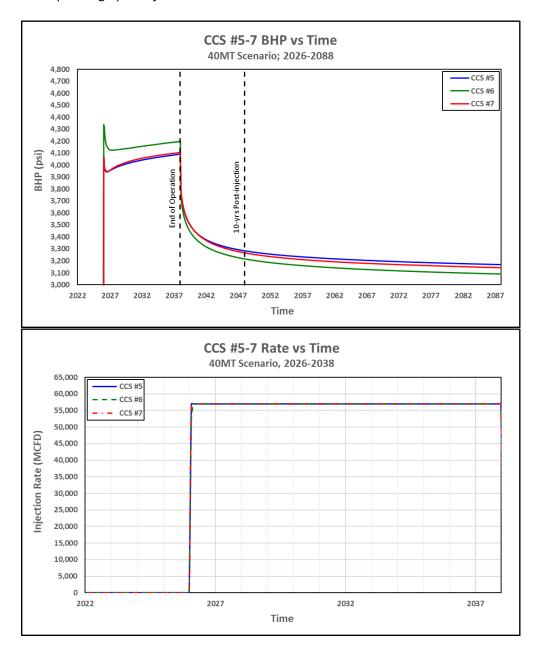


Figure 4.1-1. CCS #5-#7 injector and verification well locations.

The injection intervals for each well can be seen in Figure 4.1-2. All the new proposed injection intervals in CCS #5-7 remain deeper than the CCS #2 injection interval. In addition, the base of the USDW in the vicinity of the CCS # 5-7 wells is shallower than exists at the CCS #2 location. Therefore, the critical-pressure threshold of 62.2 psi which was used for CCS #2 permitting is still valid for AoR identification and will be further explained in Section 4.2.




Figure 4.1-2. Proposed injection intervals for CCS #5-7.

Simulation Results

In the simulation, the primary constraint on maximum injection rate is defined by the lower of either the assigned rate or reduced such that the maximum allowable injection pressure controls flow rate. A step rate test at CCS#1, in the interval of -7,025 ft KB to -7,050 ft KB was conducted to estimate the fracture pressure of the injection zone. The result from the uppermost perforation of CCS#1 (-7,025 ft KB) was that a pressure sensitive threshold is reached at approximately 5,024 psig, corresponding to a fracture gradient of 0.715 psi/ft. A value of 90% of this fracturing pressure was calculated at the top of the shallowest perforated interval and used in the simulations as the maximum allowable injection pressure. The final constraint to the injection scenarios is applied at the field level. Each scenario has a target field injection rate over the injection period. For second and third cases the target field injection rate is smaller than the sum of the maximum allowable rate and pressure constraints.

As can be seen in Figure 4.1-3, CCS #5-7 are all able to maintain the base-case target injection rate without reaching maximum allowable injection pressure. Over the projected operational life of the project, approximately 13.2 million tons will be injected into each of the three wells. The total cumulative volumes may vary for each well depending upon injection start dates.

References

Zaluski & Lee. (2018). IBDP/ICCS Static Geological Model Development and Dynamic Modelling Updates, Schlumberger

Zaluski & Lee. (2020). IBDP Final Static Geological Model Development and Dynamic Modelling, Schlumberger

Spycher, N. and Pruess, K. (2005). "CO₂-H2O mixtures in the geological sequestration of CO₂.II. Partitioning in chloride brines at 12-100 C and up to 600 bar," Geochimica et Cosmochimica Act, 69, No. 13, 3309-3320

Spycher, N. and Pruess, K. (2009). "A Phase-Partitioning Model for CO₂-Brine Mixtures at Elevated Temperatures and Pressures: Application to CO₂-Enhanced Geothermal Systems," Transport Porous Media, 82, No. 1, 173-196.

Zaytsev, I.D. and Aseyev, G.G. (1992). Properties of Aqueous Solutions of Electrolytes. Boca Raton, Florida, USA CRC Press.

Vesovic, V., Wakeham, W. A., Olchowy, G.A., Sengers, J.V., Watson, J.T.R. and Millat, J. (1990). "The Transport Properties of Carbon Dioxide," Journal of Physical and Chemical Reference Data. 19, No.3, 763.

Fenghour, A., Wakeham, W.A., and Vesovic, V. (1998). "The Viscosity of Carbon Dioxide," Journal of Physical and Chemical Reference Data. 27, No.1, 31-44.

4.2 Computational AoR delineation model

4.2.1 Pressure Delineation Model

To delineate the pressure front, the minimum or critical pressure (Pi,f) necessary to potentially cause flow to be possible from the injection zone into the lowermost USDW must be calculated.

Based on the Method 1 provided in the May 2013 UIC Program Class VI Well Area of Review and Evaluation and Corrective Action Guidance document, the increase in pressure that may be sustained in the injection zone without allowing upward cross flow into the USDW is given by:

$$\Delta P_{if} = P_u + \rho_i g \cdot (z_u - z_i) - P_i$$

Pi = is the initial pressure in the injection zone,

Pu = initial pressure of the lowermost USDW,

ρi = fluid density of the injection zone,

pu = fluid density of the lowermost USDW, g = acceleration due to gravity,

zu = elevation of the lowermost USDW and

zi = elevation of the injection zone.

The values that were used in the calculations can be found in the Table 4.2-1. The pressure of St. Peter formation (lowermost USDW) are site specific and were obtained from the ground water monitoring well GM#2 downhole pressure gauge. The zone two downhole pressure gauge at VW#2 was used to determine initial Mt. Simon reservoir pressure. Original connate fluid densities in the Mt. Simon and St. Peter were obtained from ground water samples from VW#2 and GM#2 respectively. Formation depths used in the critical pressure rise calculation remain based on the CCS#2 injector since the shallowest injection interval at either of the ADM sites is located in this well. In addition, the base of the USDW in the vicinity of the CCS #5-7 wells is shallower than exists at the CCS #2 location. These assumptions provide a conservative basis for calculation of the critical pressure for the CCS #5-7 site.

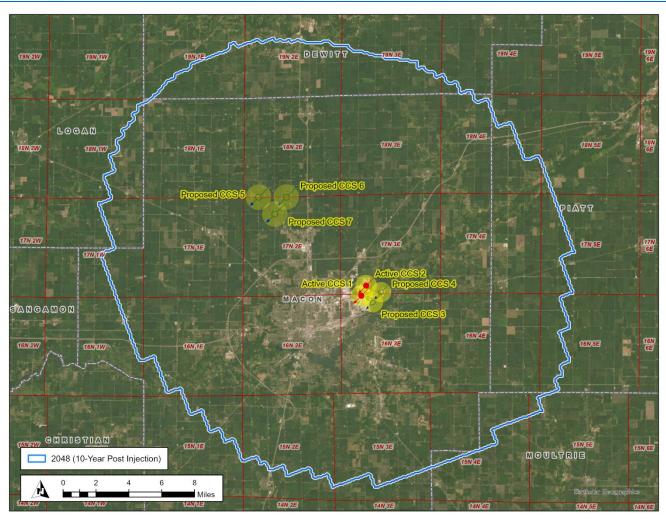
Table 4.2-1. Parameter space and values that were used to calculate critical pressure which is used toidentify pressure induced Area of Review, per May 2013 UIC Program Class VI Well Area of Review andEvaluation and Corrective Action Guidance document.

Units	Description (units) CCS	
P _u	Pressure in the St Peter USDW (Pa)	
P _u	St Peter Fluid head (m)	
	St Peter Level of Fluid (m)	
P _i	Pressure in the Mt Simon (Pa)	
P _i	Mt Simon Fluid head (m)	
	Mt Simon Level of Fluid (m)	
p _{i brine}	Mt Simon brine density (kg/m3)	
p _{u water}	St Peter water density (kg/m3)	
g	gravity (m/s2)	
z _u	St Peter Depth (ft)	
z _u	St Peter Depth (m)	
z _i	Mt Simon Reference Depth (ft)	
z _i	Mt Simon Reference Depth (m)	

The corresponding Pi,f value is calculated as negative 28.2 psi and indicates that Mt. Simon is naturally over pressured with respect to St. Peter formation, which is the deepest USDW in the region. Therefore, as suggested in the guidance document, Method 2 was used to estimate pressure front based on the displacing fluid initially present in the borehole, assuming (1) hydrostatic conditions and (2) initially linearly varying densities in the borehole and constant density once the injection zone fluid is lifted to the top of the borehole (i.e., uniform density approach). The threshold pressure increase (ΔPc) may be calculated by:

$$\Delta P_c = \frac{1}{2} \cdot g \cdot \xi \cdot (z_u - z_i)^2$$

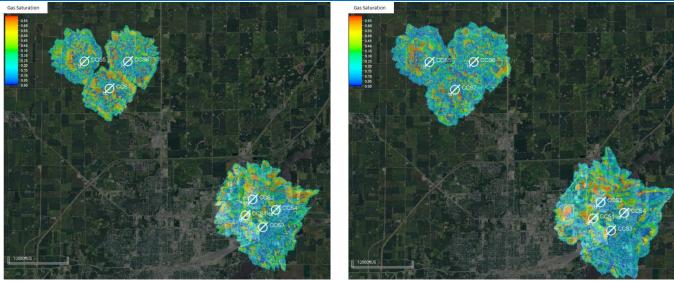
Where ξ is a linear coefficient defined by;


$$\xi = \frac{\rho_i - \rho_u}{z_u - z_i}$$

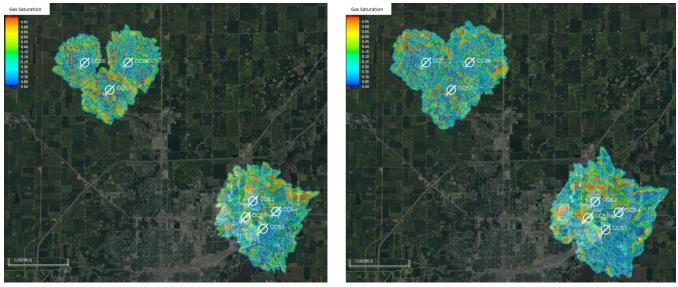
The corresponding critical pressure value calculated to be 90.4 psi. As suggested in the UIC Program Class VI Well Area of Review and Evaluation and Corrective Action Guidance document, some over-pressurization within the injection zone may be allowable without causing sustained fluid leakage, owing to the density differential between the injection zone and USDW. If the value of Δ Pc using Method 2 is greater than the absolute value of Δ Pi,f using Method 1, the difference in magnitude between the two is used as an estimate of the allowable pressure increase. Hence, using this approach allows for a 62.2 psi pressure increase in the injection interval and any area projected to have a pressure rise of more than this value is included within the area of review.

4.2.2 Reservoir Modeling Results

The area defined by the 62.2 psi pressure front was extracted from the simulation results for the three volumetric sensitivity cases discussed further in Section 4.2.3. Simulation results were evaluated on a yearly basis during the injection period and every 5 years thereafter. In all scenarios, the 62.2 psi pressure front reaches its maximum extent approximately ten years post-injection in 2048. Figure 4.2.2-1 illustrates the maximum extent of the 40 Mt case pressure projection wherein a 62.2 psi pressure front is predicted to extend to a radius of approximately 13.8 miles.


Figure 4.2.2-1. Maximum extent of the 62.2 psi pressure front for the 40-million-ton injection scenario with an equivalent radius of 13.8 miles. 40 million tons is the planned injection scenario.

4.2.3 Sensitivity Discussion


To determine the sensitivity of model projections of plume size and reservoir pressure rise to input parameters, analyses were conducted to determine plume size and pressure rise as a function of total injected volume.

Figures 4.2.3-1 through 4.2.3-3 present modeled CO₂ plumes corresponding to total injected volumes of 40, 45 and 49 million tons during the projected operational lifetime. As summarized in Table 4.2.3-2, a 23% increase in injected volume results in an approximate 4% increase in equivalent plume radius.

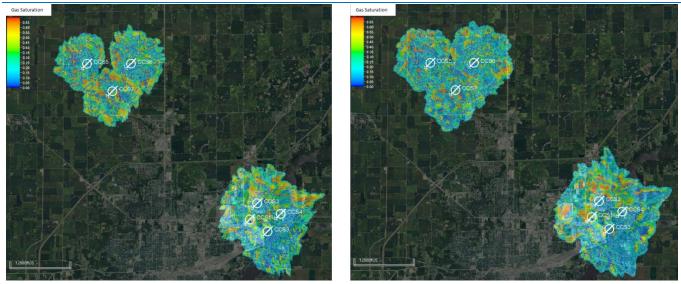


Figure 4.2.3-1. Case 1 – 40Mt injection. Image on the left represents the plume extent at the end of injection in year 2038. Image on the right represents the plume extent in year 2088. The CCS #5-7 plume covers an area of 8.62 and 10.74 square miles, respectively.

Figure 4.2.3-2. Case 2 – 45Mt injection. Image on the left represents the plume extent at the end of injection in year 2038. Image on the right represents the plume extent in year 2088. The CCS #5-7 plume covers an area of 8.90 and 11.34 square miles, respectively.

Figure 4.2.3-3. Case 3 – 49Mt injection. Image on the left represents the plume extent at the end of injection in year 2038. Image on the right represents the plume extent in year 2088. The CCS #5-7 plume covers an area of 9.32 and 11.89 square miles, respectively.

Veer	Plume Area (mi ²)				
Year	40MT	45MT	49MT		
2038	8.62	8.90	9.32		
2088	10.74	11.34	11.89		

Table 4.2.3-1. Plume Area

Year	Equivalent Plume Radius (mi)			
Tear	40MT	45MT	49MT	
2038	1.66	1.68	1.72	
2088	1.85	1.90	1.95	

Table 4.2.3-2. Equivalent Plume Radii

Predicted pressure-rise demonstrates similar sensitivity to injected volume. In all injection cases, the 62.2 psi pressure front reaches its maximum extent approximately ten years post-injection in 2048. Figure 4.3.2-4 presents the 62.2-psi AoR boundaries for the same 3 cases of projected rate. As shown, a 23% increase in injected volume will extend the equivalent AoR radius by approximately 2.4%. Post-injection pressure behavior is similar for all rate assumptions, with the cone of influence predicted for each of the 3 sensitivity cases reducing to less than 50% of its maximum size over a 50-year post-injection timeframe.

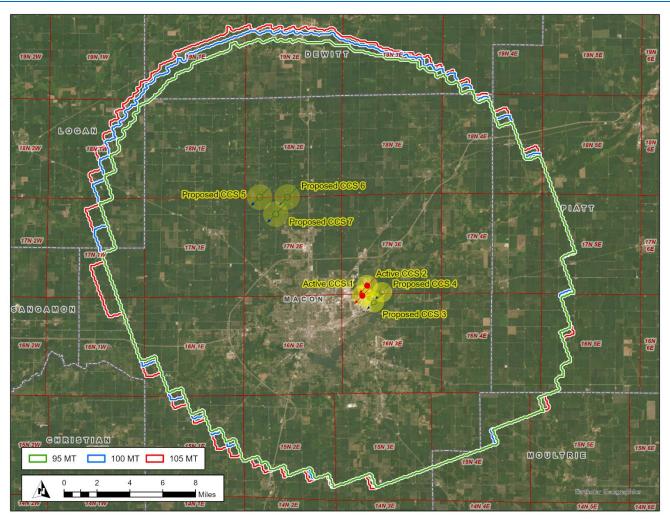


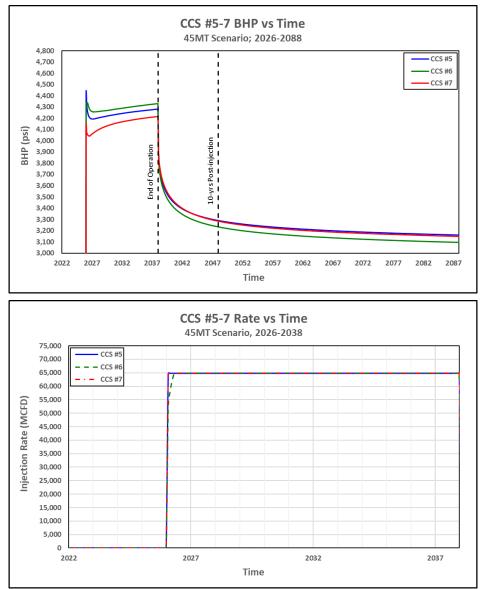
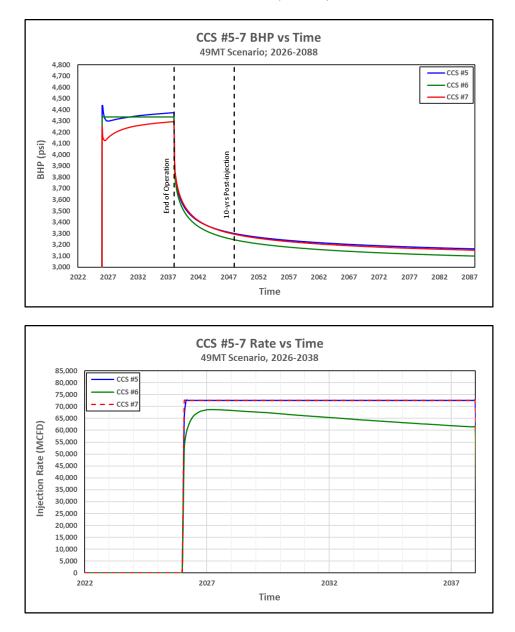
Figure 4.2.3-4. AoR Boundary vs Total Injected Volume

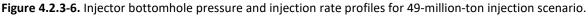
In addition, variations in primary reservoir parameters (permeability and thickness) have similar impacts on projected plume behavior as changes in rate. Based on supplementary modeling, increasing the thickness by a factor of 50% reduces plume radius by approximately 20% while permeability has a much smaller effect.

Relatively large changes to major model input parameters result in limited changes to predictions. In fact, the level of characterization for the site and for the probable injection rates/volumes is more accurate than these very generalized sensitivity examples that have been presented for illustration purposes. The proposed testing and monitoring program will allow for comparison and tracking of plume and pressure development throughout the life of the project.

Bottomhole Pressure and Rate vs Time – 45-Million-ton Scenario

In the 45 Mt sensitivity scenario, the maximum assigned rate can be injected into all wells without encountering maximum pressure limitations. In this case, approximately 15 million tons are injected into each of the three wells.


Figure 4.2.3-5. Injector bottomhole pressure and injection rate profiles for 45-million-ton injection scenario.

Bottomhole Pressure and Rate vs Time – 49-Million-ton Scenario

In the 49 Mt scenario, CCS #6 reaches its maximum bottomhole pressure constraint and its rate is scaled down to avoid exceeding the maximum allowable pressure. In this case, the cumulative injection volumes for CCS#5, CCS#6 and CCS#7 are 16.8, 15.1 and 16.8 million tonnes, respectively.

The table below summarizes the injection rate, simulated maximum injection pressure, maximum allowable pressure for each well and each case.

 Table 4.2.3-3. Maximum simulated bottomhole injection pressures for each well and scenario and maximum allowed bottomhole pressures for each well

Wall	Max Sin	Max Allowed		
Well	40MT	45MT	49MT	Injection Pressure
CCS5	4,093	4,280	4,375	4,439
CCS6	4,199	4,331	4,337	4,337
CCS7	4,105	4,214	4,295	4,404

4.3 Artificial penetrations within the AoR

The AoR is presented in Figures B.1 and B.2 in Appendix B. This AoR was calculated based on the pressure impacts generated by the combined operation of existing wells CCS#1 and CCS#2 and proposed wells CCS#3, CCS#4, CCS#5, CCS#6, and CCS#7 as presented in Section 4.1 and 4.2. Based on publicly available information from the Illinois State Geological Survey (ISGS) and the Illinois State Water Survey (ISWS) gathered in December 2022, ADM identified a total of 3,630 wells (821 oil/gas wells and 2,809 water wells) within the AoR. Except for the ADM CCS related wells [i.e., those associated with the Illinois Basin Decatur Project (IBDP) and Illinois Industrial Carbon Capture and Storage (IL-ICCS) projects, as described below], no wells were identified from public records that penetrate the confining zone within the AoR.

4.3.1 Tabulation of Wells within the AoR

Wells within the AoR

The only known wells within the AoR which currently penetrate the caprock (Eau Claire Formation) are wells associated with the IBDP and IL-ICCS projects:

- The IBDP injection well, CCS#1 (which is currently permitted as a Class VI well in its post-injection phase and will be used as a monitoring well during the IL-ICCS project).
- The IBDP verification well, VW#1 (which will continue to be used as a monitoring well during the IL-ICCS project).
- The IL-ICCS injection well, CCS#2.
- The IL-ICCS verification well, VW#2.

Tables B.1 and B.2 in Appendix B present a tabulation of publicly available data for oil and gas and water wells within the AoR, respectively. Figures B.1 and B.2 in Appendix B present the location of these oil and gas and water wells within the AoR, respectively. Available records for each well without a listed total depth were evaluated. The information gathered indicates none of the oil/gas or water wells with available data penetrate the confining zone. Based on the similar age, locations, and likely targets of the wells with less complete data, a reasonable assumption has been made that wells without a listed total depth are consistent with local wells and also do not penetrate the confining zone. This approach is consistent with the approach approved for the prior CCS#1 and CCS#2 permits. Sensitive, Confidential, or Privileged Information

As part of the original permit

application, all wells within the 4 townships-area of the injection well site were also identified (total of 3,761

wells at that time), and includes wells outside of the AoR. Information regarding these wells was provided as a supplement to the previous permit application.

There are four oil and gas wells located within approximately 2.4 km (1.5 miles) of the CCS #5-7 proposed well locations centroid. The closest well to centroid is located in Section 32, T18N, R2E (API number 121152293100), was drilled in 2001, and was -640 m (-2,100 ft KB) deep. The well was determined to be a dry hole and was subsequently plugged and abandoned. The other three (3) oil and gas wells are located in Section 33, T18N, R2E or Section 5, T17N, R2E. The deepest of these oil wells is API number 121152292300, located in Section 5. This well was drilled into the Silurian and was -642 m KB (-2,106 ft KB) deep. In summary, four oil and gas wells occur within 1.5 miles of the CCS #5-#7 proposed well locations centroid, but none penetrate the confining zone. Therefore, none of these wells have any potential to be a vertical pathway for fluid movement out of the permitted injection zone.

Wells Penetrating the Confining Zone

With the exception of the injection and verification wells previously detailed in this Section, there are no other known wells within the area of review that penetrate deeper than -1,169 m KB (-3,835 ft KB). The depth to the top of the upper confining zone (Eau Claire Formation) at CCS #1 is -1,538 m KB (-5,047 ft KB), and depths ranging from approximately -1,419 to -1,438 m KB (-4,656 to -4,717 ft KB) are expected at CCS#5-7. Therefore, there are only four known wells that currently penetrate into the uppermost confining zone within the AoR: the IBDP wells CCS#1 and VW#1, and the IL-ICCS wells CCS#2 and VW#2. These wells are currently constructed and monitored to satisfactory standards such that they are not potential vertical pathways for fluid movement out of the permitted injection zone.

If any of these deeper wells that penetrate through the confining zone are taken out of service during the life of the project, ADM will provide information to EPA to confirm that they have been properly plugged to ensure USDW protection pursuant to requirements at 40 CFR Part 146. If any additional wells that penetrate the confining zone are identified (e.g., if the AoR is re-delineated to cover a larger area as the result of an AoR reevaluation), ADM will evaluate these wells for potential risk and complete corrective action as needed pursuant to 40 CFR 146.84(d).

4.3.2 Plan for Site Access

This is not applicable because no corrective action is required at this time.

4.3.3 Justification of Phased Corrective Action

This is not applicable because no corrective action is required at this time.

4.4 AoR and Corrective Action Plan

ADM will take the following steps to evaluate project data and, if necessary, reevaluate the AoR. Future AoR reevaluations will be performed during the injection and post-injection phases. ADM will:

1. Review available monitoring data and compare it to the model predictions of plume size and pressure increase projected for the injection interval. ADM will analyze monitoring and operational data from the injection well (CCS#2), proposed injection wells (CCS#5, CCS#6 and CCS#7), the monitoring and geophysical wells, other surrounding wells, and other sources to assess whether the predicted CO₂ plume migration and pressure impacts are consistent with predicted behavior. Monitoring activities to be conducted are described in the Testing and Monitoring Plan (Section 9 of this permit application) and the PISC and Closure Plan (Section 11 of this permit application). Specific steps of this review include:

- a. Review available data regarding the position of the CO₂ plume and pressure front (including pressure and temperature monitoring data and RST saturation and seismic survey data). Specific activities will include:
 - i. Correlate data from time-lapse RST logs, time-lapse VSP surveys (if conducted since the last review), and other seismic methods (e.g., 3D surveys) to locate and track the movement of the CO₂ plume. A good correlation between the data sets will provide strong evidence for the continued validation of the model representation of the storage system. Also, as may be practical, 2D and 3D seismic surveys will be employed to determine the plume location as described in the Testing and Monitoring Plan and/or the PISC and Site Closure Plan (as applicable).
 - ii. Review downhole reservoir pressure data collected from various locations and intervals using a combination of surface and downhole pressure gauges.
- b. Review ground water chemistry monitoring data acquired from the shallow (i.e., in Quaternary and/or Pennsylvanian strata) monitoring wells, the St. Peter, and the Ironton-Galesville to verify that there is no evidence of excursion of carbon dioxide or brines that represent an endangerment to any USDWs.
- c. Review operational data, e.g., regarding injection rates and pressures, and verifying that it is consistent with the inputs used in the most recent modeling effort.
- Review any geologic data acquired since the last modeling effort, (e.g., additional site characterization performed, if any), updates of petrophysical properties from core analysis, etc. Identifying whether any new data materially differ from modeling inputs/assumptions.
- 2. Compare the results of reservoir modeling used for AoR delineation to the pressure and saturation data collected. Monitoring data will be used to show that the model accurately represents the storage site and can be used as a proxy to determine the properties and size of the plume. ADM will demonstrate the degree of accuracy by comparing monitoring data against the model predictions (i.e., plume location, rate of movement, and pressure decay). Statistical methods will be employed to correlate the data and confirm the ability of the model to accurately represent the storage site.
- 3. If the information reviewed is consistent with, or is unchanged from, the most recent modeling assumptions or confirms modeled predictions about the maximum extent of plume and pressure front movement, ADM will prepare a report demonstrating that, based on the monitoring and operating data, no reevaluation of the AoR is needed. The report will include the data and results demonstrating that no changes are necessary.
- 4. If material changes have occurred (e.g., in the behavior of the plume and pressure front, operations, or site conditions) such that the actual plume or pressure front may extend beyond the previously modeled plume and pressure front such that the basis of the approvals change, ADM will re-delineate the AoR. The following steps will be taken:
 - a. Revising the site conceptual model based on new site characterization, operational, or monitoring data.
 - b. Calibrating the model in order to minimize the differences between monitoring data and model simulations.

- c. Performing the AoR delineation as described in the Computational Modeling Section of this AoR and Corrective Action Plan.
- 5. Review wells in any newly identified areas of the AoR and apply corrective action to deficient wells, if necessary. Specific steps include:
 - a. Identifying any additional wells within the expanded AoR that penetrate the confining zone and provide a description of each well type, construction, date drilled, location, depth, record of plugging and/or completion.
 - b. Determining which abandoned wells in the newly delineated AoR have been plugged in a manner that prevents the movement of carbon dioxide or other fluids that may endanger USDWs.
 - c. Performing corrective action on all deficient wells in the AoR using methods designed to prevent the movement of fluid into or between USDWs, including the use of materials compatible with carbon dioxide.
- 6. Prepare a report documenting the AoR reevaluation process, data evaluated, any corrective actions determined to be necessary, and the status of corrective action or a schedule for any corrective actions to be performed. The report will be submitted to EPA within one year of the reevaluation. The report will include maps that highlight similarities and differences in comparison with previous AoR delineations.
- 7. Update the AoR and Corrective Action Plan to reflect the revised AoR, along with other related project plans, as needed.

4.4.1 AoR Reevaluation Cycle

ADM will reevaluate the above described AoR every five years during the injection and post-injection phases.

In addition, monitoring and operational data will be reviewed periodically by ADM during the injection and postinjection phases. The reservoir flow model will be history matched against the observed parameters measured at the monitoring wells. Pressure will be monitored as described in the Testing and Monitoring Plan. The time lapse pressure monitoring data will be compared to the model predicted time lapse pressure profiles. ADM will provide a review of this data in the semi-annual report.

If data suggest that a significant change in the size or shape of the actual CO₂ plume as compared to the predicted CO₂ plume and/or pressure front is occurring or there are deviations from modeled predictions such that the actual plume or pressure front may extend vertically or horizontally beyond the modeled plume and pressure front, ADM will initiate an AoR reevaluation prior to the next scheduled reevaluation. Such deviations may be evidenced by the results of direct or indirect monitoring activities including MIT failures or loss of MI; observed pressure and saturation profiles; changes in the physical or chemical characteristics of the CO₂; any detection of CO₂ above the confining zone (e.g., based on hydro chemical/physical parameters); micro seismic data indicating slippage in or near the confining zone or micro seismic data within the injection zone that indicates slippage and propagation into the confining zone; or arrival of the CO₂ plume and/or pressure front at certain monitoring locations that diverges from expectations, as described below.

4.4.2 Trigger for AoR Reevaluations Prior to the Next Scheduled Reevaluation

Unscheduled reevaluation of the AoR will be based on quantitative changes of the monitoring parameters in the deep monitoring wells, including unexpected changes in the following parameters: pressure, temperature, neutron saturation, and the deep ground water (> 3,000 ft below KB) constituent concentrations indicating that

the actual plume or pressure front may extend beyond the modeled plume and pressure front. These changes include:

- *Pressure:* Changes in pressure that are unexpected and outside three (3) standard deviations from the average will trigger a new evaluation of the AoR.
- *Temperature*: Changes in temperature that are unexpected and outside three (3) standard deviations from the average will trigger a new evaluation of the AoR.
- *RST Saturation:* Increases in CO₂ saturation that indicate the movement of CO₂ into or above the confining zone will trigger a new evaluation of the AoR unless the changes are found to be related to the well integrity. (Any well integrity issues will be investigated and addressed.)
- Deep ground water constituent concentrations: Unexpected changes in fluid constituent concentrations that indicate movement of CO₂ or brines into or above the confining zone will trigger a new evaluation of the AoR unless the changes are found to be related to the well integrity. (Any well integrity issues will be investigated and addressed.)
- Exceeding Fracture Pressure Conditions: Pressure in any of the injection or monitoring wells exceeding 90 percent of the formation fracture pressure established for the point of measurement. This would be a violation of the permit conditions. The Testing and Monitoring Plan (Section 9 of this permit application) and the operating procedures in Section 8 of this permit application provides discussion of pressure monitoring and specific procedures that will be completed during the injection start-up period.
- Exceeding Established Baseline Hydro chemical/Physical Parameter Patterns: A statistically significant difference between observed and baseline hydro chemical/physical parameter patterns (e.g., fluid conductivity, pressure, temperature) immediately above the confining zone. The Testing and Monitoring Plan (Section 8 of this permit application) provides extended information regarding how pressure, temperature, and fluid conductivity will be monitored.
- *Compromise in Injection Well Mechanical Integrity*: A significant change in pressure within the protective annular pressurization system surrounding each injection well that indicates a loss of mechanical integrity at an injection well.
- Seismic Monitoring Identification of Subsurface Structural Features: Seismic monitoring data that indicates the presence of a fault or fracture in or near the confining zone or a fault or fracture within the injection zone that indicates propagation into the confining zone. The Testing and Monitoring Plan provides extended information about the micro seismic monitoring network.

An unscheduled AoR reevaluation may also be needed if it is likely that the actual plume or pressure front may extend beyond the modeled plume and pressure front because any of the following has occurred:

- Seismic event greater than M3.5 within eight (8) miles of the injection wells;
- If there is an exceedance of any Class VI operating permit condition (e.g., exceeding the permitted volumes of carbon dioxide injected); or
- If new site characterization data changes the computational model to such an extent that the predicted plume or pressure front extends vertically or horizontally beyond the predicted AoR.

ADM will discuss any such events with the UIC Program Director to determine if an AoR reevaluation is required.

If an unscheduled reevaluation is triggered, ADM will perform the steps described at the beginning of this section of this Plan.

5. Financial Responsibility Plan

Cost estimates for financial assurance associated with the proposed ADM CCS #5-7 wells are generated based on prices incurred for similar work and reflect the current pricing environment. The cost summary presented in Section 5.6 applies both inflation and cost discounting assumptions based on the expected project timeline. See Appendix A for Financial Responsibility documentation.

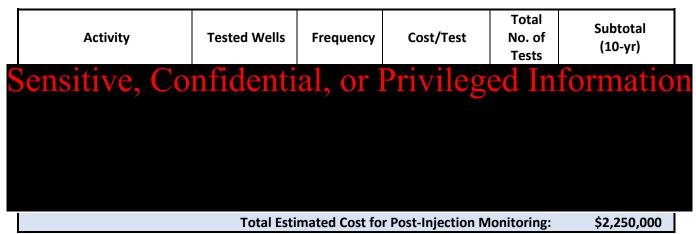
5.1 Area of Review and Corrective Action Cost Estimate

As outlined in Appendix B of the permit application, the area of review (AoR) refers to the maximum area extent of the effected injection reservoir in which Mt. Simon pressure will exceed a critical pressure and have the potential to hypothetically drive fluids upwards into the lowermost USDW (St. Peter formation) if a vertical pathway is present. The AoR is based on results from current numerical modeling including all proposed wells at the site (including CCS #1-7) and is subject to change if operational measurements deviate significantly from modeled predictions. However, no known deep penetrating wells were found to exist within the AoR. Based on this review, no cost has been assigned for corrective action since no pathways for hypothetical leakage were found to exist.

5.2 Injection Well Plugging and Site Reclamation Estimate

Plugging costs for the three injection wells (CCS#5, CCS#6, and CCS#7) will be incurred at the end of their respective operational periods. A series of cement plugs will be placed to seal the entire wellbore, and each well will be capped and covered below ground level. Table 5.2-1 presents an approximate breakdown of total estimated cost based on the procedures provided in Section 10.

	Activity	No. Wells	Cost/Well	Subtotal	
S	ensitive, Confidential, or F	rivi	leged Ir	formati	011
	Total Estimated Cost for	· P&A / Si	te Reclamation:	\$2,325,000	1



5.3 Post-Injection Site Care Cost Estimate

Post-injection monitoring extends the use of the verification wells (VWs) and geophysical monitoring wells (MWs) by means of the operational testing and monitoring plan described in Section 9 of the permit application. Monitoring activities, locations and frequencies are summarized in Table 5.3-1. Monitoring costs assume that VW #4 and VW#5 will be installed as a single wellbore with multi-zone sampling capacity.

TABLE 5.3-1. Cost Summary for Post-Injection Monitoring	TABLE 5.3-1.	Cost Summary f	or Post-Injection	Monitoring
---	--------------	----------------	-------------------	------------

5.4 Site Closure Cost Estimate

The site closure costs summarized in Table 5.4-1 include plugging and reclamation activities for all VWs and MWs (the procedure is identical to that described in Section 5.2 for injection wells). The VWs extend to the approximate depth of injection wells but have a smaller diameter, which significantly reduces the volume of cement and time required for plugging. The GWs are installed to the base of the St. Peter formation, which is approximately half the depth of injection and verification wells. Site closure estimates assume VW #4 and #5 exist as single wellbores; multiple, smaller-diameter wellbores would likely incur the same total plugging cost.

5.5 Emergency and Remedial Response Cost Estimate

The primary sources of risk evaluated in the current plan are similar to the risk categories utilized in the previously approved CCS#1 and #2 permits, and CCS#3 and CCS#4 permit applications. For the current evaluation, additional consideration was given to surface equipment and to the slight changes to some FEP probabilities impacted by the presence of the additional wells and the increased volume and pressure associated

with the incremental injection operations in the fourth site injector. In this site-wide financial risk assessment, Monte-Carlo analysis was used to calculate an expected present value (PV) of financial liability based on the probability and expected cost of risk events occurring over the 15-year operational and 10-year post operational periods. Probabilities for each event were assigned primarily based on a 2007 risk assessment report submitted as part of the FutureGen Environmental Impact Statement (FutureGen, Contract No. DE-AT26-06NT42921). Table 5.5-1 summarizes the range of probabilities estimated in the FutureGen report for each respective risk event and used as part of the input values for this evaluation.

Risk Event	Event Description	Annual Frequency of Failure (Single Item)	
Event		Low Estimate	High Estimate
1	Pipeline Rupture	Sensitive, Confidential, o	r Privileged Informatio
2	Pipeline Puncture		
3	Wellhead Equipment Rupture		
4	Upward rapid leakage through CO ₂ injection well		
5	Upward slow leakage through CO ₂ injection well		
6	Upward rapid leakage through deep oil & gas wells		
7	Upward slow leakage through deep oil & gas wells		
8	Upward rapid leakage through caprock		
9	Upward slow leakage through caprock		
10	Release through existing faults		
11	Release through induced faults		
12	Leaks due to undocumented deep wells, high rate		
13	Leaks due to undocumented deep wells, low rate		

TABLE 5.5-1. Annual Probabilities of Relevant CCS Risk Events

Each Monte-Carlo simulation observation assigns random event probabilities using uniform distributions based on the respective low and high estimates shown in Table 5.5-1. The resulting probabilities are then multiplied by the number of relevant items: events 1-5 apply to three CO_2 injection wells, events 6-7 are applied to approximately 100 oil and gas wells within the project's area-of review (AoR), and the remaining events are interpreted as project-wide risks with a multiplier of 1.

If an event occurs in a particular Monte-Carlo realization based on the probability distribution and the multiplier for the potential number of events from the process described above, it is then assigned a cost based on a triangular distribution. Most-likely costs assigned for events 4-13 are volume-based remediation estimates based on the magnitude of potential leakage (Appendix 8 provides additional information on the methodology of cost assignments). Table 5.5-2 summarizes the distribution parameters used for each risk event (low, most-likely, and high estimates).

TABLE 5.5-2. Remediation Cost Parameters for Risk Events
--

Fuent	Event Description	Event Cost (Triangular Distribution)		istribution)
Event	Event Description	Low	Most Likely	High
1	Pipeline Rupture	Sensitive, Con	fidential, or Priv	vileged Information
2	Pipeline Puncture			
3	Wellhead Equipment Rupture			
4	Upward rapid leakage through CO ₂ injection well			
5	Upward slow leakage through CO ₂ injection well			
6	Upward rapid leakage through deep oil & gas wells			
7	Upward slow leakage through deep oil & gas wells			
8	Upward rapid leakage through caprock			
9	Upward slow leakage through caprock			
10	Release through existing faults			
11	Release through induced faults			
12	Leaks due to undocumented deep wells, high rate			
13	Leaks due to undocumented deep wells, low rate			

Using the defined probability and cost distributions, the Monte-Carlo simulation creates thousands of viable scenarios that project annual liability costs over a 25-year timeframe (15 years operational and 10 post-operational). Future payments are discounted at a rate of 2.0% and incorporate an annual inflation rate of 2.75%. Figure 5.5-1 illustrates the final distribution of total project liability based on the aggregate results of 100,000 simulations. The Monte Carlo analysis was used to generate an expected value of \$4.47 million based on the results from all modeled outcomes.

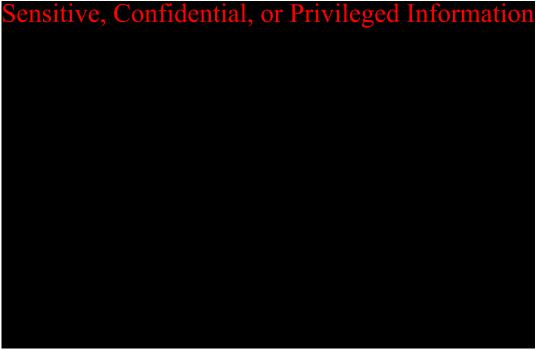
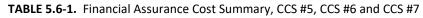



Figure 5.5-1. Distribution of Emergency and Remedial Response Net Present Value

5.6 Cost Summary

Cost estimates detailed in Sections 5.1 through 5.5 were adjusted to present values using the same method described in the emergency and remedial response section (future costs were inflated assuming an annual inflation rate of 2.75% and discounted at a rate of 2.0%). Table 5.6-1 summarizes the pre-adjusted and adjusted cost totals for the five cost categories.

Category	Pre-adjusted	Adjusted NPV
Sensitive, Confidential, or P	rivileged	Information
Total Financial Ass	surance Required:	\$13,220,000

6. Well Construction Details

6.1 Well Hole Diameters and Injection Intervals

The approximate open hole diameters and injection intervals for CCS#5-7 are described below in Tables 6.1-1, 6.1-2, and 6.1-3.

Name of Interval	Approximate Depth Interval (feet)	Open Hole Diameter (inches)	Comment
Surface	Sensitive, Confidential,	or Privileged Information	To bedrock
Intermediate			To primary seal
Long			To total depth

Table 6.1-1. CCS#5 preliminary open hole diameters and depth intervals

Table 6.1-2. CCS#6 preliminary open hole diameters and depth intervals

Name of Interval	Approximate Depth Interval (feet)	Open Hole Diameter (inches)	Comment
Surface	Sensitive, Confidential,	or Privileged Information	To bedrock
Intermediate			To primary seal
Long			To total depth

Table 6.1-3. CCS#7 preliminary open hole diameters and depth intervals

Name of Interval	Approximate Depth Interval (feet)	Open Hole Diameter (inches)	Comment
Surface	Sensitive, Confidential,	or Privileged Information	To bedrock
Intermediate			To primary seal
Long			To total depth

6.2 Casing Specifications

The casing specifications for CCS#5-7 are described below in Tables 6.2-1, 6.2-2, and 6.2-3.

Name of Interval	Approximate Depth Interval (feet)	Outside Diameter (inches)	Inside Diameter (inches)	Weight (lb/ft)	Grade (API)	Design Coupling (Short or Long Threaded)	Thermal Conductivity @ 77°F (BTU/ft.hr. °F)
Surface ¹	Sensitiv	ve. Co	nfider	itial.	or Privile	eged Info	ormation
Intermediate ²						0	
Long ³ (carbon)							
Long ³ (chrome)							

Table 6.2-1. CCS#5 preliminary casing specifications

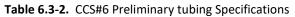
Name of Interval	Approximate Depth Interval (feet)	Outside Diameter (inches)	Inside Diameter (inches)	Weight (lb/ft)	Grade (API)	Design Coupling (Short or Long Threaded)	Thermal Conductivity @ 77°F (BTU/ft.hr. °F)
Surface ¹	Sensitiv	le Co	nfider	tial	or Privile	ged Info	rmation
Intermediate ²		••••		lered 9		5 c a mio	1111001011
Long ³ (carbon)							
Long ³							
(chrome)							

Name of Interval	Approximate Depth Interval (feet)	Outside Diameter (inches)	Inside Diameter (inches)	Weight (lb/ft)	Grade (API)	Design Coupling (Short or Long Threaded)	Thermal Conductivity @ 77°F (BTU/ft.hr. °F)
Surface ¹	Sensitiv	le. Co	nfider	tial.	or Privile	ged Info	rmation
Intermediate ²		•••				5°a 11110	111001011
Long ³ (carbon)							
Long ³ (chrome)							

Note 1: Surface casing will be 350 ft of 20-inch casing for all three wells. After drilling a 26-inch hole to approximately 350 ft true vertical depth (TVD) or at least 50 ft into the bedrock below the shallow groundwater, 20-inch, 94 ppf, H40, short thread and coupling (STC) casing will be set and cemented to surface. Coupling outside diameter is ~21 inches.

Note 2: Intermediate casing will be at least 5,600 ft of 13.375-inch casing for all three wells. After a shoe test or formation integrity test (FIT) is performed, a 17.5-inch hole will be drilled to approximately 5,600 ft TVD or approximately 50 ft into the Eau Claire Shale (primary seal formation). The 13.375-inch-long thread and coupling (LTC) or buttress thread and coupling (BTC) casing will be set and cemented to surface. Coupling outside diameter is ~14.375-inches.

Note 3: Long string casing for all three wells consists of two sections: 1) 9.625-inch, API CS casing and 2) 9.625-inch, API 13Cr alloy casing. After a shoe test is performed and the integrity of the casing is tested, a 12.25-inch hole will be drilled to approximately 7,700 ft – 7,900 ft TVD or through the Mt. Simon, where the long string casing will be set and cemented in two stages using CO_2 resistant cement in the bottom (tail) section. The upper 9.625-inch depths will be approximately 5,200 ft TVD for all three wells. Coupling outside diameter is ~10.625-inches for the upper CS section and ~10.485-inches for the lower 13Cr section.



6.3 Tubing Specifications

The tubing specifications for CCS#5-7 are described below in Tables 6.3-1, 6.3-2, and 6.3-3.

Name	Depth Interval (feet) ¹	Outside Diameter (inches)	Inside Diameter (inches)	Weight (lb/ft)	Grade (API)	Design Coupling (Short or Long Threaded	Burst strength (psi)	Collapse strength (psi)
Injection tubing ^{2,3,4}	Sensit	cive, Co	onfiden	tial, o	r Priv	vileged	Inform	nation

Name	Depth Interval (feet) ¹	Outside Diameter (inches)	Inside Diameter (inches)	Weight (lb/ft)	Grade (API)	Design Coupling (Short or Long Threaded	Burst strength (psi)	Collapse strength (psi)
Injection tubing ^{2,3,4}	Sensit	tive, Co	onfiden	tial, o	or Priv	vileged	Inform	nation

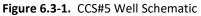
Table 6.3-3. CO	CS#7 Preliminary t	ubing Specifications
-----------------	--------------------	----------------------

Name	Depth Interval (feet) ¹	Outside Diameter (inches)	Inside Diameter (inches)	Weight (lb/ft)	Grade (API)	Design Coupling (Short or Long Threaded	Burst strength (psi)	Collapse strength (psi)
Injection tubing ^{2,3,4}	Sensit	cive, Co	onfiden	tial, o	or Priv	vileged	Inform	natior

Note 1: The tubing length will be finalized after the location of the perforations are selected and the packer location determined. The final tubing design may change subject to availability and/or pending results of reservoir analysis. The well casing design does allow for a larger tubing than 5 $\frac{1}{2}$ " if required.

Note 2: Maximum allowable suspended weight based on joint strength of injection tubing. Specified yield strength (weakest point) on tubular and connection is 306,000 lbs.

Note 3: Weight of expected injection tubing string (axial load) in air (dead weight) will be 122,500 lbs., 120,100 lbs., and 120,900 lbs. for CC#5, CCS#6, and CCS#7 respectively.


Note 4: Thermal conductivity of tubing @ 77°F will be 16 BTU / ft.hr.°F.

The wells will be plugged back from the bottom with at least 80 feet of cement or with a sufficient volume to prevent the injection fluid from coming directly in contact with the Precambrian granite basement through the

wellbore. Figures 6.3-1, 6.3-2, and 6.3-3 display wellbore schematics showing surface and subsurface well details for all three wells.

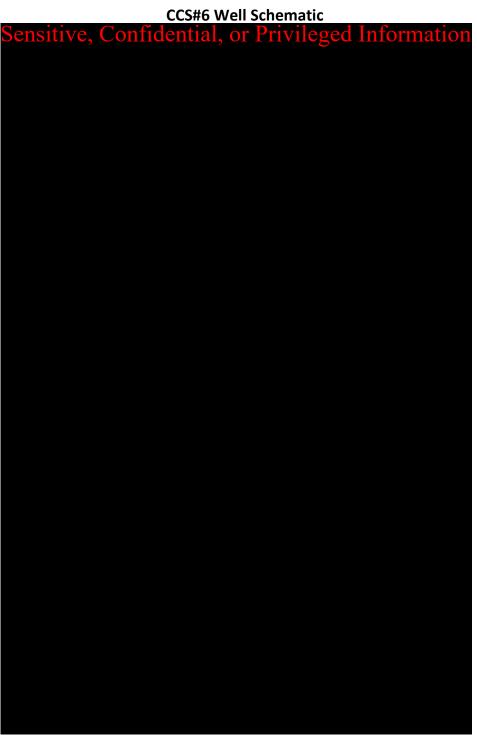


Figure 6.3-2. CCS#6 Well Schematic

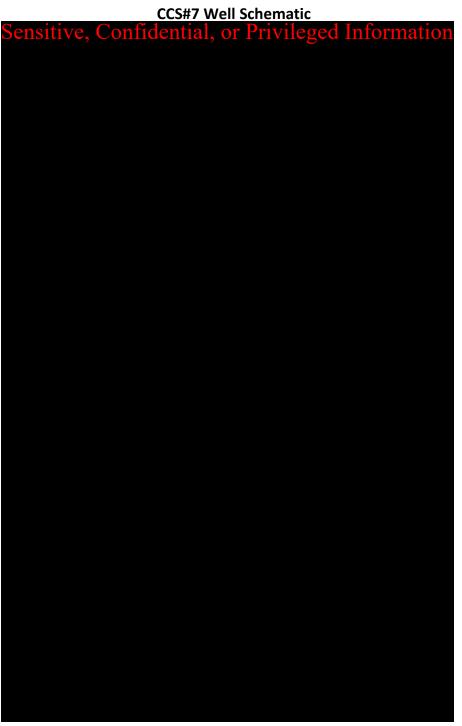


Figure 6.3-3. CCS#7 Well Schematic

6.4 Tubing and Packer Pressure Gauge and Compatibility

The pressure and temperature gauge will be installed at the packer at approximate depth of 6,750 ft. for all three wells. Tubing and packer materials will be compatible with fluids with which the materials may be expected to come into contact and will meet or exceed standards developed for such materials by the American Petroleum Institute, ASTM International, or comparable standards acceptable to the Director.

7. Pre-Injection/Operational Testing Plan

The testing activities at CCS#5, CCS#6 and CCS#7 described in this Section are restricted to the pre-injection phase. Testing and monitoring activities during the injection and post-injection phases are described in the Testing and Monitoring Plan, along with other non-well related pre-injection baseline activities such as geochemical monitoring.

The pre-injection operational testing plan presented herein addresses the requirements of 40 CFR Section 146.87 (a-f):

- Deviation checks during drilling (a)(1)
- Logging required before installation of surface casing and long string casing (a)(2)(3)
- Tests to demonstrate internal and external mechanical integrity (a)(4)(5)
- Proposed coring program (b)
- Proposed fluid sampling program, including those to assess the chemical characteristics of the injection and confining zones (c)(d)
- Tests to verify hydrogeologic conditions in the injection and confining zone and determine fracture pressure(d)(e)

7.1 Tests during well drilling/construction

ADM will perform logging, surveys and tests to determine or verify the depth, thickness, porosity, permeability, lithology, and formation fluid salinity in all relevant geologic formations. These tests shall include:

- Deviation checks that meet the requirements of 40 CFR 146.87(a)(1);
- Logs and tests before and upon installation of the surface casing that meet the requirements of 40 CFR 146.87(a)(2);
- Logs and tests before and upon installation of the long-string casing that meet the requirements of 40 CFR 146.87(a)(3);
- Tests to demonstrate internal and external mechanical integrity that meet the requirements of 40 CFR 146.87(a)(4); and
- Any alternative methods that are required by and/or approved by the Director pursuant to 40 CFR 146.87(a)(5).

7.1.1 Deviation Checks and casing design

The subsurface and surface design (casing, cement, and wellhead designs) meets the requirements to appropriately manage CO₂, the preserve mechanical integrity during injection operations and to sustain the integrity of the caprock to ensure CO₂ remains in the Mt. Simon. For reasons such as equipment or supply availability, or changes to the supplemental monitoring program, the final well design may vary but will meet or exceed requirements in terms of strength and CO₂ compatibility. See Appendix G for well cement information.

The injection well is planned to be drilled vertically with an inclination of 5° degrees or less. During drilling, the wellbore trajectory will be tracked and surveyed every 1,000 feet to reduce the risk of interception with adjacent wellbores. In the event that a deviation exceeds 5° degrees due to a well kick off or directional drilling to facilitate the construction and operation of the well. The permittee will notify the agency within 7 calendar days.

7.1.2 Mechanical Integrity Testing and Logging During and after Casing Installation

Wireline logging is an important tool that will be used to identify many characteristics of the formations encountered during drilling and for demonstrating mechanical integrity of the well. The logs discussed in this section were conducted on CCS#1-2 and VW#1-2 and are summarized in Table 7.1.2-1. The logging program for CCS#5, CCS#6 and CCS#7 will be comparable but may differ from the previous well logging programs. Logs for the proposed injection wells are presented in Section 7.1.2.2 and 7.1.2.3, and are summarized in Table 7.1.2-2.

Mechanical integrity testing and logging are described in Section 7.1.2.3 and proposed testing is summarized in Table 7.1.2-3. ADM will provide a schedule for all testing and logging to the permitting agency at least 30 days in advance of conducting the first such tests and/or logs.

7.1.2.1 Historic Logs

Table 7.1.2-1 presents a summary of the previous geophysical logs collected in the existing CCS and VW wells. The logging programs for the two active CCS wells were similar. CCS#1 had triple combo logs (gamma ray, spontaneous potential, caliper, resistivity, bulk density, and neutron porosity) performed on all sections of each well. All casing strings had either a cement bond log (CBL) or ultrasonic CBL to confirm the condition of cement between the casing and reservoir. The intermediate and long string sections of the wells had open hole logging programs that included triple combo, dipole sonic, formation micro-imaging (fracture finder), spectral gamma ray, and nuclear magnetic resonance logs as part of the suite of open hole logs. The long string logs on CCS#1 included a modular dynamics tester and a versatile seismic imager. The long string on CCS#2 also included a Litho-Scanner (Lithology Scanner). Triple combo, modular dynamics tester, Pressure Express Tool (XPT) and pulse neutron logs were performed in VW#1-2. The logging suite performed on the CCS wells presents a comprehensive geophysical analysis of the injection zone, confining zone, and overlying formations. A summary of the geologic characterization is provided in Section <u>3. Site Geologic Characterization</u> of this application document.

Table 7.1.2-1. Log Summary: Existing Site Wells

Well Name	Log Vendor	Log Title	Date Run	Depth Interval (MD ft. KB)
Sensitive, Confide	ential, or Privileged Information	GR, CAL, SP, Resistivity, RHOB, NPHI	3/9/2009	Sensitive, Confidential, or Privileged Information
		Variable Density CBL		
		GR, CAL, SP, Resistivity, RHOB, NPHI	4/5/2009	
		Sonic Scanner and FMI	4/5/2009	
		CMR, ECS, HNGS	4/5/2009	
		MSCT	4/5/2009	
		Ultrasonic Cement Imaging		
		GR, CAL, SP, Resistivity, RHOB, NPHI	4/26/2009	
		Sonic Scanner and FMI	4/26/2009	
		CMR, ECS, HNGS	4/26/2009	
		MSCT	4/26/2009	
		MDT	4/26/2009	
		VSIT	4/26/2009	
		Ultrasonic Cement Imaging		
		Variable Density CBL		
		Pressure/Temperature Log		
		Thermal Neutron Decay (Formation		
		Sigma) Log		
		Multi-Finger Caliper Log		
		CCL and Perforation Record		
		Injection Fullbore Spinner Logs		
		GR, Resistivity, NPHI, SlimPulse	1/12/2015	
		CAL, DSLT, GPIT	1/12/2015	
		CBL	1/16/2015	
		GR, CAL, SP, Resistivity, RHOB, NPHI	5/3/2015	
		Sonic Scanner, FMI, CAL, GPIT	5/3/2015	
		ECS, HNGS	5/3/2015	
		Variable Density CBL	5/31/2015	
		Isolation Scanner Cement Evaluation	5/31/2015	
		Isolation Scanner Casing Integrity	5/31/2015	
		GR, CAL, SP, Resistivity, RHOB, NPHI	5/29/2015	
		Sonic Scanner, FMI, CAL, GPIT	5/29/2015	
		CMR, Litho Scanner, HNGS	5/29/2015	
		MSCT	5/29/2015	
		Multi-finger Imaging Tool	6/10/2015	
		Variable Density CBL	6/10/2015	
		Isolation Scanner Cement Evaluation	6/10/2015	

Well Name	Log Vendor	Log Title	Date Run	Depth Interval (MD ft. KB)
Sensitive, Confide	ential, or Privileged Information	Isolation Scanner Third Interface Echo	6/10/2015	Sensitive, Confidential, or Privileged Information
		GR, SP, Resistivity, RHOB, NPHI, Sonic		
		CBL and/or Cement Imaging		
		GR, CAL, Resistivity, RHOB, NPHI		
		Sonic Scanner		
		GR, CAL, Resistivity, RHOB, NPHI		
		Sonic Scanner		
		MDT	10/25/2010	
		XPT (Pressure Express Tool)	11/17/2010	
		GR, CAL, Resistivity, RHOB, NPHI	10/8/2012	
		Sonic Scanner	10/8/2012	
		GR, CAL, Resistivity, RHOB, NPHI	10/31/2012	
		Sonic Scanner	10/31/2012	
		XPT (Pressure Express Tool)	10/31/2012	
		RST		

7.1.2.2 Proposed CCS#5, CCS#6 and CCS#7 Logs

Table 7.1.2-2 presents the proposed log suite for CCS#5, CCS#6 and CCS#7. Each open hole section (prior to setting each casing string) will be logged with multiple suites to fully characterize the geologic formations (reservoirs and seals). The logging program will include resistivity, spontaneous potential (SP), gamma ray (GR), cement bond, and caliper logs.

Log Type (Open Hole or Cased Hole)	Log Run Title	Hole Section
Open Hole	GR, SP, Resistivity, Caliper	Surface
Cased Hole	Radial Cement Bond Log	Surface
Cased Hole	Temperature Log	Surface
Open Hole	GR, SP, Resistivity, Caliper	Intermediate
Open Hole	Bulk Density, Neutron Porosity	Intermediate
Open Hole	Sonic	Intermediate
Cased Hole	Radial Cement Bond Log or Ultrasonic Cement Bond Log	Intermediate
Cased Hole	Temperature Log	Intermediate
Open Hole	Spectral GR, SP, Resistivity, Caliper	Long String
Open Hole	Bulk Density, Neutron Porosity	Long String
Open Hole	Sonic	Long String
Open Hole	Nuclear Magnetic Resonance	Long String
Open Hole	Fracture Finder	Long String
Cased Hole	Radial Cement Bond Log or Ultrasonic Cement Bond Log	Long String
Cased Hole	Temperature Log	Long String

Table 7.1.2-2. Proposed Logging CCS#5, CCS#6 and CCS#7

With the exception of the 20" conductor casing, a cement bond log (CBL) with radial capability and/or ultrasonic cement imaging logs will be run on all casing strings. In addition to cement evaluation data, ultrasonic imaging and/or multi-finger caliper (MFC) logs will provide baseline casing thickness and/or internal radius measurements. Follow-up MFC logs will be performed in the event the injection tubing is removed during a well recompletion or workover.

Regarding the conductor casing, due to the large casing size, a cement bond log with radial imaging is not practical and when performed typically yield ambiguous results. To achieve good cement mechanical integrity, the best practice indicators are returning excess clean cement to the surface during cement displacement, having minimal cement fallback after completing cement displacement, and successfully passing a casing shoe test.

Based on previous experience with CCS#1 and CCS#2, hydraulic stimulation of the injection zone is not expected but an acid matrix stimulation to reduce perforation skin damage may be necessary. To reduce the risk of formation damage during well perforation, the operator will employ a static or dynamic underbalanced techniques.

After the well is cased, pre-injection testing will be performed to provide well specific data for the reservoir model. During these tests, P/T gauges will be deployed near the perforated interval while the pressure fall-off and step rate tests are performed. The final perforating scheme will be based on interpretation of the test results.

After installation of the 5-1/2" injection tubing, a baseline temperature and pulse neutron (PN) log will be performed. These logs will be compared to subsequent timelapse logs to inform the operator about the accumulation and movement of CO_2 behind the wellbore and the state of the well's mechanical integrity. The PN logs will provided information about the location and vertical movement of CO_2 near the wellbore. This allows the operator to monitor the movement of CO_2 within the injection zone and above the seal formation. Both logging techniques will be used to demonstrate the mechanical integrity of the well.

7.1.2.3 Proposed Mechanical Integrity Testing

After setting and cementing the casing, a radially capable cement imaging log and casing inspection log will be run to evaluate the cement bond between the casing and the reservoir and to provide a baseline casing inspection log. Next, the casing string will undergo a one-hour pressure test at 750 psig and will pass if the pressure loss is less than 3%. After passing these tests, the well will be perforated and completed with 5.5-inch tubing and packer assembly. After well completion, the tubing/casing annulus will undergo a one-hour pressure test. As mentioned above, a baseline pulse neutron log will be run. Repeat PN logs can be run if anomalous temperature data indicates a need for further analysis. Monitoring the distributed temperature system (DTS) data across the top of the Mt. Simon Sandstone formation, as well as the porous zones above the seal, will be used to validate the integrity of the completion. Table 7.1.2-3 below is a summary of the pre-injection testing program.

Class VI Rule Citation	•		Program Period
[40 CFR 146.89(a)(1)]	MIT – Internal	Annulus Pressure Test	Prior to Operation
[40 CFR 146.87(a)(4)]	MIT – External	OA or Temperature Log	Prior to Operation
[40 CFR 146.87(e)(1)]	Testing prior to operating	Pressure Fall-off Test	Prior to Operation

Table 7.1.2-3 Summary of MITs and Pressure Fall-Off Test to be Performed Prior to Injection

7.2 Injection zone characterization and core sampling

ADM will provide the agency 30 days notification for the planned CCS#5, CCS#6, CCW#7, VW#4 and VW#5 coring events and/or reservoir fluid sampling. Because the permittee has a significant data set from previously obtained whole core samples, the permittee may only obtain sidewall cores from the new wells.

7.2.1 Historic injection zone fluid characterization and core sampling

The following information provides a review of the historic coring and fluid sampling programs. This dataset supports the basis of the proposed coring and reservoir fluid sampling programs for CCS#5, CCS#6 and CCS#7.

7.2.1.1 Historic Fluid Sampling

This section discusses the historic fluid sampling that has been conducted in CCS#1 and CCS#2 to characterize the Eau Claire (confining zone) and Mt. Simon (injection zone). The previous sampling and analysis of the fluid of the injection zone included fluid temperature, pH, conductivity, reservoir pressure, and static fluid level. In addition, total dissolved solids (TDS), fluid chemistry, density, and viscosity of the fluid in the injection zone were performed. The fluid samples were collected using Schlumberger's Modular Formation Dynamics Tester (MDT). Sampling of CCS#1 and CCS#2 were completed using the MDT tool at several depths within the Mt. Simon. Average fluid parameters of the injection zone. Using the fluid parameters from Table 7.2.1-1, an estimated static fluid level for the injection reservoir was calculated to be 249.5 feet above mean sea level (AMSL). Explanation

of the historical analyses and results are discussed in more detail in previous permit applications and completion reports.

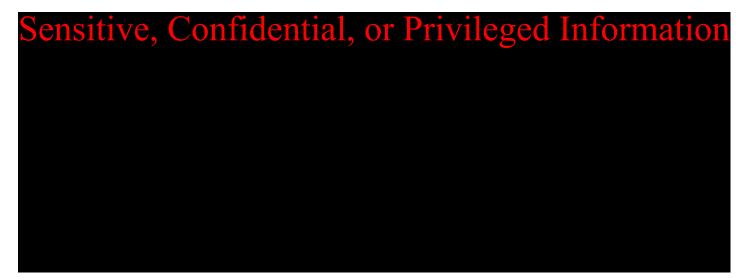


Table 7.2.1-1. Average Injection Zone Fluid Parameters

Historic information pertaining to physical characteristics of the injection and confining zone can be derived from log and core data and are discussed below.

7.2.1.2 Historic Well Coring Programs

Thorough coring programs, utilizing both conventional whole core and rotary sidewall core and including wideranging analytical suites, were performed at CCS#1, CCS#2, VW#1, VW#2, and GM#2. While the focus on coring and analysis was the confining and injection zones in VW#2 and CCS#2, core-related information on overlying formations was also gathered in VW#1, CCS#1, and GM#2. A total of approximately 1,268 feet of whole core was recovered between the five wells, the bulk of which was captured in VW#1 (700 feet) and VW#2 (392 feet). Recovered sidewall core samples from the two injection wells and two verification wells totaled 400 samples. Of these 400 samples, 174 sidewalls were from VW#1, 62 sidewalls were from CCS#1, 69 sidewalls were from VW#2, and 95 sidewalls were from CCS#2. A summary of the core collected in these wells is presented in Appendix D and is discussed in more detail below.

Sensitive, Confidential, or Privileged Information

This section addresses the pre-operational sampling proposed by ADM to ensure that sufficient characterization of the subsurface at CCS#5, CCS #6 and CCS #7 is performed in addition to satisfying Class VI regulations. These requirements include injection and confining zone physical and chemical characteristics including coring and formation fluid sampling. Subpart (f) of §146.87 requires 30-day notice of any logging or testing of the Class VI well to the Director so that the Director has the opportunity to witness well activities.

7.2.2.1 Proposed Coring Program

The coring program and analysis that ADM performed at CCS#1, CCS#2, VW#1, and VW#2 provides extensive characterization of various formations, particularly the confining zone and injection zone, as described in Section 7.2.1. Appendix D provides more detail on the core data collected in these wells. The data provided from the site wells included both whole core and sidewall core focusing on the confining zone and injection zone. The testing in the existing core included routine core analysis (porosity, permeability, grain density, fluid saturations, and lithology descriptions), mercury injection capillary pressure, geomechanics, x-ray diffraction, quantitative evaluation of minerals by scanning electron microscopy, focused ion beam electron microscopy, tight rock analysis, total organic carbon content, nuclear magnetic resonance, pulse decay permeability, laser grain size analysis, CT scanning, and thin sections.

The coring program for CCS#5, CCS#6 and CCS#7 may include whole core within the confining zone (Eau Claire) and injection zone (Mt. Simon), as well as potential sidewall coring within select formations, as necessary based on open hole logging results. Routine core and geomechanical analysis will be performed on recovered core, as applicable. Data will be correlated with openhole geophysical well logs from the wells, and compared to core sample results obtained from previous wells.

7.2.2.2 Proposed Fluid Sampling Program

Although sufficient data has been acquired from the reservoir from the two injectors already installed and tested at the site, prior to any well testing in a newly drilled well a sample of the formation fluid from the injection zone will be collected to measure the pH, conductivity, physical, chemical, static fluid level and other characteristics to satisfy §146.87 (c) and (d)(3), and to determine whether the CO₂ plume has reached any newly drilled injector (CCS#5, CCS#6 and CCS#7) during the time of completion. These data are also important in the analysis of the initial pressure falloff test. Collection of these data, and previous reservoir sampling in combination with temperature and pressure logs noted in Section <u>7.4 Injection and confining zone formation testing</u>, will satisfy §146.87 (c).

Well sampling will be conducted to satisfy regulations stated in Section 7.2. While a similar method of sample collection via wireline used to sample CCS#1 and CCS#2 is expected, the detailed procedure will depend on borehole conditions encountered during operations, as well as equipment and personnel availability experienced near the time of completion of the well. Detailed procedures outlining the expected sampling and subsequent analysis will be submitted in accordance with federal regulations and guidance prior to implementing a specific sampling procedure in the field.

7.3 Fracture pressure and downhole hydrogeologic testing of conditions

Specific regulatory requirements exist as permitting standards for testing and data collection associated with new wells. As presented at 40 CFR §146.82 (c), (d) and (e), the following are among the data that must be acquired for any new Class VI Injection well:

- (c) The owner or operator must record the fluid temperature, pH, conductivity, reservoir pressure, and static fluid level of the injection zone(s).
- (d) At a minimum, the owner or operator must determine or calculate the following information concerning the injection and confining zone(s):
 - (1) Fracture pressure
- (e) Upon completion, but prior to operation, the owner or operator must conduct the following tests to verify hydrogeologic characteristics of the injection zone(s):

- (1) A pressure fall-off test; and
- (2) A pump test; or
- (3) Injectivity tests.

CCS#5, CCS#6 and CCS#7 are new wells that may be installed at the site in the future and hence must comply with requirements at 40 CFR §146.87 (c), (d) and (e) (see Section 7.2 for the proposed fluid sampling and coring program). Data obtained as part of previous injection and monitoring requirements at the site are relevant to data acquisition to be collected from any new site wells. Historic activities are summarized in Section 7.3.1, which supports the proposed data collection activities presented in Section 7.3.2.

7.3.1 Historic testing

This section discusses the historic testing that has been conducted in CCS#1 and CCS#2 to characterize the Eau Claire (confining zone) and Mt. Simon (injection zone).

The well testing performed in both injection wells at the ADM site consisted of a pressure build-up falloff test (FOT) and a step rate test (SRT). The well testing performed in CCS#1 and CCS#2 are presented in Table 7.3-1. As presented in previous and forthcoming sections, historical sampling and testing activities conducted to characterize the subsurface at the site were comprehensive. No pressure transient testing was conducted in the VM wells.

7.3.1.2 Historic Reservoir Testing

Well testing in the two injection wells CCS#1 and CCS#2 included an initial FOT and an SRT. A description of tests performed at each injection well is discussed in greater detail below and summarized in Table 7.3-1.

Activity	Well	Formation	Depth (feet KB)	Comment
Pressure of Reservoir	Sensit	ive, Confiden	tial, or Privile	ged Information
Pressure Step Rate				
Pressure Falloff				

Table 7.3-1. Testing Summary: Existing Site Wells

CCS 1 Test History

Three FOTs of varying duration were conducted in September and October 2009 as part of the initial completion of CCS#1. FOT involve two parts. During the first portion of the falloff tests, the reservoir was stressed by injecting fluid at a (traditionally) relatively stabilized rate, causing an increase in reservoir pressure. During the second portion of the test, injection was stopped and the well shut-in while the reservoir pressure monitored as it decayed and approached near-static condition.

The initial perforations in the CCS#1 injection interval were from 7,025 to 7,050 feet KB. To conduct initial reservoir testing, water, treated with a clay-stabilizing potassium chloride (KCl) substitute, was injected at rates of between 1.5 to 2.0 barrels per minute (bpm) (63 to 84 gallons per minute [gpm]) for approximately two hours. A 19.5-hour pressure falloff period followed this injection period.

After this test, the perforations were acidized and an SRT was conducted by pumping at increasing rate steps to observe a change of the well injectivity. Following the SRT, treated water was injected at a rate of 3.1 bpm (130 gpm) for five hours. After this period of relatively stable injection, the well was shut in and pressure was monitored for approximately 45 hours as a second FOT.

A third FOT was conducted after additional perforations were made in the well and subsequently stimulated with acid. These additional perforations, totaling 30 feet, were from 6,982 to 7,012 feet KB. The perforated zone received a second acid treatment. For the third FOT, treated water was injected at an increasing rate of 3.1 to 4.2 bpm (130 to 176 gpm) over 6.5 hours and then at 4.2 bpm (176 gpm) for an additional 6.5 hours. After this 13-hour period of injection, the well was shut in and pressure was monitored for 105 hours.

Analysis of the pressure transient data using analytical simulations was performed by Schlumberger. These analyses resulted in a projected reservoir permeability-thickness of 13,875 md-ft. Based on an average effective injection zone thickness of 75 feet, a permeability of 185 millidarcies (md) was calculated.

Analysis of the SRT, performed by Schlumberger, estimated a fracture propagation pressure of 4,966 psi at the bottomhole gauge depth of 6,891 feet KB resulting in a gradient of 0.72 psi/ft. This analysis was performed graphically by plotting the pressure at the end of each step versus rate. The intersection of lines before and after a pressure sensitive threshold was used to estimate the fracture pressure. This approach is an industry standard method for estimating conservative values.

Copies of the pressure transient data and analyses were presented to EPA in previous reports and are available upon request.

The confining zone testing included a "mini-frac" using Schlumberger's MDT tool across a 2.8-foot interval of the Eau Claire centered on 5,435 feet KB. The fracture pressure measured from the tool ranged from 5,078 to 5,324 psig, which corresponds to fracture gradients of 0.93 to 0.98 psi/ft for the Eau Claire (confining zone).

CCS#2 Test History

An SRT and two FOTs were performed in July 2015 as part of the initial completion of CCS#2. The SRT was performed following the perforation of four separate intervals (6,630 to 6,670 ft KB, 6,680 to 6,725 ft KB, 6,735 to 6,775 ft KB, and 6,787 to 6,825 ft KB) at a density of 4 shots per foot (SPF) for a total perforation interval of 163 feet. The initial injection period consisted of multiple increasing injection rates from 2 bpm to 8 bpm (6.28 hours), followed by a 16.3-hour falloff, then an injection period of 6 bpm for 8.4 hours prior to a final 157-hour falloff period. The fluid injected was 8.33 ppg water.

This data was analyzed by Schlumberger and was reported in an Injection-Falloff Analysis dated August 24, 2015. Schlumberger's Report Summary stated:

Sensitive, Confidential, or Privileged Information

The FOT and spinner log data from the long-term injection test at the end of the pressure transient sequence were collected and analyzed. Spinner log data from Schlumberger's Production Log Advisor report dated August 12, 2015 showed that during the long-term injection test, a total of 47.1 feet of the perforations were taking fluid in the upper 34 feet of the Mt. Simon, with 59% of the flow (and the lowermost 8.6 feet) taking 35% of the flow. The pressure falloff test analysis indicated a permeability thickness of 19,118 md-feet.

Copies of the pressure transient data and analyses were presented to EPA in previous reports and are available upon request.

7.3.2 Proposed CCS#5, CCS#6 and CCS#7 testing program

This section addresses the pre-operational testing proposed by ADM to ensure that sufficient characterization of the subsurface at CCS#5, CCS#6 and CCS#7 is performed and to satisfy Class VI regulations. These requirements include those addressed in Section 7.2 (e.g., injection and confining zone physical, chemical, and fluid characteristics) as well as fracture pressure determination and well testing located in §146.87(d)(1) and (e). ADM will provide 30-day notice of any logging or testing of the Class VI well to the Director so that the Director in order to provide the Agency the opportunity to witness such activities.

7.3.2.1 Well Testing - Injection Zone

After CCS#5, CCS #6 and CCS#7 are cased, perforated, and fluid sampling has been complete, an SRT will be performed to obtain a confirmatory estimate of the fracture pressure of the injection zone. Subsequent wells will not be subjected to an SRT upon completion unless irregular data is obtained from the third injection well. It is noted that the existing Class VI program offers the following discussion regarding the use of additional site SRT data, and similar practices are proposed for new injectors:

Sensitive, Confidential, or Privileged Information

7.3.2.2 Well Testing - Confining Zone

As discussed in Section 7.3.2.2, a "mini-frac" using the MDT tool was used to estimate the fracture gradient of the confining zone in CCS#1 and CCS#2. In addition, dipole sonic data are available through the confining zone to estimate the geomechanics. If the results of CCS#5, CCS#6 and CCS#7 geophysical well logging conducted through the confining zone indicate that conditions are similar to the results found using previous logging conducted at CCS#1 and CCS#2, then no additional testing of the confining zone is proposed for CCS#5, CCS #6 and/or CCS #7. Dipole sonic logs will be correlated to existing well logs with similar results and can also be used to infer the representativeness of the CCS#1 and CCS#2 MDT "mini-frac" results.

7.4 Injection and confining zone formation testing

CCS#5, CCS #6 and CCS #7 are new wells that may be installed at the site in the future and hence must comply with requirements at 40 CFR §146.87 (a), (b) and (e). Data obtained as part of previous injection and monitoring requirements at the site are relevant to data acquisition to be collected from any new site wells and are summarized in Tables 7.1.2-1, 7.1.2-2, and 7.1.2-3. Historic activities are summarized in Section 7.3.1, which supports the proposed data collection activities presented in Section 7.3.2 because a significant quantity of data has already been obtained to characterize the site during previous testing that supports the proposed CCS#5, CCS#6 and CCS#7 program.

7.5 Quality Assurance Surveillance Plan (QASP)

The QASP is provided in <u>APPENDIX C: Quality Assurance and Surveillance Plan</u> which meets relevant requirements under 40 CFR 146.90

8.1 Injection rate

The CCS#5, CCS#6 and CCS#7 injection wells will be operated at rates that will result in an annual average injection rate of approximately 1.1 million MT/year per well. Injection is projected to begin in February, 2026.

The injection wells are intended to be operated continuously (24 hour per day, 7 days a week, and 365 days per year). The injection rate will vary between 0 and 3,050 MT for each well per day and may vary due to equipment maintenance, mechanical inspection, and testing subject to § 146.89 and § 146.90.

8.2 Maximum injection pressure

Except during stimulation, ADM will ensure that injection pressure does not exceed 90 percent of the fracture pressure of the injection zone(s) so as to ensure that the injection does not initiate new fractures or propagate existing fractures in the injection zone(s). In no case shall injection pressure initiate fractures or propagate existing fractures in the confining zone or cause the movement of injection or formation fluids into a USDW. The maximum injection pressure is included in Table 8.2-1 below.

PARAMETER/CONDITION	LIMITATION	UNIT
Maximum Injection Pressure - Surface	*	psig
Minimum Annulus Pressure	100	psig
Minimum Annulus Pressure/Tubing Differential (directly above and across packer)	100	psig

Table 8.2-1.	Well Operating Conditions	5
--------------	---------------------------	---

*To be determined based on 0.6435 psi/ft multiplied by as-built depth.

The operational injection pressure is estimated to be between 2,100 and 2,300 psi. The higher pressure would be a result of lower Mt. Simon injectivity parameters. These pressure estimates are based on the design surface compression capacity of 3,050 MT per day/well.

8.3 CO₂ volume

The proposed sequestration site at the ADM facility will be supplied with CO_2 from ADM or 3rd party carbon capture systems, including but not limited to:

- Pre-combustion systems
- Oxy-combustion systems
- Post combustion systems
- CO₂ from ADM's various ethanol and cogeneration facilities, including but not limited to Decatur, IL; Clinton, IA; and Cedar Rapids, IA

The details of these CO_2 streams are presented in Section <u>8.6</u>, CO_2 stream characteristics.

The CCS#5, CCS#6 and CCS#7 wells will be operated at a maximum daily injection rate of 3,050 MT/day per well and injection will result in an average annual average injection rate of approximately 1.1 million MT/year per well

from the above combined sources. Injection is expected to begin in February, 2026. The total injection volume over the life of CCS#5, CCS#6 and CCS#7 is expected to be at least 13.2 million MT/well.

8.4 Annulus pressure

8.4.1 Regulatory Requirements

Except during workovers or times of annulus maintenance, ADM will maintain on the annulus a pressure that exceeds the operating injection pressure as specified in 40 CFR 146.88(c), unless the Director determines that such requirement might harm the integrity of the well or endanger USDWs.

ADM will fill the annulus between the tubing and the long string casing in a liquid-filled condition using a noncorrosive fluid approved by the Director. As previously discussed in this document, an inhibited brine is to be used as the annulus fluid for the CCS#5, CCS#6, and CCS#7wells.

8.4.2 Casing, Tubing, Annulus Pressure, Average and Maximum

Because the injection tubing will be set in a packer above the injection interval within the Mt. Simon, the casingtubing annulus space above the packer will be isolated from the CO₂ stream. A constant surface annulus pressure of 400 to 500 psig and at least 100 psig across the packer will be utilized during injection. The average and maximum annulus pressure are anticipated being about the same; however, fluctuations in pressure are anticipated from changes in ambient surface temperature and injection tubing pressure.

All other annulus spaces (one between surface casing and intermediate casing, and one between intermediate casing and long string casing) will have cement to surface. Consequently, the pressures of these annular spaces will be at atmospheric pressure at surface and will not be monitored.

8.5 Well stimulation procedures

8.5.1 Regulatory Requirements

This section is intended to address the standards presented in cited materials as follows:

"If well stimulation is planned, describe the stimulation fluids and procedures to ensure that stimulation will not fracture the confining zone, affect well integrity, or otherwise allow injection of formation fluids to endanger USDWs". EPA Guidance "Underground Injection Control (UIC) Program Class VI Well Construction Guidance", Section 4.1, provides supporting information.

- § Part 146.82(a)(9): [the owner or operator shall submit pursuant to §146.91(e), and the director shall consider the following:] Proposed stimulation program, a description of stimulation fluids to be used and a determination that stimulation will not interfere with containment.
- § 146.88 (a): Except during stimulation, the owner or operator must ensure that injection pressure does not exceed 90 percent of the fracture pressure of the injection zone(s) so as to ensure that the injection does not initiate new fractures or propagate existing fractures in the injection zones(s). In no case may injection pressure initiate fractures in the confining zones(s) or cause movement of injection or formation fluids that endangers a USDW.
- § 146.91 (d) (2) and (e): [Owners or operators must notify the director in writing 30 days in advance of]: Any planned stimulation activities, other than stimulation for formation testing conducted under § 146.82. (e): regardless of whether a state has primary enforcement responsibility, owners or operators

must submit all required reports, submittals, and notifications under subpart h of this part to EPA in an electronic format approved by EPA.

The purpose of this Section is to satisfy applicable regulatory requirements presented in § 146.82(a)(9), 146.88(a), and 146.91(d)(2). More specifically, the Section addresses a description of the proposed stimulation programs that may be implemented, a description of stimulation fluids that may be used, and a determination that stimulation plans will not interfere with containment. Because flexibility is required to ensure that the owner/operator may select an appropriate stimulation approach depending on conditions that may develop in the future and because EPA is required to review and approve these approaches prior to implementation, this plan includes multiple methodologies for EPA review and approval. The mandatory 30-day notice that will be provided by the operator in an electronic format and may include any of the described methods, depending upon circumstances, that would produce the desired outcome. By providing details about potential stimulation options as part of the permit application in a single plan, EPA is informed of the possible proposed approaches, and may review and approve them as part of the permit authorization, well in advance of any specific stimulation program proposal.

The purpose of any stimulation treatment is to enhance injectivity that is observed at initial conditions or remediate injection capacity restrictions that develop after a well is placed in service. Impediments to optimum injection capacity can be associated with native and induced flow path restricting materials, such as: clay fragments, mineral scales, metallic sulfide or oxide particulates, relative permeability blockages, oil emulsions, and other materials carried into the injection intervals or induced by the injected CO₂ or formed as a result of reactions within the formation.

Prior to completion of any new well or implementation of stimulation on an existing well, ADM will provide a 30day notice of the specific stimulation methods proposed for completion of the new well based on conditions encountered during drilling and testing. After completion, if injection monitoring or analyses indicate a flow restriction that is either within the well bore or in the near well bore injection formation interval(s), ADM will provide specific proposed remedial stimulation actions with at least 30-days prior notice. The notifications will include the proposed operational tasks and method(s) that will be implemented to conduct stimulation, and the detailed chemical formulation (final selections and volumes) for stimulation when chemical stimulation is proposed.

8.5.2 Stimulation Programs or Methods and Description of Stimulation Fluids

8.5.2.1 Chemical Stimulation Methods

Chemical stimulation methods can involve injection of fluids with no fluid recovery (i.e., Bullhead Stimulation), matrix treatment with fluid recovery, or direct chemical injection with the carbon dioxide injectate. The following sections describe these methods and present fluids that may be used as part of the described methods.

Bullhead Stimulation

Bullhead Stimulation is a stimulation method whereby fluids are injected to enhance injectivity or solubilize flow restrictions, with no fluid recovery. It can be accomplished in injection wells by pumping treatment fluids into an injection formation and ultimately displacing the treatment fluids or flushing them out of the wellbore and into the formation with no recovery back to surface. The chemical stimulant may be preceded by volumes of treated water or other fluids and subsequently followed by enough treated water to displace the stimulation chemicals into the injection zone. For the purpose of these proposed methods, treatment is conducted below the permitted bottom hole pressure for well operations so that no new fractures are created. The displacement may be in stages to allow the stimulation chemicals time to soak at the targeted depth. Variations for delivering the chemical treatment to the targeted intervals include:

- Pumping the chemicals and stimulants down the injection tubing. Site equipment or temporary pumping equipment may be used for injection.
- Placing the chemicals and stimulants at or near the targeted interval(s) by running coiled tubing inside of the injection tubing and pumping the chemicals through the coiled tubing. This option may also include using various nozzles on the coiled tubing string to jet water or chemicals at specific perforated intervals to enhance the chemical contact and mechanical washing.
- Pulling the injection tubing and running a work string or coiled tubing string to pump the chemicals to the targeted interval(s). This placement method may also include running isolation packers to focus the chemical injection on specific intervals.

Matrix Treatment with Fluid Recovery

Matrix treatment stimulation involves the injection of fluids to solubilize flow restrictions, as well as with reverse flow to recover spent chemicals and solubilized fines and other materials. Chemicals are pumped into the formation with all or partial recovery by flowing fluids back out of the well bore. This method is preferred when the treatment is expected to mobilize significant mass of particulates or solid materials that need to be removed from the formation porosity to optimize injection. The chemicals may be preceded by volumes of treated water and may be followed by additional volumes of treated water. In some cases where significant solids are present, initial treatment steps may involve attempts to recover solids from the well and near wellbore porosity by backflowing, jetting with coiled tubing, swabbing, or otherwise producing the well so that less treatment chemical is then required to address immobile plugging materials.

The same methods of placement listed in the bullets, above, under Bullhead Stimulation would be options for Matrix Treatment with fluid recovery. The principal recovery method would be to utilize the previously injected carbon dioxide as the media to flow the spent chemicals and flush water back out of the well. This would require installing temporary separation equipment at surface to flow the well back under controlled conditions and remove the particulate laden spent treatment fluids prior to venting the carbon dioxide. If extensive fluid volumes are used, the well may be amenable to recovering fluid by:

- Swabbing of the well to recover the fluids that have been pumped down the injection string or a work string of jointed pipe.
- Jetting fluids out with nitrogen gas or carbon dioxide gas when working with coiled tubing or a work string.

Direct Chemical Injection with the Carbon Dioxide Injection

The introduction of solubilizing or scale prevention agents in a fluid system carried by the carbon dioxide injection fluid may be used to solubilize or prevent formation of materials that would impede injection flow paths. This method could be implemented on either a continuous or batch basis.

Direct chemical injection with carbon dioxide injection would be appropriate when it is necessary to dissolve minor amounts of particulates or to introduce scale inhibitors into the injection intervals. Chemicals are typically not recovered.

Description of Fluid System Components that may be Proposed for Chemical Stimulation.

Proposed chemical stimulation formulations may contain a variety of primary fluids and additives to address various conditions that might be encountered. When new well completion or remediation requirements are identified and vendors are selected, specific fluid details, including concentrations and volumes, will be provided

with the 30-day notice. Treatment chemicals and additives would be expected to include one or more of the following chemical agents or categories, or suitable equivalents:

- 1. Inorganic acid solutions such as:
 - hydrochloric acid
 - hydrofluoric acid in combination with hydrochloric acid
- 2. Inorganic basic solutions such as:
 - sodium hydroxide
 - ammonium solutions and conjugal salts there of
 - sodium hypochlorite solutions and conjugal salts there of
- 3. Oxidizing agents such as:
 - Sodium hypochlorite solutions
 - Chlorine dioxide solutions
 - Sodium chlorite solutions
 - Sodium chlorate solutions
- 4. Organic acids such as
 - Citric acid
 - Acetic acid
 - Formic acid
 - Sulfamic acid
- 5. Combinations of inorganic and organic acids as listed in 1. Inorganic acid solutions and 4. Organic acids
- 6. Alternating stages of acids listed in 1. Inorganic acid solutions or 4. Organic acids or both with oxidizers listed in 3. Oxidizing agents.
- 7. Chelating agents, as a direct treatment chemical or in combination with acids listed in 1. Inorganic acid solutions and/or 4. Organic acids, such as:
 - Citric acid and salts thereof
 - Acetic acid and salts thereof
 - Nitrilotriacetic acid (NTA)
 - Ethylene diamine tetra-acetic acid, EDTA
 - Hydroxyl ethylene diamine triacetic acid, HEDTA
 - Glutamic acid-N,N-diacetic acid, GLDA
 - Tetrakis(hydroxymethyl)phosphonium sulfate, THPS

- 8. Acid inhibitors, particularly in common with acids listed in 1. Inorganic acid solutions. There are numerous commonly utilized chemical additives applied to minimize the corrosion of metal well components. Some general categories are:
 - Quaternary amine compounds
 - Imadazoline compounds
 - Pyridine compounds
 - And many others
- 9. Surfactants, in common with acids listed in 1. Inorganic acid solutions, bases listed in 2. Inorganic basic solutions, and organic acids listed in 4. Organic acids.
- 10. Organic solvents to mitigate hydrocarbon contamination that could inhibit acid penetration, such as:
 - Xylene
 - Toluene
 - Naphtha
 - Terpenes
- 11. Mutual solvents to enhance the dispersion and effectiveness of any organic solvents that are applied, such as
 - Ethylene Glycol MonoButyl Ether, EGMBE
 - Various alcohols
- 12. Scale inhibitors to reduce scale formation from reactions with the fluids introduced during the stimulation or from the subsequent CO_{2 i}njection. There are many specifically designed scale inhibitor chemistry formulations that might be applied depending on the expected scaling potential. The two primary general categories are:
 - Polymeric typically long chain polymers with carboxylic or acrylic functional groups
 - Phosphonate organic phosphorous bearing compounds that are specifically designed and fabricated to prevent scale formation
- 13. Clay stabilizers salts or chemicals specifically applied to prevent the native clays in the formation from fragmenting and releasing pore blocking particulates. Examples include:
 - Inorganic salts, particularly potassium chloride, sodium chloride, calcium chloride, ammonium chloride, and magnesium chloride; but other salts might be used.
 - Temporary clay stabilizers; typically, organic amine type compounds with relatively low molecular weight intended to bind with ion-exchange sites on the clays to prevent the clays from fragmenting. Examples include:
 - Tetramethylammonium chloride, TMAC
 - Choline chloride

- Other substances that are utilized to stabilize clays to prevent damage through ionexchange induced clay fragmentation
- Permanent clay stabilizers; typically, long chain cationic or nonionic polymers that bridge across multiple ion-exchange sites on the clay structure to provide longer term fragmentation prevention. There are many polymeric chemistries applied for this purpose, with polyamines being one common example.
- 14. Diverting agents materials used to temporarily block off intervals that retain high injectivity so that stimulation chemicals are focused into intervals that are less permeable or more impaired. These might include:
 - Rock salt; conveyed into the well bore as a slurry with the salt crystals suspended in salt brine. The salt brine may be treated with gelling agents such as guar polymer or xanthan gum to produce higher viscosity and salt carrying capacity.
 - Water soluble solids with low acid solubility, such as benzoic acid flakes, encapsulated citric acid, or other bridging agents that can be dissolved after stimulation chemical placement is completed by flushing with water or injected carbon dioxide.
 - Soluble ball sealers that are made of materials that will dissolve over time in carbon dioxide solution or injected water and/or brine.
 - Insoluble rubber ball sealers that would need to be removed from the well through flow back or other mechanical methods for recovery.
 - Polymeric substances that are formulated to provide temporary restrictions and then "break down" or dissolve with time and temperature.
- 15. Biologic control agents, or biocides. When large volumes of flush water are used before or after a chemical stimulation, treatment of the fluids to prevent contaminating the well bore with undesirable microbes may be appropriate. Numerous chemical alternatives are available as EPA registered biocides and may be used as additives to reduce undesirable biological activity. A few examples are:
 - Quaternary amine compounds,
 - Sodium hypochlorite,
 - Chlorine dioxide,
 - Dazomet, and
 - Other alternatives, depending on the anticipated microbial control requirement and confirmation that the biocidal agent(s) are compatible with the proposed chemical stimulation.

8.5.2.2 Mechanical Stimulation Methods

In addition to chemical stimulation, mechanical stimulation of the well may be pursued independently, or in concert with the chemical methods described earlier in this section. Mechanical methods that might be used include perforation, propellant stimulant, and backflow methods as described below.

Perforation

Perforation or re-perforation, with or without supplemental propellant assistance may be proposed during initial completion and remedial stimulation operations. Initial well completions will commonly incorporate perforations to connect the well bore to the targeted injection intervals. In some cases, ADM may propose to utilize

propellant assisted perforating tools to enhance the connectivity through the steel casing and cement sheath to the formation. Analytical data may indicate near-wellbore flow restrictions that are best remediated with mechanical penetration. Any re-perforating, with or without propellant assistance, will be proposed to EPA with detailed procedures in the 30-day advance notification.

Propellant assistance is accomplished by various suppliers using slightly different methods to obtain the same basic objective, i.e., to provide a short duration, high energy gas pulse to further extend the perforation tunnels created by the shape charges. (Enhanced Energetics Kraken-enhanced Perforating Flow Performance Tests, API RP19B Section 4 Test Results – 2020, Appendix E).

Propellant Stimulation

Propellant stimulation may be used to induce or enhance flow paths in the injection zone, with flow paths confined to approximately the height of the propellant gun. Direct propellant stimulation may be proposed to create flow paths through the damaged or restricted formation sections. This may be particularly effective when analytical data indicate that flow restriction extends past the wellbore face or the initial perforation channel to moderate depths into the formation, (i.e.,5 to 15 feet). Various studies and modeling efforts have been performed by private and governmental agencies to confirm that propellant stimulations create or stimulate flow paths into the targeted formation intervals with nominal vertical growth; verifying that there is no risk of confinement layer breach when guns depths are restricted to appropriate distances below the top of the injection zone. (Appendix E: SPE 8934 1980; Enhanced Energetics – Gas Gun – Vertical Containment, (undated); Letter of Determination, Natural Resources Agency of California Department of Conservation, Division of Oil, Gas, & Geothermal Resources, Dated 4/12/2019).

Deployment for initial perforation, re-perforation, re-perforation with propellant assistance, or propellant stimulation alone is commonly done with conventional electric line, coiled tubing e-line, and/or jointed tubing conveyed methods. Any of these methods might be proposed depending upon the scope of the stimulation and well operating conditions. When performing remedial work, the stimulation might be performed with the well full of liquid kill weight fluid or with the well full of injected carbon dioxide.

Backflow

Fluids can be produced from an injection well by backflow (also referred to as flow back), used to reverse the direction of flow, thereby mobilizing fines that are plugging near wellbore pore spaces and perforation channels. This material can then settle into the rathole below the completion, or some minor smaller particulate may be produced back to surface if sufficient energy is available to overcome well hydrostatics and friction to sustain velocity needed to carry solids back to the surface.

To backflow a CO_2 injector, safety issues associated with a controlled CO_2 release from the wellhead to the atmosphere will be addressed and the wellhead area prepared for operations. Preparations will include assessment of: wellhead temperature and pressure, weather, and air quality monitoring; communications; PPE; and suitable exclusion areas. After equipment is tested and necessary monitoring is enabled, valves at the wellhead are opened to allow CO_2 to be produced from the well, thereby reversing flow direction from the injection reservoir downhole. Controlled CO_2 production will be monitored to ensure safe production operations and to allow the calculation of the volume of CO_2 produced. At the end of the proscribed production period (15 to 30 minutes), valves will be closed slowly in stages to manage temperature effects and minimize the potential for shocks to the well from instantaneous shut-in.

An example well flow back procedure maintenance that has previously been provided by ADM to EPA is attached in Appendix E. This is provided as an example only and will be customized for each proposed flow back operation or use of flow back in conjunction with other stimulation methods. Other types of stimulation notices will include similar detailed plans for the proposed activities.

Well flowback operations may be followed by mechanical methods of solids removal from the rathole, such as jetting with coiled tubing, that will also be detailed in the 30- day notification to EPA.

Other Activities

All the above methods may be proposed to enhance original injectivity upon the initial well completion and may also be used to remediate injectivity restrictions. When injection rates vs injection pressure is below expectations, EPA will be notified when the operator proposes to investigate injection restrictions using common physical and analytical methods such as:

- Collecting bottom hole samples with sampling equipment conveyed into the well bore by wireline, slickline, or coiled tubing, with follow up analytical testing as appropriate for the sample and treatments under consideration,
- Performing injection profile logging activities with thermal measurement instruments, acoustic measurements instruments, or mechanical spinner tools to pinpoint the focus intervals for the stimulation, and
- Injection and fall-off testing to assess overall skin damage.

Standard procedures will be followed with respect to job safety and monitoring for all field operations. The 30day notice to EPA for proposed operations will include:

- Listing of pre-job planning and assignments,
- Methods and practices for well control to prevent uncontrolled emissions or loss of well control,
- Methods for estimating, recording, and reporting any controlled emissions,
- When the proposed action involves ceasing injection and performing maintenance activities, the detailed work procedures will include:
 - approaches for shutting-in and securing the well for the proposed activities
 - specific actions to be performed
 - detail of all chemicals and concentrations that will be applied
 - detail for all tools, such as propellant enhanced perforating guns, coiled tubing equipment with jetting type wash nozzle, etc. that may be utilized
 - procedures to secure the well after stimulation activities
 - any post stimulation evaluation procedures that are proposed
 - procedures to return the well to injection service after stimulation
- When stimulation is proposed while the well is still injecting, the notice will include
 - detail for all chemicals and concentrations that will be applied
 - monitoring and control mechanisms that will be utilized to perform the chemical injection

- methods to evaluate the chemical performance and adjust chemical dosing, as appropriate and,
- Job specific personnel training requirements.

The flow back maintenance procedure in Appendix E provides an example of the prior planning, well control procedures, and other job specific safety and environmental protection control practices that will be detailed and employed with all stimulation activities. Such safety plans are not considered UIC permit requirements, but are provided herein for general informational purposes. These procedures are subject to change without advanced notice based on vendors selected to complete various field operations, the type of field actions undertaken to accomplish well stimulation, and the nature of potential chemical and physical hazards identified for personnel.

8.5.3 Determination that Stimulation will not Interfere with Containment

Stimulation of the permitted injection interval will take place at depths below the top of the permitted injection interval and are not projected to have an impact on the confining layer. Mechanical operations such as perforating will be vertically separated from the casing at the top of the permitted injection zone by a minimum of 10 feet. Chemical additives will be injected into perforations below the base of the confining zone and will not be in contact with the rock matrix above the base of the confining zone formations. This will be accomplished by injecting limited treatment volumes at controlled pressures.

Routine chemical stimulation will be conducted at sustained bottom hole pressures that remain below 90% of the established fracture initiation pressures for the well/interval being stimulated. This practice will satisfy the requirement that "In no case may injection pressure initiate fractures in the confining zones(s) or cause movement of injection or formation fluids that endangers an Underground Source of Drinking Water USDW" [40 CFR Part 146.88(a)].

Stimulation chemical treatments will be conducted in a manner to ensure that chemical treatments are isolated to the injection interval. For example:

- When treating through either the injection tubulars or a work string, the annular pressure will be monitored to confirm that chemicals are contained below the upper packer or other down hole isolation tools.
- All chemical treatments will be selected for chemical compatibility with the placement method. For
 example, mineral acids will be treated with chemical inhibitors to prevent any significant corrosion
 damage to the tubing string that conveys the chemical. In addition, chemical systems will be selected to
 avoid damage to the down hole packer sealing elements and other seals within the injection system that
 might be exposed to the chemicals.

Propellant stimulations will only be utilized well below the top of the injection zone. Established studies indicate that propellant stimulations have only nominal height growth above the propellant tool depth so restricting the use of propellant well below the top of the injection interval will assure that no fractures are created into the confining layer.

8.6 CO₂ stream characteristics

The injection stream is high purity CO_2 with trace levels of other constituents. The details of these CO_2 streams are presented in the tables below.

Component	Wt. %
Carbon Dioxide	> 93.8%
Nitrogen	< 4.0%
Oxygen	< 1.0%
Water	< 250 ppmw
Hydrocarbons	< 5.0%
Sulfur Species	Report

The CO_2 streams included in this application are typically greater than 95.0% pure CO_2 . It is saturated with water vapor at 100°F and at slightly greater than atmospheric pressure. Common impurities (in amounts typically less than 200 ppm by volume) are carbon monoxide, methanol, ethanol, acetaldehyde, oxides of nitrogen, and hydrogen sulfide.

8.7 Injection Well Operating Requirements

ADM will install, continuously operate, and maintain an automatic alarm and an automatic shut-off system or, at the discretion of the Director, down-hole shut- off systems, or other mechanical devices that provide equivalent protection; and successfully demonstrate the functionality of the alarm system and shut-off system prior to the Director authorizing injection, and at a minimum of once every twelfth month after the last approved demonstration.

Testing to demonstrate functionality will involve subjecting the system to simulated failure conditions. ADM will provide notice in an electronic format 30 days prior to running the test and will provide the Director or their representative the opportunity to attend. The test will be documented using either a mechanical or digital device which records the value of the parameter of interest, or by a service company job record. A final report including any additional interpretation necessary for evaluation of the testing will be submitted.

The injection well operating requirements are previously covered in Sections 8.1, 8.2, and 8.4.

8.7.1 Precautions to Prevent Well Blowouts

ADM will maintain on the well a pressure which will prevent the return of the injection fluid as specified in Section 8.4 to the surface. The well bore will be filled with a high specific gravity fluid during workovers to maintain a positive (downward) gradient and/or a plug shall be installed which can resist the pressure differential. A blowout preventer will be installed and kept in proper operational condition whenever the wellhead is removed to work on the well. ADM will follow procedures such as those below to assure that a backflow or blowout does not occur:

- Limit the temperature and/or corrosivity of the injectate; and
- Develop procedures necessary to assure that pressure imbalances do not occur.

8.7.2 Circumstances Under Which Injection Must Cease

Injection will cease when any of the following circumstances arises:

1. Failure of the well to pass a mechanical integrity test;

- 2. A loss of mechanical integrity during operation;
- 3. The automatic alarm or automatic shut-off system is triggered;
- 4. A significant unexpected change in the annulus or injection pressure;
- 5. The Director determines that the well lacks mechanical integrity; or
- 6. ADM is unable to maintain compliance with any permit condition or regulatory requirement and the Director determines that injection should cease.

If any of the above circumstances arise, ADM will immediately cease injection and shut-in the well as outlined in Section <u>12</u>. Emergency and Remedial Response Plan.

9. Testing and Monitoring Plan

This Testing and Monitoring Plan describes how ADM will monitor the CCS#1- CCS#7 site pursuant to 40 CFR 146.90. In addition to demonstrating that the well is operating as planned, the carbon dioxide plume and pressure front are moving as predicted, and that there is no endangerment to USDWs, the testing and monitoring data will be used to validate and adjust the geological models used to predict the distribution of the CO₂ within the storage zone to support AoR reevaluations and a non-endangerment demonstration to support closure.

9.1 CO₂ stream analysis

ADM will analyze the CO_2 stream during the operation period to yield data representative of its chemical and physical characteristics and to meet the requirements of 40 CFR 146.90(a). Sampling will take place each calendar quarter. ADM will analyze each CO_2 gas stream for the constituents identified in Table 9.1-1 using the methods listed.

Parameters	Analytical Methods (1)		
Oxygen	ISBT 4.0 (GC/DID)		
	GC/TCD		
Nitrogen	ISBT 4.0 GC/DID		
	GC/TCD		
Carbon Monoxide	ISBT 5.0 Colorimetric		
	ISBT 4.0 (GC/DID)		
Oxides of Nitrogen	ISBT 7.0 Colorimetric		
Total Hydrocarbons	ISBT 10.0 THA (FID)		
Methane	ISBT 10.1 GC/FID)		
Acetaldehyde	ISBT 11.0 (GC/FID)		
Sulfur Dioxide	ISBT 14.0 (GC/SCD)		
Hydrogen Sulfide	ISBT 14.0 (GC/SCD)		
Ethanol	ISBT 11.0 (GC/FID)		
Carbon Dioxide	ISBT 2.0 Caustic absorption Zahm-Nagel		
	ALI method SAM 4.1 subtraction method (GC/DID)		
	GC/TCD		

9.1.1 Sampling Methods

CO₂ stream sampling will occur in the compressor building after the last stage of compression and prior to flowline conveyance to the injection wellhead. A sampling station will be installed with the ability to purge and collect samples into a container that will be sealed and sent to the authorized laboratory.

All sample containers will be labeled with durable labels and indelible markings. A unique sample identification number and sampling date will be recorded on the sample containers.

9.1.2 Laboratory to be Used/Chain of Custody Procedures

Samples will be analyzed by a third-party laboratory using standardized procedures for gas chromatography, mass spectrometry, detector tubes, and photo ionization. The sample chain-of- custody procedures described in Section B.3 of the QASP will be employed.

9.2 Mechanical integrity and corrosion testing

To meet the requirements of 40 CFR 146.90(c), ADM will monitor well materials during the operation period for loss of mass, thickness, cracking, pitting, and other signs of corrosion at surface to ensure that the well components meet the minimum standards for material strength and performance. This monitoring will occur once per calendar quarter. ADM will monitor corrosion using the corrosion coupon method and collect samples according to the description below.

9.2.1 Sample Description

Samples of material used in the construction of the compression equipment, pipeline and injection well which come into contact with the CO₂ stream will be included in the corrosion monitoring program either by using actual material and/or conventional corrosion coupons. The samples consist of those items listed in Table 9.2.1-1 below. Each coupon will be weighed, measured, and photographed prior to initial exposure (see "Sample Handling and Monitoring" below).

Equipment Coupon	Material of Construction
Pipeline	CS A106B
Long String Casing (Surface - 4,800')	Carbon Steel
Long String Casing (4,800' – TD)	Chrome Alloy
Injection Tubing	Chrome alloy
Wellhead	Chrome alloy
Packers 1	Chrome alloy

 Table 9.2.1-1. List of Equipment Coupon with Material of Construction.

9.2.2 Sample Exposure

Each sample will be attached to an individual holder (Figure 1a) and then inserted in a flow- through pipe arrangement (Figure 1b). The corrosion monitoring system will be located downstream of all process compression/dehydration/pumping equipment (i.e., at the beginning of the pipeline to the wellhead). To accomplish this, a parallel stream of high-pressure CO₂ will be routed from the pipeline through the corrosion monitoring system and then back into a lower pressure point upstream in the compression system. This loop will operate any time injection is occurring. No other equipment will act on the CO₂ past this point; therefore this location will provide sufficiently representative exposures of the samples to the CO₂ composition, temperature, and pressures that will be seen at the wellhead and injection tubing. The holders and location of the system will be included in the pipeline design and will allow for continuation of injection during sample removal.

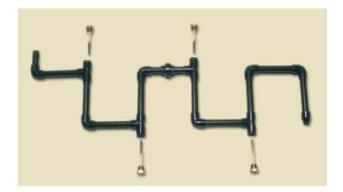


Figure 1a. Coupon Holder

Figure 1b. Flow-through Pipe Arrangement.

9.2.3 Sample Handling and Monitoring

The coupons will be handled and assessed for corrosion using the American Society for Testing and Materials (ASTM) G1-03, Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens (ASTM 2011). The coupons will be photographed, visually inspected with a minimum of 10x power, dimensionally measured (to within 0.0001 inch), and weighed (to within 0.0001 gm).

9.2.4 Mechanical Integrity Testing

Mechanical integrity testing will be conducted consistent with requirements at 40 CFR 146.90(e) and 146.89(c), which state that once per year until CCS#5, CCS#6 and CCS#7 are plugged, the operator will perform an approved tracer survey such as an oxygen-activation log or a temperature or noise log. In addition, these regulations discuss casing inspection logs to be performed if required by the Director at a frequency specified in the Testing and Monitoring Plan. Casing inspection logs are proposed to be run during a well workover when the tubing is pulled from the well. Annual external mechanical integrity testing will be consistent with methods described in Section 7.1.2.3 and Table 7.1.2-3.

9.3 Pressure fall-off testing

ADM will perform pressure fall-off tests during the injection phase as described below to meet the requirements of 40 CFR 146.90(f).

At a minimum, pressure fall-off testing will be performed:

- During injection in year 5 of operation; and
- At least every 5 years during the remainder of the injection period.

ADM will conduct pressure fall-off testing according to the procedures below.

9.3.1 Pressure Fall-off Test Procedure

Each pressure falloff test will include a period of injection followed by a period of no-injection or shut-in. Normal injection using the stream of CO₂ captured from the ADM facility will be used during the injection period preceding the shut-in portion of the falloff tests. The normal injection rate is estimated to be maximum 3,050 MT/day for wells CCS#5, CCS#6 and CCS#7. Prior to the falloff test, a constant rate will be maintained. If this rate causes relatively large changes in bottomhole pressure, the rate may be decreased. Injection will have occurred

at previously approved, neighboring CCS wells for multiple years prior to this test, but there may have been injection interruptions due to operations or testing. At a minimum, one week of relatively continuous injection will precede the shut-in portion of the falloff test; however, several months of injection prior to the falloff will likely be part of the pre- shut-in injection period and subsequent analysis. This data will be measured using a surface readout downhole gauge so a final decision on test duration can be made after preliminary evaluation of the data takes place. The gauges may be those used for day-to-day data acquisition or a pressure gauge will be conveyed via electric line (e-line).

To reduce the wellbore storage effects attributable to the pipeline and surface equipment, the well will be shutin at the wellhead nearly instantaneously with direct coordination with the injection compression facility/pipeline operator. Because surface readout will be used and downhole recording memory restrictions will be eliminated, data will be collected at five second intervals or more frequently for the entire test. The shutin period of the falloff test will be at least 48 hours or longer until adequate pressure transient data are collected to allow meaningful interpretation of the data. Because surface readout gauges will be used, the shut-in duration can be determined in real-time. A report containing the pressure falloff data and interpretation of the reservoir ambient pressure will be submitted to the permitting agency within 30 days of the test. Pressure sensors used for this test will be the wellhead sensors and a downhole gauge for the pressure falloff test. Each gauge will be of a type that meets or exceeds ASME B 40.1 Class 2A (0.5% accuracy across full range). Wellhead pressure gauge range will be 0-4,000 psi. Downhole gauge range will be 0-10,000 psi.

9.4 Groundwater quality monitoring

The purpose of the groundwater monitoring plan is to evaluate potential carbon dioxide (CO₂) migration and/or native fluid displacement from the injection zone or other water quality changes that may lead to endangerment of USDWs. ADM will monitor three separate zones during operation to meet the requirements of 40 CFR 146.90(d).

9.4.1 Identification of Monitored Intervals

The groundwater monitoring plan for the CCS#1-CCS#7 area focuses on the following zones:

- Quaternary and/or Pennsylvanian strata the source of local drinking water.
- The St. Peter Formation the lowermost USDW.
- The Ironton-Galesville Sandstone the zone above the Eau Claire confining zone.

The above zones shall be monitored in conjunction with approved Testing and Monitoring Plans for CCS#1, CCS#2, and proposed CCS#3, CCS#4, CCS#5, CCS#6 and CCS#7. Of the above listed formations, the St. Peter Formation and Ironton-Galesville Sandstone will be monitored at CCS#5, CCS#6 and CCS#7. ADM operates four shallow monitoring wells, two geophysical monitoring wells, and two injection zone verification wells in association with CCS#1 and CCS#2. These wells were included in the approved testing and monitoring program for completeness. Additional geophysical monitoring and additional verification wells are proposed in association with CCS #3, CCS #6 and CCS #7. Additional verification wells VW#4 and VW#5 are proposed in association with the CCS#5, CCS#6 and CCS#7 area. All geophysical monitoring (GM) wells will be located approximately 150-200 feet from the proposed injection wells. All of the existing and proposed monitoring locations are located on ADM property, or property leased by ADM.

Table 9.4.2-1 and Table 9.4.3-1 show the planned direct and indirect monitoring methods, locations, and frequencies for groundwater quality monitoring above the confining zone. ADM will also monitor in the Mt. Simon

Sandstone (the injection zone). Monitoring in this layer will be to track the CO_2 plume and is described in Section 9.5.

9.4.2 Direct Monitoring Methods

ADM will employ direct monitoring methods such as pressure and temperature monitoring and fluid sampling on a monthly or annual basis. Table 9.4.2-1 summarizes the planned locations and frequencies of all applicable direct monitoring methods. Note that the depths presented are estimates of depth below mean sea level (presented as positive values) and will be revised to reflect actual formation depths upon drilling.

Target Formation	Monitoring Activity	Monitoring Location(s)	Spatial Coverage	Frequency
Sensitive, Confidential, or Privileged Inform	Fluid Sampling	Sensitive, Conf	idential, or Privileged Information	Baseline; Quarterly during Year 1 & 2; Semi-annual thereafter
	Temperature Monitoring (DTS)			Continuous**; recorded hourly Continuous**; recorded hourly Continuous**; recorded hourly Continuous**; recorded hourly Continuous**; recorded hourly Continuous**; recorded hourly Continuous**; recorded hourly
	Fluid Sampling			Baseline; Annual Baseline; Annual Baseline; Annual Baseline; Annual Baseline; Annual Baseline; Annual Baseline; Annual Monthly Monthly

Table 9.4.2-1. Summary of Direct Monitoring Methods

Target Formation	Monitoring Activity	Monitoring Location(s)	Spatial Coverage	Frequency
		Sensitive, Confid	lential, or Privileged Information	on Monthly
				Monthly
				Monthly
				Monthly
				Continuous**;
				recorded hourly
	- .			Continuous**;
	Temperature			recorded hourly
	Monitoring			Continuous**;
	(DTS)			recorded hourly
				Continuous**;
				recorded hourly
				Continuous**;
				recorded hourly
				Continuous**;
				recorded hourly
				Continuous**;
				recorded hourly
				Monthly
	2			Monthly
	Pressure Monitoring			Monthly
	Wollitoning			Monthly
				Monthly
				Continuous**;
				recorded hourly
	Temperature			Continuous**;
	Monitoring			recorded hourly
	(DTS)			Continuous**;
	(013)			recorded hourly
				Continuous**;
				recorded hourly
				Continuous**;
				recorded hourly
				Continuous**;
				recorded hourly
				Continuous**;
				recorded hourly
				Baseline; Annual
				Baseline;
				Annual
	Fluid			Baseline;
	Sampling			Annual
	Saubung			Baseline;
				Annual
				Baseline;
				Annual

* indicates applicable if the proposed well is drilled in the future. Sample location is to be considered only an estimate at this time based on general offset information, and is highly likely subject to change after drilling. **Continuous temperature and pressure monitoring (DTS) will be satisfied with a minimum 5-minute sampling and at least hourly recording. If the continuous monitoring is unavailable, the well can continue to operate by performing pressure and temperature monitoring every 4 hours.

9.4.3 Indirect Monitoring Methods

ADM will continue to employ indirect monitoring methods such as wireline logging and seismic monitoring. Table 9.4.3-1 summarizes the planned locations and frequencies of all applicable indirect monitoring methods.

Target Formation	Monitoring Activity	Monitoring Location(s)	Spatial Coverage	Frequency
Sensitive, Confidential, or Privileged Information		Sensitive, Confide	ntial, or Privileged Information	Baseline, Bi-Annual
				Baseline, Bi-Annual
	Pulse			Baseline, Bi-Annual
	Neutron/RST Logging			Baseline, Bi-Annual
	2088.18			Baseline, Bi-Annual
				Baseline, Bi-Annual
	Pulse			Baseline, Bi-Annual
	Neutron/RST Logging			Baseline, Bi-Annual
	2088118			Baseline, Bi-Annual
				Baseline, Bi-Annual
	Pulse			Baseline, Bi-Annual
	Neutron/RST Logging			Baseline, Bi-Annual
	LOBBINE			Baseline, Bi-Annual
				Baseline, Bi-Annual

Target Formation	Monitoring Activity	Monitoring Location(s)	Spatial Coverage	Frequency
		Sensitive, Confide	ential, or Privileged Information	Baseline, Bi-Annual
				Baseline, Bi-Annual
	Passive seismic			Continuous**; processed monthly
	Time-lapse 3D surface seismic			5-Year

Notes:

* indicates applicable if the proposed well is drilled in the future. Sample location has been estimated based off offset information and is subject to change after drilling

**Continuous recording of passive seismic data is processed on a monthly basis to determine if seismic events over M1.0 occurred within the AoR. The passive seismic monitoring system at borehole and surface seismic stations is owned and operated by USGS.

9.4.4 Analytical and Field Parameters for Groundwater Samples

Sampling will be performed as described in Section B.2 of the Quality Assurance Sampling Plan (QASP); this section of the QASP describes the groundwater sampling methods to be employed, including sampling SOPs (Section B.2.a/b), and sample preservation (Section B.2.g). Sample handling and custody will be performed as described in Section B.3 of the QASP. Quality control will be ensured using the methods described in Section B.5 of the QASP. Table 9.4.4-1 presents a summary of analytical parameters and proposed analytical methods.

rget Formation	Parameters	Analytical Methods ⁽¹⁾
nfidential, or Privileged Information	Cations:	ICP-OES,
	Ca, Fe, K, Mg, Na, and Si	EPA Method 6010B
	Anions:	Ion Chromatography,
	Br, Cl, F, NO3, and SO4	EPA Method 300.0
	Dissolved CO ₂	Coulometric titration,
		ASTM D513-11
	Total Dissolved Solids	Gravimetry; APHA 2540C
	Alkalinity	APHA 2320B
	pH (field)	EPA 150.1
	Specific conductance (field)	APHA 2510
	Temperature (field)	Thermocouple
	Cations:	ICP-OES,
	Ca, Fe, K, Mg, Na, and Si	EPA Method 6010B
	Anions:	Ion Chromatography,
	Br, Cl, F, NO3, and SO4	EPA Method 300.0
	Dissolved CO ₂	Coulometric titration,
		ASTM D513-11
	Isotopes: δ13C of DIC	Isotope ratio mass spectrometry
	Total Dissolved Solids	Gravimetry; APHA 2540C
	Water Density (field)	Oscillating body method
	Alkalinity	APHA 2320B
	pH (field)	EPA 150.1
	Specific conductance (field)	APHA 2510
	Temperature (field)	Thermocouple
	Cations:	ICP-OES,
	Ca, Fe, K, Mg, Na, and Si	EPA Method 6010B
	Anions:	Ion Chromatography,
	Br, Cl, F, NO3, and SO4	EPA Method 300.0
	Dissolved CO ₂	Coulometric titration,
		ASTM D513-11
	Isotopes: δ13C of DIC	Isotope ratio mass spectrometry
	Total Dissolved Solids	Gravimetry; APHA 2540C
	Water Density (field)	Oscillating body method
	Alkalinity	APHA 2320B
	pH (field)	EPA 150.1
	Specific conductance (field)	APHA 2510
	Temperature (field)	Thermocouple

Table 9.4.4-1. Summary of Fluid Sampling Constituents and Analytical Methods

Note 1: ICP = inductively coupled plasma; MS = mass spectrometry; OES = optical emission spectrometry; GC-P = gas chromatography - pyrolysis. An equivalent method may be employed with the prior approval of the UIC Program Director.

9.5 CO₂ plume and pressure front tracking

9.5.1 Direct Monitoring Methods

Monitoring of Temperature and Pressure

In-situ pressure measurements will be recorded in all active injection wells. Pressure data will be collected via downhole pressure gauges located near the base of the Eau Claire Formation (the confining zone) in addition to the Ironton-Galesville Sandstone located directly above the Eau Claire formation. Temperature will be monitored in all active injection wells throughout each wellbore. This monitoring will be conducted for as long as remains practical utilizing a fiber-optic, dynamic temperature survey (DTS) to be installed during the installation of each well.

Significant variance between actual measured and predicted pressure/temperature (P/T) data will indicate that a re-calibration of the numerical model is warranted. Review and revisions to the model and subsequently the area of review (AoR) and the monitoring program supported by simulations generated with the model will be conducted on a minimum frequency of once every 5-years during operations to incorporate any subsequent changes in model predictions.

Justification for the Verification Well Program

Figure 9.5.1-1 presents the proposed CCS #5-#7 monitoring locations relative to the projected plume boundary of the CCS #5-7 system. Figure 9.5.1-2 shows the wells superimposed on a satellite image for reference. The locations of VW#4 and VW #5 were selected based on the regulatory guidelines described below.

- With regard to up-gradient orientation, current modeling indicates that up-gradient gravity effects are not significant enough to meaningfully influence plume drift during the operational period (Figure 9.5.1-3 presents the extent of the CO₂ plume growth at specified time horizons). Direct monitoring in VW#4 and VW #5, in addition to the proposed indirect seismic methods, should provide sufficient verification of plume behavior in directions that are not directly monitored via fluid sampling.
- Based on Figure 9.5.1-3, the CO₂ plume is predicted to eclipse the proposed VW #4 and VW #5 locations late in the operational period. Pressure impacts will be measurable much earlier than any groundwater concentration changes, and collection of both pressure and sampling data will enable the initial model to be calibrated over the course of operations to conform with direct monitoring measurements.
- 3. The current orientation of VW #4 and VW #5 allow for direct monitoring along an approximate SW-NE axis. Due to the radial behavior of the CO₂ plume, arrival in VW #4 and VW #5 at close to the same point time extends a high degree of confidence to modeled plume behavior along a NW-SE azimuth.

In addition to satisfying general regulatory guidelines and technical objectives, the selected locations of VW#4 and VW#5 offer suitable surface access for drilling, testing and future maintenance/workover operations. Based on the limited extent of post-operational plume migration, the proposed 2-well VW network will provide both spatial and temporal confirmation of plume and pressure development within the CCS #5-7 system.

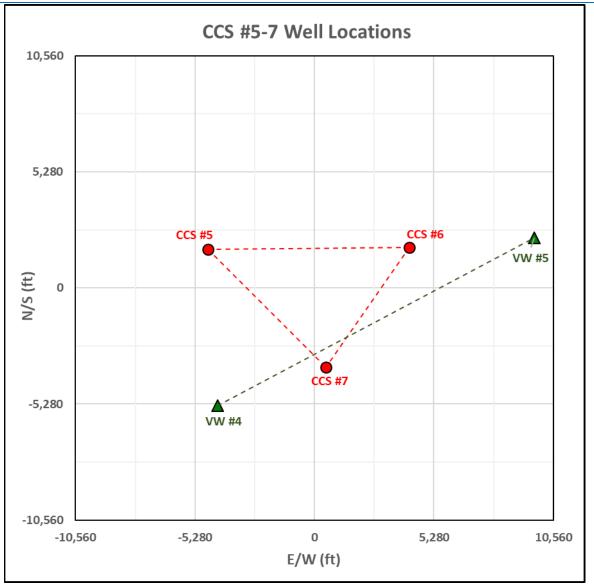


Figure 9.5.1-1. Orientation of ADM Injection and Monitoring Wells (Coordinate View)

Figure 9.5.1-2. Orientation of ADM Injection and Monitoring Wells (Surface View)

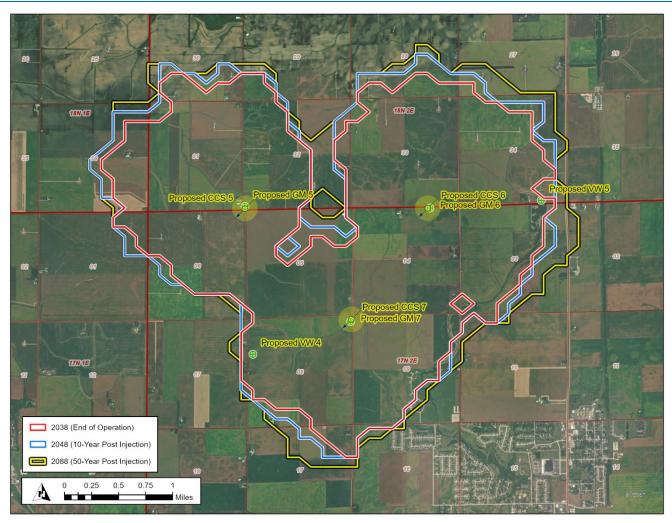


Figure 9.5.1-3. Proposed Verification Well Proximity to Projected Plume Arrival

Annual Fluid Sampling

Following baseline fluid sampling and analysis, fluid sampling will be conducted on an annual basis in all monitoring-verification wells. Initial samples will be taken via packer-isolated sliding sleeves located adjacent to the Ironton-Galesville Sandstone or suitable equivalent method if complications are encountered with the equipment and within the Mt. Simon Formation below the lower-most packer. Each sample interval will be analyzed for the constituents listed in Table 9.5.2-1 to document baseline fluid chemistry and to detect changes in fluid chemistry that could result from the movement of brine or CO₂ from the storage interval through the overlying confining zone and other formation.

Parameters	Analytical Methods ⁽¹⁾
Cations:	ICP-OES,
Ca, Fe, K, Mg, Na, and Si	EPA Method 6010B
Anions:	Ion Chromatography,
Br, Cl, F, NO3, and SO4	EPA Method 300.0

Dissolved CO ₂	Coulometric titration,
	ASTM D513-11
Isotopes: δ13C of DIC	Isotope ratio mass spectrometry
Total Dissolved Solids	Gravimetry; APHA 2540C
Water Density (field)	Oscillating body method
Alkalinity	АРНА 2320В
pH (field)	EPA 150.1
Specific conductance (field)	APHA 2510
Temperature (field)	Thermocouple

By conducting the planned sampling initially and at specified monitoring frequencies, it is expected that baseline conditions can be documented, natural variability in conditions can be characterized, and unintended brine or CO_2 migration could be detected if it occurred. Sufficient data will be collected to demonstrate that the effects of CO_2 injection are limited to the permitted injection zone comprised of the Mt. Simon formation. Table 9.5.2-2 summarizes the planned locations and frequencies of all applicable direct monitoring methods.

Table 9.5.2-2. Summary of Direct Monitoring Metho

Target Formation	Monitoring Activity	Monitoring Location(s)	Spatial Coverage	Frequency
	Pressure Monitoring	Sensitive, C	Confidential, or Privileged Information	Continuous**; recorded hourly
	Temperature Monitoring			Continuous**; recorded hourly
	Fluid Sampling			Baseline; Annual
				Monthly
	Pressure			Monthly
	Monitoring			Monthly
	Worldoning			Monthly
				Monthly
				Continuous**;
				recorded hourly
				Continuous**;
				recorded hourly
				Continuous**;
	Temperature			recorded hourly
	Monitoring			Continuous**;
	(DTS)			recorded hourly Continuous**;
				recorded hourly
				Continuous**;
				recorded hourly
				Continuous**;
				recorded hourly
				Baseline; Annual
				Baseline; Annual
	Fluid			Baseline; Annual
	Sampling			Baseline; Annual
				Baseline; Annual

		Sensitive, Confidential, or Privileged Information	April 202
Target Formation	Monitoring Activity		Frequency
Sensitive, Confidential, or Privileged Inform			Continuous**;
			recorded hourly
			Continuous**;
			recorded hourly
			Continuous**;
			recorded hourly
			Continuous**;
			recorded hourly
	Deserves		Continuous**;
	Pressure		recorded hourly
	Monitoring		Continuous**;
			recorded hourly
			Continuous**;
			recorded hourly
			Monthly
			Continuous**;
			recorded hourly
			Continuous**;
			recorded hourly
			Continuous**;
	Temperature		recorded hourly
	Monitoring		Continuous**;
	(DTS)		recorded hourly
	(2.0)		Continuous**;
			recorded hourly
			Continuous**;
			recorded hourly
			Continuous**;
			recorded hourly
			Baseline; Annual
	Fluid		Baseline; Annual
	Sampling		Baseline; Annual
			Baseline; Annual
			Baseline; Annual

Note:

* indicates applicable if the proposed well is drilled in the future. Sample location is to be considered only an estimate at this time based on general offset information, and is highly likely subject to change after drilling

**Continuous temperature and pressure monitoring (DTS) will be satisfied with a minimum 5-minute sampling and at least hourly recording. If the continuous monitoring is unavailable, the well can continue to operate by performing pressure and temperature monitoring every 4 hours.

9.5.2 Indirect Monitoring Methods

Wireline Logging

Both pulse-neutron and reservoir-saturation logs will be conducted initially and once every two years in all active injection and verification wells so long as wireline logging equipment can be safely run into each well. Baseline conditions will be established in any new wells drilled by conducting initial logging as part of new well completions. At a minimum, initial logging will be conducted from surface to TD and subsequent logging will be conducted over intervals sufficient to establish changing conditions. Analysis of logging data will provide a means to complement and verify the results obtained from the fluid sampling program, specifically regarding any potential migration of CO₂ into and/or above the confining zone.

Seismic Monitoring

Time-lapse seismic surveys will be conducted at 5-year intervals during the operational period and used as a broad-scale means to attempt to track the migration of the subsurface CO₂ plume. Data collection has previously been conducted at the site outside any potential plume boundary. In the future, similar areas will be surveyed and the area expanded if reservoir modeling data and verification well monitoring indicate a need for expanded data acquisition to ascertain the leading edge of the plume. Analysis of subsequent seismic survey data will be conducted and if results are favorable, will be used to provide a supplemental method for assisting with validating the numerical model forecasts as they pertain to maximum plume extent and distribution. In addition, ADM will continue to operate its current passive-seismic monitoring system or a suitable equivalent replacement system, with the ability to detect seismic events exceeding M1.0 within the AoR. Table 9.5.2-1 summarizes the methods and locations of the planned indirect monitoring program.

	Table 9.5.2-1. Summary of Indirect Monitoring Methods	
Monitoring Activity	Sensitive, Confidential, or Privileged Information	Frequency
		Baseline, Bi-Annual
		Baseline, Bi-Annual
		Baseline, Bi-Annual
Pulse		Baseline, Bi-Annual
Neutron/RST		Baseline, Bi-Annual
Logging		Baseline, Bi-Annual
		Baseline, Bi-Annual
Passive seismic		Continuous**; recorded monthly
Time-lapse 3D surface seismic		5-Year

Note: * indicates applicable if the proposed well is drilled in the future

**Continuous recording of passive seismic data is processed on a monthly basis to determine if seismic events over M1.0 occurred within the AoR. The passive seismic monitoring system at borehole and surface seismic stations is owned and operated by USGS.

9.6 Testing and monitoring plan QASP

A quality assurance and surveillance plan (QASP) for all testing and monitoring activities pursuant to 40 CFR 146.90(k) is provided in <u>APPENDIX C: Quality Assurance and Surveillance Plan</u>.

9.7 Reporting Requirements

The following details the reporting and recordkeeping requirements as it relates to CCS#5, CCS#6, and CC#7.

9.7.1 Electronic Reporting

Electronic reports, submittals, notifications and records made and maintained by the permittee under this permit will be in an electronic format approved by EPA. The permittee will electronically submit all required reports to the Director at the following website or via a suitable alternative method as may be instructed by EPA: <u>https://gsdt.pnnl.gov/</u>

9.7.2 Semi-Annual Reports

ADM will submit semi-annual reports containing:

(a) Any significant changes to the physical, chemical, and other relevant characteristics of the carbon dioxide stream from the proposed operating data;

- (b) Monthly average, maximum, and minimum values for injection pressure, flow rate and daily volume, temperature, and annular pressure;
- (c) A description of any event that exceeds operating parameters for annulus pressure or injection pressure specified in the permit;
- (d) A description of any event which triggers the shut-off systems based on permit operational alarm value setpoints required pursuant to 40 CFR 146.88(e), and the response taken;
- (e) The monthly volume and/or mass of the carbon dioxide stream injected over the reporting period and the volume and/or mass injected cumulatively over the life of the project;
- (f) Monthly annulus fluid volume added or produced; and
- (g) Results of the monitoring required in the Testing and Monitoring Plan, including:
 - (i) A tabulation of: (1) daily maximum injection pressure, (2) daily minimum annulus pressure,
 (3) daily minimum value of the difference between simultaneous measurements of annulus and injection pressure, (4) daily volume, (5) daily maximum flow rate, and (6) average annulus tank fluid level; and
 - (ii) Graph(s) of the monitoring as required, or of daily average values of these parameters. The injection pressure, injection volume and flow rate, annulus fluid level, annulus pressure, and temperature shall be submitted on one or more graphs, using contrasting symbols or colors, or in another manner approved by the Director; and
- (h) Results of any additional monitoring identified in the Testing and Monitoring Plan.

9.7.3 24-Hour Reporting

ADM will report to the Director any permit noncompliance which may endanger human health or the environment and/or any events that require implementation of actions in the Emergency and Remedial Response Plan. Any information shall be provided orally within 24 hours from the time the permittee becomes aware of the circumstances. Such verbal reports shall include, but not be limited to the following information:

- Any evidence that the injected carbon dioxide stream or associated pressure front may cause an endangerment to a USDW, or any monitoring or other information which indicates that any contaminant may cause endangerment to a USDW;
- Any noncompliance with a permit condition, or malfunction of the injection system, which may cause fluid migration into or between USDWs;
- Any triggering of the shut-off system required (i.e., down-hole or at the surface);
- Any failure to maintain mechanical integrity;
- Pursuant to compliance with the requirement at 40 CFR 146.90(h) for surface air/soil gas monitoring or other monitoring technologies, if required by the Director, any release of carbon dioxide to the atmosphere or biosphere; and
- Actions taken to implement appropriate protocols outlined in the Emergency and Remedial Response Plan.

A written submission to document any required 24-hour reporting shall be provided to the Director in an electronic format within five days of the time the permittee becomes aware of the circumstances described

in Section 9.7.3. The submission shall contain a description of the noncompliance and its cause; the period of noncompliance, including exact dates and times, and, if the noncompliance has not been corrected, the anticipated time it is expected to continue as well as actions taken to implement appropriate protocols outlined in the Emergency and Remedial Response Plan; and steps taken or planned to reduce, eliminate and prevent recurrence of the noncompliance.

9.7.4 Reports on Well Tests and Workovers

Report, within 30 days, the results of:

- Periodic tests of mechanical integrity;
- Any well workover or stimulation;
- Any other test of the injection well conducted by the permittee if required by the Director; and
- Any test of any monitoring well required by this permit.

9.7.5 Advance Notice Reporting

- <u>Well Tests</u> ADM will give at least 30 days advance written notice to the Director in an electronic format of any planned workover, stimulation, or other welltest.
- <u>Planned Changes</u> ADM will give written notice to the Director in an electronic format, as soon as
 practical, of any planned physical alterations or additions to the permitted injection facility other than
 minor repair/replacement or maintenance activities. An analysis of any new injection fluid shall be
 submitted to the Director for review and written approval at least 30 days prior to injection; this
 approval may result in a permit modification.
- <u>Anticipated Noncompliance</u> ADM will give advanced written notice to the Director in an electronic format of any planned changes in the permitted facility or activity which may result in noncompliance with permit requirements.

9.7.6 Additional Reports

- <u>Compliance Schedules</u> Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule of this permit will be submitted in an electronic format by ADM no later than 30 days following each schedule date.
- <u>Transfer of Permits</u> This permit is not transferable to any person except after notice is sent to the Director in an electronic format at least 30 days prior to transfer and the requirements of 40 CFR 144.38(a) have been met. Pursuant to requirements at 40 CFR 144.38(a), the Director will require modification or revocation and reissuance of the permit to change the name of the permittee and incorporate such other requirements as may be necessary under the SDWA.
- <u>Other Noncompliance</u> ADM will report in an electronic format all other instances of noncompliance not otherwise reported with the next monitoring report. The reports shall contain the information listed in Section 9.7.3 above.
- <u>Other Information</u> When ADM becomes aware of failure to submit any relevant facts in the permit application or that incorrect information was submitted in a permit application or in any report to the Director, ADM will submit such facts or corrected information in an electronic format within 10 days in accordance with 40 CFR 144.51(I)(8).

 <u>Report on Permit Review</u> – Within 30 days of receipt of this permit, ADM will certify to the Director in an electronic format that he or she has read and is personally familiar with all terms and conditions of this permit.

9.7.7 Records

ADM will retain records and all monitoring information, including all calibration and maintenance records and all original chart recordings for continuous monitoring instrumentation and copies of all reports required by this permit (including records from pre-injection, active injection, and post-injection phases) for a period of at least 10 years from collection.

ADM will maintain records of all data required to complete the permit application form for this permit and any supplemental information (e.g. modeling inputs for AoR delineations and reevaluations, plan modifications) submitted under 40 CFR 144.27, 144.31, 144.39, and 144.41; information used to develop the demonstration of the alternative post-injection site care timeframe; and the site closure report for a period of at least 10 years after site closure.

ADM will retain records concerning the nature and composition of all injected fluids until 10 years after site closure.

Records of monitoring information shall include:

- The date, exact place, and time of sampling or measurements;
- The name(s) of the individual(s) who performed the sampling or measurements;
- A precise description of both sampling methodology and the handling of samples;
- The date(s) analyses were performed;
- The name(s) of the individual(s) who performed the analyses;
- The analytical techniques or methods used; and
- The results of such analyses.

10. Well Plugging Plan

10.1 Facility Information

s. r donney ninormation	
Facility Name:	Archer Daniels Midland
	CCS#1 Permit: IL-115-6A-0002
	CCS#2 Permit: IL-115-6A-0001
	CCS#3 Permit: TBD
	CCS#4 Permit: TBD
	CCS#5 Permit: TBD
	CCS#6 Permit: TBD
	CCS#7 Permit: TBD
Facility Contact:	Mr. Doug Kirk, Plant Manager
	4666 Faries Parkway, Decatur, IL

4666 Faries Parkway, Decatur, IL (217) 454-4577, <u>douglas.kirk@adm.com</u>

Well Location: Decatur, Macon County, IL;

CCS#5 (Proposed): N39° 57' 47.32", W89° 00' 44.33" CCS#6 (Proposed): N39° 57' 48.15", W88° 58' 48.70" CCS#7 (Proposed): N39° 56' 54.21", W88° 59' 36.19"

Injection well plugging will be conducted according to the procedures provided in this section, which are consistent with previously approved procedures and submittals provided to US EPA Region 5 by ADM in May of 2016.

Upon completion of the active injection phase of the project, or at the end of the life of the respective CCS injection well, the well will be plugged and abandoned to meet the requirements of 40 CFR 146.92. The plugging procedure and materials are designed and will be implemented to prevent any unwanted fluid movement, to resist the corrosive aspects of carbon dioxide/water mixtures, and to protect any USDWs. Annual testing or information derived during plugging operations may indicate the need for revisions to this plugging plan. Significant revisions will be submitted to the UIC Program Director.

10.2 Summary

After injection has ceased, the well to be plugged will be flushed with a kill weight brine fluid. A minimum of three tubing volumes will be injected without exceeding maximum bottomhole injection pressure specified by permit. Bottom hole pressure measurements will be made using wireline or slickline conveyed tools and the well will be logged and pressure tested to evaluate Part I mechanical integrity (inside) and Part II external mechanical integrity (outside) of the casing prior to plugging. If a loss of mechanical integrity is discovered, the agency will be consulted regarding findings, and the well will be repaired as necessary to allow plugging consistent with regulatory requirements prior to proceeding with the plugging operations.

A detailed plugging procedure is provided below. Well construction and completion activities are designed to bring cement to surface on all casing strings. It is not anticipated that any of the casing will be retrieved at plugging.

After injection is terminated permanently, the injection tubing and packer will be removed. After the tubing and packer are removed, the casing will be circulated clean, or fluids displaced into the injection interval, and the balanced-plug placement method will be used to plug the well by cementing the long-string casing to surface. If, after flushing, the tubing and packer cannot be released, a tubing cutter will be used to cut off the tubing above the packer and the packer will be left in the well, the well will be flushed, and the cement retainer method will be used for plugging the injection formation below the packer.

All of the casing strings will be cut off at least 4 feet below the surface, below the plow line. A blanking plate with the required permit information will be welded to the top of the cutoff casing at the conclusion of the plugging process.

10.3 Planned Tests or Measures to Determine Bottom-hole Reservoir Pressure

ADM will record static bottom hole formation pressure using a down hole pressure gauge and calculate kill fluid density based on final ambient monitoring pressure measurements.

10.4 Planned External Mechanical Integrity Test(s)

ADM will conduct at least one of the tests in Table 10.2-1 to verify external MI prior to plugging the injection well as required in 40 CFR 146.92(a).

Test Type	Means of Testing
Temperature Log	Along wellbore using DTS or wireline well log
Noise Log	Wireline Well Log
Oxygen Activation Log	Wireline Well Log

10.5 Information on Cement Plugs

The cement(s) formulated for plugging will be compatible with the carbon dioxide stream that has historically been injected into the well at the conclusion of the well life. The cement formulation and required certification documents will be submitted to the agency with the final well plugging plan to be submitted with the notice to plug the well. The operator will report the wet density of the cement and will retain duplicate samples of the cement used for each plug. Figures 10.5-1, 10.5-2, and 10.5-3 present plugging schematics for the CCS#5, CCS#6, and CCS#7 wells, respectively. Tables 10.5-2, 10.5-3, and 10.5-4 present the details of the cement volumes for all three wells.

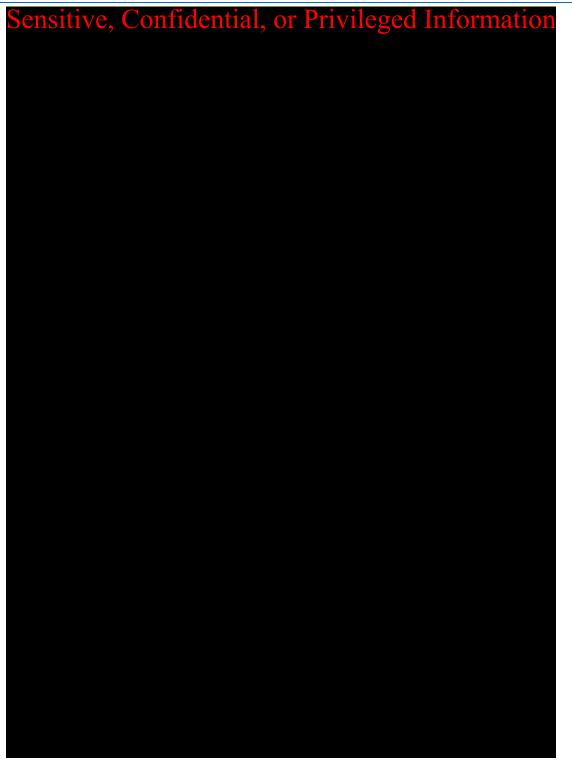


Figure 10.5-1. Proposed CCS#5 Plugging Schematic

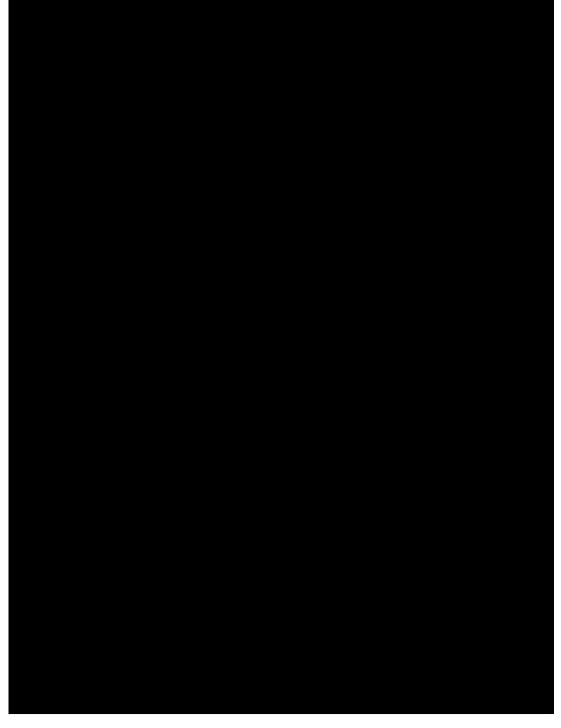
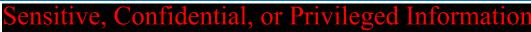



Figure 10.5-2. Proposed CCS#6 Plugging Schematic

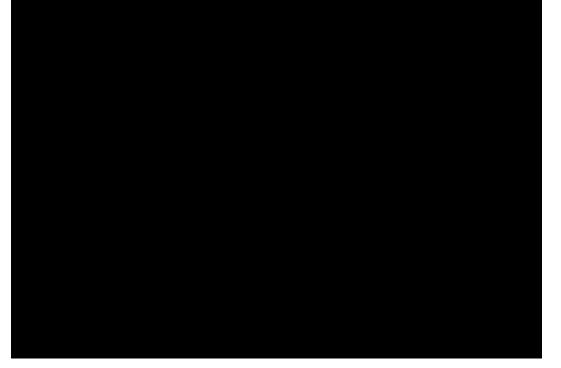


Figure 10.5-3. Proposed CCS#7 Plugging Schematic

Table 10.5-2. CCS#5 Cement Plug Details

	Plug #1	Plug #2
Inner Diameter of Casing in Which Plug Will be Placed (in)	Sensitive, Confidential, or Priv	vileged Information
Depth to Bottom of Tubing or Drill Pipe (ft)		
Slurry Volume to be Plumped (ft ³)		
Sacks of Cement to be Used (per plug)		
Slurry Weight (lb/gal)	_	
Calculated Top of Plug (ft)		
Bottom of Plug (ft)		
Type of Cement		
Method of Emplacement		

Table 10.5-3. CCS#6 Cement Plug Details

	Plug #1	Plug #2
Inner Diameter of Casing in Which Plug	Sensitive, Confidential, or Priv	vileged Information
Will be Placed (in)		
Depth to Bottom of Tubing or Drill		
Pipe (ft)		
Slurry Volume to be Plumped (ft ³)		
Sacks of Cement to be Used (per plug)		
Slurry Weight (lb/gal)		
Calculated Top of Plug (ft)		
Bottom of Plug (ft)		
Type of Cement		
Method of Emplacement		

Table 10.5-4. CCS#7 Cement Plug Details

	Plug #1	Plug #2
	Sensitive, Confidential, or Priv	vileged Information
Will be Placed (in)		
Depth to Bottom of Tubing or Drill		
Pipe (ft)		
Slurry Volume to be Plumped (ft ³)		
Sacks of Cement to be Used (per plug)		
Slurry Weight (lb/gal)		
Calculated Top of Plug (ft)		
Bottom of Plug (ft)		
Type of Cement		
Method of Emplacement		

The first 500' plug placed in each well may include 20% excess in the volume to accommodate any issues with perforations. Tables 10.5-2, 10.5-3, and 10.5-4 all account for the 20% excess.

10.3 Narrative Description of Plugging Procedures

In compliance with 40 CFR 146.92(c), ADM will do the following:

- 1. Notify the regulatory agency at least 60 days before plugging the well and provide updated plugging plan, if applicable.
- 2. Confirm the mechanical integrity of the well by performing one of the permitted external mechanical integrity tests presented in the table under "Planned External Mechanical Integrity Test(s)" above.
- 3. Move-in Rig onto well and rig up (RU). All CO₂ pipelines will be marked and noted with rig supervisor prior to field work.
- 4. Conduct and document a safety meeting specifying requirements based on conditions noted at the well prior to plugging mobilization.
- 5. RU wireline or slickline equipment and required pressure control and run-in well to datum depth or suitable equivalent to record bottom hole pressure using down hole gauge. RD slickline. Calculate required kill fluid density.
- 6. Check pressures on the vertical run of the tree to verify wellhead equipment is sufficient for plugging activities.
- 7. Test the pump and lines to a minimum of 2,500 psi. Fill tubing with kill weight brine (minimum 9.5 ppg or greater, as determined by bottom hole pressure measurement). Bleeding off occasionally may be necessary to remove all gas from the system. Test casing annulus to a minimum of 1,000 psi and monitor as in annual MIT. If there is pressure remaining on tubing, rig-up equipment to pump down tubing and inject minimum of two tubing volumes of kill weight brine. Monitor tubing and casing pressure for 1 hour. If both casing and tubing are dead then nipple up (install) blowout preventers (NU BOPs). Monitor casing and tubing pressures.
- 8. If the well is not dead or the pressure cannot be bled off of tubing, RU slickline and set plug in lower profile nipple below packer. Circulate tubing and annulus with kill weight fluid until well is dead. After well is dead, nipple down (ND) tree, NU BOPs, and perform a function test. BOP's should have appropriately sized single pipe rams on top and blind rams in the bottom ram for tubing. Test pipe rams and blind rams to 250 psi low, 3,000 psi high. Test annular preventer to 250 psi low and 3,000 psi high. Test all TIW valves (pressure control valve), BOP choke and kill lines, and choke manifold to 250 psi low and 3,000 psi high. NOTE: Make sure casing valve is open during all BOP tests.
- After testing BOPs pick up tubing string and unlatch seal assembly from seal bore. Rig slick line and lubricator back to well and remove X- plug from well. Rig to pump via lubricator and circulate until well is dead. During this process, annulus fluid may be bullheaded into the formation or circulated out of the well.

- 10. Pull out of hole with tubing laying it down. NOTE: Ensure that the well is over-balanced and add kill brine as needed to maintain fluid-filled well.
- 11. Pull seal assembly, pick up workstring, and trip in hole (TIH) with the packer retrieving tools. Latch onto the packer and pull out of hole laying down same.

Contingency: If unable to pull seal assembly, RU electric line and make cut on tubing string just above packer. Note: Cut must be made above packer at least 5-10 ft MD. If unable to pull the packer, pull the work string out of hole and proceed to next step. If problems are noted, update cement remediation plan (if needed) and execute prior to plugging operations.

- 12. TIH with work string to tagged total depth (TD). Note that the tagged TD might be shallower than the original TD due to fill. The work string should be worked as deep as safely possible. Keep the hole full at all times. Circulate the well with fluid of sufficient weight to maintain static equilibrium and prepare for cement plugging operations.
- 13. The lower section of the well from the top of the confining zone to the bottom of the plug will be plugged using CO₂ resistant cement (Schlumberger Evercrete or suitable equivalent) which is expected to be from TD to a depth approximately 1,000 ft above the top of the Eau Claire formation (at approximately 4,300 ft KB). This initial stage of plugging will be accomplished by placing consecutive 500-foot balanced plugs in the casing using a cement slurry with a density of 15.9 ppg and a yield of 1.11 cubic feet per sack of cement. Note that the values used in these calculations are derived from Schlumberger's Evercrete mix. Actual cement volume will depend upon plug back total depth and wellbore fill that determine total plug length. It is anticipated that seven to eight plugs will be necessary to complete the first stage. The top depth of the plug will be verified by setting the work string down onto the plug. No more than two plugs will be set before cement is allowed to develop sufficient compressive strength (per data from testing on the specific cement blend).
- 14. Circulate the well and ensure it is in balance. Wait on cement for a minimum of 20 hours prior to proceeding with second stage of plugging above the confining zone to surface. Tag cement to verify depth and place work string just above the top of cement.
- 15. The upper section of the well from the top of the confining zone to surface will be plugged using Class A/H cement (or suitable equivalent) with a density of 15.9 ppg and a yield of 1.18 cubic feet per sack of cement. Note that the values used in these calculations are derived from Schlumberger's Class A/H blends. This stage of plugging will be accomplished by placing consecutive 500-foot balanced plugs in the casing. Actual cement volume will depend upon the top of the plug placed in the lower section of the well. It is anticipated that eight to nine plugs will be necessary to complete the second stage.
- 16. After each plug is set, pull out of plug and reverse circulate the work string. Repeat this operation until all the plugs have been set. If plugs are well balanced, then the reverse circulation step can be omitted until after every third plug. Lay down work string while pulling from well.
- 17. After the penultimate plug has been set, pull the work string from well and shut in for 12 hours.
- 18. Trip in hole with work string and tag cement top. Calculate volume for final plug. Pull work string back out of well.

- 19. ND BOPs and cut all casing strings below plow line (minimum four (4) feet below ground level or per local policies/standards and ADM requirements).
- 20. Lay down all work string, etc. Rig down all equipment and move out. Clean cellar to where a plate can be welded onto casing stub with well name onto lowest casing string at 4 feet, or as per permitting agency directive.

The procedures described above are subject to modification during execution, as necessary, to ensure implementation of a plugging operation that protects worker safety and effectively protects USDWs. Any significant modifications due to unforeseen circumstances will be reported to the agency during field operations and documented in the plugging report. Completed plugging forms, records and lab information will be supplied to the regulatory agency as required by permit. The plugging report will be certified as accurate by ADM and the plugging contractor, and shall be submitted to the agency within 60 days after plugging is completed.

11. Post-Injection Site Care and Site Closure Plan

This Post-Injection Site Care and Site Closure (PISC) plan describes the activities that ADM will perform to meet the requirements of 40 CFR 146.93. ADM will monitor groundwater quality and track the position of the carbon dioxide plume and pressure front for 10 years after the cessation of injection. ADM will not cease post-injection monitoring in accordance with the approved PISC Plan until site closure has been authorized by the Director pursuant to 40 CFR 146.93(b)(3). Following authorization for site closure, ADM will plug all monitoring wells, restore the site to its original condition, and submit a Site Closure report and associated documentation.

11.1 Pressure differential and position of the CO₂ plume and pressure front

Figure 11.1-1 represents the predicted extent of the pressure front that defines the AoR at the end of operation, 5-years post-injection and at the end of the 10-year PISC timeframe. This map is a summary of the AoR delineation modeling results submitted in Section 4 of this application per 40 CFR 146.84. At the onset of the post-injection period, it is expected that the CO₂ plume will continue to expand to a small degree as the system reaches pressure equilibrium, with marginal CO₂ plume expansion occurring after approximately 10-years post-injection. Similarly, as shown in Figure 11.1-1, the AoR is also predicted to expand for several years post-injection as equilibrium is reached. By 2048, the pressure-induced cone of influence (the pressure change that defines the permit AoR) is projected to reach its maximum size, eventually reducing to less than 50% of its maximum size by 2088.

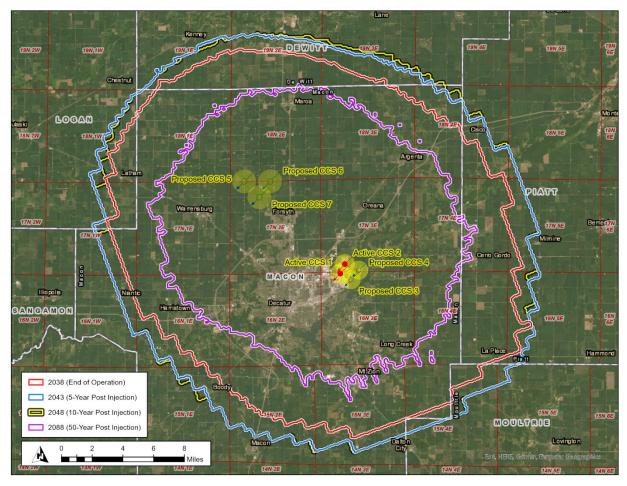


Figure 11.1-1. Modeled Extent of CO₂ Pressure Induced Cone of Influence

Figure 11.1-2 is a summary of modeling results presented in Section 4 of this document. It depicts the modeled extent of the plume boundary at the end of operation, the end of the 10-year PISC timeframe and for comparison purposes also shows the minimal changes that occur at 50-years post injection as compared with the end of the PISC period. Based on modeling results, minimal post-operational plume drift is expected and the plume is predicted to reach its near-maximum size by the end of the 10-year PISC period, with the rate of expansion decreasing and becoming negligible by 50 years post-injection.

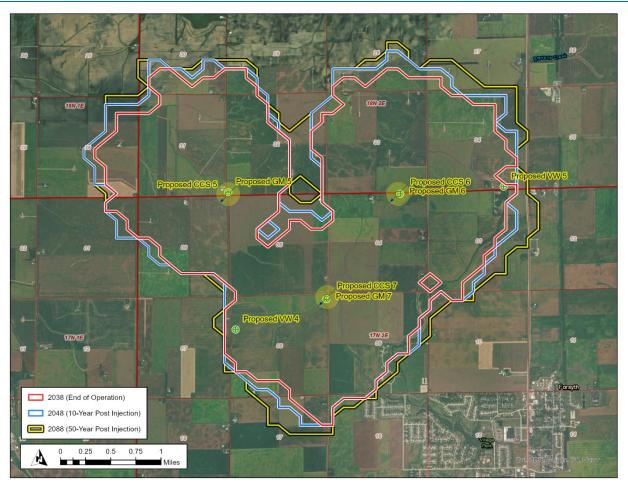


Figure 11.1-2. Modeled Extent of CO₂ Plume (End of Operation, 10-Years and 50-Years Post-Injection)

11.2 Post-injection phase monitoring plan

11.2.1 Groundwater Quality Monitoring

Tables 11.2.1-1 and 11.2.1-2 present the direct and indirect monitoring methods, locations, and frequencies planned for monitoring groundwater quality associated with CCS #5, CCS #6 and CCS #7 installation and operation. Monitoring above the confining zone in the lowermost USDW in the AoR, the St. Peter Formation, and for the Ironton-Galesville Sandstone will take place as part of the CCS #5-#7 program. Monitoring of the Quaternary and/or Pennsylvanian strata will take place in association with other injectors as required by permit. All of the existing and proposed monitoring wells are located on ADM property. Table 11.2.1-3 identifies the parameters to be monitored and the analytical methods ADM will employ.

Fluid sampling will provide direct evidence regarding the presence or absence of CO_2 and/or altered geochemistry that is associated with CO_2 movement. Temperature monitoring will provide evidence to determine if fluid passing a monitored location has changed the original temperature of the monitored interval and pressure monitoring will provide evidence if sufficient fluid movement has occurred into a deep strata that has resulted in an induced pressure gradient at the monitored location.

Target Formation	Monitoring Activity	Monitoring Location	Frequency: Year 1	Frequency: Years 2-3	Frequency: Years 4-9	Frequency: Year 10
Sensitive, Confidential, or Privileged Inform	Fluid Sampling		Annual	Annual	Annual	Annual
	Distributed Temperature Sensing (DTS)		Monthly	None	None	None
	Fluid Sampling		Annual	Annual	Annual	Annual
	Pressure/Temperature Monitoring		Monthly	Monthly	Annual	Annual
	DTS		Monthly	None	None	None

Table 11.2.1-1. Post-Injection Phase Direct Groundwate	er Monitoring Above Confining Zone
--	------------------------------------

Table 11.2.1-2. Post-Injection Phase Indirect Groundwater Monitoring Above Confining Zone

Target Formation	Monitoring Activity	Monitoring Location	Frequency to Year 10
Sensitive, Confidential, or Privileged Information	Pulse-Neutron/RST Logging		Years 1,3,5,7, and 10
	Pulse-Neutron/RST Logging		Years 1,3,5,7, and 10
	Pulse-Neutron/RST Logging		Years 1,3,5,7, and 10

Parameters	Analytical Methods	
Quaternary/Pennsylvanian	, individual incentous	
Cations:	ICP-OES	
Ca, Fe, K, Mg, Na, and Si	EPA Method 6010B	
Anions:	Ion Chromatography	
Br, Cl, F, NO ₃ , and SO ₄	EPA Method 300.0	
Dissolved CO ₂	Coulometric titration, ASTM D513-11	
Total Dissolved Solids	Gravimetry; APHA 2540C	
Alkalinity	APHA 2320B	
pH (field)	EPA 150.1	
Specific conductance (field)	APHA 2510	
Temperature (field)	Thermocouple	
St. Peter		
Cations:	ICP-OES	
Ca, Fe, K, Mg, Na, and Si	EPA Method 6010B	
Anions:	Ion Chromatography	
Br, Cl, F, NO ₃ , and SO ₄	EPA Method 300.0	
Dissolved CO ₂	Coulometric titration, ASTM D513-11	
Isotopes: δ^{13} C of DIC	Isotope ratio mass spectrometry	
Total Dissolved Solids	Gravimetry; APHA 2540C	
Water Density (field)	Oscillating body method	
Alkalinity	APHA 2320B	
pH (field)	EPA 150.1	
Specific conductance (field)	APHA 2510	
Temperature (field)	Thermocouple	
Ironton-Galesville		
Cations:	ICP-OES	
Ca, Fe, K, Mg, Na, and Si	EPA Method 6010B	
Anions:	Ion Chromatography	
Br, Cl, F, NO ₃ , and SO ₄	EPA Method 300.0	
Dissolved CO ₂	Coulometric titration, ASTM D513-11	
Isotopes: δ^{13} C of DIC	Isotope ratio mass spectrometry	
Total Dissolved Solids	Gravimetry; APHA 2540C	
Water Density (field)	Oscillating body method	
Alkalinity	APHA 2320B	
pH (field)	EPA 150.1	
Specific conductance (field)	APHA 2510	
Temperature (field)	Thermocouple	

 Table 11.2.1-3. Summary of Analytical and Field Parameters for Groundwater Samples (1)

Note 1: ICP = inductively coupled plasma; MS = mass spectrometry; OES = optical emission spectrometry; GC-P = gas chromatography - pyrolysis. An equivalent method may be employed with prior approval of the Director.

As applicable to the plan presented in this section, sampling will be performed as described in section B.2 of the QASP; this section of the QASP describes the groundwater sampling methods to be employed, including sampling SOPs (section B.2.a/b), and sample preservation (section B.2.g).

- Sample handling and custody will be performed as described in section B.3 of the QASP.
- Quality control will be ensured using the methods described in section B.5 of the QASP.

11.2.2 Carbon Dioxide Plume and Pressure Front Tracking

ADM will employ direct and indirect methods to track the extent of the carbon dioxide plume and the presence or absence of elevated pressure within the injection formation as specified. Table 11.2.2-1 presents the direct and indirect methods that will be used to monitor the CO_2 plume evolution in the injection zone, including the activities, locations, and frequencies ADM will employ. ADM will conduct fluid sampling and analysis to detect changes in groundwater in order to directly monitor the presence or absence of the carbon dioxide plume at a monitored location. Arrival time of the plume and concentrations detected will be compared to simulations to validate the model projections. The parameters to be analyzed as part of fluid sampling in the Mt. Simon (and associated analytical methods) are presented in Table 11.2.2-2. Sufficient changes in chemical constituents will be analyzed to determine if they provide evidence of plume location. Indirect plume monitoring will be employed using pulsed neutron capture/reservoir saturation tool (RST) logs to monitor CO_2 saturation and these data will be integrated with 3D surface seismic surveys as practical to determine if changing density results in sufficient seismic signatures to track plume movement in the subsurface. Quality assurance procedures for seismic monitoring methods are presented in Section B.9 of the QASP.

Target Formation	Monitoring Activity	Monitoring Location	Frequency to Year 10
Direct Plume M	lonitoring		
Sensitive, Confidential, or Privileged Information	Fluid Sampling		Annual
Indirect Plume	Monitoring		
Sensitive, Confidential, or Privileged Information			
	Pulse-Neutron/RST Logging		Years 1,3,5,7 and 10
	3D Seismic Survey		Year 10

Table 11.2.2-1. Post-Injection Phase Plume Monitoring (1,2)	Table 11.2.2-1.	Post-Injection	Phase Plume	Monitoring ^(1,2)
---	-----------------	----------------	-------------	-----------------------------

Parameters	Analytical Methods ⁽¹⁾
Water Density (field)	Oscillating body method
Alkalinity	APHA 2320B
pH (field)	EPA 150.1
Specific conductance (field)	APHA 2510
Temperature (field)	Thermocouple
Mt. Simon	
Cations:	ICP-OES
Ca, Fe, K, Mg, Na, and Si	EPA Method 6010B
Anions:	Ion Chromatography
Br, Cl, F, NO ₃ , and SO ₄	EPA Method 300.0
Dissolved CO ₂	Coulometric titration, ASTM D513-11
Isotopes: δ^{13} C of DIC	Isotope ratio mass spectrometry
Total Dissolved Solids	Gravimetry; APHA 2540C
Water Density (field)	Oscillating body method
Alkalinity	APHA 2320B
pH (field)	EPA 150.1
Specific conductance (field)	APHA 2510
Temperature (field)	Thermocouple

Table 11.2.2-2. Summary of analytical and field parameters for fluid sampling in the Mt. Simon

<u>Note 1:</u> ICP = inductively coupled plasma; MS = mass spectrometry; OES = optical emission spectrometry; GC-P = gas chromatography - pyrolysis. An equivalent method may be employed with the prior approval of the Director.

Table 11.2.2-3 presents the direct and indirect methods that ADM will use to monitor the pressure front, including the activities, locations, and frequencies ADM will employ during the post-operational period. ADM will deploy pressure/temperature monitors and distributed temperature sensors to directly monitor the position of the pressure front. Passive seismic monitoring using a combination of borehole and surface seismic stations to detect local events over M1.0 within the AoR will also be performed.

Target Formation	Monitoring Activity	Monitoring Location	Frequency: Year 1	Frequency: Years 2-3	Frequency: Years 4-9	Frequency: Year 10
Direct Pressu	ure-front Monitoring					
Sensitive, Confidential, or Privileged Infor	Pressure/Temperature Monitoring	Sensitive, Confidential, or Privileged Inf	Monthly	Monthly	Monthly	Monthly
	Pressure/Temperature Monitoring		Monthly	Monthly	Annual	Annual
	DTS		Monthly	None	None	None
Other Monit	oring					
	Passive Seismic		Continuous**; processed monthly	Continuous**; processed monthly	Continuous**; processed monthly	Continuous**; processed monthly

Table 11.2.2-3. Post-	Injection Pha	ise Pressure F	ront Monitoring

**Continuous recording of passive seismic data is processed on a monthly basis to determine if seismic events over M1.0 occurred within the AoR. The current passive seismic monitoring system at borehole and surface seismic stations is owned and operated by USGS. ADM reserves the right to supplement or replace such monitoring with a suitable equivalent if necessary.

11.3 Alternative PISC timeframe

ADM will conduct post-injection monitoring for 10 years following the cessation of injection operations in CCS#5-7, consistent with the previously demonstrated and approved alternative timeframe pursuant to 40 CFR 146.93(c)(1), for CCS#1-4. ADM requests a 10-year alternative post-injection care time period for CCS#5-7 based on the computational modeling conducted to delineate the AoR; predictions of plume migration, pressure decline once injection stops, and carbon dioxide trapping; site-specific geology; well construction; and the distance between the injection zone and the nearest USDWs. Modeling results are summarized in previous portions of this section and described in more detail in Section 4 of this application. Site specific conditions that satisfy the alternative timeframe requirements listed in § 146.93(c)(1) and (2) are described in the following paragraphs. Note that the specific section for each criterion in the CFR is listed in square brackets, [].

- [§146.93(c)(1)(i)] The results of computational modeling of the project (Section 4 of this application) show that the sequestered CO₂ will not migrate above the Mt. Simon Sandstone.
- [§146.93(c)(1)(ii)] The modeling demonstrates that formation fluids will not be forced into any USDWs; and/or the timeframe for pressure decline to pre-injection pressures. Consistent with the map presented in Figure 11.1-1, Figure 11.3-1 presents the modeled bottomhole pressures projected over time for the CCS #5-7 locations. Pressure values are normalized to a depth of 6,000' SSTVD. Figure 11.3-1 illustrates that bottomhole pressures are projected to decline significantly over the first several years post-injection. At the end of the 10-year PISC timeframe, approximately 90% of the total pressure decline is observed.

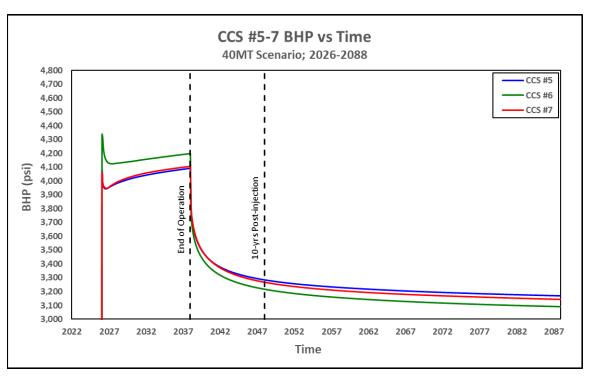


Figure 11.3-1. Modeled Extent of Bottom Hole Pressure to 50 Years Post-Injection

• [§146.93(c)(1)(ii)] The hydrogeologic and seismic characterization for the project site indicates that the Eau Claire Formation, the primary seal above the Mt. Simon, does not contain any faults and has permeability sufficiently low to impede CO₂ migration to overlying formations.

- [§146.93(c)(1)(iii), the predicted rate of carbon dioxide plume migration within the injection zone after cessation of injection is addressed in Section 4 of this application. Based on the modeled plume areas summarized in Figure 11.1-2, the equivalent plume radius (assuming circular areas and no initial plume) grows at an average of approximately 730 ft/year during injection operations. During the initial ten years of post-injection equilibration, the rate of plume expansion slows to an average of approximately 50 ft/year. With each passing year, post-operation, "residual" reservoir pressure and migration velocities decline. Following the 10-year PISC timeframe, the rate of expansion continues to decrease and becomes negligible by 50 years post-injection.
- [146.93(c)(1)(iv-vi) addresses the description of processes that result in carbon dioxide trapping including immobilization by capillary trapping, dissolution and mineralization and the predicted rate of trapping, as well as the site-specific studies supporting these mechanisms. Section 3.11 addressed expected mineralogical reactions and associated studies associated with CO₂ injection into the Mt. Simon reservoir system. The section concludes that it is not expected "that injection of CO₂ into the proposed well would lead to drastic geochemical reactions within the reservoir and seal that compromise injectivity and long-term security", and does not call for CO₂ immobilization as a trapping mechanism. The alternative timeframe is well justified by modeled pressure decline. As indicated above and shown in Figure 11.3-1, at the end of the 10-year PISC timeframe, more than 90% of the pressure decline that will occur is observed in the wells. Pressure rise in the injection zone has dissipated significantly by the end of the 10-year PISC period.
- [§146.93(c)(1)(viii) and (ix)] Potential conduits for hypothetical CO₂ migration above the Mt. Simon are limited to the ADM injection and verification wells, all of which will be constructed, monitored, and ultimately plugged in a manner that will minimize the potential for any such migration and meet the requirements of 40 CFR Part 146. There are no other potential vertical pathways out of the Mt. Simon injection zone within the AoR at the end of the operating life and pressures at the injection wells are projected to have declined to within approximately 10% of the maximum pressure rise experienced during operations by the end of the 10-year PISC period.
- [§146.93(c)(1)(x)] The St Peter Sandstone is the lowermost USDW at the Decatur CO₂ storage site. The injection interval is approximately 3,000 ft below this aquifer but is not used as a local source of drinking water. The local source of drinking water is Lake Decatur and well water from the Quaternary and Pennsylvanian strata. The injection intervals for the three wells are approximately 6,500 ft below the local source of drinking water. There are three confining formations (New Albany Shale, Maquoketa Formation, Eau Claire Formation) between the injection zone and the lowermost USDW. If, based on results of operational monitoring the EPA requires post-injection monitoring beyond the tenyear timeframe outlined in this plan, the operator will work with the Director to establish the monitoring activities, frequency, and duration of the PISC period.
- Sections 3 and 4 present the information that satisfies the requirements set forth in §146.93(c)(2) regarding predictive models used, methods used to determine input parameters including analyses, tests, and estimation techniques, model calibration, modeling assumptions, and modeling uncertainty. The same parameters, modeling techniques, and geologic characterization were presented to support approval of the alternative 10-year PISC time period for CCS #1-4.

ADM will conduct the monitoring described under "Groundwater Quality Monitoring" and "Carbon Dioxide Plume and Pressure Front Tracking" sections presented above and report the results as described under the "Schedule for Submitting Post-Injection Monitoring Results." This will continue until ADM demonstrates, based on monitoring and other site-specific data, that no additional monitoring is needed to ensure that the project

does not pose an endangerment to any USDWs, per the requirements at 40 CFR 146.93(b)(2) or (3).

If any of the information upon which this demonstration was based changes or the measured behavior of the system varies significantly from modeled predictions in a way that would negatively impact the permitting criteria, e.g., as a result of increased projections of pressure an expanded AoR requires reevaluation, ADM may update this PISC and Site Closure Plan pursuant to 40 CFR 146.93(a)(4). ADM will update the PISC and Site Closure Plan, within six months of ceasing injection or demonstrate that no update is needed and as necessary during the duration of the PISC timeframe.

11.4 Non-endangerment demonstration criteria

Prior to authorization of site closure, ADM will submit a demonstration of non-endangerment of USDWs to the Director, per 40 CFR 146.93(b)(2) or (3).

To make the non-endangerment demonstration, ADM will issue a report to the Director. This report will make a demonstration of USDW non-endangerment based on the evaluation of the site monitoring data used in conjunction with the project computational model. The report will detail how the non-endangerment demonstration uses site-specific conditions to confirm and demonstrate non-endangerment. The report will include (or appropriately reference): all relevant monitoring data and interpretations upon which the non-endangerment demonstration is based, model documentation and all supporting data, and any other information necessary for the Director to review the analysis. The report will include the following components. These components are identical to those presented in the pending CCS #3 and CCS #4 applications, and will also apply to CCS #5-7:

Summary of Existing Monitoring Data

A summary of all previous monitoring data collected at the site, pursuant to the Testing and Monitoring Plan (Section 9 of this application) and this PISC and Site Closure Plan, including data collected during the injection and PISC phases of the project, will be submitted to help demonstrate non-endangerment. Data submittals will be in a format acceptable to the Director [40 CFR 146.91(e)], and will include a narrative explanation of monitoring activities, including the dates of all monitoring events, changes to the monitoring program over time, and an explanation of all monitoring infrastructure that has existed at the site. Data will be compared with baseline data collected during site characterization [40 CFR 146.82(a)(6) and 146.87(d)(3)].

Comparison of Monitoring Data and Model Predictions and Model Documentation

The results of computational modeling used for AoR delineation and for demonstration of the alternative PISC timeframe will be compared to monitoring data collected during the operational and the PISC periods. The data will include the results of time-lapse temperature and pressure monitoring, groundwater quality analysis, passive seismic monitoring, and geophysical surveys (i.e., logging, operating-phase VSP, and 3D surface seismic surveys) used to update the computational reservoir model and to monitor the site. Data generated during the PISC period will be used to show that the computational model accurately represents the storage site and can be used as a proxy to determine the properties of the plume including the plume size. ADM will demonstrate that the accuracy of the model is sufficient by comparing the monitoring data obtained during the PISC period against the performance of the system as predicted by the model (i.e., plume location, rate of movement, and pressure decay). Statistical methods will be employed to correlate the data and confirm the capability of the model to accurately represent the storage site. The validation of the computational model with the significant set of monitoring data will be a significant element to support the non-endangerment demonstration. Justification that the conclusions of the model are meaningful will be presented based on the validation efforts. Further, the validation of the model over the areas, and at the points, where direct data collection has taken place will help to ensure confidence in the model for those areas where surface infrastructure preclude geophysical data collection

and where direct observation wells cannot be placed.

Evaluation of Carbon Dioxide Plume

ADM may use a combination of fluid sampling data, time-lapse RST logs, time-lapse VSP surveys, and other seismic methods (2D or 3D surveys) to locate and track the extent of the CO₂ plume. Figures 11.4-1 through 11.4-3 present examples of how the data may be correlated against the model prediction. In Figure 11.4-1, a series of RST logs are compared against the plume vertical extent predicted by the model at a specific point location at a specified time interval. If a good correlation between the two data sets can be established it will be used to provide validation of the model's ability to represent the storage system. Similarly, Figure 11.4-2 illustrates an example of how the time-lapse VSPs can be compared against the predicted spatial extent of the plume at a specified time interval. Limited 2D and 3D seismic surveys will be employed to attempt a determination of the plume location at specific times. As practical, based on the data collected, the information generated from these activities will be compared against the model using statistical methods to validate the ability of the model to accurately represent the storage site. Figure 11.4-3 presents an example of how the data from time-lapse 3D seismic surveys may be correlated against model predictions.

Figure 11.4-1. Comparison of the time-lapse RST logs against the predicted vertical extent of the plume at a specific time interval during the operational and PISC timeframes.

Figure 11.4-2. Comparison of the time-lapse VSPs against the predicted spatial extent of the plume at specific time intervals during the operational and PISC timeframes.

Figure 11.4-3. Comparison of the time-lapse surface 3D against the predicted spatial extent of the plume at specific time intervals during the operational and PISC timeframes.

Evaluation of Mobilized Fluids

In addition to carbon dioxide, mobilized fluids may pose a risk to USDWs. These include native fluids that are high in TDS and therefore may impair a USDW, and fluids containing mobilized drinking water contaminants (e.g., arsenic, mercury, hydrogen sulfide). The geochemical data collected from monitoring wells will be used to demonstrate that no mobilized fluids have moved above the confining formations that act as the seal or caprock. If no such fluids are detected during the PISC period, declining pressure gradients will further limit the potential for movement of such fluids as pressures are coming to equilibrium by the end of the PISC; therefore, such fluids would not pose a risk to USDWs. In order to demonstrate non-endangerment, ADM will compare the operational and PISC period samples from layers above the injection zone, including the lowermost USDW, against the pre-injection baseline samples. This comparison will support a demonstrate that no significant changes in the fluid properties of the overlying formations have occurred and that no mobilized formation fluids have moved through the sealing formation. This validation of seal integrity will help demonstrate that the injectate and/or mobilized fluids would not represent an endangerment to any USDWs. Additionally, RST logs will be used to monitor the concentrations of the reservoir fluids in the observation zone above the primary overlying Eau Claire Formation Shale seal.

Evaluation of Reservoir Pressure

ADM will also support the demonstration of non-endangerment to USDWs by showing that, during the PISC period, the pressure within the Mt. Simon has rapidly decreased toward pre-injection static reservoir pressure values. Because the increased pressure during injection is the primary driving force for fluid movement that may endanger a USDW, the decay in the pressure differentials will provide strong justification that the injectate does not pose a risk to any USDWs.

ADM will monitor the downhole reservoir pressure at various locations and intervals using a combination of surface and downhole pressure gauges. The measured pressure at a specific depth interval will be compared against the pressure predicted by the computational model. Agreement between the actual and the predicted values will help validate the accuracy of the model and further demonstrate non-endangerment.

Evaluation of Passive Seismic Data

Finally, passive seismic monitoring will be used to help further demonstrate seal formation integrity. ADM will provide seismic monitoring data showing that no seismic events have occurred that would indicate fracturing or fault activation near or through the seal formation. Combined with the AoR evaluation to assess the presence of other deep wells into the injection zone or lack thereof, this validation of seal integrity will provide further support for a demonstration that the CO₂ plume is no longer capable of posing endangerment to any USDWs. Figure 11.4-4 illustrates how these data could be presented. This figure shows a subset of locatable microseismic events occurring during part of the IBDP project operational period. This figure shows that a majority of the microseismic events measured occurred below the Eau Claire seal formation indicating that no fracturing or fault activation was possible within this formation. This provided additional verification of the Eau Claire formation integrity and indicates that to date the response to the imposed fluid pressures due to injection are confined to the vicinity of the injection zone and below.

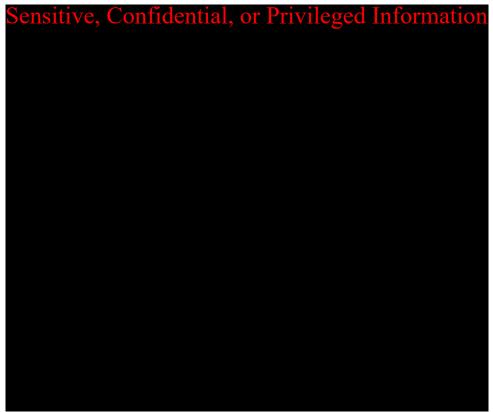


Figure 11.4-4. Visual representation showing the microseismic activity occurring during the injection and post-injection periods (figure provided by IBDP project)

11.5 Monitoring well plugging and site closure plan

ADM will conduct site closure activities to meet the requirements of 40 CFR 146.93(e), as described below. ADM will submit a final Site Closure Plan and notify the permitting agency at least 120 days prior of its intent to close the site. Once the permitting agency has authorized closure of the site, ADM will: plug the injection well(s),

monitoring and verification well(s), and geophysical well(s); restore the site and move out all equipment; and submit a site closure report to the Director. The activities, as described below, present the planned activities consistent with the approved PISC for CCS#2 and proposed CCS #3. The 3-well system proposed for verification monitoring at the site is to be applicable to all 4 CCS injectors at the site. The information below pertaining to verification well plugging pertains to VW #2, and VW #3 as presented in the CCS# 2 permit and CCS #3 permit application, and is presented below for completeness purposes. A final Site Closure Plan will be submitted to the Director for approval with the notification of the intent to close the site. Details regarding plugging of the CCS#5, CCS#6, and CCS#7 injection wells are included in Section 10.

11.5.1 Plugging the Verification Monitor Wells

A detailed verification well plugging procedure is provided below. All casing strings in these wells are designed to be cemented to surface and no casing is planned to be retrieved at plugging.

Type and Quantity of Plugging Materials, Depth Intervals

The cements used for plugging will be tested in a lab prior to plug placement and both wet and dry samples will be collected during plugging for each plug to ensure quality of the plugs. All of the casing strings will be cut off at least 4 feet below the surface, below the plow line. A blanking plate with the required permit information will be welded to the top of the cutoff casing at the end of the plugging process. Volume Calculations

Volumes will be calculated for each wellbore environment at the time of plugging based on desired plug diameter and length required. The methodology employed will be to:

- 1. Choose the following:
 - a. Length of the cement plug desired.
 - b. Desired setting depth of base of plug.
 - c. Amount of spacer to be pumped ahead of the slurry.
- 2. Determine the following:
 - a. Number of sacks of cement required.
 - b. Volume of spacer to be pumped behind the slurry to balance the plug.
 - c. Plug length before the pipe is withdrawn.
 - d. Length of mud freefall in drill pipe.
 - e. Displacement volume required to spot the plug.

Plugging Procedure

At the end of the serviceable life of a verification well, or when it is determined that plugging is appropriate, the well will be plugged and abandoned. In summary, the plugging procedure will consist of flushing the well with a kill weight brine fluid, conducting a final external MIT, removing all components of the completion system and then placing cement plugs along the entire length of the well. Prior to placing the cement plugs, the final MIT will consist of running casing inspection and temperature logs or suitable equivalents to confirm external mechanical integrity. If a loss of integrity is discovered, then a plan to repair using the cement squeeze method will be prepared and submitted to the agency for review and approval.

The following is an example of a detailed plugging procedure provided for VW#2 in the previously approved CCS#2 PISC, noting that all depths, cement volumes/sacks and other well-specific data are provided by example and will be modified to reflect actual well conditions. The same approved procedures are proposed for each of the VW wells at the site including the proposed and not yet installed VW#3.

- 1. Move in workover unit with pump and tank.
- 2. Record bottom hole pressure using down hole instrumentation and calculate kill fluid density. Pressure test annulus as per historic annual mechanical integrity testing (MIT) requirements.
- 3. Fill both tubing strings with kill weight brine as calculated from bottomhole pressure measurement (expected approximately 9.5 ppg).
- 4. Nipple down well head and nipple up blow-out preventers (BOPs).
- 5. Remove completion equipment from well. If the packer cannot be removed from the well, modify plans to cut off tubing and plug through the packer.
- 6. Keep hole full with workover brine of sufficient density to maintain well control.
- 7. Log well with cement bond log (CBL), temperature, and casing inspection log or suitable equivalent techniques to confirm external mechanical integrity.
- 8. Pick up work string and trip in hole to PBTD.
- 9. Circulate two wellbore volumes to ensure that uniform density fluid is in the well.
- 10. The lower section of the well will be plugged using CO₂ resistant cement from TD at approximately 7,150 feet to approximately 800 feet above the top of the Eau Claire formation (to approximately 4,200 ft). This will be accomplished by placing plugs in 500-foot increments. Using a density of 15.9 ppg slurry with a yield of 1.11 cf/sk, approximately 347 sacks of cement will be required (to incorporate a safety factor, 416 sacks are assumed: 2,950 ft X .1305 cu ft/ft x 1.2 excess / 1.11 cf/sk = 416 sacks). Actual cement volume will depend upon actual weight of the casing within the plugged zone. This will require at least six plugs of 500 feet in length. No more than two plugs will be set before cement is allowed to set and plug depths will be verified by setting work string down onto the plug.
- 11. Pull approximately ten stands of tubing (~600 ft) out and shut down overnight to wait on cement curing.
- 12. After appropriate wait on cement period based on hole conditions, trip in hole and tag the plug. Resume plugging procedure as before and continue placing plugs until the last plug reaches the surface.
- 13. Nipple down BOPs.
- 14. Remove all well head components and cut off all casings below the plow line.
- 15. Finish filling well with cement from the surface if needed. Total of approximately 465 sacks total cement used in all remaining plugs above 4,200 feet (4200 ft X .1305 cu ft/ft /1.18 cu ft/sk = 465 sks). Cement calculations based on using Class A cement from 4200 ft back to surface with a density of 15.6 ppg and a yield of 1.18 cu ft /sk. Lay down all work string, etc. Clean cellar to where a plate can be welded with well

name onto lowest casing string at least 4 feet below ground level, or as per permitting agency directive.

- 16. If required, install permanent marker back to surface on which all pertinent well information is inscribed.
- 17. Backfill cellar.
- 18. Rig down workover unit and move out all equipment. Haul off all workover fluids for proper disposal.
- 19. Reclaim surface to normal grade and reseed location.
- 20. Complete plugging forms and send in with charts and all lab information to the regulatory agency. Plugging report shall be certified as accurate by ADM and shall be submitted within 60 days after plugging is completed.

Note: 7,150 ft of 5 $\frac{1}{2}$ " 17 #/ft (7,150 ft X 0.1305 cu ft/ft = 933 cu ft) casing requires an estimated 933 cubic feet of cement to fill 14 plugs. An excess factor of 20% is to be used, as practical, for plugging the lowermost 3,000 ft of the wellbore to account for cement that might be lost to the formation, so total material used would be 423 sacks of EverCRETE CO₂ resistant cement (or equivalent) and 442 sack Class A/H cement.

Figure 11.5.1-1 presents an example well plugging schematic prepared for VW#2, which would be generally applicable to VW#3 noting that final plugging design will be dependent upon local geologic and other conditions at the time of plugging.

Sensitive, Confidential, or Privileged Information

Figure 11.5.1-1. Generic Plugging Schematic – Verification Well Based on VW#2

11.5.2 Plugging the Geophysical Well(s)

At the end of the serviceable life of the well, or when plugging is determined to be appropriate, the geophysical well(s) will be plugged and abandoned. The following is an example of a detailed plugging procedure provided for GM#2 in the CCS#2 approved PISC and will generically apply to GM #4 to be installed in association with CCS #4, noting that all depths, cement volumes/sacks and other well-specific data are provided by example and will be modified to reflect actual well conditions:

- 1. Notify the permitting agency at least 60 days prior to plugging the well.
- 2. Remove monitoring equipment from well bore. Well will contain fresh water or a mixture of fresh water and native St. Peter formation water.
- 3. Nipple down well head and connect cement pump truck to casing. Establish injection rate with fresh water. Mix and pump 247 sacks Class A cement (15.9 ppg). Slow injection rate to ½ bbl/min as cement starts to enter St. Peter perforations. Continue squeezing cement into formation until a squeeze pressure of 500 psi is obtained. Monitor static cement level in casing for 12 hours and fill with cement if needed to top out. Plan to have 50 sacks additional cement above calculated volume on location to top out if needed. (To incorporate a safety factor, 255 sacks are assumed: 3,450 ft X 0.0873 cu ft/ft /1.18 cu ft/sk = 255 sacks.)
- 4. After cement cures, cut off all well head components and cut off all casings at least 4 feet below ground surface (below the plow line).
- 5. Install permanent marker at surface, or as required by the permitting agency.
- 6. Reclaim surface to normal grade and reseed location.

Figure 11.5.2-1 presents a generalized GM#4 plugging schematic based on GM#2, noting that the specific depths, formation tops, etc., will be specific to the GM#4 location and conditions encountered at the time of plugging.

Sensitive, Confidential, or Privileged Information

Figure 11.5.2-1. Generic Plugging Schematic- Geophysical Monitoring Wells based on GM #2

11.5.3 Planned Remedial/Site Restoration Activities

To restore the site to its pre-injection condition following site closure, ADM will be guided by the state rules for plugging of wells located on leased property under The Illinois Oil and Gas Act: Title 62: Mining Chapter I: Department of Natural Resources - Part 240, Section 240.1170 - Plugging Fluid Waste Disposal and Well Site Restoration.

The following steps will be taken:

- 1. The free liquid fraction of the plugging fluid waste will be removed from any pits and disposed of in accordance with state and federal regulations (e.g., injection or in above ground tanks or containers pending disposal) prior to restoration. The remaining plugging fluid wastes shall be disposed of by on-site burial.
- 2. All plugging pits shall be filled and leveled in a manner that allows the site to be returned to original use with no subsidence or leakage of fluids, and where applicable, with sufficient compaction to support farm machinery.
- 3. All drilling and production equipment, machinery, and equipment debris shall be removed from the site.
- 4. Casing shall be cut off at least four (4) feet below the surface of the ground, and a steel plate welded on the casing or a mushroomed cap of cement approximately one (1) foot in thickness shall be placed over the casing so that the top of the cap is at least three (3) feet below ground level.
- 5. Any drilling rat holes shall be filled with cement to no lower than four (4) feet and no higher than three (3) feet below ground level.
- 6. The well site and all excavations, holes and pits shall be filled and the surface leveled.

Site Closure Report

A site closure report will be prepared and submitted within 90 days following site closure, documenting the following:

- Plugging of the verification and geophysical wells (and the injection well if it has not previously been plugged) as specified at 40 CFR 146.92,
- Location of any sealed injection well on a plat of survey that has been submitted to the local zoning authority, with a copy of the plat provided to the Regional Administrator of EPA Region 5,
- Notifications to state and local authorities as required at 40 CFR 146.93(f)(2),
- Records regarding the nature, composition, and volume of the injected CO₂, and
- Post-injection monitoring records.

ADM will record a notation to the property deed on which the injection well was located that will indicate the following:

- That the property was used for carbon dioxide sequestration,
- The name of the local agency to which a plat of survey with injection well location was submitted, as well

as the EPA Region Office to which is was submitted

- The volume of fluid injected,
- The formation(s) into which the fluid was injected, and
- The period over which the injection occurred.

The site closure report will be submitted to the permitting agency and maintained by the operator for a period of 10 years following site closure. Additionally, the operator will maintain the records collected during the PISC period for a period of 10 years after which these records will be delivered to the Director.

11.6 Quality Assurance and Surveillance Plan (QASP)

The Quality Assurance and Surveillance Plan is presented in Appendix C.

12. Emergency and Remedial Response Plan

ADM has prepared an Emergency and Remedial Response Plan (ERRP) in accordance with 40 CFR 146.94. This ERRP is being updated to include the proposed CCS#5, CCS#6 and CCS #7 locations, and updated AoR. It is being submitted as a separate attachment in the GSDT tool.

APPENDIX A: Financial Responsibility Documents

8.0 APPENDIX

To assess the financial assurance requirements¹ associated with the ADM Decatur CCS development, Petrotek combined UIC subject matter expertise with Monte Carlo modeling. The utility of a Monte Carlo approach is that it eliminates reliance on a deterministic value for future events as well as the implied certainty of those events occurring, no matter their likelihood. As has been established from prior evaluations used to assess risks associated with Class I Hazardous Injection wells, occurrence of failures is extremely rare^{2,3}. Accounting for both random occurrence and stringent well construction criteria mandated by the US Environmental Protection Agency (EPA), along with using available data regarding occurrences of failure and their mechanisms, the ability to produce a single estimate of the probability of an event occurring is impractical and is likely to be erroneous². Therefore, a statistical method rather than a deterministic method has been used in this evaluation to assign probabilities of outcomes that could result in costs that require financial assurance.

Monte Carlo evaluation involves stochastic modeling to define the probable liability; rather than determining a value from a single future event, Monte Carlo models thousands of discrete scenarios, each regarding a possible circumstance at any point in the future.

Monte Carlo modeling has been used for decades with wide applicability, including the evaluation environmental risk⁴, with extension to CCS⁵. Monte Carlo methods have also been used extensively to provide risk estimates for the EPA². The Monte Carlo method being used for the Decatur project in particular follows methodologies similar to those that have been used in the past^{6,7}, and also adheres to EPA guidance⁸.

For the purposes of this assessment, the Monte Carlo analysis was conducted in a stepwise manner. A list of risk event groups was generated, along with their individual probability of occurrence, distribution of costs if the event occurred, and a specified time frame. For each discrete scenario, the Monte Carlo model assigns a random probability for each risk event, within each event's provided range, for each year. The cost of each risk event for each year would then be determined from its cost distribution. Total cost would then be determined by summing the costs of each individual risk event for every year, then adjusting subsequent years to a present value. The process would be repeated 100,000 times to simulate a large set of outcomes. From the 100,000 different scenarios, a distribution of possible costs is generated, from which an expected value of the liability cost can be ascertained.

8.1 Risk Scenario Identification

Multiple frameworks exist to identify the potential risks and hazards from the operation of a CCS project⁹, most with a global perspective. The potential risks collated for the Decatur CCS project were identified using multiple, specific sources^{10,11,12,13,14,15}. However, for relevancy each risk is required to be discrete and independent unto itself, as well as

relevant to ADM's project and the area in and around Decatur. For example, Quintessa Ltd., a UK based consultancy with sponsorship from the EU, generated a thorough list of over 140 different possible features, events, and processes (FEP) to assess the specific risk and performance of CCS projects¹⁰. This list was consulted to determine the potential relevancy and applicability of a FEP to the ADM CCS operation.

Cross-referencing was then completed with the dataset of risks provided in the environmental impact statement (EIS) created for the FutureGen CCS project¹¹. FutureGen was a consortium of entities with the bulk of funding from the Department of Energy (DOE). The list of risks provided by the FutureGen EIS were generated through research of historical oil, gas, and pipeline operations throughout the United States with relevancy to handling CO2. This list of applicable risk factors was then compared with risk factors previously used to quantify the financial assurance for the ADM CCS-2 well in previously approved submittals. The final list of risks, based on this review, was then utilized for the Decatur Monte Carlo analysis:

- 1. **Pipeline Rupture**. Encompasses the total rupture of a pipeline due to accidental causes or intentional sabotage, during which CO2 will be released in the area local to the project as well as the surrounding vicinity.
- 2. **Pipeline Puncture**. Encompasses a range of scenarios to describe a hole in the pipeline, most of which are a low level of risk and cost and are easy to repair but which would cause the release of CO2 at surface. Includes a wide range of the rate of leakage, the causes of which could be due to accident or intentional sabotage.
- 3. Wellhead Equipment Failure (either slow or catastrophic). Encompasses the accidental or intentional sabotage of a wellhead used for the injection or monitoring purposes of the project but which would allow the release of CO2 at surface. Causes are found at the extremes, through either slow corrosion or the catastrophic failure of an accidental nature or from impact, such as from a vehicle or airplane.
- 4. Leakage (rapid and slow) through installed wells (injection, monitor). Encompasses the leakage of CO2 through loss of integrity of installed wells. Causes are wide, but inclusive of improper initial installation or through continuous physical or chemical processes. The assumption with this risk is that eventually CO2 or other fluids would escape the injection zone by means of these wells.
- 5. Leakage (rapid and slow) through currently existing wells that transect through the injection of confining zone, either active or plugged. Encompasses artificial penetrations within the areal extent of the CO2 plume. Includes historical oil and gas wells with a wide range of installation or plugging practices, some of which may be unable to withstand the elevated pressure within the plume or contact with the injected CO2 and would subsequently allow CO2 or other fluids to escape the injection zone.
- 6. Leakage (rapid and slow) through undocumented wells which may transect through the injection or confining zone. Similar to the risk event associated with

existing wells that transect the injection or confining zone, this risk event assumes that there may be wells that transect either zone, but which are unaccounted for and will be in contact with the elevated pressure of the plume or injected CO2 at some point in the future and would allow the leakage of CO2 or other fluids into adjacent strata.

- 7. Leakage (rapid and slow) through the seal(s) adjacent to the injection zone through means other than existing or created wells, faults, or fractures. Encompasses those risks which would cause injected CO2 or other fluids to leak through the caprock and into adjacent strata. The range is large, but includes a combination of elevated pressures beyond the mechanical strength of the rock coupled with thermal changes, physical changes and chemical changes which would allow the CO2 to escape. Also includes those risks associated with a seismic event not associated with the injection of CO2.
- 8. Leakage through existing and assessed faults. The risk scenario in which injected CO2 or other fluids would escape the injection zone through existing faults, whether they are open or sealed.
- 9. Leakage through induced faults. The risk scenario in which CO2 or other fluids escape the injection zone through pressure induced faulting or seismic events associated with the injection of the CO2.

The list provided in the financial assurance discussion includes the same nine risks, albeit in discrete form, such that rapid and slow leaking scenarios are differentiated for each risk, so that there are 13 total risk factors indicated¹³ and used as model input.

It should be noted that each of the assumed risks will incorporate different time frames. Risks associated with surface equipment will be no longer be a relevant factor once the injection period is complete. Additionally, after injection has stopped and associated wells are plugged to regulatory standards, by definition they will no longer be a factor contributing to ongoing risk. Within the injection zone, the induced pressure caused by the injection of the CO2 into the Mt. Simon will dissipate over time; it will be the highest at the point that injection is ceased and will be the highest proximal to the injection wellbores. Over time, as the pressure dissipates, the risk of a pressure-induced leak or failure decreases as well.

The rapid and slow leakage qualifiers denote the rate at which CO2 would hypothetically have the potential to leak from the injection zone into adjacent strata, with the possibility of continuing into overlying aquifers or underground sources of drinking water (USDW). A slow leak includes scenarios wherein transfer of a given volume of CO2 may take a longer period of time to occur, whereas a rapid leak indicates the loss of a given volume extremely quickly if not catastrophically.

8.2 Risk Scenario Probability of Occurrence

Each identified risk was individually assigned a distribution of annual probability of occurrence. Since the outcome of the analysis is highly dependent on the probability of each risk scenario occurring, a deterministic probability would introduce bias into the analysis, whereas using a distribution for the probability alleviated this bias. Likewise, although the EPA stipulates criteria for the proper construction of injection wells which are intended to reduce the probability of a risk event occurring³, such standards and practices do not completely eliminate all risk and low probabilities still exist of an event occurring. Additionally, each risk can have any form of causation, and a distribution of probability of occurrence can take this into account. For modeling purposes, risk causation scenarios are innumerable, so professional judgement must be utilized to provide a range of probabilities for each scenario¹⁶.

As previously indicated, research has been done to investigate potential failure mechanisms (observed to date) for some of the limited number of Class I Hazardous Injection Wells and carbon sequestration projects located in the US and throughout the world. This work provides useful and relevant information regarding the probability distributions for different risk scenarios below ground (regarding injection and monitor well failures, leakage, and faulting)^{2,3,11,12,17}. Above ground, pipeline and treatment equipment data sets exist for probability estimation within the United States and elsewhere^{18,19,20,21,22,23}.

For the risk scenarios previously collated and identified as relevant to the Decatur facility, the assumed probabilities of occurrence for each are noted in Table 1.

Risk Event	Event Description	· · · · · ·	e Item)
Lvent		Low Estimate	
1	Pipeline Rupture	Sensitive, Confidential,	or Privileged Information
2	Pipeline Puncture		
3	Wellhead Equipment Failure		
4	Upward rapid leakage through Installed well		
5	Upward slow leakage through Installed well		
6	Upward rapid leakage through deep transecting wells		
7	Upward slow leakage through deep transecting wells		
8	Leaks due to undocumented deep wells, high rate		
9	Leaks due to undocumented deep wells, low rate		
10	Upward rapid leakage through caprock		
11	Upward slow leakage through caprock		
12	Release through existing faults		
13	Release through induced faults		

 Table 1. Risk Event Probabilities of Occurrence.

These probabilities mirror those found in the FutureGen EIS, but also incorporate a distribution instead of a deterministic forecast of probability.

For some of the risk scenarios, the probability of occurrence is only inclusive of installed equipment, such as the pipeline or an injection well; for the remainder, the risk is relevant to the whole project and is impacted by the volume of CO2 injected, any stray constituents, the increase in pressure caused by injection, and the reservoir area over which the pressure will be increased compared to in-situ conditions. For the latter case, risks are modeled for the volume of CO2 injected, the leakage mechanism, and the volume of leakage as well as impacted strata or leakage effects on the surface, human, wildlife, or environment. For those which encompass individual components such as injection or monitor wells, the risks must be multiplied by the number of wells, installed or previously existing^{24,25}. Table 2 outlines the number of items for each risk category relevant to the Decatur site and project.

Risk Event	Event Description	Number of Items
1	Pipeline Rupture	3
2	Pipeline Puncture	3
3	Wellhead Equipment Failure	9
4	Upward rapid leakage through Installed well	9
5	Upward slow leakage through Installed well	9
6	Upward rapid leakage through deep transecting wells	100
7	Upward slow leakage through deep transecting wells	100
8	Leaks due to undocumented deep wells, high rate	1
9	Leaks due to undocumented deep wells, low rate	1
10	Upward rapid leakage through caprock	1
11	Upward slow leakage through caprock	1
12	Release through existing faults	1
13	Release through induced faults	1

Table 2. Number of Items per Risk Scenario.

8.3 Risk Scenario Cost Distribution

Each risk scenario identified as relevant was assigned a triangular distribution of representative costs in the event that the risk scenario occurred. Because each risk event has a range of probability of occurrence, the severity of the effects when the risk event occurs is also modeled with a distribution. As such, for each risk scenario, a minimum cost, maximum cost, and most likely cost was stipulated to generate the triangular distribution of the severity.

From the stipulated triangular distribution for a risk event, the probability density and cumulative density functions can be generated. In the event that the risk scenario occurs, the probability of occurrence would then directly translate to the associated cost of that

occurrence. Likewise, the lower the probability of the risk scenario, the lower the resulting damages in the event the scenario occurs. Triangular distributions also follow guidance from the EPA in cases for which data is infrequent and professional judgement must be used²⁶, such as the case with CCS within the US.

Table 3 demonstrates the distributions for each of the risk scenarios identified.

Risk	Event Description	Cost Estima	tes (Triangular	Distribution)
Event	Event Description	Low	Most Likely	High
1	Pipeline Rupture	Sensitive, Cont	fidential, or Privi	leged Informatio
2	Pipeline Puncture			
3	Wellhead Equipment Failure			
4	Upward rapid leakage through Installed well			
5	Upward slow leakage through Installed well			
6	Upward rapid leakage through transecting wells			
7	Upward slow leakage through transecting wells			
8	Leaks from undocumented deep wells, high rate			
9	Leaks from undocumented deep wells, low rate			
10	Upward rapid leakage through caprock			
11	Upward slow leakage through caprock			
12	Release through existing faults			
13	Release through induced faults			

 Table 3. Triangle Distributions for Each Risk Scenario.

For each of the risk scenarios presented in Table 3, the cost distributions estimate the likely range of severity and the associated costs. In the event of a risk scenario occurring, the costs include the consequences of:

- Impacts to human and wildlife health and life within the modeled region of the Decatur project;
- Impacts to plant life and environment within proximity of the Decatur site;
- Impacts to bodies of water within proximity of the Decatur site;
- Impacts to air quality;
- Impacts to soils and sediments within the modeled region of the Decatur project;
- Impacts to groundwater or other aquifers whether actively used or under consideration.

The severity of impacts in the event of a risk scenario occurring are largely estimated from the FutureGen EIS¹¹ while adjusting the costs for specificity to the Decatur project site. The categories also incorporated the demographics in and around the Decatur area²⁷.

Costs associated with repair of equipment on surface (risk scenarios 1 - 3) are estimated from the Office of Pipeline Safety^{18,19,20,21} and professional judgment. Cost estimates for

remediation of leakage (risk scenarios 4 - 13) are estimated from similar studies^{11,28} and professional judgment. Due to the lack of particular CCS risk events occurring, and associated cost data, confidence in the costs is assumed by using a 100x multiplier when necessary between the low cost estimate and the high cost estimate. The multiplier, when used, is applied uniformly.

8.4 Monte Carlo Modeling

To demonstrate how the Monte Carlo model generates a scenario, Figure 1 represents the triangular distribution of a hypothetical risk scenario which has minimum estimate of \$100,000, a most-likely estimate of \$500,000 and a maximum estimate of \$2,500,000. The resulting cumulative distribution function (CDF) curve is shown as the solid black line. For each scenario generated in a Monte Carlo simulation, a value between 0 and 1 would be randomly assigned (as seen on the y-axis of the CDF). Using the random value, the representative cost is then determined (as reflected on the x-axis of the CDF). Figure 1 illustrates the results from three random successive cases where this particular event was assumed to take place (65%, 39%, and 21%) and the random probability represented by the CDF curve was then used by the model to assign a cost value for that case.

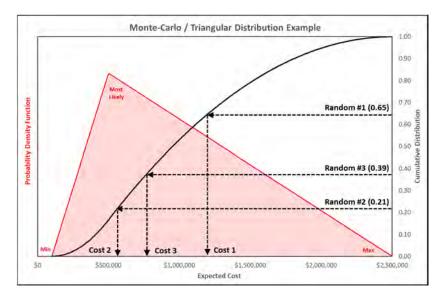


Figure 1. Monte-Carlo Method Using Random Probabilities

This process is conducted for each risk scenario for the stipulated number of trials. The more trials that are conducted, the smoother the resulting probability distribution function (PDF) becomes. As can be seen in Figure 2, as the number of trials is increased for a hypothetical triangular distribution, the PDF curve of the distribution becomes more defined. However, although the number of trials increases the definition of the distribution,

the change in the CDF becomes smaller and smaller, so the efficiency of the Monte Carlo begins to drop, as shown in Table 4. As such, the number of trials best utilized for the Monte Carlo analysis resides in the window of good distribution definition and at the point of minimal decrease in efficiency.

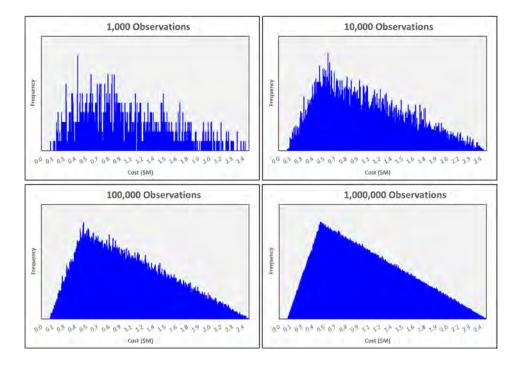


Figure 2. Triangular Distribution Definition vs Number of Trials Conducted

Table 4. Generated Mean from Increasing Trial Counts

Trial Count	Mean
1,000	\$0.959 Million
10,000	\$0.947 Million
100,000	\$0.951 Million
1,000,000	\$0.950 Million

For the Decatur project, 100,000 trials were utilized for the Monte Carlo analysis. For each risk scenario, random probabilities were assigned for each year of injection as well as the 10 years of post-injection monitoring and site care. Costs for each year were adjusted upward assuming that future inflation is projected based on an average historical rate of inflation (based on the Consumer Price Index)²⁹. The costs for each risk scenario in each year were then totaled to create the total liability cost for that given year; afterward, the cost for that year was adjusted to present value using a long-term bond rate, such as the 10-year or 20-year treasury bond, that best matches the duration of the cashflows from

the project³⁰. The present values from all 100,000 trials of the Decatur project are shown in Figure 3, and the cumulative distribution of the trials is shown in Figure 4.

Figure 3. Probability Distribution of the Present Values from the Monte Carlo Analysis

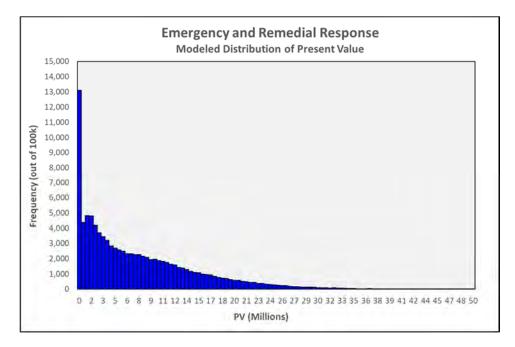
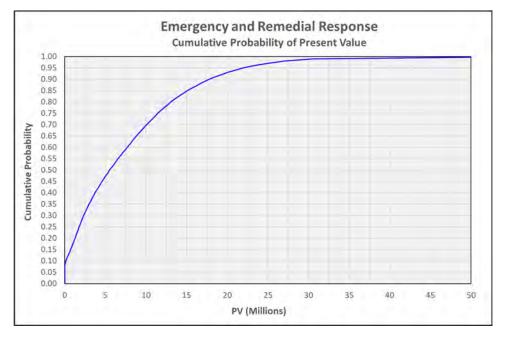



Figure 4. Cumulative Distribution of the Monte Carlo Analysis

To obtain the probable liability cost from the calculated distribution shown in Figure 4, the expected value needs to be determined. The expected value is the weighted average of the liability costs using the probability of occurrence of each cost for weighting³¹. The expected value also corresponds to the mean value of a distribution. The expected value of the Monte Carlo analysis generated for the Decatur project is approximately \$5,530,000.

In addition to the expected value, the generated distribution also provides quantitative insight into the statistical "tails" of the distribution. In this case, roughly 10% of the distribution incurs \$0 cost, whereas beyond three standard deviations from the mean, the distribution is fairly flat; this long "tail" is associated with those costs which are significant, but that are extremely unlikely to occur. This agrees with the probabilities presented in section 8.2, such that some of the probabilities of an event occurring are so unlikely that the practical cost is \$0 almost 100% of the time. For example, risk scenario 10 (rapid leakage through caprock) has a probable occurrence of only 3 in 100,000,000. This also mirrors a similar analysis of Class I Hazardous Injection Wells which found low probabilities for occurrences of such events that ranged from 1 in 1,000,000 and 1 in 10 quadrillion².

For these reasons, the expected value of the distribution works well for a practical cost of liability. Beyond that, costs may become larger, but they also have a larger chance of not occurring than actually occurring. The expected value thus strikes a balance of matching the appropriate cost with the actual probable risk of occurrence.

References:

- US EPA. Preamble: Federal Requirements Under the Underground Injection Control (UIC) Program for Carbon Dioxide (CO2) Geologic Sequestration (GS) Wells; Final Rule.
- 2. Rish, William R. A probabilistic Risk Assessment of Class I Hazardous Waste Injection Wells.
- 3. US EPA. Class I Underground Injection Control Program: Study of the Risks Associated with Class I Underground Injection Wells.
- 4. Poulter, Susan; et al. Monte Carlo Simulation In Environmental Risk Assessment--Science, Policy And Legal Issues.
- 5. Trabucchi, Chiara; et al. Application of a Risk-Based Probabilistic Model (CCSvt Model) to Value Potential Risks Arising from Carbon Capture and Storage.
- 6. Trabucchi, Chiara; et al. A multi-disciplinary framework to monetize financial consequences arising from CCS projects and motivate effective financial responsibility.
- 7. Trabucchi, Chiara; et al. Valuation of Potential Risks Arising from a Model, Commercial-Scale CCS Project Site.
- 8. US EPA. Guiding Principles For Monte Carlo Analysis document.
- 9. Pawar, R; et al. Recent Advances In Risk Assessment And Risk Management Of Geologic CO2 Storage.
- 10. Quintessa Limited. Features, Events, and Processes Database. https://www.quintessa.org/co2fepdb/v2.0.0/
- 11. FutureGen EIS.
- 12. Shi, Ji-Quan; et al. A Methodology For CO2 Storage System Risk And Uncertainty Assessment.
- 13. Price, P.N. Carbon Sequestration Risks and Risk Management.
- 14. US EPA. Vulnerability Evaluation Framework For Geologic Sequestration Of Carbon Dioxide.
- 15. US EPA. Cost Analysis for the Federal Requirements Under the Underground Injection Control Program for Carbon Dioxide Geologic Sequestration Wells (Final GS Rule).
- 16. Hoffman, F.O.; et al. An Introductory Guide To Uncertainty Analysis In Environmental And Health Risk Assessment.
- 17. Jewell, Stephen. CO2 Storage Liabilities In The North Sea An Assessment Of Risks And Financial Consequences.
- Pipeline and Hazardous Materials Safety Administration. Distribution, Transmission & Gathering, LNG, and Liquid Accident and Incident Data. Hazardous Liquid Accident Data – Pre 1986 Data Set. <u>https://www.phmsa.dot.gov/data-and-</u>

statistics/pipeline/distribution-transmission-gathering-Ing-and-liquid-accident-andincident-data

- 19. Pipeline and Hazardous Materials Safety Administration. Distribution, Transmission & Gathering, LNG, and Liquid Accident and Incident Data. Hazardous Liquid Accident Data 1986 to January 2002 Data Set. <u>https://www.phmsa.dot.gov/data-and-statistics/pipeline/distribution-transmission-gathering-Ing-and-liquid-accident-and-incident-data</u>
- 20. Pipeline and Hazardous Materials Safety Administration. Distribution, Transmission & Gathering, LNG, and Liquid Accident and Incident Data. Hazardous Liquid Accident Data January 2002 to December 2009 Data Set. <u>https://www.phmsa.dot.gov/data-and-statistics/pipeline/distribution-transmission-gathering-Ing-and-liquid-accident-and-incident-data</u>
- 21. Pipeline and Hazardous Materials Safety Administration. Distribution, Transmission & Gathering, LNG, and Liquid Accident and Incident Data. Hazardous Liquid Accident Data January 2010 to Present Data Set. <u>https://www.phmsa.dot.gov/data-and-statistics/pipeline/distribution-transmission-gathering-Ing-and-liquid-accident-and-incident-data</u>
- 22. Nussey, Clive. Failure frequencies for major failures of high pressure storage vessels at COMAH sites: A comparison of data used by HSE and the Netherlands.
- 23. Harper, Peter; et al. Assessment of the major hazard potential of carbon dioxide (CO2).
- 24. Illinois Oil and Gas Resources Interactive Map. <u>https://isgs.illinois.edu/illinois-oil-and-gas-resources-interactive-map</u>
- 25. Illinois Water Well Interactive Map. https://isgs.illinois.edu/ilwater
- 26.US EPA. Use of Monte Carlo Simulation in Risk Assessments. https://www.epa.gov/risk/use-monte-carlo-simulation-risk-assessments
- 27. Decatur Illinois 2019 Census. https://datacommons.org/place/geold/1718823
- 28. Lee, Yong-Gyo; et al. Ultimate Costs of the Disaster: Seven Years after the Deepwater Horizon Oil Spill.
- 29. Bureau of Labor Statistics CPI Database. https://www.bls.gov/cpi/
- 30. United States Treasury. <u>https://home.treasury.gov/resource-center/data-chart-center/interest-</u>rates/TextView?type=daily_treasury_yield_curve&field_tdr_date_value=2022
- 31. Anderson, David R.; et al. Modern Business Statistics. Cengage Learning. 2008.

APPENDIX B: Area of Review Well Database

FIGURES

- Figure B.1 Oil and Gas Wells Within the AoR
- Figure B.2 Water Wells Within the AoR

TABLES

- Table B.1 Oil and Gas Wells Within the AoR
- Table B.2 Water Wells Within the AoR

Sensitive, Confidential, or Privileged Information

AT OUDIMINALE DYSIGHT. NAD 1505 GLALET AND HIMOS LAST TO TZUTTEE

Man ID	API Number	Permit Number	Longitude	Latitude	Location	Company Name	Well Name	Well Number	Status Codo	Elevation (ft)	Elov Pof	Known TD (ft)	TD Formation	Completion Date
	120390010700		-89.03011700			Myers, Theo	Fink	1	DAOP		Derrick Floor		Devonian - Siluria	4/8/1952
	120390010900	545	-88.96506400		27-19N-2E	Woollen Brothers	Marlow, Herbert	2	GAS		Digital Elevation Model	83	Devoluar Sharn	4/0/1552
3	121070003900		-89.15314500			Illinois Power Co.		I-11	STRUP		Ground level	860		5/31/1957
4	121070032000		-89.17030700			Sun Production Co (Sun Oil)		LG-4-53	STRUP		Ground level	350		5/26/1953
5	121070032100		-89.14420500			Sun Production Co (Sun Oil)		LG-5-53	STRUP		Ground level		No 5 Coal	6/7/1953
6	121072289900	58031	-89.17044600	39.92728400	14-17N-1W	Lockwood, Ronald G.	Schick	1-L	DAP		Kelly Bushing		Silurian	6/21/2006
7	121150000300		-88.99606600	39.87665000	32-17N-2E	Lincoln Oil&Gas Co	Parish	1	DA	644	Derrick Floor	2,040		12/31/1923
8	121150000400		-88.98442200	39.87683500	33-17N-2E	Meister Henry	Sticker	1	DA	641	Ground level	2,092	Niagaran	
9	121150000500		-88.98216500	39.88415300	33-17N-2E	Wilson Syndicate	Wilson	1	DA	627	Ground level	2,282	Silurian	
	121150000600		-88.87796200		28-17N-3E	Eureka Oil Corp	Rhodes, Wm.	1	DA	687	Derrick Floor	2,248	Silurian	12/31/1939
	121150000800		-88.99519400			Lincoln Oil Well Serv Co	Powers, Caroline	1	DA		Ground level		Hunton	12/31/1921
	121150000900		-88.99848900		8-16N-2E	No Company	Powers, Geo. W.	2	UNK		Digital Elevation Model	720		
13			-88.97989900		3-15N-2E	Werner Bros	Peterson	1	DA		Topographic map	1,085		12/31/1937
14			-89.01205800			Williams J H	Cater, Lovina S. #1	1	DA		Derrick Floor	· · · · · · · · · · · · · · · · · · ·	Silurian	1/2/1941
15			-88.95379700		2-18N-2E	Alco Oil & Gas Corp.	Grady, T. C.		UNK		Ground level	626		
	121150001600		-88.97751100			Arcadia Refining Co.	Wilson	1	DA		Ground level		Fern Glen	
	121150001700		-88.82305900			Jarvis, S. D. etal	Veech, Sarah J.	1	DA		Rotary table		Devonian	2/29/1940
	121150001800		-88.99850800			Atlantic Oil & Gas	Bledsoe	1	DA		Ground level	2,062		12/31/1921
	121150001900		-88.99755800			Powers G W	Pfeiffer		DA		Ground level	804		10 /01 /1001
	121150002000		-88.99749800		5-16N-2E	Lincoln Oil Well Serv Co	Powers, Caroline	2	DA		Ground level		Kimmswick	12/31/1921
	121150002400		-89.00193300		17-16N-2E 21-15N-2E	Unknown	Dipper, John	1	DA		Derrick Floor		Silurian	4/6/1939
	121150002600		-88.99022800		21-15N-2E 30-17N-2E	Decatur Oil & Gas Co Sun Oil Company	Cook, L. W. #1 Powers, J.	1	DAO DA		Derrick Floor Derrick Floor		Galena St Peter	12/31/1938 12/31/1937
	121150002800		-89.01951900			Powers, C. G., Etal	Stephenson	1	DA		Ground level		St Peter Silurian	12/31/1937
	121150002900		-89.01840500		21-17N-2E	Margrave Bros	Riley, Anna #1	1	DA		Ground level	1,330	Silurian	1/30/1924
	121150003000		-89.04633300		1-15N-1E	Hoosier Drilling Company	Jockisch. David	1	DAOP		Ground level	· · · · · · · · · · · · · · · · · · ·	Silurian	7/31/1942
	121150003200	2602	-89.04633300		-	Cartmill, William		1	OILP		Derrick Floor		Silurian	6/30/1955
	121150003500	2002	-89.06288300		5-16N-4E	Paco Petroleum Corp.	Gouge, Iva Wagner, Lynn	1	DA		Derrick Floor	· · · · · · · · · · · · · · · · · · ·	Silurian	7/31/1955
	121150003800		-88.82322900		2-16N-3E	Walker Lester	Chapman	1	OILP		Digital Elevation Model	2,445	Devonian	7/31/1955
	121150003700		-88.77290500		5-16N-4E	Carroll, Dell	Shirey, Bryce L.	1	DAP		Kelly Bushing	2,331	Silurian	7/31/1955
31		2835	-88.76705900	39.85975100	8-16N-4E	Athene Development Company, Inc.	Vulgamott	1	DAP		Kelly Bushing	2,444	Silurian	5/31/1955
32			-88.84012900		2-16N-3E	Potsch, John P. Sr.	Shambaugh	1	DAP		Digital Elevation Model	2,323		1/31/1956
	121150005000		-88.77290000			Engle, George S.	Krall, Clarence	1-A	DAOP		Derrick Floor		Devonian	8/13/1956
	121150005100	1968	-88.92851000			Mazzarino	Schwarz	1	DAP		Derrick Floor	2,215		6/22/1956
35	121150005101	1825	-88.92851000	39.91287900	24-17N-2E	Atkins & Hale	Schwarze	1	OILP	664	Derrick Floor	2,209		11/14/1963
36	121150005200	1649	-88.92609900		24-17N-2E	Atkins and Hale	Casey	2	DAP		Kelly Bushing	2,184	Silurian	10/10/1964
37	121150005201	17334	-88.92609900	39.90745800	24-17N-2E	Barger Engineering, Inc.	Fold, Baby	3	OIL	665	Kelly Bushing	2,204	Silurian	10/13/1982
38	121150005300		-88.82086800	39.86885400	1-16N-3E	Walker Lester	Hawkins	2	OILP	695	Digital Elevation Model	2,307	Devonian	6/30/1956
39	121150005400	3386	-89.00323200	39.89461800	29-17N-2E	Richardson, M. H.	Troutman	1	DAP	676	Ground level	2,625	St Peter	8/31/1956
40	121150005500	3537	-89.02188800	39.91267700	19-17N-2E	Kewanee Oil Company	Powers	1	DAOP	702	Derrick Floor	2,665	St Peter	9/30/1956
41			-89.07308300	39.88667100	34-17N-1E	Cameron, W. A.	Troutman, Elizabeth	1	DAP	677	Derrick Floor	2,073	Silurian	10/31/1956
42			-88.79756600			Myers, Theodore F.	Ross, Charles M.	1	DAP		Derrick Floor	2,130		5/15/1957
	121150006000	1075	-89.05834800			Dell Carroll Oil Pro	Milnes, C. E.	1	OILP		Derrick Floor		Devonian	7/15/1957
	121150006100	1380	-88.87834400			Engle, George S.	Hirsch-Babcock-I.C.R.R. Community	1	DAP		Derrick Floor		Silurian	6/26/1957
	121150006101	2062	-88.87834400			Atkins & Hale	Hirsch Community	1	DAP		Derrick Floor	2,270		12/22/1963
46		1815	-89.05836800			Dell Carroll Oil Pro	Crabtree, Elva A. #1	1	DAP		Ground level		Silurian	7/31/1957
47		2134	-89.05606400			Dell Carroll Oil Pro	Krall, A. F.	2	OIL		Derrick Floor	2,080		8/31/1957
48			-89.05600600			Dell Carroll Oil Pro	Schiwek-Albverson-Smith Com	1	OILP		Ground level		Silurian	9/30/1957
	121150007100		-88.77524300			Botts, Elton M. & Assoc.	Davis	1	DAOP		Kelly Bushing		Silurian	9/30/1957
	121150007300 121150007400	2848	-89.05838100 -89.06297400		11-16N-1E 14-16N-1E	Carter E M	Crabtree, W. B. #1 Hanks & Warner Comm. #1	1	DA OILP		Ground level Kelly Bushing	2,105	Devonian	10/31/1957 1/20/1958
	121150007400	3015	-89.05297400		14-16N-1E 14-16N-1E	Edwards, Ralph H. Dell Carroll Oil Pro	Schiwek "B" Comm. #1	1	DAP		Ground level	2,080	Silurian Devonian	1/20/1958
	121150007500	3015				Knierim. Donald P.		1	DAP		Ground level		Devonian	11/30/1957
	121150007600	3088	-89.05133800			Knierim, Donald P. Knierim, Donald P.	Joynt, R. O. #1 Hanks Comm	1	DAP		Ground level Ground level		Devonian Devonian	11/30/1957
	121150007700		-89.05128400			Warnick & Bennett	Vogel, Charles Comm	1	DAP		Kelly Bushing		Silurian	12/31/1957
	121150007800	506	-89.05824200			Dell Carroll Oil Pro	Krall, A. F. #3	3	DAP		Rotary table	2,059		3/31/1958
57		308	-89.05364900			Carroll, Dell	Jackson, James W. #1	1	OILP		Derrick Floor	,	Silurian	4/30/1958
58		611	-89.03364900	39.89255500		George, T. W. Trust	Parish, L. R.	1	DAP		Derrick Floor	2,098		4/30/1958
59		507				Dell Carroll Oil Pro	Milnes, C. E. #2	2	DAP		Digital Elevation Model		Silurian	3/31/1958
	121150008000	1215	-89.07216600			Partlow & Cochonour	Webb-Davis #1	1	DAP		Derrick Floor	· · · · · · · · · · · · · · · · · · ·	Silurian	6/30/1958
	121150009800	2060			21-17N-3E	Atkins & Hale	Puiol - Cundiff	1	DAP		Kelly Bushing	2,240		11/25/1963
62		681	-89.03702700		-	Sun Production Co (Sun Oil)	Johner, Fred	1	DAO		Derrick Floor	2,236		5/3/1953
	121150009901	42352	-89.03702700			Watters Oil & Gas Co.	Brown, Elva W.	1	OILP		Kelly Bushing	2,240		9/20/1988
	121150011600			39.77100200		Alco Oil & Gas Corp.	Cobb	1	DA		Digital Elevation Model	1,936	1	12/31/1921

Man ID	API Number	Permit Number	Longitude	Latitude	Location	Company Name	Well Name	Well Number	Status Code	Elevation (ft)	Flow Rof	Known TD (ft)	TD Formation	Completion Date
	121150011900	Permit Number	-88,9934480			Slagter, Arthur J., Jr.	Shively, C. B. #1	1	DAP		Derrick Floor		Silurian	7/31/1949
	121150012100		-89.0094220			The Pure Oil Company	DeVore M. K. #1	1	DAP		Derrick Floor		Silurian	9/10/1951
	121150012200		-88.9902900			Columbus Exploration	Hogan, R. #1	1	DAP		Derrick Floor	1,355		9/30/1950
	121150012300		-88.9975240			Hardin, C. G.	Hogan, Robert #1	1	DAP		Ground level	1,437		2/28/1955
69	121150012400		-88.9880790	0 39.73923300	21-15N-2E	Columbus Exploration	Riley, Agnes et al #1	1	DAP		Derrick Floor	1,400	Ste Genevieve	2/28/1951
70	121150012900	2322	-88.8475610	0 39.92765600	15-17N-3E	Atkins and Hale	Rowe	1-A	DAOP	690	Kelly Bushing	2,271	Silurian	12/13/1963
	121150013000		-88.8642050			Bridges Basin Oil	Fryman, Leroy	1	DA		Digital Elevation Model	1,385		7/31/1949
	121150015500		-89.1264900		7-16N-1E	McCumber, Don	Bruce #1	1	DAP		Derrick Floor		Silurian	10/31/1954
73		2255	-89.0606110			Dell Carroll Oil Pro	Krall, A. F.	1	OILP		Derrick Floor	2,080		7/31/1954
	121150017000	2662	-89.0513610			Dell Carroll Oil Pro	Watts, R. W. #1	1	DAP		Ground level		Silurian	9/30/1954
	121150017600		-89.0534130			Keystone Oil Company	Rhoderick	1	DA		Ground level		Silurian	9/30/1954
	121150018000 121150018100		-89.0814740			Shulman Bros & Ohio Oil	Scroggin-Matthews Comm. School	1	DAOP GASP		Derrick Floor Topographic map	2,010	Silurian	5/3/1954 1/1/1944
	121150018100		-89.0001510			National Associated Petroleum Co.	Brown, Charles E.	1	DAP		Kelly Bushing		Silurian	1/31/1955
78			-88.9869250			Morris	Morris, M. E.	1	GAS		Topographic map	2,085	Silurian	12/31/1933
80		2778	-88.9975910		-	Richardson, M. H.	Hood, Paul	1	OILP		Ground level	2,037	Silurian	10/8/1954
	121150021000	2//0	-88.9929570			Welker Oil Co., Ltd.	Trump	1	OILP		Ground level		Silurian	9/7/1953
	121150026300		-89.0253000			Keystone Oil Company	Binkley	1	DAOP		Kelly Bushing	2,115		12/31/1954
83	121150031900		-88.9945430	0 39.81145900	29-16N-2E	Pulliam & Reed	Gammon, C. O.		GAS		Topographic map	180		12/8/1948
84	121150032900		-88.8113500	0 39.87105300	1-16N-3E	Richey Ancil A	Blickenstaff, Cordia	1	OILP		Digital Elevation Model	2,300	Devonian	10/31/1954
85	121150033000		-88.8184140	0 39.86517400	1-16N-3E	Walker Lester	Harrouff	1	OILP	693	Kelly Bushing	2,281	Devonian	5/31/1954
86	121150033100		-88.8136940	0 39.86911300	1-16N-3E	Walker Lester	Hawkins	1	OILP	685	Ground level	2,303	Silurian	4/1/1954
	121150033200		-88.8231760		2-16N-3E	Walker Lester	Veech, Lewis	1	OILP	693	Ground level	2,290	Devonian	5/26/1954
	121150033300		-88.8233690		2-16N-3E	Walker Lester	Wheeler	1	DAOP		Derrick Floor	2,328	Silurian	12/12/1953
	121150033301		-88.8233690			Day R A	Ginder Comm.	1	OILP		Derrick Floor	2,286		11/8/1961
90			-88.8207820		12-16N-3E	Runyon, Floyd L.	Veech, Otto	1	OILP		Kelly Bushing	2,321	Devonian	5/31/1954
91			-88.9006000			Bernard-Clink	Taylor, L. P.	1	GAS		Ground level	65		10/31/1954
	121150041800		-88.8106960			Runyon, Floyd L.	Wilkerson, D. F.	1	DAOP		Derrick Floor		Silurian	2/28/1951
	121150042000		-88.8837940			Robinson, H. F., Inc.	Heckel	1	DAP		Derrick Floor	,	Devonian	7/31/1951
	121150043500 121150043600		-88.8017660			Johnson, Sr., Morris H. C. Stevens C	Sievers, Ray	1	DAP TAOP		Derrick Floor Derrick Floor	2,388		6/30/1954 1/24/1955
	121150043800		-89.0466710		13-17N-1E	Nation Oil & Duncan	Wagner, W. H. Brown. Robert	1	DAP		Derrick Floor	2,334		7/31/1954
	121150040700		-89.0899300			Marathon Oil Company	Hamilton, M. C. et al	1	DAP		Ground level		Silurian	9/30/1950
	121150047800		-89.0562610			Welker Oil Co., Ltd.	Parish, L. R.	1	DAP		Ground level	2,054		8/31/1954
	121150050100		-88.9755180			Proctor, Richard H.	Hamman, Esther	1	DAP		Ground level	2,103	Silurian	8/31/1954
100			-89.0009000			Richey Ancil A	Merryman, G. R.	1	DAP		Digital Elevation Model	2,023		10/31/1954
101	121150050900		-88.9915860			Richardson, M. H.	German, Blanche	1	DAP		Rotary table	2,080	Silurian	11/30/1954
102	121150051100		-89.0231200	0 39.87800500	31-17N-2E	S & W Development Co	Moody-Friend Comm.	1	DAP	677	Ground level	2,050	Silurian	8/31/1954
103	121150051200		-89.0007730	0 39.88018100	32-17N-2E	Runyon, Floyd L.	Daut, P. J.	2	OILP	638	Derrick Floor	1,981	Silurian	10/31/1954
104			-88.99609700			Runyon, Floyd L.	Duncan, D.	1	DAP	643	Ground level	2,065		8/31/1954
105			-88.9960550			Runyon, Floyd L.	Lyster Comm	1	OILP		Kelly Bushing		Silurian	8/31/1954
106			-88.9985270			Richardson, M. H.	Trimby, Benjamin	1	OILP		Digital Elevation Model	2,074		9/30/1954
107	121150051600		-88.9798350			Richardson, M. H.	Duncan, Dora	1	DAOP	-	Derrick Floor	2,106		10/31/1954
108			-88.9868870			Herring, Herman C.	Hays, T. E.	1	DAP		Derrick Floor		Silurian	4/30/1952
109		100	-88.9774700			Richardson, M. H.	Keller	1	DAP		Digital Elevation Model		Silurian	9/30/1954
110	121150052100 121150052101	109 1971	-88.9913660 -88.9913660			Herring, Herman C.	Parish etal	1	OILP		Derrick Floor Derrick Floor	2,070 2,070	Silurian	1/31/1949 8/7/1954
111 112	121150052101	1971				Runyon, Floyd L. Unger, John	Parish, Ruth Blenz	1	DAP		Derrick Floor Kelly Bushing		Silurian	8///1954
112	121150053500	1528	-88.8876170			Myers, Theodore F.	Kuny	1	DAP		Kelly Bushing		Silurian	7/12/1954
	121150053900	1528	-88.8828910			Robinson, H. F., Inc.	Stout, Bertha	1	DAOP		Derrick Floor		Silurian	1/31/1955
115		1560	-88.8687760			Breeze, F. E.	Phillips, Roy	1	DAP		Derrick Floor	2,233	Devonian	8/5/1949
115		2063	-88.8687760		-	Atkins & Hale	Phillips, Roy	1	DAP		Derrick Floor	2,275	Deroman	12/18/1963
117	121150054600	2230	-88.8448010			Breeze, F. E. & Bayless	Hiser	1	DAP		Kelly Bushing		Silurian	11/17/1948
	121150054700		-88.8780370		-	Davis, C. G.	Clements, Belle	1	DAO		Derrick Floor		Devonian	5/5/1947
	121150054800		-88.8803390			Davis, C. G.	Boyd	1	DA		Derrick Floor	2,282	Silurian	7/31/1946
120	121150054900		-88.8945780	0 39.90102100	29-17N-3E	Welker Oil Co., Ltd.	Boyd, A. T.	1	OILP	680	Ground level	2,240	Silurian	3/31/1954
121	121150055000		-88.8798670			Costello Leonard J	McKee, John H., Sr.	1	DA		Digital Elevation Model	2,251	Devonian	11/30/1946
122	121150055800		-88.8617980			Pearcy Ed B	Reas Bridge Park	1	UNK		Digital Elevation Model	35		12/31/1936
123		225	-88.8113370			National Associated Petroleum Co.	Nickey, William H.	1	DAP		Kelly Bushing	2,331	Silurian	12/20/1954
124			-88.7558760			Myers, Theo	McLaughlin	1	DAOP		Ground level		Silurian	11/8/1954
125			-88.7630960			Richardson, M. H.	Greenberg, Ike	1	DAOP		Ground level		Devonian	11/1/1954
126			-88.8355140		11-18N-3E	Richardson, M. H.	Wilson, C. A.	1	DAP		Derrick Floor	2,069	Silurian	9/30/1954
127			-88.9995980			Alco Oil & Gas Corp.	Miller, Carroll (Leland Bandy)		GAS		Ground level	1	Cil	4 10 - 1 - 0
128	121150060900	101	-88.9825410	U 39.88363000	33-1/N-2E	Roth, A. N. & Bartelmay, R.	Pollack, M. D. etal	1	DA	648	Derrick Floor	2,176	Silurian	1/31/1949

Man ID	API Number	Permit Number	Longitude	Latitude	Location	Company Name	Well Name	Well Number	Status Code	Elevation (ft)	Flev Ref	Known TD (ft)	TD Formation	Completion Date
	121150061100	1540			0 26-16N-1E	Mansfield, Harold L.	Mathews, J. P.	1	DAP		Derrick Floor		Silurian	7/31/1958
130	121150061200	2355	-89.03221900	39.8688570	00 1-16N-1E	Knierim, Donald P.	Gulick, O. R. #1	1	OILP	680	Kelly Bushing	2,026	Silurian	3/9/1959
131	121150061800		-88.88278700	39.8774940	00 5-16N-3E	Burt, Luther R.	Rowe		GAS	675	Ground level	88		12/31/1932
132			-88.77289700			Engle, George S.	Krall, Clarence	1	JAP		Digital Elevation Model	2,450	Ste Genevieve	5/31/1956
133		2868	-89.06964900			Reeter & Hirstein	Smith-Burns-Hobbs Comm.	1	DAP		Digital Elevation Model		Silurian	11/30/1958
	121150063400	550			00 8-15N-4E	Richardson, M. H.	Mills estate	1	DAOP		Ground level		Devonian	5/25/1959
	121150063500	70	-89.04675000		00 12-16N-1E	Eager, Charles W.	Alsup #1	1	OILP		Kelly Bushing		Silurian	3/31/1959
	121150063600	1033	-89.04304600			Eager, Charles W.	Alsup #2	2	OILP		Digital Elevation Model		Silurian	5/31/1959
	121150063900	1756	-89.03467400		0 1-16N-1E	Carroll, Dell	Sawyer & Gulick Comm.	1	OIL		Kelly Bushing	2,029	ett	9/14/1959
	121150063901 121150064200	20568	-89.03467400			Carroll, Dell	Sawyer & Gulick Comm.	1	INJW		Kelly Bushing		Silurian	9/6/1982
	121150064200	1463 1464	-89.04675300		00 12-16N-1E	Dell Carroll Oil Pro Dell Carroll Oil Pro	Travis, Ida M. #1 Krall, A. F. #4	1	OIL		Ground level Ground level		Silurian Silurian	6/30/1960 6/30/1960
140	121150064400	1404	-89.09559500	39.8350100		Pure Oil Company	Whitley Consolidated	1	OILP		Derrick Floor	2,002	Silurian	7/31/1960
141	121150064500	2080	-89.07450900	39.8174370		Kaufman, E.H.	Mathews, J. D.	1	DAP		Derrick Floor	2,002		8/31/1960
143		2000	-89.04911900			Dell Carroll Oil Pro	Jackson, James W. #2	1	DAP		Kelly Bushing	2,089		8/31/1960
	121150064800	2002	-89.10028600			Pure Oil Company	Whitley, Mabel	1	DAP		Derrick Floor		Silurian	8/31/1960
		2068	-89.10028600	39.8116050		Atkins and Hale	Whitley, Mabel	3	OILP		Derrick Floor	2,022		10/11/1962
146	121150064900	2110	-89.09321800	39.8172200	00 21-16N-1E	Texaco, Inc.	Rothwell, E. K.	1	OIL	632	Derrick Floor	2,000	Silurian	10/13/1960
147	121150064901	1912	-89.09321800	39.8172200	00 21-16N-1E	Texaco, Inc.	Rothwell, E. K.	1	OILP	632	Derrick Floor	2,064		8/31/1962
148			-89.16228000			Illinois Power Co.		1-8	STRUP		Ground level	825		5/31/1957
		2446	-89.10538500			Cole, Clyde	Hall, Alonzo	1	DAP		Kelly Bushing	1,980	Silurian	10/31/1960
150	121150065700	2856	-88.79440900			Jordan, James	Sensebaugh	1	DA		Rotary table	2,342	Devonian	3/31/1961
151		70		39.8133630		Partlow & Cochonour	Alsup, R. D.	1	DAP		Kelly Bushing		Silurian	12/31/1960
152	121150065801	1981	-89.10496500	39.8133630		Collins Brothers Oil Company	Alsup, Raymond	1	DAP		Kelly Bushing	2,024		9/29/1962
153		217	-89.07404100			McKinney, Willard	Clifton	1	DAP		Ground level	-	Silurian	1/31/1961
154	121150066300	1244	-89.05374800			Dell Carroll Oil Pro	Milnes, C. E. "A Lease" #1	1	DAP		Derrick Floor	2,094		6/30/1961
155		1839	-88.82097300			Myers, Theo	Bell, Glen	1	DAP		Derrick Floor		Devonian	8/31/1961
		1899	-88.80414900			Fawcett, John W.	McClure	1	OILP		Derrick Floor		Devonian	8/31/1961
157	121150067100 121150067900	2470 1292	-88.81605300	39.8652760	0 1-16N-3E 0 21-16N-1E	Hawkins Wm E Atkins and Hale	Harrouff, Emma Phillips	1	DAP		Kelly Bushing Derrick Floor	2,320	Silurian Silurian	10/31/1961 6/30/1962
	121150067900	783	-89.09558100		0 21-16N-1E	Badger, Floyd	Phillips	1	DAP		Derrick Floor	2,050	Siluilali	6/9/1962
160		1526	-89.09558100		0 21-16N-1E	Tully, Buddy	Phillips	1	DAP		Derrick Floor	1,996		9/27/1964
	121150068000	1520	-88.75166600		0 16-16N-4E	National Associated Petroleum Co.	Derr, Charles E.	1	DAP		Kelly Bushing		Devonian	6/30/1962
162			-89.09323200		0 28-16N-1E	Atkins and Hale	Dipper	1	OIL		Derrick Floor	-	Silurian	7/31/1962
163	121150068300		-89.09559800	39.8116940	0 28-16N-1E	Atkins and Hale	Whitley	1	OILP	627	Kelly Bushing	2,038	Silurian	7/31/1962
164	121150068400	1729	-89.09205400	39.8081040		Atkins and Hale	Koonce, Clarence	1	OILP		Derrick Floor	2,034		8/31/1962
165	121150068500	1730	-89.08729700	39.7917450	00 33-16N-1E	Atkins and Hale	Kraft	1	DAP	638	Kelly Bushing	2,101	Silurian	8/31/1962
166	121150068600		-89.09091300	39.8136070	0 28-16N-1E	Atkins and Hale	Dipper	2	DAP	643	Kelly Bushing	2,094	Silurian	8/31/1962
167			-89.08153500		00 27-16N-1E	Mansfield, C. B.	Matthews Community	1	DAP		Derrick Floor		Silurian	8/31/1962
168		1828	-89.08853900	39.8106980		Atkins & Hale	Dipper	3	OILP		Kelly Bushing	2,051	Silurian	9/30/1962
169		1943	-89.07909000			H & J Dev. Co.	Hardy	1	DA		Derrick Floor		Silurian	9/30/1962
	121150069000	1798	-89.09090500			The Texas Company	Dipper, D. D.	1	DAP		Derrick Floor		Silurian	8/31/1962
	121150069001	906	-89.09090500			The Texas Company	Dipper, D. D.	1	SWDP		Derrick Floor	2,160		5/31/1963
	121150069100 121150069200	2010	-89.02061200 -89.08131300		0 7-16N-2E	Richardson, M. H. Mansfield, C. B.	Zarcone Cooper	1	DAP		Derrick Floor Ground level	-	Silurian Silurian	9/30/1962 10/13/1962
173		1974	-89.08131300			Dell Carroll Oil Pro		1	DAP		Ground level Kelly Bushing		Silurian Silurian	10/13/1962
174	121150069300	1974	-89.02759700			Lichtenberger, Robert	Troutman, C. S. Est Allen, et al	1	DAP		Derrick Floor		Silurian	9/30/1962
175		1/33	-89.09323500			The Texas Company	Dipper, D. D.	2	OILP		Derrick Floor		Silurian	10/31/1962
	121150069500	2092	-89.10030400			Atkins and Hale	Pure-Whitley	1	DAP		Derrick Floor		Silurian	9/30/1962
	121150069700	1973	-89.06299800		0 14-16N-1E	Dell Carroll Oil Pro	Davis, Lucy K. #1	1	OILP		Kelly Bushing	2,075		9/30/1962
	121150069800	2148	-89.06064200	39.8439270		Dell Carroll Oil Pro	Crabtree, Elva	3	DAP		Kelly Bushing	2,089		11/19/1962
		2271	-89.09076000	39.8245310		Atkins and Hale	Roby #1	1	DAP		Kelly Bushing		Silurian	10/31/1962
181	121150070000	2290	-89.09559400	39.8135150	00 28-16N-1E	Fulk Oil Company	Whitley Unit	1-A	DAP		Derrick Floor		Silurian	10/31/1962
182	121150070001	2	-89.09559400	39.8135150	00 28-16N-1E	Fulk Oil Company	Whitley Unit	1-A	OILP	630	Derrick Floor	2,018		1/31/1963
183		2232	-89.07441000	39.8082900		Law David	Clary	1	DAP		Kelly Bushing	2,050		11/7/1962
184		2210	-89.11205700	39.7987380		Buechler, Garold O.	Korenwald	1	OILP		Kelly Bushing	7	Silurian	11/9/1962
185	121150070300	2304	-89.10740700	39.7970030		Ware Watson	Millikin Est	1	OILP		Kelly Bushing		Silurian	11/19/1962
186		2640	-89.05576700			Miller Marion	Bourne, Merle	1	DAP		Kelly Bushing	2,065		1/2/1963
187		16402	-89.05576700			Carter Oil Prop., Inc.	Bourne	1	OILP		Kelly Bushing	-	Silurian	1/21/1985
	121150070600	59	-89.08720000		0 21-16N-1E	Atkins & Hale	Roby	2	DAP		Derrick Floor	-	Silurian	1/20/1963
189 190		1823	-89.08719600 -89.10273800			Centurian Oil, Inc. McKinney, Etal	Roby Swickard	2	OIL		Kelly Bushing Derrick Floor	, · · ·	Silurian Silurian	3/14/1967 1/20/1963
	121150070700		-89.10273800		0 28-16N-1E	Atkins and Hale	Swickard Koonce-Whitley Community	1	DAP		Derrick Floor Derrick Floor	2,008		1/20/1963
121	121150070800				0 21-16N-1E	Mansfield, C. B.	Rothwell	1	DAP		Ground level		Silurian	2/22/1963

Map ID	API Number	Permit Number	Longitude	Latitude	Location	Company Name	Well Name	Well Number	Status Code	Elevation (ft)	Elev Ref	Known TD (ft)	TD Formation	Completion Date
	121150071000		-89.10034800			McKinney, Etal	Swickard	2	DAP		Derrick Floor	1,999	Silurian	3/16/1963
	121150071100	126	-89.11213100		00 32-16N-1E	Lichtenberger, Robert	Kraft	1	OILP		Kelly Bushing		Silurian	2/18/1963
	121150071300		-89.10976900			Ware Watson	Millikin Estate	2	DAP		Kelly Bushing		Silurian	5/9/1963
		628	-89.11208800 -88.84275900			Ware Watson Atkins & Hale	Millikin Estate Rowe	3	DAP	585	Kelly Bushing Kelly Bushing	1,970	Silurian Silurian	5/17/1963 5/20/1963
	121150071500	979				Jarvis, Vernon D.		1	DAP		Derrick Floor	2,290	Silurian	7/15/1964
		979	-88.84275900		0 32-16N-1E	Ware Watson	Rowe Millikin Estate	1 2-A	OILP		Kelly Bushing		Silurian	5/25/1963
			-89.10739000			Ware Watson	Korenwald	1	OILP		Kelly Bushing	1,907		5/17/1963
	121150071800	830				Atkins & Hale	Blickenstaff	1	DAP		Kelly Bushing	2,335		6/6/1963
		1028				HLN Oil Development	Powers, Jack H.	1	DAOP		Derrick Floor	2,025	Silurian	5/31/1963
203	121150072000	954	-88.84646500	39.9191320	00 22-17N-3E	Atkins & Hale	Spent Community	1	DAP	681	Kelly Bushing	2,278	Silurian	6/15/1963
204	121150072400		-89.10512300	39.7934270	00 32-16N-1E	Funderburk, E. A.	Moffett, Warnick	1	DA	597	Ground level	1,996	Silurian	8/15/1963
205	121150072500	1855	-89.07441500		00 22-16N-1E	Dell Carroll Oil Pro	Cooper, Albert Estate	2	OILP	650	Kelly Bushing	2,025	Silurian	10/29/1963
206	121150072600)	-89.04676000		00 12-16N-1E	Dell Carroll Oil Pro	Travis, Ida M. #2	2	DAP		Kelly Bushing		Silurian	10/20/1963
		2059	-88.93082700	39.9091620	-	Atkins and Hale	Schwarze	2	OILP		Kelly Bushing		Silurian	11/4/1963
208	121150072800	1992	-88.99708700			Atkins and Hale	Lash	1	DAOP		Kelly Bushing		Silurian	11/16/1963
		2258	-89.10981400		00 32-16N-1E	Ratliff Oil Prod., Inc.	Kraft	1	DAP		Kelly Bushing		Silurian	12/7/1963
		1383	-88.92498200 -88.92377900		0 24-17N-2E	Atkins and Hale Atkins and Hale	Stroh Comm.	1	DAP DAP		Kelly Bushing		Silurian	3/21/1964
	121150073800 121150073900	2061	-88.88999200	39.9111780	-	Atkins and Hale	Casey Roos-Kuny	1	DAP		Kelly Bushing Kelly Bushing	2,193 2,229		9/7/1964 12/3/1963
		1567	-88.99841900			Exploration & Development, Inc.	Nonneman	1	DAP		Kelly Bushing		Devonian	9/28/1964
	121150074000	31785	-88.99841900			Barger Engineering, Inc.	Wright, A.	1	JAP		Kelly Bushing	1.	Ste Genevieve	9/19/1984
		51/85	-89.03839600			Sun Production Co (Sun Oil)	Winging A.	M-35-53	STRUP		Ground level		Shoal Creek	2/19/1953
216			-89.04803100	39.7798970		Sun Production Co (Sun Oil)		M-11-53	STRUP		Ground level	232	Shidar creek	1/10/1953
217	121150075000)	-89.06636500			Sun Production Co (Sun Oil)		M-9-52	STRUP		Ground level	238	Shoal Creek	12/18/1952
218	121150075200		-89.08494000	39.7855400	00 4-15N-1E	Sun Production Co (Sun Oil)		M-8-52	STRUP	627	Ground level	180	Shoal Creek	11/30/1952
219	121150075900		-89.06625500	39.7721380	00 11-15N-1E	Sun Production Co (Sun Oil)		M-10-53	STRUP	630	Ground level	258		1/4/1953
	121150076000		-89.02875800			Sun Production Co (Sun Oil)	M-12-52		STRUP		Ground level		Shoal Creek	1/14/1953
)	-88.99991500			Sun Production Co (Sun Oil)		M-49-53	STRUP		Ground level	280		4/15/1953
			-88.99959800			Sun Production Co (Sun Oil)		M-45-53	STRUP		Ground level	320		3/25/1953
	121150076700		-88.96157300		00 11-15N-2E	Sun Production Co (Sun Oil)	Jacobs, M. G.	1	STRUP		Ground level	360		1/15/1954
			-88.98015600			Sun Production Co (Sun Oil)	Graf, Frank H.	1	STRUP		Ground level	377		2/1/1954
			-88.96141200		0 22-15N-2E	Sun Production Co (Sun Oil)	Bollhorst, R. J.	1	STRUP		Ground level		Shoal Creek	3/1/1954
	121150077100 121150077700		-88.97934800 -88.89412500		00 28-15N-2E	Sun Production Co (Sun Oil) Sun Production Co (Sun Oil)	Davis, R. B.	1	STRUP STRUP		Ground level Ground level	360		3/11/1954 1/29/1954
			-88.89412500		0 12-15N-3E	Sun Production Co (Sun Oil)	Henry, R. McGaughey #1	1	STRUP		Ground level	271		2/21/1954
	121150077800		-88.92264900			Sun Production Co (Sun Oil)	Price, E. L.	1	STRUP		Ground level	400		1/26/1954
	121150078000		-88.88801800			Sun Production Co (Sun Oil)	Boy's Home	1	STRUP		Ground level	285		2/16/1954
			-88.85039900			Sun Production Co (Sun Oil)	Smith, F. D.	2	STRUP		Ground level	305		2/14/1954
			-89.04783000	39.8602820	0 1-16N-1E	Sun Production Co (Sun Oil)		M-30-53	STRUP		Ground level	270	Shoal Creek	2/10/1953
233	121150078500)	-89.06668200	39.8749010	00 3-16N-1E	Sun Production Co (Sun Oil)	M-39-53		STRUP	665	Ground level	240	Shoal Creek	2/8/1953
234	121150078600		-89.10377400	39.8742320	00 5-16N-1E	Sun Production Co (Sun Oil)	M-21-53		STRUP	663	Ground level	230	Shoal Creek	2/6/1953
			-89.10372000	39.8463410	00 9-16N-1E	Sun Production Co (Sun Oil)		M-18-53	STRUP	652	Ground level	200	Shoal Creek	2/4/1953
	121150078800)	-89.04301400		00 13-16N-1E	Sun Production Co (Sun Oil)		M-29-53	STRUP		Ground level		Shoal Creek	2/12/1953
			-89.10414400		00 17-16N-1E	Sun Production Co (Sun Oil)		M-17-53	STRUP		Ground level		Shoal Creek	2/3/1953
	121150079000		-89.12253500			Sun Production Co (Sun Oil)		M-24-53	STRUP		Ground level	200		1/31/1953
			-89.05368600			Sun Production Co (Sun Oil)		M-14-53	STRUP		Ground level		Shoal Creek	1/19/1953
			-89.10107300			Sun Production Co (Sun Oil)		M-16-53	STRUP STRUP		Ground level	180	Shoal Creek	1/21/1953
			-89.09921900		0 33-16N-1E	Sun Production Co (Sun Oil) Sun Production Co (Sun Oil)		M-7-52 M-1-57	STRUP		Ground level Ground level		Shoal Creek	12/13/1952 4/15/1957
			-89.04743200	39.7951560		Sun Production Co (Sun Oil)		M-13-53	STRUP		Ground level		Shoal Creek	1/14/1953
			-89.03792300			Sun Production Co (Sun Oil)		M-36-53	STRUP		Ground level		Shoal Creek	2/13/1953
			-89.00512400	39.8097180		Sun Production Co (Sun Oil)		M-37-53	STRUP		Ground level		Shoal Creek	2/23/1953
	121150080100		-89.02724000		0 30-16N-2E	Sun Production Co (Sun Oil)		M-38-53	STRUP		Ground level		Shoal Creek	1/31/1953
	121150080300		-89.01906800	39.7964500		Sun Production Co (Sun Oil)		M-42-53	STRUP		Ground level		Shoal Creek	3/8/1953
248			-88.99068000		00 33-16N-2E	Sun Production Co (Sun Oil)		M-43-53	STRUP		Ground level	260		3/6/1953
249	121150080500		-88.96985300	39.8037100	00 34-16N-2E	Sun Production Co (Sun Oil)		M-40-53	STRUP	687	Ground level	330	Shoal Creek	3/4/1953
250			-89.16142700	39.8736980		Sun Production Co (Sun Oil)		M-54-53	STRUP		Ground level	330		5/19/1953
251	121150080800	490	-89.03949400	39.9978760		Tabor Purvis	Patterson	1	DAP		Kelly Bushing		Silurian	4/30/1965
			-89.09090200			Robison, H. F.	Rothwell	1A	DAP		Kelly Bushing		Silurian	3/23/1965
			-89.18039600		00 26-17N-1W	Sun Production Co (Sun Oil)	Knap, R. M-2-56	1	STRUP		Ground level	750		7/17/1956
			-89.16246900			Sun Production Co (Sun Oil)	Campbell, Ellen B.	M-57-53	STRUP		Ground level		No 5 Coal	6/15/1953
	121150082000	1	-89.18059800		00 27-17N-1W	Sun Production Co (Sun Oil)		M-56-53	STRUP		Ground level		No 5 Coal	6/10/1953
256	121150082200	936	-88.93076000	39.9046020	00 25-17N-2E	Atkins and Hale	Daniel	1	DAP	685	Kelly Bushing	2,191	Silurian	8/1/1965

Map ID	API Number	Permit Number	Longitude	Latitude	Location	Company Name	Well Name	Well Number	Status Code	Elevation (ft)	Elev Ref	Known TD (ft)	TD Formation	Completion Date
	121150082300	863		39.97162300		Hill, A. G.	Haynes, Elwood	1	DAP		Kelly Bushing		Silurian	7/12/1965
258	121150082500	1876	-88.77050300	39.86982200	5-16N-4E	Richardson, M. H.	Shirey	2	DAP	626	Ground level	2,383	Silurian	12/14/1965
259	121150082600	1861	-89.07784100	39.82640300	22-16N-1E	Marquand, Boyd C.	Cooper-Pumphrey	1	OILP	659	Ground level	2,068	Silurian	12/21/1965
260	121150082800	2006	-89.12328900	39.94799100		Collins Brothers Oil Company	Brown, Helen E. et al	1	DAP		Derrick Floor		Silurian	1/10/1966
	121150083100	27	-89.08126600			Marquand, Boyd C.	Cooper-Pumphrey	2	DAP		Kelly Bushing		Silurian	2/9/1966
	121150083300	1095	-89.00790200			Kin-Ark Oil Co	Young, John E.	1	DAP		Kelly Bushing		Silurian	7/29/1966
263		1500	-88.92390800	39.75442600		Sun Production Co (Sun Oil) Kin-Ark Oil Co	Rowe, M. B.	1	STRUP		Ground level	373		1/24/1954
264	121150083700 121150083701	1589 336	-88.85473900 -88.85473900			Kin-Ark Oil Co Collins Assoc. Oil Co.	Kingdon, Albert	1	DAP		Kelly Bushing	2,252	Silurian	10/22/1966 5/8/1969
265		1989	-88.85473900	39.93301400		Barra, Raymond P.	Kingdon, Albert Stroh	1	OILP		Kelly Bushing Kelly Bushing		Silurian	2/15/1969
	121150083800	271				M. & N. Oil Company	Stroh	1-A	OILP		Ground level	,	Silurian	4/19/1972
267		271 298				Centurian Oil, Inc.	Roby	4	OILP		Kelly Bushing		Silurian	4/19/19/2
269	121150083500	56	-89.09072400	39.82634700		Centurian Oil, Inc.	Roby	3	OILP		Derrick Floor	2,034	Silurian	2/24/1967
270	121150084100		-89.00081700			Rand, Tim Oil Corp.	Wilder	1	DAP		Ground level		Silurian	5/28/1967
271		594	-89.08590200	39.83000100		Centurian Oil, Inc.	Roby	5	OILP		Kelly Bushing	2,075		7/18/1967
272	121150084300	752	-89.09064900	39.82997300	21-16N-1E	Centurian Oil, Inc.	Roby	6	OILP		Kelly Bushing	2,044	Silurian	6/29/1967
273	121150084900		-88.96123200	39.74117500		Phillips Petroleum, Co.			STRU		Ground level	501		
274	121150085000		-88.84119600	39.74476200	14-15N-3E	Phillips Petroleum, Co.			STRU	700	Ground level	623		
275	121150085100		-88.88859400			Phillips Petroleum, Co.			STRU	693	Ground level	600		
276	121150085200		-88.76991500	39.76397400		Phillips Petroleum, Co.	Nov-38		STRU		Ground level	670		
	121150085300		-88.93466000			Phillips Petroleum, Co.			STRU		Ground level	410		
	121150085400		-88.85789800			Phillips Petroleum, Co.			STRU		Ground level	538		
279		1026	-89.09303700			Centurian Oil, Inc.	Roby	7	DAP		Kelly Bushing		Silurian	9/1/1967
280	121150086800		-89.08613400			Aladdin Oil Dev. Co.	Rothwell	1	DAP		Kelly Bushing	2,033		12/13/1967
	121150087900		-89.09323200			Atkins and Hale	Dipper	1-DH	DAP		Ground level		Silurian	6/30/1968
	121150088100	813	-88.93090000			Mardi Oil Co.	Stroh	2	DAP		Kelly Bushing		Silurian	8/17/1968
	121150088200		-89.10025900			Geo-Prospectors Inc	Beatty #1	1	DAP		Kelly Bushing		Silurian	9/16/1968
284 285	121150088300 121150088400	1279	-89.07895000 -88.86185400			Amgo, Inc. Collins Assoc. Oil Co.	Hoffman #1	1	DAP DAP		Kelly Bushing		Silurian Silurian	10/8/1968 10/22/1968
285	121150088400	1279	-88.92852800			Mardi Oil Co.	Beadleston Stroh	2	OILP		Kelly Bushing Kelly Bushing		Silurian	7/10/1969
280		1489	-88.93084500			Hale, Richard D.	Schwarze, Vivian	34	OILP		Kelly Bushing	2,147	Silurian	4/25/1971
287		1102	-89.09320600			Dodge, J. U.	Rothwell	1-D	DAP		Kelly Bushing		Silurian	6/6/1972
289			-88.93321000			Hale Oil Co.	Schwarze	4	JAP		Ground level		Silurian	6/11/1972
200	121150101700		-88,96925200	39.79753000		Hyde Park Corp.	Hyde Park Corp.	1	OBSO		Kelly Bushing		St Peter	6/17/1972
291			-88.89115500			Carter Oil Co., The	Core Hole	138	UNK		Ground level	530		12/31/1939
292			-88.75461500			Carter Oil Co., The	Core Hole	197	STRU		Ground level	1,626		12/31/1939
293	121150104500		-88.98171500	39.76638200	9-15N-2E	Alco Oil & Gas Corp.	Burt, J. W.		GASP	722	Digital Elevation Model	148		
294	121150104700		-88.90854000	40.05329000	6-18N-3E	Pure Oil Co.	Core Prospect III.	A-10	STRUP	709	Digital Elevation Model	1,194		9/25/1940
295	121150104800		-88.80365700	40.01735000	13-18N-3E	Pure Oil Co.	Illinois Prospect	A-3	STRU	660	Digital Elevation Model	1,225		6/30/1940
296	121150104900		-88.79234100	40.01261000			Illinois Prospect	A-2	STRU		Digital Elevation Model	810		6/30/1940
	121150105700		-88.99762100			Baker, E. C. & Sons	Hogan, Terry		GAS		Topographic map	131		6/20/1973
	121150105800		-88.83442000			Mashburn, Bruce	Maxey, C. E.		GAS		Ground level	100		
	121152106000		-88.82579100			Welker, Emerson	Flack-Brown Comm.	1	OILP		Kelly Bushing		Devonian	6/12/1974
300			-89.09323500			Atkins and Hale	Dipper	1-A	DAP		Kelly Bushing		Silurian	5/8/1974
301	121152108200	16743	-88.93086600	39.91281100		Triple G Oil Company Ltd.	Schwarze	1-A 1-A	OILP		Kelly Bushing		Silurian	5/21/1974
302	121152108201	16743	-88.93086600			Triple G Oil Company Ltd.	Schwarze	1-A	OILP		Kelly Bushing		Silurian	5/21/1974
303	121152108300 121152108400	718	-88.83772900 -88.83988500			Welker, Emerson Welker, Emerson	King Sheffer	1	DAOP DAP		Kelly Bushing Kelly Bushing		Silurian Silurian	4/20/1975 8/8/1974
	121152108400	/10	-89.08141100			Marquand, Boyd C.	Pumphrey-Cooper	1	OILP		Kelly Bushing		Silurian	12/16/1974
305			-88.83844500			Welker, Emerson	King, Frank	14	DAP		Ground level		Devonian	10/24/1974
	121152109300		-88.93322800			Triple G Oil Company Ltd.	SCHWARTZ	2	OIL		Kelly Bushing		Silurian	2/2/1975
308	121152109400		-89.07674200			Marguand, Boyd C.	Pumphrey-Cooper	2-A	DAOP		Ground level	2,090		1/18/1975
309		17	-89.03948100			Northwestern Oil Co.	Roby & Miller	1	OILP		Ground level		Silurian	7/3/1975
	121152109800	125	-88.93794600			Triple G Oil Company Ltd.	Phillips	1	OILP		Kelly Bushing		Silurian	3/22/1975
	121152110000		-88.94024400			Triple G Oil Company Ltd.	Phillips	2	OIL		Kelly Bushing		Devonian	10/24/1975
312	121152110100	485	-89.03654700	39.78881700		Corley, W. A.	Hill, Howard	1	OILP	691	Kelly Bushing	2,195	Silurian	8/7/1975
313	121152111000	1032	-89.03182400	39.78886500	36-16N-1E	Corley, W. A.	Hill, Howard	2	DAP	690	Kelly Bushing	2,167	Silurian	9/7/1975
_	121152111900	1901	-89.02758300			Corley, W. A.	Brown, Carl S. #1	1	DAP		Kelly Bushing		Silurian	2/2/1976
	121152112000		-88.94261700			Triple G Oil Company Ltd.	Phillips	3	OILP		Kelly Bushing		Silurian	7/1/1976
	121152112100	485	-89.03890500			Corley, W. A.	Hill, Allie R.	1	OILP		Kelly Bushing		Silurian	5/19/1976
	121152112200	2020	-89.03938900			Corley, W. A.	Jockisch, Louis S.	1	DAOP		Ground level	2,167		3/15/1976
	121152112700	2110	-89.03895000			Corley, W. A.	Hill, Allie R.	2	DAP		Ground level		Silurian	4/7/1976
319		29961	-89.03895000			Watters Oil & Gas Co.	Hill, Allie R.	2	OIL		Ground level		Silurian	6/14/1984
320	121152112702	41494	-89.03895000	39.79061500	36-16N-1E	Watters Oil & Gas Co.	Hill, Allie R.	2	INJW	692	Kelly Bushing	2,193	Silurian	3/31/1988

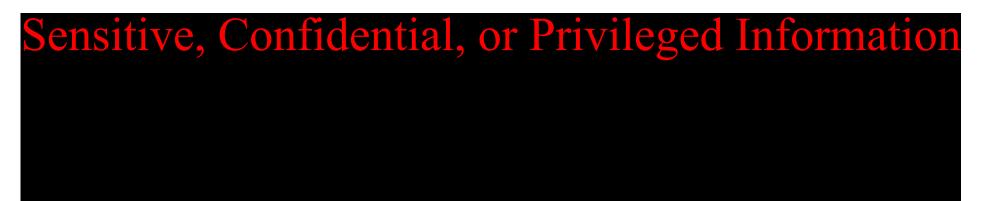
Map ID	API Number	Permit Number	Longitude	Latitude	Location	Company Name	Well Name	Well Number	Status Code	Elevation (ft)	Elev Ref	Known TD (ft) TD Formation	Completion Date
321	121152113200	2454	-89.06892000	39.82464000	22-16N-1E	Cooper, Carl E.	Cooper-Pumphrey	1	OILP	640	Ground level	2,022 Silurian	11/21/1976
322	121152113400		-88.92702600			Staley, A. E. Manfct. Co	Waste Treatment Well	1	WASTE		Ground level	504	7/27/1976
323	121152113500	45678	-88.96636300			Beasley	Edgecombe, Arthur		INJT		Digital Elevation Model	42	5/9/1976
324		2924	-89.03433900			Corley, W. A.	Hill, Chester R. & Allie R.	1	OILP		Kelly Bushing	2,201 Silurian	10/31/1976
325	121152113900	2997	-89.04126600		36-16N-1E	Corley, W. A.	Hill, Allie	3	DAP		Ground level	2,161 Silurian	9/24/1976
	121152114300	3056	-88.94263500		32-16N-1E	Triple G Oil Company Ltd.	Hockaday, Nola May	1	OILP	6/8	Kelly Bushing	2,156 Silurian 1,286	5/8/1977
327	121152115000 121152115100	3775	-89.03453100			A. & H. Engineering Company Bollenbacher Fam. Trst.	Flach	1	DAP	600	Ground level	2,100 Silurian	12/31/1975 3/24/1977
328		3775	-89.03453100		-	Triple G Oil Company Ltd.	Phillips	1	OIL		Kelly Bushing	2,100 Silurian	2/15/1978
329		4175	-88.94259900			Triple G Oil Company Ltd.	Hockaday, Nola Mae	2	OIL		Kelly Bushing	2,170 Silurian	1/2/1978
	121152110300	58114	-88.98550200		-	Baker, E. C. & Sons	Medusa Aggregates Co	2	GAS		Topographic map	140	3/31/1977
332	121152117700	4892	-88.94730300			Triple G Oil Company Ltd.	Hockaday Comm.	3	DAOP		Kelly Bushing	2,144 Silurian	4/15/1978
333	121152117800	4959	-89.03658800	39.79063900		Corley, W. Andrew	Hill. Howard	3	OIL		Kelly Bushing	2,175 Silurian	5/11/1978
	121152118200	5387	-88.94496500			Triple G Oil Company Ltd.	Hockaday	4	OILP		Kelly Bushing	2,155 Silurian	6/13/1978
335	121152118300	5433	-89.03663000			Corley, W. A.	Hill, Allie Comm.	1	OILP		Kelly Bushing	2,180 Silurian	4/3/1978
336	121152118400	5515	-88.94266700			Triple G Oil Company Ltd.	Hockaday	5	OILP		Kelly Bushing	2,160 Silurian	6/11/1980
337	121152118600	5714	-89.05824800	39.83746000		Carroll, Dell	Krall	5	OIL		Kelly Bushing	2,080 Silurian	7/31/1978
338	121152118700	5749	-88.93791100	39.90937800	23-17N-2E	Triple G Oil Company Ltd.	Phillips	5	OIL	690	Kelly Bushing	2,174 Silurian	12/2/1978
339	121152118800	5750	-88.94026100	39.90810000	23-17N-2E	Triple G Oil Company Ltd.	Phillips	6	OIL	683	Kelly Bushing	2,167 Silurian	11/17/1978
340	121152119200	6063	-89.03426600	39.79345300	36-16N-1E	Corley, W. Andrew	Hill, Allie Comm.	2	DAOGP		Kelly Bushing	2,203 Silurian	8/28/1978
341	121152119300	6064	-89.03188100	39.79258800	36-16N-1E	Corley, W. Andrew	Hill, Howard	6	OIL	689	Ground level	2,194 Silurian	10/9/1978
342	121152119400	6264	-89.03422700	39.79066300	36-16N-1E	Corley, W. Andrew	Hill, Howard	4	DAP	686	Ground level	2,160 Silurian	9/4/1978
343	121152119401	3742	-89.03422700	39.79066300	36-16N-1E	Watters Oil & Gas Co.	Hill Unit	WS- 1	WATRSP	696	Ground level	2,000 New Albany	4/11/1988
344	121152119500	6288	-89.03911700			Corley, W. A.	Hill, Howard & Christine	1-C	DAOP		Ground level	2,158 Silurian	9/19/1978
345	121152119600	6313	-88.93560100			Triple G Oil Company Ltd.	Hubble	1	OILP		Kelly Bushing	2,153 Silurian	12/26/1978
346	121152120101	8548	-88.94732000			Triple G Oil Company Ltd.	Hockaday	6	OILP		Kelly Bushing	2,144 Silurian	7/16/1980
347	121152120300	6523	-88.94252300			Triple G Oil Company Ltd.	Phillips	9	OIL		Kelly Bushing	2,150 Silurian	5/12/1979
348		6527	-88.93562600		24-17N-2E	Triple G Oil Company Ltd.	Hubble	2	OILP		Kelly Bushing	2,150 Silurian	11/21/1979
349	121152120500	6526	-88.93785700			Triple G Oil Company Ltd.	Phillips	7	OIL		Kelly Bushing	2,159 Silurian	5/29/1979
	121152120600	6525	-88.94017700			Triple G Oil Company Ltd.	Phillips	8	OIL		Kelly Bushing	2,144 Silurian	5/22/1979
351 352	121152127500 121152129000	6811 7440	-89.02718500		31-16N-2E	Watters, Charles Carey, John Oil Co., Inc	Ellison, Ralph Miller	1	DAOP		Kelly Bushing Kelly Bushing	2,159 Silurian 2,202 Silurian	1/9/1979 6/12/1979
		7440	-89.05557100					1	-		, ,	2,202 Silurian 2,141 Silurian	8/25/1980
353 354	121152129300 121152129400	7508	-88.94253900		26-17N-2E	Triple G Oil Company Ltd. Triple G Oil Company Ltd.	Phillips Phillips	10	OIL		Kelly Bushing Kelly Bushing	2,141 Silurian	8/25/1980
354	121152129400	7508	-88.94250300			Triple G Oil Company Ltd.	Phillips	11	OIL		Kelly Bushing	2,146 Silurian	11/12/1980
355	121152129300	7530	-89.02245700			Watters, Charles	Price, Raymond Community	1	DAP		Ground level	2,195 Silurian	6/25/1979
357	121152130200	7550	-89.07904900			Watters, Charles	East, Earl Brown	1	DAOP		Ground level	2,046 Silurian	7/13/1979
358		7924	-89.09323500		28-16N-1E	Watters, Charles	Johnston, Gary L.	1	OILP		Kelly Bushing	2,158 Silurian	2/14/1979
359	121152130600	7927	-89.02970000			Watters, Charles	Zindel, Royal Wesley	1	DAP		Kelly Bushing	2.160 Silurian	8/28/1979
360	121152132500	8002	-88,94034000	39.92165000) 14-17N-2E	Triple G Oil Company Ltd.	Hubbel	3	OIL		Kelly Bushing	2,137 Silurian	5/9/1980
361	121152132600	8050	-88.93835700	39.89253300	26-17N-2E	Triple G Oil Company Ltd.	Snow	1	OILP		Kelly Bushing	2,165 Silurian	4/3/1980
362	121152132700	8173	-89.03945200	39.86872200	1-16N-1E	Comanche Oil (now Atlantic Energy)	Campbell #1	1	OIL	661	Kelly Bushing	2,048 Silurian	12/7/1979
363	121152132800	8172	-89.04427100	39.86680900) 1-16N-1E	Comanche Oil (now Atlantic Energy)	Roby-Miller #1-C	1-C	OIL	663	Kelly Bushing	2,042 Silurian	2/17/1980
364	121152132900	8562	-89.09088400	39.80812500	28-16N-1E	Watters, Charles	Johnston, Gary et al	2	OILP	634	Kelly Bushing	2,044 Silurian	1/29/1980
365	121152133000	8618	-88.94725500		23-17N-2E	Triple G Oil Company Ltd.	Loeb-Phillips Comm.	1	OIL	678	Kelly Bushing	2,150 Silurian	3/30/1980
366	121152133100	8773	-88.93558000			Triple G Oil Company Ltd.	SCHWARZE TRUST	1	OIL		Kelly Bushing	2,160 Silurian	2/6/1980
367	121152133200	8922	-88.93564000			Triple G Oil Company Ltd.	Hubbel	4	OIL		Kelly Bushing	2,141 Silurian	4/20/1980
368	121152133800	9057	-88.89447500			Archer Daniels Midland	A.D.M.	1	DAOP		Kelly Bushing	2,315 Silurian	2/18/1980
369		9156	-88.93095600			Triple G Oil Company Ltd.	Oldweiler, Eugenia	1	OILP		Kelly Bushing	2,137 Silurian	7/4/1980
370		9158	-88.93566100			Triple G Oil Company Ltd.	Hubble	5	OIL		Kelly Bushing	2,145 Silurian	6/14/1980
371		9157	-88.92144400			Triple G Oil Company Ltd.	Pense	1	OIL		Kelly Bushing	2,170 Silurian	6/6/1980
372	121152134200	9154	-88.94472900			Triple G Oil Company Ltd.	Cavender, Oma	1	OILP		Ground level	2,150 Silurian	5/25/1980
373	121152134300	9155	-88.94236700		26-17N-2E	Triple G Oil Company Ltd.	Cavender, Oma	2	OILP		Kelly Bushing	2,152 Silurian	5/26/1980
374	121152135600 121152135800	9561	-89.08827600 -88.93316700			Watters, Charles Triple G Oil Company Ltd.	Brown, Rex L. #1 Schwarze Childrens Trust	2	DAP OIL		Ground level Kelly Bushing	2,057 Silurian 2,177 Silurian	4/27/1980 9/25/1980
375	121152135800	9561	-88.93316700		24-17N-2E	Triple G Oil Company Ltd. Triple G Oil Company Ltd.	Schwarze Childrens Trust	3	OIL		Kelly Bushing	2,177 Silurian 2.175 Silurian	9/25/1980
376	121152135900	9559	-88.93083700			Triple G Oil Company Ltd.	Schwarze Childrens Trust	5	OIL		Kelly Bushing	2,175 Silurian	9/25/1980
377	121152136000	9559	-88.92846400			Triple G Oil Company Ltd.	Schwarze Childrens Trust Schwarze, Juanita	1	OIL		Kelly Bushing	2,181 Silurian	1/14/1981
378		9581	-88.90932000		-	Watters, Charles	Dingman, Lyle D. Community #1	1	OILP		Kelly Bushing	2,181 Silurian	7/2/1980
373		9602	-88.92971100		-	Triple G Oil Company Ltd.	Schwarze, Vivian	1	OIL		Kelly Bushing	2,150 Silurian	10/9/1980
381	121152136400	9688	-89.03939500			Triple G Oil Company Ltd.	Bear Hybrid Corn Co.	1	OIL		Kelly Bushing	2,035 Silurian	8/5/1980
382	121152136500	9689	-88.93554500			Triple G Oil Company Ltd.	Schwarze Childrens Trust	2	OIL		Kelly Bushing	2,179 Silurian	8/31/1980
	121152136700	9998	-89.04907200			Watters, Charles	Garver, Edward L. #1	1	OILP		Ground level	2,040 Silurian	7/17/1980
	121152136800	10106		39.85948100		Watters, Charles	Davis, Virginia M. #1	1	DAOP		Ground level	2,049 Silurian	6/15/1980

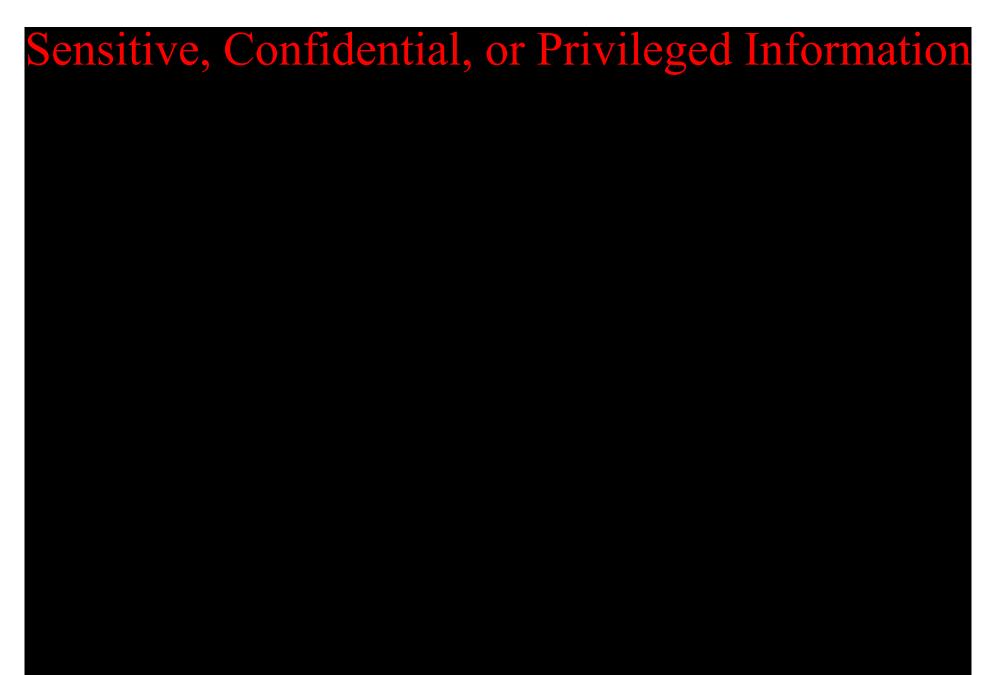
Map ID	API Number	Permit Number	Longitude	Latitude	Location	Company Name	Well Name	Well Number	Status Code	Elevation (ft)	Elev Ref	Known TD (ft)	TD Formation	Completion Date
385	121152137000	10172	-89.02261700	39.80013300	31-16N-2E	Watters, Charles	Burt, Mary B. & Smith, Roberta etal	1	DAP	645	Ground level	2,161	Silurian	12/29/1980
386	121152137100	10260	-88.92623800			Triple G Oil Company Ltd.	McKinley	1	DAP		Kelly Bushing		Silurian	4/29/1981
387	121152137200	10261	-88.93568200	39.92178500	-	Triple G Oil Company Ltd.	Demange	1	DAP		Kelly Bushing	2,170		8/24/1980
388	121152137300	10263	-88.92972500	39.91649500		Triple G Oil Company Ltd.	Schwarze, Vivian	2	OIL	682		2,155		10/6/1980
389	121152137400	10290	-88.93093500			Triple G Oil Company Ltd.	Schwarze, Vivian	4	OIL		Kelly Bushing		Silurian	10/12/1980
390		10291	-88.93091800			Triple G Oil Company Ltd.	Schwarze, Vivian	3	OIL		Kelly Bushing		Silurian	10/12/1980
391	121152137600 121152137700	10264 10262	-88.93523400 -88.91675500			Triple G Oil Company Ltd. Triple G Oil Company Ltd.	Henderson Fombelle, Hubert	1	OILP		Kelly Bushing Kelly Bushing		Silurian Silurian	11/22/1980 5/1/1981
393	121152137700	10282	-88.93825100			Triple G Oil Company Ltd.	Chenoweth	1	DAP		Ground level	,	Silurian	5/5/1981
393	121152137800	10352	-89.05383200			Wycliff & Company	Mimms #1	1	OILP		Kelly Bushing		Silurian	2/3/1981
395	121152138100	10404	-88.88046200	39.90625000		Davis, C. G.	French	1	DAP		Kelly Bushing		Devonian	7/14/1980
396		10963	-88.99955300			Kaufman, E. H.	Shimer	1	DAOP		Kelly Bushing	2,090		8/29/1980
397	121152138400	11156	-89.04670800	39.86494500		Comanche Oil (now Atlantic Energy)	Roby-Miller #2-C	2-C	OIL		Kelly Bushing	2,060		10/7/1980
398	121152138500	11155	-89.04435600	39.86305000	1-16N-1E	Comanche Oil (now Atlantic Energy)	Roby-Miller #3-C	3-C	OIL	685	Kelly Bushing	2,064	Silurian	10/1/1980
399	121152138600	11157	-89.05365500	39.86669900	2-16N-1E	Comanche Oil (now Atlantic Energy)	Parish, Gerald	1	OILP	697	Kelly Bushing	2,055	Silurian	10/19/1980
400	121152138800	11552	-89.04186500	39.87049800	1-16N-1E	Comanche Oil (now Atlantic Energy)	Campbelll #2	2	OIL	686	Kelly Bushing	2,040	Silurian	11/25/1980
401	121152139000	11583	-89.00427800	39.86573900	5-16N-2E	Kaufman, E.H.	Wilcox	1	DAP	664	Kelly Bushing	2,061	Silurian	11/12/1980
	121152139100	11674	-89.04424800			Comanche Oil (now Atlantic Energy)	Campbell #3	3	OIL		Ground level		Silurian	1/12/1981
403	121152139200	11725	-89.03709300	39.86512200	-	Carroll, Dell Oil Prop.	Sawyer & Gulick Comm. #2	2	OIL		Kelly Bushing		Silurian	12/19/1980
	121152139300	11664	-89.03935000			Comanche Oil (now Atlantic Energy)	Dingman	1	OIL		Kelly Bushing		Silurian	12/14/1980
405	121152139400	11675	-89.03225700	39.87611000		Comanche Oil (now Atlantic Energy)	Lehn	1	DAOP		Ground level		Silurian	10/18/1980
406	121152139500	11831	-89.02753700			Watters, Charles	Hayes, Wayne	1	OILP		Ground level		Silurian	2/9/1981
	121152139600	11837	-88.94962600			Triple G Oil Company Ltd.	Hockaday	7	OILP		Kelly Bushing		Silurian	1/1/1981
408	121152139700 121152139800	11838 11813	-88.94731700 -88.94728800	39.91597700 39.91233100		Triple G Oil Company Ltd.	Hockaday Loeb Phillips	8	OILP		Kelly Bushing		Silurian Silurian	1/14/1981 4/7/1981
409	121152139800	11813	-88.94728800		-	Triple G Oil Company Ltd. Triple G Oil Company Ltd.	Loeb Phillips	2	OIL	675	Kelly Bushing Ground level	2,155	Silurian	4/7/1981 4/9/1981
410		11814	-88.94727400			Triple G Oil Company Ltd.	Pense	3	OILP		Ground level	2,155		8/25/1981
	121152140000	11834	-88.92145700			Triple G Oil Company Ltd.	Pense	2	OIL		Ground level		Silurian	8/25/1981
	121152140100	11830	-88.92617900			Triple G Oil Company Ltd.	Schwartz, Vivian	5	OILP		Ground level	2,180		6/9/1981
413	121152140200	11833	-88.92621000	39.92025700		Triple G Oil Company Ltd.	Schwarze, Vivian	6	OIL		Kelly Bushing	2,160		7/9/1981
415	121152140500	11906	-89.04184600			Decatur Petroleum Co.	Bear Hybrid #1-A	1-A	OIL		Ground level		Silurian	6/13/1981
416	121152140600	11907	-89.03702700	39.87242200		Decatur Petroleum Co.	Bear, R. #1	1	OIL		Ground level		Silurian	7/13/1981
417		11910	-88.87822100			Triple G Oil Company Ltd.	Hirsch, E. & P.	1	OIL		Ground level	2,230		5/30/1981
418		12103	-89.05838300	39.86666400	2-16N-1E	Carroll, Dell Oil Prop.	Gulick, Herb	1	TA	691	Kelly Bushing	2,050	Silurian	9/8/1981
419	121152141300	12134	-89.03698500	39.87607900	36-17N-1E	Comanche Oil (now Atlantic Energy)	Lehn	2	DAOP	691	Kelly Bushing	2,025	Silurian	12/5/1980
420	121152141400	12220	-89.04667200	39.87048100	1-16N-1E	Comanche Oil (now Atlantic Energy)	Campbell #4	4	OIL	680	Kelly Bushing	2,058	Silurian	3/17/1981
421	121152141500	12226	-89.05839000	39.86848600	2-16N-1E	Pawnee Oil & Gas, Inc.	Dingman-Parish Community	1	OILP	691	Ground level	2,038	Silurian	4/30/1981
422	121152141601	21950	-89.05602600		-	Comanche Oil Corporation	Parish, G	7	OILP		Kelly Bushing	2,050		6/7/1983
	121152141700	12333	-89.05371700			Comanche Oil (now Atlantic Energy)	Parish, Gerald	3	OILP		Kelly Bushing		Silurian	3/18/1981
424		12334	-89.05601900			Comanche Oil (now Atlantic Energy)	Parish, Gerald #2	4	OILP		Kelly Bushing	2,050		3/25/1981
425	121152141801	26898	-89.05601900	39.86668300	-	Comanche Oil (now Atlantic Energy)	Parish, Gerald	2	OIL		Kelly Bushing		Silurian	3/25/1981
426	121152141900		-89.05135500	39.86853900		Pawnee Oil & Gas, Inc.	Parish, James	1	OIL		Ground level		Silurian	1/14/1981
427		12224	-89.04901200			Pawnee Oil & Gas, Inc.	Parish, James	2	OILP		Ground level	2,021		4/24/1981
428	121152142100 121152142200	12223 12221	-89.04417500 -89.04181100			Pawnee Oil Corp. Comanche Oil (now Atlantic Energy)	Parish, James Dingman	3	OIL OILP		Kelly Bushing Kelly Bushing		Silurian Silurian	4/30/1981 3/22/1981
429	121152142200	12221	-89.04181100	39.87604800		Comanche Oil (now Atlantic Energy) Comanche Oil (now Atlantic Energy)	Dingman	2	OILP		Ground level	2,050		4/30/1981
430	121152142300	12219	-89.03933100			Triple G Oil Company Ltd.	Hockaday	9	OILP	677			Silurian	4/30/1981
431	121152142400	12321	-88.93797400	39.91533700		Barger Engineering, Inc.	Rohrkasse	1	OIL	681		2,135		1/1/1981
433	121152142600	12198	-88.94007300			Barger Engineering, Inc.	Casey	1	OIL		Ground level		Silurian	4/30/1981
	121152142700	7588	-88.84163800		-	Hydrocarbon Survey, Inc.	Structure Test	80-C-2	CONF				1	
435	121152142800	7589	-88.85090000	40.01767100		Hydrocarbon Survey, Inc.		80-C-3	CONF					
436	121152142900	7587	-88.86991000	40.01729700	16-18N-3E	Hydrocarbon Survey, Inc.		80-C-1	CONF					
437	121152143000	7591	-88.87950500	40.00998200	16-18N-3E	Hydrocarbon Survey, Inc.		80-C-5	CONF					
	121152143100	7590	-88.85122400			Hydrocarbon Survey, Inc.	Structure Test	80-C-4	CONF					
	121152143200	7592	-88.86065400			Hydrocarbon Survey, Inc.	80-C-70		UNK		Digital Elevation Model			
-	121152143300	12378	-89.08290100			Comanche Oil (now Atlantic Energy)	Merriman #1	1	DAP		Kelly Bushing		Devonian	1/28/1981
441	121152143400	12376	-89.09550300	39.82264600	-	Pawnee Oil Corp.	Beatty	1	OIL		Kelly Bushing	2,035		5/17/1981
442	121152143401	200819	-89.09550300	39.82264600		Pawnee Oil Corp.	Pawnee-Beatty	1	TA		Kelly Bushing		Silurian	6/4/1996
443	121152143402	55379	-89.09550300	39.82264600	-	Pawnee Oil Corp.	Beatty	1	TA	625		2,034	Silurian	9/23/2001
444	121152143500	12380	-89.04661400			Comanche Oil (now Atlantic Energy)	Parish, Gerald	5	DAP		Ground level		Devonian	1/5/1981
445 446	121152143600 121152143601	12453 28522	-89.05135600 -89.05135600			Collins & Associates	Parish-Garver Comm. #1	1	DAP		Ground level Ground level		Silurian Silurian	12/29/1980 5/26/1984
446	121152143601 121152143700	28522	-89.05135600			Collins & Associates Bianucci, Ray Management	Parrish-Garver Comm. Gaston	1	DAOP		Ground level Ground level	2,140		5/26/1984 4/8/1981
	121152143700	12452	-89.01827500			Robertson, Harold	McKay	1	DAOP		Kelly Bushing		Silurian	12/20/1981
440	121132143000	12417	00.94903100	53.32137000	1-4-1/IN-2E	noocrison, narolu	HICKOY	1*	UAF	002	Neny busining	2,110	Shahan	12/20/1960

Man ID	API Number	Permit Number	Longitude	Latitude	Location	Company Name	Well Name	Well Number	Status Code	Elevation (ft)	Elev Ref	Known TD (ft)	TD Formation	Completion Date
	121152144000	12707	-88.82083900			Randall, Russ, Inc.	Bartel	1	OIL		5 Kelly Bushing		Silurian	4/18/1981
450	121152144100	12573	-88.93331900	39.9218590		Triple G Oil Company Ltd.	Demange	2	OILP		Felly Bushing	2,166		7/10/1981
451	121152144201	13365	-88.92859700	39.9220040	0 13-17N-2E	Triple G Oil Company Ltd.	Oldweiler, E.	2	OILP	684	Ground level	2,155	Silurian	9/25/1981
452		12572	-88.92382300			Triple G Oil Company Ltd.	Schwarze-Pense Comm.	1	OIL) Kelly Bushing		Trenton	7/26/1981
453	121152144400	12571	-88.92384300			Triple G Oil Company Ltd.	Schwarze-Pense Community	2	OIL) Kelly Bushing	2,892		9/27/1981
	121152144500	12576	-88.94225700		0 35-17N-2E	Triple G Oil Company Ltd.	Decatur Park District	1	OILP		8 Kelly Bushing		Silurian	6/11/1981
455		12599	-88.85938600		0 22-18N-3E	Hydrocarbon Survey, Inc.	Pierce	1	DA) Ground level		Silurian	3/2/1981
456		12743	-88.94027600			Barger Engineering, Inc.	Rohrkasse	2	OIL		Ground level		Silurian	3/25/1981
457		12747	-88.93801700		0 23-17N-2E	Barger Engineering, Inc.	Rohrkasse	3	OILP		3 Ground level		Silurian	4/7/1981
458		12748 12746	-88.94031100			Barger Engineering, Inc.	Rohrkasse	4	OILP	-	Ground level		Silurian	1/20/1981
459 460	121152145200 121152145400	12746	-88.93999800		0 26-17N-2E	Barger Engineering, Inc. Watters, Charles	Casey Hays, Martha L. #1	4	OIL		Kelly Bushing Ground level	2,160	Silurian Silurian	3/1/1981 2/27/1981
461	121152145400	201066	-89.03236100	39.8652250		Watters Oil & Gas Co.	Hays, Martha L.	1	SWD		Ground level	2,040	Silunan	4/29/1994
462	121152145402	12873	-89.04192600			Comanche Oil (now Atlantic Energy)	Robey-Miller	1-B	OILP	683		2,059	Silurian	7/6/1981
463	121152145000	12873	-89.11165200			Pawnee Oil & Gas, Inc.	Macon County Materials	1	DAP		Ground level		Silurian	1/26/1981
464		12899	-89.01845800			Watters, Charles	Garver, E. Jr., & N. G.	1	DAOP		Ground level		Silurian	2/13/1981
465		12968	-89.03705700	39.8706010		Carroll, Dell Oil Prop.	Gulick, O. R. Estate #2	2	OILP		7 Kelly Bushing		Silurian	8/25/1981
466		12954	-89.04900100		0 35-17N-1E	Barger Engineering, Inc.	Doss-Gepford	1	OIL		Ground level		Silurian	5/19/1981
467	121152146100	13110	-89.04666000			Decatur Petroleum Co.	Bear Hybrid #2-A	2-A	OIL		Ground level		Silurian	6/13/1981
468	121152146201	13082	-89.09063900	39.8317950	0 16-16N-1E	Watters, Charles	Hostetler, W. B. & J. C.	1	DAP	649	Ground level	2,015	Silurian	3/26/1981
469	121152146300	13114	-89.04421000	39.8723320	0 1-16N-1E	Triple G Oil Company Ltd.	Bear Hybrid #2	2	OIL	685	Kelly Bushing	2,018	Silurian	6/9/1981
470	121152146400	13284	-89.03717300	39.8633010	0 1-16N-1E	Carroll, Dell Oil Prop.	Sawyer-Gulick Community	3	OIL	692	2 Kelly Bushing	2,058	Silurian	10/29/1981
471	121152146401	200210	-89.03717300	39.8633010	0 1-16N-1E	Carroll, Dell Oil Prop.	Sawyer-Gulick Community	3	UNKP	688	B Ground level	2,060		
472	121152146500	13347	-89.03458100	39.8724540	0 1-16N-1E	Decatur Petroleum Co.	Bear, Robt. #2	2	OIL	681	L Kelly Bushing	2,030	Silurian	6/13/1981
473	121152146600	13348	-89.01949100	39.9089800	0 19-17N-2E	Decatur Petroleum Co.	Beery	1	DAP	698	Ground level	1,976	Silurian	3/8/1981
474	121152146700	13349	-88.94858300			North Shore Oil Co.	Walston, Leroy Community	1	DAOP		8 Kelly Bushing	2,153		3/21/1981
475		13434	-88.94246800			Lynch, W.H. Oil Prod.	Hughes-Norfleet	1	OILP		Ground level		Silurian	3/16/1981
476		13393	-88.99925600		0 32-17N-2E	Decatur Petroleum Co.	Kath Comm.	1	DAP		Ground level		Silurian	3/17/1981
477		13559	-88.93110500	39.9328270		Triple G Oil Company Ltd.	Albert, Keith	1	DAOP		Kelly Bushing	2,133		5/12/1981
478		12451	-88.87822100		0 21-17N-3E	Bianucci, Ray Management	Hirsch, E & P	1	DAP		Ground level		Silurian	3/31/1981
479		13539	-88.97979300		0 33-17N-2E	Lane, Virgil	Barnett, Vernie J.	1	DAOP		8 Kelly Bushing	2,145		3/26/1981
480	121152147300 121152147400	13624 13693	-88.95946500		0 11-15N-2E	Harness Oil Properties	Jacobs Well #1	1	DAP		Ground level		Silurian	4/10/1981 4/8/1981
481		13693	-89.06303000	39.8647220 39.8685550		Pawnee Oil & Gas, Inc. Pawnee Oil & Gas, Inc.	Parish, Howard Parish, James	1	OIL) Kelly Bushing 5 Kelly Bushing		Devonian Silurian	4/8/1981 5/9/1981
482	121152147500	13694	-89.04904800	39.8685550		Pawnee Oil & Gas, Inc.	Randle	4	DAP		Ground level	,	Silurian	6/3/1981
483	121152147600	13695	-89.14193800	39.8721180		Comanche Oil (now Atlantic Energy)	Pritchett #1	1	DAP		Ground level	1,790		6/12/1981
485	121152147700	13699	-89.04180500			Comanche Oil (now Atlantic Energy)	Dingman	4	OILP		Kelly Bushing		Silurian	6/30/1981
486		13696	-89.03698400			Comanche Oil (now Atlantic Energy)	Lehn	3	OILP		Kelly Bushing	,	Silurian	5/22/1981
487	121152148000	13698	-89.03698600		0 36-17N-1E	Comanche Oil (now Atlantic Energy)	Lehn	4	OILP) Kelly Bushing		Silurian	6/1/1981
488	121152148100	13576	-89.05837700	39.8648430		Carroll, Dell Oil Prop.	Gulick, Herb #2	2	OILP		elly Bushing	2,050		7/27/1981
489	121152148200	14030	-88.91673800	39.9208980		Triple G Oil Company Ltd.	Jurg-Padrutt	1	OILP		Kelly Bushing	2,180		9/21/1981
490	121152148300	14052	-89.03953800	39.8632000	0 1-16N-1E	Comanche Oil (now Atlantic Energy)	Robey-Miller #5-C	5-C	OIL	687	7 Kelly Bushing	2,073	Silurian	7/7/1981
491	121152148400	14053	-89.05371000	39.8722440	0 2-16N-1E	Comanche Oil (now Atlantic Energy)	Parish, Gerald	6	OILP	690) Kelly Bushing	2,021	Silurian	7/24/1981
492		14080	-89.05863400	39.9031700	0 26-17N-1E	C & H Oil & Gas	Games, Lee	1	DAP	680) Ground level	1,969	Silurian	6/29/1981
493		14415	-89.07440000		0 15-16N-1E	Watters, Charles	Hoffman, Howard #2	2	OIL		B Ground level	2,050		7/13/1981
494	121152148700	14414	-89.00313700			Watters, Charles	Dalton, John S.	1	DAOP		6 Kelly Bushing		Silurian	2/11/1982
495	121152148800	14486	-88.98922500			Decatur Petroleum Co.	Staley-Butts	1	DAOP) Ground level	2,052		6/20/1981
496	121152148900	14609	-88.94961700			Triple G Oil Company Ltd.	Phillips, Loeb	4	OILP		Ground level		Silurian	6/28/1982
497		14610	-88.92148800			Triple G Oil Company Ltd.	Pense	4	OIL		B Ground level		Silurian	10/9/1981
498		14611	-88.91677600		0 18-17N-3E	Triple G Oil Company Ltd.	Fombelle	2	DAP		2 Ground level		Silurian	11/18/1981
499	121152149200	14806	-89.02748900	39.8691440		Bianucci, Ray Management	Stein	1	OILP		Ground level	2,035		7/26/1981
500 501	121152149300 121152149400	15167 15262	-89.03453700	39.8834360 39.9005830		Carey, John Oil Co., Inc	Powers Schwarze, R. D.	1	DAP DAP	695	, ,		Silurian Silurian	7/27/1981
501		15262	-88.91650900		0 30-17N-3E 0 10-16N-1E	Triple G Oil Company Ltd. Carey, John Oil Co., Inc	Schwarze, R. D. Hurst #1	1	DAP		Kelly Bushing Kelly Bushing	, .	Silurian	9/8/1981 8/17/1981
502		15300	-89.06762400		0 10-16N-1E	John Carey Oil Co., Inc.	Richardson	1	OILP		Kelly Bushing		Silurian	10/30/1981
503	121152149800	15352	-89.07437500		0 15-16N-1E	Marguand, Charles L.	Breyfogle, Paul	1	OILP		Kelly Bushing	2,087		10/30/1981
504	121152149700	15441	-89.11451100			Blackland Oil Co.	Kraft	1	DAOP		Ground level	1,986		8/11/1981
505		15594	-89.05140800			Watters, Charles	Dingman, Lyle Communitized #2	2	DAOP		Ground level	2,047		8/22/1981
500		41296	-89.07442000			Watters Oil & Gas Co.	Hoffman, Howard	3	OIL		2 Kelly Bushing		Silurian	1/27/1988
508		15614	-89.03444000		0 36-17N-1E	Comanche Oil (now Atlantic Energy)	Lehn, Melvin	5	OILP		Kelly Bushing		Silurian	11/16/1981
509		15615	-89.03207500		0 36-17N-1E	Comanche Oil (now Atlantic Energy)	Lehn, Melvin	6	OILP		Kelly Bushing		Silurian	11/16/1981
510		15773	-88.92611800			Barger Engineering, Inc.	Baby Fold	1	OIL		B Ground level	2,196		10/29/1981
511	121152151100	15938	-89.08588400		0 16-16N-1E	Watters, Charles	Brown, Rex L. Communitized #2	2	DAOP		Ground level	2,033		10/10/1981
r	121152151200	16104	-88,92623100	39.9220760	0 13-17N-2E	Triple G Oil Company Ltd.	Oldweiler, Eugenia	3	OILP	689	Helly Bushing		Silurian	12/14/1981

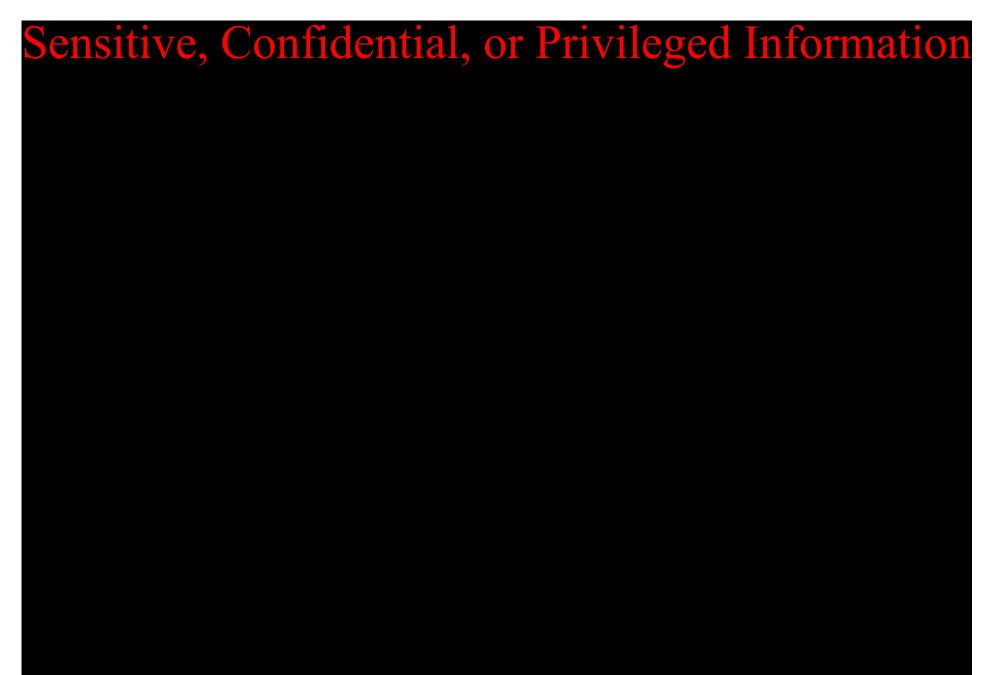
Man ID	API Number	Permit Number	Longitude	Latitude	Location	Company Name	Well Name	Well Number	Status Code	Elevation (ft)	Flow Rof	Known TD (ft) TD Formation	Completion Date
	121152151400	16115	-89.02744600			Bianucci, Ray Management	Stein	2	DAOP		Ground level	2,020 Silurian	9/23/1981
	121152151800	16226	-89.02971600			Comanche Oil (now Atlantic Energy)	Lehn, Melvin	7	OILP		Kelly Bushing	2,002 Silurian	11/21/1981
515	121152152001	28989	-89.03708700			Carroll, Dell Oil Prop.	Gulick, O. R. Estate #3-A	3-A	OIL		Kelly Bushing	2,028 Silurian	5/19/1984
516	121152152100	16353	-89.05837100	39.86302100	2-16N-1E	Carroll, Dell Oil Prop.	Gulick, Herb #3	3	DAP		Ground level	2,038 Silurian	5/22/1982
517	121152152200	16403	-89.05579200	39.81935800	23-16N-1E	Carter Oil Prop., Inc.	Bourne	2	TAP	592	Ground level	2,092 Maquoketa	4/5/1982
518	121152152300	16406	-89.03956800	39.86137800	1-16N-1E	Comanche Oil (now Atlantic Energy)	Robey-Miller #6-C	6-C	OILP	689	Kelly Bushing	2,080 Silurian	11/16/1981
		16442	-88.87801100			Davis, C. G.	Cundiff	1	DAP		Kelly Bushing	2,285 Silurian	11/6/1981
	121152152500	16499	-89.03720300			Dell Carroll Oil Pro	Sawyer-Gulick Comm. #4	4	OIL		Kelly Bushing	2,060 Silurian	11/8/1981
		16725	-89.03239900			Watters, Charles	Hays, Martha #2	2	OIL		Ground level	2,055 Silurian	12/4/1981
	121152152800	16825	-89.06983800			John Carey Oil Co., Inc.	Brown	1	OILP		Kelly Bushing	2,079 Silurian	5/21/1982
523	121152152900	16951	-89.03721500			Watters, Charles	McGrath & McNeill	1	OILP		Kelly Bushing	2,065 Silurian	5/23/1982
524	121152153000	17235 17333	-88.92849600 -88.92613500		24-17N-2E	Triple G Oil Company Ltd. Barger Engineering, Inc.	Schwartz Childrens Trust Baby Fold	6	OIL		Kelly Bushing Kelly Bushing	2,180 Silurian 2,188 Silurian	3/4/1982 12/17/1982
525	121152154400	17333	-88.92613500	39.91144400		Watters, Charles		2			Ground level	2,188 Silurian	2/18/1982
526	121152154500	17434	-89.03243600	39.86159800	-	North Shore Oil Co.	Hays, Martha #3 Milne #1	3	DAOP		Kelly Bushing	2,051 Silurian	2/18/1982
527		17419	-89.00002100			Carey, John Oil Co., Inc	Fortney Community #1	1	OIL		Kelly Bushing	2,075 Silurian	5/4/1982
	121152154700	17383	-89.07912500		15-16N-1E	Carey, John Oil Co., Inc	Fortney Community #1	2	OIL		Kelly Bushing	2,054 Silurian	9/22/1982
	121152154900	17304	-88.97073800		22-17N-2E	Champaign Valley Res.	Hickory Point	1	DAP		Kelly Bushing	2,064 Silurian	2/19/1982
	121152154900	17405	-89.03957600			Pawnee Oil & Gas, Inc.	Davis	1	OILP		Kelly Bushing	2,080 Silurian	5/12/1982
	121152155200	17839	-88.93529600		25-17N-2E	Barger Engineering, Inc.	Security Savings & Loan	1	OIL		Ground level	2,185 Silurian	9/29/1982
	121152155300	17897	-89.02995600		12-16N-1E	Pawnee Oil Corp.	Elwood	1	OILP		Kelly Bushing	2,135 Silurian	3/2/1983
534	121152155400	17898	-89.03956400	39.85594100	12-16N-1E	Pawnee Oil & Gas, Inc.	Macon Seed	1	OILP	684	Kelly Bushing	2,100 Silurian	5/12/1982
535	121152155600	17954	-89.09547800	39.82446700	21-16N-1E	Pawnee Oil & Gas, Inc.	Roby-Miller	1-P	OILP	623	Kelly Bushing	2,010 Silurian	6/19/1982
536	121152155700	17953	-89.09314000	39.82267600	21-16N-1E	Pawnee Oil & Gas, Inc.	Rothwell	1	OILP	631	Kelly Bushing	2,040 Silurian	6/20/1982
537	121152155800	18021	-88.93308500	39.89451400	25-17N-2E	Triple G Oil Company Ltd.	Henderson Community	2	OILP	660	Ground level	2,185 Silurian	5/2/1982
538	121152156000	18131	-89.00872600	39.82943500	20-16N-2E	Triple G Oil Company Ltd.	Massey	1	DAP	648	Ground level	2,130 Silurian	10/26/1982
539	121152156100	18130	-88.94490800			Triple G Oil Company Ltd.	Phillips	14	OIL		Kelly Bushing	2,165 Silurian	4/28/1982
	121152156300	18474	-89.02762800			Watters, Charles	Hayes, Wayne	2	DAOP		Ground level	2,056 Silurian	4/25/1982
	121152156400	18441	-88.91717300			R & M Oil Prod. Corp.	Gardner-West	1	DAP		Ground level	2,082 Silurian	4/29/1982
542	121152156500	18575	-89.03458700	39.86881100	-	Carroll, Dell Oil Prop.	Gulick, O. R. Estate	4	OIL		Ground level	2,030 Silurian	6/18/1982
	121152156501	200208	-89.03458700			Carroll, Dell Oil Prop.	Gulick, O. R. Estate	4	INJW		Ground level	2,020	6/19/1989
544		18619	-89.03472600			Dell Carroll Oil Pro	Sawyer-Gulick Comm. #5	5	OIL		Ground level	2,043 Silurian	6/4/1982
545 546		18574 200209	-89.03481200		12-16N-1E	Carroll, Dell Oil Prop. Carroll, Dell Oil Prop.	Gulick, Helen Gulick, Helen	1	OIL UNKP		Ground level Ground level	2,071 Silurian 2,071	6/11/1982
546		18694	-89.03481200	39.85970300		Watters, Charles	Johnson Communitized	1	OILP		Kelly Bushing	2,071 2.090 Silurian	5/21/1982
547	121152156900	18693	-89.03243100			Triple G Oil Company Ltd.	Oldweiler, Eugenia	1	OILP		Kelly Bushing	2,160 Silurian	6/17/1982
		18692	-88.92150500	39.92222100		Triple G Oil Company Ltd.	Oldweiler, Eugenia	5	OILP		Kelly Bushing	2,100 Silurian	1/7/1982
550	121152157300	18861	-89.07325400			Pawnee Oil & Gas. Inc.	Clifton	1	DAP		Kelly Bushing	2.037 Silurian	5/18/1982
551	121152157600	19162	-89.02312100	39.86937200	6-16N-2E	Triple G Oil Company Ltd.	Stein	1-A	DAOP		Kelly Bushing	2,035 Silurian	7/12/1982
	121152157700	19204	-89.03243800			Watters, Charles	Dipper Comm. #1	1	DAP		Ground level	2,071 Silurian	6/14/1982
553	121152158000	19533	-89.03471100	39.82515500	24-16N-1E	Carey, John Oil Co., Inc	Barding	1	DAP	642	Ground level	2,115 Silurian	7/23/1982
554	121152158300	19752	-89.07674800	39.83365000	15-16N-1E	Watters, Charles	Hoffman, Howard A.	1-A	OILP	667	Ground level	2,054 Silurian	8/24/1982
555	121152158500	19908	-89.07000400			John Carey Oil Co., Inc.	Richardson	2	OILP		Kelly Bushing	2,083 Silurian	11/15/1982
556	121152158600	19912	-88.96614600			Watters, Charles	Tallman	1	DAOP		Ground level	2,293 Devonian	8/1/1982
		20137	-89.07911100		15-16N-1E	Watters, Charles	Hoffman, Howard A. #2-A	2-A	OILP		Ground level	2,049 Silurian	8/10/1982
558	121152158900	20252	-89.08595300	39.83909000		Watters, Charles	Hollar, Susannah D. #1	1	DAOP		Ground level	2,029 Silurian	8/19/1982
559	121152159000	20381	-88.93880200			Barger Engineering, Inc.	Casey-Hatch-Snow Community	1	OILP		Kelly Bushing	2,167 Silurian	10/7/1982
560 561	121152159200 121152159300	20588 20749	-89.06300600	39.85014900		Triple G Oil Company Ltd. R. L. R. Development Corp.	Lutz #1 Richardson	1	OIL DAP		Kelly Bushing Kelly Bushing	2,120 Silurian 1,990 Silurian	1/13/1983 9/20/1982
	121152159300		-89.10426700			Carey, John Oil Co., Inc	Fortney Community #3	3	OIL		Kelly Bushing	2,050 Silurian	9/20/1982
563		20827	-89.07302200		10-17N-1E	R. L. R. Development Corp.	Richardson Communitzed	1	DAP		Kelly Bushing	1,947 Silurian	9/24/1982
564	121152160100	21032	-89.04673200	39.86115500		Comanche Oil (now Atlantic Energy)	Roby-Miller #7-C	7-0	OIL		Kelly Bushing	2,073 Silurian	5/10/1983
565	121152160100	21052	-89.04416900			Comanche Oil (now Atlantic Energy)	Dingman	5	OIL		Kelly Bushing	2,035 Silurian	6/7/1983
566		21491	-89.09544900			Pawnee Oil Corp.	Roby-Miller	2-P	DAP		Kelly Bushing	2,017 Silurian	11/13/1982
567	121152160700	21492	-89.09311500	39.82449800	21-16N-1E	Pawnee Oil & Gas, Inc.	Roby-Miller	3-P	OILP		Kelly Bushing	2,053 Silurian	11/21/1982
568	121152160801	23510	-89.10019600	39.82440300	21-16N-1E	Triple G Oil Company Ltd.	Scherer	1	OIL	639	Kelly Bushing	2,010 Silurian	8/17/1983
569	121152161000	21535	-89.05604100	39.87413300		Comanche Oil (now Atlantic Energy)	Parish, G. #8	8	OIL		Kelly Bushing	2,020 Silurian	6/7/1983
570	121152161800	21766	-89.07690000			Carey, John Oil Co., Inc	Stookey #1	1	DAP		Kelly Bushing	2,180 Silurian	11/20/1982
571	121152162100	21851	-88.92590900	39.89836000		Triple G Oil Company Ltd.	Klepzig Community	1	OILP		Kelly Bushing	2,200 Silurian	5/14/1983
572	121152162200	22080	-89.03957800			Pawnee Oil Corp.	Kick	1	DAP		Kelly Bushing	2,102 Silurian	1/31/1983
573		22317	-89.03096500			Decatur Petroleum Co.	Bear, Robert #3	3	OILP		Kelly Bushing	2,016 Silurian	1/30/1984
574	121152162500	22322	-89.06763600	39.85009400		Triple G Oil Company Ltd.	Lutz	2	OILP		Ground level	2,100 Silurian	7/4/1983
575	121152162600	22316	-89.03149200			Decatur Petroleum Co.	Bear, Robert #4	4	DAP		Ground level	1,990 Silurian	11/15/1983
576	121152163000	22578	-89.0686/800	39.84371700	15-16N-1É	Carey, John Oil Co., Inc	Hoyt Community #2	2	DAP	689	Kelly Bushing	2,102 Silurian	1/19/1983

Map ID	API Number	Permit Number	Longitude	Latitude	Location	Company Name	Well Name	Well Number	Status Code	Elevation (ft)	Elev Ref	Known TD (ft)	TD Formation	Completion Date
	121152163400		-89.02268700	39.7329900	0 19-15N-2E	owner	Taylorville Aquifer Study	TA-3	STRAT		Topographic map	165		7/10/1980
578			-88.96729600			owner	Taylorville Aquifer Study	TA-6	STRAT		Topographic map	145		7/16/1980
579		23770	-89.00573800			Watters Oil & Gas Co.	Dalton, John	2	DAOP		Kelly Bushing		Silurian	5/12/1983
580		24301	-89.03239000			Carroll, Dell Oil Prop.	Gulick, O. R. Estate #5	5	DAP		Ground level	2,019		6/29/1983
581 582		4129 24620	-89.03239000			Carroll, Dell Oil Prop. Guyon, Armand J.	Gulick, O. R. Estate Pistorius, Neil E. et al	5	WATRSP TAOP		Ground level Ground level	1,101	Silurian	7/13/1989 6/24/1983
583	121152164600	38765	-89.11435900			Watters Oil & Gas Co.	Pistorius etal	1	OILP		Ground level	1,950		9/1/1986
584		24882	-89.08235800	39.8300080		Watters Oil & Gas Co.	Cooper, Carl E. et al	1-A	DAOP		Ground level	2,064		10/3/1983
585	121152165000	24944	-88.92107600	39.8930400		Triple G Oil Company Ltd.	Harrison-Oliver Community	1	DAP		Ground level		Silurian	9/12/1983
586	121152165100	24884	-89.01247800		0 31-17N-2E	Watters Oil & Gas Co.	Noland, Christina	1	OIL	693	Kelly Bushing	2,169		7/26/1983
	121152165200	24883	-89.00548500			Watters Oil & Gas Co.	Dalton, John	3	DAOP		Kelly Bushing		Silurian	7/14/1983
588		25364	-89.10255100	39.8243700		Triple G Oil Company Ltd.	Scherer	2	OIL		Kelly Bushing	2,100		12/1/1983
589 590	121152165500 121152165700	25725 25158	-89.04414200 -89.11199700		0 24-16N-1E 0 29-16N-1E	Carey, John Oil Co., Inc Watters Oil & Gas Co.	Alsup-Goodrich Comm.	1	DAOP		Kelly Bushing Ground level		Silurian Silurian	8/16/1983 4/5/1987
590		25158	-89.01597900			Watters Oil & Gas Co.	Alsup, Raymond Graves	1	OILP		Kelly Bushing	2,070		9/14/1983
592	121152166000	25431	-89.01248000			Watters Oil & Gas Co.	Nolan, Christina	2	DAOP		Ground level		Silurian	8/14/1983
593		25429	-89.01011600			Watters Oil & Gas Co.	Dalton, John	4	OIL		Kelly Bushing		Silurian	8/15/1983
594	121152166201	26227	-89.01011800		0 32-17N-2E	Watters Oil & Gas Co.	Dalton, John	5	OIL		Ground level	2,084		9/26/1983
595	121152166202	202610	-89.01011800	39.8783190	0 32-17N-2E	IBEX Geological Consultants, Inc.	Dalton	5-WI	INJW	679	Kelly Bushing	2,085	Silurian	1/13/2005
596	121152166300	26101	-89.05601200			Triple G Oil Company Ltd.	Bear, Robert #1	1	OILP		Kelly Bushing	2,180	Silurian	3/5/1984
597		37494	-89.05138600			Great Northern Oil Co., Ltd.	Bear, Robert	2	DAP		Kelly Bushing	2,073		4/6/1986
598		25807	-89.01361500			Watters Oil & Gas Co.	Garver	2-A	DAOP		Ground level		Silurian	9/4/1983
599 600	121152166700 121152166900	25840 25809	-89.01720700	39.8762370 39.8765510	0 31-17N-2E 0 32-17N-2E	Niemeyer, Stephen M. Watters Oil & Gas Co.	Friend, Ezra Dalton, John	1	OIL DAP		Kelly Bushing Kelly Bushing	2,102	Silurian Silurian	8/30/1983 8/21/1983
600		44996	-89.007779100			Watters Oil & Gas Co.	Dalton, John	WS-1	WATRSP		Kelly Bushing	2,070	Silurian	7/16/1991
601		26368	-89.00779100			Kaufman, E.H.	Reising	1	DAOP		Kelly Bushing	2,043	Silurian	9/17/1983
603	121152167200	26565	-89.00894200			John Carey Oil Co., Inc.	Shimer	2	OILP		Kelly Bushing		Silurian	12/27/1983
604		26736	-89.01609400			Watters Oil & Gas Co.	Garver	3-A	DAOP		Ground level		Silurian	10/8/1983
605		26631	-89.01956800			Niemeyer, Stephen M.	Friend	2	OIL		Kelly Bushing	2,127		11/1/1983
606		26226	-89.01484100			Watters Oil & Gas Co.	Nolan, Christina	3	OIL		Ground level	2,074	Silurian	10/3/1983
	121152167901	200645	-89.01484100		0 31-17N-2E	Watters Oil & Gas Co.	Nolan, Christine	3	WLM		Ground level	2,075		7/15/1991
608		26737	-89.01012300			Watters Oil & Gas Co.	Dalton, John	7	DAOP		Kelly Bushing	2,031		10/19/1983
609		26738	-89.00778400		0 32-17N-2E	Watters Oil & Gas Co.	Dalton, John	8	DAOP		Ground level		Silurian	10/14/1983
610	121152168200 121152168201	27348 45913	-89.10491400		0 20-16N-1E 0 20-16N-1E	Triple G Oil Company Ltd.	Hill Estate #1	1	OIL		Ground level		Silurian Silurian	4/3/1984 8/20/1991
611 612		27457	-89.10491400			Pawnee Oil Corp. Pawnee Oil Corp.	Hill Estate Beatty	1	OILP		Ground level Kelly Bushing		Silurian	12/13/1984
613		27459	-89.10233800			Pawnee Oil & Gas, Inc.	Beatty	3	OIL		Kelly Bushing	2,003		1/26/1984
614		27458	-89.09785100			Pawnee Oil & Gas, Inc.	Beatty	4	OIL		Kelly Bushing		Silurian	7/4/1984
615		27460	-89.09783300			Pawnee Oil & Gas, Inc.	Robey-Miller	4-P	OILP		Kelly Bushing		Silurian	4/25/1984
616	121152169100	27733	-89.10254100	39.8280440	0 21-16N-1E	Triple G Oil Company Ltd.	Scherer	3-A	DA	608	Ground level	2,011	Silurian	2/5/1984
	121152169400	27516	-89.02055800			Decatur Petroleum Co.	Stein	1	DAOGP		Kelly Bushing		Silurian	12/20/1983
	121152170300	28309	-89.04906000			Pawnee Oil & Gas, Inc.	Garver	1	OIL		Ground level	2,175		5/28/1984
619		27957	-89.05483200			Comanche Oil (now Atlantic Energy)	Parish, Gerald #9	9	OILP		Kelly Bushing		Silurian	3/12/1984
	121152170600 121152170700	28310 28311	-89.09788200 -89.10256800		0 21-16N-1E 0 21-16N-1E	Pawnee Oil & Gas, Inc. Pawnee Oil & Gas, Inc.	Beatty Beatty	5	OIL		Kelly Bushing Ground level		Silurian Silurian	6/30/1984 1/31/1984
621		28311 28140	-89.10256800			Western Reserves Oil Co.	Parr Trust	1	DAO		Kelly Bushing		Silurian	1/31/1984
622		29100	-89.05837600			Triple G Oil Company Ltd.	Wattley #1	1	OIL		Kelly Bushing	2,103		5/20/1984
624		29100	-89.06073900			Triple G Oil Company Ltd.	Wattley #2	2	OIL		Kelly Bushing		Silurian	11/29/1984
625		29321	-89.09076200		0 9-16N-1E	Watters Oil & Gas Co.	Ennis, Arthur	1	DAP		Ground level		Silurian	5/13/1984
626	121152171400	29341	-89.06300700	39.8483270	0 11-16N-1E	Triple G Oil Company Ltd.	Davis #1	1	OIL	701	Kelly Bushing	2,050	Silurian	8/31/1984
627		29340	-89.06527400	39.8482970		Triple G Oil Company Ltd.	Davis #2	2	OIL		Kelly Bushing	2,090		5/1/1985
628	121152171600	29322	-88.97535500	39.9042840		Watters Oil & Gas Co.	Hazen, Velma	1	DAOP		Kelly Bushing		Silurian	5/7/1984
629		29477	-89.01836300			Watters Oil & Gas Co.	Garver Communitized	1-A	DAP		Ground level	2,062	Silurian	6/20/1984
		29885 29871	-89.11436200	39.8115690 39.9108560		Watters Oil & Gas Co.	Pistorius	2-A	DAP		Ground level	1,977 2,200	Cilurian	6/10/1984
631 632		29871	-89.02187200	39.9108560		Jordan Oil & Gas Co. Watters Oil & Gas Co.	Stahl Butt. Howard	1	DAOP OILP		Kelly Bushing Kelly Bushing			6/2/1984 7/2/1984
633	121152172100	30277	-88.98004300			Carey, John Oil Co., Inc	Hopkins	1	DAOP		Kelly Bushing	2,071		6/21/1984
634		30667	-89.03549400			Watters Oil & Gas Co.	Hill, Allie	1-A	DAOP		Kelly Bushing		Silurian	7/13/1984
635		30366	-89.03899200			Watters Oil & Gas Co.	Hill, Allie R.	4	DAOP		Ground level		Silurian	6/27/1984
636			-88.93589000			IL State Water Survey	Lake Decatur Sediments		STRAT					6/30/1956
637		30772	-89.03932200			Carey, John Oil Co., Inc	Jockisch	1	DAOP		Kelly Bushing		Silurian	7/21/1984
638	121152173600	30868	-88.82807100			Baldwin, Don H.	Barnett, Richey	1	OIL		Kelly Bushing		Silurian	11/2/1984
	121152173700	31134	-88.98236100		0 28-17N-2E	Watters Oil & Gas Co.	Butt, Howard	2	DAOGP		Kelly Bushing	2,082	Silurian	8/14/1984
640	121152173800	31040	-89.17245800	39.8910180	0 26-17N-1W	Carey, John Oil Co., Inc	Moore, J & B	1	DAOP	601	Kelly Bushing	2,374	Trenton	8/14/1984


Map ID	API Number	Permit Number	Longitude	Latitude	Location	Company Name	Well Name	Well Number	Status Code	Elevation (ft)	Elev Ref	Known TD (ft)	TD Formation	Completion Date
	121152173801	31250	-89.17245800			Carey, John Oil Co., Inc	Moore, J. & B.	1	DAP		Ground level	2,378		8/14/1984
642		31408	-89.08850700	39.80265700	28-16N-1E	Watters Oil & Gas Co.	Koonce, Carroll L. et al	1-A	DAOP	584	Ground level	2,000		8/31/1984
643	121152174100	31397	-88.78456000	39.87878500		Modern Explorations	Berry, Francis	1	DAOP		8 Kelly Bushing		Silurian	9/16/1984
644		31586	-89.09323700	39.80339100		Watters Oil & Gas Co.	Koonce, Carroll et al	2-A	DAP		7 Ground level		Silurian	9/7/1984
645	121152174300	31585	-89.04132600	39.79058900		Watters Oil & Gas Co.	Hill, Allie R.	5	OIL		Kelly Bushing	2,193		10/3/1984
	121152174400	31888	-88.99841900			Barger Engineering, Inc.	Wright, A.	2	OILP		Kelly Bushing		Silurian	10/17/1984
	121152174500 121152174600	32064 32063	-89.04370200	39.79055900 39.88172800		Watters Oil & Gas Co. Watters Oil & Gas Co.	Hill, Allie R.	6	DAOP		Ground level		Silurian Silurian	11/1/1984 10/11/1984
	121152174600	32063	-89.01366900	39.88172800	-	Triple G Oil Company Ltd.	Nolan, Christina Wattley #3	2	OIL		Kelly Bushing Ground level		Silurian	7/22/1985
	121152174700	32248	-89.00310500	39.87659500		Watters Oil & Gas Co.	Dalton, John	9	OIL		Kelly Bushing		Silurian	11/7/1984
	121152174900	32172	-89.00312100		-	Watters Oil & Gas Co.	Dalton, John	10	OIL		7 Kelly Bushing		Silurian	10/30/1984
652		32326	-89.04910400	39.85928700		Energy One 1984-1	Mimms #2	2	OILP		2 Kelly Bushing	2,090		10/9/1984
653	121152183800	32327	-89.05147200	39.85744700		Energy One 1984-1	Mimms #3	3	OILP) Ground level		Silurian	11/10/1984
654	121152183900	32328	-89.04911000	39.85564400	11-16N-1E	Energy One 1984-1	Mimms #4	4	OILP	694	Kelly Bushing	2,125	Silurian	11/13/1984
655	121152184000	32545	-89.09316500	39.82085700	21-16N-1E	Basin Exploration, Inc.	Rothwell	1-B	PLUG	647	7 Kelly Bushing	2,050	Silurian	7/24/1985
656	121152184300	33245	-88.79386900	39.93194800	18-17N-4E	Power Explorations	Anderson	1	DAP	660) Kelly Bushing	2,310	Silurian	1/8/1985
657	121152184500	33377	-88.97770300	39.90605900	21-17N-2E	Watters Oil & Gas Co.	Plankenhorn Comm.	1	DAP	666	Kelly Bushing	2,064	Devonian	1/23/1985
658	121152184700	33428	-89.01720900	39.87806100		Niemeyer, Stephen M.	Friend	3	DAO		7 Kelly Bushing		Silurian	3/23/1985
659	121152184800	33512	-88.79424200	39.88607800	-	Carey, John Oil Co., Inc	Eads, R.	1	DAOP		7 Kelly Bushing	2,391		2/10/1985
660	121152185000	33595	-89.00128100	39.78938700		John Carey Oil Co., Inc.	Hubble	1	DAP		8 Kelly Bushing	2,350		2/19/1985
661		33859	-88.92119900	39.89849700	-	Triple G Oil Company Ltd.	Batthauer Community	1	OILP		Kelly Bushing	2,223		2/16/1986
	121152185600	34307	-89.10493100			Pawnee Oil & Gas, Inc.	Beatty	9	OIL		Kelly Bushing		Silurian	5/8/1985
663	121152185900	34804	-88.99858900	39.89107700	-	Petra Oil. Ltd.	Hughes-Robinson Tr.C	1	DAP		Kelly Bushing		Silurian	9/4/1985
664	121152186000	34826	-89.11198800	39.81705100		Pawnee Oil & Gas, Inc.	Beatty	12	OIL		Kelly Bushing	2,000		7/22/1985
665	121152187300	36172	-89.11435000			Watters Oil & Gas Co.	Pistorius #4-A	4-A	DAP		Ground level		Silurian	8/22/1985
666	121152187400	36173	-89.11199400	39.81523000		Watters Oil & Gas Co.	Alsup, Raymond	2 5-A	OILP		Kelly Bushing		Silurian	8/26/1985
667 668	121152187500 121152188000	36171 36268	-89.11435700	39.81524300 39.87477200		Watters Oil & Gas Co. Watters Oil & Gas Co.	Pistorius Reising, Richard et al Comm	5-A	OILP DAP		Kelly Bushing Ground level		Silurian Silurian	10/14/1985 9/6/1985
669	121152188000	36268	-89.00291000	39.87477200		Watters Oil & Gas Co.	Alsup, Raymond	2	OILP		Kelly Bushing		Silurian	10/16/1985
670	121152188500	36752	-89.10903400	39.81519800		Watters Oil & Gas Co.	Alsup, Raymond	3	DAP		Ground level	1,941		10/10/1985
	121152188400	36960	-89.14834800			Watters Oil & Gas Co.	Durflinger	1	DAP		Ground level		Silurian	10/29/1985
672		37233	-89.10728200	39.81701900		Pawnee Oil & Gas, Inc.	Beatty	10	OIL		Kelly Bushing	2,005		1/14/1986
	121152189000	37234	-89.10964400			Pawnee Oil Corp.	Beatty	11	OIL		Kelly Bushing		Silurian	1/8/1987
674		40365	-88.86924200	39.96002700		Watters Oil & Gas Co.	Jackson, Nelson et al	1	DAP		Kelly Bushing		Silurian	7/31/1987
675	121152193500	40488	-88.80182600	39.87501100	6-16N-4E	Jasper Oil Company	Garber	1	OILP	692	2 Kelly Bushing	2,339	Silurian	10/26/1987
676	121152197200	41301	-89.10548400	39.80060700	32-16N-1E	Jason Recovery System, Ltd.	Kornewald, R	1	OILP	594	Kelly Bushing	1,995	Silurian	2/23/1988
677	121152197300	41302	-89.10730900	39.80059400	32-16N-1E	Jason Recovery System, Ltd.	Kornewald, R.	2	TAP	586	Ground level	1,992	Silurian	9/27/1988
678	121152203500	41942	-89.03662700	39.79233900	36-16N-1E	Watters Oil & Gas Co.	Hill, Allie Community	1-B	TAP	687	7 Ground level	2,160	Silurian	6/15/1988
679	121152204200	42172	-89.10028000			Great Northern Oil Co., Ltd.	Dunn	1	OIL		L Kelly Bushing		Silurian	11/2/1988
680	121152205500	42403	-88.97308800	39.76596300		White, Carl	Snow, James #1	1	DAP		2 Kelly Bushing		Silurian	9/24/1988
_	121152208200	42654	-89.10258500			Great Northern Oil Co., Ltd.	Dunn	2	OIL		2 Kelly Bushing		Silurian	1/31/1989
682	121152211500	42823	-89.09792400	39.81164900		Great Northern Oil Co., Ltd.	Dunn	3	OIL		Ground level		Silurian Middle	7/11/1989
683			-89.07304300			Schwarthout	Engham, George		UNK		Digital Elevation Model	118		
	121152225700		-89.00770400			Woollen Brothers	Forster, George		UNK		Digital Elevation Model	170		
685 686	121152226300 121152226400		-88.99382500	39.88391600 39.92034800			Janvrin, Lynn Rowe		GAS GAS		Digital Elevation Model Ground level	93		
687	121152226400	49460	-88.84512000		-	Equitable Resources Exploration	IL-3026		DAP		Kelly Bushing		Maguoketa	5/12/1993
688	121152252800	52765	-89.13423000	39.84374100		Dart Oil & Gas Corp.	Dunn etal		DAP		Ground level		Silurian	6/20/1997
689	121152259900	52705	-89.10234700			IL State Water Survey	Lake Decatur Sediments		STRAT	613		2,080	Sindhan	0/20/1997
690			-88.89181800			IL State Water Survey	Lake Decatur Sediments		STRAT	1	1	1	<u> </u>	
691			-88.86798900	39.83919900		Lentz Tony	Decatur Airport	1	UNK	678	B Digital Elevation Model	1	İ	1
692	121152260800		-88.85340200	39.91001800		IL State Water Survey	Lake Decatur Sediments	-	STRAT					
693	121152260900		-88.86290000	39.88434900	-	IL State Water Survey	Lake Decatur Sediments		STRAT	1	1	45	1	
	121152261000		-88.86290000	39.88434900		IL State Water Survey	Lake Decatur Sediments		STRAT	1	1	2	1	
	121152261600		-88.93828000	39.81619400	26-16N-2E	IL State Water Survey	Lake Decatur Sediments		STRAT			1		
	121152263000		-88.82876500	39.95353900		Pure Oil Company	Illinois Prospect	A-1	STRU	686	Digital Elevation Model	1,194		
697	121152281700	54313	-89.10257700	39.80775400		Lockwood, Ronald G.	Dunn Heirs - RGL	1	DAP		Ground level	2,028		1/9/2000
698	121152292100	55044	-88.99423900	39.95074000		Lincoln Oil & Gas, L.L.C.	Bunselmeyer	05-1S	DAP		I Kelly Bushing		Silurian	4/19/2001
699	121152292300	55041	-89.01016400	39.95749000		Lincoln Oil & Gas, L.L.C.	Bunselmeyer	05-1N	DAP		L Kelly Bushing		Silurian	4/23/2001
700	121152292700	55086	-89.01829200			Lincoln Oil & Gas, L.L.C.	Lehn	19-01	DAP) Kelly Bushing		Silurian	5/11/2001
701	121152292800	55087	-89.01874800			Lincoln Oil & Gas, L.L.C.	McClure	19-01	DAP) Kelly Bushing		Silurian	5/6/2001
702	121152293100	55066	-88.99710500	39.96866500		Lincoln Oil & Gas, L.L.C.	Westerman	32-2	DAP	710) Kelly Bushing		Silurian	4/30/2001
703	121152296800		-88.82147200			IL State Geological Survey	Soy Capital Agricultural Serv		STRAT			10		10/15/2000
704	121152296900		-88.82159800	40.00952800	14-18N-3E	IL State Geological Survey	Penhallegon, Helen		STRAT	1	1	15	L	10/25/2000


	API Number	Permit Number					Well Name	Well Number	C L L L	5 1	Sha Daf	······		
Map ID 705		56500	Longitude -89.01695500	Latitude	Location 19-17N-2E	Company Name MDM Energy, Inc.	Beery, A.	1 Well Number	Status Code DAP	Elevation (ft)	Ground level	Known TD (ft)	TD Formation Hunton	Completion Date 8/15/2004
705		50500	-88.89219700	39.87726600		Illinois State Geological Survey	Archer Daniels Midland	MMV-01B	CONF	/01		2,050	nunton	8/13/2004
707	121152339000		-88.90643800	39.88261000		Illinois State Geological Survey	ADM	MMV-02S	CONF					
708	121152339200		-88.89710100	39.88387200) 32-17N-3E	Illinois State Geological Survey	ADM	MMV-03S	CONF					
709	121152339300		-88.89713600	39.88113500) 32-17N-3E	Illinois State Geological Survey	ADM	MMV-04S	CONF					
710	121152339400		-88.89712000	39.88111800) 32-17N-3E	Illinois State Geological Survey	ADM	MMV-04UG	CONF					
711			-88.89709900	39.88109000		Illinois State Geological Survey	ADM	MMV-04P	CONF					
712			-88.89710600	39.88068100		Illinois State Geological Survey	ADM	MMV-04B	CONF					
713			-88.89772400	39.87617000		Illinois State Geological Survey	ADM	MMV-07UG	CONF					
	121152339800		-88.88917200			Illinois State Geological Survey	ADM	MMV-05S	CONF					
715 716			-88.88944200 -88.88938400	39.87570100 39.87569000		Illinois State Geological Survey	ADM ADM	MMV-08UG MMV-08S	CONF					
710			-88.87725400	39.87369000		Illinois State Geological Survey Illinois State Geological Survey	ADM	MMV-095	CONF					
718	121152340100		-88.89344800	39.87692800		Archer Daniels Midland	CCS Well	1	CONF					
719			-88.89395500	39.87704100		Archer Daniels Midland	Geophysical Monitoring Well	1	CONF					
720		60678	-88.95488700	39.72923200		Stewart Producers, Inc.	Cooper Trust	1	DAP	714	Kelly Bushing	2.600	Silurian	7/28/2010
721			-88.89335900			Archer Daniels Midland	Verification Well	1	CONF			-,		.,
722	121152346600	60858	-89.05795700	39.80297800		Minard Run Oil Company	Hill, W.	1	DAP	669	Kelly Bushing	2,199		10/24/2010
723	121152347000	60998	-89.01280600	39.78315100	0 5-15N-2E	Production Energy, LLC	Bowman	1	OIL	697	Kelly Bushing	2,340	Silurian	4/24/2011
724	121152347400	61118	-89.01168000	39.78492000) 5-15N-2E	Production Energy, LLC	Bowman	2	OIL	697	Kelly Bushing	2,273	Silurian	5/5/2011
725	121152347500	61159	-89.01066100	39.78126400		Production Energy, LLC	Butterfield	1	OIL		Kelly Bushing		Silurian	5/14/2011
726		61153	-89.01036500			Production Energy, LLC	Butterfield	2	OIL		Kelly Bushing	2,320		5/14/2011
727		61310	-89.01266400	39.77771600		Swits, Gary D.	CMC Farms	1	DAP		Kelly Bushing	2,313		7/18/2011
728	121152348800	61315	-89.00811600	39.78303700		Swits, Gary D.	Miller	1	OIL	692	Kelly Bushing	2,305		11/20/2011
729	121152349000		-88.88595000	39.88961200		Illinois State Geological Survey	ADM MVA-11LG		CONF					
730 731	121152349100 121152349300		-88.88366800 -88.87988000	39.88934400		Illinois State Geological Survey	MVA-11UG ADM MVA-13LG		CONF					
731			-88.87988000		32-17N-3E 32-17N-3E	Illinois State Geological Survey Illinois State Geological Survey	MVA-13LG MVA-13-UG		CONF		-			
732			-88.88347100		32-17N-3E	Illinois State Geological Survey	MVA-13-0G MVA-13B		CONF					-
	121152349500		-88.89650900	39.89265400		Illinois State Geological Survey	ADM MVA-10UG		CONF					-
	121152349700	61532	-89.01526500			Reef Production, LLC	Hibbard, J.	1	DAP	705	Kelly Bushing	2,310		10/2/2011
	121152350100		-88.89312100		32-17N-3E	Illinois State Geological Survey	Richland Community College	MNA-10B	CONF			-/		
737	121152350200		-88.89312100	39.88911300) 32-17N-3E	Illinois State Geological Survey	Richland Community College	MVA-10LG	CONF					
738			-88.88347100	39.88205700) 32-17N-3E	Illinois State Geological Survey	ADM	MVA 12B	CONF					
739	121152350400		-88.88347100	39.88205700	0 32-17N-3E	Illinois State Geological Survey	ADM	MVA12UG	CONF					
740	121152350500		-88.88347100	39.88205700) 32-17N-3E	Illinois State Geological Survey	ADM	MVA12LG	CONF					
741		203664	-89.01163400	39.78289500		Production Energy, LLC	Bowman	3	SWD		Kelly Bushing	2,100		12/1/2011
742	121152350700	61579	-89.01515200			Production Energy, LLC	Church	2	OILP		Kelly Bushing	2,320		7/22/2012
743		61559	-89.01062800			Swits, Gary D.	Jones-Mowery-Miller	1	OIL		Kelly Bushing	2,366		11/28/2011
744		61571	-88.85476600			Sundog Oil, LLC	Stocks	2	OIL		Kelly Bushing		Trenton	11/14/2011
745		61603	-88.79552700	39.78727600		Sundog Oil, LLC	Casner	2	OIL		Kelly Bushing		St Louis	12/2/2011
746 747		61604 61706	-88.79787500 -88.98896400	39.78725700 39.77362900		Sundog Oil, LLC Production Energy, LLC	Casner Winters	1	TA DAP		Kelly Bushing Kelly Bushing		Silurian Silurian	11/26/2011 1/5/2012
747		61720	-88.98775500			Production Energy, LLC	Winters	2	DAP		Kelly Bushing			3/14/2012
748		61680	-88.79566000			Sundog Oil, LLC	Casner	4	TA		Kelly Bushing	3,527	Shandh	1/31/2012
750	121152351900	203761	-88.79566000	39.78914400		Sundog Oil, LLC	Casner	4	SWD		Ground level		Benoist	3/19/2012
751	121152353400	61740	-89.00074500	39.77004800		Pioneer Oil Co., Inc.	Hudson	1	DAP		Ground level	2,400	Devonian - Silur	ii 1/26/2012
752		61769	-88.79546700	39.78546500		Sundog Oil, LLC	Casner	10	UNK	709		1,777		2/24/2012
753	121152353600	61760	-88.79781500	39.78544600	0 6-15N-4E	Sundog Oil, LLC	Casner	9	TA		Kelly Bushing	1,870		2/6/2012
754		61870	-89.01044800			Production Energy, LLC	Kater	1	OIL		Kelly Bushing	2,350		7/11/2012
755		61889	-88.90342700	39.71655400		Bi-Petro, Inc.	Bromley	1	DAP		Kelly Bushing	2,580		4/8/2012
756		62954	-89.04066100	39.80520900		Sundog Oil, LLC	Hannah	2	UNK	663	Kelly Bushing	2,820	Trenton	1/29/2014
757		11171	-88.89201000	39.89187500		Archer Daniels Midland	Verification Well	2	CONF					───
758		62222	-88.99165000			Production Energy, LLC	Aschauer	1	DAP		Kelly Bushing	2,380		8/27/2012
759		62293	-89.01768100			Production Energy, LLC	Church	3	DAP	707	Kelly Bushing	2,320		9/3/2012
760 761	121152359400 121152360100	62734	-88.88709200 -88.99620000	39.88470200 39.77558300		Pioneer Oil Co., Inc. R K Petroleum Corp.	Geophysical Monitoring Snow Comm.	2	CONF	745	Kolly Buching	2.400		6/15/2013
761	121152360100	62734	-88.99620000	39.77558300	-	R K Petroleum Corp. Crows Point Exploration, LTD.		1	OIL		Kelly Bushing Kelly Bushing	2,400	ł	6/15/2013
762	121152360200	62741	-88.90896800	39.90822700		Crows Point Exploration, LTD. Crows Point Exploration, LTD.	Long	2	DAP		Kelly Bushing	2,260		4/4/2013
763	121152360300	63179	-88.90424700	39.90643900		Crows Point Exploration, LTD. Crows Point Exploration, LTD.	Long	2-4	OIL		Kelly Bushing	2,260		9/1/2014
765	121152360301	62762	-88.79051400			Benchmark Properties, Ltd.	South Shores, Inc. Community	1	DAP		Kelly Bushing	,	Silurian	6/21/2013
765		62861	-88.98410000	39.78093600		Sundog Oil, LLC	Tosh	2	UNK		Kelly Bushing		Trenton	10/29/2013
767	121152366700	62862	-88.98415300			Sundog Oil, LLC	Tosh	3	UNK		Kelly Bushing	3,000		11/7/2013
	121152366800	62863	-88.98420600			Sundog Oil, LLC	Tosh	4	UNK		Kelly Bushing	3,000		11/19/2013

Man ID	API Number	Permit Number	Longitude	Latitude	Location	Company Name	Well Name	Well Number	Status Code	Elevation (ft) Elev Ref	Known TD (ft) TD Formation	Completion Date
769		62856	-89.12268300	39.90431700		R K Petroleum Corp.	Bender	1	DAP	645 Kelly Bushing	2,050	6/25/2013
770		62951	-89.04494500			Sundog Oil, LLC	Hannah	4	UNK	625 Kelly Bushing	3,202 St Peter	1/29/2014
771	121152367500	63003	-89.04166800	39.80700700	25-16N-1E	Sundog Oil, LLC	Hannah	3	UNK	650 Kelly Bushing	2,790 Trenton	1/29/2014
772	121152369400	63106	-88.85636900	39.88176300	34-17N-3E	Blackwater Energy, LLC	Bradshaw	1	DA	639 Ground level	2,970	10/5/2013
773	121152369600	63201	-88.84451300	39.88092400	34-17N-3E	MDM Energy, Inc.	Marietta	1	DAP	695 Kelly Bushing	2,370 Silurian	12/20/2013
774	121152371200	64209	-89.05155000	39.85574800	11-16N-1E	Penneco Oil Company	Bangert, Sharon R.	1	OIL	698 Kelly Bushing	2,240 Moccasin Springs	4/19/2015
775	121152371300		-88.88799600	39.88490200	32-17N-3E	Pioneer Oil Co., Inc.	CCS	2	STRAT	707 Kelly Bushing	7,192	
776	121152372800	64568	-88.82554300	39.88207700	35-17N-3E	Performance Plus Consulting	Arends	1	DAP	688 Kelly Bushing	2,525	4/30/2016
777	121152375400	64818	-88.82749000	39.82649300	23-16N-3E	Long Creek Energy LLC	Rutherford	1	OILP	690 Kelly Bushing	2,869	12/16/2015
778	121152375500	64960	-88.82508100	39.82333700	23-16N-3E	Long Creek Energy LLC	Rutherford	3	OILP	682 Kelly Bushing	3,238	6/27/2016
779	121152378100	65068	-88.79888300	39.80929600	30-16N-4E	Gaitros Oil, LLC	Gaitros	1	DAP	714 Kelly Bushing	3,327	9/20/2016
780	121152378200		-88.89646000	39.88082400	32-17N-3E	IL State Geological Survey	ISGS Powerprobe	1	STRAT		34	
	121152378300		-88.89690400	39.87715100		IL State Geological Survey	ISGS Powerprobe	2	STRAT		48	
782			-88.89690400	39.87715100		IL State Geological Survey	ISGS Powerprobe	3	STRAT		40	
783		65113	-89.11687700			Pioneer Oil Co., Inc.	Pistorius		DAP	601 Kelly Bushing	2,042	11/18/2016
784			-88.91658000	39.87365000		IL State Geological Survey	ISGS	S09	STRATP			
785	121152381700		-88.91660900	39.87360300		IL State Geological Survey	ISGS	S06	STRATP			
786	121152381800		-88.87714500			IL State Geological Survey	ISGS	S04-05	STRATP			
787	121152381900		-88.91681600	39.89129800		IL State Geological Survey	ISGS		STRATP			
788	121152387201	65992	-89.03555000	39.87052900	-	Countrymark Energy Resources, LLC	Gulick Estate	6	OIL	679 Kelly Bushing	2,299	11/5/2019
789	121152387400	65649	-88.93556600			Podolsky Oil Co.	Schwarze Community	7	OIL	687 Kelly Bushing	2,215	6/25/2019
790	121390014700	294	-88.77553400			Proctor, Richard S.	Reeter Heirs	1	DAP	712 Derrick Floor	2,669 Devonian	3/13/1959
791	121470000600		-88.68910100	39.91543900		Myers, Theo	Wagoner Estate #1	1	DA	752 Derrick Floor	2,420 Galena	6/30/1955
	121470000601		-88.68910100			Myers, Theo	WAGONER EST	1	DAP	752 Derrick Floor	3,160	9/19/1955
793	121470001200		-88.72461700	40.01325600	-	Alco Oil & Gas Corp.	Cisco		UNK	689 Digital Elevation Model	113	
	121470001600	765	-88.68977900			Myers, Theo	Grady W. J.	1	DAOP	691 Derrick Floor	2,550 Tully	4/30/1958
795	121470001800		-88.69928400	39.82797600		Unger, John	Shively, S. C.	1	DAP	694 Derrick Floor	2,575 Devonian	5/31/1956
796	121470002000	1238	-88.69706000	39.81519500		Haines, D. C.	Davis, Paul	1	DA	697 Ground level	1,621 Mississippian	6/30/1958
797	121470002100	1632	-88.68728600	39.83888200		Dotson Charles W	Peterson, Elbert	1	DAP	699 Ground level	2,479 Devonian	8/31/1958
798	121470002200	1487	-88.70877200	39.83512000		Dotson Charles W	Shively, S. L.	2	DAGP	699 Ground level	2,503 Devonian	7/31/1958
799	121470002300	1284	-88.68510100			Myers, Theo	Evans, Kenneth E.	1	DAOP	696 Derrick Floor	2,493 Lingle	8/14/1958
800	121470002400	2268	-88.66867600	39.83339800		Myers, Theodore F.	Hamman	1	DAP	690 Ground level	2,567 Silurian	9/30/1958
801	121470002600	2466	-88.72547600	39.82978600		Larson Arthur	Randall	1	DAP	714 Ground level	2,587 Devonian	10/31/1958
802		617	-88.66052400	39.92604200		Jay-Vee Development Corp.	Woodward #1	1	DAP	729 Ground level	2,400 Silurian	4/30/1959
803	121470002900		-88.74436800	39.81512800	-		Groff	1	DAP	736 Ground level	2,669 Silurian	10/31/1959
804		2263	-88.69682200	39.83158100	-	Hill Production Co.	Grady, W. J.	1	DAP	691 Digital Elevation Model	2,460 Hardin	10/31/1959
805	121470003600	1843	-88.69685500	39.84246200		Wausau Petroleum Corporation	Cripe-Still Community	1	DAP	699 Kelly Bushing	2,495 Devonian	8/31/1960
806	121470005100	342	-88.69920500	39.83516900	-	Hill Production Co.	Grady	B-1	DAOP	696 Kelly Bushing	2,471 Devonian	4/2/1962
807			-88.67290100			Unknown	Reed, Howard	1	DAP	711 Derrick Floor	2,490 Silurian	9/30/1949
808	121470010700		-88.74034200	39.89108300	-	Woollen Brothers	Cerro Gordo #T 1-49	T149	UNK	732 Digital Elevation Model	35	12/31/1948
809	121470010800		-88.74034200	39.89108300	-	Woollen Brothers	Cerro Gordo #T 2-49	T249	UNK	732 Digital Elevation Model	28	12/31/1948
	121470010900		-88.74034200	39.89108300		Woollen Brothers	Cerro Gordo #T 3-49	T349	UNK	732 Digital Elevation Model	26	12/31/1948
811 812			-88.66852500 -88.68677100	39.94515700		Woollen Brothers	Long, Floyd		UNK GAS	680 Digital Elevation Model 728 Digital Elevation Model	56 99	11/30/1947 6/30/1954
	121470011300	171				Swartz & Biggs	Weir, E. W. (Dr.) Tallman	1	GAS	728 Digital Elevation Model 710 Kelly Bushing	2,430 Devonian	6/30/1954 3/13/1966
813 814		1/1	-88.67785200 -88.71849300	39.86416900 39.79266200		Durr, D. & Lyons, G. L. Schwartz Dale E		T	GAS	, ,	2,430 Devonian 64	3/13/1966 12/31/1964
814			-88.71849300			Schwartz Dale E Carter Oil Co., The	Wheel Inn Motel	193	GAS STRU	704 Topographic map	1,490	12/31/1964 12/31/1939
815	121470028900		-88.74584100	39.85090600		Luttrell, Gerald D.	Core Hole Wallace, Robert Jr.	132	GAS	736 Ground level 702 Topographic map	64	12/31/1939
816	121472033400		-88.71190600	40.01786800		Woollen Bros.	Hill. Lee	+	UNK	685 Topographic map	132	3/31/19/1
817			-88.74169200	39.90178000		Woollen Bros.	Dobson, Locke	+	GAS	737 Digital Elevation Model	132	1/1/1944
818	121472098600		-88.70702700	39.90178000		IL State Geological Survey	West Mahomet	W-2	OBS	641 GPS	137	1/1/1944
819	121472156000		-88.68579900	39.98201700		IL State Geological Survey	ISWS, North Mahomet	vv-2	OBS	632 GPS	137	
	121472156200			39.98345900		IL State Geological Survey	ISWS, North Manomet ISWS, S. Observation Well		OBS	668 GPS	197	
ŏ21	1214/2150300		-00.0/814600	59.90347700	0-1/N-4E	in state deblogical survey	isws, s. Observation well		065	000 003	193	



APPENDIX C: Quality Assurance and Surveillance Plan

A quality assurance and surveillance plan (QASP) for all testing and monitoring activities pursuant to 40 CFR 146.90(k).

Carbon Capture and Sequestration (CCS) Project Class VI Injection Wells: Quality Assurance and Surveillance Plan (QASP)

Carbon Sequestration Wells (CCS) #1, #2, #3, #4, #5, #6, and #7

U.S. EPA ID Number: IL-115-6A-0001 (CCS#2) IL-115-6A-0002 (CCS#1)

April 2023

Prepared by: Archer Daniels Midland Company (ADM)

Class VI Injection Wells: Quality Assurance and Surveillance Plan (QASP)

Carbon Sequestration Wells (CCS) #1, #2, #3, 4, #5, #6, and #7

Approvals:

Douglas Kirk, Plant Manager, Decatur Corn	Date	
Scott McDonald, Director, ADM UIC	Date	
Jeff Neisslie, Environmental Manager, Decatur Corn	Date	
Adam O'Connell, Decatur Area Environmental Manager	Date	

Table of Contents

Table of Contents
A. Project Management
A.1. Project/Task Organization
A.2. Problem Definition/Background
A.3. Project/Task Description
A.4. Quality Objectives and Criteria9
A.5. Special Training
A.6. Documentation and Records
B. Data Generation and Acquisition
B.1. Sampling Process Design (Experimental Design)17
B.2. Sampling Methods
B.3. Sample Handling and Custody23
B.4. Analytical Methods
B.5. Quality Control
B.6. Instrument/Equipment Testing, Inspection, and Maintenance
B.7. Instrument/Equipment Calibration and Frequency31
B.8. Inspection/Acceptance for Supplies and Consumables
B.9. Nondirect Measurements
B.10. Data Management

C.	Assessment and Oversight	34
C.1. /	Assessments and Response Actions	34
C.2. I	Reports to Management	34
D.	Data Validation and Usability	35
D.1. I	Data Review, Verification, and Validation	35
D.2 \	Verification and Validation Methods	35
D.3 I	Reconciliation with User Requirements	36
Refe	rences	36

A. Project Management

A.1. Project/Task Organization

A.1. a/b. Key Individuals and Responsibilities

The project, led by Archer Daniels Midland Company (ADM), includes participation from several subcontractors. The Testing and Monitoring Activities responsibilities will be shared between ADM and their designated subcontractor and the program will be broken in six subcategories:

- 1. Shallow Groundwater Sampling
- 2. Deep Groundwater Sampling
- 3. Well Logging
- 4. Mechanical Integrity Testing (MIT)
- 5. Pressure/Temperature Monitoring
- 6. CO₂ Stream Analysis
- 7. Geophysical Monitoring

A.1.c. Independence of Project QA Manager from Data Gathering

The majority of the physical samples collected and data gathered as part of the monitoring, verification, and accounting (MVA) program is analyzed, processed, or witnessed by third parties independent and outside of the project management structure.

A.1.d. QA Project Plan Responsibility

ADM will be responsible for maintaining the QASP. ADM will periodically review this QASP and consult with USEPA if/when changes to the plan are warranted.

A.1.e. Project Organization

The individuals and organizations participating in this project which hold roles and responsibilities for the QASP are as follows:

- UIC Program Director technical expertise for CCS operations
- Environmental Manager, Decatur Corn Plant environmental and regulatory expertise for CCS operations

- Plant Manager, Decatur Corn Plant overall responsibility for running and maintaining CCS operations
- Decatur Area Environmental Manager environmental and regulatory expertise for CCS operations
- Consultants and Contractors will be utilized by ADM to fulfil testing, monitoring, reporting, and quality control activities as directed by ADM

A.2. Problem Definition/Background

A.2.a Reasoning

The CCS Project's monitoring, verification, and accounting (MVA) program has operational monitoring, verification, and environmental monitoring components. Operational monitoring is used to ensure safety with all procedures associated with fluid injection, monitor the response of storage unit, and the movement of the CO₂ plume. Key monitoring parameters include the pressure of injection well tubing & annulus, storage unit, above seal strata, and the lowermost USDW reservoir. Other monitoring parameters include injection rate, total mass & volume injected, injection well temperature profile, and geophysical monitoring. The verification component will provide information to evaluate if leakage of CO₂ through the caprock is occurring. This includes geophysical logging , pressure, and temperature monitoring. The environmental monitoring components will determine if the injectate is being released into the shallow subsurface or biosphere. This monitoring includes geophysical logging and ground water monitoring.

A robust MVA program has been developed for the CCS project based on the experience gained through the CCS#1 and CCS#2 projects. The knowledge and experience gained provides a high level of confidence that the storage unit (Mt Simon) is capable to accept and permanently retain the injectate. The primary goal of the MVA program is to demonstrate that project activities are protective of human health and the environment. To help achieve this goal, this Quality Assurance Surveillance Plan (QASP) was developed to insure the quality standards of the testing and monitoring program meet the requirements of the U.S. Environmental Protection Agency's (USEPA) Underground Injection Control (UIC) Program for Class VI wells.

A.2.b. Reasons for Initiating the Project

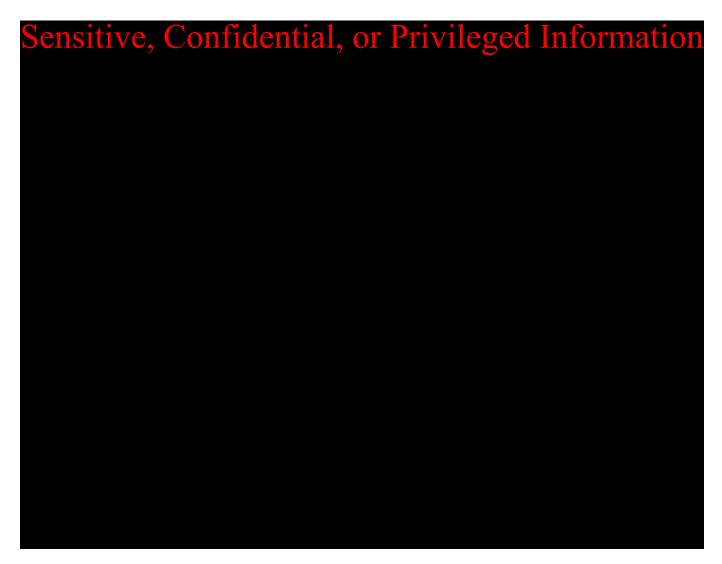
The goal of the injection project is permanent geologic sequestration of industrial-scale volumes of CO_2 in the Mt. Simon Sandstone to reduce atmospheric concentrations of CO_2 .

A.2.c. Regulatory Information, Applicable Criteria, Action Limits

The Class VI regulations under 40 CFR 146 Subpart H requires owners or operators of Class VI wells to perform several types of activities during the lifetime of the project in order to ensure that the injection well maintains its mechanical integrity, that fluid migration and the extent of pressure elevation are within the limits described in the permit application, and that underground sources of

drinking water (USDWs) are not endangered. These monitoring activities include mechanical integrity tests (MITs), injection well testing during operation, monitoring of ground water quality in several zones, tracking of the CO2 plume and associated pressure front. This document details both the measurements that will be taken as well as the steps to ensure that the quality of all the data is such that the data can be used with confidence in making decisions during the life of the project.

A.3. Project/Task Description


A.3. a/b. Summary of Work to be Performed and Work Schedule

The facility Testing and Monitoring program summarizes the testing and monitoring tasks, reasoning, responsible parties, locations and testing frequency.

Well	Permit #	
CCS#1	IL-115-6A-0002 Attachment C	
CCS#2	IL-115-6A-0001 Attachment C	
CCS#3	*	
CCS#4	*	
CCS#5	**	
CCS#6	**	
CCS#7	**	

*Proposed wells under application documents under Project Number IL-0007 in GSDT. ** Proposed wells under application documents under Project Number IL-0010 in GSDT.

Figure 1 shows the geographic locations of CCS wells and associated monitoring wells.

Figure 1. CCS#1, CCS#2, CCS#3 CCS#4, CCS#5, CCS#6, and CCS#7 Injection, shallow groundwater, geophysical, and deep monitoring well locations.

A.4. Quality Objectives and Criteria

A.4.a. Performance/Measurement Criteria

The overall QA objective for monitoring is to develop and implement procedures for subsurface monitoring, field sampling, laboratory analysis, and reporting which will provide results that will meet the characterization and non-endangerment goals of this project. Groundwater monitoring will be conducted during the pre-injection, injection, and post-injection phases of the project. Shallow and deep groundwater monitoring wells will be used to gather water-quality samples and pressure data. All the groundwater analytical and field monitoring parameters for each interval are listed in the facility Testing and Monitoring Plan. Table 1 presents the analytical parameters to be collected for groundwater samples. Table 2 presents analytical parameters associated with the CO₂ gas stream, also presented in the Testing and Monitoring plan. Table 3 presents a summary of analytical parameters for field gauges. Table 5 shows the actionable testing and monitoring outputs. The lists of analytes and other data may be reassessed periodically and adjusted to include or exclude analytes based on their effectiveness to the overall monitoring program goals.

Key testing and monitoring areas may include but are not limited to:

- 1. Shallow Groundwater Sampling
 - Aqueous chemical concentrations
- 2. Deep Formation Fluid Sampling
 - Aqueous chemical concentrations
- 3. Well Logging
 - pulse neutron, pressure, temperature, spinner
- 4. Mechanical Integrity Testing (MIT)
 - Pulsed neutron, temperature, cement evaluation logging
- 5. Pressure/Temperature Monitoring
 - Pressure/temperature from in-situ gauges
 - Pressure/temperature from surface gauges
- 6. CO₂ Stream Analysis
 - CO₂ Purity (% v/v, [GC])
 - Oxygen (O₂, ppm v/v)
 - Nitrogen (N₂, ppm v/v)
 - Carbon Monoxide (CO, ppm v/v)
 - Oxides of Nitrogen (NOx, ppm v/v)

Quality Assurance and Surveillance Program for ADM CCS#1, CCS#2, CCS#3, CCS#4, CCS#5, CCS#6 and CCS#7

- Total Hydrocarbons (THC, ppm v/v as CH₄)
- Methane (CH₄, ppm v/v)
- Acetaldehyde (AA, ppm v/v)
- Sulfur Dioxide (SO₂, ppm v/v)
- Hydrogen Sulfide (H₂S ppm v/v)
- Ethanol (ppm v/v)
- 7. Geophysical Monitoring
 - Seismic data files (e.g., seg files for triggered events)
 - Processed time-lapse report

Parameters	Analytical Methods ⁽¹⁾	Detection limit	Typical Precisions	QC Requirements
Cations:	ICP-OES,	0.001 to 0.1 mg/L		Daily calibration; blanks,
Ca, Fe, K, Mg, Na, and Si	EPA Method 6010B	(analyte, dilution and matrix dependent)	±15%	duplicates and matrix spikes at 10% or greater frequency
Anions:	Ion Chromatography,	0.005 to 0.5 mg/L	±15%	Daily calibration; blanks,
Br, Cl, F, NO3, and SO4	EPA Method 300.0	(analyte, dilution and matrix dependent)		duplicates and matrix spikes at 10% or greater frequency
Dissolved CO ₂	Coulometric titration,	0.02 to 0.13 mg/L (analyte, dilution and matrix dependent)	±15%	Duplicate measurement; standards at 10% or greater frequency
	ASTM D513-11			inequeitey
Isotopes: $\delta^{13}C$ of DIC	Isotope ratio mass spectrometry	12.2 mg/L HCO3- for δ13C	±0.15‰ for δ13C	10% duplicates; 4 standards/batch
Total Dissolved Solids	Gravimetry; APHA 2540C	12 mg/L	±10%	Balance calibration, duplicate analysis
Water Density (field)	Oscillating body method	0.0000 to 2.0000	±0.0002 g/mL	Duplicate measurements
Alkalinity	APHA 2320B	4 mg/L	±0.2°C	Factory calibration
pH (field)	EPA 150.1	2 to 12 pH units	±0.2 pH unit	User calibration per manufacturer recommendation
Specific conductance (field)	APHA 2510	0 to 200 mS/cm	±1% of reading	User calibration per manufacturer recommendation
Temperature (field)	Thermocouple	-5 to 50°C	±0.2°C	Factory calibration

Note 1: ICP = inductively coupled plasma; MS = mass spectrometry; OES = optical emission spectrometry; GC-P = gas chromatography - pyrolysis. An equivalent method may be employed with the approval of the UIC Program Director.

Parameters	Analytical Methods ⁽¹⁾	Detection Limit/Range	Typical Precisions	QC Requirements
Oxygen	ISBT 4.0 (GC/DID)	1 uL/L to 5,000 uL/L (ppm by volume)	± 10 % of reading	daily standard within 10 % of calibration, secondary standard after calibration
	GC/TCD	0.1 % to 100 %	5 - 10 % relative across the range, RT ± 0.1 min	daily standard, duplicate analysis within 10 % of each other
Nitrogen	ISBT 4.0 GC/DID	1 uL/L to 5,000 uL/L (ppm by volume)	± 10 % of reading	daily standard within 10 % of calibration, secondary standard after calibration
	GC/TCD	0.1 % to 100 %	5 - 10 % relative across the range, RT ± 0.1 min	daily standard, duplicate analysis within 10 % of each other
Carbon Monoxide	ISBT 5.0 Colorimetric	5 uL/L to 100 uL/L (ppm by volume)	± 20 % of reading	duplicate analysis
	ISBT 4.0 (GC/DID)	1 uL/L to 5,000 uL/L (ppm by volume)	± 10 % of reading	daily standard within 10 % of calibration, secondary standard after calibration
Oxides of Nitrogen	ISBT 7.0 Colorimetric	0.2 uL/L to 5 uL/L (ppm by volume)	± 20 % of reading	duplicate analysis
Total Hydrocarbons	ISBT 10.0 THA (FID)	1 uL/L to 10,000 uL/L (ppm by volume)	5 - 10 % of reading relative across the range	daily blank, daily standard within 10 % of calibration, secondary standard after calibration
Methane	ISBT 10.1 GC/FID)	0.1 uL/L to 1,000 uL/L (ppm by volume)- dilution dependent	5 - 10 % of reading relative across the range	daily blank, daily standard within 10 % of calibration, secondary standard after calibration
Acetaldehyde	ISBT 11.0 (GC/FID)	0.1 uL/L to 100 uL/L (ppm by volume)- dilution dependent	5 - 10 % of reading relative across the range	daily blank, daily standard within 10 % of calibration, secondary standard after calibration
Sulfur Dioxide	ISBT 14.0 (GC/SCD)	0.01 uL/L to 50 uL/L (ppm by volume)- dilution dependent	5 - 10 % of reading relative across the range	daily blank, daily standard within 10 % of calibration, secondary standard after calibration
Hydrogen Sulfide	ISBT 14.0 (GC/SCD)	0.01 uL/L to 50 uL/L (ppm by volume)- dilution dependent	5 - 10 % of reading relative across the range	daily blank, daily standard within 10 % of calibration, secondary standard after calibration

Table 2. Summary of analytical parameters for CO₂ gas stream. All analysis will be performed by ADM or a designated third-party laboratory.

Parameters	Analytical Methods ⁽¹⁾	Detection Limit/Range	Typical Precisions	QC Requirements
Ethanol	ISBT 11.0 (GC/FID)	0.1 uL/L to 100 uL/L (ppm by volume)- dilution dependent	5 - 10 % of reading relative across the range	daily blank, daily standard within 10 % of calibration, secondary standard after calibration
CO2 Purity	ISBT 2.0 Caustic absorption Zahm- Nagel	99.00% to 99.99%	± 10 % of reading	User calibration per manufacturer recommendation
	ALI method SAM 4.1 subtraction method (GC/DID)	1 ppm for each target analyte (analyte dependent) - refer to Oxygen and Nitrogen analysis.	5-10 % relative across the range	duplicate analysis within 10 % of each other
	GC/TCD	0.1 % to 100 %	5-10 % relative across the range, RT ± 0.1 min	standard with every sample, duplicate analysis within 10 % of each other

Note 1: ICP = inductively coupled plasma; MS = mass spectrometry; OES = optical emission spectrometry; GC-P = gas chromatography - pyrolysis. An equivalent method may be employed with the approval of the UIC Program Director.

Table 3. Summary of analytical parameters for corrosion coupons. Instrument calibration conducted by 3rd party lab providing services.

Parameters	Analytical Methods	Detection Limit/Range	Typical Precisions	QC Requirements
Mass	ASTM G1-03	.005mg	+/-2%	Annually - OEM Standard Practice for Calibration of Instrument
Thickness	ASTM G1-03	.001mm	+/0005mm	Annually - OEM Standard Practice for Calibration of Instrument

Table 4. Summary of measurement parameters for field gauges.

Parameters	Methods	Detection Limit/Range	Typical Precisions	QC Requirements
Pressure	Factory Calibrated in NIST certified lab.	+/- 0.001 psi / 0-3000 psi	+/- 0.01 psi	Annual Calibration of Instrument (3 rd party)
Temperature	Factory Calibrated in NIST certified lab.	+/- 0.001 F / 0-500 F	+/- 0.01 F	Annual Calibration of Instrument (3 rd party)
Flowrate	Factory Calibrated in NIST certified lab.	+/- 0.1000% of maximum scale	+/- 0.01 lbs/hr	Annual Calibration of Instrument (3 rd party)

		le testing and monitoring	P
	Project Action Limit	Detection Limit	Anticipated Reading
MIT—Pulse neutron logging	Action taken when log indicates CO2 outside of expected range	+/- 0.5 SIGM or per OEM specification	Brine saturated ~ 60 CO2 saturated ~ 8
Annual Wellbore MIT testing pressure	<3% pressure loss over 1 hour	+/- 0.001 psi or per OEM specification	>3% pressure loss over 1 hour
Fixed Surface and downhole gauges and logging gauges	Action will be taken when pressures are well outside of modeled/expected range	Refer to Table 4 for surface gauges Refer to OEM specifications for other gauges	Within injection formation: >80% fracture gradient 0.71 psi/ft
Wellbore integrity—DTS fiber optic temperature	Action will be taken when there is an anomaly in temperature profile	Refer to OEM specifications	DTS provides continuous** temperature profile
Seismic data files	Detected CO2 outside the AOR	Dependent on fluid saturation, and formation velocities	CO2 plume migration similar to modeled outcome

Table 5. Actionable testing and monitoring outputs.

** Continuous DTS temperature monitoring will be satisfied with a minimum 10-minute sampling and hourly recording. If the DTS continuous monitoring is unavailable, the well can continue to operate by monitoring the surface tubing pressure and annulus pressure every 4 hours.

A.4.b. Precision

Precision is the measure of agreement among a set of replicate measurements (e.g., field duplicates); accuracy is the closeness of a measure result to an accepted reference value. For groundwater sampling, data accuracy will be assessed by the collection and analysis of field blanks to test sampling procedures and matrix spikes to test lab procedures. Field blanks will be taken no less than one per sampling event to spot check for sample bottle contamination. Laboratory assessment of analytical precision will be the responsibility of the individual laboratories per their standard operating procedures.

Table 6 presents the calibrated pressure and temperature of representative downhole quartz gauge specifications. For direct pressure and logging measurements, precision data is presented in Table 7.

Calibrated working pressure range	Atmospheric to 10,000 psi
Initial pressure accuracy	<+/-2 psi over full scale
Pressure resolution	0.005 psi at 1-s sample rate
Pressure drift stability	<+/-1 psi per year over full scale
Calibrated working temperature range	77–266°F
Initial temperature accuracy	<+/-0.9°F per +/-0.27°F
Temperature resolution	0.009°F at 1-s sample rate
Temperature drift stability	<+/-0.1°F per year at 302
Max temperature	302°F

 Table 6. Pressure and temperature—representative downhole quartz gauge specifications.

 Actual gauge utilized may have different specifications.

 Table 7. Representative Logging tool specifications. Actual logging tool may have different specifications.

	RST	CBL	USI	Isolation Scanner
Logging speed	1,800 ft/hr	3,600 ft/hr	Standard resolution: 2,700 ft/hr High resolution: 563 ft/hr	Standard resolution: 2,700 ft/hr High resolution: 563 ft/hr
Vertical resolution	15 inches	3 ft	Standard resolution: 0.6 in High speed: 6 in	High resolution: 0.6 in High speed: 6 in
Investigation	Formation	Casing, annulus, and formation	Casing and annulus	Casing and annulus
Temperature rating	302°F	350°F	350°F	350°F
Pressure rating	15,000 psi	20,000 psi	20,000 psi	20,000 psi

<u>A.4.c.</u> Bias

Bias is the systemic distortion of a measurement process that causes error in one direction, and can be introduced during sampling and analysis. Sampling bias is address by using correct sampling methods and tools, analytical bias is assessed by comparing a measured value to a known value (i.e., matrix spike). Pressure or logging bias is address through use of consistent tools, equipment and methodology. Laboratory assessment of analytical bias will be the responsibility of the individual laboratories per their standard operating procedures and analytical methodologies. For direct pressure or logging measurements, there should be no bias.

A.4.d. Representativeness

For groundwater sampling, data representativeness expresses the degree to which data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, a process condition, or an environmental condition. The sampling network has been designed to provide data representative of site conditions. For analytical results of individual groundwater samples, representativeness will be estimated by ion and mass balances. Ion balances with ±10% error or less will

be considered valid. Mass balance assessment will be used in cases where the ion balance is greater than ±10% to help determine the source of error. For a sample and its duplicate, if the relative percent difference is greater than 10%, the sample may be considered non-representative.

A.4.e. Completeness

For groundwater sampling, data completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount that was expected to be obtained under normal conditions. It is anticipated that data completeness of 90% for groundwater sampling will be acceptable to meet monitoring goals. For direct pressure and temperature measurements, it is expected that data will be recorded no less than 90% of the time.

A.4.f. Comparability

Data comparability expresses the confidence with which one data set can be compared to another. The data sets to be generated by this project will be very comparable to future data sets because of the use of standard methods and the level of QA/QC effort. If historical groundwater quality data become available from other sources, their applicability to the project and level of quality will be assessed prior to use with data gathered on this project. Direct pressure, temperature, and logging measurements will be directly comparable to previously obtained data due to consistent measurement techniques.

A.4.g. Method Sensitivity

Table 6 and Table 7 provide details regarding select gauge and logging tool specifications.

A.5. Special Training

A.5.a. Specialized Training

The geophysical survey equipment and wireline logging tools will be operated by trained personnel according to the standards of the service company conducting the work. The subsequent data will be processed and analyzed according to standard industry practice.

Trained personnel will be utilized for all groundwater field sampling activities. Upon request, ADM will provide the agency with all laboratory SOPs developed for the specific parameter using the appropriate standard method. Each laboratory technician conducting the analysis on the samples will be trained on the SOP developed for each standard method.

A.5. b/c. Training Provider and Responsibility

Training for personnel will be provided by ADM or by the subcontractor responsible for the data collection activity.

A.6. Documentation and Records

A.6.a. Report Format and Package Information

A semi-annual report from ADM to USEPA will contain all required project data, including testing and monitoring information as specified by the UIC Class VI permit. Data will be provided in electronic or other formats as required by the UIC Program Director.

A.6.b. Other Project Documents, Records, and Electronic Files

Other documents, records, and electronic files such as well logs, test results, or other data will be provided as required by the UIC Program Director.

A.6.c/d. Data Storage and Duration

ADM or a designated contractor will maintain the required project data as provided elsewhere in the permit.

A.6.e. QASP Distribution Responsibility

The QASP copy will be available and distributed through Policy Tech that will be owned by the Environmental Manager, Decatur Corn Plant. Colleagues who have responsibilities for implementing the plan will be marked as a read requirement and will therefore have distribution of the plan.

B. Data Generation and Acquisition

B.1. Sampling Process Design (Experimental Design)

Discussion in this section is focused on groundwater and fluid sampling and does not address monitoring methods that do not gather physical samples (e.g., logging, seismic monitoring, and pressure/temperature monitoring). During the pre-injection and injection phases, groundwater sampling is planned to include an extensive set of chemical parameters to establish aqueous geochemical reference data. Parameters will include selected constituents that: (1) have primary and secondary USEPA drinking water maximum contaminant levels, (2) are the most responsive to interaction with CO₂ or brine, (3) are needed for quality control, and (4) may be needed for geochemical modeling. The full set of parameters for each sampling interval is given in the Testing and Monitoring Plan.

After a sufficient baseline is established, monitoring scope may shift to a subset of indicator parameters that are (1) the most responsive to interaction with CO_2 or brine and (2) are needed for quality control. Implementation of a reduced set of parameters would be done in consultation with the USEPA. Revised QASP submittals are a form of consultation with USEPA. Isotopic analyses will be performed on baseline samples to the degree that the information helps verify a condition or establish an understanding of non-project related variations. For non-baseline samples, isotopic analyses may be reduced in all monitoring wells if a review of the historical project results or other data determines that further sampling for isotopes is not needed. During any period where a reduced set of analytes is used, if statistically significant trends are observed that are the result of unintended CO_2 or brine migration, the

analytical list would be expanded to the full set of monitoring parameters. The Ironton-Galesville groundwater samples will be analyzed by ADM or a third-party laboratory. Dissolved CO₂ will be analyzed by methods consistent with Test Method B of ASTM D 513-06, "Standard Test Methods for Total and Dissolved Carbon Dioxide in Water" or equivalent. Isotopic analysis will be conducted using established methods.

B.1.a. Design Strategy

CO₂ Stream Monitoring Strategy

The primary purpose of analyzing the carbon dioxide stream is to evaluate the potential interactions of carbon dioxide and/or other constituents of the injectate with formation solids and fluids. This analysis can also identify (or rule out) potential interactions with well materials. Establishing the chemical composition of the injectate also supports the determination of whether the injectate meets the qualifications of hazardous waste under the Resource Conservation and Recovery Act (RCRA), 42 U.S.C. 6901 et seq. (1976), and/or the Comprehensive Environmental Response, Compensation, and Liability Act, (CERCLA) 42 U.S.C. 9601 et seq. (1980). Additionally, monitoring the chemical and physical characteristics of the carbon dioxide (e.g., isotopic signature, other constituents) may help distinguish the injectate from the native fluids and gases if unintended leakage from the storage reservoir occurred. Injectate monitoring is required at a sufficient frequency to detect changes to any physical and chemical properties that may result in a deviation from the permitted specifications.

Calibration of transmitters used to monitor pressures, temperatures, and flow rates of CO₂ into the subsurface at the injection well and subsequent movement to the verification well shall be conducted annually. Reports shall contain test equipment used to calibrate the transmitters, including test equipment manufacturers, model numbers, serial numbers, calibration dates and expiration dates.

Corrosion Monitoring Strategy

Corrosion coupon analyses will be conducted quarterly to aid in ensuring the mechanical integrity of the equipment in contact with the carbon dioxide. Coupons shall be sent quarterly to a company for analysis and an analysis conducted in accordance with ASTM G01-03 or similar to determine and document corrosion wear rates based on mass loss.

Shallow Groundwater Monitoring Strategy

Eight dedicated monitoring wells have been selected for shallow groundwater monitoring. These wells have already been installed and screened in the Quaternary-age deposits to depths less than 150 ft below ground surface (bgs). The local Quaternary-age deposits are used predominantly as private water well sources in the area. The wells are designated as 10LG, 11LG, 12LG, 13LG, G101, G102,G103, and G104 (Figure 1). The wells were selected to give a spatial distribution around the planned CO₂ injection well locations.

Deep Groundwater Monitoring Strategy

Monitoring of the deeper St. Peter and Ironton-Galesville Sandstones will be used for early leakage detection in formations that are much closer to the Mt. Simon Sandstone injection reservoir. Fluid sampling at wells VW#1, VW#2, VW#3, VW#4, VW#5, GM#2, GM#3, GM#4, GM#5, GM#6 and GM#7 in combination with pressure monitoring, temperature monitoring, and pulse neutron logging will be used to determine if leakage is occurring at or near the injection well. The Ironton-Galesville Sandstone, has sufficient permeability (over 100 mD) such that pressure monitoring at the verification wells would detect a failure of the confining zone should it occur. MIT testing and DTS monitoring at the injection

well will also provide data to insure the mechanical integrity of the well is maintained. With the planned sampling and monitoring frequencies, it is expected that baseline conditions can be documented, natural variability in conditions can be characterized, unintended brine or CO₂ leakage could be detected if it occurred, and sufficient data will be collected to demonstrate that the effects of CO₂ injection are limited to the intended storage reservoir. No groundwater fluid sampling is planned for the Mt Simon intervals where free phase CO₂ has broken through.

B.1.b. Type and Number of Samples/Test Runs

Sampling frequencies are detailed in the permit Testing and Monitoring Plan (Permit Attachment C).

B.1.c. Site/Sampling Locations

Shallow groundwater monitoring will use existing wells 10LG, 11LG, 12LG, 13LG, G101, G102,G103, and G104 as noted in Section B.1.a. Deep groundwater monitoring will use existing wells VW#1, VW#2, VW#3, VW#4, VW#5, GM#2, GM#3, GM#4, GM#5, GM#6, and GM#7 (Figure 1) as noted in Section B.1.a.

 CO_2 gas stream and corrosion coupon sampling will occur in the selected CO_2 collection or compression areas for each CO_2 source (i.e, ADM ethanol and cogeneration facilities, and ADM or 3rd party carbon capture systems).

B.1.d. Sampling Site Contingency

The shallow and deep groundwater monitoring wells are located on property of ADM and Richland Community College; access permissions have already been granted. No problems of site inaccessibility are anticipated. If inclement weather makes site access difficult, sampling schedules will be reviewed and alternative dates may be selected that would still meet permit-related conditions.

No problems of site inaccessibility are anticipated for CO_2 gas stream or corrosion coupon sampling. If inclement weather makes site access difficult, sampling schedules will be reviewed and alternative dates may be selected that would still meet permit related conditions.

B.1.e. Activity Schedule

The groundwater sampling activities and frequencies are summarized in the Testing and Monitoring Plan. The CO_2 gas stream and corrosion coupon sampling activities and frequencies are also summarized in the Testing and Monitoring Plan.

B.1.f. Critical/Informational Data

During both groundwater sampling and analytical efforts, detailed field and laboratory documentation will be recorded in field and laboratory forms and notebooks. Critical information will include time and date of activity, person/s performing activity, location of activity (well- field sampling) or instrument (lab analysis), field or laboratory instrument calibration data, field parameter values. For laboratory analyses, much of the critical data are generated during the analysis and provided to end users in digital and printed formats. Noncritical data may include appearance and odor of the sample, problems with well or sampling equipment, and weather conditions.

<u>B.1.g.</u> Sources of Variability

Potential sources of variability related to monitoring activities include:

- 1. Natural variation in fluid quality, formation pressure and temperature and seismic activity;
- 2. Variation in fluid quality, formation pressure and temperature, and seismic activity due to project operations;
- 3. Changes in recharge due to rainfall, drought, and snowfall;
- 4. Changes in instrument calibration during sampling or analytical activity;
- 5. Different staff collecting or analyzing samples;
- 6. Differences in environmental conditions during field sampling or monitoring activities;
- 7. Changes in analytical data quality during life of project; and
- 8. Data entry errors related to maintaining project database.

Activities to eliminate, reduce, or reconcile variability related to monitoring activities include:

- 1. Collecting long-term baseline data to observe and document natural variation in monitoring parameters,
- 2. Evaluating data in timely manner after collection to observe anomalies in data that can be addressed be resampled or reanalyzed,
- 3. Conducting statistical analysis of monitoring data to determine whether variability in a data set is the result of project activities or natural variation,
- 4. Maintaining weather- related data using on-site weather monitoring data or data collected near project site (such as from local airports),
- 5. Checking instrument calibration before, during and after sampling or sample analysis,
- 6. Trained staff,
- 7. Conducting laboratory quality assurance checks using third party reference materials, and/or blind and/or replicate sample checks, and
- 8. Developing a systematic review process of data that can include sample-specific data quality checks (i.e., cation/anion balance for aqueous samples).

B.2. Sampling Methods

Logging, geophysical monitoring, and pressure/temperature monitoring does not apply to this section, and is omitted.

B.2. a/b. Sampling SOPs

Groundwater samples will be collected primarily using a low-flow sampling method consistent with ASTM D6452-99 (2005) or Puls and Barcelona (1996). If a flow-through cell is not used, field parameters will be measured in grab samples. Groundwater wells will be purged to ensure samples are representative of formation water quality. Static water levels in each well will be determined using an

electronic water level indicator before any purging or sampling activities begin. Dedicated pumps (e.g., bladder pumps) will be installed in each monitoring well to minimize potential cross contamination between wells. Groundwater pH, temperature, specific conductance, and dissolved oxygen will be monitored in the field using portable probes and a flow-through cell consistent with standard methods (e.g., APHA, 2005) given sufficient flow rates and volumes. Field chemistry probes will be calibrated at the beginning of each sampling day according to equipment manufacturer procedures using standard reference solutions. When a flow-through cell is used, field parameters will be continuously monitored and will be considered stable when three successive measurements made three minutes apart meet the criteria listed in Table 8.

FIELD PARAMETER	STABILIZATION CRITERIA
рН	+/- 0.2 units
Temperature	+/- 1°C
Specific Conductance	+/- 3% of reading in μS/cm
Dissolved Oxygen	+/- 10% of reading or 0.3 mg/L whichever is greater

Table 8. Stabilization criteria of water quality parameters during shallow well purging.

After field parameters have stabilized, samples will be collected. Samples requiring filtration will be filtered through a new 0.45 μm flow-through filter cartridges as appropriate and consistent with ASTM D6564-00. Prior to sample collection, filters will be purged with a minimum of 100 mL of well water (or more if required by the filter manufacturer). For alkalinity and total CO₂ samples, efforts will be made to minimize exposure to the atmosphere during filtration, collection in sample containers, and analysis.

Wells GM#2, GM#3, GM#4, VW#1, VW#2 and VW#3 will use a wireline sampling system with a sampling device (e.g., Kuster sampler or downhole pump) capable of collecting a sample from a discrete interval. The downhole samples will be processed in a manner consistent with ISGS-SOP-WB-V1.14 (dated August 10, 2012).

The existing deep groundwater monitoring wells were developed and purged extensively at the time of completion and similar plans will be used to develop GM#4. Prior to sampling, each zone will be purged to ensure representative samples are collected. Due to the extensive well development, the amount of fluid to be purged at the time of sampling will be relatively small. If a three-foot zone is perforated (similar to VW#1), then the annular space between the 2-7/8-in. tubing and the 5-1/2-in. casing is only 1.92 gal. Thus, relatively small purge volumes will adequately refresh each isolated sampling interval. Similar purging techniques will be used for collecting deep groundwater samples. Additional information about sampling procedures are given in Locke et al. (2013).

For the deep groundwater monitoring wells, gas lifts using a downhole gas lift mandrel will be used to produce fresh reservoir fluid from the formation. Alternatively, a downhole pump or other methods maybe utilized to produce reservoir fluids. During fluid sampling, the sampling device will be positioned at a point at which a representative sample of the reservoir's fluid is collected.

B.2.c. In-situ Monitoring.

In-situ monitoring of groundwater chemistry parameters is not planned.

B.2.d. Continuous Monitoring.

Pressure data will be collected from shallow groundwater wells on a periodic basis (e.g., hourly to daily) using dedicated pressure transducers with data loggers to generally characterize shallow water level trends. These data are not to satisfy any regulatory requirement and are strictly informational.

B.2.e. Sample Homogenization, Composition, Filtration.

Described in section B.2.b.

B.2.f. Sample Containers and Volumes

For CO₂ stream monitoring, samples will be collected in a clean sample container rated for the appropriate collection pressure (i.e., mini cylinders, polybags or equivalent).

For shallow and deep groundwater samples, all sample bottles will be new. Sample bottles and bags for analytes will be used as received (ready for use) from the vendor or contract analytical laboratory for the analyte of interest. A summary of sample containers is presented in Table 9.

B.2.g. Sample Preservation

No preservation is required or used for CO_2 gas stream, and additional details of sampling requirements are shown in Table 9. For groundwater and other aqueous samples, the preservation methods in Table 10 will be used. Corrosion coupon sampling only requires that the coupons be physically separated (e.g., sleeves, baggies) during transportation to prevent physical abrasion.

Table 9. Summary of sample containers, preservation treatments, and holding times for CO₂ gas stream analysis.

Target Parameters	Volume/Container Material	Preservation Technique	Sample Holding time (max)
CO2 gas stream	(2) 2L MLB Polybags	Sample Storage	5 Business Days
		Cabinets	
	(1) 75 cc Mini Cylinder		

B.2.h. Cleaning/Decontamination of Sampling Equipment

Dedicated pumps (e.g., bladder pumps) will be installed in each groundwater monitoring well to minimize potential cross contamination between wells. These pumps will remain in each well throughout the project period except for maintenance. Prior to installation, the pumps will be cleaned on the outside with a non-phosphate detergent. Pumps will be rinsed a minimum of three times with deionized water and a minimum of 1 L of deionized water will be pumped through pump and sample tubing. Individual cleaned pumps and tubing will be placed in plastic garbage bags for transport to the field for installation. All field glassware (pipets, beakers, filter holders, etc.) are cleaned with tap water to remove any loose dirt, washed in a dilute nitric acid solution, and rinsed three times with deionized water before use.

CO₂ gas stream sampling containers will be either disposed or decontaminated by the analytical lab. No sampling equipment will be utilized with the corrosion coupons or annual field gauge calibrations.

B.2.i Support Facilities

For sampling of groundwater, the following are required: air compressor, vacuum pump, generator, multi-electrode water quality sonde, analytical meters (pH, specific conductance, etc.). Field activities are usually completed in field vehicles and portable laboratory trailers located on site.

Sampling tubing, connectors and valves required to sample the CO₂ gas stream will be supplied by the analytical lab providing the sampling containers. Sampling will occur within the existing CO₂ compression building.

Similarly, corrosion coupons will be removed from the CO₂ injection line at each CO₂ source.

Field gauges will be removed from the injection well and verification well utilizing existing standard industry tools and equipment. Deployment and retrieval of verification well gauges will be done using procedures and equipment recommended by the vendor, subcontractor, or is standard per industry practice.

B.2.i. Corrective Action, Personnel, and Documentation

Field staff will be responsible for properly testing equipment and performing corrective actions on broken or malfunctioning field equipment. If corrective action cannot be taken in the field, then equipment will be returned to the manufacturer for repair or replaced. Significant corrective actions affecting analytical results will be documented in field notes.

B.3. Sample Handling and Custody

Logging, geophysical monitoring, and pressure/temperature monitoring does not apply to this section, and is omitted.

Sample holding times (Table 10) will be consistent with those described in US EPA (1974), American Public Health Association (APHA, 2005), Wood (1976), and ASTM Method D6517-00 (2005). After collection, samples will be placed in ice chests in the field and maintained thereafter at approximately 4°C until analysis. The samples will be maintained at their preservation temperature and sent to the designated laboratory under Chain-of-Custody within 24 hours. Analysis of the samples will be completed within the holding time listed in Table 10. As appropriate, alternative sample containers and preservation techniques approved by the UIC Program Director will be used to meet analytical requirements.

B.3.a Maximum Hold Time/Time Before Retrieval

See Table 10.

B.3.b. Sample Transportation

See description at the beginning of Section B.3.

B.3.c. Sampling Documentation

Field notes will be collected for all groundwater samples collected. These forms will be retained and archived as reference. The sample documentation is the responsibility of groundwater sampling personnel.

An analysis authorization form shall be provided with each CO₂ gas stream sample provided for analysis.

B.3.d. Sample Identification

All sample bottles will have waterproof labels with information denoting project, sampling date, sampling location, sample identification number, sample type (freshwater or brine), analyte, volume, filtration used (if any), and preservative used (if any). See Figure 2 for an example of a label. Figure 3 is an example of a CO_2 gas stream analysis authorization form.

IL-ICCS_10LG_20A (fresh water) 01-23-2014 15:30 Metals, 60 ml, filtered, HNO₃

Figure 2. Example label for groundwater sample bottles.

	Website: www.airbornelabs.com Uthorization & returned with a sample shipment Sampled On (mm/dd/yy):
This form <u>MUST</u> be completed of 1.) Report Results to*: Company: Address:	& returned with a sample shipment
Company:Address:	Sampled On (mm/dd/au)-
Address:	Sampled On (mm/dd/au):
	P.O. #:
	Credit Card: Visa Amex MasterCard Discover
Address:Address:	Card #:Cardholder:
Attention:	Exp. Date:
Telephone: () Fax: ()	Check #: Other:
E-Mail:	Pricing Discussed/Quoted? Y N
Please attach complete billing address if different from reporting ad	
2.) Number of Samples Submitted:	Container Type(s):
IF CO ₂ FeedgasIdentify source (e.g. Ethanol/Ammonia/Nat. Well/Et	LIN LOX LAR RELOX (Reboiler) ABO hylene/Combustion, Self-Gen, etc.)
	ery Gas Syn Gas Propane Butane Air Oxygen
Nitrogen Argon Hydrogen Helium Neon Gas Mixture Fuel Oil Lubricant	Xenon Krypton Freon [®] Refrigerant
Other (Describe):	
4.) Sample Type (Check) : IndustrialMedia	cal MilSpec Other
attach a log for multiple samples)	
5.) Sample ID:	
6.) Potential Hazards/Safety Issues:	
7) Analytical Tast/a) Democrated	
7.) Analytical Test(s) Requested (check program	
Std ISBT/Vendor CO2 Test ProgramStd CO2 Feedgas Progra Std Contract ProgramStd ASTM Test Program	
PH ₁ Oxvaen Araon Hvdroaen Helium CO CO ₂ Xenon Neo	EX Water Vapor NVR/NVOR Oll/Grease Total Sulfur H ₂ S SO ₂ al Nitrogen N ₂ NO, NH ₃ NO NO ₂ HCN Nitrous Oxide (N ₂ O) on Krypton Vinyi Chloride Acetaidehyde Voi Oxygenates GC/MS Scan Itxture% Btu (Heat) Content % CHNO Sediment Wt Patch Test is TAN TBN XRF SEM-XRF Scan Light Microscope
Other Testing:	
8.) Sample Disposition	
	nce Actions & Return* Report for Instructions
Other:	
Pupply all refure address 8 ablants Instructions	
	at the top of this form)

Figure 3. Example of CO_2 gas stream analysis authorization form.

Target Parameters	Volume/Container Material	Preservation Technique	Sample Holding time	Relative Sampling Depth
Cations: Ca, Fe, K, Mg, Na, Si	250 ml/HDPE	Filtered, nitric acid, cool 4°C	60 days	Shallow
Dissolved CO2	2 × 60 ml/HDPE	Filtered, cool 4°C	14 days	Shallow
Dissolved CO2	60 ml/HDPE		14 days	Deep
Isotopes: ³ H, δ D, δ ¹⁸ O, δ ³⁴ S, and δ ¹³ C	2 × 60 ml/HDPE	Filtered, cool 4°C	4 weeks	Shallow
lsotopes: δ ³⁴ S	250 ml/HDPE	Filtered, cool 4°C	4 weeks	Deep
Isotopes: δD , $\delta^{18}O$, $\delta^{13}C$	60 ml/HDPE	Filtered, cool 4°C	4 weeks	Deep
Alkalinity, anions (Br, Cl, F, NO3, SO4)	500 ml/HDPE	Filtered, cool 4°C	45 days	Shallow
Field Confirmation: Temperature, dissolved oxygen, specific conductance, pH	200 ml/glass jar	None	< 1 hour	Deep
Field Confirmation: Density	60 ml/HDPE	Filtered	< 1 hour	Deep

 Table 10.
 Summary of anticipated sample containers, preservation treatments, and holding times.

B.3.e. Sample Chain-of-Custody

For CO₂ stream analysis, an analysis authorization form (Figure 3) will accompany the sample to the lab at which point a chain-of-custody accompanies the sample through their processes.

For groundwater samples, chain-of-custody will be documented using a standardized form. A typical form is shown in Figure 4, and it or a similar form will be used for all groundwater sampling. Copies of the form will be provided to the person/lab receiving the samples as well as the person/lab transferring the samples. These forms will be retained and archived to allow simplified tracking of sample status. The chain-of -custody form and record keeping is the responsibility of groundwater sampling personnel.

CHAIN OF CUSTODY RECORD (Page __ of __)

Illinois State Water Survey – Analytical Services Group Illinois State Geological Survey – Geochemistry Section

For Midwest Geological Sequestration Consortium (MGSC) Projects

	MGSC ID	ISGS MVA ID	Matrix	Date Collected	Time Collected	Sampling Team	Circle analyses to be performed	
1							anions, cations, TDS, alk, NH ₃ , NVOC	
2							anions, cations, TDS, alk, NH ₃ , NVOC	
3							anions, cations, TDS, alk, NH ₃ , NVOC	
4							anions, cations, TDS, alk, NH ₃ , NVOC	
5							anions, cations, TDS, alk, NH ₃ , NVOC	
6							anions, cations, TDS, alk, NH ₃ , NVOC	
7							anions, cations, TDS, alk, NH ₃ , NVOC	
8							anions, cations, TDS, alk, NH ₃ , NVOC	
9							anions, cations, TDS, alk, NH ₃ , NVOC	
10							anions, cations, TDS, alk, NH ₃ , NVOC	
11							anions, cations, TDS, alk, NH ₃ , NVOC	
12							anions, cations, TDS, alk, NH ₃ , NVOC	
12								

CHAIN OF CUSTODY						
Relinquished by:	quished by: Print Name: Date and Time:					
Received by:	Print Name:	Date and Time:				
General Remarks: - Field parameters are to be recorded on separate sheets by sampling teams. - Any special laboratory instructions or remarks should be made below.						
Data Contacts:	Fund:					
Billing Contact:	Billing Addre	ess:				
Send Data To:						

Remarks:

Rev. Oct. 2011 (RL)

Figure 4. Example chain-of-custody form.

B.4. Analytical Methods

Logging, geophysical monitoring, and pressure/temperature monitoring does not apply to this section, and is omitted.

B.4.a. Analytical SOPs

Analytical SOPs are referenced in the Testing and Monitoring Plan and Table 1. Other laboratory specific SOPs utilized by the laboratory utilized by ADM. Each laboratory technician conducting the analysis on the samples will be trained on the SOP developed for each standard method.

B.4.b. Equipment/Instrumentation Needed

Equipment and instrumentation is specified in the individual analytical methods referenced in Table 1.

B.4.c. Method Performance Criteria

Nonstandard method performance criteria are not anticipated for this project.

B.4.d. Analytical Failure

Each laboratory conducting the analyses in Table 1 will be responsible for appropriately addressing analytical failure according to their individual SOPs.

B.4.e. Sample Disposal

Each laboratory conducting the analyses in in Table 1 will be responsible for appropriate sample disposal according to their individual SOPs.

B.4.f Laboratory Turnaround

Laboratory turnaround will vary by laboratory, but generally turnaround of verified analytical results within one month will be suitable for project needs.

B.4.g Method Validation for Nonstandard Methods

Nonstandard methods are not anticipated for this project.

B.5. Quality Control

Geophysical monitoring and pressure/temperature monitoring does not apply to this section, and is omitted.

B.5.a. QC activities

Blanks

For shallow groundwater sampling, a field blank will be collected and analyzed for the inorganic analytes in Table 1 at a frequency of 10% or greater. Field blanks will be exposed to the same field and transport

conditions as the groundwater samples. Blanks will also be utilized for deep groundwater sampling and analyzed for the inorganic analytes in Table1 at a frequency of 10% or greater. Field blanks will be used to detect contamination resulting from the collection and transportation process.

Duplicates

For each shallow groundwater sampling round, a duplicate groundwater sample is collected from a well from a rotating schedule. Duplicate samples are collected from the same source immediately after the original sample in different sample containers and processed as all other samples. Duplicate samples are used to assess sample heterogeneity and analytical precision.

B.5.b. Exceeding Control Limits

If the sample analytical results exceed control limits (i.e., ion balances > $\pm 10\%$), further examination of the analytical results will be done by evaluating the ratio of the measured total dissolved solids (TDS) to the calculated TDS (i.e., mass balance) per APHA method. The method indicates which ion analyses should be considered suspect based on the mass balance ratio. Suspect ion analyses are then reviewed in the context of historical data and interlaboratory results, if available. Suspect ion analyses are then brought to the attention of the analytical laboratory for confirmation and/or reanalysis. The ion balance is recalculated, and if the error is still not resolved, suspect data are identified and may be given less importance in data interpretations.

B.5.c. Calculating Applicable QC Statistics

Charge Balance

The analytical results are evaluated to determine correctness of analyses based on anion-cation charge balance calculation. Because all potable waters are electrically neutral, the chemical analyses should yield equally negative and positive ionic activity. The anion-cation charge balance will be calculated using the formula:

$$\% \ difference = 100 \frac{\sum cations - \sum anions}{\sum cations + \sum anions},$$
 (Equation 1)

where the sums of the ions are represented in milliequivalents (meq) per liter and the criteria for acceptable charge balance is ±10%.

Mass Balance

The ratio of the measured TDS to the calculated TDS will be calculated in instances where the charge balance acceptance criteria are exceeded using the formula:

$$1.0 < \frac{measured TDS}{calculated TDS} < 1.2$$
, (Equation 2)

where the anticipated values are between 1.0 and 1.2.

Outliers

A determination of one or more statistical outliers is essential prior to the statistical evaluation of groundwater. This project will use the USEPA's Unified Guidance (March 2009) as a basis for selection of recommended statistical methods to identify outliers in groundwater chemistry data sets as appropriate. These techniques include Probability Plots, Box Plots, Dixon's test, and Rosner's test. The

EPA-1989 outlier test may also be used as another screening tool to identify potential outliers.

B.6. Instrument/Equipment Testing, Inspection, and Maintenance

Logging tool equipment will be maintained as per OEM standard industry practice.

For groundwater sampling, field equipment will be maintained, factory serviced, and factory calibrated per manufacturer's recommendations. Spare parts that may be needed during sampling will be included in supplies on-hand during field sampling.

For all laboratory equipment, testing, inspection and maintenance will be the responsibility of the analytical laboratory per standard practice, method-specific protocol, or NELAP requirement.

B.7. Instrument/Equipment Calibration and Frequency

Geophysical monitoring does not apply to this section, and is omitted.

B.7.a. Calibration and Frequency of Calibration

Pressure/temperature gauge calibration information is located in Table 6 . Logging tool calibration will be at the discretion of the service company providing the equipment, following standard industry practice. Calibration frequency will be determined by standard industry practices.

For groundwater sampling, portable field meters or multiprobe sondes used to determine field parameters (e.g., pH, temperature, specific conductance, dissolved oxygen) are calibrated according to manufacturer recommendations and equipment manuals (Hach, 2006) each day before sample collection begins. Recalibration is performed if any components yield atypical values or fail to stabilize during sampling.

B.7.b. Calibration Methodology

Logging tool calibration methodology will follow standard industry practice.

For groundwater sampling, standards used for calibration are typically 4, 7 and 10 for pH, a potassium chloride solution yielding a value of 1413 microsiemens per centimeter (μ S/cm) at 25°C for specific conductance, and a 100% dissolved O₂ solution for dissolved oxygen. Calibration is performed for the pH meters per manufacturer's specifications using a 2 or 3-point calibration bounding the range of the sample. For coulometry, sodium carbonate standards (typically yielding a concentration of 4,000 mg CO₂/L) are routinely analyzed to evaluate instrument.

<u>B.7.c.</u> Calibration Resolution and Documentation

Logging tool calibration resolution and documentation will follow standard industry.

For groundwater sampling, calibration values are recorded in daily sampling records and any errors in calibration are noted. For parameters where calibration is not acceptable, redundant equipment may be used so loss of data is minimized.

B.8. Inspection/Acceptance for Supplies and Consumables

B.8. a/b. Supplies, Consumables, and Responsibilities

Supplies and consumables for field and laboratory operations will be procured, inspected, and accepted as required from vendors approved by ADM or the respective subcontractor responsible for the data collection activity. Acquisition of supplies and consumables related to groundwater analyses will be the responsibility of the laboratory per established standard methodology or operating procedures.

B.9. Nondirect Measurements

Seismic Monitoring Methods for CO2 Plume Tracking

B.9.a Data Sources

For time lapse seismic surveys, repeatability is paramount for accurate differential comparison. Therefore, to ensure survey quality, the locations for the shots and acquisition methodology of sequential surveys will be consistent. Once these surveys are conducted, they will be compared to a baseline survey to track and monitor plume development.

For in-zone pressure monitoring, the in-zone pressure gauges in VW#1, VW#2, VW#3, VW#4 and VW#5 will be used to gather pressure data.

B.9.b. Relevance to Project

Time lapse seismic surveys will be used to track changes in the CO_2 plume in the subsurface. Processing and comparing subsequent surveys to a baseline will allow project managers to monitor plume growth, as well as to ensure that the plume does not move outside of the intended storage reservoir. Numerical modeling will be used to predict the CO_2 plume growth and migration over time by combining the processed seismic data with the existing geologic model.

In-zone pressure monitoring data will be used in numerical modeling to predict plume and pressure front behavior and confirm the plume stage within the AOR.

B.9.c. Acceptance Criteria

Following standard industry practices will ensure that the gathered seismic data will be used for accurate modeling and monitoring. Similar ground conditions, shot points located within tolerable limits, functional geophones, and similar seismic input signal will be used from survey to survey to ensure repeatability.

When processing seismic data, several QA checks will be done in accordance with industry standards including reformatting to Omega structured files, geometry application, amplitude compensation, predictive deconvolution, elevation statics correction, RMS amplitude gain, velocity analysis every 2 km, NMO application using picked velocities, CMP stacking, random noise attenuation, and instantaneous gain.

B.9.d. Resources/Facilities Needed

ADM will subcontract all necessary resources and facilities for the seismic monitoring, in-zone pressure monitoring, and groundwater sampling.

B.9.e. Validity Limits and Operating Conditions

For seismic surveys and numerical modeling, intraorganizational checks between trained and experienced personnel will ensure that all surveys and numerical modeling are conducted conforming to standard industry practices.

B.10. Data Management

B.10.a. Data Management Scheme

ADM or a designated contractor will maintain the required project data as provided elsewhere in the permit. Data will be backed up on tape or held on secure servers with adequate redundancy.

B.10.b. Record-keeping and Tracking Practices

All records of gathered data will be securely held and properly labeled for auditing purposes.

B.10.c. Data Handling Equipment/Procedures

All equipment used to store data will be properly maintained and operated according to proper industry techniques. ADM SCADA system and vendor data acquisition systems will interface with one another and all subsequent data will be held on a secure server.

B.10.d. Responsibility

The primary project managers will be responsible for ensuring proper data management is maintained.

B.10.e. Data Archival and Retrieval

All data will be held by ADM. These data will be maintained and stored for auditing purposes as described in section B.10.a.

B.10.f. Hardware and Software Configurations

All ADM and vendor hardware and software configurations will be appropriately interfaced.

B.10.g. Checklists and Forms

Checklists and forms will be procured and generated as necessary.

C. Assessment and Oversight

C.1. Assessments and Response Actions

C.1.a. Activities to be Conducted

Please refer to the Testing and Monitoring plan for groundwater quality data collection frequency. Sample analysis is presented in Table 1. After completion of sample analysis, results will be reviewed for QC criteria as noted in section B.5. If the data quality fails to meet criteria set in section B.5., samples will be reanalyzed, if still within holding time criteria. If outside of holding time criteria, additional samples may be collected or sample results may be excluded from data evaluations and interpretations. Evaluation for data consistency will be performed according to procedures described in the USEPA 2009 Unified Guidance (USEPA, 2009).

C.1.b. Responsibility for Conducting Assessments

Organizations gathering data will be responsible for conducting their internal assessments. All stop work orders will be handled internally within individual organizations.

C.1.c. Assessment Reporting

All assessment information should be reported to the individual organizations project manager outlined in A.1.a/b.

C.1.d. Corrective Action

All corrective action affecting only an individual organization's data collection responsibility should be addressed, verified, and documented by the individual project managers and communicated to the other project managers as necessary. Corrective actions affecting multiple organizations should be addressed by all members of the project leadership and communicated to other members on the distribution list for the QASP. Assessments may require integration of information from multiple monitoring sources across organizations (operational, in-zone monitoring, above-zone monitoring) to determine whether correction actions are required and/or the most cost-efficient and effective action to implement. ADM will coordinate multiorganization assessments and corrective actions as warranted.

C.2. Reports to Management

C.2.a/b. QA status Reports

QA status reports should not be needed. If any testing or monitoring techniques are changed, the QASP will be reviewed and updated as appropriate in consultation with USEPA. Revised QASPs will be distributed by ADM to the full distribution list at the beginning of this document.

D. Data Validation and Usability

D.1. Data Review, Verification, and Validation

D.1.a. Criteria for Accepting, Rejecting, or Qualifying Data

Groundwater quality data validation will include the review of the concentration units, sample holding times, and the review of duplicate, blank and other appropriate QA/QC results. All groundwater quality results will be entered into a database or spreadsheet with periodic data review and analysis. ADM will retain copies of the laboratory analytical test results and/or reports. Analytical results will be reported on a frequency based on the approved UIC permit conditions. In the periodic reports, data will be presented in graphical and tabular formats as appropriate to characterize general groundwater quality and identify intrawell variability with time. After sufficient data have been collected, additional methods, such as those described in the USEPA 2009 Unified Guidance (USEPA, 2009), will be used to evaluate intrawell variations for groundwater constituents, to evaluate if significant changes have occurred that could be the result of CO_2 or brine seepage beyond the intended storage reservoir.

D.2 Verification and Validation Methods

D.2.a. Data Verification and Validation Processes

See Sections D.1.a. and B.5.

Appropriate statistical software will be used to determine data consistency.

D.2.b. Data Verification and Validation Responsibility

ADM or its designated subcontractor will verify and validate groundwater sampling data.

D.2.c. Issue Resolution Process and Responsibility

ADM or its designated Coordinator will overview the groundwater data handling, management, and assessment process. Staff involved in these processes will consult with the Coordinator to determine actions required to resolve issues.

D.2.d. Checklist, Forms, and Calculations

Checklists and forms will be developed specifically to meet permit requirements. Table 11 provides an example of the type of information used for data verification of groundwater quality data.

MVA ID	Anion charge	Cation charge	Charge balance	CB rating	Calculated TDS	Measured TDS	TDS ratio	TDS rating
ICCS_10B_01A	14.4	13.60	-2.84	Pass	760.50	785	1.0	pass
ICCS_10B_02A	14.26	15.06	2.73	Pass	783.03	777	1.0	pass
ICCS_10B_03A	14.39	14.96	1.94	Pass	786.86	806	1.0	pass
ICCS_10B_04A	14.39	14.79	1.38	Pass	780.15	777	1.0	pass
ICCS_10B_04B	14.33	14.90	1.96	Pass	780.95	785	1.0	pass

Table 11. A representative example table of criteria used to evaluate data quality.

D.3 Reconciliation with User Requirements

D.3.a Evaluation of Data Uncertainty

Statistical software will be used to determine groundwater data consistency using methods consistent with USEPA 2009 Unified Guidance (USEPA, 2009).

D.3.b. Data Limitations Reporting

The organization-level project managers will be responsible for ensuring that data developed by their respective organizations is presented with the appropriate data-use limitations.

ADM will use the current operating procedure on the use, sharing, and presentation of results and/or data for the IL-ICCS project. This procedure has been developed to ensure quality, internal consistency and facilitate tracking and record keeping of data end users and associated publications.

References

APHA, 2005, *Standard methods for the examination of water and wastewater (21st edition),* American Public Health Association, Washington, DC.

ASTM, 2010, Method D7069-04 (reapproved 2010), *Standard guide for field quality assurance in a ground-water sampling event*, ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA.

ASTM, 2010, Method D6911-03 (reapproved 2010), *Standard guide for packaging and shipping environmental samples for laboratory analysis*, ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA.

ASTM, 2005, Method D6517-00 (reapproved 2005), *Standard guide for field preservation of ground-water samples*, ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA.

ASTM, 2005, Method D6564-00 (reapproved 2005), *Standard guide for field filtration of ground-water samples*, ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA.

ASTM, 2005, Method D6452-99 (reapproved 2005), *Standard Guide for Purging Methods for Wells Used for Ground-Water Quality Investigations*, ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA.

ASTM, 2002, Method D513-11, *Standard test methods for total and dissolved carbon dioxide in water*, ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA.

ASTM, 2002, Method D6771-02, *Standard guide for low-flow purging and sampling for wells and devices used for ground-water quality investigations*, ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA.

Gibb, J.P., R.M. Schuller, and R.A. Griffin, 1981, *Procedures for the collection of representative water quality data from monitoring wells*, Illinois State Geological Survey Cooperative Groundwater Report 7, Champaign, IL, 61 p.

Hach Company, February 2006, *Hydrolab DS5X, DS5, and MS5 Water Quality Multiprobes User Manual*, Hach Company, 73 p.

Larson, D.R., B.L. Herzog, and T.H. Larson, 2003, *Groundwater geology of DeWitt, Piatt, and Northern Macon Counties, Illinois.* Illinois State Geological Survey Environmental Geology 155, 35 p.

Locke II, R., D. Larssen, W. Salden, C. Patterson, J. Kirksey, A. Iranmanesh, B. Wimmer, I. Krapac. *Preinjection reservoir fluid characterization at a CCS demonstration site: Illinois Basin – Decatur Project, USA*. Proceedings of the 11th International Conference on Greenhouse Gas Technologies, November 18–22, 2012, Kyoto, Japan. *Energy Procedia v. 37, 2013, p. 6,424–6,433.* <u>http://dx.doi.org/10.1016/j.egypro.2013.06.572</u>

Dell, J.W., J.D. Pfaff, M.E. Gales, and G.D. McKee, 1984, *Test Method—The Determination of Inorganic Anions in Water by Ion Chromatography-Method 300*, U.S. Environmental Protection Agency, EPA-600/4-84-017.

Orion Research Inc., 1990, CO2 Electrode Instruction Manual, Orion Research Inc., 36 p.

Puls, R.W., and M.J. Barcelona, 1996, *Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures*. U.S. Environmental Protection Agency, EPA-540/S-95/504.

U.S. Environmental Protection Agency (US EPA), 2009, *Statistical analysis of groundwater monitoring data at RCRA facilities—Unified Guidance*, US EPA, Office of Solid Waste, Washington, DC.

U.S. Environmental Protection Agency (US EPA), 1974, *Methods for chemical analysis of water and wastes*, US EPA Cincinnati, OH, EPA-625-/6-74-003a.

Wood, W.W., 1976, *Guidelines for collection and field analysis of groundwater samples for selected unstable constituents*, In U.S. Geological Survey, Techniques for Water Resources Investigations, Chapter D-2, 24 p.

APPENDIX D: Existing Site Wells Coring Summary

TABLE 1LOG SUMMARY: EXISTING SITE WELLS

Well Name Log Vendor		Log Title	Date Run	Depth Interval (MD ft. KB)		
CCS-1	Schlumberger	GR, CAL, SP, Resistivity, RHOB, NPHI	3/9/2009	352 - 3,541		
CCS-1		Variable Density CBL				
CCS-1	Schlumberger	GR, CAL, SP, Resistivity, RHOB, NPHI	4/5/2009	352 - 5,317		
CCS-1	Schlumberger	Sonic Scanner and FMI	4/5/2009	352 - 5,317		
CCS-1	Schlumberger	CMR, ECS, HNGS	4/5/2009	352 - 5,317		
CCS-1	Schlumberger	MSCT	4/5/2009	352 - 5,317		
CCS-1		Ultrasonic Cement Imaging				
CCS-1	Schlumberger	GR, CAL, SP, Resistivity, RHOB, NPHI	4/26/2009	5,339 - 7,221		
CCS-1	Schlumberger	Sonic Scanner and FMI	4/26/2009	5,339 - 7,221		
CCS-1	Schlumberger	CMR, ECS, HNGS	4/26/2009	5,339 - 7,221		
CCS-1	Schlumberger	MSCT	4/26/2009	5,339 - 7,221		
CCS-1	Schlumberger	MDT	4/26/2009	5,339 - 7,221		
CCS-1	Schlumberger	VSIT	4/26/2009	5,339 - 7,221		
CCS-1		Ultrasonic Cement Imaging				
CCS-1		Variable Density CBL				
CCS-1		Pressure/Temperature Log				
CCS-1		Thermal Neutron Decay (Formation Sigma) Log				
CCS-1		Multi-Finger Caliper Log				
CCS-1		CCL and Perforation Record				
CCS-1		Injection Fullbore Spinner Logs				
		-				
CCS-2	Schlumberger	GR, Resistivity, NPHI, SlimPulse	1/12/2015	50 - 349		
CCS-2	Schlumberger	CAL, DSLT, GPIT	1/12/2015	50 - 349		
CCS-2	Wayne County Well Surveys	CBL	1/16/2015	0 - 351		
CCS-2	Schlumberger	GR, CAL, SP, Resistivity, RHOB, NPHI	5/3/2015	344 - 5,252		
CCS-2	Schlumberger	Sonic Scanner, FMI, CAL, GPIT	5/3/2015	344 - 5,252		
CCS-2	Schlumberger	ECS, HNGS	5/3/2015	344 - 5,252		
CCS-2	Schlumberger	Variable Density CBL	5/31/2015	200 - 5,231		
CCS-2	Schlumberger	Isolation Scanner Cement Evaluation	5/31/2015	200 - 5,231		
CCS-2	Schlumberger	Isolation Scanner Casing Integrity	5/31/2015	200 - 5,231		
CCS-2	Schlumberger	GR, CAL, SP, Resistivity, RHOB, NPHI	5/29/2015	5,234 - 7,193		
CCS-2	Schlumberger	Sonic Scanner, FMI, CAL, GPIT	5/29/2015	5,234 - 7,193		

TABLE 1 LOG SUMMARY: EXISTING SITE WELLS

Well Name	Log Vendor	Log Title	Date Run	Depth Interval (MD ft. KB)
CCS-2	Schlumberger	CMR, Litho Scanner, HNGS	5/29/2015	5,234 - 7,193
CCS-2	Schlumberger	MSCT	5/29/2015	5,234 - 7,193
CCS-2	Schlumberger	Multi-finger Imaging Tool	6/10/2015	30 - 7,048
CCS-2	Schlumberger	Variable Density CBL	6/10/2015	40 - 7,048
CCS-2	Schlumberger	Isolation Scanner Cement Evaluation	6/10/2015	40 - 7,048
CCS-2	Schlumberger	Isolation Scanner Third Interface Echo	6/10/2015	40 - 7,048
VW-1		GR, SP, Resistivity, RHOB, NPHI, Sonic		
VW-1		CBL and/or Cement Imaging		
VW-1	Schlumberger	GR, CAL, Resistivity, RHOB, NPHI		350 - 5,250
VW-1	Schlumberger	Sonic Scanner		350 - 5,250
VW-1	Schlumberger	GR, CAL, Resistivity, RHOB, NPHI		5,250 - 7,228
VW-1	Schlumberger	Sonic Scanner		5,250 - 7,228
VW-1	Schlumberger	MDT	10/25/2010	3,642 - 5,007
VW-1	Schlumberger	XPT (Pressure Express Tool)	11/17/2010	
VW-2	Schlumberger	GR, CAL, Resistivity, RHOB, NPHI	10/8/2012	300 - 5,220
VW-2	Schlumberger	Sonic Scanner	10/8/2012	300 - 5,220
VW-2	Schlumberger	GR, CAL, Resistivity, RHOB, NPHI	10/31/2012	5,320 - 7,150
VW-2	Schlumberger	Sonic Scanner	10/31/2012	5,320 - 7,150
VW-2	Schlumberger	XPT (Pressure Express Tool)	10/31/2012	5,578 - 7,102
VW-2	Schlumberger	RST		203 - 7,110

TABLE 2

Sensitive, Confidential, or Privileged Information

Petrotek

TABLE 2 CORING SUMMARY: EXISTING SITE WELLS

Sensitive, Confidential, or Privileged Information

Petrotek

TABLE 2

Sensitive, Confidential, or Privileged Information

Petrotek

TABLE 2 CORING SUMMARY: EXISTING SITE WELLS

Sensitive, Confidential, or Privileged Information

TABLE 2

Sensitive, Confidential, or Privileged Information

APPENDIX E: Stimulation Attachments and Procedures

180.05.CO2.206 CCS#2 Backflow Maintenance Procedure

Enhanced Energetics Publication: "GasGun – Vertical Containment – Sandia Study (undated)

Letter of Determination, Natural Resources Agency of California Department of Conservation, Division of Oil, Gas, & Geothermal Resources, Dated 4/12/2019

Kraken-enhance Perforating Flow Performance Tests, API RP19B Section 4 Test Results, Enhanced Energetics, 2020

Schmidt, Richard A., Warpinski, Norman R., and Paul W. Cooper. "In Situ Evaluation Of Several Tailored-Pulse Well-Shooting Concepts." Paper presented at the SPE Unconventional Gas Recovery Symposium, Pittsburgh, Pennsylvania, May 1980. doi: https://doi.org/10.2118/8934-MS

List of Controlled Copies, Location, and Responsibility:

Copy #	Location	Responsibility
Original	DCS/DMS	Alcohol Superintendent

Approvers:

- Plant Manager
- Alcohol Superintendent

Revisions:

Date	Version	Author	Reason(s) for revision				
12/07/2022	2.0	S. McDonald	Added revisions table.				
			• Modified to incorporate the change in the treatment fluids, Petrotech				
			 Added revisions table. Modified to incorporate the change in the treatment fluids, Petrotech recommendations and vendor recommendations. Solvent Treatment Volumes Modified Jetting Treatment Volumes Modified Treatment Fluids Modified Modified tables to add Tubular ID's Coil volumes and other specifications have been updated. Permit restriction language on page 2 was updated to make it clearer. Section 12 Health, safety and environmental discussion was modified for the changed fluids. The operational procedure has been modified to re-order the sequence of operations and to incorporate other vendor recommendations: Step 8 - Modified language to ensure permit requirements are understood and monitored during operations. Modifications to wellhead rig up sequence, flushing line and pressure testing sequence. Modifications to jetting treatment procedure as per vendor recommendations. 				
			 Jetting Treatment Volumes Modified Treatment Fluids Modified Modified tables to add Tubular ID's Coil volumes and other specifications have been updated. Permit restriction language on page 2 was updated to make it clearer. Section 12 Health, safety and environmental discussion was modified for the changed fluids. 				
			-				
			 Treatment Fluids Modified 				
			 Permit restriction language on page 2 was updated to make it clearer. 				
			the changed fluids.				
			 Permit restriction language on page 2 was updated to make it clearer. Section 12 Health, safety and environmental discussion was modified for the changed fluids. The operational procedure has been modified to re-order the sequence of operations and to incorporate other vendor recommendations: Step 8 - Modified language to ensure permit requirements are understood and monitored during operations. Modifications to wellhead rig up sequence, flushing line and pressure 				
			 Treatment Fluids Modified Modified tables to add Tubular ID's Coil volumes and other specifications have been updated. Permit restriction language on page 2 was updated to make it clearer. Section 12 Health, safety and environmental discussion was modified for the changed fluids. The operational procedure has been modified to re-order the sequence of operations and to incorporate other vendor recommendations: Step 8 - Modified language to ensure permit requirements are understood and monitored during operations. Modifications to wellhead rig up sequence, flushing line and pressure testing sequence. Modifications to jetting treatment procedure as per vendor recommendations. Added N2 pad before solvent treatment (previously optional) and N2 blanket on stack. Modified treatment soak time to less than 6 hours (
			 the changed fluids. The operational procedure has been modified to re-order the sequence of operations and to incorporate other vendor recommendations: Step 8 - Modified language to ensure permit requirements are understood and monitored during operations. Modifications to wellhead rig up sequence, flushing line and pressure 				
			 of operations and to incorporate other vendor recommendations: Step 8 - Modified language to ensure permit requirements are understood and monitored during operations. Modifications to wellhead rig up sequence, flushing line and pressure 				
			Petrotech Recommendation)				
			Added Appendix II: SDS Sheets				
10/11/2022	1.0	S. McDonald	Initial release.				

Date Issued	Document #	Version	Page	
2022-12-19	180.05.CO2.107	2.0	2 of 143	

1. Scope

Solid buildup across perforations contributes to an increase in the downhole injection pressure, restricting the CO_2 injection rate. For significant and long-term injectivity improvement at CCS #2, this treatment procedure will displace particulates and buildup at the well perforations to improve CO_2 injectivity.

2. Source of Injectivity Reduction

To determine the source of the injectivity reduction observed at CCS #2, samples of the scale buildup in the wellbore were acquired on August 11, 2022. Detailed laboratory results of the samples tested are presented in Appendix I. The analysis indicated the following:

- Inductively Coupled Plasma (ICP) optical emission spectrometry by ADM Research Analytical lab indicated high concentrations of Calcium (1.08%), Sodium (2.5%), Sulfur (1.06%), and Iron (0.81%). Trace amounts of triethylene glycol, long chain methacrylates (~C12), fatty acids (C16, C18, C19), hydrocarbons (C16-C20), triethylene glycol C12 ether were also observed.
- Flexchem gravimetric solids analysis indicated 65% hydrocarbon material (soluble in xylene), 5% carbonates (soluble in acetic acid), and 3% iron oxides (soluble in HCl). The remaining 27% was largely quartz. The quartz is an artifact from obtaining the sample from the bottom of the well and is not considered a fouling element.
- Fourier Transform Infrared (FTIR) spectroscopy by Flexchem indicated large amounts of hydrocarbons and polar OH groups with the presence of amines. The hydrocarbon portion matches more closely to heavy paraffin than asphaltenes.

3. Well Information

Well Name	CCS #2
Operator	Archer Daniels Midland Company
County, State	Macon, IL
US-EPA Permit Number	IL-115-6A-0001
Proposed Stimulation Date	~Q4-2022
API #	12-115-23713-00
Drilled Dates	1/12/2015 - 5/29/2015
Location	39°53'09.32835", -88°53'16.68306"
Ground Level (KB)	675.7' (+15.5')

Table 1 – CCS #2 well information.

M.	Date Issued	Document #	Version	Page	
	2022-12-19	180.05.CO2.107	2.0	3 of 143	

Table 2 –	CCS #2	Well	construction	and	tubulars information.	
I uble #	CCD 112		constituetion	unu	tuouluis miormuton.	

Section	Hole Size, (inches)	Tubular OD, (inches)	Tubular ID, (inches)	Sectio n Depth, (feet)	Tubular Specification (Weight/Grade)	Rating (psi) Burst/Collapse	Capacity (bbl/ft)
Coil Tubing	N/A	2"	1.688"	N/A	3.075#/HS80	10000 (Int. Yield)	0.0027
Final	12-1/4"	9-5/8"	8.681"	7,190'	40#/N-80	8960/7820	0.0732
Intermediate	17-1/2"	13-3/8"	12.515"	5,234'	61#/J-55	3090/1540	0.1525
Surface	26"	20"	19.124"	347'	94#/J55	2110/520	0.3553
Tubing	N/A	5-1/2"	4.839"	6,350'	17#/13CR80	8960/7820	0.0227

Note: Smallest restriction on the 5 $\frac{1}{2}$ " tubing is a XN profile (ID = 4.455") at 6,330' (KB).

Table 3 - CCS #2 well and tubular volumes.

Description	Volume (bbl)
Bottoms Up at TD	178
Coiled Tubing Volume (15,000')	41
End of Tubing (EOT)	144
EOT to Top Perf	20
Top Perf to Bottom Perf	14

N.	Date Issued	Document #	Version	Page	
	2022-12-19	180.05.CO2.107	2.0	4 of 143	

4. Well Head Diagram

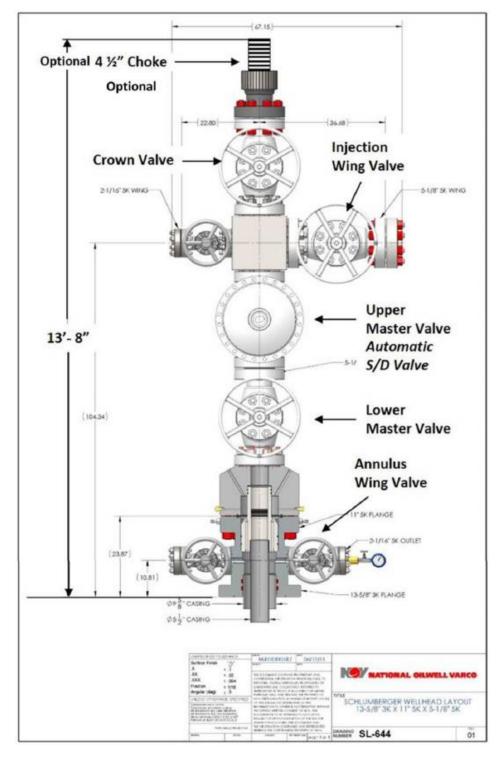


Figure 1 - CCS #2 wellhead schematic.

8	Date Issued	Document #	Version	Page	
	2022-12-19	180.05.CO2.107	2.0	5 of 143	

5. Primary Approach – Hydro Jet & Solvent Wash Through Coiled Tubing

The operations will involve a hydro jetting treatment followed by a solvent treatment slurry. The heated water passes with the hydro jet will be made across the perforations while circulating the well to clean the scale buildup in the well. After which, a solvent treatment slurry will be spotted and injected into the near wellbore matrix to target the near wellbore damage in the reservoir. After adequate soak time, the well will be flowed back to recover the treatment slurry and fines. An additional, heated water hydro jetting run with coiled tubing will be performed to further clean the well head, tubing and casing post flowback. A preliminary site layout for the equipment is presented in Figure 2.

Hydro Jet Treatment Composition: Fresh Water with 2% KCL, 5% Heavy Aromatic Naphtha (PT - 330), and Biocide mixed at 2 gallons per thousand (gpt). Approximately 2020 bbl of total hydro jetting treatment is planned before and after the solvent treatment.

Solvent Treatment Composition: The solvent treatment will be a mixture of 50% acid and 50% Heavy Aromatic Naphtha. The 50% acid will consist of 1% HCl (fresh water source). The 50% Heavy Aromatic Naphtha (HAN) will be a proprietary blend named PT - 330. As a major portion of the sample acquired (65%) consisted of organic material soluble in HAN, a HAN based solvent treatment slurry is proposed to treat the skin buildup. The mixture creates an emulsion, where the HAN is intended to dissolve organic buildup and allow acid to clean the acid soluble particulates (iron oxides). Iron control, acid corrosion control, scale inhibitor, non-emulsifier, surfactants, citric acid, and biocide will also be present in the solvent treatment.

Solvent Treatment Volume: 250 bbl

Operation (Coil Movement Footage)	Step In Procedure	Fluid	Estimated Volume (bbl)
Load the Hole & RIH to above Top Perf. (6,600')	42-43	Hydro Jet Treatment	200
Pass 1: Clean Out from top perf to TD (1,180')	44	Hydro Jet Treatment	300
Additional Passes: Hydro Jet Perforations (1,530')	45	Hydro Jet Treatment	600
Short Trip to 6,300' & RIH to TD (1,190')	46	Hydro Jet Treatment	100
Circulate, while reciprocating coil	47	Hydro Jet Treatment	260
Inject N ₂ pad	48	N ₂	500MSCF
Inject Solvent Treatment	51	Solvent Treatment	125
Flow Back/Surge	52	Solvent Treatment	7 (~100 feet)
Inject Solvent Treatment	53	Solvent Treatment	125
Flow Back (after soak time)	59	Solvent Treatment, N ₂ , CO ₂	~250
Wash Up (Post Flowback)	61-63	Hydro Jet Treatment	560

Table 4 – Expected Treatment/Return Volumes (Approximate)

Note: These volumes are estimations and may change based on the equipment availability and other operational aspects. (i.e. if string starts to take weight may increase pump rate, increase speed during subsequent passes, etc.)

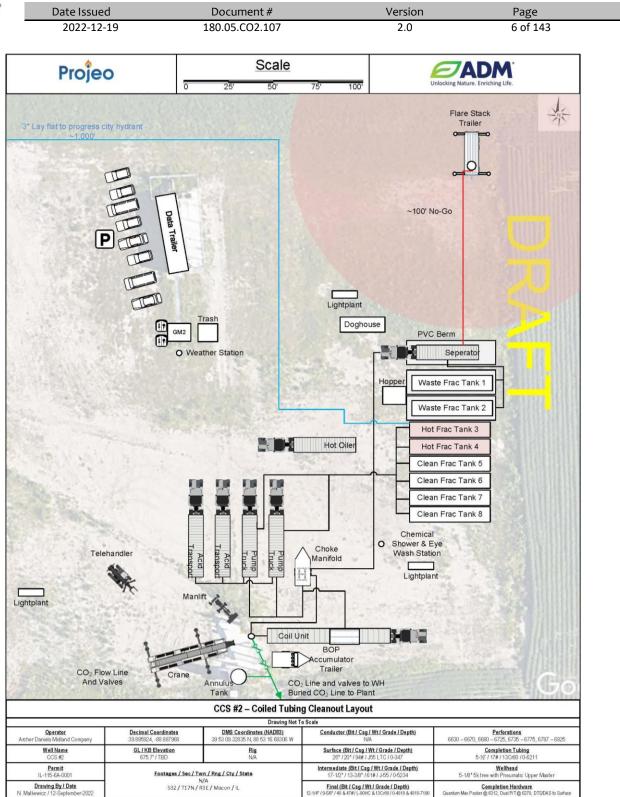


Figure 2 - Representative plan for site layout during coiled tubing cleanout on CCS#2 well. Actual plan may differ in equipment and configuration.

6. Responsibilities

Project Manager -

- Oversees all aspects of the coiled tubing cleanout operations are carried as per the procedure to achieve the desired objective (Well Cleanout).
- Ensures personnel on site are certified on use of proper PPE including supplied breathing air and mask. PPE will be utilized for the duration of the cleanout operation.
- Communicates the cleanout operation date and time to Richland Community College (RCC).
- Coordinates with ADM Security to ensure security personnel are available during times of the backflow operation to limit access to the well site.
- Responsible for communicating with ADM management and environmental.

Safety/Environmental Manager -

- Communicates with US-EPA regulators.
- Confirms containment berms are installed under storage tanks for spill protection
- Confirm a wash station is available and functional for all personnel at the wellsite during operations.
- Confirm SDS for all chemicals on site is present and accessible.
- Ensure windsocks are installed and visually accessible.
- Ensure steps to mitigate leaks and spills are taken and procedures to deal with spills are in place.
- Confirms personal gas monitors are available for all personnel at the wellsite during operations.
- Confirms all on site gas atmospheric monitors are operating properly and in good working order.
- Confirms all personnel at the well site have adequate PPE including, but not limited to, hard hat, goggles, long sleeve shirts, gloves with a cut rating of 2 or higher, and double hearing protection (ear plugs and soundproof earmuffs).
- Conducts a Job Safety Analysis (JSA) form on the day of the event prior to the coiled tubing cleanout operation.
- Maintains full authority to stop operations at any time during the backflow operation.

Engineer in Charge -

- Strictly focuses on incoming and outgoing communications as needed.
- Responsible for communicating and updating project manager.
- Ensures all necessary tools and equipment are on site.
- Responsible for AFE, daily report, and budget tracking and communicating significant deviations.

Wellsite Supervisor -

- Maintains responsibility for work conducted on the CCS #2 equipment and the coiled tubing operations.
- Communicate and ensure all personnel understands the procedure and their respective functions.
- Communicate and ensure all personnel understands Permit IL-115-6A-0001 Attachment F: Emergency and Remedial Response Plan for ADM CCS#2.
- Ensures operability of radio communication and maintains communication with all affected colleagues: at the well, production personnel monitoring the parameters of the well, ADM Security and others as applicable.
- Coordinate operations and equipment required for operations with vendors.
- Responsible for communicating and updating engineer.
- Monitors atmospheric conditions to ensure adequacy prior to commencement of the backflow operation.

 Date Issued
 Document #
 Version
 Page

 2022-12-19
 180.05.C02.107
 2.0
 8 of 143

Vendor Supervisors -

- Maintains responsibility for work conducted on their respective equipment.
- Ensure all personnel reporting to them understand their responsibilities and follow the procedure.

ADM Management -

• Maintains communication with the CCS PM and S/E Manager for the duration of the coiled tubing cleanout operation.

ADM CO2 Operators -

- Confirms nitrogen supply at well site. Nitrogen is required to actuate the automatic upper master valve.
- Coordinate injection shutdown and startup.
- Monitor and maintain required annulus and wellhead pressure. Communicate with wellsite supervisor if parameters are outside allowable.

ADM Security -

• Limits access to the road entrance to the well site.

7. Health, Safety, and Environmental Considerations and Discussion

Potential hazards include:

- Additive Chemicals Multiple additives will be preblended into the HCL solution transported to site. For additional information review the SDS attached for each additive, in Appendix II.
 - Corrosion Inhibitor Envirohib 600
 - Iron Control Ferriplex 40
 - Non-Emulsifier PlexBreak 145
 - o Surfactant Waxaid 19
 - Surfactant Waxaid 19
- **Biocide Bioclear 1430:** Glutaraldehyde (C5H8O2) is a primary component of Biocide. It is a colorless, oily liquid with a sharp, pungent odor. It is used as a biocide to destroy bacterial activity in the fluid. Contact with liquid causes severe irritation of eyes and irritation of skin. Chemical readily penetrates skin in harmful amounts. Ingestion causes irritation of mouth and stomach (National Center for Biotechnology Information, 2005). For additional information review SDS attached in the Appendix II.
- **Carbon dioxide (CO₂):** Carbon Dioxide gas is colorless. At low concentrations, the gas is odorless. At higher concentrations it has a sharp, acidic odor. It will act as an asphyxiant and an irritant. Carbon Dioxide is a powerful cerebral dilator. At concentrations between 2 and 10%, Carbon Dioxide can cause nausea, dizziness, headache, mental confusion, increased blood pressure and respiratory rate. Above 8%, nausea and vomiting appear. Above 10%, suffocation and death can occur within minutes. Contact with the cold gas can cause freezing of exposed tissue. Moisture in the air can lead to formation of carbonic acid that can irritate the eyes. All forms of Carbon Dioxide are noncombustible. Carbon Dioxide is heavier than air and should not be allowed to accumulate in low lying areas.
- **Fire:** A fire hazard is present due to flaring operations. Site operators should have fire extinguishers available and windsocks to monitor wind conditions. A 100' no-go zone should be clearly marked around the vent/flare stack.
- Heavy Aromatic Naphtha (PT-330): Heavy Aromatic Naphtha is a complex combination of hydrocarbons obtained from distillation of aromatic streams. Naphtha can cause nose and throat irritation on inhalation or irritate and burn the skin and eyes on contact. Additionally, it can also cause headache, dizziness, nausea and vomiting. Naphtha is a

Date Issued	Document #	Version	Page	
2022-12-19	180.05.CO2.107	2.0	9 of 143	

flammable or combustible liquid depending on its hydrocarbon composition. An SDS for PT-330 is attached in the Appendix II.

Additional information regarding Naphtha can be found at https://www.cdc.gov/niosh/npg/npgd0664.html

A Volatile Organic Compound (VOC) gas monitors, will be present on site to monitor vaporized fume content.

Hydrochloric Acid (Hydrogen Chloride - HCl): Hydrochloric acid, solution is a colorless watery liquid with a sharp, irritating odor. Consists of hydrogen chloride, a gas, dissolved in water. Sinks and mixes with water. Produces irritating vapor. At room temperature, hydrogen chloride is a colorless to slightly yellow, corrosive, nonflammable gas that is heavier than air and has a strong irritating odor. Hydrochloric acid is corrosive to the eyes, skin, and mucous membranes. Acute (short-term) inhalation exposure may cause eye, nose, and respiratory tract irritation and inflammation and pulmonary edema in humans. Acute oral exposure may cause corrosion of the mucous membranes, esophagus, and stomach and dermal contact may produce severe burns, ulceration, and scarring in humans. Chronic (long-term) occupational exposure to hydrochloric acid has been reported to cause gastritis, chronic bronchitis, dermatitis, and photosensitization in workers. Prolonged exposure to low concentrations may also cause dental discoloration and erosion (National Center for Biotechnology Information, 2004). Additional information regarding HCL exposure hazards can be found at https://www.osha.gov/chemicaldata/620

Personnel on site, with potential of HCL exposure will require Volatile Organic Compound (VOC) gas monitors.

- Photoionization Detector (PID) gas monitors. Additionally, HCL recovered after flowback will need to be neutralized.
 Noise: The injection pumps used during the coiled tubing cleanout operation will produce noise levels in excess of 85 decibels. Noise levels above 85 decibels can cause permanent damage to the hair cells in the inner ear, leading to hearing loss. It is required by OSHA to wear double hearing protection consisting of ear plugs and earmuffs when noise levels reach 140 decibels or more.
- **Particulate:** The flaring operation as part of the coiled tubing cleanout operation may produce minor levels of particulate to be suspended in the air. The operation should be stopped or slowed at the discretion of the site team if particulate levels are higher than expected as monitored on personal safety monitoring devices.
- Pressure:
 - **Operational Rating**: All wellhead valves except the bottom casing flange are rated up to 5,000 PSIG. The bottom casing flange is rated up to 3,000 PSIG.

IMPORTANT: All activity shall cease if wellhead pressure exceeds 3,000 PSIG.

 CO_2 Mixing in Atmosphere: Wellsite supervisor confirms all site conditions are met before proceeding with the operation and that temperature and wind conditions are conducive to CO_2 mixing in atmosphere.

- **Temperature**: During the backflow process as part of the coiled tubing cleanout operation. A pressure drop in the lower assembly of the well head will cause cooling. If temperatures extend outside the backflow range, particularly below -10°F, operations will begin to choke back flow to decrease the temperature drop.
 - **Operating Range**: Wellhead valves have an operating range of -20° to 1,300°F.
 - **During Backflow**: Typically, 0° to -10°F.

IMPORTANT: All activity <u>shall cease</u> if temperature falls below -15°F.

Emergency and Remedial Response: In the event that the Emergency and Remedial Response Plan (ERRP) is activated and/or followed, ADM shall implement the verbal and written reporting requirements set forth in Section N(3) of Permit #IL-115-6A-0001

Date Issued	Document #	Version	Page	
2022-12-19	180.05.CO2.107	2.0	10 of 143	

Required Training

• Well Control Training: Wellsite supervisor in charge of operations will be trained and certified in well control.

Records

- **Carbon Dioxide Venting Calculation:** The amount of CO₂ emitted to the atmosphere must be calculated to be included on the greenhouse gas report for submittal the following year.
- Daily Operational Reports: Daily operational reports will be developed for each day of the operation.
- Job Safety Analysis: A completed JSA form must be reviewed by all affected colleagues prior to the start of the backflow operation.

Disposal:

- Proper disposal of the backflow materials will be performed based on generator knowledge and SDS's of materials present, in accordance with all local, state, and federal regulations.
- The waste mixture will be stored in the Waste Frac Tanks, and labeled as "Hazardous Waste Waste Pending Analysis"
- The Safety/Environmental Manager will ensure that all applicable regulatory requirements under RCRA are met while storing the waste onsite.
- Once analytical results are received, the materials will be disposed of at the appropriate treatment, storage, or disposal facility.

8. Procedure

Notes:

- Review safety protocol with the crew at the start of the job and ensure site personnel are aware of the site-specific hazards and Emergency Response Protocols. Ensure proper handovers during shift change is conducted.
- This procedure is only a guideline and will be subject to change based on vendor selection and equipment availability. Other procedural changes may be necessary during treatment execution due to changing operational conditions and ongoing evaluation of treatment efficacy.
- 1. Conduct notifications necessary prior to cleanout operation:
 - Notify ADM site supervisor 2 weeks prior to planned move in date.
 - Notify agency 30 days prior to treatment operations.
 - Notify JULIE or preferred underground locating service at least 72 hours in advance of moving in equipment to mark buried lines (unit grounding).
 - Notify vendors and disposal companies
- 2. Order long lead equipment prior to commencing operations:
 - Full set of ring gaskets, studs, nuts, and wrenches for entire Christmas tree stack.
 - VOC, HCl, and CO₂ safety meters.
 - Disposal company.
- 3. Install barriers and cones around above ground pipes and valves. Remove fencing around wellhead. Mobilize forklift and manlift.
- 4. Spot Coil Tubing Unit prior to support equipment ensure to utilize spotters while trailer is backing into position.

Date Issued	Document #	Version	Page	
2022-12-19	180.05.CO2.107	2.0	11 of 143	

- 5. Spot and rig-up surface equipment:
 - Pump truck
 - Injection and flowback lines, meters, and hoses.
 - Crane
 - Separator
 - Choke manifold
 - Vent stack
 - Hot oiler, line heater and or heat baths.
 - Transfer pumps
 - Wash station (shower)
 - Porta Pots
 - Light plants X 3
 - Dumpster

Confirm coiled tubing and ancillary equipment was pressure tested and ready for operations. Utilize spotters while backing equipment. Manifold pump trucks to be able to inject into the coil or surface return lines (to inject N_2 to blanket stack and/or cut flowback).

- 6. Designate a rally point for personnel to meet at, in the event a well control emergency takes place.
- 7. Conduct a Job Safety Analysis (JSA) and review operations with the entire crew required repeat as needed as new crew arrive for night shift.
- 8. Confirm anulus pressure is 100 psi and tubing pressure differential directly above and across the packer is 100 psi. If pressure is not 100 psi above tubing pressure **DO NOT PROCEED**, notify engineering, and await instruction. Monitor annulus pressure across the packer at all times during operations to ensure a positive 100-psig differential.
- 9. Install lay flat from Progress City hydrant to CCS #2 wellsite. Fill 5 frac tanks with fresh water (install berms under frac tanks).
- 10. Ensure all fresh water pumped has biocide added at 2 gpt.
- 11. Move in hot oiler(s) and begin heating water. Heat up 1500 BBL of fresh water to approx. 180° F. Designate three frac tank as hot water tank. Heating process may take 8-12 hours.
- 12. Halt CO₂ injection.
- 13. Close Injection wing valve. Record the number of turns required to close the valve.
- 14. Close Lower Master valve. Record the number of turns required to close the valve.
- 15. Close pneumatic Upper Master gate valve.
- 16. Close 2-1/16" kill valve on well head. Record the number of turns required to close the valve.
- 17. Close crown valve and bleed off pressure through needle valve in tree cap. Record the number of turns required to close the valve.
- 18. Unbolt and remove $4-\frac{1}{2}$ " tree cap.
- 19. Install 7-1/16" work valve, flow tee, and quad BOP (Blind Ram, Shear Ram, Slip Rams, and Pipe Seal Ram) above crown valve in open position. All elastomers dressed for CO₂ duty service.
- 20. Close 7-1/16" work valve.
- 21. Open Upper Master and crown gate valve. Verify 7-1/16" work valve holding pressure.
- 22. LOTO valve to ensure it cannot close during well work operation. Follow site procedure for LOTO and valve operation.
- 23. Ensure bottom master gate is in the open position.
- 24. Make up jetting tool assembly include jetting tool, IBOP (Internal BOP) and knuckle joints in assembly.
- 25. Load coil tubing, and well head stack with hot water. Fill separator to required level with hot water.

 Date Issued
 Document #
 Version
 Page

 2022-12-19
 180.05.C02.107
 2.0
 12 of 143

- 26. Flush 2-time coil tubing volume, through coil tubing, and surface lines.
- 27. Close choke and pressure test pump iron, coiled tubing, entire stack, and flowline to choke with 3,000psi.
- 28. Investigate for leaks. Hold pressure for 30 minutes. Tighten connections as needed.
- 29. Bleed off pressure into frac tank through return valve.
- 30. Test BOP stack through the choke.
- 31. Bleed off pressure into frac tank through return valve. Pressure up the wellhead stack with a N₂ blanket, match well pressure.
- 32. Setup to monitor downhole wellbore pressure and temperature parameters prior to treatment operation and during treatment operation to not exceed downhole tubing pressure greater than 4,125 psia.
- 33. Ensure Return valve is closed. Then open 7-16" Working valve.
- 34. Start loading the hole with hydro jetting treatment fluid. Do not exceed 4,125 psia downhole tubing pressure.
- 35. Trip in Hole (TIH) with jetting tool (at ~ 60 ft/min) to 6,600' pump the heated treatment fluid, ensure CO2 is displaced into the formation and coil is always in treatment fluid (use about 200 bbl). Stop every 1,000 ft and pull back to ensure no restrictions. If jetting nozzle stacks off TOOH and switch to a mechanical cleanout with mud motor and bit. Monitor annulus pressure during TIH.
- 36. Open return valve and increase pumping rate to at least 2 bpm and perform hydro jetting pass 1 (6,600 TD): TIH (~10-5 ft/min) while hydro jetting down to TD and TOOH back to 6,600' above top perf. Adjust choke and match return rate with pump rate to limit CO2 influx. If injection rate changes adjust flowback rate accordingly. *Rate and speed are dependent on operational conditions (i.e., if string starts to take weight may increase pump rate, increase speed during subsequent passes, etc.).
- 37. Perform additional jetting tool passes through the perforations from 6,600' to 6,855' with heated hydro jetting treatment at ~5-10 ft/min and 2 bpm injection rate. If injection rate changes adjust flowback rate accordingly. *Rate and speed are dependent on operational conditions (i.e., if string starts to take weight may increase pump rate, increase speed during subsequent passes, etc.).
- *38.* Perform a short trip above XN nipple to 6,300' and RIH to TD, while circulating at 2 bpm. Once at TD, increase rate to 3-3.5 bpm (circulate 2 x bottom-up total). Adjust flowback rate accordingly.
- *39.* POOH to bottom perf. Close return line and inject a 500,000 SCF N₂ pad into formation, while tripping out of hole slowly.

Note: Crew will stop after a 12-hour shift and resume operations the next day. Hot oiler will continue to heat fluid overnight. Based on operational progress through steps 1- 39 operational changes might be made for a safe overnight shut-in.

- 40. Make first solvent treatment pass at ~5-10 ft/min pumping at ~2 bpm from 6,600' to 6,855' treating perforations with 125 bbl of solvent treatment. *Rate and speed are dependent on operational conditions (i.e., if string starts to take weight may increase pump rate, increase speed during subsequent passes, etc.)
- 41. Pull coil up to ~6,400', continue to reciprocate coil. Surge well back by opening return valve for about 100' of surge (~7 bbl). Close return valve. Move down to 6,500'.
- 42. Make second solvent treatment pass at ~5-10 ft/min pumping at ~2 bpm from 6,855' to 6,500' treating perforations with 125 bbl of solvent treatment.
- 43. When all treatment fluid is pumped, TOOH to ~6,475' switch to fresh water and flush lines displacing solvent treatment into perforations.
- 44. TOOH pull above 7-1/16" working valve.
- 45. Close 7-1/16" working valve.
- 46. Allow treatment fluid to soak for less than 6 hours.
- 47. While well is soaking check freshwater volumes and top off as needed. Using hot oiler heat up 500 BBL of water to approximately 180° F.

•	Date Issued	Document #	Version	Page	
	2022-12-19	180.05.CO2.107	2.0	13 of 143	

- 48. Monitor well head and downhole tubing pressure. Do not exceed 4,125 psia downhole tubing pressure. Bleed off gas into as needed to maintain pressure not to exceed 4,125 psia downhole tubing pressure
- 49. Initiate backflow to recover treatment fluid. Open return valve, and choke return line valves allowing well to unload using nitrogen pad and reservoir pressure until treatment fluid returns cease or significant CO₂ returns are observed. Monitor for hydrate formation and inject nitrogen as needed to support backflow venting. Flow back into frac tanks through separator and choke manifold to unload the well fluids. Monitor returns and shut-in well/stop flowback once significant CO₂ is observed at surface.
- 50. Open 7-1/16" working valve. Load the hole with hydro jetting treatment fluid pad (60 bbl) and displace CO₂ into the well.
- 51. TIH with the jetting tool to ~TD' (at ~ 60 ft/min) pumping heated fresh at 2 bpm (use about 250 bbl), Choke return to ensure coil tubing is always in treatment fluid.
- 52. TOOH jetting hot water at 2 Bpm (use about 250 bbl) at ~60 ft/min. Choke return to ensure coil tubing is always in treatment fluid.
- 53. Close 7-1/16" working valve.
- 54. Regrease and retorque all wellhead flanges.
- 55. Resume CO₂ injection and monitor downhole pressures and injectivity performance.
- 56. Rig down move out.
 - Flush hoses with fresh water.
 - Send samples for disposal analysis.
 - Remove/dispose of flowback fluids.
 - Remove/dispose and solids in flowback tanks.
 - Conduct tank cleaning.

Date Issued 2022-12-19

Document # 180.05.CO2.107

Version

2.0

Page 14 of 143

Appendix I: Sample Analytical Results

Analysis of Metals in Unknown Hydrocarbon by ICP

08/19/2022 Dawn Buschek - ADM Research Analytical

Submitted by - Scott McDonald

Charge Code - Corn Syrup B02

Project Code - 13-1201 R&D General Support - Corn Syrup

AST Form - 106171

AST Request - 2022-03706

Analytical ELN Record - 2022-0819-006

Sample Name	2022-03706 CCS2 Sample 8-11-22	Units	LOD
Al	1110	mg/kg	0.2
В	12.4	mg/kg	0.2
Ca	10800	mg/kg	0.2
Со	ND	mg/kg	1
Cr	403	mg/kg	1
Cu	797	mg/kg	1
Fe	8100	mg/kg	0.2
К	841	mg/kg	10
Mg	1690	mg/kg	0.2
Mn	107	mg/kg	1
Мо	11	mg/kg	1
Na	25000	mg/kg	0.2
Ni	62.4	mg/kg	1
Р	149	mg/kg	1
S	10600	mg/kg	1
Zn	1220	mg/kg	0.2

·	Date Issued	Document #	Version	Page	
	2022-12-19	180.05.CO2.107	2.0	15 of 143	

Appendix II: SDS Sheets

SDS CO2

Date Issued 2022-12-19

Document # 180.05.CO2.107

Version 2.0

SAFETY DATA SHEET

Carbon Dioxide

Section 1. Identi	fication
GHS product identifier	: Carbon Dioxide
Chemical name	: Carbon dioxide, gas
Other means of identification	: Carbonic, Carbon Dioxide, Carbonic Anhydride, R744, Carbon Dioxide USP
Product type	: Gas.
Product use	: Synthetic/Analytical chemistry and Medical use.
Synonym	: Carbonic, Carbon Dioxide, Carbonic Anhydride, R744, Carbon Dioxide USP
SDS #	: 001013
Supplier's details	: Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253
24-hour telephone	: 1-866-734-3438
Section 2. Hazar	ds identification
OSHA/HCS status	: This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200).
Classification of the substance or mixture	: GASES UNDER PRESSURE - Liquefied gas Simple asphyxiant.
GHS label elements	
Hazard pictograms	
Signal word	: Warning
Hazard statements	: Contains gas under pressure; may explode if heated. May displace oxygen and cause rapid suffocation. May increase respiration and heart rate.
Precautionary statement	s
General	: Read and follow all Safety Data Sheets (SDS'S) before use. Read label before use. Keep out of reach of children. If medical advice is needed, have product container or label at hand. Close valve after each use and when empty. Use equipment rated for cylinder pressure. Do not open valve until connected to equipment prepared for use. Use a back flow preventative device in the piping. Use only equipment of compatible materials of construction. Always keep container in upright position.
Prevention	: Use and store only outdoors or in a well ventilated place.
Response	: Not applicable.
Storage	: Protect from sunlight. Store in a well-ventilated place.
Disposal	: Not applicable.
Hazards not otherwise classified	 In addition to any other important health or physical hazards, this product may displace oxygen and cause rapid suffocation. May cause frostbite.

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	17 of 143

Section 3. Comp	osition/information	on ingredients			
Substance/mixture	: Substance				
Chemical name	: Carbon dioxide, gas				
Other means of dentification	: Carbonic, Carbon Dioxide, Carbonic Anhydride, R744, Carbon Dioxide USP				
Product code	: 001013				
CAS number/other identifie CAS number	ers : 124-38-9				
	: 124-30-9	%	CAS number		
Ingredient name Carbon Dioxide		100	124-38-9		
Carbon Dioxide		100	124-30-9		
n this section.	, are classified as hazardous to nits, if available, are listed in Se aid measures				
Description of necessary f	<u>irst aid measures</u>				
Eye contact		th plenty of water, occasionally li move any contact lenses. Contir ention if irritation occurs.			
Inhalation	Remove victim to fresh air and keep at rest in a position comfortable for breathing. If not breathing, if breathing is irregular or if respiratory arrest occurs, provide artificial respiration or oxygen by trained personnel. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. Get medical attention if adverse health effects persist or are severe. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such as a collar, tie, belt or waistband.				
Skin contact	 Flush contaminated skin with plenty of water. Remove contaminated clothing and shoes. Get medical attention if symptoms occur. Wash clothing before reuse. Clean shoes thoroughly before reuse. 				
Ingestion	: As this product is a gas, refer to the inhalation section.				
Most important symptoms	/effects, acute and delayed				
Potential acute health effe	ects				
Eye contact	: No known significant effect	ts or critical hazards.			
Inhalation	: No known significant effect	ts or critical hazards.			
Skin contact	: No known significant effect	ts or critical hazards.			
Frostbite	: Try to warm up the frozen	tissues and seek medical attenti	ion.		
Ingestion	: As this product is a gas, re	efer to the inhalation section.			
	nptoms				
Over-exposure signs/sym	: No specific data.				
Over-exposure signs/sym Eye contact	· No specific data.				
A STATE OF A	No specific data.				
Eye contact	Service of the servic				
Eye contact Inhalation	: No specific data.				
Eye contact Inhalation Skin contact Ingestion	No specific data.No specific data.	atment needed, if necessary			
Eye contact Inhalation Skin contact Ingestion	 No specific data. No specific data. No specific data. No specific data. edical attention and special trees. Treat symptomatically. Conguantities have been ingest 	ontact poison treatment specialis	st immediately if large		
Eye contact Inhalation Skin contact Ingestion	 No specific data. No specific data. No specific data. Mo specific data. 	ontact poison treatment specialis	t immediately if large		

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	18 of 143

L	And an Alexandre
L	Carbon Dioxide

Protection of first-aiders

Section 4. First aid measures

: No action shall be taken involving any personal risk or without suitable training. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation.

See toxicological information (Section 11)

Section 5. Fire-fight	nting measures
Extinguishing media	
Suitable extinguishing media	: Use an extinguishing agent suitable for the surrounding fire.
Unsuitable extinguishing media	: None known.
Specific hazards arising from the chemical	: Contains gas under pressure. In a fire or if heated, a pressure increase will occur and the container may burst or explode.
Hazardous thermal decomposition products	: Decomposition products may include the following materials: carbon dioxide carbon monoxide
Special protective actions for fire-fighters	: Promptly isolate the scene by removing all persons from the vicinity of the incident if there is a fire. No action shall be taken involving any personal risk or without suitable training. Contact supplier immediately for specialist advice. Move containers from fire area if this can be done without risk. Use water spray to keep fire-exposed containers cool.
Special protective equipment for fire-fighters	: Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode.
Section 6. Accider	ntal release measures
Personal precautions, protec	tive equipment and emergency procedures
For non-emergency personnel	: No action shall be taken involving any personal risk or without suitable training. Evacuate surrounding areas. Keep unnecessary and unprotected personnel from entering. Avoid breathing gas. Provide adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Put on appropriate personal protective equipment.
For emergency responders	: If specialized clothing is required to deal with the spillage, take note of any information in Section 8 on suitable and unsuitable materials. See also the information in "For non-emergency personnel".
Environmental precautions	: Ensure emergency procedures to deal with accidental gas releases are in place to avoid contamination of the environment. Inform the relevant authorities if the product has caused environmental pollution (sewers, waterways, soil or air).
Methods and materials for co	ntainment and cleaning up
Small spill	: Immediately contact emergency personnel. Stop leak if without risk.
Large spill	: Immediately contact emergency personnel. Stop leak if without risk. Note: see Section 1 for emergency contact information and Section 13 for waste disposal.
Section 7. Handlin	g and storage
Precautions for safe handling	1
Protective measures	: Put on appropriate personal protective equipment (see Section 8). Contains gas under pressure. Avoid breathing gas. Do not puncture or incinerate container. Use equipment rated for cylinder pressure. Close valve after each use and when empty. Protect cylinders from physical damage; do not drag, roll, slide, or drop. Use a suitable hand truck for cylinder movement. Avoid contact with eyes, skin and clothing. Empty containers retain product residue and can be hazardous.

Date of issue/Date of revision	: 2/12/2018	Date of previous issue	: 4/25/2017	Version	:0.03	3/11
--------------------------------	-------------	------------------------	-------------	---------	-------	------

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	19 of 143

Carbon Dioxide	
Section 7. Handlin	ig and storage
Advice on general occupational hygiene	: Eating, drinking and smoking should be prohibited in areas where this material is handled, stored and processed. Workers should wash hands and face before eating, drinking and smoking. Remove contaminated clothing and protective equipment before entering eating areas. See also Section 8 for additional information on hygiene measures.
Conditions for safe storage, including any incompatibilities	Store in accordance with local regulations. Store in a segregated and approved area. Store away from direct sunlight in a dry, cool and well-ventilated area, away from incompatible materials (see Section 10). Cylinders should be stored upright, with valve protection cap in place, and firmly secured to prevent falling or being knocked over. Cylinder temperatures should not exceed 52 °C (125 °F). Keep container tightly closed and sealed until ready for use. See Section 10 for incompatible materials before handling or use.

Section 8. Exposure controls/personal protection

Control parameters

Occupational exposure limits

Ingredient name	Exposure limits	
Carbon Dioxide	ACGIH TLV (United States, 3/2017). Oxyg Depletion [Asphyxiant]. STEL: 54000 mg/m³ 15 minutes. STEL: 30000 ppm 15 minutes. TWA: 9000 mg/m³ 8 hours. TWA: 5000 ppm 8 hours. NIOSH REL (United States, 10/2016). STEL: 54000 mg/m³ 15 minutes. STEL: 30000 ppm 15 minutes. TWA: 9000 mg/m³ 10 hours. TWA: 5000 ppm 10 hours. OSHA PEL (United States, 6/2016). TWA: 9000 mg/m³ 8 hours. TWA: 5000 ppm 8 hours. STEL: 54000 mg/m³ 15 minutes. STEL: 54000 mg/m³ 8 hours. TWA: 5000 ppm 15 minutes. STEL: 30000 ppm 15 minutes. STEL: 30000 ppm 15 minutes. STEL: 30000 ppm 15 minutes. TWA: 18000 mg/m³ 8 hours.	en
Appropriate engineering controls	: Good general ventilation should be sufficient to control worker exposure to airborne contaminants.	
Environmental exposure controls	: Emissions from ventilation or work process equipment should be checked to ensure they comply with the requirements of environmental protection legislation. In some cases, fume scrubbers, filters or engineering modifications to the process equipment will be necessary to reduce emissions to acceptable levels.	
ndividual protection meas	<u>25</u>	
Hygiene measures	: Wash hands, forearms and face thoroughly after handling chemical products, before eating, smoking and using the lavatory and at the end of the working period. Appropriate techniques should be used to remove potentially contaminated clothing. Wash contaminated clothing before reusing. Ensure that eyewash stations and safet showers are close to the workstation location.	
Eye/face protection	: Safety eyewear complying with an approved standard should be used when a risk assessment indicates this is necessary to avoid exposure to liquid splashes, mists, gases or dusts. If contact is possible, the following protection should be worn, unless the assessment indicates a higher degree of protection: safety glasses with side- shields.	2
Skin protection		
Date of issue/Date of revision	: 2/12/2018 Date of previous issue : 4/25/2017 Version : 0.03	4/1

Date Issued 2022-12-19

Lower and upper explosive

(flammable) limits Vapor pressure

Specific Volume (ft 3/lb)

Gas Density (lb/ft 3)

Relative density

Solubility in water

octanol/water

Partition coefficient: n-

Flow time (ISO 2431)

Molecular weight

Auto-ignition temperature

Decomposition temperature : Not available.

Solubility

Viscosity

Vapor density

: Not available.

: 830 (psig)

: 8.7719

: 0.114

: 0.83

: 1.53 (Air = 1)

: Not applicable.

: Not available.

: Not available.

: Not available.

: Not applicable.

: Not available.

: 44.01 g/mole

Document # 180.05.CO2.107

Version 2.0

Liquid Density@BP: Solid density = 97.5 lb/ft3 (1562 kg/m3)

Page 20 of 143

Carbon Dioxide	
Section 8. Expos	ure controls/personal protection
Hand protection	: Chemical-resistant, impervious gloves complying with an approved standard should be worn at all times when handling chemical products if a risk assessment indicates this is necessary. Considering the parameters specified by the glove manufacturer, check during use that the gloves are still retaining their protective properties. It should be noted that the time to breakthrough for any glove material may be different for different glove manufacturers. In the case of mixtures, consisting of several substances, the protection time of the gloves cannot be accurately estimated.
Body protection	 Personal protective equipment for the body should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product.
Other skin protection	 Appropriate footwear and any additional skin protection measures should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product.
Respiratory protection	Based on the hazard and potential for exposure, select a respirator that meets the appropriate standard or certification. Respirators must be used according to a respiratory protection program to ensure proper fitting, training, and other important aspects of use. Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe working limits of the selected respirator.
Section 9. Physic	al and chemical properties
Appearance	
Physical state	: Gas. [Compressed gas.]
Color	: Colorless.
Odor	: Odorless.
Odor threshold	: Not available.
рН	Not available.
Melting point	: Sublimation temperature: -79°C (-110.2 to °F)
Boiling point	: Not available.
Critical temperature	: 30.85°C (87.5°F)
Flash point	: [Product does not sustain combustion.]
Evaporation rate	: Not available.

Date of issue/Date of revision	: 2/12/2018	Date of previous issue	: 4/25/2017	Version : 0.03	5/11

Date Issued	Document #	Version	Page	
2022-12-1	9 180.05.CO2.107	2.0	21 of 143	

Carbon Dioxide	
Section 10. Stabili	ity and reactivity
Reactivity	: No specific test data related to reactivity available for this product or its ingredients.
Chemical stability	: The product is stable.
Possibility of hazardous reactions	: Under normal conditions of storage and use, hazardous reactions will not occur.
Conditions to avoid	: No specific data.
Incompatible materials	: No specific data.
Hazardous decomposition products	: Under normal conditions of storage and use, hazardous decomposition products shoul not be produced.

Section 11. Toxic	ological	information			
Information on toxicologic	al effects				
Acute toxicity					
Not available.					
Irritation/Corrosion					
Not available.					
Sensitization					
Not available.					
Mutagenicity					
Not available.					
Carcinogenicity					
Not available.					
Reproductive toxicity					
Not available.					
Teratogenicity					
Not available.					
Specific target organ toxi	city (single ex	posure)			
Not available.					
Specific target organ toxi	city (repeated	exposure)			
Not available.					
Aspiration hazard					
Not available.					
Information on the likely routes of exposure	: Not avail	able.			
Potential acute health effect	ts				
Eye contact	: No know	n significant effects or critic	al hazards.		
Inhalation		n significant effects or critic			
Skin contact	: No know	n significant effects or critic	al hazards.		
Date of issue/Date of revision	: 2/12/2018	Date of previous issue	: 4/25/2017	Version :0.03	6/11

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	22 of 143
arbon Dioxide			
Section 11. Toxico	ological information		
Ingestion	: As this product is a gas, refer to the	inhalation section.	
ymptoms related to the phy	sical, chemical and toxicological cha	racteristics	
Eye contact	: No specific data.		
Inhalation	: No specific data.		
Skin contact	: No specific data.		
Ingestion	: No specific data.		
elayed and immediate effect	ts and also chronic effects from shor	t and long term exposure	
Short term exposure			
Potential immediate	: Not available.		
effects			
Potential delayed effects	: Not available.		
Long term exposure			
Potential immediate effects	: Not available.		
Potential delayed effects	: Not available.		
Potential chronic health eff			
Not available.			
General	: No known significant effects or critic	al bazarde	
Carcinogenicity	: No known significant effects or critic		
Mutagenicity	: No known significant effects or critic		
Teratogenicity	: No known significant effects or critic		
Developmental effects	: No known significant effects or critic		
Fertility effects	: No known significant effects or critic		
refully effects	. NO KNOWN SIGNICALL ENECTS OF CITLIC	ai nazai us.	

Numerical measures of toxicity

Acute toxicity estimates

Not available.

Section 12. Ecological information

Toxicity

Not available.

Persistence and degradability

Not available.

Bioaccumulative potential

Product/ingredient name	LogPow	BCF		Potential	
Carbon Dioxide	0.83	-		low	
Mobility in soil					
Soil/water partition coefficient (Koc)	: Not availa	able.			
Other adverse effects	: No knowr	n significant effects or critic	al hazards.		
Date of issue/Date of revision	: 2/12/2018	Date of previous issue	: 4/25/2017	Version :0.03	7/11

Date Issued 2022-12-19

Document # 180.05.CO2.107

Version 2.0 Page 23 of 143

Carbon Dioxide

Section 13. Disposal considerations

Disposal methods

: The generation of waste should be avoided or minimized wherever possible. Disposal of this product, solutions and any by-products should at all times comply with the requirements of environmental protection and waste disposal legislation and any regional local authority requirements. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor. Waste should not be disposed of untreated to the sewer unless fully compliant with the requirements of all authorities with jurisdiction. Empty Airgas-owned pressure vessels should be returned to Airgas. Waste packaging should be recycled. Incineration or landfill should only be considered when recycling is not feasible. This material and its container must be disposed of in a safe way. Empty containers or liners may retain some product residues. Do not puncture or incinerate container.

	DOT	TDG	Mexico	IMDG	IATA
UN number	UN1013	UN1013	UN1013	UN1013	UN1013
UN proper shipping name	CARBON DIOXIDE	CARBON DIOXIDE	CARBON DIOXIDE	CARBON DIOXIDE	CARBON DIOXIDE
Transport hazard class(es)	2.2	2.2	2.2	2.2	2.2
Packing group	-	-	-	-	-
Environmental hazards	No.	No.	No.	No.	No.

"Refer to CFR 49 (or authority having jurisdiction) to determine the information required for shipment of the product."

Additional information								
DOT Classification	: Limited qu Quantity li	<u>uantity</u> Yes. <u>imitation</u> Passenger aircr	aft/rail: 75 kg. Carg	o aircraft: 150 k	g.			
TDG Classification	Goods Reg Explosive	assified as per the followin gulations: 2.13-2.17 (Class Limit and Limited Quan Carrying Road or Rail I	s 2). tity Index 0.125	ansportation of [Dangerous			
ΙΑΤΑ	: Quantity li	imitation Passenger and	Cargo Aircraft: 75 k	g. Cargo Aircrat	ft Only: 150	kg.		
Special precautions for user	upright and	Transport within user's premises: always transport in closed containers that are upright and secure. Ensure that persons transporting the product know what to do in the event of an accident or spillage.						
Transport in bulk according to Annex II of MARPOL and the IBC Code	: Not availat	ble.						
Section 15. Regula	atory info	ormation						
U.S. Federal regulations	: TSCA 8(a)	CDR Exempt/Partial exe	emption: This mater	rial is listed or ex	xempted.			
Clean Air Act Section 112 (b) Hazardous Air Pollutants (HAPs)	: Not listed							
Date of issue/Date of revision	: 2/12/2018	Date of previous issue	: 4/25/2017	Version	:0.03	8/11		

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	24 of 143

Carbon Dioxide					
Section 15. Regu	latory inf	ormation			
Clean Air Act Section 602 Class I Substances	: Not listed	1			
Clean Air Act Section 602 Class II Substances	: Not listed	I			
DEA List I Chemicals (Precursor Chemicals)	: Not listed	I			
DEA List II Chemicals (Essential Chemicals)	: Not listed	1			
SARA 302/304					
Composition/information	on ingredient	ts			
No products were found.					
SARA 304 RQ	: Not applic	cable			
SARA 311/312	. Not applie	cable.			
Classification	: Refer to Se	ection 2: Hazards Identific	cation of this SDS for cla	assification of substar	nce.
State regulations					
Massachusetts	: This mate	erial is listed.			
New York	: This mate	erial is not listed.			
New Jersey	: This mate	erial is listed.			
Pennsylvania	: This mate	erial is listed.			
International regulations					
Chemical Weapon Conve	ntion List Sch	edules I, II & III Chemica	Is		
Not listed.					
Montreal Protocol (Annex	es A. B. C. E)				
Not listed.					
Stockholm Convention or	Persistent O	rganic Pollutants			
Not listed.					
Rotterdam Convention or	Prior Informe	ed Consent (PIC)			
Not listed.					
UNECE Aarhus Protocol o	on POPs and H	Heavy Metals			
Not listed.					
Inventory list					
Australia	: This mat	terial is listed or exempted			
Canada		terial is listed or exempted			
China	: This mat	terial is listed or exempted			
Europe	: This mat	terial is listed or exempted			
Japan		nventory (ENCS): This mat nventory (ISHL): This mat			
Malaysia	: Not deter				
New Zealand	: This mat	terial is listed or exempted			
Philippines		terial is listed or exempted			
Republic of Korea	: This mat	terial is listed or exempted			
Taiwan		terial is listed or exempted			
Thailand	: Not deter				
Turkey	: This mat	terial is listed or exempted			
United States		terial is listed or exempted			
Viet Nam	: Not deter				
Date of issue/Date of revision	: 2/12/2018	Date of previous issue	: 4/25/2017	Version :0.03	9/11

Date Issued 2022-12-19

Document # 180.05.CO2.107

Version

2.0

Page 25 of 143

Carbon Dioxide

Section 16. Other information

Hazardous Material Information System (U.S.A.)

Caution: HMIS® ratings are based on a 0-4 rating scale, with 0 representing minimal hazards or risks, and 4 representing significant hazards or risks. Although HMIS® ratings and the associated label are not required on SDSs or products leaving a facility under 29 CFR 1910.1200, the preparer may choose to provide them. HMIS® ratings are to be used with a fully implemented HMIS® program. HMIS® is a registered trademark and service mark of the American Coatings Association, Inc.

The customer is responsible for determining the PPE code for this material. For more information on HMIS® Personal Protective Equipment (PPE) codes, consult the HMIS® Implementation Manual.

National Fire Protection Association (U.S.A.)

Reprinted with permission from NFPA 704-2001, Identification of the Hazards of Materials for Emergency Response Copyright ©1997, National Fire Protection Association, Quincy, MA 02269. This reprinted material is not the complete and official position of the National Fire Protection Association, on the referenced subject which is represented only by the standard in its entirety.

Copyright ©2001, National Fire Protection Association, Quincy, MA 02269. This warning system is intended to be interpreted and applied only by properly trained individuals to identify fire, health and reactivity hazards of chemicals. The user is referred to certain limited number of chemicals with recommended classifications in NFPA 49 and NFPA 325, which would be used as a guideline only. Whether the chemicals are classified by NFPA or not, anyone using the 704 systems to classify chemicals does so at their own risk.

Procedure used to derive the classification

	Justification		
GASES UNDER PRESSURE - Liquefied gas		Expert judgment	
History			
Date of printing	: 2/12/2018		
Date of issue/Date of revision	: 2/12/2018		
Date of previous issue	: 4/25/2017		
Version	: 0.03		
Key to abbreviations : ATE = Acute Toxicity Estimate BCF = Bioconcentration Factor GHS = Globally Harmonized System of Classification and IATA = International Air Transport Association IBC = Internediate Bulk Container IMDG = International Maritime Dangerous Goods LogPow = logarithm of the octanol/water partition coeffici MARPOL = International Convention for the Prevention o as modified by the Protocol of 1978. ("Marpol" = marine p UN = United Nations		n oods tition coefficient Prevention of Pollution From Ships, 1973	
References	: Not available.		
Notice to reader			

Date of issue/Date of revision : 2/12/2018

Date of previous issue

: 4/25/2017

Version : 0.03 10/11

Date Issued 2022-12-19

Document # 180.05.CO2.107 Version 2.0

Page 26 of 143

Carbon Dioxide

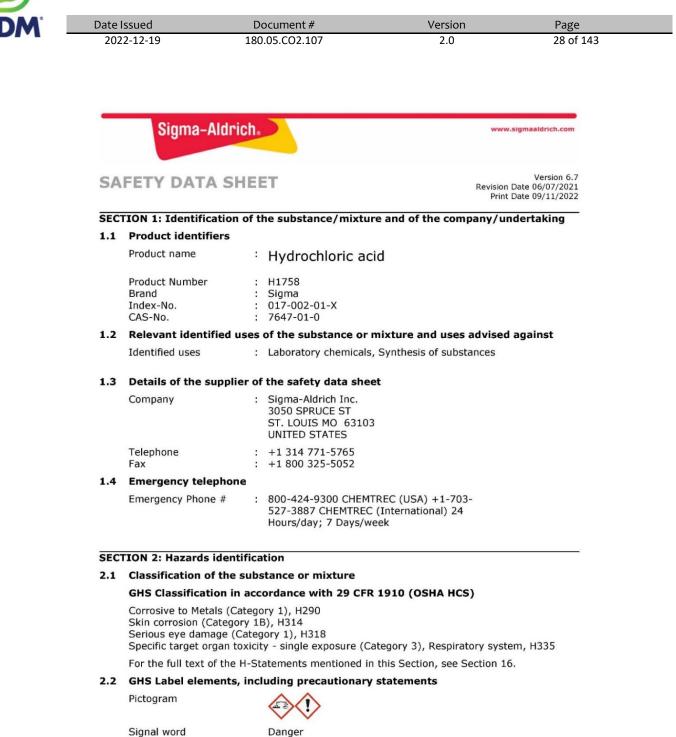
Section 16. Other information

To the best of our knowledge, the information contained herein is accurate. However, neither the above-named supplier, nor any of its subsidiaries, assumes any liability whatsoever for the accuracy or completeness of the information contained herein.

Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist.

: 2/12/2018 Date of issue/Date of revision

Date of previous issue


: 4/25/2017

11/11 Version :0.03

Date Issued	Document #	Version	Page	
2022-12-19	180.05.CO2.107	2.0	27 of 143	

SDS HCl

Sigma - H1758

Page 1 of 11

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada

Date Issued 2022-12-19

Document # 180.05.CO2.107

Version

2.0

Page 29 of 143

Hazard statement(s)	
H290	May be corrosive to metals.
H314	Causes severe skin burns and eye damage.
H335	May cause respiratory irritation.
Precautionary statement(s)	
P234	Keep only in original container.
P261	Avoid breathing dust/ fume/ gas/ mist/ vapors/ spray.
P264	Wash skin thoroughly after handling.
P271	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves/ protective clothing/ eye protection/ face protection.
P301 + P330 + P331	IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.
P303 + P361 + P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/ shower.
P304 + P340 + P310	IF INHALED: Remove person to fresh air and keep comfortable for breathing. Immediately call a POISON CENTER/ doctor.
P305 + P351 + P338 +	IF IN EYES: Rinse cautiously with water for several minutes.
P310	Remove contact lenses, if present and easy to do. Continue rinsing. Immediately call a POISON CENTER/ doctor.
P363	Wash contaminated clothing before reuse.
P390	Absorb spillage to prevent material damage.
P403 + P233	Store in a well-ventilated place. Keep container tightly closed.
P405	Store locked up.
P406	Store in corrosive resistant container with a resistant inner liner.
P501	Dispose of contents/ container to an approved waste disposal plant.

2.3 Hazards not otherwise classified (HNOC) or not covered by GHS - none

SECTION 3: Composition/information on ingredients

3.2 Mixtures

Component		Classification	Concentration	
Hydrochloric Acid				
CAS-No. EC-No. Index-No. Registration number	7647-01-0 231-595-7 017-002-01-X 01-2119484862-27- XXXX	Met. Corr. 1; Skin Corr. 1B; Eye Dam. 1; STOT SE 3; H290, H314, H318, H335 Concentration limits: >= 0.1 %: Met. Corr. 1, H290; >= 25 %: Skin Corr. 1B, H314; 10 - < 25 %: Skin Irrit. 2, H315; 10 - < 25 %: Eye Irrit. 2, H319; >= 10 %: STOT SE 3, H335;	>= 30 - < 50 %	

For the full text of the H-Statements mentioned in this Section, see Section 16.

Sigma - H1758

Page 2 of 11

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada

Date Issued 2022-12-19

Document # 180.05.CO2.107 Version

2.0

SECTION 4: First aid measures

4.1 Description of first-aid measures

General advice

First aiders need to protect themselves. Show this material safety data sheet to the doctor in attendance.

If inhaled

After inhalation: fresh air. Call in physician.

In case of skin contact

In case of skin contact: Take off immediately all contaminated clothing. Rinse skin with water/ shower. Call a physician immediately.

In case of eye contact

After eye contact: rinse out with plenty of water. Immediately call in ophthalmologist. Remove contact lenses.

If swallowed

After swallowing: make victim drink water (two glasses at most), avoid vomiting (risk of perforation). Call a physician immediately. Do not attempt to neutralise.

4.2 Most important symptoms and effects, both acute and delayed The most important known symptoms and effects are described in the labelling (see section 2.2) and/or in section 11

4.3 Indication of any immediate medical attention and special treatment needed No data available

SECTION 5: Firefighting measures

5.1 Extinguishing media

Suitable extinguishing media

Use extinguishing measures that are appropriate to local circumstances and the surrounding $\ensuremath{\mathsf{environment}}$.

Unsuitable extinguishing media

For this substance/mixture no limitations of extinguishing agents are given.

5.2 Special hazards arising from the substance or mixture

Hydrogen chloride gas Hydrogen chloride gas Not combustible. Ambient fire may liberate hazardous vapours.

5.3 Advice for firefighters

Stay in danger area only with self-contained breathing apparatus. Prevent skin contact by keeping a safe distance or by wearing suitable protective clothing.

5.4 Further information

Suppress (knock down) gases/vapors/mists with a water spray jet. Prevent fire extinguishing water from contaminating surface water or the ground water system.

Sigma - H1758

Page 3 of 11

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada

Date Issued 2022-12-19

Document # 180.05.CO2.107 Version

2.0

Page 31 of 143

SECTION 6: Accidental release measures

- 6.1 Personal precautions, protective equipment and emergency procedures Advice for non-emergency personnel: Do not breathe vapors, aerosols. Avoid substance contact. Ensure adequate ventilation. Evacuate the danger area, observe emergency procedures, consult an expert. For personal protection see section 8.
- 6.2 Environmental precautions Do not let product enter drains.
- 6.3 Methods and materials for containment and cleaning up Cover drains. Collect, bind, and pump off spills. Observe possible material restrictions (see sections 7 and 10). Take up with liquid-absorbent and neutralising material (e.g. Chemizorb® H+, Merck Art. No. 101595). Dispose of properly. Clean up affected area.
- 6.4 Reference to other sections For disposal see section 13.

SECTION 7: Handling and storage

- 7.1 Precautions for safe handling For precautions see section 2.2.
- 7.2 Conditions for safe storage, including any incompatibilities

Storage conditions	
No metal containers.	
Tightly closed.	
Storage class (TRGS 510): 8B: Non-combustibl	e, corrosive hazardous materials

7.3 Specific end use(s) Apart from the uses mentioned in section 1.2 no other specific uses are stipulated

SECTION 8: Exposure controls/personal protection

8.1 Control parameters

Ingredients with workplace control parameters

Component	CAS-No.	Value	Control parameters	Basis
Hydrochloric Acid	7647-01-0	С	2 ppm	USA. ACGIH Threshold Limit Values (TLV)
	Remarks	Not classifiable as a human carcinogen		

Sigma - H1758

Page 4 of 11

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada

Date Issued 2022-12-19

Document # 180.05.CO2.107

Page

Version

2.0

32 of 143

c	5 ppm 7 mg/m3	USA. NIOSH Recommended Exposure Limits
с	5 ppm 7 mg/m3	USA. Occupational Exposure Limits (OSHA) - Table Z-1 Limits for Air Contaminants
с	5 ppm 7 mg/m3	USA. OSHA - TABLE Z-1 Limits for Air Contaminants - 1910.1000
PEL	0.3 ppm 0.45 mg/m3	California permissible exposure limits for chemical contaminants (Title 8, Article 107)
C	2 ppm	California permissible exposure limits for chemical contaminants (Title 8, Article 107)

8.2 Exposure controls

Appropriate engineering controls

Immediately change contaminated clothing. Apply preventive skin protection. Wash hands and face after working with substance.

Personal protective equipment

Eye/face protection

Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU). Tightly fitting safety goggles

Skin protection

This recommendation applies only to the product stated in the safety data sheet, supplied by us and for the designated use. When dissolving in or mixing with other substances and under conditions deviating from those stated in EN374 please contact the supplier of CE-approved gloves (e.g. KCL GmbH, D-36124 Eichenzell, Internet: www.kcl.de). Full contact Material: Nitrile rubber

Minimum layer thickness: 0.11 mm Break through time: 480 min Material tested: KCL 741 Dermatril® L

This recommendation applies only to the product stated in the safety data sheet, supplied by us and for the designated use. When dissolving in or mixing with other substances and under conditions deviating from those stated in EN374 please contact the supplier of CE-approved gloves (e.g. KCL GmbH, D-36124 Eichenzell, Internet: www.kcl.de). Splash contact

Material: Latex gloves Minimum layer thickness: 0.6 mm Break through time: 120 min Material tested:Lapren® (KCL 706 / Aldrich Z677558, Size M)

Body Protection Acid-resistant protective clothing

Respiratory protection required when vapours/aerosols are generated.

Sigma - H1758

Page 5 of 11

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	33 of 143

Our recommendations on filtering respiratory protection are based on the following standards: DIN EN 143, DIN 14387 and other accompanying standards relating to the used respiratory protection system.

Control of environmental exposure Do not let product enter drains.

.1	Inf	ormation on basic p	hysical and chemical properties
	a)	Appearance	Form: liquid Color: light yellow
	b)	Odor	pungent
	c)	Odor Threshold	No data available
	d)	рН	< 1 at 20 °C (68 °F)
	e)	Melting point/freezing point	-30 °C (-22 °F)
	f)	Initial boiling point and boiling range	> 100 °C > 212 °F - lit.
	g)	Flash point	()Not applicable
	h)	Evaporation rate	No data available
	i)	Flammability (solid, gas)	No data available
	j)	Upper/lower flammability or explosive limits	No data available
	k)	Vapor pressure	227 hPa at 21.1 °C (70.0 °F) 547 hPa at 37.7 °C(99.9 °F)
	I)	Vapor density	No data available
	m)	Relative density	No data available
	n)	Water solubility	soluble
	0)	Partition coefficient: n-octanol/water	No data available
	p)	Autoignition temperature	Not applicable
	q)	Decomposition temperature	No data available
	r)	Viscosity	No data available
	s)	Explosive properties	No data available
	t)	Oxidizing properties	No data available

9.2 Other safety information No data available

Sigma - H1758

Page 6 of 11

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	34 of 143

SECTION 10: Stability and reactivity

10.1 Reactivity No data available

- **10.2 Chemical stability** The product is chemically stable under standard ambient conditions (room temperature) .
- 10.3 Possibility of hazardous reactions No data available
- 10.4 Conditions to avoid no information available
- 10.5 Incompatible materials Bases, Amines, Alkali metals, Metals, permanganates, for example potassium permanganate, Fluorine, metal acetylides, hexalithium disilicideMetals
- **10.6 Hazardous decomposition products** In the event of fire: see section 5

SECTION 11: Toxicological information

11.1 Information on toxicological effects

Mixture

Acute toxicity

Symptoms: If ingested, severe burns of the mouth and throat, as well as a danger of perforation of the esophagus and the stomach. Symptoms: mucosal irritations, Cough, Shortness of breath, Possible damages:, damage of respiratory tract Dermal: No data available

Skin corrosion/irritation Mixture causes burns.

Serious eye damage/eye irritation Mixture causes serious eye damage. Risk of blindness!

Respiratory or skin sensitization

No data available

Germ cell mutagenicity No data available

Carcinogenicity

- IARC: No ingredient of this product present at levels greater than or equal to 0.1% is identified as probable, possible or confirmed human carcinogen by IARC.
- NTP: No ingredient of this product present at levels greater than or equal to 0.1% is identified as a known or anticipated carcinogen by NTP.
- OSHA: No component of this product present at levels greater than or equal to 0.1% is on OSHA's list of regulated carcinogens.

Reproductive toxicity

No data available

Specific target organ toxicity - single exposure

Sigma - H1758

Page 7 of 11

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada

Date Issued 2022-12-19

Document # 180.05.CO2.107 Version

2.0

Page 35 of 143

Mixture may cause respiratory irritation.

Specific target organ toxicity - repeated exposure No data available

Aspiration hazard No data available

11.2 Additional Information

RTECS: MW4025000 Other dangerous properties can not be excluded.

Handle in accordance with good industrial hygiene and safety practice.

Components

Hydrochloric Acid

Acute toxicity Oral: No data available Inhalation: Cough Difficulty in breathing Inhalation: absorption Inhalation: Corrosive to respiratory system. Symptoms: mucosal irritations, Cough, Shortness of breath, Inhalation may lead to the formation of oedemas in the respiratory tract., Possible damages:, damage of respiratory tract, tissue damage Dermal: No data available

Skin corrosion/irritation

Skin - reconstructed human epidermis (RhE) Result: Corrosive (OECD Test Guideline 431)

Serious eye damage/eye irritation

Eyes - Bovine cornea Result: Corrosive (OECD Test Guideline 437)

Respiratory or skin sensitization

Maximization Test - Guinea pig Result: negative (OECD Test Guideline 406)

Germ cell mutagenicity

Test Type: Chromosome aberration test in vitro Test system: Chinese hamster ovary cells Result: Conflicting results have been seen in different studies.

Carcinogenicity

Carcinogenicity - Did not show carcinogenic effects in animal experiments. (IUCLID)

Reproductive toxicity No data available

Specific target organ toxicity - single exposure May cause respiratory irritation.

The substance or mixture is classified as specific target organ toxicant, single exposure, category 3 with respiratory tract irritation.

Sigma - H1758

Page 8 of 11

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada

Date Issued 2022-12-19

Document # 180.05.CO2.107

Version

2.0

Page 36 of 143

Acute inhalation toxicity - mucosal irritations, Cough, Shortness of breath, Inhalation may lead to the formation of oedemas in the respiratory tract., Possible damages:, damage of respiratory tract, tissue damage Specific target organ toxicity - repeated exposure The substance or mixture is not classified as specific target organ toxicant, repeated exposure. Aspiration hazard No aspiration toxicity classification SECTION 12: Ecological information 12.1 Toxicity Mixture No data available 12.2 Persistence and degradability No data available 12.3 Bioaccumulative potential No data available 12.4 Mobility in soil No data available 12.5 Results of PBT and vPvB assessment PBT/vPvB assessment not available as chemical safety assessment not required/not conducted 12.6 Other adverse effects No data available Components **Hydrochloric Acid** No data available Toxicity to fish LC50 - Gambusia affinis (Mosquito fish) - 282 mg/l - 96 h Remarks: (IUCLID)

SECTION 13: Disposal considerations

13.1 Waste treatment methods

Product

Waste material must be disposed of in accordance with the national and local regulations. Leave chemicals in original containers. No mixing with other waste. Handle uncleaned containers like the product itself. See www.retrologistik.com for processes regarding the return of chemicals and containers, or contact us there if you have further questions.

SECTION 14: Transport information

DOT (US) UN number: 1789 Class: 8 Packing group: II Proper shipping name: Hydrochloric acid

Sigma - H1758

Page 9 of 11

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada

	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	37 of 143
Reportable Qua Poison Inhalatio			
IMDG UN number: 17 Proper shipping	89 Class: 8 Packin name: HYDROCHLORIC ACID	g group: II EM	S-No: F-A, S-B
IATA UN number: 17 Proper shipping	89 Class: 8 Packin name: Hydrochloric acid	g group: II	
SECTION 15: Regul	atory information		
SARA 302 Cor This material de	nponents bes not contain any components w	ith a section 302 EHS	TPQ.
SARA 313 Con The following of Section 313:	nponents omponents are subject to reportin <u>c</u>		
Hydrochloric A	cid	CAS-No. 7647-01-0	Revision Date 2013-02-08
SARA 311/31 Acute Health Ha			
Massachusett	s Right To Know Components		
Hydrochloric A	cid	CAS-No. 7647-01-0	Revision Date 2013-02-08
No components	are subject to the Massachusetts	Right to Know Act	
		Right to Know Att.	
water	Right To Know Components	CAS-No. 7732-18-5	Revision Date
Hydrochloric A	cid	7647-01-0	2013-02-08
New Jersey R water	ight To Know Components	CAS-No. 7732-18-5	Revision Date

SECTION 16: Other information

Further information

The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to

Sigma - H1758

Page 10 of 11

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	38 of 143

appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

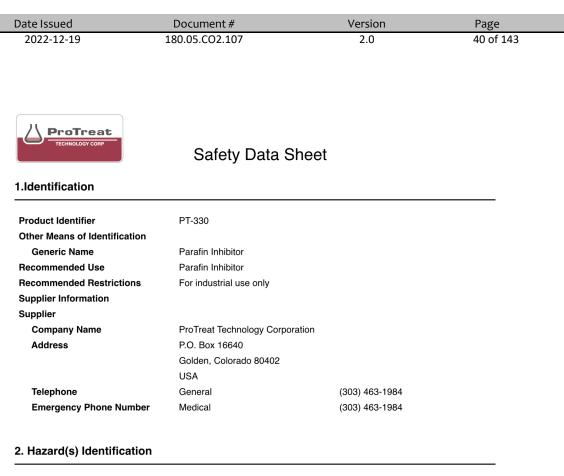
Copyright 2020 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only.

The branding on the header and/or footer of this document may temporarily not visually match the product purchased as we transition our branding. However, all of the information in the document regarding the product remains unchanged and matches the product ordered. For further information please contact mlsbranding@sial.com.

Version: 6.7 Revision Date: 06/07/2021 Print Date: 09/11/2022

Sigma - H1758

Page 11 of 11


The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada

Date Issued	Document #	Version	Page	
2022-12-19	180.05.CO2.107	2.0	39 of 143	

SDS PT-330

Physical Hazards	Flammable Liquids	Category 4
Health Hazards	Carcinogen	Category 2
	Acute Toxicity - Oral	Category 5
	Aspiration Toxicant	Category 1
	Specific Target Organ Toxicant(CNS)	Category 3
	Skin Corrosion/Irritation	Category 2
	Serious Eye Damage/Eye Irritant	Category 2A
Environmental Hazards	Hazardous To Aquatic Environment - Acute	Category 3
OSHA Defined Hazards	Not Clasified	
Label Elements		
Signal Word	Danger	
Hazard Statement	Combustable Liquid. Suspected of causing cancer. I if swallowed and enters airways. May cause drowsin irritation. Causes serious eye irritation. Harmful to ac	ess or dizziness. Causes skin
Prevention	Keep away from flames and hot surfaces - no smoki protection/face protection. Obtain special instruction safety precautions have been read and understood. as required. Wash hands thoroughly after handling.	s before use. Do not handle until all Use personal protective equipment

Material Name: PT-330

Revision Date: 06/01/2015

using this product. Avoid breathing dust/fumes/gas,mist/vapors/spray Use only outdoors or in a well-ventilated area. Avoid release into the environment.

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	41 of 143

Response	In case of fire: Use water, fog, foam, dry chemical, or carbon dioxide(CO2) to extinguish. IF exposed or concerned: Get medical advice/attention. IF SWALLOWED: Immediately call a poison center or doctor/physician. Rinse mouth. Do NOT Induce vomiting. IF ON SKIN: Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower. Wash contaminated clothing before reuse. IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. Immediately call a poison center or doctor/physician. Specific treatment(see section 4, <i>First Aid Measures).</i> IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if prevent and easy to do. Continue rinsing. If eye irritation persists, Get medical advice/attention
Storage	Store in a well-ventilated place. Keep container tightly closed. Keep cool. Store locked up.
Disposal	Dispose of contents/container in accordance with local/regional/national/international/ regulations.
Hazard(s) not otherwise classified (HNOC)	N/A
Supplemental Information	N/A

3. Composition/Information on Ingredients

Substances	CAS Number	Percent (w/w)	GHS Classification
Solvent Naptha (Petroleum), Heavy Aromatic	64742-94-5	60-80%	Flam. Liq. 4, H227 Aspiration 1, H304 STOT SE 3, H336 Carcinogen 3, H351 Haz. to Aqua. 2 (Acute), H401 Haz. to Aqua. 2 (Chronic), H411
Component A	N/A	15-25%	Eye Dam. 2A, H319 Skin Corr. 2, H315

*The substance name and/or exact percentage (concentration) of the composition has been withheld as proprietary

4. First Aid Measures

Inhalation Skin Contact	Move to fresh air. If respiratory irritation, dizziness, nausea, or unconsciousness Wash with plenty of soap and water. If skin irritation occurs: get medical attention. Take off contaminated clothing, and wash before reuse.
Eye Contact	Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. If eye irritation persists, Get medical advice/attention.
Ingestion	Rinse mouth. Immediately Call a poison center or doctor/physician. Do NOT induce vomiting.

Revision Date: 06/01/2015

ľ	Date Issued	Document #	Version	Page	
	2022-12-19	180.05.CO2.107	2.0	42 of 143	

Most Important symptoms/ effects acute and delayed.	Symptoms may include stinging, burning, redness, swelling, and blurred vision. Permanent eye damage and blindness can result. Skin irritation may occur. Ingestion may cause headache, weakness, nausea, vomiting, decreased blood pressure, increased heart rate, pulmonary edema, kidney failure, unconsciousness, convulsions, and coma.		
Indication of immediate medical attention and special treatment needed	Provide general supportive measures and treat symptomatically. Keep victim under observation. Symptoms may be delayed.		
General Information	Ensure that medical personnel are aware of the material(s) involved, and take precautions to protect themselves. Show this safety data sheet(sds) to the doctor in attendance		
5. Fire-fighting method	ds		
Suitable extinguishing	Use water fog, foam, dry chemical powder, or Carbon dioxide (CO2).		
Unsuitable extinguishing media	Do not use water jet as an extinguisher, as this wil spread the fire.		
Specific hazards arising from the chemical	This liquid is volatile and gives off invisible vapors. Vapor may settle in low areas or travel some distance along the ground or surface to ignition sources.		
Special protective equipment	Self-contained breathing apparatus and full protective clothing must be worn in case of fire.		
Fire Fighting equipment instructions	Use water to cool fire exposed surfaces, and move containers from fire area if you can do so without risk $% \left({{{\rm{T}}_{\rm{T}}}} \right) = {{\rm{T}}_{\rm{T}}} \left({{{\rm{T}}_{\rm{T}}}} \right)$		
Specific methods	Use standard firefighting procedures and consider the hazards of other involved materials.		
6. Accidental release r	neasures		

Personal precautions, protective equipment and emergency procedures	Keep unnecessary personnel away. Keep people away from and upwind of spill/leak. Wear appropriate protective equipment and clothing during clean-up. Do not breathe mist or vapor. Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. Ensure ventilation. Local authorities should be advised if significant spillage cannot be contained. For personal protection, see section 8 of the SDS.	
Methods and materials for containment and cleaning up	Large spills: Stop the flow of material, if this is without risk. Dike the spilled material, where this is possible. Cover with plastic sheet to prevent spreading. Use a non-combustible material like vermiculite, sand, or earth to soak up the product and place into a container for later disposal. Following product recovery, flush area with water.	
	Small Spills: Wipe up with absorbent material, or absorb with vermiculite or other inert material. Clean surface thoroughly to remove residual contamination. Never return spills to original container for re-use. For waste disposal, see section 13 of the SDS.	
Environmental precautions	Prevent further leakage or spillage if safe to do so. Do not contaminate water. Avoid discharge into drains, water courses, or onto the ground.	

Material name: PT-330

Revision Date: 06/01/2015

=

Date Issued	Document #	Version	Page	
2022-12-19	180.05.CO2.107	2.0	43 of 143	

7. Handling and storage

Precautions for safe handling	Do not breathe mist or vapor. Do not get in eyes, on skin or on clothing. Do not taste or swallow. When using, do not eat, drink or smoke. Provide adequate ventilation. Wear appropriate personal protective equipment. Wash hands thoroughly after handling. Observe good industrial hygiene practices.			
Conditions for safe storage, including any incompatibilities	Store Locked up. Store in a cool dry place. Keep tightly sealed. Store away from incompatible materials (see section 10 of SDS).			
8. Exposure controls/personal protection				

Occupational Exposure Limits U.S. - OSHA Components Value Form Туре 52 mg/m3, 10ppm TWA Napthalene N/A Napthalene STEL 75 mg/m3, 15ppm N/A **Trimethyl Benzene** TWA 125 mg/m3, 25ppm N/A **ACGIH Components** Value Form Туре TWA 50mg/m3, 10ppm N/A Napthalene Napthalene STEL 79mg/m3, 15ppm N/A Trimethyl Benzene TWA 123 mg/m3, 25ppm Appropriate engineering Good general ventilation should be used. Ventilation rates should be matched to controls conditions. If applicable use process enclosures, local exhaust ventilation, or other engineering controls to maintain airborne levels below recommended exposure limits. If exposure limits have not been established, maintain airborne levels to an acceptable level. Individual protection measures, such as personal protective equipment. Eye/face protection Wear safety glasses with side shield, or goggles. Skin protection Hand protection Wear appropriate chemical resistant gloves. Other Wear suitable protective clothing. **Respiratory protection** In case of inadequate ventilation, wear suitable respirtoy equipment. Thermal protection N/A General hygiene Keep away from food and drink. Always observe good personal personal hygiene considerations measures, such as washing after handling material and before eating, drinking, an/or smoking. Routinely wash work clothing and protective equipment to remove

contaminants. Eye wash fountain and emergency showers are recommended.

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	44 of 143

9. Physical and chemical properties

Appearance	
Physical State	Liquid
Form	Liquid
Color	Light Amber
Odor	Aromatic odor
Odor threshold	N/A
pH	N/A
Melting point/freezing point	-40 °F (-40 °C)
Initial boiling point and boiling range	Greater than 212°
Flash point	165 °F (62.7 °C)
Evaporation rate	N/A
Upper/lower flammability or explsiv	ve limits
Flammability limit - lower(%)	N/A
Flammability limit - upper(%)	N/A
Explosive limit - lower(%)	1.8%
Explosive limit - upper(%)	11.7%
Vapor pressure	N/A
Vapor density	N/A
Relative density	N/A
Solubility(ies)	N/A
Solubility (water)	negligible
Partition coefficient	N/A
(n-octanol/water)	N/A
Auto-ignition temerature	~830 °F (443.3 °C)
Decomposition temperature	N/A
Viscosity	N/A
Other information	N/A
Flammability	Flammable liquid
Flammability class	category 4
Pounds per gallon	N/A
Specific Gravity	0.94

10. Stability and reactivity

Reactivity	The product is stable and non-reactive under normal conditions of use, storage, and transport
Stability	Material is stable under normal conditions

Material name: PT-330

Revision Date: 06/01/2015

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	45 of 143

Possibilty of hazardous reactions	Hazardous polymerization will not occur		
Conditions to avoid Incompatible materials	Strong oxidizing agents. Avoid storing/using near heat, sparks, or open flames Avoid contact with strong oxidizers (eg. chlorine, peroxides, chromates, nitric acid, per-chlorates, concentrated oxygen, permanganates) which can generate heat, flames, explosions, and the release of toxic fumes.		
Hazardous decomposition products	In the event of thermal decomposition, CO, NOx, and CO_2 may be formed. Heating in air may produce irritating aldehydes, acids, and ketones.		

11. Toxicological information

Information on likely routes	s of exposure			
Inhalation	Prolonged inhalation may be harmful			
Skin contact	Causes skin irritation			
Eye contact	Causes serious eye irritation			
Ingestion	May be harmful if swallowed			
Symptoms related to the physical, chemical, and toxicological characteristics	Burning pain and irritating corrosive skin damage. Causes serious eye irritation. Symptoms may include stinging, burning, redness, swelling, and blurred vision.			
Information on toxicologica	al effects			
Acute toxicity	May be harmful if swallowed			
Skin corrosion/irritation	Causes skin irritation			
Respiratory or skin sensitization				
Respiratory	This product is not expected to cause respiratory sensitization			
Skin	This product is not expected to cause skin sensitization			
Germ cell mutagenicity	No data available to indicate product or any components present at greater than .1% are mutagenic or genotoxic			
Carcinogenicity	Substances in this product caused cancer in laboratory animals, but the relevance to humans is uncertain.			
OSHA Specifically Regu	lated Substances (29 CFR 1910.1001-1050)			
not listed				
Reproductive toxicity	This product is not expected to cause reproductive or development effects			
STOT - single exposure	May cause drowsiness or dizziness			
STOT - repeated exposure	Not classified			
Aspiration hazard	May be fatal if swallowed and enters airways. Based on physico-chemical properties of the material			

12. Ecological information

Ecotoxicity This material is expected to be toxic to aquatic organisms. May cause long term adverse effects in the aquatic environment.

Material name: PT-330

Revision Date: 06/01/2015

6 of 9

Date Issued	Document #	Version	Page	
2022-12-19	180.05.CO2.107	2.0	46 of 143	

Persistence and degradability	No data is available on the degradability of this product
Bioaccumulative potential	No data available
Mobility in soil	No data available
Other adverse effects	No other adverse environmental effects (e.g. ozone depletion, photochemical ozone creation potential, endocrine disruption, global warming potential) are expected from this component.
13. Disposal Considera	ations
Disposal instructions	Collect and reclaim or dispose in sealed containers at licensed waste disposal site. Do not allow this material to drain into sewers/water supplies. Dispose of contents in accordance with local/regional/national/international regulations.
Local disposal regulations	Dispose in accordance with aa applicable regulations
Hazardous waste code	D001: ignitable waste
Waste from residues/ unused products	Dispose in accordance with local regulations. Empty containers or liners may contain some product residue.
Contaminated packaging	Empty containers should be taken to an approved waste handling site for recycling and disposal. Since empty containers may contain product residue, follow label warnings even after container is empty.

14. Transport Information

DOT

Not regulated as dangerous goods
ΙΑΤΑ
Not regulated as dangerous goods
IMDG
Not regulated as dangerous goods

15. Regulatory information

US federal regulations	This product is a "hazardous chemical" as defined by the O Communication Standard, 29 CFR 1910.1200.	SHA Hazard
TSCA Section 12(b) Expo	rt Notification List (40 CFR 707, Subpt. d)	
Not regulated		
CERCLA hazardous subs	stance list	
This products contains	the following substance(s):	
Substance	CAS #	CERCLA RQ(lbs)
Napthalene	91-20-3	1,400

Revision Date: 06/01/2015

Date Issued	Document #	Version	Page	
2022-12-19	180.05.CO2.107	2.0	47 of 143	

SARA 304 emergency rele	ase notification	
Not regulated		
OSHA Specifiaclly Regulat	ed Substances (29 CFR 1910.1001-1050	
Not listed		
Superfund Amendments and	Reauthorization Act of 1986 (SARA)	
Hazard Categories	Immediate Hazard - No	
	Delayed Hazard - Yes	
	Fire Hazard - Yes	
	Pressure Hazard - No	
	Reactivity Hazard - No	
SARA 302 Extremely haza	rdous substance	
Not listed		
SARA 311/312 hazardous of	chemical	
Yes		
SARA 313 (TRI reporting)		
This product contains the	following substance(s):	
Substance	CAS #	Maximum %
Napthalene	91-20-3	7%
1,2,4, Trimethylbenzene	95-63-6	1%
Other federal regulations		
N/A		
US State regulations		
US. California Proposition	65	

California Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65): This material is not know to contain any chemicals listed as carcinogens or reproductive toxins.

16. Other information, including date of preparation or last revision

Issue Date	06-01-2015	
Revision Date	06-01-2015	
Version #	1.0	
User's Responsibility	This product safety data sheet provides health and safety information. The produ to be used in applications consistent with our product literature. Individuals handl this product should be informed of the recommended safety precautions and sho have access to this information. For any other uses, exposures should be evalua so that appropriate handling practices and training programs can be established ensure safe workplace operations. Please consult your local sales representative any further information.	ing uld ted to
Disclaimers	Some of the information presented an conclusions drawn herein are from source other than direct test data on the product itself. The information in this SDS was obtained from sources which we believe are reliable. However, the information is	
Material name: PT-330	Revision Date: 06/01/2015	8 of 9

	Date Issued	Document #	Version	Page
_	2022-12-19	180.05.CO2.107	2.0	48 of 143

provided without any warranty, express or implied, regarding its correctness. The conditions or methods handling, storage, use and disposal of the product are beyond our control and may be beyond our knowledge. For this and other reasons, we do not assume responsibility and expressly disclaim liability for loss, damage, or expense arising out of or in any way connected with the handling, storage, use, or disposal of the product. This SDS was prepared and is to be used only for this product. If the product is used as a component in another product, this SDS may not be applicable

Material name: PT-330

Revision Date: 06/01/2015

 Date Issued
 Document #
 Version
 Page

 2022-12-19
 180.05.C02.107
 2.0
 49 of 143

SDS Iron Control (Ferriplex 40)

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	50 of 143
	SAFETY DATA SHEET		
		FERRIPLEX 40	
		Revis	ion Date 06 /23/201
SECTION 1: Identification of the s	substance/mixture and of the cor	npany/undertaking	
- Trade name	FERRIPLEX 40		
1.2 Relevant identified uses of the su	ubstance or mixture and uses advise	d against	
Uses of the Substance / Mixture		augumst	
- Chelating agent			
 Oil & gas industry 1.3 Details of the supplier of the safe 	ty data sheet		
Company			
Chemplex			
Solvay USA Inc. NOVECARE			
506 CR 137 P.O. Box 1071			
Snyder, TX 79550 Phone (325) 573-7298			
1.4 Emergency telephone			
FOR EMERGENCIES INVO	OLVING A SPILL, LEAK, FIRE, EXPOS es and Canada. or 703-527-3887 for in		CHEMTREC 800-42
FOR EMERGENCIES INVO 9300 within the United State	es and Canada, or 703-527-3887 for in		: CHEMTREC 800-42
FOR EMERGENCIES INVO 9300 within the United State SECTION 2: Hazards identificatio	es and Canada, or 703-527-3887 for in n	ternational collect calls.	
FOR EMERGENCIES INVO 9300 within the United State SECTION 2: Hazards identificatio	es and Canada, or 703-527-3887 for in	ternational collect calls.	
FOR EMERGENCIES INVO 9300 within the United State SECTION 2: Hazards identificatio Although OSHA has not adopted the er	es and Canada, or 703-527-3887 for in n nvironmental portion of the GHS regulat	ternational collect calls.	
FOR EMERGENCIES INVO 9300 within the United State SECTION 2: Hazards identificatio Although OSHA has not adopted the en environmental effects.	es and Canada, or 703-527-3887 for in n nvironmental portion of the GHS regulat r mixture	ternational collect calls.	
FOR EMERGENCIES INVO 9300 within the United State SECTION 2: Hazards identificatio Although OSHA has not adopted the en environmental effects.	es and Canada, or 703-527-3887 for in n nvironmental portion of the GHS regulat r mixture H319: Cause	ternational collect calls.	
FOR EMERGENCIES INVO 9300 within the United State SECTION 2: Hazards identificatio Although OSHA has not adopted the en- environmental effects. 2.1 Classification of the substance of HCS 2012 (29 CFR 1910.1200) Eye irritation, Category 2A	es and Canada, or 703-527-3887 for in n nvironmental portion of the GHS regulat r mixture H319: Cause	ions, this document may include s serious eye irritation.	
FOR EMERGENCIES INVO 9300 within the United State SECTION 2: Hazards identificatio Although OSHA has not adopted the en- environmental effects. 2.1 Classification of the substance of HCS 2012 (29 CFR 1910.1200) Eye irritation, Category 2A Carcinogenicity, Category 2 2.2 Label elements HCS 2012 (29 CFR 1910.1200)	es and Canada, or 703-527-3887 for in n nvironmental portion of the GHS regulat r mixture H319: Cause	ions, this document may include s serious eye irritation.	
FOR EMERGENCIES INVO 9300 within the United State SECTION 2: Hazards identificatio Although OSHA has not adopted the en- environmental effects. 2.1 Classification of the substance of <u>HCS 2012 (29 CFR 1910.1200)</u> Eye irritation, Category 2A Carcinogenicity, Category 2 2.2 Label elements	es and Canada, or 703-527-3887 for in n nvironmental portion of the GHS regulat r mixture H319: Cause	ions, this document may include s serious eye irritation.	
FOR EMERGENCIES INVO 9300 within the United State SECTION 2: Hazards identificatio Although OSHA has not adopted the en- environmental effects. 2.1 Classification of the substance of HCS 2012 (29 CFR 1910.1200) Eye irritation, Category 2A Carcinogenicity, Category 2 2.2 Label elements HCS 2012 (29 CFR 1910.1200)	es and Canada, or 703-527-3887 for in n nvironmental portion of the GHS regulat r mixture H319: Cause	ions, this document may include s serious eye irritation.	
FOR EMERGENCIES INVO 9300 within the United State SECTION 2: Hazards identificatio Although OSHA has not adopted the en- environmental effects. 2.1 Classification of the substance of HCS 2012 (29 CFR 1910.1200) Eye irritation, Category 2A Carcinogenicity, Category 2 2.2 Label elements HCS 2012 (29 CFR 1910.1200)	es and Canada, or 703-527-3887 for in n nvironmental portion of the GHS regulat r mixture H319: Cause	ions, this document may include s serious eye irritation.	
FOR EMERGENCIES INVO 9300 within the United State SECTION 2: Hazards identificatio Although OSHA has not adopted the en- environmental effects. 2.1 Classification of the substance of HCS 2012 (29 CFR 1910.1200) Eye irritation, Category 2A Carcinogenicity, Category 2 2.2 Label elements HCS 2012 (29 CFR 1910.1200) Pictogram Pictogram	es and Canada, or 703-527-3887 for in n nvironmental portion of the GHS regulat r mixture H319: Cause	ions, this document may include s serious eye irritation.	
FOR EMERGENCIES INVO 9300 within the United State SECTION 2: Hazards identification Although OSHA has not adopted the en- environmental effects. 2.1 Classification of the substance of HCS 2012 (29 CFR 1910.1200) Eye irritation, Category 2A Carcinogenicity, Category 2 2.2 Label elements HCS 2012 (29 CFR 1910.1200) Pictogram	es and Canada, or 703-527-3887 for in n nvironmental portion of the GHS regulat r mixture H319: Cause	ions, this document may include s serious eye irritation.	
FOR EMERGENCIES INVO 9300 within the United State SECTION 2: Hazards identification Although OSHA has not adopted the en- environmental effects. 2.1 Classification of the substance of HCS 2012 (29 CFR 1910.1200) Eye irritation, Category 2A Carcinogenicity, Category 2 2.2 Label elements HCS 2012 (29 CFR 1910.1200) Pictogram Pictogram Signal Word - Warning Hazard Statements - H319	es and Canada, or 703-527-3887 for in normal portion of the GHS regulat r mixture H319: Cause H351: Suspe Causes serious eye irritation.	ions, this document may include s serious eye irritation.	
FOR EMERGENCIES INVO 9300 within the United State SECTION 2: Hazards identification Although OSHA has not adopted the en- environmental effects. 2.1 Classification of the substance of HCS 2012 (29 CFR 1910.1200) Eye irritation, Category 2A Carcinogenicity, Category 2 2.2 Label elements HCS 2012 (29 CFR 1910.1200) Pictogram Victogram Signal Word - Warning Hazard Statements - H319 - H351	es and Canada, or 703-527-3887 for in n nvironmental portion of the GHS regulat r mixture H319: Cause H351: Suspe	ions, this document may include s serious eye irritation.	
FOR EMERGENCIES INVO 9300 within the United State SECTION 2: Hazards identification Although OSHA has not adopted the en- environmental effects. 2.1 Classification of the substance of HCS 2012 (29 CFR 1910.1200) Eye irritation, Category 2A Carcinogenicity, Category 2 2.2 Label elements HCS 2012 (29 CFR 1910.1200) Pictogram Pictogram Signal Word - Warning Hazard Statements - H319	es and Canada, or 703-527-3887 for in normal portion of the GHS regulat r mixture H319: Cause H351: Suspe Causes serious eye irritation.	ions, this document may include s serious eye irritation.	
FOR EMERGENCIES INVO 9300 within the United State SECTION 2: Hazards identificatio Although OSHA has not adopted the en- environmental effects. 2.1 Classification of the substance of HCS 2012 (29 CFR 1910.1200) Eye irritation, Category 2A Carcinogenicity, Category 2 2.2 Label elements HCS 2012 (29 CFR 1910.1200) Pictogram Victogram Signal Word - Warning Hazard Statements - H319 - H351 Precautionary Statemets Prevention	es and Canada, or 703-527-3887 for in normal portion of the GHS regulat r mixture H319: Cause H351: Suspe Causes serious eye irritation.	ternational collect calls.	information on
FOR EMERGENCIES INVO 9300 within the United State SECTION 2: Hazards identification Although OSHA has not adopted the en- environmental effects. 2.1 Classification of the substance of HCS 2012 (29 CFR 1910.1200) Eye irritation, Category 2A Carcinogenicity, Category 2 2.2 Label elements HCS 2012 (29 CFR 1910.1200) Pictogram Victogram Signal Word - Warning Hazard Statements - H319 - H351 Precautionary Statemets <u>Prevention</u>	es and Canada, or 703-527-3887 for in normal portion of the GHS regulat r mixture H319: Cause H351: Suspe Causes serious eye irritation.	ternational collect calls.	
FOR EMERGENCIES INVO 9300 within the United State SECTION 2: Hazards identificatio Although OSHA has not adopted the en- environmental effects. 2.1 Classification of the substance of HCS 2012 (29 CFR 1910.1200) Eye irritation, Category 2A Carcinogenicity, Category 2 2.2 Label elements HCS 2012 (29 CFR 1910.1200) Pictogram Version Signal Word - Warning Hazard Statements - H319 - H351 Precautionary Statemets Prevention Version : 1.00 / US (Z8)	es and Canada, or 703-527-3887 for in normal portion of the GHS regulat r mixture H319: Cause H351: Suspe Causes serious eye irritation.	ternational collect calls.	information on

Date Issued	Document #	Version	Pag	je
2022-12-19	180.05.CO2.107	2.0	51 c	of 143
	SAFETY DATA SHEET			
		FERRIPLEX 40		
		Revision	n Date 06/2	23/2017
- P201	Obtain special instructions befor	e use.		
- P202		ecautions have been read and unde	erstood.	
- P264	Wash skin thoroughly after hand			
- P280	Wear protective gloves/ protection	ve clothing/ eye protection/ face pro	otection.	
<u>Response</u>				
- P305 + P351 + P338	IF IN EYES: Rinse cautiously wi present and easy to do. Continu	th water for several minutes. Remo e rinsing.	ove contact le	nses, if
- P308 + P313	IF exposed or concerned: Get m			
- P337 + P313	If eye irritation persists: Get mee	lical advice/ attention.		
Storage				
- P405	Store locked up.			
	•			
Disposal				

2.3 Other hazards which do not result in classification

None identified

SECTION 3: Composition/information on ingredients

3.1 Substance

- Not applicable, this product is a mixture.

3.2 Mixture

Hazardous Ingredients and Impurities

Chemical name	Identification number CAS-No.	Oncentr ation [%]
Trisodium nitrilotriacetate	5064-31-3	>= 35 - < 45

The specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret.

SECTION 4: First aid measures

4.1 Description of first-aid measures

General advice

- Show this material safety data sheet to the doctor in attendance. -
- -
- First responder needs to protect himself. Place affected apparel in a sealed bag for subsequent decontamination. -
- Plan first aid action before beginning work with this product. -

In case of inhalation

- If breathed in, move person into fresh air.
- -
- -
- If breathing is difficult, give oxygen. If victim has stopped breathing: administer CPR (cardio-pulmonary resuscitation) -
- -Get immediate medical advice/ attention.

In case of skin contact

- In case of contact, immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes.
- Seek medical advice. -

PRCO90070940

Version : 1.00 / US (Z8)

www.solvay.com

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	52 of 143
	SAFETY DATA SHEET		
		FERRIPLEX 40	
		Revis	sion Date 06 /23/2017
- Wash contaminated cloth	ning before re-use.		
In case of eye contact			
 Rinse immediately with p Seek medical advice. 	elenty of water, also under the eyelids,	for at least 15 minutes.	
In case of ingestion			
 If victim is conscious: Rinse with water. Keep at rest. Do not give anything to d Do not leave the victim u Vomiting may occur spor Risk of product entering t Lay victim on side. Seek medical advice. 	nattended.		
4.2 Most important symptoms and eff	fects, both acute and delayed		
Effects - Skin contact may aggrav - Inhalation of product may bronchitis 4.3 Indication of any immediate media	y aggravate existing chronic respirator		ohysema or
Notes to physician			
	based on observed signs and sympto at overexposure to materials other tha lote available.		
SECTION 5: Firefighting measures		liquid)	
Flash point	Not applicable (aqueous	liquia).	
Autoignition temperature	no data available		
Flammability / Explosive limit	no data available		
5.1 Extinguishing media			
Suitable extinguishing media			

- Extinguishing media large fires
 Foam
 Water spray

Unsuitable extinguishing media

- High volume water jet

PRCO90070940 Version : 1.00 / US (Z8)

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	53 of 143
	SAFETY DATA SHEET		
		FERRIPLEX 40	
		Revis	ion Date 06 /23/2017
5.2 Special hazards arising from	the substance or mixture		
Specific hazards during fire	fighting		
 Under fire conditions Will burn Container may ruptu 			
Hazardous combustion prod - On combustion or of - Carbon oxides - Nitrogen oxides (NC	n thermal decomposition (pyrolysis), release	95:	
5.3 Advice for firefighters			
Special protective equipment	nt for fire-fighters		
 Firefighters should w 	ear NIOSH/MSHA approved self-contained	breathing apparatus and full pro	tective clothing.
Further information			
 Standard procedure f Collect contaminated 	for chemical fires. I fire extinguishing water separately. This m ntaminated fire extinguishing water must be		
 Standard procedure f Collect contaminated 	I fire extinguishing water separately. This m ntaminated fire extinguishing water must be		
Standard procedure 1 Collect contaminated Fire residues and cor SECTION 6: Accidental releas	I fire extinguishing water separately. This m ntaminated fire extinguishing water must be	disposed of in accordance with	

6.2 Environmental precautions

- Do not flush into surface water or sanitary sewer system. -
- Take all necessary measures to avoid accidental discharge of products into drains and waterways due to the rupture of
- containers or transfer systems.
- Spills may be reportable to the National Response Center (800-424-8802) and to state and/or local agencies

6.3 Methods and materials for containment and cleaning up

Methods for containmet

- Stop the leak. Turn leaking containers leak-side up to prevent the escape of liquid.
- Dam up with sand or inert earth (do not use combustible materials).

Recovery

- Soak up with inert absorbent material.
- Shovel or sweep up.
- Keep in suitable, closed containers for disposal.
- Never return spills in original containers for re-use.

Decontamination / cleaning

- Wash nonrecoverable remainder with large amounts of water.
- Clean contaminated surface thoroughly.
- Recover the cleaning water for subsequent disposal.
- Decontaminate tools, equipment and personal protective equipment in a segregated area.

Disposal

Dispose of in accordance with local regulations. -

PRCO90	07094	40		
Version :	1.00	/	US ((Z8)

www.solvay.com

Date Issued	Document #	Version			Page
2022-12-19	180.05.CO2.107	2.0			54 of 143
	SAFETY DATA SHEET				
		FERRIPLEX 40			
			Revision	Date	06 /23/2017

6.4 Reference to other sections

- 7. HANDLING AND STORAGE
- 8. EXPOSURE CONTROLS/PERSONAL PROTECTION
- 13. DISPOSAL CONSIDERATIONS

SECTION 7: Handling and storage

7.1 Precautions for safe handling

- Avoid splashes.
- Handle in accordance with good industrial hygiene and safety practice.
- Avoid inhalation of vapor or mist.
- Avoid contact with skin and eyes.
- Vapors are heavier than air and may spread along floors.

Hygiene measures

- Personal hygiene is an important work practice exposure control measure and the following general measures should be taken when working with or handling this materials:
- 1) Do not store, use, and/or consume foods, beverages, tobacco products, or cosmetics in areas where this material is stored.
- 2) Wash hands and face carefully before eating, drinking, using tobacco, applying cosmetics, or using the toilet.
- 3) Wash exposed skin promptly to remove accidental splashes or contact with material.

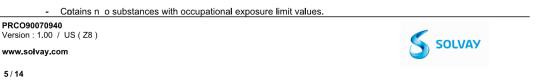
7.2 Conditions for safe storage, including any incomptibilitie s

Technical measures/Storage conditions

- Store at room temperature in the original container.
- Stable under normal conditions.
- Keep container tightly closed in a dry and well-ventilated place.
- Keep away from incompatible materials to be indicated by the manufacturer
- Keep away from open flames, hot surfaces and sources of ignition.
- Keep away from: Do not mix with incompatible materials (See list, section 10).

Requirements for storage rooms and vessels

Recommended storage temperature: < 120 °F (< 49 °C)


7.3 Specific end use(s)

- no data available

SECTION 8: Exposure controls/personal protection

Introductory Remarks: These recommendations provide general guidance for handling this product. Because specific work environments and material handling practices vary, safety procedures should be developed for each intended application. Assistance with selection, use and maintenance of worker protection equipment is generally available from equipment manufacturers.

8.1 Control parameters

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	55 of 143

SAFETY DATA SHEET

FERRIPLEX 40				
	Revision	D te	06	/23/2017

Hazardous components without workplace control parameters

Chemical name	Identification number CAS-No.	Exposure Limit Values
Trisodium nitrilotriacetate	5064-31-3	None

8.2 Exposure controls

Control measures

Engineering measures

- Where engineering controls are indicated by use conditions or a potential for excessive exposure exists, the following traditional exposure control techniques may be used to effectively minimize employee exposures :
- Effective exhaust ventilation system

Individual protection measures

Respiratory protection

- When respirators are required, select NIOSH/MSHA approved equipment based on actual or potential airborne
 concentrations and in accordance with the appropriate regulatory standards and/or industrial recommendations.
- Use a respirator with an approved filter if a risk assessment indicates this is necessary.

Hand protection

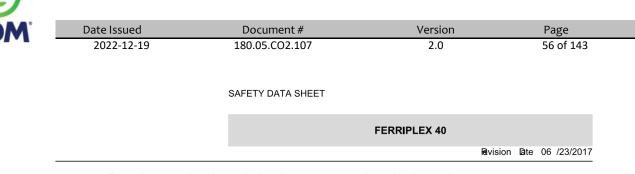
- Recommended preventive skin protection
- Protective gloves
- Please observe the instructions regarding permeability and breakthrough time while are proved by the supplier of the
 gloves. Also take into consideration the specific local conditions under which the product is used, such as the danger of
 cuts, abrasion, and the contact time.
- Gloves must be inspected prior to use.

Eye protection

- Eye and face protection requirements will vary dependent upon work environment conditions and material handling practices. Appropriate ANSI Z87 approved equipment should be selected for the particular use intended for this material.
- Eye contact should be prevented through the use of:
- Safety glasses with side-shields

Skin and body protection

- Recommended preventive skin protection
- Footwear protecting against chemicals
- Impervious clothing
- Choose body protection according to the amount and concentration of the dangerous substance at the work place.


Hygiene measures

- Personal hygiene is an important work practice exposure control measure and the following general measures should be taken when working with or handling this materials:
- 1) Do not store, use, and/or consume foods, beverages, tobacco products, or cosmetics in areas where this
 material is stored.
- 2) Wash hands and face carefully before eating, drinking, using tobacco, applying cosmetics, or using the toilet.
- 3) Wash exposed skin promptly to remove accidental splashes or contact with material.

Protective measures

PRCO90070940 Version : 1.00 / US (Z8) www.solvay.com

- Ensure that eyewash stations and safety showers are close to the workstation location.

- Emergency equipment immediately accessible, with instructions for use.

 The protective equipment must be selected in accordance with current local standards and in cooperation with the supplier of the protective equipment.

- Selection of appropriate personal protective equipment should be based on an evaluation of the performance characteristics of the protective equipment relative to the task(s) to be performed, conditions present, duration of use, and the potential hazards, and/or risks that may occur during use.

SECTION 9: Physical and chemical properties

Physical and Chemical properties here represent typical properties of this product. Contact the busiess ar ea using the Product information phone number in Section 1 for its exact specifications.

9.1 Information on basic physical and chemical properties

Appearance			liquid colorless to pale yellow.	
<u>Odor</u>	sl	ight ammonia		
Odor Threshold	no	o data available		
рН	10	0.0 (10 g/l)		
Melting point/freezing point	no	o data available		
Initial boiling point and boilin	ig range >	Boiling point/boil	ing range: 212F (100 °C)	
Flash point	N	ot applicable (aqu	ueous liquid).	
Evaporation rate (Butylaceta	t <u>e = 1)</u> no	o data available		
Flammability (solid, gas)	no	o data available		
Flammability (liquids)	no	o data available		
Flammability / Explosive limi	<u>t</u> no	o data available		
Autoignition temperature	no	o data available		
Vapor pressure	no	o data available		
Vapor density	no	o data available		
Density	1.	.3 g/cm3		
Relative density	1.	.3		
<u>Solubility</u>		<u>/ater solubility</u> : ompletely soluble		
		Simpletely Soluble		
Partition coefficient: n-octan	ol/water no	o data available		
Decomposition temperature	no	o data available		
PRC090070940 Version : 1.00 / US (Z8)				6 5011/01/
www.solvay.com				SOLVAY

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	57 of 143
	SAFETY DATA SHEET		
		FERRIPLEX 40	D 1 1 1 1 1 1 1 1 1 1
		I&VIS	ion Date 06 /23/201
<u>Viscosity</u>	no data available		
Explosive properties Oxidizing properties	no data available no data available		
9.2 Other information			
no data available			
SECTION 10: Stability and reac	ivity		
10.1 Reactivity			
- no data available			
10.2 Chemical stability			
- Stable under normal c	onditions.		
10.3 Possibility of hazardous react	ons		
polymerization - Hazardous polymeriza			
10.4 Conditions to avoid			
 Keep away from heat Avoid excessive heat 	and sources of ignition. for prolonged periods of time.		
10.5 Incomptible ma terials			
 Strong oxidizing agents Strong acids 	;		
10.6 Hazardous decomposition pro	ducts		
 On combustion or on f (Carbon oxides (CO + Nitrogen oxides (NOx) 	hermal decomposition (following the eva CO2)).	aporation of water) releases:	
SECTION 11: Toxicological info	rmation		
11.1 Information on toxicological e	ffects		
Acute toxicity			
Acute oral toxicity	Not classified as hazardous According to the available da According to the classification		GHS.
Acute inhalation toxicity	Not classified as hazardous According to the available da According to the classification		ling to GHS.
Acute dermal toxicity	Not classified as hazardous According to the available da According to the classification		g to GHS.
Acute toxicity (other routes of administration)	no data available		
PRC090070940 Version : 1.00 / US (Z8)			
www.solvay.com		SOL	VAY

Date Issued	Document #	Version	Page	
2022-12-19	180.05.CO2.107	2.0	58 of 143	
	SAFETY DATA SHEET			
		FERRIPLEX 40		
			Revision Date 06 /23/2017	
Skin corrosion/irritation	Not classifid as ir ritating t According to the available According to the classificat	data on the components		
Serious eye damage/eye irritation	Irritating to eyes. According to the available According to the classificat	data on the components tion criteria for mixtures.		
Respiratory or skin sensitization	Does not cause skin sensi According to the available According to the classificat	data on the components		
Mutagenicity				
Genotoxicity in vitro	According to the available Product is not considered f According to the classificat	to be genotoxic		
Genotoxicity in vivo	According to the available Product is not considered to According to the classificat	to be genotoxic		
Carcinogenicity				
Trisodium nitrilotriacetate	Rat , male and female Oral Exposure duration: 2 y Method: OECD Test Guidel Animal studies have shown Published data			
	Mouse , male Oral Exposure duration: 2 y Method: OECD Test Guidel Animal studies have shown Published data			

Ingredients	CAS-No.	Rating	Basis
Trisodium nitrilotriacetate	5064-31-3	Group 2B: Possibly carcinogenic to humans	IARC

This product does not contain any ingredient designated as probable or suspected human carcinogens by:

NIP

ADM'

NTP OSHA ACGIH

ADM

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	59 of 143
:	SAFETY DATA SHEET		
		FERRIPLEX 40	
		Revis	sion Date 06 /23/2017
Toxicity for reproduction and develop	ment		
Toxicity to reproduction / fertility		lata on the components, The prod to the classification criteria for mix	
Developmetal Tox icity/Teratogenicit	According to the available d	lata on the components, The prod , The product is not considered to on criteria for mixtures.	
STOT			
STOT-single exposure	The substance or mixture is exposure according to GHS According to the classification		rgan toxicant, single
STOT-repeated exposure	The substance or mixture is repeated exposure accordir According to the classification		rgan toxicant,
CMR effects			
Carcinogenicity Trisodium nitrilotriacetate	Limited evidence of carcino	genicity in animal studies	
Aspiration toxicity	no data available		
CTION 12: Ecological information			
1 Toxicity			
Aquatic Compartment			
Acute toxicity to fish	The product itself has not be	een tested.	
Acute toxicity to daphnia and othe aquatic invertebrates.	r The product itself has not be	een tested.	
Toxicity to aquatic plants	The product itself has not be	een tested.	
Toxicity to microorganisms	The prod uct itself has not be	een tested.	
Chronic toxicity to fish	The product itself has not be	een tested.	
Chronic toxicity to daphnia and other aquatic invertebrates.	The product itself has not be	een tested.	
Chronic Toxicity to aquatic plants	The product itself has not be	een tested.	
CO90070940 sion : 1.00 / US (Z8)		6	
		SO SO	LVAY
.solvay.com		Sol	LVAY

ADM	Date Issued	Document #	Version	Page
	2022-12-19 1	80.05.CO2.107	2.0	60 of 143
	SA	AFETY DATA SHEET		
			FERRIPLEX 40	
				n Date 06 /23/2017
	12.2 Persistence and degradability			
	Abiotic degradation	no data available		
	Physical- and photo-chemical elimination	no data available		
	Biodegradation			
	Biodegradability Trisodium nitrilotriacetate	Ready biodegradability study Method: OECD Test Guideli 100 % - 14 Days The substance fulfills the crit biodegradability Dissolved organic carbon (D Conc. in standard unit mg / I Unpublished reports	ne 301 teria for ultimate aerobic biodegrada IOC)	bility and ready
	Degradability assessment Trisodium nitrilotriacetate	The product is considered to	b be rapidly degradable in the enviro	nment
	12.3 Bioaccumulative potential			
	Partition coefficient: n-octanol/water	no data available		
	Bioconcentration factor (BCF) Trisodium nitrilotriacetate	Species: Danio rerio (zebra Bioconcentration factor (BCI Exposure time: 96 h Published data Not potentially bioaccumulat	F): 1 - 3	
	12.4 Mobility in soil			
	Adsorption potential (Koc)	no data available		
	Known distribution to environmetal compartments	no data available		
	12.5 Results of PBT and vPvB assessment	no data available		

PRCO90070940 Version : 1.00 / US (Z8) www.solvay.com

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	61 of 143
	SAFETY DATA SHEET		
		FERRIPLEX 40	
		Rvis	ion Date 06 /23/2017
.6 Other adverse effects			
.6 Other adverse effects cotoxicity assessment			
	According to the available da The product does not have a tested According to the classificatio	ny known adverse effects on the	aquatic organisms

SECTION 13: Disposal considerations

13.1 Waste treatment methods

Product Disposal

- Chemical additions, processing or otherwise altering this material may make the waste management information presented in this SDS incomplete, inaccurate or otherwise inappropriate. Please be advised that state and local requirements for waste disposal may be more restrictive or otherwise different from federal laws and regulations. Consult state and local regulations regarding the proper disposal of this material.

Waste Code

- Environmental Protection Agency
- Hazardous Waste NO

SECTION 14: Transport information

DOT not regulated

TDG

not regulated

NOM not regulated

IMDG not regulated

IATA

not regulated

Note: The above regulatory prescriptions are those valid on the date of publication of this sheet. Given the possible evolution of transportation regulations for hazardous materials, it would be advisable to check their validity with your sales office.

PRCO90070940 Version : 1.00 / US (Z8) www.solvay.com

Date Issued Document # 180.05.CO2.107

Page 62 of 143

2022-12-19

SAFETY DATA SHEET

FERRIPLEX 40

Version

2.0

Revision Date 06 /23/2017

SECTION 15: Regulatory information

15.1 Notification status

Inventory Information	Status
United States TSCA Inventory	 Listed on Inventory
Canadian Domestic Substances List (DSL)	 Listed on Inventory
Australia Inventory of Chemical Substances (AICS)	 Listed on Inventory
Japan. CSCL - Inventory of Existing and New Chemical Substances	 Listed on Inventory
Korea. Korean Existing Chemicals Inventory (KECI)	 Listed on Inventory
China. Inventory of Existing Chemical Substances in China (IECSC)	 Listed on Inventory
Philippines Inventory of Chemicals and Chemical Substances (PICCS)	 Listed on Inventory

15.2 Federal Regulations

US. EPA EPCRA SARA Title III

SARA HAARD DE SIGNATION SECTIONS 311/312 (40 CFR 370)

Fire Hazard	no
Reactivity Hazard	no
Sudden Release of Pressure Hazard	no
Acute Health Hazard	yes
Chronic Health Hazard	yes

Section 313 Toxic Chemicals (40 CFR 372.65)

This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.

Section 302 Emergency Planning Extremely Hazardous Substance Threshold Planning Quantity (40 CFR 355) No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.

Section 302 Emergency Planning Extremely Hazardous Substance Reportable Quantity (40 CFR 355) This material does not contain any components with a SARA 302 RQ.

Section 304 Emergency Release Notification Reportable Quantity (40 CFR 355)

This material does not contain any components with a section 304 EHS RQ.

US. EPA CERCLA Hazardous Substances and Reportable Quantities (40 CFR 302.4)

This material does not contain any components with a CERCLA RQ.

15.3 State Regulations

US. California Safe Drinking Water & Toxic Enforcement Act (Proposition 65)

This product does not contain any chemicals known to the State of California to cause cancer, birth, or any other reproductive defects.

SECTION 16: Other information

NFPA (National Fire Protection Association) - Classification

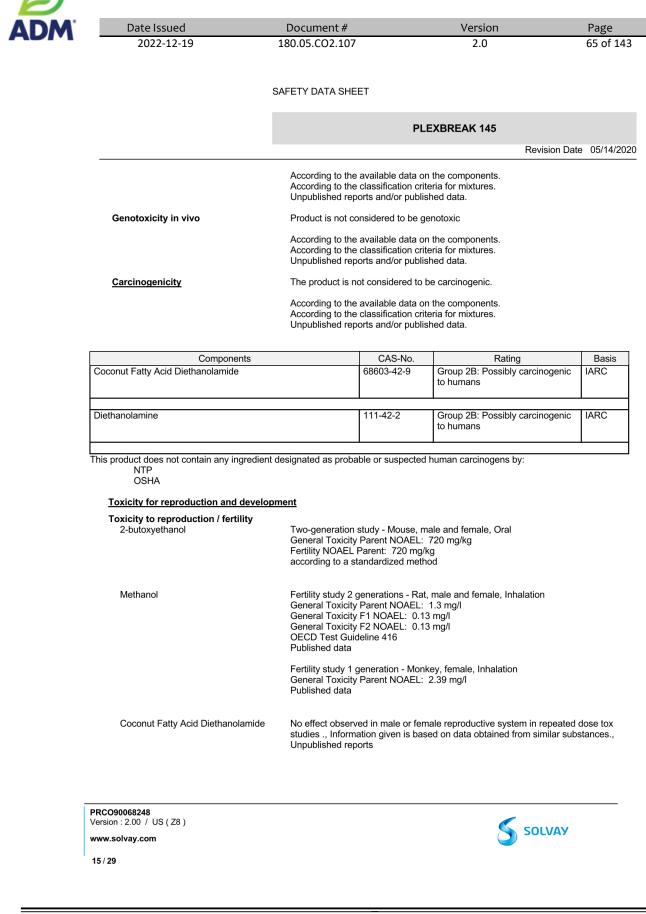
Health Flammability Instability or Reactivity 2 moderate 0 minimal 0 minimal

PRCO90070940 Version : 1.00 / US (Z8) www.solvay.com

Date Issued	Document #	Version		Page
2022-12-19	180.05.CO2.107	2.0		63 of 143
	SAFETY DATA SHEET			
		FERRIPLEX 40		
			on Date	06 /23/2017
IIIS (Hazardous Material: Health Flammability Reactivity PPE	s Identification System (Paint & Coating)) - 2 moderate 0 minimal 0 minimal Betermin ed by User	Revisi	on Date	06 /23/2017
Health Flammability Reactivity	2 moderate 0 minimal 0 minimal @termin_ed by User	Revisi	on Date	06 /23/2017

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information, and belief at the date of its publication. Such information is only given as a guidance to help the user handle, use, process, store, transport, dispose, and release the product in satisfactory safety conditions and is not to be considered as a warranty or quality specification. It should be used in conjunction with technical sheets but do not replace them. Thus, the information only relates to the designated specific product and may not be applicable if such product is used in combination with other materials or in any other manufacturing process, unless otherwise specifically indicated. It does not release the user from ensuring he is in conformity with all regulations linked to its activity.

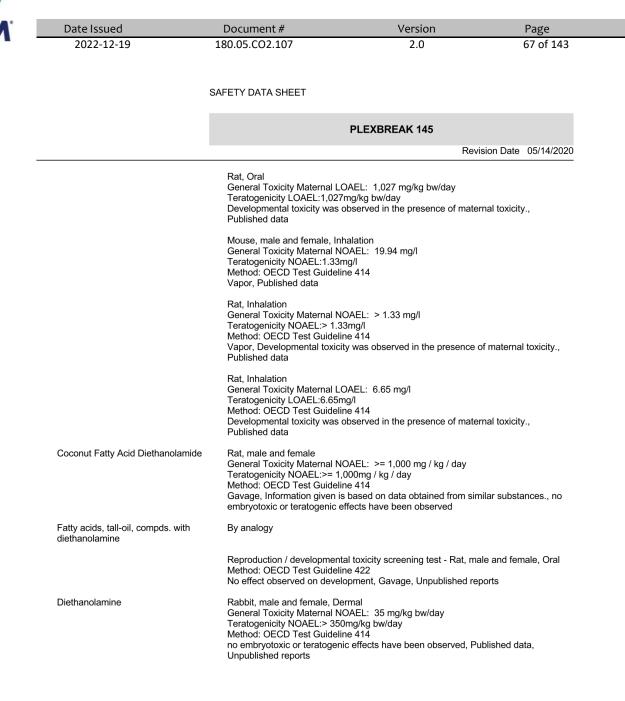
PRCO90070940 Version : 1.00 / US (Z8) www.solvay.com


14/14

ADM'

Date Issued	Document #	Version	Page	
2022-12-19	180.05.CO2.107	2.0	64 of 143	

Non-Emulsifier (PlexBreak 145)


Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	66 of 143
:	SAFETY DATA SHEET		
	PLEXBREAK 145		
		Revis	sion Date 05/14/2020
Fatty acids, tall-oil, compds. with diethanolamine	By analogy		
	OECD Test Guideline 42	nental toxicity screening test - Rat, mal 22 has been observed, Gavage, Unpublis	
Diethanolamine	Extended One-Generation Oral General Toxicity Parent Fertility NOAEL Parent: OECD Test Guideline 44	300 ppm	nale and female,
	Fertility NOAEL F1: 300 drinking water, Effects of) ppm n fertility, Unpublished reports	
Developmental Toxicity/Teratogenicity 2-butoxyethanol	y Rat, female, Oral General Toxicity Materna Teratogenicity NOAEL:1 Method: OECD Test Gui Gavage	00mg/kg	
Methanol	Method: OECD Test Gui	al NOAEL: 2,054 mg/kg bw/day ideline 414 vas observed in the presence of materr	nal toxicity.,

PRC090068248 Version : 2.00 / US (Z8) www.solvay.com

16/29

ADM

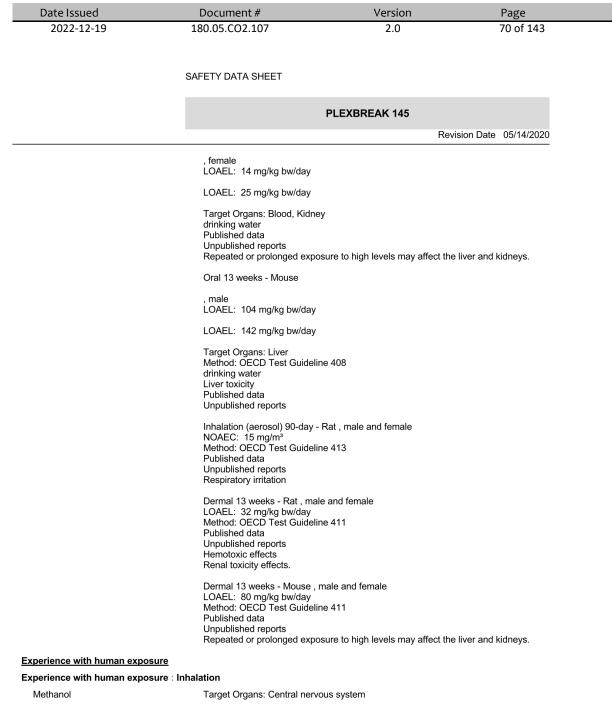
PRCO90068248 Version : 2.00 / US (Z8) www.solvay.com

			_
Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	68 of 143
	SAFETY DATA SHEET		
		PLEXBREAK 145	
		Rev	ision Date 05/14/2020
	Rat, male and female, Inhal General Toxicity Maternal N Teratogenicity NOAEL:>= 0 Method: OECD Test Guidel no embryotoxic or teratoger	IOAEL: 0.05 mg/l .2mg/l	npublished reports
	Rat, male and female, Oral General Toxicity Maternal N Developmental Toxicity NO Method: OECD Test Guidel drinking water, Effects on d	AEL F1: 100 ppm	blished reports
<u>STOT</u>			
STOT-single exposure	Target Organs: Central ner	vous system, optic nerve	
	The substance or mixture is exposure, category 1 accor	classified as specific target orgar ding to GHS criteria.	toxicant, single
	According to the available of According to the classification Unpublished reports and/or	on criteria for mixtures.	
STOT-repeated exposure	The substance or mixture is exposure, category 2 accord	classified as specific target orgar ding to GHS criteria.	toxicant, repeated
	According to the available of According to the classification Unpublished reports and/or	on criteria for mixtures.	
2-butoxyethanol	Inhalation Chronic - Rat , m NOAEC: < 31 ppm Target Organs: Liver Method: OECD Test Guidel		
Methanol	Inhalation (vapor) 28-day - NOAEC: 6.66 mg/l Method: OECD Test Guidel No adverse effect has been Published data		ated administration
Coconut Fatty Acid Diethanolamide		ay	
		on data obtained ironi similar SUDS	nan 1053.

PRC090068248 Version : 2.00 / US (Z8) www.solvay.com

Solvay

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	69 of 143
	SAFETY DATA SHEET		
		PLEXBREAK 145	
		Revis	sion Date 05/14/2020
	Unpublished reports Dermal two-year - Rat , ma NOAEL: 50 mg/kg bw/day	line 407 erious damage to health on repeate Ile and female	
Fatty acids, tall-oil, compds. with diethanolamine	category approach Oral Subchronic exposure Target Organs: Kidney, Blo According to the available Expert judgment Unpublished reports	bod	
Diethanolamine	Oral 13 weeks - Rat		


PRC090068248 Version : 2.00 / US (Z8) www.solvay.com

19 / 29

ADM

PRCO90068248 Version : 2.00 / US (Z8)

www.solvay.com

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	71 of 143
	SAFETY DATA SHEET		
		PLEXBREAK 145	
		Revis	sion Date 05/14/2020
	Target Organs: optic nerve Symptoms: Inhalation may pro Dizziness Nausea acidosis Blurred vision Impairment of vision Published data	ovoke the following symptoms:	
Experience with human exposure	: Ingestion		
Methanol	Target Organs: Central nervol	us system	
	Target Organs: optic nerve Symptoms: Ingestion may pro Dizziness Nausea acidosis Abdominal pain Vomiting Central nervous system depre Headache Breathing difficulties Impairment of vision Blurred vision Coma Death May cause respiratory arrest. Poison, may be fatal or cause	ession	
CMR effects			
Carcinogenicity Diethanolamine		according to GHS criteria: the m s considered not relevant for hun	
Mutagenicity Fatty acids, tall-oil, compds. with diethanolamine	Not classified as mutagen acc	cording to GHS criteria.	
Diethanolamine	The product is considered to b of the data from animal and/or	be non-mutagenic based on an or r in vitro testing.	verall assessment
Teratogenicity			
Fatty acids, tall-oil, compds. with diethanolamine	Not classified as toxic for the r criteria	reproduction (development) acco	rding to GHS
Diethanolamine	Classified as toxic for the repr GHS criteria	oduction in Category 2 (developr	nent) according to
Reproductive toxicity Fatty acids, tall-oil, compds. with diethanolamine	Not classified as toxic for the r to GHS criteria	reproduction (fertility and/or deve	lopment) according
Diethanolamine	Classified as toxic for the repr criteria	oduction in Category 2 (fertility) a	according to GHS
Aspiration toxicity	Not classified for aspiration to	xicity according to GHS criteria	
D90068248			
on : 2.00 / US (Z8)		Sou Sou	VAY
solvay.com			

21 / 29

ADM

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	72 of 143
s	AFETY DATA SHEET		
		PLEXBREAK 145	
		Rev	ision Date 05/14/202
	According to the available da criteria for mixtures., interna	ata on the components, According I evaluation	to the classification
SECTION 12: Ecological information			
12.1 Toxicity			
Aquatic Compartment			
Acute toxicity to fish	The product itself has not be below.	en tested. Global ecotoxicity asse	essment available
Acute toxicity to daphnia and other aquatic invertebrates	The product itself has not be below.	een tested. Global ecotoxicity asse	essment available
Toxicity to aquatic plants	The product itself has not be below.	een tested. Global ecotoxicity asse	essment available
Toxicity to microorganisms	The product itself has not be	een tested.	
Chronic toxicity to fish	The product itself has not be below.	een tested. Global ecotoxicity asse	essment available
Chronic toxicity to daphnia and other aquatic invertebrates	The product itself has not be below.	een tested. Global ecotoxicity asse	essment available
Sediment compartment			
Toxicity to benthic organisms	The product itself has not be	een tested.	
Terrestrial Compartment	The second set its alf have weather	and to all all	
Toxicity to soil dwelling organisms	The product itself has not be		
Toxicity to terrestrial plants	The product itself has not be		
Toxicity to above ground organisms	s The product itself has not be	en tested.	
Abiotic degradation Stability in water	Conclusion is not possible for	or a mixture as a whole.	
Photodegradation	Conclusion is not possible for		
Physical- and photo-chemical eliminati			
Physico-chemical removability	Conclusion is not possible fo	or a mixture as a whole.	
Biodegradation			
Biodegradability		elevant for mixtures, all the comp idually (rapid degradability asses	
Degradability assessment	All or most of the componen environment	ts are considered to be rapidly de	gradable in the
PRCO90068248 Version : 2.00 / US(Z8) www.solvay.com		S so	LVAY

Date Issued	Document #	Version	Page
2022-12-19 1	.80.05.CO2.107	2.0	73 of 14
Sł	AFETY DATA SHEET		
		PLEXBREAK 145	
			ision Date 05/14/20
12.3 Bioaccumulative potential			
Partition coefficient: n-octanol/water 2-butoxyethanol	Due to the distribution coeff not expected.	icient n-octanol/water, accumulati	on in organisms is
Methanol	Due to the distribution coeff not expected.	icient n-octanol/water, accumulati	on in organisms is
Diethanolamine	Due to the distribution coeff not expected.	ïcient n-octanol/water, accumulati	on in organisms is
Bioconcentration factor (BCF)	None of the components are	e considered to be potentially bioa	accumulable
12.4 Mobility in soil			
Adsorption potential (Koc)	Conclusion is not possible f	or a mixture as a whole.	
Known distribution to environmental Methanol	compartments Ultimate destination of the p	product: Air	
	Water		
Coconut Fatty Acid Diethanolamide	Ultimate destination of the p	product: Soil	
	Water		
	Predicted distribution to env Unpublished reports	vironmental compartments	
12.5 Results of PBT and vPvB assessment	and toxic (PBT).	bstance considered to be persiste bstance considered to be very per	-
12.6 Other adverse effects			
Ecotoxicity assessment			
Short-term (acute) aquatic hazard	Harmful to aquatic life. According to the available d According to the classification Unpublished reports and/or	on criteria for mixtures.	
Long-term (chronic) aquatic hazard	Harmful to aquatic life with I According to the available d According to the classificati Unpublished reports and/or	lata on the components. on criteria for mixtures.	
SECTION 13: Disposal considerations			
13.1 Waste treatment methods			
Product Disposal Prohibition			
 Do not discharge directly into the Do not dispose of with domestic 			
PRCO90068248 Version:2.00 / US(Z8)			
www.solvay.com		S0	LVAY

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	74 of 143
	SAFETY DATA SHEET		
		PLEXBREAK 145	
		Rev	vision Date 05/14/2020
- Dispose of as hazardous	s waste in compliance with local and na	ational regulations.	
presented in this SDS in requirements for waste of	essing or otherwise altering this mater complete, inaccurate or otherwise inap disposal may be more restrictive or oth ns regarding the proper disposal of this	propriate. Please be advised that erwise different from federal laws	t state and local
Waste Code			
 Environmental Protection Hazardous Waste – YES 			
 RCRA Hazardous Waste D001 - Ignitable waste – 			
Advice on cleaning and disposa	l of packaging		
Prohibition - Do NOT dispose of untre - Do not dispose of with d	eated packaging with industrial waste. omestic refuse.		
- Empty remaining conten	ts.		
 Clean using steam. Monitor the residual vap Dispose of rinse water in 	ors. accordance with local and national re	gulations.	
- Containers that cannot b	e cleaned must be treated as waste.		
Dispose of contents/ corDispose of in accordance	tainer to an approved waste disposal p e with local regulations.	blant.	
	G regulations containers or tankers tha product, must either be labeled or have		prized and that previous
	g is preferred to disposal or incineration ust be completely dry and free of pollut		
SECTION 14: Transport informat	ion		
Transportation status: IMPORTANT! S The listed Transportation Classificatio other regulatory descriptors.			
DOT			
14.1 UN number	UN 1992		
14.2 Proper shipping name	FLAMMABLE LIQUIDS,	TOXIC, N.O.S. (Methanol, 2-But	oxyethanol)
14.3 Transport hazard class Subsidiary hazard class Label(s)	3 6.1 3 (6.1)		
14.4 Packing group Packing group	Ш		

www.solvay.com

=

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	75 of 14
	SAFETY DATA SHEET		
		PLEXBREAK 145 Rev	vision Date 05/14/2
14.5 Environmental hazards Marine pollutant	NO		
TDG			
14.1 UN number	UN 1992		
14.2 Proper shipping name	FLAMMABLE LIQUID, T	OXIC, N.O.S. (Methanol, 2-Buto	xyethanol)
14.3 Transport hazard class Subsidiary hazard class Label(s)	3 6.1 3 (6.1)		
14.4 Packing group Packing group ERG No	III 131		
14.5 Environmental hazards Marine pollutant	NO		
NOM			
14.1 UN number	UN 1992		
14.2 Proper shipping name	FLAMMABLE LIQUID, T	OXIC, N.O.S. (Methanol, 2-Buto	xyethanol)
14.3 Transport hazard class Subsidiary hazard class Label(s)	3 6.1 3 (6.1)		
14.4 Packing group Packing group ERG No	III 131		
14.5 Environmental hazards Marine pollutant	NO		
MDG			
14.1 UN number	UN 1992		
14.2 Proper shipping name IMDG Code segregation group	FLAMMABLE LIQUID, T Not Relevant	OXIC, N.O.S. (Methanol, 2-Buto	xyethanol)
14.3 Transport hazard class Subsidiary hazard class Label(s)	3 6.1 3 (6.1)		
14.4 Packing group Packing group	Ш		
PRCO90068248 Version : 2.00 / US (Z8)		So so	

Date	Issued	Document #	Version	Page
202	22-12-19	180.05.CO2.107	2.0	76 of 143
		SAFETY DATA SHEET		
			PLEXBREAK 145	
			Revision	Date 05/14/2020
		NO		
Marine polluta	nental hazards ant	NO		
	precautions for user			
EmS		F-E , S-D		
	rotection see section 8.			
	r t in bulk vessels accordir ble	ng to IMO instruments		
14.7 Transpor No data availab		ng to IMO instruments		
14.7 Transpor No data availab <u>IATA</u>	le	-		
14.7 Transpor No data availab	le	ng to IMO instruments UN 1992		
14.7 Transpor No data availab <u>IATA</u>	ber	UN 1992	ΓΟΧΙC, N.O.S. (Methanol, 2-Butoxyeth	anol)
14.7 Transpor No data availab <u>IATA</u> 14.1 UN numb 14.2 Proper sl 14.3 Transpor	ber hipping name rt hazard class	UN 1992 FLAMMABLE LIQUID, 1 3	ΓΟΧΙC, N.O.S. (Methanol, 2-Butoxyeth	anol)
14.7 Transpor No data availab IATA 14.1 UN numb 14.2 Proper si	ber hipping name rt hazard class	UN 1992 FLAMMABLE LIQUID, T	ΓΟΧΙC, N.O.S. (Methanol, 2-Butoxyeth	anol)
14.7 Transpor No data availab <u>IATA</u> 14.1 UN numb 14.2 Proper si 14.3 Transpor Subsidiary haz	ole ber hipping name t hazard class card class:	UN 1992 FLAMMABLE LIQUID, 1 3 6.1 3 (6.1)	ΓΟΧΙC, N.O.S. (Methanol, 2-Butoxyeth	anol)
14.7 Transpor No data availab <u>IATA</u> 14.1 UN numb 14.2 Proper sl 14.3 Transpor Subsidiary haz Label(s):	ber hipping name t hazard class card class: group	UN 1992 FLAMMABLE LIQUID, 1 3 6.1	ΓΟΧΙC, N.O.S. (Methanol, 2-Butoxyeth	anol)
14.7 Transpor No data availab IATA 14.1 UN numb 14.2 Proper sl 14.3 Transpor Subsidiary haz Label(s): 14.4 Packing group Packing group	ole hipping name rt hazard class card class: group ction (cargo aircraft)	UN 1992 FLAMMABLE LIQUID, 1 3 6.1 3 (6.1) III 366	ΓΟΧΙC, N.O.S. (Methanol, 2-Butoxyeth	anol)
14.7 Transpor No data availab IATA 14.1 UN numb 14.2 Proper sl 14.3 Transpor Subsidiary haz Label(s): 14.4 Packing group Packing instruc Max net qty / p Packing instruc	ber hipping name t hazard class tard class: group group ction (cargo aircraft) okg ction (passenger aircraft)	UN 1992 FLAMMABLE LIQUID, T 3 6.1 3 (6.1) III 366 220.00 L 355	ΓΟΧΙC, N.O.S. (Methanol, 2-Butoxyeth	anol)
 14.7 Transpor No data availab <u>IATA</u> 14.1 UN numb 14.2 Proper sl 14.3 Transpor Subsidiary haz Label(s): 14.4 Packing group Packing group Packing instruct Max net qty / p 	ber hipping name t hazard class tard class: group group ction (cargo aircraft) okg ction (passenger aircraft)	UN 1992 FLAMMABLE LIQUID, 7 3 6.1 3 (6.1) III 366 220.00 L	ΓΟΧΙϹ, Ν.Ο.S. (Methanol, 2-Butoxyeth	anol)
 14.7 Transpor No data availab <u>IATA</u> 14.1 UN numb 14.2 Proper sl 14.3 Transpor Subsidiary haz Label(s): 14.4 Packing e Packing group Packing instruct Max net qty / p Packing instruct Max net qty / p 	ber hipping name t hazard class tard class: group group ction (cargo aircraft) okg ction (passenger aircraft)	UN 1992 FLAMMABLE LIQUID, T 3 6.1 3 (6.1) III 366 220.00 L 355	ΓΟΧΙC, N.O.S. (Methanol, 2-Butoxyeth	anol)
 14.7 Transpor No data availab IATA 14.1 UN numb 14.2 Proper si 14.3 Transpor Subsidiary haz Label(s): 14.4 Packing a Packing group Packing instruct Max net qty / p Packing instruct Max net qty / p 14.5 Environm 14.6 Special p 	ole hipping name rt hazard class card class: group ction (cargo aircraft) kg ction (passenger aircraft) kg	UN 1992 FLAMMABLE LIQUID, 1 3 6.1 3 (6.1) III 366 220.00 L 355 60.00 L	ΓΟΧΙϹ, Ν.Ο.S. (Methanol, 2-Butoxyeth	anol)

Note: The above regulatory prescriptions are those valid on the date of publication of this sheet. Given the possible evolution of transportation regulations for hazardous materials, it would be advisable to check their validity with your sales office.

5.1 Notification status				
Inventory Information	Status			
United States TSCA Inventory	- All substances listed as active on the TSCA inventory			
Canadian Domestic Substances List (DSL)	- Listed on Inventory			
Australia Inventory of Chemical Substances (AICS)	- Listed on Inventory			
Japan. CSCL - Inventory of Existing and New Chemical Substances	- Listed on Inventory			
Korea. Korean Existing Chemicals Inventory (KECI)	- Listed on Inventory			
China. Inventory of Existing Chemical Substances in China (IECSC)	- Listed on Inventory			

PRCO90068248 Version : 2.00 / US (Z8)

www.solvay.com

Date Issued 2022-12-19

Document # 180.05.CO2.107

Page

77 of 143

SAFETY DATA SHEET

PLEXBREAK 145

Version

2.0

Revision Date 05/14/2020

Philippines Inventory of Chemicals and Chemical Substances (PICCS)	- Listed on Inventory
Taiwan Chemical Substance Inventory (TCSI)	- Listed on Inventory
New Zealand. Inventory of Chemical Substances	 All components are listed on the NZIOC inventory. The HSNO status of the product has not been assessed.
EU. European Registration, Evaluation, Authorisation and Restriction of Chemical (REACH)	 When purchased from a Solvay legal entity based in the EEA ("European Economic Area"), this product is compliant with the registration provisions of the REACH Regulation (EC) No. 1907/2006 as all its components are either excluded, exempt, and/or registered. When purchased from a legal entity outside of the EEA, please contact your local representative for additional information.

15.2 Federal Regulations

US. EPA EPCRA SARA Title III

SARA HAZARD DESIGNATION SECTIONS 311/312 (40 CFR 370)

Flammable (gases, aerosols, liquids, or solids)	Yes
Acute toxicity (any route of exposure)	Yes
Skin corrosion or irritation	Yes
Serious eye damage or eye irritation	Yes
Reproductive toxicity	Yes
Specific target organ toxicity (single or repeated exposure)	Yes

The categories not mentioned are not relevant for the product.

Section 313 Toxic Chemicals (40 CFR 372.65)

The following components are subject to reporting levels established by SARA Title III, Section 313:

Components	CAS-No.	Concentration
2-butoxyethanol	111-76-2	10- 15%
Methanol	67-56-1	10- 15%
Diethanolamine	111-42-2	1- 5%

Section 302 Emergency Planning Extremely Hazardous Substance Threshold Planning Quantity (40 CFR 355) This material does not contain any components with a section 302 EHS TPQ.

Section 302 Emergency Planning Extremely Hazardous Substance Reportable Quantity (40 CFR 355) This material does not contain any components with a SARA 302 RQ.

Section 304 Emergency Release Notification Reportable Quantity (40 CFR 355) This material does not contain any components with a section 304 EHS RQ.

US. EPA CERCLA Hazardous Substances and Reportable Quantities (40 CFR 302.4)

Components	CAS-No.	Reportable quantity
Diethanolamine	111-42-2	100 lb
Calculated RQ exceeds reasonably attainable upper limit.		
PRC090068248 Version : 2.00 / US (Z8)		Solvay
www.solvay.com		
27 / 29		

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	78 of 143
	SAFETY DATA SHEET		
		PLEXBREAK 145	
		Rev	ision Date 05/14/2020
15.3 State Regulations			
-	nking Water & Toxic Enforcement Act (Pr	roposition 65)	
111-42-2), which is/are known to This product can expose you to cl	nemicals including Coconut Fatty Acid Dieth the State of California to cause cancer, and nemicals including Methanol (CAS # 67-56- harm. For more information go to www.P6	1 1) , which is/are known to the Stat	
SECTION 16: Other informat	ion		
NFPA (National Fire Protec	tion Association) - Classification		
Health	3 serious		
Flammability Instability or Reactivity	3 serious 0 minimal		
HMIS (Hazardous Materials	Identification System (Paint & Coating))	- Classification	
Health	3 serious		
Flammability	3 serious		
Reactivity PPE	0 minimal Determined by Use	er; dependent on local conditions	
Date Prepared: 05/14/20	020		
Key or legend to abbreviati	ons and acronyms used in the safety dat	ta sheet	
- ST	STEL - 15-minute TWA exposure that	should not be exceeded at any ti	me during a workday
- STEL - TWA	Short-term exposure limit 8-hour, time-weighted average		
- ACGIH	American Conference of Governmenta	al Industrial Hygienists	
- OSHA	Occupational Safety and Health Admi	nistration	
- NTP	National Toxicology Program	Canaar	
- IARC - NIOSH	International Agency for Research on National Institute for Occupational Saf		
- ADR:	European Agreement on Internatio		s bv Road.
- ADN:	European Agreement on the Interr	national Carriage of Dangerous G	oods by Inland
Waterways.	-		
- RID: - IATA:	European Agreement concerning t International Air Transport Associa		erous Goods by Rall.
- ICAO-TI:	Technical Specification for Safe Tr		Air
- IMDG:	International Maritime Dangerous		
- TWA:	Time weighted average		
- ATE:	Estimated value of acute toxicity		
- EC: - CAS:	European Community number		
- LD50:	Chemical Abstracts Service. Substance that causes 50% (half)	death in the test animals group (A	ledian Fatal Dose)
	Substance concentration causing		
- LC50:		stance causing the maximum of 5	
		auto automas	
- LC50: - EC50: - PBT:	Persistent, Bioaccumulative and T		
- LC50: - EC50: - PBT: - vPvB:	Persistent, Bioaccumulative and T Very Persistent and Very Bioaccur	mulative.	
- LC50: - EC50: - PBT: - vPvB: - SEA:	Persistent, Bioaccumulative and T Very Persistent and Very Bioaccur Classification, labeling, packaging	mulative.	
- LC50: - EC50: - PBT: - vPvB:	Persistent, Bioaccumulative and T Very Persistent and Very Bioaccur	mulative. regulation	

=

PRCO90068248 Version : 2.00 / US (Z8)

www.solvay.com

Date Issued	Document #	Version		Page
2022-12-19	180.05.CO2.107	2.0		79 of 143
	SAFETY DATA SHEET			
		PLEXBREAK 145		
			Revision Date	05/14/2020

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information, and belief at the date of its publication. Such information is only given as a guidance to help the user handle, use, process, store, transport, dispose, and release the product in satisfactory safety conditions and is not to be considered as a warranty or quality specification. It should be used in conjunction with technical sheets but do not replace them. Thus, the information only relates to the designated specific product and may not be applicable if such product is used in combination with other materials or in any other manufacturing process, unless otherwise specifically indicated. It does not release the user from ensuring he is in conformity with all regulations linked to its activity.

PRCO90068248 Version : 2.00 / US (Z8) www.solvay.com

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	80 of 143
	SAFETY DATA SHEET		
		PLEXBREAK 145	
		Rev	ision Date 05/14/2020
SECTION 1: Identification of th	ne substance/mixture and of the com	nany/undortaking	
	ie substance/mixture and of the com	ipany/undertaking	
.1 Product identifier			
- Trade name	PLEXBREAK 145		
.2 Relevant identified uses of the	e substance or mixture and uses advised	l against	
<u>Uses of the Substance / Mixtu</u>	<u>ire</u>		
 Oil & gas industry 			
Remarks			
Kemarka			
	industrial installation and use only.		
	industrial installation and use only.		
- For professional and .3 Details of the supplier of the s			
- For professional and .3 Details of the supplier of the s <u>Company</u>			
- For professional and .3 Details of the supplier of the s <u>Company</u> Chemplex Solvay USA Inc.			
- For professional and .3 Details of the supplier of the s <u>Company</u> Chemplex Solvay USA Inc. NOVECARE			
- For professional and .3 Details of the supplier of the s <u>Company</u> Chemplex Solvay USA Inc.			
- For professional and .3 Details of the supplier of the s <u>Company</u> Chemplex Solvay USA Inc. NOVECARE 506 CR 137			

FOR EMERGENCIES INVOLVING A SPILL, LEAK, FIRE, EXPOSURE OR ACCIDENT, CONTACT CHEMTREC (24-Hour Number): 800-424-9300 within the United States and Canada, or 703-527-3887 for international collect calls.

SECTION 2: Hazards identification

Although OSHA has not adopted the environmental portion of the GHS regulations, this document may include information on environmental effects.

2.1 Classification of the substance or mixture

HCS 2012 (29 CFR 1910.1200)

Flammable liquids, Category 3 Acute toxicity, Category 3 Acute toxicity, Category 4 Skin irritation, Category 2 Serious eye damage, Category 1 Reproductive toxicity, Category 2 Specific target organ toxicity - single exposure, Category 1 Specific target organ toxicity - repeated exposure, Category 2

H226: Flammable liquid and vapor.
H331: Toxic if inhaled.
H312: Harmful in contact with skin.
H315: Causes skin irritation.
H318: Causes serious eye damage.
H361: Suspected of damaging fertility or the unborn child.
H370: Causes damage to organs. (Central nervous system, optic nerve)
H373: May cause damage to organs through prolonged or

repeated exposure.

PRCO90068248 Version : 2.00 / US (Z8) www.solvay.com

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	81 of 143
	SAFETY DATA SHEET		
		PLEXBREAK 145	
			vision Date 05/14/202
2.2 Label elements			
HCS 2012 (29 CFR 1910.1200)			
		E E	
Signal Word - Danger			
Hazard Statements	Elemente liquid and vener		
- H226 - H312	Flammable liquid and vapor. Harmful in contact with skin.		
- H315	Causes skin irritation.		
- H318 - H331	Causes serious eye damage. Toxic if inhaled.		
- H361	Suspected of damaging fertility	y or the unborn child.	
- H370		entral nervous system, optic nerv	
- H373 Precautionary Statements	May cause damage to organs	through prolonged or repeated e	xposure.
Prevention			
- P201	Obtain special instructions before		
- P202		recautions have been read and u	
- P210 - P233	Keep away from heat/ sparks/ Keep container tightly closed.	open flames/ hot surfaces. No sm	noking.
- P240	Ground/bond container and rec	ceiving equipment.	
- P241 - P242		ventilating/ lighting/ equipment.	
- P242 - P243	Use only non-sparking tools. Take precautionary measures a	against static discharge.	
- P260	Do not breathe dust/ fume/ gas	s/ mist/ vapors/ spray.	
- P264 P270	Wash skin thoroughly after han		
- P270 - P271	Do not eat, drink or smoke whe Use only outdoors or in a well-v		
- P280		tive clothing/ eye protection/ face	protection.
<u>Response</u> - P303 + P361 + P353	IF ON SKIN (or hair): Take off i water/ shower.	immediately all contaminated clot	thing. Rinse skin with
- P304 + P340 + P311		to fresh air and keep comfortable	for breathing. Call a
- P305 + P351 + P338 +	P310 IF IN EYES: Rinse cautiously v present and easy to do. Contin	vith water for several minutes. Re ue rinsing. Immediately call a PO	
	IF exposed: Call a POISON CE		
- P307 + P311			
- P307 + P311 - P332 + P313 - P362	If skin irritation occurs: Get me Take off contaminated clothing	and wash before reuse.	
- P332 + P313	Take off contaminated clothing	and wash before reuse. ry chemical or alcohol-resistant fo	oam to extinguish.
- P332 + P313 - P362 - P370 + P378 <u>Storage</u>	Take off contaminated clothing In case of fire: Use dry sand, d	ry chemical or alcohol-resistant fo	oam to extinguish.
 P332 + P313 P362 P370 + P378 <u>Storage</u> P403 + P233 	Take off contaminated clothing In case of fire: Use dry sand, d Store in a well-ventilated place	ry chemical or alcohol-resistant fo . Keep container tightly closed.	oam to extinguish.
 P332 + P313 P362 P370 + P378 <u>Storage</u> P403 + P233 P403 + P235 	Take off contaminated clothing In case of fire: Use dry sand, d Store in a well-ventilated place Store in a well-ventilated place	ry chemical or alcohol-resistant fo . Keep container tightly closed.	oam to extinguish.
 P332 + P313 P362 P370 + P378 <u>Storage</u> P403 + P233 	Take off contaminated clothing In case of fire: Use dry sand, d Store in a well-ventilated place	ry chemical or alcohol-resistant fo . Keep container tightly closed.	oam to extinguish.

PRC090068248 Version : 2.00 / US (Z8) www.solvay.com

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	82 of 143
	SAFETY DATA SHEET		
		PLEXBREAK 145	
			Revision Date 05/14/202

SECTION 3: Composition/information on ingredients

3.1 Substance

- Not applicable, this product is a mixture.

3.2 Mixture

Hazardous Ingredients and Impurities

Chemical name	Identification number CAS-No.	Concentration [%]
2-butoxyethanol	111-76-2	>= 10 - < 15
Methanol	67-56-1	>= 10 - < 15
Coconut Fatty Acid Diethanolamide	68603-42-9	>= 5 - < 10
Fatty acids, tall-oil, compds. with diethanolamine	61790-66-7	>= 1 - < 5
Diethanolamine	111-42-2	>= 1 - < 5

The specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret.

SECTION 4: First aid measures

4.1 Description of first-aid measures

General advice

- Plan first aid action before beginning work with this product.
- For effective first-aid, special training / education is needed.
- The first aid procedure should be established in consultation with the doctor responsible for industrial medicine.
- First responder needs to protect himself.
- Do not leave the victim unattended.
- Show this material safety data sheet to the doctor in attendance.
- Place affected apparel in a sealed bag for subsequent decontamination.
- When symptoms persist or in all cases of doubt seek medical advice.
- Medical examination necessary even only on suspicion of intoxication.

In case of inhalation

- Remove to fresh air immediately. Get medical attention immediately.
- · Rescuers should put on appropriate protective gear for rescue
- Remove victim from exposure and then have him lie down in the recovery position.
- Keep patient warm and at rest.
- Get immediate medical advice/ attention.

In case of skin contact

- Take off contaminated clothing and shoes immediately.
- Wash off immediately with soap and plenty of water.
- Use a mild soap if available.

PRCO90068248

Version : 2.00 / US (Z8)

www.solvay.com

Date Issued 2022-12-19	Document # 180.05.CO2.107	Version 2.0	Page 83 of 143		
2022-12-13	100.03.002.107	2.0	65 01 143		
	SAFETY DATA SHEET				
		PLEXBREAK 145			
		Revi	sion Date 05/14/2020		
- Immediate medical attent	tion is required.				
Discard contaminated shDispose of promptly.	oes and clothing.				
In case of eye contact					
 Rinse immediately with p Take victim immediately Continue rinsing eyes du 					
In case of ingestion	· ·				
 Do not induce vomiting w Rinse mouth with water. Do not give anything to d Never give anything by n Keep at rest. Get immediate medical a 	lrink. nouth to an unconscious person.				
4.2 Most important symptoms and eff	ects, both acute and delayed	ts, both acute and delayed			
Symptoms	nay not appear for several hours. Kee	ep under medical supervision for a	t least 48 hours.		
4.3 Indication of any immediate medio	cal attention and special treatment	needed			
Notes to physician					
	based on observed signs and sympto at overexposure to materials other the				
SECTION 5: Firefighting measures	S				
Flash point	86 °F (30 °C)				
	Flammability class: Flam	mable			
Autoignition temperature	No data available				
Flammability / Explosive limit	No data available				
5.1 Extinguishing media					
Suitable extinguishing media					
 Extinguishing media - srr Multipurpose powders Carbon dioxide (CO2) Alcohol Resistant Aqueo 	nall fires us Film Forming Foam (AR-AFFF)				
- Extinguishing media - lar	ge fires us Film Forming Foam (AR-AFFF)				

- Alcohol Resistant Aqueous Film Forming Foam (AR-AFFF)

Unsuitable extinguishing media

- Water may be ineffective.

PRCO90068248 Version : 2.00 / US (Z8) www.solvay.com

Solvay

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	84 of 143
	SAFETY DATA SHEET		
		PLEXBREAK 145	
		Rev	ision Date 05/14/2020
5.2 Special hazards arising from Specific hazards during fire			
- Flammable liquid a	nd vapor.		
- May burn with a col	lourless flame		
- The pressure in sea	aled containers can increase under the influ	ience of heat.	
	as is released, which increases fire / explos 9 over considerable distance.	sion hazards.	
	oors are released.		
 (following evaporation) 	position products formed under fire condition ion of water) s of toxic or harmful products may remain ir		nas been
Hazardous combustion pro	ducts:		
Carbon monoxide,Nitrogen oxides (No	carbon dioxide and unburned hydrocarbons Ox)	s (smoke).	
5.3 Advice for firefighters			
Special protective equipme	nt for fire-fighters		
- Firefighters should w	vear NIOSH/MSHA approved self-contained	d breathing apparatus and full pro	tective clothing.
- Personal protective	equipment comprising: suitable protective g	loves, safety goggles and protec	tive clothing
Specific fire fighting metho	ds		
- Stay upwind.			
 Pay attention to flas 	shback.		
- Fight fire remotely of	due to the risk of explosion.		
- Suppress (knock do	own) gases/vapors/mists with a water spray	/ jet.	
 Cool down the cont between the water 	water stream as it may scatter and spread f ainers / equipment exposed to heat with a v and the product. neasures that are appropriate to local circu	water spray. Ensure that there is	
	nave been exposed to contaminated smoke ms of poisoning. The symptoms should no		
Further information			
- Evacuate personnel	to safe areas		

- Evacuate personnel to safe areas.
- Intervention only by capable personnel who are trained and aware of the hazards of the product.
 Never approach containers which have been exposed to fire, without cooling them sufficiently.

PRC090068248 Version : 2.00 / US (Z8)
www.solvay.com

Date Issued 2022-12-19	Document # 180.05.CO2.107	Version 2.0	Page 85 of 143	
2022-12-19	180.05.002.107	2.0	85 01 14:	
	SAFETY DATA SHEET			
		PLEXBREAK 145		
		Rev	ision Date 05/14/202	
	ire extinguishing water separately. This n aminated fire extinguishing water must be			
SECTION 6: Accidental release	measures			
6.1 Personal precautions, protectiv	ve equipment and emergency procedu	res		
 Stay upwind. 	e personnel to safe areas. nel equipped with suitable protective equ	pment may intervene.		
- Respiratory protection	o oouning.			
 Wear as appropriate: Face-shield Tightly fitting safety go 	oggles			
	aerosol formation use respirator with an ormation use a respirator with an approve			
- Eliminate all ignition s	sources if safe to do so.			
- Ventilate the area.				
- Stop leak if safe to do	9 SO.			
 If spillage occurs on the spilla	he public highway, indicate the danger ar	nd notify the authorities (police, fir	e service).	
- For further information	n refer to section 8 "Exposure controls / p	ersonal protection."		
6.2 Environmental precautions				
- Take all necessary me rupture of containers	easures to avoid accidental discharge of or transfer systems.	products into drains and waterwa	ys due to the	
 Contain the spilled magnetized 	ge or spillage if safe to do so. aterial by diking. ot be allowed to enter drains, water cours	es or the soil.		
 If the product contami 	IId be advised if significant spillages canr inates rivers and lakes or drains inform re ous, the contaminated material must be c	espective authorities.	t or disposal.	
- Spills may be reportal	ble to the National Response Center (800)-424-8802) and to state and/or lo	cal agencies	
6.3 Methods and materials for con	tainment and cleaning up			
- No sparking tools sho	ould be used.			
- Stop leak if safe to do				

PRCO90068248 Version : 2.00 / US (Z8)

www.solvay.com

Date Issued	Document #	Version		Page
2022-12-19	180.05.CO2.107	2.0		86 of 143
	SAFETY DATA SHEET			
		PLEXBREAK 145		
			Revision Date	05/14/2020
 Control the vapors with: Alcohol Resistant Aqueous F 	ilm Forming Foam (AR-AFFF)			
 Soak up with inert absorbent Shovel or sweep up. Keep in suitable, closed cont Never return spills in original 		acid binder, universal binder).		
 Clean contaminated surface Recover the cleaning water for 	ider with large amounts of wate horoughly. or subsequent disposal. ent and personal protective equ			
	te in compliance with local and			
Additional advice				
- Possible need to alert the nei	ghborhood.			
	with signs and prevent access t pped with suitable protective ec			
- Ventilate the area.				
- Following decontamination, w	ait several hours before allowir	ng anyone to enter the area.		
- Material can create slippery of	onditions.			
4 Reference to other sections				
 7. HANDLING AND STORAGE 8. EXPOSURE CONTROLS/ 13. DISPOSAL CONSIDERAGE 	PERSONAL PROTECTION			

- Handle in accordance with good industrial hygiene and safety practice. _
- The product must only be handled by specifically trained employees. _
- Provide sufficient air exchange and/or exhaust in work rooms. -
- Vapor extraction at source -
- Do not use in areas without adequate ventilation. -
- -
- Do NOT handle in a confined space. Extracted air must not be allowed to return to the workplace. _
- The product should only be used in areas from which all naked lights and other sources of ignition have been excluded.
- Use explosion-proof electrical/ ventilating/ lighting/ equipment. -
- -
- Take precautionary measures against static discharges. Ground/bond container and receiving equipment. To avoid ignition of vapors by static electricity discharge, all metal parts of the equipment must be grounded. --
- _ Ensure all equipment is electrically grounded before beginning transfer operations.
- -Use only non-sparking tools.

PRCO90068248

Version : 2.00 / US (Z8)

www.solvay.com

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	87 of 143
	SAFETY DATA SHEET		
		PLEXBREAK 145	
		Rev	vision Date 05/14/202
- Avoid high temper	atures.		
Wear personal proWear suitable prot	ective equipment. ective clothing.		
 Do NOT handle with the second s	ngestion and contact with skin and eyes. thout gloves. hands have any cuts or wounds.		
Avoid splashes.Avoid formation of	aerosol.		
 Pregnant or breas processing operation 	tfeeding workers should not be occupied in t ions.	the blending and high temperatur	e
- For personal prote	ction see section 8.		
Hygiene measures			
 1) Do not store, use stored. 2) Wash hands and 3) Wash exposed s 	g with or handling this materials: e, and/or consume foods, beverages, tobacc I face carefully before eating, drinking, using kin promptly to remove accidental splashes sible for monitoring the working environment	tobacco, applying cosmetics, or or contact with material.	using the toilet.
- Exposed employee	s should have regular medical check-ups		
7.2 Conditions for safe storage	, including any incompatibilities		
Technical measures/Storac	e conditions		
	neasures to prevent static discharges, which ment, and/or conveyance under inert gas.	h may include thorough electrical	interconnecting,
- Vapour space abo	ve stored liquid may be flammable/explosive	e unless blanketed with inert gas.	
	/ measures to avoid accidental discharge of ers or transfer systems.	products into drains and waterwa	ays due to the
Keep in a containeThe floor of the store	ed area orage area should be impermeable and desi	gned to form a water-tight basin.	
- Keep locked up or	in an area accessible only to qualified or au	thorized persons.	
- Keep away from o	ghtly closed in a dry, cool and well-ventilated pen flames, hot surfaces and sources of ign compatible materials to be indicated by the	ition.	
- Do not freeze.			
	azardous reactions may occur on contact wi 0: "Stability-Reactivity").	ith certain chemicals. (Refer to th	e list of incompatible
Packaging material			
Suitable material - Electrical conductin	o materials		
PRCO90068248			
Version : 2.00 / US (Z8) www.solvay.com		So 🔊	LVAY

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	88 of 143
	SAFETY DATA SHEET		
		PLEXBREAK 145	
		Rev	ision Date 05/14/2020
Unsuitable material - Electrical insulating in Requirements for storage ro			
- Do not freeze.			
Do not freeze. Specific end use(s) no data available			

SECTION 8: Exposure controls/personal protection

Introductory Remarks: These recommendations provide general guidance for handling this product. Because specific work environments and material handling practices vary, safety procedures should be developed for each intended application. Assistance with selection, use and maintenance of worker protection equipment is generally available from equipment manufacturers.

8.1 Control parameters

ADM

Components with workplace occupational exposure limits

Components	Value type	Value	Basis
2-butoxyethanol	TWA	5 ppm 24 mg/m3	National Institute for Occupational Safety and Health
	Potential for de	ermal absorption	
2-butoxyethanol	TWA	20 ppm	American Conference of Governmental Industrial Hygienists
2-butoxyethanol	TWA	50 ppm 240 mg/m3	Occupational Safety and Health Administration - Table Z-1 Limits for Air Contaminants
	Skin designati	on	
Methanol	TWA	200 ppm 260 mg/m3	National Institute for Occupational Safety and Health
	Potential for de	ermal absorption	
Methanol	ST	250 ppm 325 mg/m3	National Institute for Occupational Safety and Health
	Potential for de	ermal absorption	
Methanol	TWA	200 ppm	American Conference of Governmental Industrial Hygienists
	Danger of cu	taneous absorptic	n
Methanol	STEL	250 ppm	American Conference of Governmental Industrial Hygienists
	Danger of cu	taneous absorptio	on

PRCO90068248

Version : 2.00 / US (Z8) www.solvay.com

Date Issued 2022-12-19

Document # 180.05.CO2.107

Page

Version 2.0

89 of 143

SAFETY DATA SHEET

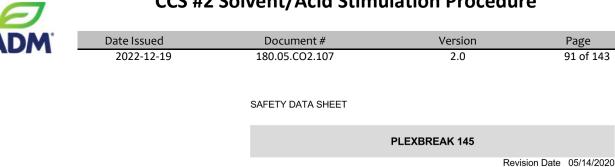
PLEXBREAK 145

Revision Date 05/14/2020

Methanol	TWA	200 ppm 260 mg/m3	Occupational Safety and Health Administration - Table Z-1 Limits for Air Contaminants
	The value in n	ng/m3 is approximat	e.
Diethanolamine	TWA	3 ppm 15 mg/m3	National Institute for Occupational Safety and Health
Diethanolamine	TWA	1 mg/m3	American Conference of Governmental Industrial Hygienists
	Form of exposure : Inhalable fraction and vapor Danger of cutaneous absorption		

NIOSH IDLH (Immediately Dangerous to Life or Health Concentrations)

Components	CAS-No.	Concentration
2-butoxyethanol	111-76-2	700 parts per million
Methanol	67-56-1	6000 parts per million


Biological Exposure Indices

Components	Value type	Value	Basis
2-butoxyethanol	BEI	200 mg/g Creatinine Butoxyacetic acid (BAA) Urine End of shift (As soon as possible after exposure ceases)	American Conference of Governmental Industrial Hygienists
	With hydrolyse	28	
Methanol	BEI	15 mg/l Methanol Urine End of shift (As soon as possible after exposure ceases)	American Conference of Governmental Industrial Hygienists

PRCO90068248 Version : 2.00 / US (Z8) www.solvay.com

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	90 of 14
	SAFETY DATA SHEET		
		PLEXBREAK 145	vision Date 05/14/202
3.2 Exposure controls <u>Control measures</u>			
	ntrols are indicated by use conditions or posure control techniques may be used		
 Effective exhaust vent Ensure adequate vent 			
Extract at emission poEnsure that extracted	int. air cannot be returned to the workplace	through the ventilation system.	
	ling to reduce human contact with mater g systems or containment technologies.	rials.	
Avoid splashes.Avoid formation of aer	rosol.		
Individual protection measures	<u>5</u>		
ventilation. - When respirators are concentrations and in - If mist is formed: - If vapor is released:	ed by a good general extraction and -if p required, select NIOSH/MSHA approved accordance with the appropriate regulat ure supplied-air respirator with full facep	d equipment based on actual or p tory standards and/or industrial re	otential airborne
 Gloves must be inspec Please observe the ins gloves. Also take into c cuts, abrasion, and the 	tructions regarding permeability and bre consideration the specific local condition	eakthrough time which are provide s under which the product is used	d, such as the danger
<i>Suitable material</i> - butyl-rubber			
practices. Appropriate material.	on requirements will vary dependent up ANSI Z87 approved equipment should prevented through the use of:		
 Tightly fitting safety go Face-shield 	oggles		
Skin and body protection - Wear fire resistant and - Workers should wear			
Full protective suitFootwear protecting a	gainst chemicals		
	on according to the amount and concent	tration of the dangerous substanc	e at the work place.
PRC090068248 /ersion : 2.00 / US (Z8)		so	LVAY
www.solvay.com			

Hygiene measures

- Personal hygiene is an important work practice exposure control measure and the following general measures should be taken when working with or handling this materials:
- 1) Do not store, use, and/or consume foods, beverages, tobacco products, or cosmetics in areas where this material is stored.
- 2) Wash hands and face carefully before eating, drinking, using tobacco, applying cosmetics, or using the toilet. 3) Wash exposed skin promptly to remove accidental splashes or contact with material.
- The user is responsible for monitoring the working environment in accordance with local laws and regulations. -
- Exposed employees should have regular medical check-ups -

Protective measures

- Emergency equipment immediately accessible, with instructions for use.
- Ensure that eyewash stations and safety showers are close to the workstation location.
- Selection of appropriate personal protective equipment should be based on an evaluation of the performance characteristics of the protective equipment relative to the task(s) to be performed, conditions present, duration of use, and the potential hazards, and/or risks that may occur during use.
- The protective equipment must be selected in accordance with current local regulations and in cooperation with the supplier of the protective equipment.

SECTION 9: Physical and chemical properties

Physical and Chemical properties here represent typical properties of this product. Contact the business area using the Product information phone number in Section 1 for its exact specifications.

9.1 Information on basic physical and chemical properties

<u>Appearance</u>	B I : 1 / /	······································
	Physical state:	liquid (68 °F (20 °C))
	<u>Color</u> :	yellow
<u>Odor</u>	alcohol-like	
	Do not attempt to	o smell the product as it is hazardous.
Odor Threshold	No data availabl	e
<u>РН</u>	No data available	e
Melting point/freezing point	No data availabl	e
Initial boiling point and boiling range	No data availabl	e
Flash point	86 °F (30 °C)	
	Flammability clas	ss: Flammable
Evaporation rate (Butylacetate = 1)	No data availabl	e
Flammability (solid, gas)	No data availabl	e
Flammability (liquids)	No data availabl	e
Flammability / Explosive limit	No data availabl	e

PRCO90068248 Version : 2.00 / US (Z8) www.solvay.com

Page

91 of 143

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	92 of 143
	SAFETY DATA SHEET		
		PLEXBREAK 145	
			Revision Date 05/14/2020
Autoignition temperature	No data available		
Vapor pressure	No data available		
Vapor density	1.11 (Air = 1.0)		
Density	0.974 g/cm3 (68 °F (20 °C	C))	
Relative density	No data available		
<u>Solubility</u>	<u>Water solubility</u> : soluble		
Partition coefficient: n-octanol/water	No data available		
Decomposition temperature	No data available		
Viscosity	No data available		
Explosive properties	No data available		
Oxidizing properties	Not considered as oxidizing	g., Structure-activity relationsh	nip (SAR)
Other information			

No data available

SECTION 10: Stability and reactivity

10.1 Reactivity

- Stable at normal ambient temperature and pressure.

10.2 Chemical stability

- Stable under recommended storage conditions.

10.3 Possibility of hazardous reactions

- Explosion possible with gas/vapor and air mixtures above flash point., Vapors may form explosive mixture with air.

10.4 Conditions to avoid

- Prevent the build-up of electrostatic charge.
- Avoid high temperatures.
- Keep away from open flames, hot surfaces and sources of ignition.

10.5 Incompatible materials

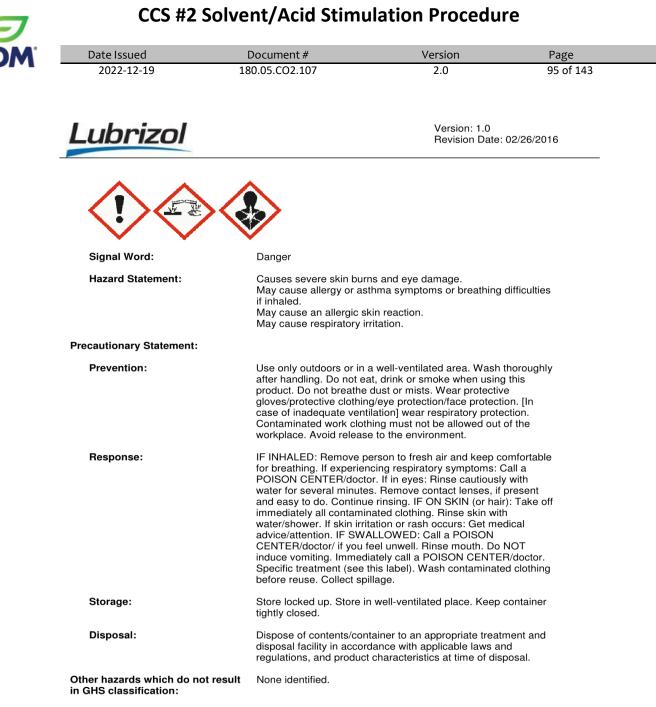
- Strong oxidizing agents

10.6 Hazardous decomposition products

- Hazardous decomposition products
 On combustion or on thermal decomposition (pyrolysis), releases:
 Carbon monoxide, carbon dioxide and unburned hydrocarbons (smoke).
 Nitrogen oxides (NOx)

PRCO90068248 Version : 2.00 / US (Z8)

www.solvay.com



Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	93 of 14
	SAFETY DATA SHEET		
		PLEXBREAK 145	
		Revi	sion Date 05/14/20
SECTION 11: Toxicological informati	on		
11.1 Information on toxicological effects			
Acute toxicity			
Acute oral toxicity	The product has a low acute	e toxicity	
	According to the available data According to the classification Unpublished reports and/or	on criteria for mixtures.	
Acute inhalation toxicity 2-butoxyethanol	LC50 - 4 h (vapor): 2.2 m This product is classified as		
Methanol	LC50 - 4 h : > 115.9 mg/l - Unpublished reports	Rat , female	
	LC50 - 4 h (vapor): 130.7 Unpublished reports	mg/I - Rat , male	
		provoke the following symptoms:, I pairment of vision, Symptoms may	
Acute dermal toxicity	This product is classified as	acute toxicity category 4	
	According to the available da According to the classification Unpublished reports and/or	on criteria for mixtures.	
Acute toxicity (other routes of administration)	Not applicable		
Skin corrosion/irritation	Irritating to skin.		
	According to the available date According to the classification Unpublished reports and/or	on criteria for mixtures.	
Serious eye damage/eye irritation	Risk of serious damage to e	yes.	
	According to the available da According to the classification Unpublished reports and/or	on criteria for mixtures.	
Respiratory or skin sensitization	Does not cause skin sensitiz	zation.	
	According to the available data According to the classification Unpublished reports and/or	on criteria for mixtures.	
<u>Mutagenicity</u>			
Genotoxicity in vitro	Product is not considered to	be genotoxic	
PRCO90068248 Version:2.00 / US(Z8)			
www.solvay.com		Sol	-VAY

*	Date Issued	Document #	Version	Page	
	2022-12-19	180.05.CO2.107	2.0	94 of 143	

SDS Biocide (Bioclear 1430)

3. Composition/information on ingredients

Chemical name	CAS number	Percent by Weight
Glutaraldehyde	111-30-8	10 - 20%
Alkyl dimethyl benzyl ammonium chloride	68424-85-1	1 - 5%
Dimethylamine	68439-70-3	0.1 - 0.5%

4. First-aid measures

SDS US - BIOCLEAR 1430

	Document #	Version	Page	
2022-12-19	180.05.CO2.107	2.0	96 of 143	
Lubrizol		Version: 1.0 Revision Date:	02/26/2016	
ngestion:	Do NOT induce vomiting. Rin center immediately.	nse mouth. Call a physician c	r poison control	
nhalation:	Call a physician or poison co	Remove to fresh air and keep at rest in a position comfortable for breathing Call a physician or poison control center immediately. If experiencing respiratory symptoms call a poison center or doctor.		
Skin Contact:	soap and water. Immediately	Take off immediately all contaminated clothing. Wash skin thoroughly with soap and water. Immediately call a POISON CENTER/doctor. Launder contaminated clothing before reuse.		
Eye contact:		or several minutes. Remove tinue rinsing. Immediately ca		
Most important symptoms/effe	cts, acute and delayed			
Symptoms:	Symptoms may be delayed.			
ndication of immediate medica	al attention and special treatm	nent needed		
The state of the s				
Treatment:	Treat symptomatically.			
	Treat symptomatically.			
Treatment: Fire-fighting measures General Fire Hazards:	No unusual fire or explosion	hazards noted.		
Fire-fighting measures General Fire Hazards:	No unusual fire or explosion	hazards noted.		
Fire-fighting measures	No unusual fire or explosion			
Fire-fighting measures General Fire Hazards: Suitable (and unsuitable) extin Suitable extinguishing	No unusual fire or explosion guishing media			
Fire-fighting measures General Fire Hazards: Suitable (and unsuitable) extin Suitable extinguishing media: Unsuitable extinguishing	No unusual fire or explosion guishing media CO2, dry chemical, foam, wa	ater spray, water fog.		
Fire-fighting measures General Fire Hazards: Suitable (and unsuitable) extin Suitable extinguishing media: Unsuitable extinguishing media: Specific hazards arising from	No unusual fire or explosion guishing media CO2, dry chemical, foam, wa Not determined. See section 10 for additional	ater spray, water fog. information.		
Fire-fighting measures General Fire Hazards: Suitable (and unsuitable) extin Suitable extinguishing media: Unsuitable extinguishing media: Specific hazards arising from the chemical:	No unusual fire or explosion guishing media CO2, dry chemical, foam, wa Not determined. See section 10 for additional	ater spray, water fog. information.		
Fire-fighting measures General Fire Hazards: Suitable (and unsuitable) extin Suitable extinguishing media: Unsuitable extinguishing media: Specific hazards arising from the chemical: Special protective equipment a Special fire fighting	No unusual fire or explosion guishing media CO2, dry chemical, foam, wa Not determined. See section 10 for additional and precautions for firefighter No data available. Recommend wearing self-co	ater spray, water fog. information.		
Fire-fighting measures General Fire Hazards: Suitable (and unsuitable) extin Suitable extinguishing media: Unsuitable extinguishing media: Specific hazards arising from the chemical: Special protective equipment a Special fire fighting procedures: Special protective	No unusual fire or explosion guishing media CO2, dry chemical, foam, wa Not determined. See section 10 for additional and precautions for firefighter No data available. Recommend wearing self-co	ater spray, water fog. information. s		
Fire-fighting measures General Fire Hazards: Suitable (and unsuitable) extin Suitable extinguishing media: Unsuitable extinguishing media: Specific hazards arising from the chemical: Special protective equipment a Special fire fighting procedures: Special protective equipment for fire-fighters:	No unusual fire or explosion guishing media CO2, dry chemical, foam, wa Not determined. See section 10 for additional and precautions for firefighter No data available. Recommend wearing self-co es Evacuate area. Ventilate cloodamaged containers or spille	ater spray, water fog. information. s intained breathing apparatus. sed spaces before entering the ad material unless wearing ap wind. Keep unauthorized pers	nem. Do not touch	
Fire-fighting measures General Fire Hazards: Suitable (and unsuitable) extin Suitable extinguishing media: Unsuitable extinguishing media: Specific hazards arising from the chemical: Special protective equipment a Special fire fighting procedures: Special protective equipment for fire-fighters: Accidental release measure Personal precautions, protective equipment and	No unusual fire or explosion guishing media CO2, dry chemical, foam, wa Not determined. See section 10 for additional and precautions for firefighter No data available. Recommend wearing self-co es Evacuate area. Ventilate clo damaged containers or spille protective clothing. Keep up Section 8 of the SDS for Per Dike far ahead of larger spill liquid for recycle and/or disp	ater spray, water fog. information. s entained breathing apparatus. sed spaces before entering the ad material unless wearing ap wind. Keep unauthorized personal Protective Equipment. for later recovery and dispos osal. Residual liquid can be a tterial, if this is without risk. P	nem. Do not touch propriate sonnel away. See al. Pick up free ubsorbed on inert	

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	97 of 143
Lubrizol		Version: 1.0 Revision Date:	02/26/2016
Environmental Precautions:		ment. Do not contaminate wa ge or spillage if safe to do so	
Handling and storage			
Precautions for safe handling:	Do not breathe dusts or mists. Do not get in eyes, on skin, on clothing. not get in eyes. Avoid contact with eyes, skin, and clothing. Observe go industrial hygiene practices. Use only in well-ventilated areas. In case of inadequate ventilation, use respiratory protection. Wear appropriate personal protective equipment. Wash hands thoroughly after handling. not eat, drink or smoke when using this product. Contaminated work clothing should not be allowed out of the workplace. Launder contamina- clothing before reuse. Avoid environmental contamination.		g. Observe good eas. In case of ppropriate fter handling. Do nated work ider contaminated
Maximum Handling Temperature:	Not determined.		
Conditions for safe storage, including any incompatibilities:	Store away from incompatible materials. See section 10 for incompatible materials.		or incompatible
Maximum Storage Temperature:	Not determined.		
. Exposure controls/personal	protection		

Occupational Exposure Limits Chemical name **Exposure Limit Values** Source type US. OSHA Table Z-1-A (29 CFR 1910.1000) Glutaraldehyde Ceiling 0.2 ppm 0.8 mg/m3 (1989)0.05 ppm Glutaraldehyde Ceiling US. ACGIH Threshold Limit Values (02 2012) Glutaraldehyde Ceil_Time 0.2 ppm 0.8 mg/m3 US. NIOSH: Pocket Guide to Chemical Hazards (2010)

Appropriate engineering controls:	The use of closed systems is strongly recommended for the handling and transfer of undiluted material. Adequate ventilation should be provided so that exposure limits are not exceeded. Mechanical ventilation or local exhaust ventilation may be required.
	on addition may be required.

Individual protection measures, such as personal protective equipment

 General information:
 Provide easy access to water supply and eye wash facilities. Good general ventilation (typically 10 air changes per hour) should be used. Ventilation rates should be matched to conditions. If applicable, use process enclosures, local exhaust ventilation, or other engineering controls to maintain airborne levels below recommended exposure limits. If exposure limits have not been established, maintain airborne levels to an acceptable level.

 Eye/face protection:
 Wear tight-fitting goggles or face shield.

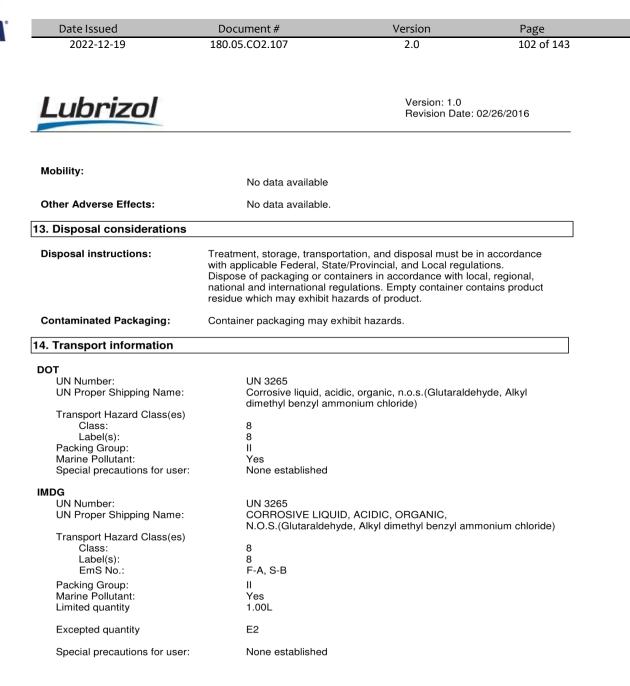
 Skin Protection
 Suitable gloves can be recommended by the glove supplier. Nitrile.

SDS_US - BIOCLEAR 1430

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	98 of 143
ubrizol		Version: 1.0 Revision Date:	02/26/2016
Other:	Wear apron or protective clothing in case of contact. Chemical resistant boots. Do not wear rings, watches or similar apparel that could entrap the material.		
Respiratory Protection:	A respiratory protection program compliant with all applicable regulations must be followed whenever workplace conditions require the use of a respirator. Use respirator with an organic vapor and dust/mist cartridge if the recommended exposure limit is exceeded. Use self-contained breathing apparatus for entry into confined space, for other poorly ventilated areas and for large spill clean-up sites.		
Hygiene measures:	Observe good industrial hygiene practices. Do not get this material in contact with skin. Do not eat, drink or smoke when using the product. Do not get in eyes. Avoid contact with skin. Wash contaminated clothing befreuse. Wash hands before breaks and immediately after handling the product. Wash hands after handling. Contaminated work clothing should not be allowed out of the workplace.		
Physical and chemical pro	perties		
ppearance			
Physical state:	liquid		

Physical state:	liquia
Form:	liquid
Color:	Light yellow
Odor:	Fruity
Odor threshold:	No data available.
pH:	3 - 5
Freezing point:	-7 °C
Boiling Point:	No data available.
Flash Point:	> 199.99 °F (93.33 °C) (Test method unavailable)
Evaporation rate:	No data available.
Flammability (solid, gas):	No data available.
Upper/lower limit on flammability or explos	sive limits
Flammability limit - upper (%):	No data available.
Flammability limit - lower (%):	No data available.
Explosive limit - upper (%):	No data available.
Explosive limit - lower (%):	No data available.
Vapor pressure:	No data available.
Vapor density:	No data available.
Relative density:	1.013 - 1.043 68 °F (20 °C)
Solubility(ies)	
Solubility in water:	Miscible with water.
Solubility (other):	No data available.
Partition coefficient (n-octanol/water):	No data available.
Auto-ignition temperature:	No data available.
Decomposition temperature:	No data available.
Viscosity:	No data available.

SDS_US - BIOCLEAR 1430


2022-12-19	Document # 180.05.CO2.107	Version 2.0	Page 99 of 143
ubrizol		Version: 1.0 Revision Date: 02/26/	2016
Stability and reactivity			
Reactivity:	No data available.		
Chemical Stability:	Material is stable under norn	nal conditions.	
ossibility of hazardous eactions:	Will not occur.		
Conditions to avoid:	Not determined.		
Incompatible Materials:	Alkalies. Bases.		
Hazardous Decomposition Products:		ombustion may generate smoke, ca nd other products of incomplete con	
1. Toxicological informatio	n		
nformation on likely routes o Inhalation:	o f exposure Harmful if inhaled.		
Ingestion:	Harmful if swallowed.		
Skin Contact:	Causes severe skin burns.		
Eye contact:	Causes serious eye damage	۱.	
Information on toxicological Acute toxicity Oral Product:	ATEmix 300 - 2,000 Swallowing this mat esophagus. Asphyxi Perforation of the es	erial can cause burns to the mouth a ation can occur from swelling of the ophagus and stomach can occur. S irritation of the gastrointestinal lining	throat. wallowing
Dermal Product:	ATEmix > 5,000 mg Prolonged or widesp		d result in
Inhalation	ATEmix (, 4 h): 2 - 5	mg/l. Dusts, mists and fumes	
Product:		hurpo	
Product: Skin Corrosion/Irritatio Product:	Causes severe skin	burns.	
Skin Corrosion/Irritatio			

	Document #	Version	Page
2022-12-19 18	0.05.CO2.107	2.0	100 of 143
ubrizol		Version: 1.0 Revision Date:	02/26/2016
Skin sensitization: Glutaraldehyde			start (literature)
Alkyl dimethyl benzyl ammoniur chloride		cause sensitization by skin co skin sensitizer. (Read across	. ,
Specific Target Organ Toxicity Glutaraldehyde	- Single Exposure: Nose, throat and lun	ıg irritant.	
Alkyl dimethyl benzyl ammoniur chloride	m May cause irritation respiratory tract.	to the mucous membranes a	nd upper
Dimethylamine	Nose, throat and lun	g irritant.	
Aspiration Hazard:	No data available		
Chronic Effects Carcinogenicity:	No data available		
IARC Monographs on the Eval No carcinogenic components ide	-	Risks to Humans:	
US. National Toxicology Progr No carcinogenic components ide	am (NTP) Report on Car	cinogens:	
US. OSHA Specifically Regulat No carcinogenic components ide		1910.1001-1050):	
Germ Cell Mutagenicity:			
Alkyl dimethyl benzyl ammoniur chloride	m This material has no laboratory tests.	t exhibited mutagenic or gen	otoxic potential in
Reproductive toxicity:	No data available		
Specific Target Organ Toxicity			
cological information			
toxicity			
Fish Glutaraldehyde	NOEC (Bluegill Sun	ut, 4 d): 12 mg/l Minnow, 4 d): 32 mg/l fish, 4 d): 5 mg/l	
	NOEC (Rainbow Tro	out, 4 a): 9 mg/i	

Date Issued 2022-12-19	Document # 180.05.CO2.107	Version 2.0	Page 101 of 143
ubrizol		Version: 1.0 Revision Date:	: 02/26/2016
Alkyl dimethyl benzyl amn chloride	nonium LC 50 (Not reported,	, 4 d): 0.38 mg/l	
Dimethylamine	LC 50 (Zebra Fish, 4	l Days): < 1 mg/l	
Aquatic Invertebrates Glutaraldehyde	NOEC (Shrimp (Mys EC 50 (Water flea (E	idopsis Bahia), 4 d): 7.1 mg/ idopsis Bahia), 4 d): 0.78 m Daphnia magna), 21 d): 5 mg Daphnia magna), 21 d): 4.25	g/l g/l
Alkyl dimethyl benzyl amn chloride	nonium EC 50 (Water flea (E	Daphnia magna), 2 d): 0.005	9 mg/l
Dimethylamine	EC 50 (Water flea (E)aphnia magna), 2 Days): <=	= 1 mg/l
Toxicity to Aquatic Plants Glutaraldehyde	EC 50 (Alga, 3 d): 0. EC 50 (Alga, 4 d): 0. EC 50 (Green algae NOEC (Alga, 4 d): 0.	97 mg/l (Selenastrum capricornutum	
Dimethylamine	NOEC (Alga, 3 Days	s): 0.00761 mg/l	
Toxicity to soil dwelling o	organisms No data available		
Sediment Toxicity	No data available		
Toxicity to Terrestrial Pla	nts No data available		
Toxicity to Above-Ground Glutaraldehyde	d Organisms LC 50 (5 d): > 5,000	mg/kg	
Toxicity to microorganisr Glutaraldehyde	ns EC 50 (Bacteria, 0.6 EC 50 (Sludge, 0.1 d NOEC (Sludge, 0.1 d	d): 50 mg/l	
ersistence and Degradability Biodegradation Glutaraldehyde	Miscellaneous, 83 %	, 5 d, Readily biodegradable	9
Alkyl dimethyl benzyl amn chloride	nonium 93.3 %, 28 d, Readil	y biodegradable	
Dimethylamine	OECD TG 301 B, 67 biodegradable)	′%, 28 d, Readily biodegrad	able (Readily
ioaccumulative Potential Bioconcentration Factor	(BCF) No data available		
Partition Coefficient n-oc Glutaraldehyde	tanol / water (log Kow) Log Kow: -0.33 (Mea	asured)	
DS US - BIOCLEAR 1430			8/12

	ocument # 0.05.CO2.107	Version 2.0	Page 103 of 143
ubrizol		Version: 1.0 Revision Date:	02/26/2016
A	1010005		
UN Number: Proper Shipping Name:	UN 3265 Corrosive liquid, acio dimethyl benzyl amr	dic, organic, n.o.s.(Glutaralde nonium chloride)	ehyde, Alkyl
Transport Hazard Class(es):		,	
Class:	8		
Label(s):	8		
Marine Pollutant:	Yes II		
Packing Group: Limited quantity	0.50L		
Excepted quantity	E2		
Environmental Hazards	Marine Pollutant		
Special precautions for user: Other information	None established		
Passenger and cargo aircraft Cargo aircraft only:	: Allowed. Allowed.		

The DOT shipping information in this section is based on a bulk container. Please review the accompanying shipping papers for the correct shipping descriptions based the size of the package. Shipping descriptions may vary based on mode of transport, quantities, temperature of the material, package size, and/or origin and destination. It is the responsibility of the transporting organization to follow all applicable laws, regulations and rules relating to the transportation of the material. During transportation, steps must be taken to prevent load shifting or materials falling, and all relating legal statutes should be obeyed. Review classification requirements before shipping materials at elevated temperatures.

15. Regulatory information

US Federal Regulations

TSCA Section 12(b) Export Notification (40 CFR 707, Subpt. D) None present or none present in regulated quantities.

CERCLA Hazardous Substance List (40 CFR 302.4)

None present or none present in regulated quantities.

Superfund Amendments and Reauthorization Act of 1986 (SARA)

SARA 311 Classifications

Immediate (Acute) Health Hazards Delayed (Chronic) Health Hazard

SARA 302 Extremely Hazardous Substance

None present or none present in regulated quantities.

SARA 304 Emergency Release Notification

None present or none present in regulated quantities.

SARA 313 (TRI Reporting)

None present or none present in regulated quantities.

SDS_US - BIOCLEAR 1430

Date Issued 2022-12-19

Document # 180.05.CO2.107 Version 2.0 Page 104 of 143

ubrizol.

Version: 1.0 Revision Date: 02/26/2016

US State Regulations

US. California Proposition 65

No ingredient regulated by CA Prop 65 present.

Inventory Status

Australia (AICS)

All components are in compliance with chemical notification requirements in Australia.

Canada (DSL/NDSL)

All components are in compliance with the Canadian Environmental Protection Act and are present on the Domestic Substances List.

China (IECSC)

All components of this product are listed on the Inventory of Existing Chemical Substances in China.

European Union (REACh)

To obtain information on the REACH compliance status of this product, please e-mail REACH@SDSInquiries.com.

Japan (ENCS)

All components are in compliance with the Chemical Substances Control Law of Japan.

Korea (ECL)

All components are in compliance in Korea.

New Zealand (NZIoC)

All components are in compliance with chemical notification requirements in New Zealand.

Philippines (PICCS)

All components are in compliance with the Philippines Toxic Substances and Hazardous and Nuclear Wastes Control Act of 1990 (R.A. 6969).

Switzerland (SWISS)

All components are in compliance with the Environmentally Hazardous Substances Ordinance in Switzerland.

Taiwan (TCSCA)

All components of this product are listed on the Taiwan inventory.

United States (TSCA)

This product is on the TSCA inventory. When used as a biocide it is regulated under the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA). This product is not FIFRA registered.

The information that was used to confirm the compliance status of this product may deviate from the chemical information shown in Section 3.

16.Other information, including date of preparation or last revision

HMIS Hazard ID

Health	*	3
Flammability		1
Physical Hazards		0

Hazard rating: 0 - Minimal; 1 - Slight; 2 - Moderate; 3 - Serious; 4 - Severe; RNP - Rating not possible; *Chronic health effect

SDS_US - BIOCLEAR 1430

M	Date Issued	Document #	Version	Page
	2022-12-19	180.05.CO2.107	2.0	105 of 143
	Lubrizol		Version: 1.0 Revision Date:	: 02/26/2016
	NFPA Hazard ID			
		1 Fla	mmability	
	< 3	Hea	alth	
		Rea	activity	
	·		ecial hazard.	
	Hazard rating: 0 - Minimal; 1 - S	Slight; 2 - Moderate; 3 - Serious; 4	- Severe; RNP - Rating not p	ossible
	Issue Date:	02/26/2016		
	Version #:	1.0		
	Source of information:	Internal company data and ot	ner publically available resour	rces.
	Further Information:	Contact supplier (see Section	1)	
	Disclaimer:	As the conditions or methods of use are beyond our control, we do not assume any responsibility and expressly disclaim any liability for any use of this product. Information contained herein is believed to be true and accurate but all statements or suggestions are made without warranty, expressed or implied, regarding accuracy of the information, the hazards connected with the use of the material or the results to be obtained from the use thereof. Compliance with all applicable federal, state, and local regulations remains the responsibility of the user.		

SDS_US - BIOCLEAR 1430

E

Date Issued 2022-12-19

Document # 180.05.CO2.107

Version 2.0 Page 106 of 143

Lubrizol

Version: 1.0 Revision Date: 02/26/2016

SAFETY DATA SHEET

lentification	
Product name:	BIOCLEAR 1430
Additional identification	
Chemical name:	Mixture
Recommended use and rest	riction on use
Recommended use:	EC Intermediates & Surfactants
Restrictions on use:	None identified.
Details of the supplier of the	e safety data sheet
Supplier	
Company Name:	LUBRIZOL OILFIELD SOLUTIONS
Address:	2000 WEST SAM HOUSTON PKWY S.
	SUITE 400
	HOUSTON, TX 77042
	US
Telephone:	(713) 339-8771

Emergency telephone number:

FOR TRANSPORT EMERGENCY CALL CHEMTREC (+1)703 527 3887, OR WITHIN USA 800 424 9300

2. Hazard(s) identification

Hazard Classification

Health Hazards	
Acute toxicity (Oral)	Category 4
Acute toxicity (Inhalation - dust and mist)	Category 4
Skin Corrosion/Irritation	Category 1B
Serious Eye Damage/Eye Irritation	Category 1
Respiratory sensitizer	Category 1
Skin sensitizer	Category 1
Specific Target Organ Toxicity - Single Exposure	Category 3
Unknown toxicity	
Acute toxicity, oral	0.0 %
Acute toxicity, dermal	0.1 %
Acute toxicity, inhalation, vapor	16.8 %
Acute toxicity, inhalation, dust or mist	3.1 %

Label Elements:

Hazard Symbol:

SDS_US - BIOCLEAR 1430

 Date Issued
 Document #
 Version
 Page

 2022-12-19
 180.05.CO2.107
 2.0
 107 of 143

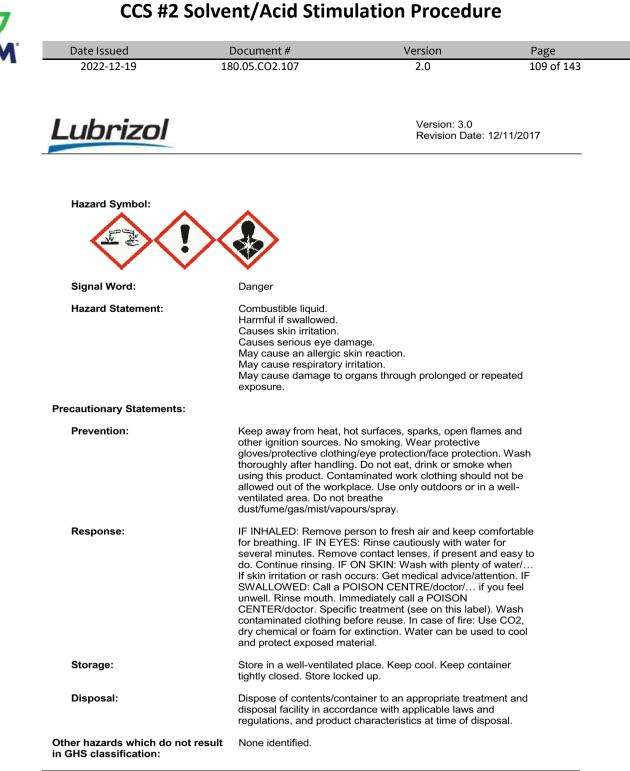
SDS Corrosion Inhibitor (Evirohib 600)

Date Issued 2022-12-19

Document # 180.05.CO2.107

Version 2.0 Page 108 of 143

Lubrizol


Version: 3.0 Revision Date: 12/11/2017

SAFETY DATA SHEET

. Identification		
Identification Product name:	ENVIROHIB™ 600	
Additional identification Chemical name:	Mixture	
Recommended use and rest	riction on use	
Recommended use: Restrictions on use:	EC Fracturing & Acidizing None identified.	
Details of the supplier of the Supplier	e safety data sheet	
Company Name: Address:	THE LUBRIZOL CORPORATION 29400 LAKELAND BOULEVARD WICKLIFFE, OH 44092-2298 US	
Telephone:	(440)943-1200	
Emergency telephone numb FOR TRANSPORT EMERGE	her: NCY CALL CHEMTREC (+1)703 527 3887, OR WITHIN USA 800 424 9300	
2. Hazard(s) identification		
Hazard Classification		
Physical Hazards		
Flammable liquids	Category 4	

i laithilaiste iliquide	category .
Health Hazards	
Acute toxicity (Oral)	Category 4
Skin Corrosion/Irritation	Category 2
Serious Eye Damage/Eye Irritation	Category 1
Skin sensitizer	Category 1
Specific Target Organ Toxicity - Single Exposure	Category 3
Specific Target Organ Toxicity - Repeated Exposure	Category 2
Unknown toxicity	
Acute toxicity, oral	0.0 %
Acute toxicity, dermal	16.6 %
Acute toxicity, inhalation, vapor	64.4 %
Acute toxicity, inhalation, dust or mist	70.1 %

Label Elements:

3. Composition/information on ingredients

Date Issued	
2022-12-19	

Document # 180.05.CO2.107

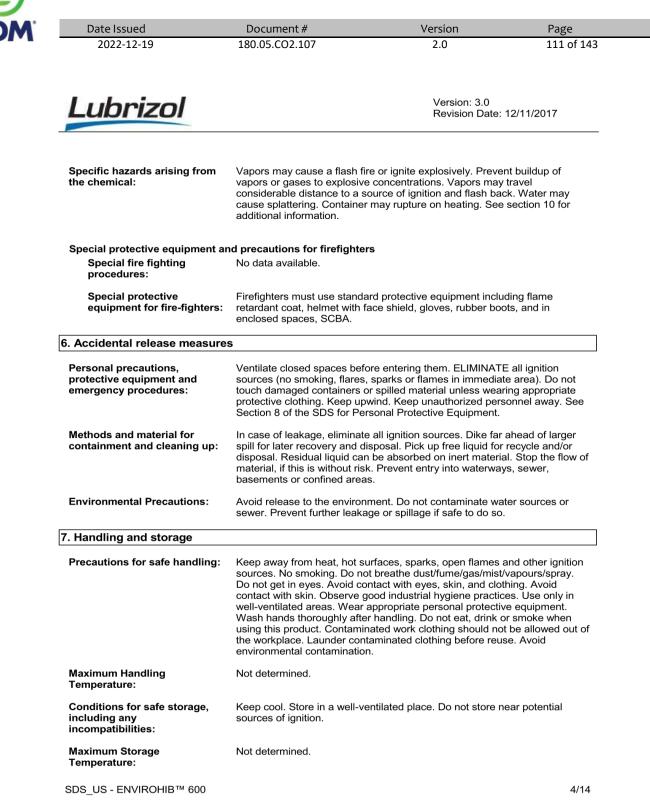
Version 2.0 Page 110 of 143

Lubrizol

Version: 3.0 Revision Date: 12/11/2017

Chemical name	CAS number	Percent by Weight
Ethylene glycol	107-21-1	30 - 40%
Dipropylene glycol, monomethyl ether	34590-94-8	10 - 20%
Ethoxylated alcohol	68131-39-5	5 - 10%
Formic acid	64-18-6	5 - 10%
Tar bases, quinoline derivs., benzyl chloride- quaternized	72480-70-7	5 - 10%
Cinnamaldehyde	104-55-2	5 - 10%
Isopropyl alcohol	67-63-0	1 - 5%

4. First-aid measures


General information:	Get medical advice/attention if you feel unwell.		
Ingestion:	Rinse mouth. Call a POISON CENTRE/doctor if you feel unwell.		
Inhalation:	Remove to fresh air and keep at rest in a position comfortable for breathing. Call a POISON CENTRE/doctor if you feel unwell.		
Skin Contact:	Take off contaminated clothing and wash before re-use. Wash skin thoroughly with soap and water. If skin irritation or rash occurs: Get medical attention. Launder contaminated clothing before reuse.		
Eye contact:	Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Immediately call a POISON CENTER/doctor.		
Most important symptoms/effec	ts, acute and delayed		

Symptoms: See section 11.

Indication of immediate medical attention and special treatment needed

Treatment:	Treat symptomatically.
5. Fire-fighting measures	

5. Fire-fighting measures	
General Fire Hazards:	Move containers from fire area if you can do so without risk.
Suitable (and unsuitable) exting	uishing media
Suitable extinguishing media:	CO2, Dry chemical or Foam. Water can be used to cool and protect exposed material.
Unsuitable extinguishing media:	Not determined.

Date Issued 2022-12-19

Document # 180.05.CO2.107 Version

2.0

Page 112 of 143

Lubrizol

Version: 3.0 Revision Date: 12/11/2017

8. Exposure controls/personal protection

Control Parameters:

Occupational Exposure Limits

Chemical name	Туре	Exposure Li	mit Values	Source
Ethylene glycol - Aerosol.	Ceiling		100 mg/m3	US. ACGIH Threshold Limit Values (02 2012)
Ethylene glycol	STEL	50 ppm		US. ACGIH Notice of Intended Changes (NIC) to Threshold Limit Values (03 2015)
Ethylene glycol	TWA		10 mg/m3	US. ACGIH Notice of Intended Changes (NIC) to Threshold Limit Values (03 2015)
Ethylene glycol	TWA	25 ppm		US. ACGIH Notice of Intended Changes (NIC) to Threshold Limit Values (03 2015)
Ethylene glycol	Ceiling	50 ppm	125 mg/m3	US. OSHA Table Z-1-A (29 CFR 1910.1000) (1989)
Dipropylene glycol, monomethyl ether	PEL	100 ppm	600 mg/m3	US. OSHA Table Z-1 Limits for Air Contaminants (29 CFR 1910.1000) (02 2006)
Dipropylene glycol, monomethyl ether	TWA	100 ppm	600 mg/m3	US. OSHA Table Z-1-A (29 CFR 1910.1000) (1989)
Dipropylene glycol, monomethyl ether	STEL	150 ppm	900 mg/m3	US. OSHA Table Z-1-A (29 CFR 1910.1000) (1989)
Dipropylene glycol, monomethyl ether	TWA	100 ppm		US. ACGIH Threshold Limit Values (02 2012)
Dipropylene glycol, monomethyl ether	STEL	150 ppm		US. ACGIH Threshold Limit Values (02 2012)
Dipropylene glycol, monomethyl ether	REL	100 ppm	600 mg/m3	US. NIOSH: Pocket Guide to Chemical Hazards (2010)
Dipropylene glycol, monomethyl ether	STEL	150 ppm	900 mg/m3	US. NIOSH: Pocket Guide to Chemical Hazards (2010)
Formic acid	PEL	5 ppm	9 mg/m3	US. OSHA Table Z-1 Limits for Air Contaminants (29 CFR 1910.1000) (02 2006)
Formic acid	TWA	5 ppm	9 mg/m3	US. OSHA Table Z-1-A (29 CFR 1910.1000) (1989)
Formic acid	TWA	5 ppm		US. ACGIH Threshold Limit Values (02 2012)
Formic acid	STEL	10 ppm		US. ACGIH Threshold Limit Values (02 2012)
Formic acid	REL	5 ppm	9 mg/m3	US. NIOSH: Pocket Guide to Chemical Hazards (2010)
Isopropyl alcohol	TWA	200 ppm		US. ACGIH Threshold Limit Values (02 2012)
Isopropyl alcohol	STEL	400 ppm		US. ACGIH Threshold Limit Values (02 2012)
Isopropyl alcohol	REL	400 ppm	980 mg/m3	US. NIOSH: Pocket Guide to Chemical Hazards (2010)
Isopropyl alcohol	STEL	500 ppm	1,225 mg/m3	US. NIOSH: Pocket Guide to Chemical Hazards (2010)
Isopropyl alcohol	PEL	400 ppm	980 mg/m3	US. OSHA Table Z-1 Limits for Air Contaminants (29 CFR 1910.1000) (02 2006)

Other exposure limits

Chemical name	Туре	Exposure Limit Values	Source
Formic acid	TWA	5 ppm	
Formic acid	STEL	10 ppm	

Biological Limit Values

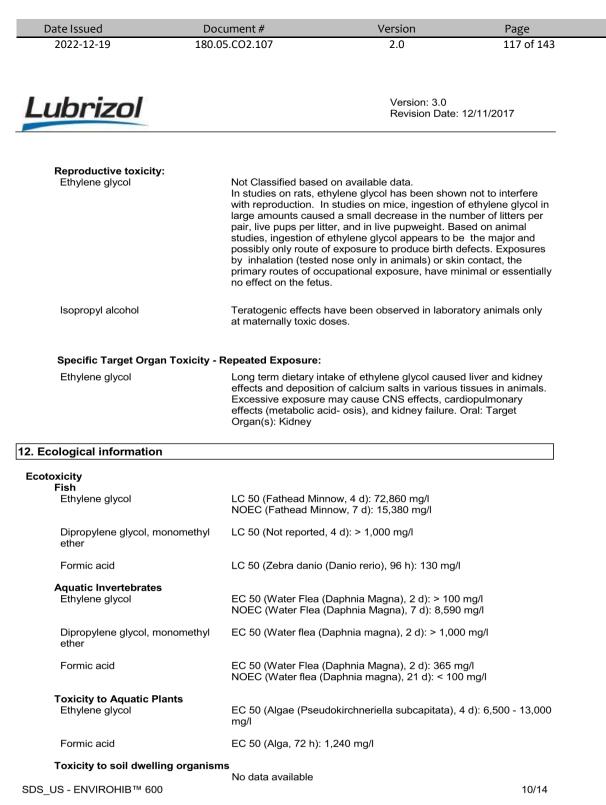
[Chemical name	Exposure Limit Values	Source
	Isopropyl alcohol (acetone: Sampling time: End of shift at end of work week.)	40 mg/l (Urine)	ACGIH BEI (03 2013)

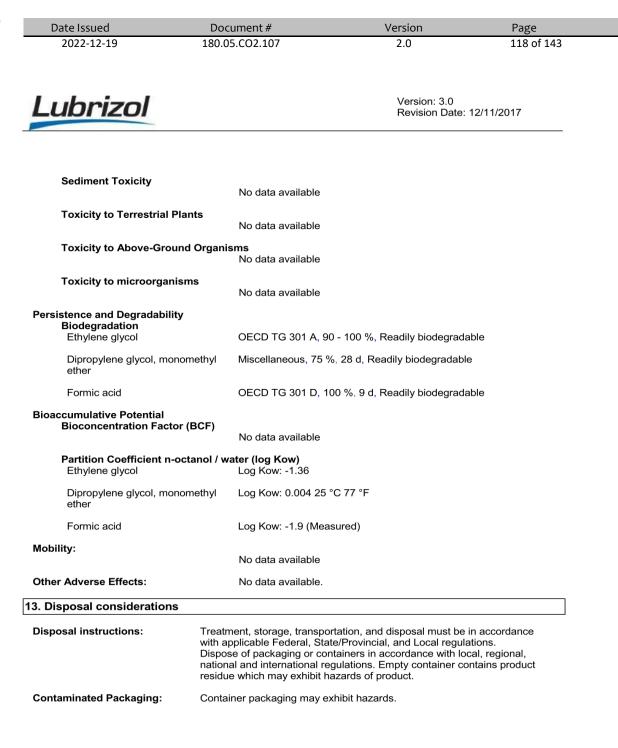
Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	113 of 143
Lubrizol		Version: 3.0 Revision Date:	12/11/2017
Appropriate engineering controls:	Use material in well ventilate ordinary conditions of use ar		irements under
Individual protection measures	s, such as personal protective	equipment	
General information:	Provide easy access to wate ventilation (typically 10 air ch rates should be matched to o enclosures, local exhaust ve maintain airborne levels belo limits have not been establis level.	anges per hour) should be u conditions. If applicable, use ntilation, or other engineering w recommended exposure li	sed. Ventilation process g controls to mits. If exposure
Eye/face protection:	Wear tight-fitting goggles or	face shield.	
Skin Protection			
Hand Protection:	Use nitrile or neoprene glove case of skin contact, wash h		
Other:	Wear apron or protective clo watches or similar apparel th	thing in case of contact. Do r at could entrap the material.	not wear rings,
Respiratory Protection:	Use respirator if irritation is e limit is exceeded. A respirato applicable regulations must l require the use of a respirato dust/mist cartridge if the reco self-contained breathing app poorly ventilated areas and f	bry protection program compl be followed whenever workpl or. Use respirator with an org ommended exposure limit is of aratus for entry into confined	iant with all ace conditions anic vapor and exceeded. Use
Hygiene measures:	Observe good industrial hygi when using the product. Do contaminated clothing before hands before breaks and imi hands after handling. Contar out of the workplace.	not get in eyes. Avoid contact reuse. When using do not s mediately after handling the p	t with skin. Wash moke. Wash product. Wash

9. Physical and chemical properties

Appearance	
Physical state:	liquid
Form:	liquid
Color:	Dark amber
Odor:	Alcohol
Odor threshold:	No data available.
pH:	No data available.
Freezing point:	No data available.
Boiling Point:	239 °F (115 °C)
Flash Point:	181 °F (83 °C) (Closed Cup)
Evaporation rate:	No data available.
Flammability (solid, gas):	No data available.

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	114 of 143
Lubrizol		Version: 3.0 Revision Date:	12/11/2017
		Revision Bate.	12/11/2017
pper/lower limit on flammability	v or explosive limits		
Flammability limit - upper (%):	No data availabl	e.	
Flammability limit - lower (%):	No data availabl		
xplosive limit - upper (%):	No data availabl		
xplosive limit - lower (%):	No data availabl		
/apor pressure:	No data availabl	e.	
apor density:	No data availabl		
Relative density:	1.08 - 1.13 60.1		
Solubility(ies)		. ,	
Solubility in water:	Soluble		
Solubility (other):	No data availabl	e.	
Partition coefficient (n-octanol/w	ater): No data availabl	e.	
uto-ignition temperature:	No data availabl	e.	
Decomposition temperature:	No data availabl	e.	
/iscosity:	No data availabl	e.	
0. Stability and reactivity			
Reactivity:	No data available.		
Chemical Stability:	Material is stable under norm	nal conditions.	
-			
Possibility of hazardous reactions:	Will not occur.		
Conditions to avoid:	Heat, sparks, flames.		
Incompatible Materials:	Oxidizing agents. Hypochlori compounds. Avoid reactive r		
	Reaction with peroxides may possible creating an explosion	result in violent decompositi	ion of peroxide
Hazardous Decomposition	Thermal decomposition or co	ombustion may generate smo	oke carbon
Products:	monoxide, carbon dioxide, a		
1. Toxicological information			
Information on likely routes of a	VDAGUEA		
Information on likely routes of e Inhalation:	Harmful if inhaled.		
Ingestion:	Harmful if swallowed.		
Skin Contact:	Causes skin irritation.		
Eye contact:	Causes serious eye damage		
Information on toxicological effe	ects		
Acute toxicity			
Oral			(
Product:	Indection can cause	central nervous system effect	nte eurch ae




ate Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	115 of 143
ubrizol		Version: 3.0 Revision Date:	12/11/2017
	Swallowing material lining, nausea, vomit this material causes	, drowsiness, and generalize may cause irritation of the g ing, diarrhea, and abdomina severe irritation and may cau nd stomach, abdominal pain mg/kg.	astrointestinal I pain. Swallowing use burns of the
Dermal Product:	the absorption of pot through skin absorpt	read contact with this materi entially harmful amounts. Ma ion. ite toxicity based on availabl	ay be harmful
Inhalation Product:	High concentrations and nausea. Inhalati respiratory tract and of exposure, ranging severe pneumonitis. cause adverse centr	may cause headaches, dizzi on of formic acid may damag lungs. Effects caused will va from mild irritation of the na Breathing high vapor concer al nervous system effects su padache, drowsiness, nauser	iness, weakness, ge the upper ry with the severity sal membranes to ntrations may rich as dizziness,
Skin Corrosion/Irritation: Product:	Prolonged or repeate tenderness, and soft may cause irritation. clothing wet with ma	ed exposure may cause a sli ening of skin. Prolonged or r Prolonged or repeated skin terial may cause dermatitis. ma, drying, and cracking of kin irritation.	epeated contact contact as from Symptoms may
Serious Eye Damage/Eye Product:	Irritation: Remarks: Causes se	erious eye damage.	
Respiratory sensitization	: No data available		
Skin sensitization: Ethylene glycol	Classification: Not a	skin sensitizer. (Literature) N	lot a skin sensitizer.
Formic acid	Classification: Not a	skin sensitizer. (Literature) N	lot a skin sensitizer.
Cinnamaldehyde	Remarks: Category Classification: May c	1 ause sensitization by skin co	ontact. (Literature)
Isopropyl alcohol	Classification: Not a	skin sensitizer. (Literature) N	lot a skin sensitizer.
Specific Target Organ To Ethylene glycol	If material is misted	or if vapors are generated fro irritation of mucous membra	om heating, anes and the upper

Date Issued 2022-12-19	Document # 180.05.CO2.107	Version 2.0	Page 116 of 14
ubrizol		Version: 3.0 Revision Date:	12/11/2017
Dipropylene glycol, m ether	onomethyl May cause irritation respiratory tract.	to the mucous membranes a	and upper
Ethoxylated alcohol		or if vapors are generated fro e irritation of mucous membra	
Formic acid	Respiratory tract irri	tation.	
Cinnamaldehyde	Nose, throat and lur	ng irritant.	
Isopropyl alcohol	May cause irritation respiratory tract.	to the mucous membranes a	nd upper
Aspiration Hazard:	No data available		
Other effects: Dipropylene glycol, m ether	onomethyl Central nervous sys	tem	
Isopropyl alcohol	Central nervous sys	tem May cause drowsiness o	or dizziness.
Chronic Effects Carcinogenicity:	No data available		
IARC Monographs on No carcinogenic compo	the Evaluation of Carcinogenic	Risks to Humans:	
US. National Toxicolo No carcinogenic compo	gy Program (NTP) Report on Car nents identified	rcinogens:	
US. OSHA Specifically No carcinogenic compo	y Regulated Substances (29 CFR onents identified	8 1910.1001-1050):	
Germ Cell Mutagenici Ethylene glycol		enetic toxicity studies were n	legative.
		,,,	0

Isopropyl alcohol In vitro mutagenicity tests have been negative.

Date Issued Document # Version Page 2022-12-19 180.05.CO2.107 2.0 119 of 143

ubrizol

Version: 3.0 Revision Date: 12/11/2017

14. Transport information

DOT

UN Number: UN Proper Shipping Name: Transport Hazard Class(es) Class Label(s): Packing Group: Marine Pollutant: Special precautions for user: Reportable quantity

NA 1993 Combustible liquid, n.o.s.(Dipropylene glycol, monomethyl ether)

CBL NONE Ш No None established Ethylene glycol 5000 lbs

IMDG

Not regulated.

ΙΑΤΑ

Not regulated.

Transport in bulk according to Annex II of MARPOL and the IBC Code None known.

The DOT shipping information in this section is based on a bulk container. Please review the accompanying shipping papers for the correct shipping descriptions based the size of the package. Shipping descriptions may vary based on mode of transport, quantities, temperature of the material, package size, and/or origin and destination. It is the responsibility of the transporting organization to follow all applicable laws, regulations and rules relating to the transportation of the material. During transportation, steps must be taken to prevent load shifting or materials falling, and all relating legal statutes should be obeyed. Review classification requirements before shipping materials at elevated temperatures

15. Regulatory information

US Federal Regulations

TSCA Section 12(b) Export Notification (40 CFR 707, Subpt. D) None present or none present in regulated quantities.

CERCLA Hazardous Substance List (40 CFR 302.4)

Chemical Identity	CAS number	Reportable quantity	Calculated ¹
Ethylene glycol	107-21-1	5000 lbs	12896 lbs 5850 kgs
Formic acid	64-18-6	5000 lbs	> 50000 lbs > 22680 kgs

¹This is the amount product/material required to be released before CERCLA reporting is required.

Superfund Amendments and Reauthorization Act of 1986 (SARA)

SARA 311 Classifications Fire Hazard

Immediate (Acute) Health Hazards Delayed (Chronic) Health Hazard

SARA 302 Extremely Hazardous Substance

None present or none present in regulated quantities.

SARA 304 Emergency Release Notification

SDS US - ENVIROHIB™ 600

Date Issued 2022-12-19

Document # 180.05.CO2.107 Version 2.0 Page 120 of 143

ubrizol.

Version: 3.0 Revision Date: 12/11/2017

Chemical Identity	CAS number	Percent by Weight	Reportable quantity
Ethylene glycol	107-21-1	38.8 %	5000 lbs
Formic acid	64-18-6	8.1 %	5000 lbs

SARA 313 (TRI Reporting)

Chemical Identity	CAS number	<u>Percent by</u> <u>Weight</u>	<u>Reporting</u> <u>threshold for</u> <u>other uses</u>	Reporting threshold for manufacturing and processing
Ethylene glycol	107-21-1	38.8 %	10000 lbs	25000 lbs
Formic acid	64-18-6	8.1 %	10000 lbs	25000 lbs
Isopropyl alcohol	67-63-0	2.4 %	10000 lbs	25000 lbs

US State Regulations

US. California Proposition 65

This product contains chemical(s) known to the State of California to cause cancer and/or to cause birth defects or other reproductive harm.

Ethylene glycol

38.773%

Inventory Status

Australⁱa (AICS) May require notification before sale under Australian regulations.

Canada (DSL/NDSL)

This product contains a substance or polymer that has been notified and is restricted to import by specific legal entities.

China (IECSC)

This product may require notification in China.

European Union (REACh)

To obtain information on the REACH compliance status of this product, please e-mail REACH@SDSInquiries.com.

Japan (ENCS) May require notification in Japan.

Korea (ECL) May require notification before sale in Korea.

New Zealand (NZIoC)

May require notification before sale under New Zealand regulations.

Philippines (PICCS)

May require notification before sale under Philippines Republic Act 6969.

Switzerland (SWISS)

All components are in compliance with the Environmentally Hazardous Substances Ordinance in Switzerland.

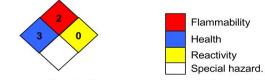
Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	121 of 143

Taiwan (TCSCA) May require notification before sale in Taiwan.

United States (TSCA)

All substances contained in this product are listed on the TSCA inventory or are exempt.

The information that was used to confirm the compliance status of this product may deviate from the chemical information shown in Section 3.


16.Other information, including date of preparation or last revision

HMIS Hazard ID

Health	*	3
Flammability		2
Physical Hazards		0

Hazard rating: 0 - Minimal; 1 - Slight; 2 - Moderate; 3 - Serious; 4 - Severe; RNP - Rating not possible; *Chronic health effect

NFPA Hazard ID

Hazard rating: 0 - Minimal; 1 - Slight; 2 - Moderate; 3 - Serious; 4 - Severe; RNP - Rating not possible

Issue Date:	12/11/2017
Version #:	3.0
Source of information:	Internal company data and other publically available resources.
Further Information:	Contact supplier (see Section 1)
Disclaimer:	As the conditions or methods of use are beyond our control, we do not assume any responsibility and expressly disclaim any liability for any use of this product. Information contained herein is believed to be true and accurate but all statements or suggestions are made without warranty, expressed or implied, regarding accuracy of the information, the hazards connected with the use of the material or the results to be obtained from the use thereof. Compliance with all applicable federal, state, and local regulations remains the responsibility of the user.

Date Issued	Document #	Version	Page	
2022-12-19	180.05.CO2.107	2.0	122 of 143	

SDS Surfactant (Waxaid 19)

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	123 of 14
S	AFETY DATA SHEET		
		WAXAID 19	
		Revisio	on Date 11/20/2017
SECTION 1: Identification of the subst	ance/mixture and of the co	ompany/undertaking	
1.1 Product identifier			
- Trade name	WAXAID 19		
1.2 Relevant identified uses of the substan	ce or mixture and uses advis	ed against	
Uses of the Substance / Mixture			
- Oil & gas industry			
1.3 Details of the supplier of the safety data	abaat		
Company	a sneet		
Chemplex			
Solvay USA Inc.			
NOVECARE 506 CR 137			
P.O. Box 1071			
Snyder, TX 79550 Phone (325) 573-7298			
1.4 Emergency telephone			
FOR EMERGENCIES INVOLVIN 9300 within the United States and		OSURE OR ACCIDENT CONTACT: Contract:	CHEMTREC 800-424
SECTION 2: Hazards identification			
Although OSHA has not adopted the environn environmental effects.	nental portion of the GHS regul	ations, this document may include in	formation on
2.1 Classification of the substance or mixto	ire		
2.1 Classification of the substance or mixto HCS 2012 (29 CFR 1910.1200)	ire		
HCS 2012 (29 CFR 1910.1200) Flammable liquids, Category 3	H226: Flam	nmable liquid and vapor.	
HCS 2012 (29 CFR 1910.1200) Flammable liquids, Category 3 Acute toxicity, Category 4	H226: Flan H332: Harr	nful if inhaled.	
HCS 2012 (29 CFR 1910.1200) Flammable liquids, Category 3 Acute toxicity, Category 4 Acute toxicity, Category 4 Skin irritation, Category 2	H226: Flan H332: Harr H312: Harr H315: Caus	nful if inhaled. nful in contact with skin. ses skin irritation.	
HCS 2012 (29 CFR 1910.1200) Flammable liquids, Category 3 Acute toxicity, Category 4 Acute toxicity, Category 4 Skin irritation, Category 2 Serious eye damage, Category 1	H226: Flan H332: Harr H312: Harr H315: Caus H318: Caus	nful if inhaled. nful in contact with skin. ses skin irritation. ses serious eve damage.	
HCS 2012 (29 CFR 1910.1200) Flammable liquids, Category 3 Acute toxicity, Category 4 Acute toxicity, Category 4 Skin irritation, Category 2 Serious eye damage, Category 1 Skin sensitization, Category 1 Specific target organ systemic toxicity	H226: Flan H332: Harr H312: Harr H315: Cau: H318: Cau: H317: May	nful if inhaled. nful in contact with skin. ses skin irritation.	ory system)
HCS 2012 (29 CFR 1910.1200) Flammable liquids, Category 3 Acute toxicity, Category 4 Acute toxicity, Category 4 Skin irritation, Category 2 Serious eye damage, Category 1 Skin sensitization, Category 1 Specific target organ systemic toxicity exposure, Category 3	H226: Flan H332: Harr H312: Harr H315: Caus H318: Caus H318: Caus H317: May - single H335: May	nful if inhaled. nful in contact with skin. ses skin irritation. ses serious eye damage. cause an allergic skin reaction. cause respiratory irritation. (Respirat	, ,
HCS 2012 (29 CFR 1910.1200) Flammable liquids, Category 3 Acute toxicity, Category 4 Acute toxicity, Category 4 Skin irritation, Category 2 Serious eye damage, Category 1 Skin sensitization, Category 1 Specific target organ systemic toxicity	H226: Flam H332: Harr H312: Harr H315: Caus H318: Caus H317: May - single H335: May - repeated H373: May repeated e:	nful if inhaled. nful in contact with skin. ses skin irritation. ses serious eye damage. cause an allergic skin reaction. cause respiratory irritation. (Respirat cause damage to organs through pro	blonged or

PRC090071021 Version : 1.00 / US (Z8) www.solvay.com

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	124 of 143
	SAFETY DATA SHEET		
		WAXAID 19 Rev	ision Date 11/20/2017
2.2 Label elements			
HCS 2012 (29 CFR	<u>1910.1200)</u>		
Pictogram		\wedge	
Signal Word		\checkmark	
- Danger			
Hazard Stateme - H226 - H304 - H312 + H3 - H315 - H317 - H318 - H335 - H373	Flammable liquid and vapor. May be fatal if swallowed an 32 Harmful in contact with skin Causes skin irritation. May cause an allergic skin re Causes serious eye damage May cause respiratory irritati	d enters airways. or if inhaled. eaction.	kposure.
Precautionary S	Statements		
Prevention - P210 - P233 - P240 - P241 - P242 - P243 - P260 - P264 - P271 - P272 - P280 Response	Keep container tightly closed Ground/bond container and r Use explosion-proof electrica Use only non-sparking tools. Take precautionary measure Do not breathe dust/ fume/ g Wash skin thoroughly after h Use only outdoors or in a wel	eceiving equipment. I/ ventilating/ lighting/ equipment. s against static discharge. as/ mist/ vapors/ spray. andling. I-ventilated area. nust not be allowed out of the work	
- P301 + P3 - P303 + P3		ly call a POISON CENTER/doctor. ff immediately all contaminated clot	hing. Rinse skin with
- P304 + P34	40 + P312 IF INHALED: Remove persor POISON CENTER/doctor if y	n to fresh air and keep comfortable ou feel unwell.	for breathing. Call a
- P314 - P331 - P333 + P3 - P362 - P370 + P3	51 + P338 + P310 IF IN EYES: Rinse cautiously present and easy to do. Cont Get medical advice/ attention Do NOT induce vomiting. 13 If skin irritation or rash occurs Take off contaminated clothir	with water for several minutes. Re inue rinsing. Immediately call a PO if you feel unwell. s: Get medical advice/ attention.	ISON CENTER/doctor.
<u>Storage</u> - P403 + P23 - P403 + P23		ce. Keep container tightly closed. ce. Keep cool.	
- P405 Disposal			

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	125 of 143
	SAFETY DATA SHEET		
		WAXAID 19	
			Revision Date 11/20/2017

SECTION 3: Composition/information on ingredients

3.1 Substance

- Not applicable, this product is a mixture.

3.2 Mixture

Hazardous Ingredients and Impurities

Chemical name	Identification number CAS-No.	Concentration [%]	
Xylene	1330-20-7	>= 70 - < 90	
Benzenesulfonic acid, C10-16-alkyl derivs., compds. with 2- propanamine	68584-24-7	>= 5 - < 10	
Ethylbenzene	100-41-4	>= 5 - < 10	
Fatty acid dimethylamide	****	>= 1 - < 5	

The specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret.

SECTION 4: First aid measures

4.1 Description of first-aid measures

General advice

- Show this material safety data sheet to the doctor in attendance.
- First responder needs to protect himself. -
- -Place affected apparel in a sealed bag for subsequent decontamination.

In case of inhalation

- Remove victim from exposure and then have him lie down in the recovery position. If breathing is difficult, give oxygen. If victim has stopped breathing: administer CPR (cardio-pulmonary resuscitation) Get immediate medical advice/ attention. -
- -
- -
- -

In case of skin contact

- In case of contact, immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes.
- Seek medical advice.
- Wash contaminated clothing before reuse. -

In case of eye contact

- Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes.
- Seek medical advice. -

PRCO90071021 Version : 1.00 / US (Z8) www.solvay.com

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	126 of 14
	SAFETY DATA SHEET		
		WAXAID 19	
			ision Date 11/20/2017
In case of ingestion			
 If victim is conscious: Rinse mouth with wat Keep at rest. Do not give anything t Do not leave the victir Vomiting may occur s Risk of product entering 	to drink. n unattended.		
Lay victim on side.Get immediate medicate	al advice/ attention.		
	ravate existing skin disease		
 Inhalation of product r bronchitis 	may aggravate existing chronic respirato	ory problems such as asthma, emp	bhysema or
4.3 Indication of any immediate me <u>Notes to physician</u>	edical attention and special treatment	needed	
- All treatments should	be based on observed signs and sympto / that overexposure to materials other th		
Treat symptomaticallyThere is no specific at			
- Aspiration of the swal	lowed or vomited product can cause sev	vere pulmonary complications.	
SECTION 5: Firefighting measu	Ires		
<u>Flash point</u>	77 °F (25 °C) closed cup		
	Flammability class: Flam	nmable	
<u>Autoignition temperature</u> Flammability / Explosive limit	no data available no data available		
5.1 Extinguishing media			
Suitable extinguishing media			
 Extinguishing media - Dry chemical Carbon dioxide (CO2) 	small fires		
- Extinguishing media - - Foam - Water spray	large fires		
Unsuitable extinguishing med	dia		

PRCO90071021 Version : 1.00 / US (Z8)

www.solvay.com

Solvay

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	127 of 143
	SAFETY DATA SHEET		
		WAXAID 19	
		Rev	ision Date 11/20/2017
 Vapors are heavier 	lode if heated. I long distances and ignite. than air and may spread along floors. prevent the build up of electrostatic charge.		
Hazardous combustion pro	ducts:		
	on thermal decomposition (pyrolysis), release	es:	
 On combustion or c Carbon oxides Nitrogen oxides (NC Sulfur oxides 	Dx)		
 Carbon oxides Nitrogen oxides (NG) 	Dx)		
 Carbon oxides Nitrogen oxides (NG Sulfur oxides 			

Specific fire fighting methods

- Cool closed containers exposed to fire with water spray.
- Collect contaminated fire extinguishing water separately. This must not be discharged into drains.

SECTION 6: Accidental release measures

6.1 Personal precautions, protective equipment and emergency procedures

- Ventilate the area.
- Eliminate all ignition sources if safe to do so.
- Evacuate personnel to safe areas.
- Mark the contaminated area with signs and prevent access to unauthorized personnel.
- Wear suitable protective equipment.
- For further information refer to section 8 "Exposure controls / personal protection."
- Avoid contact with eyes, skin, and respiratory system.

6.2 Environmental precautions

- Do not flush into surface water or sanitary sewer system.
- Take all necessary measures to avoid accidental discharge of products into drains and waterways due to the rupture of containers or transfer systems.
- Spills may be reportable to the National Response Center (800-424-8802) and to state and/or local agencies

6.3 Methods and materials for containment and cleaning up

Prohibition

Use only non-sparking tools.

Methods for containment

- Stop the leak. Turn leaking containers leak-side up to prevent the escape of liquid.
- Dam up with sand or inert earth (do not use combustible materials).

Recovery

- Pump or collect any free spillage into an appropriate closed container. (see Section 7: Handling and Storage)
- Soak up with inert absorbent material (e.g. sand, silica gel, acid binder, universal binder, sawdust).

PRCO90071021

Version : 1.00 / US (Z8)

www.solvay.com

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	128 of 143
	SAFETY DATA SHEET		
		WAXAID 19	
		Re	vision Date 11/20/2017
	eed containers for disposal. original containers for re-use. ning		
 Recover the cleaning 	surface thoroughly. e remainder with large amounts of water water for subsequent disposal. equipment and personal protective equ		
<i>Disposal</i> - Dispose of in accorda	ance with local regulations.		
Additional advice			
- Material can create sli	ppery conditions.		
Reference to other sections			
 7. HANDLING AND S 8. EXPOSURE CONT 13. DISPOSAL CONS 	ROLS/PERSONAL PROTECTION		
CTION 7: Handling and stora	ige		
Precautions for safe handling			
 Do not use sparking to Ensure all equipment 	ools. is electrically grounded before beginning	g transfer operations.	
	with good industrial hygiene and safety	practice.	
 Handle in accordance Avoid contact with ski 			

Hygiene measures

- Personal hygiene is an important work practice exposure control measure and the following general measures should be taken when working with or handling this materials:
- 1) Do not store, use, and/or consume foods, beverages, tobacco products, or cosmetics in areas where this material is stored.
- 2) Wash hands and face carefully before eating, drinking, using tobacco, applying cosmetics, or using the toilet.
- 3) Wash exposed skin promptly to remove accidental splashes or contact with material.

7.2 Conditions for safe storage, including any incompatibilities

Technical measures/Storage conditions

- Keep container tightly closed in a dry and well-ventilated place.
- Keep away from open flames, hot surfaces and sources of ignition.
- Keep away from incompatible materials to be indicated by the manufacturer
- Keep away from: Strong oxidizing agents

Packaging material

Suitable material

- Steel
PRC090071021
Version : 1.00 / US (Z8)
www.solvay.com

M	Date Issued	Document #		Version	Page
	2022-12-19	180.05.CO2.107	1	2.0	129 of 143
		SAFETY DATA SHE	ET		
				WAXAID 19	
				Rev	ision Date 11/20/2017
7	7.3 Specific end use(s) no data available 				
5	SECTION 8: Exposure control	s/personal protection			
e	ntroductory Remarks: These recomenvironments and material handling with selection, use and maintenance	practices vary, safety proceed	dures should be d	eveloped for each intended a	application. Assistance
8	3.1 Control parameters				
	Components with workplace	occupational exposure lim	its		
F	Ingredients	Value type	Value	Basis	
	Xylene	TWA	100 ppm	Occupational Safety and H	ealth Administration

Ingredients	Value type	Value	Basis				
Xylene	TWA	100 ppm 435 mg/m3	Occupational Safety and Health Administration - Table Z-1 Limits for Air Contaminants				
	The value in n	I I The value in mg/m3 is approximate.					
Ethylbenzene	TWA	20 ppm	American Conference of Governmental Industrial Hygienists				
Ethylbenzene	TWA	100 ppm 435 mg/m3	National Institute for Occupational Safety and Health				
Ethylbenzene	ST	125 ppm 545 mg/m3	National Institute for Occupational Safety and Health				
Ethylbenzene	TWA	100 ppm 435 mg/m3	Occupational Safety and Health Administration - Table Z-1 Limits for Air Contaminants				
	The value in m	The value in mg/m3 is approximate.					

NIOSH IDLH (Immediately Dangerous to Life or Health Concentrations)

Ingredients	CAS-No.	Concentration
Xylene	1330-20-7	900 ppm
Ethylbenzene	100-41-4	800 ppm

PRCO90071021 Version : 1.00 / US (Z8) www.solvay.com

Date Issued 2022-12-19

Document # 180.05.CO2.107

Page

130 of 143

SAFETY DATA SHEET

WAXAID 19

Version

2.0

Revision Date 11/20/2017

Biological	Exposuro	Indiana
Diological	Exposure	maices

Ingredients	Value type	Value	Basis
Xylene	BEI	1.5 g/g creatinine Methylhippuric acids Urine End of shift (As soon as possible after exposure ceases)	American Conference of Governmental Industrial Hygienists
Ethylbenzene	BEI	0.15 g/g creatinine Sum of mandelic acid and phenyl glyoxylic acid Urine End of shift (As soon as possible after exposure ceases)	American Conference of Governmental Industrial Hygienists

8.2 Exposure controls

Control measures

- **Engineering measures**
 - Where engineering controls are indicated by use conditions or a potential for excessive exposure exists, the following traditional exposure control techniques may be used to effectively minimize employee exposures :
 - Effective exhaust ventilation system
 - Extract at emission point.

Individual protection measures

Respiratory protection

- When respirators are required, select NIOSH/MSHA approved equipment based on actual or potential airborne concentrations and in accordance with the appropriate regulatory standards and/or industrial recommendations. Under normal conditions, in the absence of other airborne contaminants, the following devices should provide
- protection from this material up to the conditions specified by the appropriate local standard(s):
- Respirator with filter for organic vapor
- In the event of insufficient ventilation:
- If the occupational exposure limit is exceeded:
- Wear a positive-pressure supplied-air respirator with full facepiece.
- Have available emergency self-contained breathing apparatus or full-face airline respirator when using this chemical.

Hand protection

- Where there is a risk of contact with hands, use appropriate gloves
- Please observe the instructions regarding permeability and breakthrough time which are provided by the supplier of the gloves. Also take into consideration the specific local conditions under which the product is used, such as the danger of cuts, abrasion, and the contact time.
- Gloves must be inspected prior to use.
- Gloves should be discarded and replaced if there is any indication of degradation or chemical breakthrough.

Eye protection

- Eye and face protection requirements will vary dependent upon work environment conditions and material handling practices. Appropriate ANSI Z87 approved equipment should be selected for the particular use intended for this material
- Eye contact should be prevented through the use of:

PRCO90071021	
Version : 1.00 /	US (Z8)

www.solvay.com

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	131 of 143
	SAFETY DATA SHEET		
		WAXAID 19	
		Rev	ision Date 11/20/2017
 Footwear prote Impervious clot Full protectives 	preventive skin protection cting against chemicals hing	ation of the dangerous substance	e at the work place.
 should be taken 1) Do not store material is store 2) Wash hands 	he is an important work practice exposure contr when working with or handling this materials: use, and/or consume foods, beverages, tobace ad. and face carefully before eating, drinking, using ed skin promptly to remove accidental splashes	co products, or cosmetics in area g tobacco, applying cosmetics, or	s where this
 Emergency equ 	wash stations and safety showers are close to ipment immediately accessible, with instructior aquipment must be selected in accordance with	s for use.	

- nce with current local standards and in cooperation with the he prot equipi
- supplier of the protective equipment. Selection of appropriate personal protective equipment should be based on an evaluation of the performance characteristics of the protective equipment relative to the task(s) to be performed, conditions present, duration of use, and the potential hazards, and/or risks that may occur during use.

SECTION 9: Physical and chemical properties

Physical and Chemical properties here represent typical properties of this product. Contact the business area using the Product information phone number in Section 1 for its exact specifications.

9.1 Information on basic physical and chemical properties

<u>Appearance</u>	<u>Physical state:</u> <u>Color</u> :	liquid amber	
<u>Odor</u>	aromatic		
Odor Threshold	no data available		
рH	no data available		
Melting point/freezing point	no data available		
Initial boiling point and boiling range	> <u>Boiling point/boiling range</u> : 145 - 250 °F (63 - 121 °C)		
Flash point	77 °F (25 °C) closed cup		
	Flammability class: Flammable		
Evaporation rate (Butylacetate = 1)	no data available		
Flammability (solid, gas)	no data available		
Flammability (liquids)	no data available		
Flammability / Explosive limit	no data available		

PRCO90071021

Version : 1.00 / US (Z8) www.solvay.com

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	132 of 143
S	AFETY DATA SHEET		
		WAXAID 19	
		R	evision Date 11/20/2017
Autoignition temperature	no data available		
Vapor pressure	no data available		
Vapor density	3.34 (Air = 1.0)		
<u>Density</u>	7.57 LB/GAL		
Relative density	0.9		
Solubility	Water = 1 <u>Water solubility</u> : negligible		
Partition coefficient: n-octanol/water	no data available		
Decomposition temperature	no data available		
Viscosity	no data available		
Explosive properties Oxidizing properties	no data available no data available		
ther information			
no data available			
FION 10: Stability and reactivity			

10.1 Reactivity

- no data available

10.2 Chemical stability

- Stable under recommended storage conditions.

10.3 Possibility of hazardous reactions

polymerizationHazardous polymerization does not occur.

10.4 Conditions to avoid

- Keep away from heat and sources of ignition.
- Keep away from flames and sparks.
- Static electricity

10.5 Incompatible materials

- Strong oxidizing agents

10.6 Hazardous decomposition products

PRCO90071021 Version : 1.00 / US (Z8) www.solvay.com

ADM.	Date Issued	Document #	Version	Page
	2022-12-19	180.05.CO2.107	2.0	133 of 143
		SAFETY DATA SHEET		
			WAXAID 19	
			Revision	Date 11/20/2017
	Hazardous decompo - On combustion or on t - Carbon oxides - Nitrogen oxides (NOx) - Sulfur oxides	hermal decomposition (pyrolysis), relea	ses:	
	SECTION 11: Toxicological info			
	11.1 Information on toxicological e	ffects		
	Acute toxicity			
	Acute oral toxicity	Not classified as hazardous According to the available d According to the classification		3.
	Acute inhalation toxicity	Harmful if inhaled. According to the available d According to the classification	ata on the components on criteria for mixtures.	
	Acute dermal toxicity	According to the available d According to the classificati Harmful in contact with skin	on criteria for mixtures.	
	Acute toxicity (other routes of administration)	no data available		
	Skin corrosion/irritation	Causes skin irritation. According to the available d According to the classification		
	<u>Serious eye damage/eye irrita</u>	tion Risk of serious damage to e According to the available d According to the classification	ata on the components	

PRC090071021 Version : 1.00 / US (Z8) www.solvay.com

11 / 21

E

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	134 of 143
	SAFETY DATA SHEET		
		WAXAID 19	
		Rev	ision Date 11/20/2017
spiratory or skin sensitization			
Xylene	Maximization Test - Mouse Does not cause skin sensitiz Method: OECD Test Guidelir Published data		
Benzenesulfonic acid, C10-16-alkyl derivs., compds. with 2-propanamine	By analogy		
	Does not cause skin sensitiz Published data Unpublished reports	ation.	
Ethylbenzene	Repeated Insult Patch Test - Dermal Does not cause skin sensitiz Not classified as sensitising l Patch test on human volunte Published data		criteria tion properties.
Fatty acid dimethylamide	Local lymph node assay - M EC 3 value > 2 % Classified as a skin sensitize Method: OECD Test Guidelir Unpublished reports	er sub-category 1B according to G	GHS criteria
tagenicity			
enotoxicity in vitro	Product is not considered to According to the available da According to the classificatio	ata on the components	
enotoxicity in vivo	Product is not considered to According to the available da According to the classificatio	ata on the components	

PRC090071021 Version : 1.00 / US (Z8) www.solvay.com

12 / 21

ADM

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	135 of 143
	SAFETY DATA SHEET		
		WAXAID 19	
		Revi	sion Date 11/20/2017
Carcinogenicity			
Xylene	Rat , male and female Oral Exposure duration: 103 Wee NOAEL: > 500mg/kg bw/day Method: Directive 67/548/EE Published data		
Ethylbenzene	Rat , male and female Inhalation Exposure duration: 104 Week NOAEL: 0.325mg/kg bw/day Target Organs: Kidney Method: according to a standa Published data		
	Rat , male and female Inhalation Exposure duration: 104 Week LOAEL: 1.084mg/kg bw/dayTa Method: according to a standa Published data	arget Organs: Kidney	
	Mouse , male and female Inhalation Exposure duration: 103 Week NOAEC: 1.1mg/l Method: OECD Test Guideline Published data		

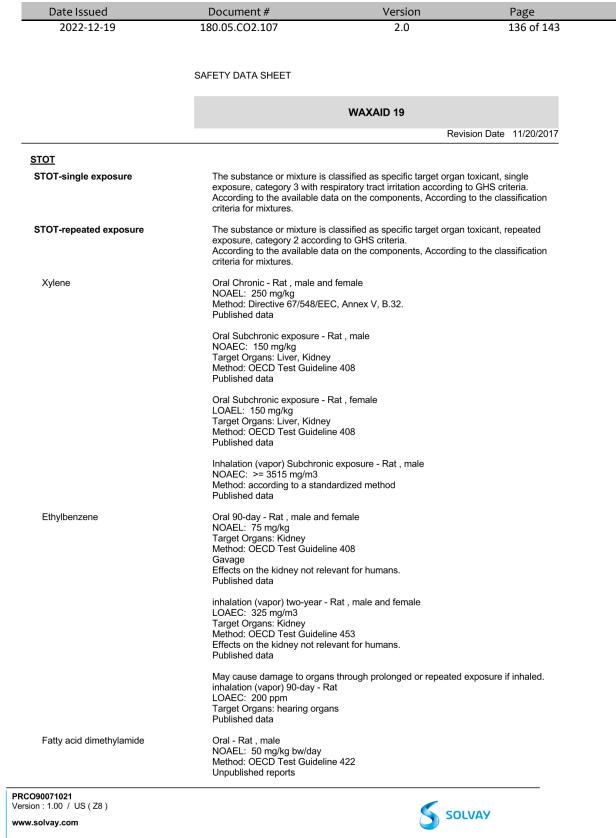
Ingredients	CAS-No.	Rating	Basis
Ethylbenzene		Group 2B: Possibly carcinogenic to humans	IARC

This product does not contain any ingredient designated as probable or suspected human carcinogens by:

NTP OSHA

Toxicity for reproduction and development

According to the available data on the components, The product is not considered to affect fertility., According to the classification criteria for mixtures.


Developmental Toxicity/Teratogenicity

Toxicity to reproduction / fertility

The product is not considered to be teratogenic., The product is not considered to be toxic for development., According to the available data on the components, According to the classification criteria for mixtures.

PRCO90071021 Version : 1.00 / US (Z8) www.solvay.com

Date Issued	Document #	Version	Page			
2022-12-19	180.05.CO2.107	2.0	137 of 143			
	SAFETY DATA SHEET					
		WAXAID 19				
		Rev	rision Date 11/20/2017			
<u>Neurological effects</u> Xylene	Rat, male and female, inhal	lation (vapor), Published data, OP	PTS 870.3800			
Experience with human exposure	no data available	no data available				
CMR effects						
Carcinogenicity Xylene	Animal testing did not show	any carcinogenic effects.				
Mutagenicity Xylene	Animal testing did not show	any mutagenic effects.				
Teratogenicity Xylene	Did not show teratogenic effects in animal experiments.					
Reproductive toxicity Xylene	Animal testing did not show	any effects on fertility.				
Aspiration toxicity		lata on the components, May be fa to the classification criteria for mix				
TION 12: Ecological information	1					

The product itself has not been tested.	
The product itself has not been tested.	
The product itself has not been tested.	
The product itself has not been tested.	
The product itself has not been tested.	
The product itself has not been tested.	
	The product itself has not been tested. The product itself has not been tested. The product itself has not been tested. The product itself has not been tested.

PRC090071021 Version : 1.00 / US (Z8) www.solvay.com

15/21

ADM'

Date Issued I	Document #	Version	Page
2022-12-19 18	30.05.CO2.107	2.0	138 of 14
SAF	ETY DATA SHEET		
	W	AXAID 19	
		Revi	sion Date 11/20/201
Chronic Toxicity to aquatic plants	The product itself has not been teste	ed.	
Terrestrial Compartment			
Toxicity to soil dwelling organisms	The product itself has not been teste	ed.	
Toxicity to terrestrial plants	The product itself has not been teste	ed.	
Toxicity to above ground organisms	The product itself has not been teste	ed.	
12.2 Persistence and degradability			
Abiotic degradation	no data available		
Physical- and photo-chemical elimination	no data available		
Biodegradation	no data available		
12.3 Bioaccumulative potential			
Partition coefficient: n-octanol/water	no data available		
Bioconcentration factor (BCF)	no data available		
12.4 Mobility in soil			
Adsorption potential (Koc)	no data available		
Known distribution to environmental compartments	no data available		
12.5 Results of PBT and vPvB assessment	no data available		
12.6 Other adverse effects			
Ecotoxicity assessment			
Acute aquatic toxicity	According to the available data on the Toxic to aquatic life. According to the classification criteri		
	According to the available data on the Harmful to aquatic life with long lasti According to the classification criteri	ing effects.	

PRC090071021 Version : 1.00 / US (Z8) www.solvay.com

Date Issued	Document #	Version	Page		
2022-12-19	180.05.CO2.107	2.0	139 of 14		
	SAFETY DATA SHEET				
	SAFEIT DATA SHEET				
		WAXAID 19			
		Rev	ision Date 11/20/201		
SECTION 13: Disposal considerat	ions				
13.1 Waste treatment methods <u>Product Disposal</u>					
 Chemical additions, proce presented in this SDS incorrequirements for waste dis 	essing or otherwise altering this mater omplete, inaccurate or otherwise inap sposal may be more restrictive or othe s regarding the proper disposal of this	propriate. Please be advised that erwise different from federal laws	state and local		
Waste Code					
 Environmental Protection Hazardous Waste – YES 	Agency				
 RCRA Hazardous Waste (D001 - Ignitable waste – (I 					
Advice on cleaning and disposal	of packaging				
- Rinse with an appropriate		aa			
- Dispose of contents/conta	iner in accordance with local regulation	JII.			
·		JII.			
SECTION 14: Transport information	- on				
·	on atements below provide additional dat	a on listed transport classification			
SECTION 14: Transport information Transportation status: IMPORTANT! Sta The listed Transportation Classification	on atements below provide additional dat	a on listed transport classification			
SECTION 14: Transport informatic Transportation status: IMPORTANT! Sta The listed Transportation Classification other regulatory descriptors.	on atements below provide additional dat	a on listed transport classification			
SECTION 14: Transport informatic Transportation status: IMPORTANT! Sta The listed Transportation Classification other regulatory descriptors.	on atements below provide additional dat does not address regulatory variatio UN 1993	a on listed transport classification			
SECTION 14: Transport informatic Transportation status: IMPORTANT! Sta The listed Transportation Classification other regulatory descriptors. DOT 14.1 UN number	on atements below provide additional dat does not address regulatory variatio UN 1993	a on listed transport classification ns due to changes in package s			
SECTION 14: Transport informatic Transportation status: IMPORTANT! Sta The listed Transportation Classification other regulatory descriptors. DOT 14.1 UN number 14.2 Proper shipping name 14.3 Transport hazard class Label(s) 14.4 Packing group	Dn atements below provide additional dat does not address regulatory variation UN 1993 FLAMMABLE LIQUIDS, 3 3	a on listed transport classification ns due to changes in package s			
SECTION 14: Transport informatic Transportation status: IMPORTANT! Sta The listed Transportation Classification other regulatory descriptors. DOT 14.1 UN number 14.2 Proper shipping name 14.3 Transport hazard class Label(s)	on atements below provide additional dat does not address regulatory variatio UN 1993 FLAMMABLE LIQUIDS, 3	a on listed transport classification ns due to changes in package s			
SECTION 14: Transport informatic Transportation status: IMPORTANT! Sta The listed Transportation Classification other regulatory descriptors. DOT 14.1 UN number 14.2 Proper shipping name 14.3 Transport hazard class Label(s) 14.4 Packing group Packing group	on atements below provide additional dat does not address regulatory variatio UN 1993 FLAMMABLE LIQUIDS, 3 3 111	a on listed transport classification ns due to changes in package s			
SECTION 14: Transport informatic Transportation status: IMPORTANT! Sta The listed Transportation Classification other regulatory descriptors. DOT 14.1 UN number 14.2 Proper shipping name 14.3 Transport hazard class Label(s) 14.4 Packing group Packing group ERG No 14.5 Environmental hazards	Dn tements below provide additional dat does not address regulatory variation UN 1993 FLAMMABLE LIQUIDS, 3 3 111 128	a on listed transport classification ns due to changes in package s			
SECTION 14: Transport informatic Transportation status: IMPORTANT! Sta The listed Transportation Classification other regulatory descriptors. DOT 14.1 UN number 14.2 Proper shipping name 14.3 Transport hazard class Label(s) 14.4 Packing group Packing group ERG No 14.5 Environmental hazards Marine pollutant 14.6 Special precautions for user This product contains one or more ingree	on tements below provide additional dat does not address regulatory variatio UN 1993 FLAMMABLE LIQUIDS, 3 3 III 128 NO dients identified as a hazardous subs	a on listed transport classification ins due to changes in package s N.O.S. (Xylene, Ethylbenzene) tance in Appendix A of 49 CFR 1	ze, mode of shipmen		
SECTION 14: Transport informatic Transportation status: IMPORTANT! Sta The listed Transportation Classification other regulatory descriptors. DOT 14.1 UN number 14.2 Proper shipping name 14.3 Transport hazard class Label(s) 14.4 Packing group Packing group ERG No 14.5 Environmental hazards Marine pollutant 14.6 Special precautions for user	Dn tements below provide additional dat does not address regulatory variatio UN 1993 FLAMMABLE LIQUIDS, 3 3 III 128 NO dients identified as a hazardous subs the RQ requirements under 49 CFR f : RQ substance: Xylene	a on listed transport classification ns due to changes in package s N.O.S. (Xylene, Ethylbenzene) tance in Appendix A of 49 CFR 1 for each hazardous substance is s	ze, mode of shipmen		
SECTION 14: Transport informatic Transportation status: IMPORTANT! Sta The listed Transportation Classification other regulatory descriptors. DOT 14.1 UN number 14.2 Proper shipping name 14.3 Transport hazard class Label(s) 14.4 Packing group Packing group ERG No 14.5 Environmental hazards Marine pollutant 14.6 Special precautions for user This product contains one or more ingred quantity, in one package, which triggers	Dn tements below provide additional dat does not address regulatory variation UN 1993 FLAMMABLE LIQUIDS, 3 3 III 128 NO dients identified as a hazardous subs the RQ requirements under 49 CFR f	a on listed transport classification ns due to changes in package s N.O.S. (Xylene, Ethylbenzene) tance in Appendix A of 49 CFR 1 for each hazardous substance is s	ze, mode of shipmen		
SECTION 14: Transport informatic Transportation status: IMPORTANT! Sta The listed Transportation Classification other regulatory descriptors. DOT 14.1 UN number 14.2 Proper shipping name 14.3 Transport hazard class Label(s) 14.4 Packing group Packing group ERG No 14.5 Environmental hazards Marine pollutant 14.6 Special precautions for user This product contains one or more ingred quantity, in one package, which triggers	on tements below provide additional dat does not address regulatory variatio UN 1993 FLAMMABLE LIQUIDS, 3 3 III 128 NO dients identified as a hazardous subs the RQ requirements under 49 CFR f : RQ substance: Xylene RQ limit for substance: 1	a on listed transport classification ns due to changes in package s N.O.S. (Xylene, Ethylbenzene) tance in Appendix A of 49 CFR 1 for each hazardous substance is s 00 lb lb	ze, mode of shipmen		
SECTION 14: Transport informatic Transportation status: IMPORTANT! Sta The listed Transportation Classification other regulatory descriptors. DOT 14.1 UN number 14.2 Proper shipping name 14.3 Transport hazard class Label(s) 14.4 Packing group Packing group ERG No 14.5 Environmental hazards Marine pollutant 14.6 Special precautions for user This product contains one or more ingred quantity, in one package, which triggers	Dn tements below provide additional dat does not address regulatory variation UN 1993 FLAMMABLE LIQUIDS, 3 3 III 128 NO dients identified as a hazardous subs the RQ requirements under 49 CFR f : RQ substance: Xylene RQ limit for substance: 1 RQ substance: Ethylben: RQ substance: Ethylben: RQ substance: Ethylben: RQ limit for substance: 1	a on listed transport classification ins due to changes in package s N.O.S. (Xylene, Ethylbenzene) tance in Appendix A of 49 CFR 11 for each hazardous substance is s 00 lb lb zene ,000 lb 556 lb	ze, mode of shipmen		

Cherry Control of Cont				
ADM'	Date Issued	Document #	Version	Page
	2022-12-19	180.05.CO2.107	2.0	140 of 143
		SAFETY DATA SHEET		
			WAXAID 19	
			Revisio	n Date 11/20/2017
	TDG			
	14.1 UN number	UN 1993		
	14.2 Proper shipping name	FLAMMABLE LIQUID,	N.O.S. (Xylene, Ethylbenzene)	
	14.3 Transport hazard class Label(s)	3 3		
	14.4 Packing group Packing group ERG No	III 128		
	14.5 Environmental hazards Marine pollutant	NO		
	NOM no data available			
	IMDG			
	14.1 UN number	UN 1993		
	14.2 Proper shipping name	FLAMMABLE LIQUID,	N.O.S. (Xylene, Ethylbenzene)	
	14.3 Transport hazard class Label(s)	3 3		
	14.4 Packing group Packing group	Ш		
	14.5 Environmental hazards Marine pollutant	NO		
	14.6 Special precautions for user EmS	F-E , S-E		
	For personal protection see section 8.			

PRC090071021 Version : 1.00 / US (Z8) www.solvay.com

18 / 21

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	141 of 143
	SAFETY DATA SHEET		
		WAXAID 19	
		Revis	sion Date 11/20/2017
ATA			
14.1 UN number	UN 1993		
14.2 Proper shipping name	FLAMMABLE LIQUID,	N.O.S. (Xylene, Ethylbenzene)	
14.3 Transport hazard class Label(s):	3 3		
14.4 Packing group Packing group	Ш		
Packing instruction (cargo aircraft) Max net qty / pkg Packing instruction (passenger aircraft) Max net qty / pkg	366 220.00 L 355 60.00 L		
14.5 Environmental hazards	NO		

Note: The above regulatory prescriptions are those valid on the date of publication of this sheet. Given the possible evolution of transportation regulations for hazardous materials, it would be advisable to check their validity with your sales office.

SECTION 15: Regulatory information

15.1 Notification status

Inventory Information	Status
United States TSCA Inventory	- Listed on Inventory
Canadian Domestic Substances List (DSL)	- Listed on Inventory
Australia Inventory of Chemical Substances (AICS)	- Listed on Inventory
Japan. CSCL - Inventory of Existing and New Chemical Substances	- One or more components not listed on inventory
Korea. Korean Existing Chemicals Inventory (KECI)	- One or more components not listed on inventory
China. Inventory of Existing Chemical Substances in China (IECSC)	- One or more components not listed on inventory
Philippines Inventory of Chemicals and Chemical Substances (PICCS)	- One or more components not listed on inventory
Taiwan Chemical Substance Inventory (TCSI)	- Listed on Inventory

PRCO90071021 Version : 1.00 / US (Z8) www.solvay.com

19 / 21

Date Issued	Document #	Version	Page	
2022-12-19	180.05.CO2.107	2.0	142 of 143	

SAFETY DATA SHEET

WAXAID 19

Revision Date 11/20/2017

15.2 Federal Regulations

US. EPA EPCRA SARA Title III

SARA HAZARD DESIGNATION SECTIONS 311/312 (40 CFR 370)

Fire Hazard	yes
Reactivity Hazard	no
Sudden Release of Pressure Hazard	no
Acute Health Hazard	yes
Chronic Health Hazard	yes

Section 313 Toxic Chemicals (40 CFR 372.65)

The following components are subject to reporting levels established by SARA Title III, Section 313:

Ingredients	CAS-No.	Concentration
Xylene	1330-20-7	70- 90%
Ethylbenzene	100-41-4	5- 10%

Section 302 Emergency Planning Extremely Hazardous Substance Threshold Planning Quantity (40 CFR 355) This material does not contain any components with a section 302 EHS TPQ.

Section 302 Emergency Planning Extremely Hazardous Substance Reportable Quantity (40 CFR 355) This material does not contain any components with a SARA 302 RQ.

Section 304 Emergency Release Notification Reportable Quantity (40 CFR 355) This material does not contain any components with a section 304 EHS RQ.

US. EPA CERCLA Hazardous Substances and Reportable Quantities (40 CFR 302.4)

Ingredients	CAS-No.	Reportable quantity
Xylene	1330-20-7	100 lb
Selenium	7782-49-2	100 lb
Selenium	7782-49-2	10 lb

15.3 State Regulations

US. California Safe Drinking Water & Toxic Enforcement Act (Proposition 65)

WARNING! This product contains a chemical known in the State of California to cause cancer.

Ingredients	CAS-No.
Ethylbenzene	100-41-4
Arsenic	7440-38-2
Methanamine, N-methyl-N-nitroso-	62-75-9

SECTION 16: Other information

NFPA (National Fire Protection Association) - Classification

Health Flammability

Instability or Reactivity

2 moderate 3 Liquids and solids that can be ignited under almost all ambient temperature conditions. 0 minimal

PRCO90071021 Version : 1.00 / US (Z8)

www.solvay.com

20 / 21

Date Issued	Document #	Version	Page
2022-12-19	180.05.CO2.107	2.0	143 of 143
	SAFETY DATA SHEET		
		WAXAID 19	
		Revis	sion Date 11/20/2017
Flammability Reactivity PPE	3 serious 0 minimal Determined by User	; dependent on local conditions	
Date Prepared: 11/20/2	017 ons and acronyms used in the safety data	a sheet	
- ST - STEL - TWA - ACGIH - OSHA - NTP - IARC - NIOSH	STEL - 15-minute TWA exposure that a Short-term exposure limit 8-hour, time-weighted average American Conference of Governmenta Occupational Safety and Health Admin National Toxicology Program International Agency for Research on C National Institute for Occupational Safe	should not be exceeded at any tim I Industrial Hygienists istration Cancer	ne during a workday

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information, and belief at the date of its publication. Such information is only given as a guidance to help the user handle, use, process, store, transport, dispose, and release the product in satisfactory safety conditions and is not to be considered as a warranty or quality specification. It should be used in conjunction with technical sheets but do not replace them. Thus, the information only relates to the designated specific product and may not be applicable if such product is used in combination with other materials or in any other manufacturing process, unless otherwise specifically indicated. It does not release the user from ensuring he is in conformity with all regulations linked to its activity.

PRCO90071021 Version : 1.00 / US (Z8) www.solvay.com

21 / 21

ADM'

Date Issued	Document #	Version	Page	
2023-03-24	180.05.CO2.206	6.0	1 of 8	

Approved By: Plant Manager Alcohol Superintendent

1.0 Scope

1.1 The CCS2 well can experience particulate fouling of the perforations leading to higher downhole tubing pressure. The higher downhole pressure reaches the limit of 4,125 PSIA at progressively lower injection rates. A controlled backflow of the well will displace the particulates from the well perforations and allow them to settle to the bottom of the wellbore.

2.0 Definitions

- 2.1 CCS2: Carbon Capture Sequestration Injection Well #2
- 2.2 **RF8:** Location RF8 is the building associated with CO2 Phase 2 blowers and compression
- 2.3 **PPE:** Personal Protective Equipment

3.0 Responsibilities

3.1 CCS Project Manager (PM):

- 3.1.1 Oversees the operation of the CO2 well injection process and backflow operation.
- 3.1.2 Ensures operability of radio communication and maintains communication with all affected colleagues: at the well, production personnel monitoring the parameters of the well, ADM Security and others as applicable.
- 3.1.3 Monitors atmospheric conditions to ensure adequacy prior to commencement of the backflow operation.
- 3.1.4 Maintains responsibility for work conducted on the CCS2 equipment.
- 3.1.5 Ensures all necessary tools and equipment are on site.
- 3.1.6 In conjunction with the S/E Manager, will determine the level of PPE required for the backflow operation and will ensure personnel on site are trained and/or certified on the use of PPE. If warranted by the environmental conditions, the CCS and S/E managers may designate backup personnel wearing supplied breathing air to block in the well.
- 3.1.7 Confirms nitrogen supply at well site. Nitrogen is required to open the automatic upper master valve.
- 3.1.8 Communicates the backflow operation date and time to Richland Community College (RCC).
- 3.1.9 Coordinates with ADM Security to ensure security personnel are available during times of the backflow operation to limit access to the well site.

3.2 Safety/Environmental (S/E) Manager:

3.2.1 Confirms personal CO2 monitors are available for all personnel at the wellsite during backflow operations.

Date Issued	Document #	Version	Page	
2023-03-24	180.05.CO2.206	6.0	2 of 8	

- 3.2.2 Confirms all on site CO2 atmospheric monitors are operating properly and in good working order.
- 3.2.3 Confirms all personnel at the well site have adequate PPE including, but not limited to, hard hat, goggles, long sleeve shirts, gloves with a cut rating of 2 or higher, and double hearing protection (ear plugs and soundproof earmuffs).
- 3.2.4 Conducts a Job Safety Analysis (JSA) form on the day of the event prior to the back flow operation.
- 3.2.5 Maintains full authority to stop operations at any time during the backflow operation.

3.3 Engineer in Charge

3.3.1 Strictly focuses on incoming and outgoing communications as needed.

3.4 ADM Security:

- 3.4.1 Limits access to the road entrance to the well site.
- 3.4.2 Ensures constant monitoring of backflow operation radio communication.
- 3.4.3 Maintains constant radio communication with the CCS PM and S/E Manager for the duration of the backflow operation.

4.0 Potential Hazards

- **4.1 Carbon dioxide (CO2):** Carbon Dioxide gas is colorless. At low concentrations, the gas is odorless. At higher concentrations it has a sharp, acidic odor. It will act as an asphyxiant and an irritant. Carbon Dioxide is a powerful cerebral dilator. At concentrations between 2 and 10%, Carbon Dioxide can cause nausea, dizziness, headache, mental confusion, increased blood pressure and respiratory rate. Above 8% nausea and vomiting appear. Above 10%, suffocation and death can occur within minutes. Contact with the cold gas can cause freezing of exposed tissue. Moisture in the air can lead to formation of carbonic acid that can irritate the eyes. All forms of Carbon Dioxide are noncombustible. Carbon Dioxide is heavier than air and should not be allowed to accumulate in low lying areas.
- **4.2 Noise:** The CO2 backflow operation will produce noise levels in excess of 85 decibels. Noise levels above 85 decibels can cause permanent damage to the hair cells in the inner ear, leading to hearing loss. It is required by OSHA to wear double hearing protection consisting of ear plugs and earmuffs when noise levels reach 140 decibels or more.
- **4.3 Particulate:** The backflow operation may produce minor levels of sandy particulate to be suspended in the air. The operation should be stopped at the discretion of the S/E Manager if particulate levels are higher than expected.
- **4.4 Temperature**: A pressure drop in the lower assembly causes it to become cold. If temperatures extend outside the backflow range, particularly below -10°F, operations will begin to close the valve to decrease the flowback operation.
 - **Operating Range**: Wellhead valves have an operating range of -20° to 1,300°F.
 - **During Backflow**: Typically, 0° to 5°F.

IMPORTANT: All activity shall cease if temperature falls below -10°F.

- 4.5 Pressure:
 - **Operational Rating**: All wellhead valves except the bottom casing flange are rated up to 5,000 PSIG. The bottom casing flange is rated up to 3,000 PSIG.
 - During Backflow: 135 PSIG or less.

Date Issued	Document #	Version	Page	
2023-03-24	180.05.CO2.206	6.0	3 of 8	

IMPORTANT: All activity <u>shall cease</u> if pressure exceeds 3,000 PSIG.

4.6 Emergency and Remedial Response: In the event that the Backflow Emergency and Remedial Response Plan (180.05.CO2.207 CCS Backflow Emergency and Remedial Response Plan) is activated and/or followed, ADM shall implement the verbal and written reporting requirements set forth in Section N(3) of Permit #IL-115-6A-0001.

5.0 Procedure

- **5.1** CCS PM and S/E Manager confirms all site conditions are met before proceeding with backflow operationtemperature and wind conditions are conducive to CO2 mixing in atmosphere. Because multiple factors can affect these criteria, they will determine if the site conditions allow safe operation or additional PPE and/or monitoring instruments are necessary to perform the operation. The general environmental conditions considered optimal for this activity are as follows:
 - 5.1.1 Temperature greater than or equal to 40°F and 5 mph wind speed, or
 - 5.1.2 Temperature less than 40°F and wind speed greater than 10 mph.
- **5.2** All personnel at well site on day of backflow operation must participate in the review of a Job Safety Analysis (JSA) led by the S/E Manager.
 - 5.2.1 At any time during the backflow operation, the S/E Manager has full authority to stop operation.
- **5.3** S/E Manager confirms all colleagues at well site have proper PPE and personal CO2 monitors.
- 5.4 CCS PM and S/E Manager conduct a test of the automatic (upper) valve to verify closure.
- **5.5** After verifying valve closure, open the automatic (upper) valve.
- 5.6 CCS PM verifies radio communication is operational between all affected personnel.
- 5.7 CCS PM informs ADM Security to limit public access to the road entrance to the well site.
- 5.8 CCS PM informs ADM Security GSOC operations will begin.
- **5.9** CCS PM coordinates stopping well injection at the plant.
- **5.10** CCS PM communicates their intention to commence the backflow operation.
- **5.11** S/E Manager assesses the area confirming no colleagues are downwind of the wellinjection valve.
- 5.12 S/E Manager provides confirmation backflow operation may begin.
- **5.13** CCS PM ensures radio communication with CO2 Operator and that they are standing by at RF8 Control Room. CCS PM confirms phone communication as a backup method.
- **5.14** CCS PM continuously monitors operation of surface and downhole sensors (e.g., pressure, temperature) during and after the backflow operations.
- 5.15 <u>Close</u> the Lower Master Valve and record number of turns (29.5) for closure.
- **5.16** Disengage the open Automatic (Upper) Master Valve by deactivating the local solenoid or engaging a mechanical locking device. In either case, field personnel will be able to manually activate these devices if the valve is needed for well isolation.
- 5.17 <u>**Close**</u> the Injection Wing Valve and record number of turns (29) for closure.
- 5.18 Check the top cap making sure it is secure and tight.

Date Issued	Document #	Version	Page	
2023-03-24	180.05.CO2.206	6.0	4 of 8	

- 5.19 Check the position of the Crown Valve by opening the valve 5 turns and fully closing the valve. The valve is in the <u>closed</u> position.
- **5.20** Open the Needle Valve located above the Crown Valve. Allow pressure to bleed off the upper section of the wellhead (above the Crown Valve).
- **5.21** After pressure is bled from the upper section of the wellhead, slowly remove the top cap located above the Crown Valve (Operator has the option to install a choke or throttle valve on top of wellhead or diversion connection and valve from secondary wing valve).
- **5.22** Ensure all personnel onsite are prepared for commencement of backflow operation.
 - 5.22.1 Check in with all key personnel off site via Radio or Telephone to inform them backflow operation will begin.
 - 5.22.2 CCS PM ensures all conditions are met and all are personnel are ready.
 - 5.22.3 Engineer in charge is on site and will strictly focus on incoming andoutgoing communications as needed.
 - 5.22.4 S/E Manager confirms all onsite personnel are wearing the proper PPE and prepared for operating and communicating in a loud environment
 - 5.22.5 Remove all unnecessary vehicles proximate or downwind of the wellhead as someliquids or fines may possibly settle.

Backflow Operation Commencement

- **5.23 Slowly** open the Crown Valve allowing the pressure above the Lower Master Valve to bleed off. Record the number of turns (29) required to open the valve.
- **5.24 Quickly** open Lower Master Valve counting the number of turns (29.5 turns) to open (matching recorded turns in step 5.15) and observing the developing CO2 plume.
- **5.25** Back flow the well for the allotted time period.
- **5.26** Monitor atmospheric conditions at the wellhead via CO2 monitors.
- **5.27** Maintain all personnel (not monitoring environmental conditions) upwind.
- 5.28 Quickly close Lower Master Valve (29.5 turns).
- **5.29** Allow reservoir pressure to recover for the allotted time period.
- 5.30 Repeat step 5.24.
- **5.31** Engineer in charge will designate the number of valve cycles that will be conducted during the backflow period.
- **5.32** Engineer in charge may elect to suspend venting if environmental or operating conditions deteriorate.
- **5.33** Monitor DTS temperature profile and wellhead temperature and pressure.
- **5.34** Maintain communications with the Control Room CO2 Operator.
- **5.35** Maintain communications with security rover with CO2 monitors that aremonitoring environmental conditions.
- **5.36** Secure additional areas as needed.
- 5.37 Upon completion of the valve cycling, on the last open cycle, allow the well to back flow

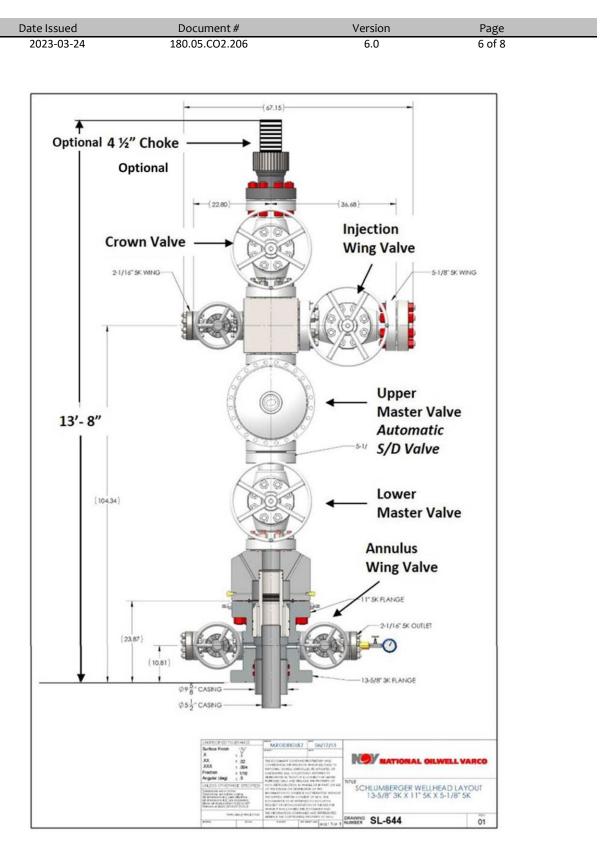
Date Issued	Document #	Version	Page	
2023-03-24	180.05.CO2.206	6.0	5 of 8	

for the allotted time (to displace all material in the wellbore).

- **5.38** Close the Lower Master Valve counting the turns (29.5).
- **5.39** Close the Crown Valve counting the turns (29).
- **5.40** Continue monitoring site conditions for an additional 30 minutes.
- **5.41** At this point, the backflow operation is complete and the engineer in charge will determine the time and coordinate the starting of injection operations.

6.0 Required Training

6.1 Supplied Air Respirator Fit Testing: Personnel using supplied air respirator equipment are trained on the proper fitting and operation of the supplied air respirator.


7.0 Records

- **7.1 Carbon Dioxide Venting Calculation:** The amount of CO2 emitted to the atmosphere must be calculated to be included on the greenhouse gas report for submittal the following year.
- **7.2 Particulate Matter Venting Calculation:** The amount of particulate matter estimated to be emitted to the atmosphere must be calculated to demonstrate the backflow operation is insignificant and an air construction permit is not required to be issued prior to the operation.
- **7.3 Job Safety Analysis:** A completed JSA form must be reviewed by all affected colleagues prior to the start of the backflow operation.
- **7.4 Air Supply Respirator Training:** Training records will be available upon request for the personnel wearing a supplied air respirator.

8.0 References - None

- 9.0 Figures
 - 9.1 Figure 1: CCS#2 Well Head Diagram

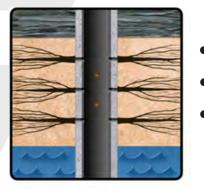
	Date Issued	Document #	Version	Page	
_	2023-03-24	180.05.CO2.206	6.0	7 of 8	

10.0 Attachments

10.1 Job Safety Analysis

10.1.1 Front

1	JOB 🕄 🕺	SAF	ETY ANAL	(SIS (JSA)) N°	
Dep	partment/Area/Floor:			Date:	_/	_1	Time::	h
	k/Job name:			ιħ.			ŵ	
les	scription of the work:							
ar	ticipants (print names):							
_			POTENTIA	L HAZARDS				
1	Slips, trips or falls from same level (surface condition,	11	Electricity (shock, fire, arc fi	Notice and the second second	21		hysical effort, weig	ght, position, duration,
+	slippery floor, lack of housekeeping) Fall from height or into pit or floor opening		energy, static)			shape)	uca of machanical	(aquinment)
2	(scaffolds, ladder) Hit by projectile or defleected objects (disintegration,	12	Hot or cold material, equip		22			ng, reaching, force,
3	rupture, debries)	13	Chemical (irritant, toxic, pois		23	repetitive)		
4	Hit from above (falling or collapsing object or product)	14	Atmospheric (dust, toxic, po	ison, lack of oxygen)	24		8	pace to work or rescue)
5	Contacted by (animals, insects, plants, chemicals, product)	15	Static energy (shock, ignitio	A David Constraint.	25	Weather condition flood, wind)	in (excessive heat,	, snow, ice, rain, lightning,
6	Caught in or between, being drawn in (movable parts)	16	springs, mechanical releases		26	Biological (Patho	gens, hygiene, bac	teria, pest control, mold)
7	Sharp edges, stabbing, puncturing (equipment or tools)	17	Fire, explosion (flammable li suspension, mechanical relea	iquid or gas, vapor, dust in ises)	27	Radiation (Ionizin	g, non-ionizing, las	ser, electromagnetic)
8	Pinch, crush	18	Excavation (collapse, egress	s, underground utilities, trenching	ig) 28	Environmental (c	ontamination of air	r, water or soil)
9	Struck by (collision, impact with fixed object or vehicles)	19	Noise, vibration (continuous	s, intermittent, impact)	29	Product contami	nation	
0	Lighting, visibility, reflections, glare	20	Engulfment, entrapment (p configuration, excavation)	roduct, moving equipment or	30			
				ESSMENT TOOL				
ISA	Work Permit Requirements: Unacceptable level of risk. Task should not be performed at curre	nt risk lev		L - LIKELIHOOD (CO	NSIDERI	NG THE SAFEGUARD	IS)	
12:	Requires review from reporting level above plant manager.	it monthow						
	9: Requires review by management.		Control measure non existent or inadequate	Control measure exists,		Aultiple control me		Multiple control
8 - 1 4 - 1 1 - 3	 Requires review by management. Review by management is recommended. Trained participants can perform task without further approval. 		existent or inadequate	effectiveness is not guara		effectiveness is n	ot guaranteed	measures are effectiv
8 - 1 4 - 1 1 - 3	 Review by management is recommended. Trained participants can perform task without further approval. ry effort should be made to reduce the risk to below 8. 		existent or inadequate	effectiveness is not guara Occasional		efféctiveness is n Improb:	ot guaranteed	measures are effectiv
8 - 1 4 - 1 1 - 3 Evei	 Review by management is recommended. Trained participants can perform task without further approval. 	4	existent or inadequate	effectiveness is not guara		effectiveness is n	ot guaranteed	measures are effectiv
8 - 1 4 - 1 1 - 3 Evei	6: Review by management is recommended. 3: Trained participants can perform task without further approval. ry effort should be made to reduce the risk to below 8. S - Injury Severity	4	existent or inadequate Likely 4	effectiveness is not guara Occasional 3		effectiveness is n Improba 2	ot guaranteed	measures are effective Very Unlikely
8 - 9 4 - 0 1 - 3 Evei Cata /ery	6: Review by management is recommended. 3: Trained participants can perform task without further approval. ry effort should be made to reduce the risk to below 8. S - Injury Severity astrophie: Fatalities or incapacitating cases.	-	existent or inadequate Likely 4 16	effectiveness is not guará Occasional 3 12		effectiveness is n Improba 2 8	ot guaranteed	measures are effective Very Unlikely
8 - 1 4 - 1 1 - 3 Even Cata /ery Seri	6: Review by management is recommended. 3: Trained participants can perform task without further approval. ry effort should be made to reduce the risk to below 8. S - Injury Severity astrophic: Fatalities or incapacitating cases. { Serious: Permanent disability, but not incapacitating.	3	existent or inadequate Likely 4 16 12	effectiveness is not guará Occasional 3 12 9		effectiveness is n Improb: 2 8 6	ot guaranteed	measures are effectiv Very Unlikely 1 4 3
8 - 1 4 - 1 1 - 3 Even Cata /ery Seri	6: Review by management is recommended. 3: Trained participants can perform task without further approval. ry effort should be made to reduce the risk to below 8. S - Injury Severity astrophic: Fatalities or incapacitating cases. Y Serious: Permanent disability, but not incapacitating. ous: Lost or restricted work day cases. or: Medical treatment or first aid cases (recordable and below P SEQUENCE OF	3 2 1	existent or inadequate Likely 4 16 12 8	effectiveness is not guara Occasional 3 12 9 6 3	SAFE PF	effectiveness is n Improba 2 8 6 4	ot guaranteéd able	measures are effective Very Unlikely 1 4 3 2
ata ieri Inin	6: Review by management is recommended. 3: Trained participants can perform task without further approval. ry effort should be made to reduce the risk to below 8. S - Injury Severity astrophic: Fatalities or incapacitating cases. Y Serious: Permanent disability, but not incapacitating. ous: Lost or restricted work day cases. or: Medical treatment or first aid cases (recordable and below P SEQUENCE OF	3 2 1	existent or inadequate Likely 4 16 12 8 8 4	effectiveness is not guara Occasional 3 12 9 6 3 3 8	SAFE PF	effectiveness is n Improb: 2 8 6 4 2 ACTICES / CONTRI	ot guaranteéd able	measures are effective Very Unlikely 1 4 3 2 2 1 1 L RISK
ata ery lin	6: Review by management is recommended. 3: Trained participants can perform task without further approval. ry effort should be made to reduce the risk to below 8. S - Injury Severity astrophic: Fatalities or incapacitating cases. Y Serious: Permanent disability, but not incapacitating. ous: Lost or restricted work day cases. or: Medical treatment or first aid cases (recordable and below P SEQUENCE OF	3 2 1	existent or inadequate Likely 4 16 12 8 8 4	effectiveness is not guara Occasional 3 12 9 6 3 3 8	SAFE PF	effectiveness is n Improb: 2 8 6 4 2 ACTICES / CONTRI	ot guaranteéd able	measures are effective Very Unlikely 1 4 3 2 2 1 1 L RISK
ata ieri Inin	6: Review by management is recommended. 3: Trained participants can perform task without further approval. ry effort should be made to reduce the risk to below 8. S - Injury Severity astrophic: Fatalities or incapacitating cases. Y Serious: Permanent disability, but not incapacitating. ous: Lost or restricted work day cases. or: Medical treatment or first aid cases (recordable and below P SEQUENCE OF	3 2 1	existent or inadequate Likely 4 16 12 8 8 4	effectiveness is not guara Occasional 3 12 9 6 3 3 8	SAFE PF	effectiveness is n Improb: 2 8 6 4 2 ACTICES / CONTRI	ot guaranteéd able	measures are effective Very Unlikely 1 4 3 2 2 1 1 L RISK
- I - I vei ata ery eri lin	6: Review by management is recommended. 3: Trained participants can perform task without further approval. ry effort should be made to reduce the risk to below 8. S - Injury Severity astrophic: Fatalities or incapacitating cases. Y Serious: Permanent disability, but not incapacitating. ous: Lost or restricted work day cases. or: Medical treatment or first aid cases (recordable and below P SEQUENCE OF	3 2 1	existent or inadequate Likely 4 16 12 8 8 4	effectiveness is not guara Occasional 3 12 9 6 3 3 8	SAFE PF	effectiveness is n Improb: 2 8 6 4 2 ACTICES / CONTRI	ot guaranteéd able	measures are effective Very Unlikely 1 4 3 2 2 1 1 L RISK
- I - I vei ata ery eri lin	6: Review by management is recommended. 3: Trained participants can perform task without further approval. ry effort should be made to reduce the risk to below 8. S - Injury Severity astrophic: Fatalities or incapacitating cases. Y Serious: Permanent disability, but not incapacitating. ous: Lost or restricted work day cases. or: Medical treatment or first aid cases (recordable and below P SEQUENCE OF	3 2 1	existent or inadequate Likely 4 16 12 8 8 4	effectiveness is not guara Occasional 3 12 9 6 3 3 8	SAFE PF	effectiveness is n Improb: 2 8 6 4 2 ACTICES / CONTRI	ot guaranteéd able	measures are effective Very Unlikely 1 4 3 2 2 1 1 L RISK
ata ery lin	6: Review by management is recommended. 3: Trained participants can perform task without further approval. ry effort should be made to reduce the risk to below 8. S - Injury Severity astrophic: Fatalities or incapacitating cases. Y Serious: Permanent disability, but not incapacitating. ous: Lost or restricted work day cases. or: Medical treatment or first aid cases (recordable and below P SEQUENCE OF	3 2 1	existent or inadequate Likely 4 16 12 8 8 4	effectiveness is not guara Occasional 3 12 9 6 3 3 8	SAFE PF	effectiveness is n Improb: 2 8 6 4 2 ACTICES / CONTRI	ot guaranteéd able	measures are effective Very Unlikely 1 4 3 2 2 1 1 L RISK
ata ery lin	6: Review by management is recommended. 3: Trained participants can perform task without further approval. ry effort should be made to reduce the risk to below 8. S - Injury Severity astrophic: Fatalities or incapacitating cases. Y Serious: Permanent disability, but not incapacitating. ous: Lost or restricted work day cases. or: Medical treatment or first aid cases (recordable and below P SEQUENCE OF	3 2 1	existent or inadequate Likely 4 16 12 8 8 4	effectiveness is not guara Occasional 3 12 9 6 3 3 8	SAFE PF	effectiveness is n Improb: 2 8 6 4 2 ACTICES / CONTRI	ot guaranteéd able	measures are effective Very Unlikely 1 4 3 2 2 1 1 L RISK
ata ery lin	6: Review by management is recommended. 3: Trained participants can perform task without further approval. ry effort should be made to reduce the risk to below 8. S - Injury Severity astrophic: Fatalities or incapacitating cases. Y Serious: Permanent disability, but not incapacitating. ous: Lost or restricted work day cases. or: Medical treatment or first aid cases (recordable and below P SEQUENCE OF	3 2 1	existent or inadequate Likely 4 16 12 8 8 4	effectiveness is not guara Occasional 3 12 9 6 3 3 8	SAFE PF	effectiveness is n Improb: 2 8 6 4 2 ACTICES / CONTRI	ot guaranteéd able	measures are effective Very Unlikely 1 4 3 2 2 1 1 L RISK
ata ery lin	6: Review by management is recommended. 3: Trained participants can perform task without further approval. ry effort should be made to reduce the risk to below 8. S - Injury Severity astrophic: Fatalities or incapacitating cases. Y Serious: Permanent disability, but not incapacitating. ous: Lost or restricted work day cases. or: Medical treatment or first aid cases (recordable and below P SEQUENCE OF	3 2 1	existent or inadequate Likely 4 16 12 8 8 4	effectiveness is not guara Occasional 3 12 9 6 3 3 8	SAFE PF	effectiveness is n Improb: 2 8 6 4 2 ACTICES / CONTRI	ot guaranteéd able	measures are effective Very Unlikely 1 4 3 2 2 1 1 L RISK
ata ery lin	6: Review by management is recommended. 3: Trained participants can perform task without further approval. ry effort should be made to reduce the risk to below 8. S - Injury Severity astrophic: Fatalities or incapacitating cases. Y Serious: Permanent disability, but not incapacitating. ous: Lost or restricted work day cases. or: Medical treatment or first aid cases (recordable and below P SEQUENCE OF	3 2 1	existent or inadequate Likely 4 16 12 8 8 4	effectiveness is not guara Occasional 3 12 9 6 3 3 8	SAFE PF	effectiveness is n Improb: 2 8 6 4 2 ACTICES / CONTRI	ot guaranteéd able	measures are effective Very Unlikely 1 4 3 2 2 1 1 L RISK
ata ery lin	6: Review by management is recommended. 3: Trained participants can perform task without further approval. ry effort should be made to reduce the risk to below 8. S - Injury Severity astrophic: Fatalities or incapacitating cases. Y Serious: Permanent disability, but not incapacitating. ous: Lost or restricted work day cases. or: Medical treatment or first aid cases (recordable and below P SEQUENCE OF	3 2 1	existent or inadequate Likely 4 16 12 8 8 4	effectiveness is not guara Occasional 3 12 9 6 3 3 8	SAFE PF	effectiveness is n Improb: 2 8 6 4 2 ACTICES / CONTRI	ot guaranteéd able	measures are effective Very Unlikely 1 4 3 2 2 1 1 L RISK
ata ery lin	6: Review by management is recommended. 3: Trained participants can perform task without further approval. ry effort should be made to reduce the risk to below 8. S - Injury Severity astrophic: Fatalities or incapacitating cases. Y Serious: Permanent disability, but not incapacitating. ous: Lost or restricted work day cases. or: Medical treatment or first aid cases (recordable and below P SEQUENCE OF	3 2 1	existent or inadequate Likely 4 16 12 8 8 4	effectiveness is not guara Occasional 3 12 9 6 3 3 8	SAFE PF	effectiveness is n Improb: 2 8 6 4 2 ACTICES / CONTRI	ot guaranteéd able	measures are effective Very Unlikely 1 4 3 2 1 1 L RISM
- I - I vei ata ery eri lin	6: Review by management is recommended. 3: Trained participants can perform task without further approval. ry effort should be made to reduce the risk to below 8. S - Injury Severity astrophic: Fatalities or incapacitating cases. Y Serious: Permanent disability, but not incapacitating. ous: Lost or restricted work day cases. or: Medical treatment or first aid cases (recordable and below P SEQUENCE OF	3 2 1	existent or inadequate Likely 4 16 12 8 8 4	effectiveness is not guara Occasional 3 12 9 6 3 3 8	SAFE PF	effectiveness is n Improb: 2 8 6 4 2 ACTICES / CONTRI	ot guaranteéd able	measures are effective Very Unlikely 1 4 3 2 2 1 1 L RISK



Date Issued	Document #	Version	Page	
2023-03-24	180.05.CO2.206	6.0	8 of 8	

10.1.2 Back

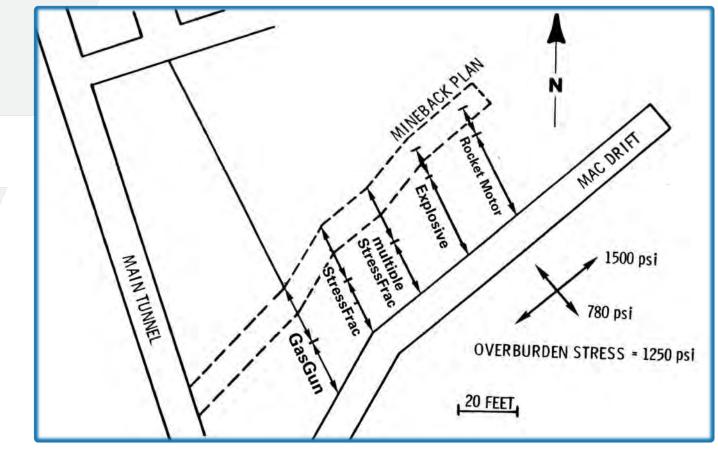
	EQUIRED PERMITS AND FORMS			PERSO	IAL P	ROTECT	VE EQUIPMENT		
Confined space/bin entry		EYE/FACE HAND/ARM					FOOT	ELECTRICAL	
Hot work Equipment-specific lock out/ tag out procedure Line breaking Fire protection impairment Working at height/roof access Energized tectrical work Crane/critical lift Rail track encroachment Soil disturbance/excavation Other		Sealed/tightfitting eyewear Welding hood/shaded lens Goggles Face shield Other:	Welding hood/shaded lens Thermal Leather Goggles Face shield Disposable Mecha /ul>		Chainsaw footwear Puncture resistant Meta tarsal guards/boot covers Other:			 Hard hat - class E Gloves Leather protectors Arc rated suit Arc rated balaclava Dielectric m 	
		RESPIRATORY PRO	FECTION	SPECIAL	CLOTHING FALL		FALL	Arc rated clothing Voltage rate gloves	
		Filtering face piece SCBA Supplied air PAPR Emergency escape Half face Air purfying respirator Full face		C Rain suit	Chemical suit Rain suit Anti-exposure suit Contaminate protectio		Harness Double lanyard Appropriate anchorage point Additional anchorage connector SRL/retractable device Horizontal lifeline system	Dielectric blankets/sleeves Double laye Hearing protection switching h	
		SAF	E PRACTICES / CO	NTROL MEA	SUR	ES SUPP	DRTING CHECKLIST		
1		 Store tools and materials Create designated walkway 	 Keep eyes o Install barric 		15		de and/or verify grounding, bonding static dissipating devices (computer)		
	Use fall protection with pro	per anchorage 🛛 Use	fall restraint system		16	Provi Bleed	de blocks, wedges I, relieve pressure or tension	 Provide isolation, disconnection Follow LOTO procedure 	
2	 Install barricade, rigid cable Use correct ladder, mobile Use eye and face protectio 	platform, scaffolding on even, soli	signage for pedestria d surface proper distance betw		17	C Ensu	e work to safer location re safe work distance de fire retardant clothing ove combustibles	 Obtain Hot Work permit Ensure fire extinguisher or hose availab Install fire barriers to prevent access 	
3	 Coordinate work in same a Ensure nearby machines a 	rea Install barricade re properly guarded or shut down	inspect hand-held	power tools		🗆 Use a	approved tools in classified areas re open pits with barricades, signage	e Provide proper benching, terrac	
4	 Install warning barricade, s Coordinate work in area Check for, communicate w 	Prevent tools	distance between we and materials from fa		18	Chec	k for underground utilities Il shoring, trench box	Clear, manage water	
5	 Inspect and clear area of an Inspect for chemical exposition 	nimals, insects, poisonous plants ure Locate eyewash,	shower station:		19	🗆 Insta	hearing protection Il sound barriers anti-vibration gloves, other gear; Us	 Keep appropriate distance, separation Take frequent breaks, rotate activity se anti-vibration mats 	
6	Install guarding	Use anchorage, secure load Maintain proper distance Install guarding Follow LOTO procedure Use proper body position, hand placement			20	🗆 Insta	n Confined Space/Bin Entry permit I temporary platform, ladders e non-entry equipment, tools	 Utilize tripod or system to prevent engulfm Lock out, block movable parts, equipment 	
7	 Install temporary guarding, 	Wear puncture, cut resistant PPE Use proper body position, hand placement Install temporary guarding, covers Avoid blind reaches Use extension tools Inspect immediate area for other sharp edges			21	Utilize NIOSH lifting equation (weight, distance, frequency) Ask for assistance, use team lift Use mechanical means or lift assistance devices			
B	 Use tool holder or impact p Coordinate manual movem 	Secure or cover openings, doors, manways Use blocks for placing objects on floor Use tool holder or impact protection device (chisel punch, etc.) Coordinate manual movement of equipment, material with team Use proper body position, hand placement (evaluate tool for hand slippage)				□ Main □ Insta	et rigging and lift devices, equipmer tain safe distance from utilities Il barricades tain safe distance from lift	nt Utilize tag lines, other guide tools Ensure adequate anchorage capa Use lift calculating checklist Use lift checklist	
9	 Review work pace Install barricade, signage Pad, guard fixed objects to 	Use or create Wear reflectiv lessen impact or avoid striking	designated walkways a vest or clothing		23	Use	proper body position 🛛 🔾 U	Jtilize NIOSH lifting equation Jtilize available ergonomically-designed or power t rrange work station to improve positions	
D	 Use portable lights, flashlig Use proper body position Block reflection to improve 				24	Review, discuss the rescue plan, methods of egress Use life lines, communication Obtain Confined Space/Bin Entry permit (if required) Use proper body position			
1	 Use voltage tester, multi-m Install signage, barrier (set Follow de-energized LOTO Use GFCI 	atft) □ U procedure □ C □ la	lentify interlocks or al se proper clearances, oordinate with other v lentify potential stored	, distance work in area d energy	25	🗆 Defin	ate weather forecast before task, me e conditions that require work to be proper PPE, clothing for weather co	stopped	
	 Define hazard risk category Ensure cords are in good control 	(cal/cm2) and us condition, properly secured and pro	e appropriate tools, F tected from pinch poi	PPE ints	26		ate industrial hygiene hazard e body substance isolation, PPE	 Isolate or neutralize the hazard Ensure proper ventilation, based on hazard 	
2	 Monitor for heat stress Take rest breaks, hydrate Rotate workers 		Provide, use ventilatio Ise proper PPE, cloth nstall warning signag	ing, tools	27		ll barriers, shields re, isolate shutters	Maintain proper distance	
3	Install guarding, temporary covers Review SDS (MSDS), evaluate reactive chemicals Ensure proper Containment, labeling/signs, ventilation Locate and test nearest eye wash, shower Locate and test nearest eye wash, shower Des proper PPE (goggles, gloves, face shield, chemical suits, boots, respirator) Decontaminat, remove chemical residue, hypiene (tools, clothing, equipment, skin, work area				28	Use methods to prevent spillage. If a leak or spill occurs, immediately control the source a clean up the material. Locate the spill kit and review the control measures prior to starting clean-up. Report any leaks immediately. Use methods that prevent the release of solids, dust, liquids or gasses. Ensure that chemicals are in approved containers, properly labeled and stored.			
4	 Provide, use ventilation/du: Use monitoring equipment Use proper PPE, respirator 	(TLV, LEL, ILDH)	sk to open air environ afe work distance mergency response p		29	🗆 Seal	ood grade lubricants and approved t process equipment to avoid external re post-maintenance inspection perf	I contamination	
		J	SA WORK PERMIT	f Requi	red w	hen risk l	evel is 8 or higher		
evid	rove the assigned participants t busly identified. No Added Control Measures.	to perform the work described in th		A 01003400	1000000000			nded risk level documented below, in addition to th Emergency Contact: (include phone nu radio channel or other information needed)	
oh.	no., Autou control measures,	, Smollugu Hiok.							
205-									
opro	priate Approval Signature:	: Unacceptable level of risk. Task shou		and shall be ad	40.0				

- Create flow paths in zone
- Controlled vertically
- Reduce acid job pressure

Many oil & gas formations are located in close proximity to water bearing zones. For example the Arbuckle dolomite in Kansas is a natural waterdrive reservoir. Traditional frac & acid stimulation methods pressurize the wellbore and formation slowly (quasi-static) to initiate a single bi-wing fracture, perpendicular to the least principal stress. This slow process allows the intu-stress to dominate fracture growth and can break out of zone.

The GasGun propellant stimulation tool delivers pressure to the rock face in 10-20 milliseconds which creates multiple radial flow paths (like slices in a cake) that penetrate directly out into the formation. Due to the speed of the event, vertical containment of GasGun stimulation is limited to 1'-2' above and below the tool.

Full-scale mine-back experiments conducted by Sandia National Laboratories (SPE8934) provided invaluable information about the exact performance of propellants (GasGun), high explosives, and hydraulic fracturing which led to the development of modern hydraulic fracturing modeling (Warpinski).

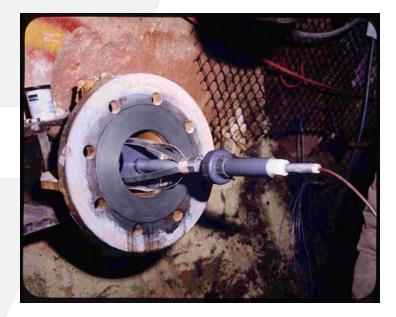


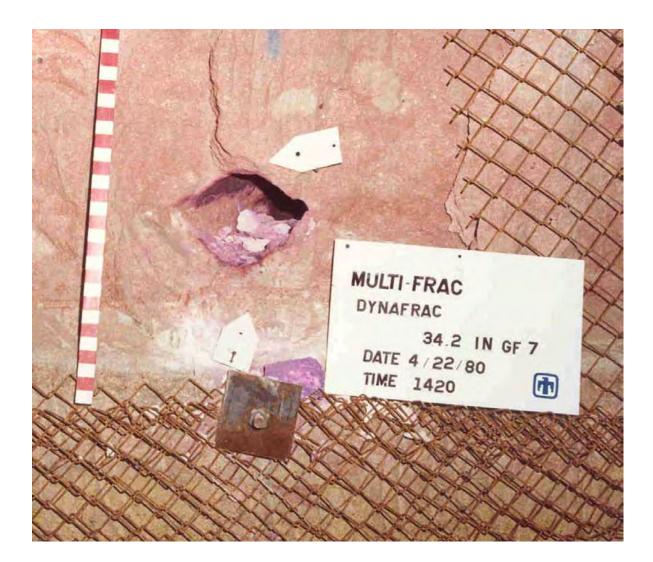
Energetics Testing Wellbore Mine-back

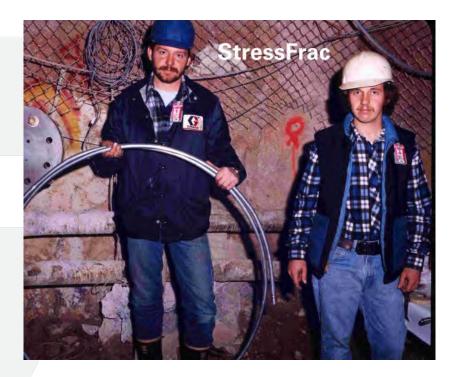


Onsite Team: Dr. Richard A. Schmidt Dr. Norm Warpinski Henry (Hans) Mohaupt

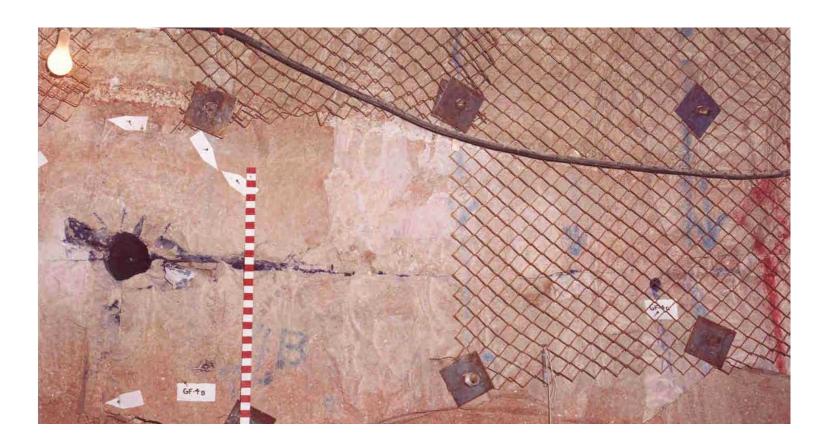
Nevada Test Site – Tunnel Layout




Mine-Back Operation


High Explosive - Crushed Zone and Debris

Regressive Burning Propellant



Progressive Burning Propellant

NATURAL RESOURCES AGENCY OF CALIFORNIA DEPARTMENT OF CONSERVATION DIVISION OF OIL, GAS, & GEOTHERMAL RESOURCES

Well Stimulation Determination

Sacramento, California 4/12/2019

Division Engineers have reviewed your request for a Well Stimulation Determination dated, 3/15/2019 and have concluded that the operations described therein do not meet the definition of a well stimulation treatment as defined by § 14 CCR 1761 (a)(1).

This determination applies to the following well:

 API:
 05902007, 05902008, 05902009, 05901979, 05902011, 05901980, and 05901981

 Field:
 Huntington Beach

 County:
 Orange

This determination applies to the following operations:

Using a 3-3/8" gas propellant gun to perforate and may reach more than 36 inches outside of the well bore omni directionally.

The described operations are not a well stimulation treatment because:

The Kraken and GasGun is a propellant perforating gun that designed to overcome near wellbore damage. This has been confirmed in the underground mine-back studies conducted by Sandia National labs. The WST Unit feels that projects utilizing this technique should be documented, and that operators should therefore be required to submit a routine maintenance form for this work (Well Maintenance form OG 179). For more information on well maintenance, please refer to SB4 Regulation section 1777.4. Note that if acid is injected after perforation and penetrate more than 36", it will be consider as well stimulation treatment.

Your determination number for reporting is:

DD19-017

May Soe, Well Stimulation Supervisor

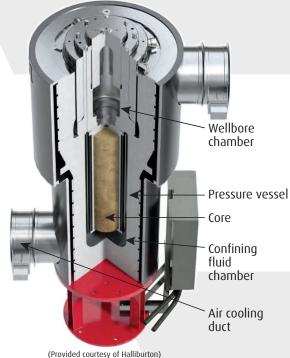
Kraken-enhanced Perforating Flow Performance Tests

API RP19B Section 4 Test Results

- Increased perforation flow rate 2.5x
- Decreased breakdown pressure 50%
- Successful field results proven in controlled lab experiment
- Dynamic overbalance created in wellbore

Overview

The Kraken[®] system is field proven to be significantly more effective than standard perforating guns at improving completion and recompletion performance in conventional, unconventional and saltwater disposal wells. Enhanced Energetics set out to further validate the performance of the Kraken system by performing the API Recommended Practices (RP) 19B, Section 4 Test at Halliburton's Jet Research Center (JRC). This test method is the gold standard in evaluating perforation flow performance.


Test Program and Objectives

The purpose of the test was to assess the perforating and injectivity performance of Halliburton's MaxForce[®]-FRAC charge assisted with Enhanced Energetics' Kraken propellant boosters. The API RP19B Section 4 Test simulates downhole conditions to measure the flow through a perforation into stressed rock. The test setup allows a core rock sample to be perforated with a shaped charge under in-situ stress,

temperature and pore pressure conditions. Fluid is then flowed into the perforation to measure the injectivity through the core.

A Nugget sandstone core was used as the perforating rock target because its characteristics closely match that of many North American land reservoirs. A summary of the test parameters is shown in the table on the right. Three Section 4 Tests were performed in separate Nugget cores. The first test was performed with a single shaped charge as the control experiment. The other two tests were performed with a single shaped charge and Kraken propellant boosters. All tests were conducted at identical stress and pressure conditions as described.

Pressure vessel with a Nugget sandstone core used to test the Kraken system.

Test Parameters

Rock type Nugget sandstone

Unconfined strength ~16,000 psi

Permeability ~1–5 mD

Porosity ~12%

Wellbore fluid Odorless mineral spirits (OMS)

Overburden pressure ~3,500 psi

Pore pressure ~2,500 psi

Wellbore pressure ~2,500 psi

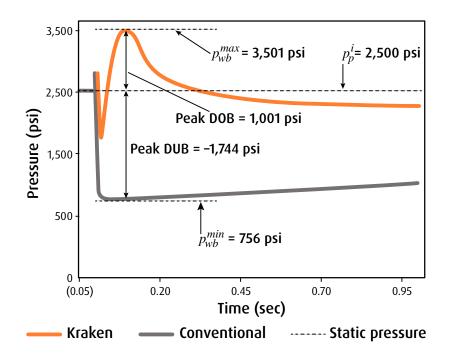
Core size 9-in. OD × 30-in. long

Kraken size 25 g

Charge type 23 g MaxForce-FRAC

www.enhancedenergetics.com 281.272.6580

Kraken-enhanced Perforating Flow Performance Tests



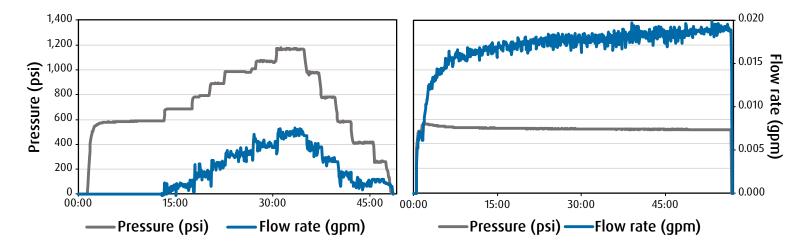
API RP19B Section 4 Test Results

Perforating Test Results

The conventional perforating control test, performed with only a shaped charge and no Kraken boosters, resulted in a dynamic-underbalance (DUB) pressure event as seen in the graph below. DUB perforating creates a rapid decrease in pressure (underbalance) in the wellbore because of fluid entering the perforating gun immediately after the explosive event occurs. In the two Kraken perforating tests performed with a shaped charge assisted by Kraken propellant boosters, propellant ignition occurred immediately after the explosion of the shaped charge. The burning of the propellant boosters generated high-pressure gas inside the gun and exited out into the perforation tunnel. This process created a dynamic-overbalance event (DOB) inside the wellbore as seen below. The DOB created by the Kraken system enhances the perforation and creates fractures past the compacted rock (skin) produced by conventional shaped charges, thereby improving access to the formation.

Perforating Pressure Pulse Comparison

Fracture Created in Core


Flow Test Results

The difference in flow performance between a perforation with no Kraken boosters and a perforation with Kraken boosters was dramatic. The injectivity performance is shown in the graphs below. **Kraken achieved over 2.5x the flow rate through the core sample with a ~50% reduction in pressure compared to the shaped charge alone.**

Conventional Perforating Flow Performance

Kraken Perforating Flow Performance

Conclusion

The improved flow performance of the Kraken perforations in the lab closely matches the successful field results reported by customers. Kraken technology has proved to be a step change in completion performance compared with conventional perforating designs.

www.enhancedenergetics.com | 281.272.6580

© 2020 Enhanced Energetics. All rights reserved.

SPE/DOE 8934

IN SITU EVALUATION OF SEVERAL TAILORED-PULSE WELL-SHOOTING CONCEPTS

by Richard A. Schmidt, Norman R. Warpinski and Paul W. Cooper, Sandia National Laboratories

This paper was presented at the 1980 SPE/DOE Symposium on Unconventional Gas Recovery held in Pittsburgh, Pennsylvania, May 18-21, 1980. The material is subject to correction by the author. Permission to copy is restricted to an abstract of not more than 300 words. Write: 6200 N. Central Expwy., Dallas, Texas 75206

ABSTRACT

Dynamic stimulation techniques that produce multiple fracturing in a wellbore are being investigated for enhanced gas recovery. Multiple fracturing appears to be especially promising for stimulating naturally-fractured reservoirs, such as the Devonian shales, since this may be the most effective technique for connecting a wellbore to a pre-existing fracture network. Prévious studies have demonstrated that detrimental effects can occur with high-strength explosive techniques and that these effects can be avoided through the use of propellants.^{1,2} The use of propellants and other so-called tailored-pulse techniques depend on a controlled pressure-time behavior to minimize wellbore damage and maximize fracture growth by gas penetration.

This paper describes a series of five full-scale tests performed to evaluate various multi-frac concepts. The tests were conducted at the Nevada Test Site in cased, horizontal boreholes drilled in ash-fall tuff from a tunnel under 430 m of overburden. This site provides both realistic in situ conditions for the tests and access to the stimulated regions by mineback which permits direct observation of results. The five tailoredpulse concepts tested involve:

Case A - a decoupled explosive,³
Case B - a decoupled explosive with
 propellant booster,³
Case C - a small-diameter propellant
 charge with pressurized water
 pad,⁴
Case D - three successive shots of
 Case C, and
Case E - a full-diameter charge of a
 progressively-burning propel-

While direct observation by mineback is highly beneficial, evaluation and analysis

lant.

of these test results also depended heavily on other diagnostics. Thirty-six stressmeters and accelerometers were fielded in the surrounding rock to record the dynamic disturbances, and each borehole contained transducers to measure the actual cavity pressures. Pre-test and post-test evaluations include TV log, caliper log, and permeability measurements. Permeability, which evaluates the effectiveness of the created fracture network to transmit fluids, was determined by analysis of constantpressure, water-injection tests and the subsequent pressure decline after shut-in.

Results show a large increase in formation permeability for Case E, modest increases for Cases B, C, and D and a decrease for Case A that appears due to the formation of a stress cage. A comparison of Case E results with previous tests suggests a multiple fracture criterion based on pressure rate with little effect of peak pressures.

INTRODUCTION

Oil and gas wells have been stimulated with high-energy explosives since the late 1800's. It appears, however, that the term "well shooting" originated many years before this in days when a water well was sometimes rejuvenated by shooting a rifle down the well. Well shooting as discussed herein refers to any rapid release of energy from a chemical reaction in a wellbore for the purpose of stimulating production, presumably by fracturing the reservoir rock. This includes explosives (solid, liquid, and gas) and propellants that deflagrate rather than explode. In a broad sense, well shooting has been applied in several geotechnical fields; e.g., preparation of oil shale beds for true in situ processing, preparation of underground mineral deposits for solution mining, etc.

Problems of wellbore damage, safety hazards, and upredictable results have

reduced the relative number of wells stimulated by high-strength explosives. In recent years hydraulic fracturing has been favored, and sophisticated techniques, equipment, fracturing fluids, and proppant have been developed to optimize the hydraulic fracturing process.

Unfortunately, similar efforts toward general understanding and process optimization have been lacking for well shooting. However, recent findings (summarized in Ref. 1) have shed new light on the process of dynamic wellbore fracturing. These findings indicate that vast improvements may be possible using "tailored-pulse" loading techniques.

Tailored-pulse loading involves using propellants, decoupled explosives, or explosive gases to produce a controlled, but rapid, release of energy. This concept is more fully described in a later section, but first the general behavior and limitations of conventional well shooting with high-strength explosives need to be described to understand better the benefits derived from tailored-pulse loading.

GENERAL BEHAVIOR OF A DEEPLY-BURIED CHARGE

One important aspect common to most well shooting configurations is the fact that there is no free surface near enough to the charge to affect the behavior. The phenomena associated with deeply-buried charges, as they are called, differ significantly from those of blasts that occur near a free surface as in excavations, quarries, and road cuts.

Briefly, the high pressures of a detonation in a wellbore are known to be sufficient to cause the nearby rock to yield and compact (plastic flow). When the stress wave passes, the rock unloads elastically leaving an increased borehole diameter and a residual stress field which is compressive near the wellbore. Figure 1 depicts these general steps that take place during such an event.

The creation of this residual stress field is closely analogous to the process of autofrettage or the "gun barrel problem" in which pressure vessels are often overpressurized sufficiently to yield the inside wall and develop residual compressive stresses that help prevent crack growth during service. The zone of highly compacted rock with its associated residual compressive stresses is sometimes referred to as a stress cage, and the phenomena is sometimes called the bladder effect. Fracturing caused by high pressure gas may also be inhibited in this situation since fines are created during the compaction process that can plug newly formed cracks and prevent gas penetration. Some or all of these effects may actually cause decreased permeability near the wellbore and are probably responsible for many well-shooting failures.

The existence of residual stress regions around boreholes that have been subjected to

explosive detonations is a well documented phenomenon. Most of these observations have been made with regard to field experiments at the Nevada Test Site^{1,5} as well as laboratory experiments⁶ and computer code calculations^{1,5,7} for the purpose of understanding containment of underground nuclear blasts. This general behavior of a deeply-buried charge, however, is rather universal since it has been demonstrated to occur for detonations ranging from a one pound charge of TNT to a nuclear detonation of several kilotons. Further description of these general phenomena and details of the supporting evidence can be found in Ref. 1.

TAILORED-PULSE LOADING

ADVANTAGES

With the basic knowledge that the bladder effect impedes fracture growth near an explosively loaded cavity, one might wonder how conventional well shooting would ever enhance production. Experience has shown, however, that improved production is sometimes realized. There are several reasons for such results, including the possibility that explosive stimulation may at times be capable of removing skin damage, and that leakage paths may be formed that connect the cavity to the region outside the stress cage. Situations can also occur in which the stress cage will break up and slough into the wellbore. These possibilities are not necessarily predictable or applicable in all formations. It would, of course, be desirable if reliable procedures could be developed to replace conventional well shooting.

Several viable alternatives to explosive well shooting have been considered and tested in recent years that show promise of substantial improvement. $^{2-4}$ An approach that has received considerable attention is to tailor the pressure-time behavior of the explosive or a suitable propellant so as to keep the maximum pressure and the loading rate below a level that would cause the rock to crush and undergo plastic flow. The intent here is to avoid entirely the formation of a stress cage while still loading at a sufficiently high rate to produce multiple fractures from the wellbore. Unfortunately, the proper combination of loading parameters that will produce optimal multiple fracturing and avoid the formation of a stress cage are not, as yet, well known.

Tailored-pulse loading of a wellbore has several advantages over hydraulic fracturing that make this technique attractive in certain situations. For example, hydraulic fractures, which are propagated at pressures that are slightly higher than the minimum in situ stress and pumping times that are on the order of hundreds of seconds, typically produce only a single fracture whose orientation is perpendicular to the minimum principal stress.^{8,9} Higher wellbore pressures, such as are achieved in tailored-pulse loading, are needed to drive cracks in less favorable directions with respect to the in situ stresses in order to produce multiple fractures.

Multiple fractures may be highly desirable in naturally fractured reservoirs such as Devonian shale for reasons depicted in Figure 2. The production from an unstimulated well, Figure 2a, depends strongly on the number of fractures intersected. Hydraulic fracturing typically produces a single fracture that is likely to run parallel to most of the existing fractures, Figure 2b, since its orientation is governed by in situ stresses that probably also govern the pattern of the natural fractures. Multiple fractures may not extend as far as a hydraulic fracture but may link the well to more, natural fractures, Figure 2c.

In addition, tailored-pulse loading with propellants are likely to produce little formation damage due to the interaction of fluids with the rock. Very little water is produced by these materials, and the products have very little time to react with the rock. Some hydraulic fracturing fluids, on the other hand, are known to cause swelling in shale and other deleterious effects.

Cost is also a factor that may make tailored-pulse techniques very attractive, particularly in marginal wells that probably are not promising enough for expensive hydraulic fracturing treatments. Igniting an explosive or a propellant charge in a well requires very little equipment or time when compared to even a small hydraulic fracture job.

CONCEPTS

Several tailored-pulse concepts rely on the use of propellants which deflagrate rather than detonate. Unlike explosives, the burn front in these materials travels slower than the sound speed, and the burning rate can be varied over a wide range. Pressure-time behavior of propellants differ from explosives in that peak pressures are lower, and burn times are longer. Total energy available, however, is similar in both materials (typically 4kJ/g). •

One of the first tailored-pulse concepts investigated was a decoupled explosive such as that used for Case A.³ A conventional explosive is used, but the charge diameter is some eight times less than the wellbore diameter. The charge is surrounded by water, and the peak pressure reaching the rock after detonation is thus mitigated, presumably to a value below the yield stress. The total explosive energy, however, is limited by the small diameter of the charge.

The concept employed in Case B uses the same decoupled explosive in conjunction with a small propellant charge.³ The decoupled explosive is designed to initiate multiple cracks and the propellant is then burned to drive water into these cracks to extend them. The propellant is essentially a rocket motor that burns for several seconds. Some field testing has been performed using this device but results are inconclusive.

Case C is a small diameter (4cm) pressure-insensitive propellant charge that is designed both to initiate and propagate multiple cracks.⁴ A typical rise time is 3 ms with a burn time of 0.5 s. This device is also designed to push water into the cracks ahead of the gas generated by the propellant reaction products. It has been used in the field as a cleaning tool and as a fracture initiating device to reduce the breakdown pressure for hydraulic fracturing. The number and size of the fractures created by this tool are largely unknown. Case D was three successive shots using the same configuration as Case C.

Case E consists of a gas-producing, progressively-burning propellant with a suitable rise time to initiate and propagate multiple fractures while avoiding the damage of a stress cage.^{2,10} This concept differs from the others in three main areas: 1) A full-diameter charge is used that fills the wellbore to maximize the energy released. 2) Lightweight gas products from the propellant itself, rather than water, are pushed into the created fractures. This maximizes the speed in which fractures are penetrated and pressure loaded. 3) The propellant is of the progressively-burning type in that the burning rate increases as material is consumed. This allows energy to be saved and not released until it is most needed, later in time, when fractures are long and system volume is large.

MULTI-FRAC TEST SERIES

FEASIBILITY STUDY

Experiments to investigate tailoredpulse concepts have been conducted in a tunnel complex at the Nevada Test Site. The tunnel facility provides a means of performing realistic tests of deeply-buried charges in rock formations at depth and yet allows for direct observation of resulting fracture behavior by mining back to uncover the test bed itself. The purpose of this test series is two-fold: (1) evaluate and compare several tailored-pulse concepts in a controlled test bed to determine the ability of each to produce multiple fractures and to enhance formation permeability and (2) provide data for testing and verification of various modeling schemes presently being used to describe the complex behavior of tailored-pulse loading.

The feasibility of performing such experiments was demonstrated previously in a test series conducted on Gas Frac.² Three canisters, each containing propellant with markedly different burning rates, were ignited in grouted horizontal holes drilled in a water-saturated ash-fall tuff formation. The results of the three tests showed phenomenologically different behavior as depicted in Figure 3. The slowest-burning propellant created a single fracture similar to a hydraulic fracture, the intermediate-rate propellant produced extensive multiple fractures, and the fast-burning propellant produced explosive-type behavior as evidenced by an enlarged borehole and minimal fracturing.

TEST SETUP

The previous Gas Frac tests were not instrumented except for a pressure transducer to measure dynamic cavity pressures. The five tests described below make up the socalled Multi-Frac Test Series and involved thirty-six stressmeters and accelerometers to measure rock formation response as well as pressure transducers to record dynamic cavity pressures. Along with direct observation by mineback, post-test evaluation included a reentry into each test zone for borehole television log, caliper log, and permeability measurements. The caliper log is intended to detect the degree of borehole enlargement (indicating plastic flow) and the permeability test is designed to measure the effectiveness of each test to increase the formation's ability to transmit fluids (i.e., conductivity of fracture network). The rock formation is a water-saturated ash-fall tuff having material properties as listed in Table 1.

The experiments were all conducted in 15 cm diameter, nearly horizontal holes drilled 12.2 m deep from a tunnel drift as depicted in Figure 4. The holes were spaced 6.1 m apart. Experiments A and B were conducted with 3.05 m of open hole and 9.15 m of casing while Experiments C, D, and E had 6.1 m of open hole and 6.1 m of casing. The mineback (not completed as of this writing) is planned so that half of each test zone will be mined out and examined thoroughly, leaving any fracture patterns occurring at the midpoint displayed on the right rib of the tunnel (Figure 4). All test setups were similar and a cross-section of the Case B configuration is seen in Figure 5.

Rock mass instrumentation consisted of an array of stressmeters and accelerometers as depicted in Figure 6. This array of gages was fielded only for Experiments B, D, and E. The stressmeters were special, strain-gaged, borehole-inclusion stressmeters. Two of these transducers were set and preloaded in each instrumentation hole to measure diameteral deformations in the radial and transverse directions. Calibration of these gages was accomplished by static loading of a block of ash-fall tuff that contained a gage mounted in a hole drilled in the sample. Commercially available accelerometers were also set and preloaded in a similar fashion to measure radial and transverse accelerations. (Note that transverse accelerations would not be expected in a symmetric displacement field but could result from motions due to the dynamic propagation of a nearby crack.)

SPECIFIC TEST CONFIGURATIONS

The device fielded in Experiment A was simply a 2 cm diameter by 3 m long PVC tube filled with 2.3 kg of Comp C4 explosive. This was centralized in the hole and the cavity filled with water under atmospheric pressure. The water contained a blue dye to stain the created fractures and to ease identification and mapping during mineback. Dynamic cavity pressure was measured in this experiment using both Kulite* sensors and specially designed ytterbium paddle gages¹² located near the end of the casing section (Figure 5). The Kulite gage model HKM-375, is a piezoresistive integrated sensor. This gage has a 200 MPa pressure range and consists of a miniature silicon member on which a temperature compensated wheatstone bridge is atomically bonded. The miniaturization results in a natural frequency of 400 kHz.

Experiment B involved the same Comp C4 explosive setup but also contained a 2.7 kg charge of propellant. This relatively slow-burning propellant charge consisted of a single, internal-star rocket grain ignited with a black-powder-filled spit tube and housed in a sealed aluminuim canister. The canister was located in the casing section against the bulkhead and was designed to act as a dynamic plunger to push the dyed water down the casing and into fractures initiated by the explosive charge. The fire set was designed to ignite the propellant charge first and then to detonate the explosive 70 msec later by which time the propellant would have reached sufficient pressure. Transducers fielded in this experiment to measure the dynamic cavity pressure event included Kulite and ytterbium gages at the end of the casing section and a fluid-coupled-plate gage¹³ located at the bulkhead near the propellant canister. The sensing element used in the fluid-coupled-plate transducer is the same Kulite gage mentioned previously.

The device used for Experiments C and D consisted of a 2 cm diameter by 6.1 m long soft aluminum tube filled with 2.3 kg of propellant which was ignited at one end. The device was centralized in the test hole and the cavity filled with dyed water. The water was pressurized statically to 3.4 MPa using a hydraulic pump just prior to these shots in order to simulate the containment from a 300 m column of water. Dynamic cavity pressure was measured in each of these shots by means of Kulite gages located near the end of the casing section.

The device fielded in Experiment E included a number of design improvements over the previous configuration.² The device (Figure 7) consisted of six canisters, each 12.7 cm diameter by 1 m long that screwed together. The canisters were made of perforated plastic tubes with a heat-shrinkable vinyl covering to make the unit watertight. Each canister contained 9.1 kg of M5 multiperf propellant grains with a 1 mm web thickness. This propellant was ignited by means of a 3.2 cm diameter perforated-steel primer tube that runs through the center of each canister and becomes a continuous igniter when the units are screwed together. The

*Kulite Semiconductor Products, Inc., Ridgefield, NJ. primer tube contained an explosive and igniter which provided ignition along the entire 6 meter length in less than 1 msec. The primer tube itself was initiated with an exploding bridge wire device as were all other experiments.

Since the propellant burns cleanly, several bags containing carbon black were taped to the outside of the canisters (Figure 7) to act as crack markers so that the created fractures would be more visible during mineback. Also, a number of 1.3 cm diameter ceramic spheres and 0.6 cm diameter cylinders were taped to this device in hopes that they would be propelled into the fractures and thereby act as dynamic crack width indicators when located during mineback. (These spheres and cylinders were used in the other experiments as well.) The assembly was placed in the dry 6.1 meter test section and sealed with a grout plug. The opposite end of the test zone contained a fluidcoupled plate transducer to measure dynamic cavity pressure.

Estimates of the grout-to-casing and grout-to-rock shear strength indicated that sufficient load-carrying capacity was available to contain these shots (refer to Figure 5). However, a strong-back brace was added as a backup measure (Figure 8). The brace was designed to transmit the load from the casing and bulkhead to the opposite tunnel rib if complete containment was not achieved. All shots were fired remotely and were monitored by close-circuit television.

All shots were fired using a capacitive discharge unit which dumps to an exploding bridge wire. Data was recorded in a separate instrumentation trailer using a 50 kHz analog system with voltage-controlled-oscillator and multiplexer. The analog data was recorded on magnetic tape and later digitized, reduced, and plotted.

RESULTS AND DISCUSSION

Note: Reduction and analysis of the test data and mineback evaluation were not complete at the deadline of this paper. Thus, the results and conclusions presented here are preliminary.

All shots were fired successfully except Experiment B. On that test, the propellant charge was ignited as planned. After a 70 msec delay, a signal was sent to the explosive charge, but detonation did not occur. Post-shot evaluation disclosed that the exploding bridge wire was intact, but that the detonation cables had been severed in two places by the propellant charge, preventing the bridge from receiving the impulse required.

Pressure-time and stress-time records from Experiment D are displayed in Figure 9. The stress-time behavior is for radial and transverse stress at a location 1 m from the test section. Note that the presure-time record shows a second pressure peak that occurs 9 msec after the first. This corresponds to the transit time of the stress pulse propagating from the gage to the steel bulkhead and back. This second pulse is also observed in the stress records.

Peak borehole pressure is seen to be 46 MPa. If this pressure were assumed constant and confined to the borehole, a 0.32 MPa stress would be expected at the 1 m stressmeters (with radial stress being compressive and tangential being tension). Peak stresses, however, were much higher: 1.06 MPa tangential tension and 2.16 MPa radial compression. Wave-code analysis indicates that little dynamic effect is present in this rate regime. Note that the tangential and radial stress become nearly equal in magnitude at late times as expected from quasi-static analysis. The discrepancy is likely due, instead, to pressure escaping from the borehole and loading the created fractures, thereby strongly affecting the loading configuration.

Preliminary results of stressmeter data from Experiment E indicate that stresses were more than 10 times larger than calculated from assumptions of a static borehole pressure. This discrepancy must be a result of substantial gas penetration into fractures and is consistent with observations of extensive fracturing detected in this experiment as discussed later.

A pre-test and post-test evaluation of in situ permeability was made for each test to indicate the capability of each device to increase the formation's ability to transmit fluids. Since this water-saturated ash-fall tuff formation has no "reservoir" pressure, per se, measurements were made by pressurizing each zone with water at a constant pressure of 2.8 MPa and recording the decay of flow with time. The flow rate data could then be fit to give the appropriate parameters which characterize the porous media and boundary conditions. However, since flowing time was always greater than a few minutes, the analysis was greatly simplified by an approximate logarithmic equation. The inverse of the flow rate (1/q) is plotted against the logarithm of time, and the permeability is determined from the slope of this line by

$$K = \frac{(185.7)\mu}{H(P_{O} - P_{\infty})m}$$

where

K is permeability in md
µ is viscosity in kPa·s
H is zone length in m,
P₀ - P_∞ is injection over-pressure
 in kPa, and
m is slope in (cm³/sec)⁻¹/cycle

An example of this measurement scheme is displayed in Figure 10. The pressure decay after shut-in was also analyzed in a manner similar to that for a standard pressure buildup record in a gas well. Results of the pre-test and post-test permeability measurements are presented in Table 2. Each value of permeability is the average of the flow test and the shut-in. A large permeability enhancement is seen for Experiment E which is a clear indication of extensive fracturing. Experiments B, C, and D display a moderate increase in permeability. Experiment A, however, produced a decrease in formation permeability. This is apparently due to the creation of a stress cage (the bladder effect) even though the explosive was "decoupled" from the formation by an 8 to 1 ratio of hole diameter to charge diameter.

These observations are consistent with post-test TV logs. Several, wide radial fractures were seen in the log of Experiment E, and a few narrow fractures were seen in C and D. While no fractures were seen in the log of Experiment B, a single hydraulictype fracture is expected here due to the very low pressure-loading rate of the propellant used. The presumption of a stress cage in Experiment A was confirmed in the TV log by the observation of an enlarged, distorted borehole with no apparent fractures.

Closed circuit television of Experiment E also showed indications of extensive fracturing. Shortly after ignition, a gas-driven fracture apparently reached an instrumentation hole located 2 m from the test section, which then pressurized the hole and propelled a 3 m long grout plug across the tunnel. Shortly after this another fracture apparently reached the test section of Experiment C (see Figure 4) 6.1 m away and propelled water and debris out of that hole. These observations were confirmed upon reentry in the tunnel when significant levels of combustion gas (carbon monoxide) were monitored coming out of these holes.

An enlightening comparison can also be made among the three previous Gas Frac shots² and Experiment E. Pressure-time characteristics and observed fracture behavior are compared in Table 3. Note that a good correlation between pressure rate and resulting behavior exists while no such correlation occurs with peak pressure. This indicates that pressure rate may be the governing parameter in determining whether resulting behavior is hydraulic fracturing, multiple fracturing, or explosive compaction. preliminary closed-form analysis was performed that indicates the pressure rates in GF2 and Experiment E were low enough such that tangential stress at the borehole wall begins and remains tensile. On the other hand, the pressure rate of GF3 was sufficiently high to cause tangential compression initially. These initial compressions probably delay the tensile failure until after the compaction process has begun causing the bladder effect. This suggests a multiple fracture criterion that is based on a pressure rate being less than a value that would produce tangential compressive stress at the borehole wall. This criterion was previously suggested by Bligh as a means to avoid explo-sive compaction.¹⁴

CONCLUSIONS

These experiments have shown that multiple fractures can be created from a borehole while avoiding the formation of a stress cage by using an appropriately designed tailoredpulse technique. In particular, results of TV logs, permeability tests and other indirect data showed that the Case E technique produced a highly stimulated zone around the wellbore; Case B, C, and D resulted in a modest stimulation; and Case A, which apparently induced a stress cage to be formed in this rock even though it was a decoupled charge, actually decreased the formation permeability.

The results of these tests and previous experiments suggest that a multiple fracture criterion be based on borehole pressureloading rate. Peak pressure conditions may not be important if loading-rate requirements are adequate.

Finally, these tests show the value of carefully designed in situ experiments for evaluating stimulation techniques. Instrumentation such as stressmeters, accelerometers, and pressure transducers can be fielded in critical locations, evaluation techniques such as TV and caliper logs and permeability tests can be conveniently employed, and ultimately, mineback can provide a complete diagnosis of the resultant fracture patterns.

ACKNOWLEDGEMENTS

Appreciation is extended to all who worked on the Multi-Frac Test Series with special thanks to Tom Laws for field engineering, Jack Schwarz for mechanical design, Rod Shear, Mike Burke, and Gary Miller for instrumentation and data acquisition, Lew McEwen and Fred Shoemaker for arming and firing, Bob Beyatte for data reduction, Sharon Finley for mineback evaluation and Clarence Huddle for material property measurements. The excellent work of the skilled mining crew at the Nevada Test Site is also acknowledged. The authors would also like to thank Stuart McHugh of SRI International for initial wave code calculations that helped determine gage settings. This investigation was sponsored under the Eastern Gas Shales Project which is managed by R. L. Wise and C. A. Komar, Morgantown Energy Technology Center. This work was supported by the United States Department of Energy (DOE) under contract number DE-AC04-76000789.

REFERENCES

1. Schmidt, R. A., Boade, R. R., and Bass, R. C., "A New Perspective on Well Shooting - The Behavior of Contained Explosions and Deflagrations," Proceedings of 1979 Society of Petroleum Engineers Annual Technical Conference and Exhibtion, SPE 8346 (1979).

- 2. Warpinski, N. R., Schmidt, R. A., Cooper, P. W., Walling, H. C., and Northrop, D. A., "High-Energy Gas Frac: Multiple Fracturing in a Wellbore," <u>Proceedings of 20th U. S.</u> <u>Symposium on Rock Mechanics, Austin,</u> TX, (1979).
- Moore, E. T., Mumma, D. M., and Seifert, K. D., "Dynafrac - Application of a Novel Rock Fracturing Method to Oil and Gas Recovery," Physics International Final Report 827, April 1977.
- Fitzgerald, R. and Anderson, R., "Kine-Frac: A New Approach to Well Stimulation," ASME Paper 78-PET-25, ASME Energy Technology Conference and Exhibition, Houston, TX, November 5-19, 1978.
- 5. Smith, C. W., Bass, R. C., and Tyler, L. D., Puff 'n Tuff, A Residual Stress - Gas Fracturing Experiment," Proceedings of 19th U. S. Symposium on Rock Mechanics, Stateline, Nevada (1978).
- 6. Florence, A. L., and Gates, R. W., "Explosive Cavity Residual Stress Experiment," 76-3702-2, Stanford Research Institute, Menlo Park, CA (1976).
- 7. Boade, R. R., Stevens, A. L., Harak, A. E., and Long, A., "Bed Preparation Concepts for True In Situ Oil Shale Processing: An Evaluation of Current Technology," <u>Proceedings</u> of the 1979 Society of Petroleum Engineers Annual Technical Conference and Exhibition, SPE 8447 (1979).
- 8. Howard, G. C., and Fast, C. R., <u>Hydraulic Fracturing</u>, Society of Petroleum Engineers of AIME Monograph Series,

Dallas, TX, (1970).

- 9. Northrop, D. A., Warpinski, N. R., Schmidt, R. A., Smith, C. W., " "Stimulation and Mineback Experiment Project - The Direct Observation of Hydraulic and Explosive Fracturing Tests," Proceedings of the Fourth Annual DOE Symposium on Enhanced Oil and Gas Recovery, Tulsa, OK, August 1978, p. E-4.
- 10. Schmidt, R. A., Warpinski, N. R., and Northrop, D. A., "In Situ Testing of Well-Shooting Concepts," Proceedings of Third Eastern Gas Shales Symposium, Morgantown, WV (1979).
- 11. Cook, C. W. and Ames, E. S., "Borehole-Inclusion Stressmeter Measurements in Bedded Salt," <u>Proceedings of 20th</u> <u>U. S. Symposium on Rock Mechanics</u>, Austin, TX, (1979).
- 12. Ginsberg, M. J., Grady, D. E., Decarli, P. S., and Rosenberg, J. T., "Effects of Stress on the Electrial Resistance of Ytterbium and Calibration of Ytterbrium Stress Transducers," Stanford Research Insitute, DNA 3577F, Menlo Park, CA (1973).
- 13. Cook, C. W. and Ames E. S., "Pressure Measurements in Harsh Environments," Proceedings of the 25th International Symposium of Instrument Society of America, May 7-10, 1979, Anaheim, CA.
- 14. Bligh, T. P., "Principles of Breaking Rock Using High Pressure Gases," Advances in Rock Mechanics, Proceedings of the Third Congress of the International Society for Rock Mechanics, Denver, CO, 1974, Vol. II, Part B, p. 1421.

TABLE 1

ASH-FALL TUFF MATERIAL PROPERTIES

DENSITY	1.8	gm/cm ³
POROSITY (WATER FILLED)	40%	
PERMEABILITY	SEE	TABLE 2
ELASTIC MODULUS	5 G	Pa
COMPRESSIONAL WAVE VELOCITY	2.1	mm <i>lµ</i> s
SHEAR WAVE VELOCITY	1.2	mm <i>lµ</i> s
TENSILE STRENGTH	700	kPa
COMPRESSIVE STRENGTH (UNCONFINED)	30	MPa
FRACTURE TOUGHNESS	400	kPa √m

TABLE 2

PERMEABILITY ENHANCEMENT

CASE	TAILORED-PULSE CONCEPT	PRE-TEST PERMEABILITY (md)	POST-TEST PERMEABILITY (md)	FACTOR OF Increase	OBSERVATIONS FROM TV LOG
A	DECOUPLED EXPLOSIVE WITH WATER PAD	0.20	0.05	0.25	ENLARGED, DIS- TORTED BOREHOLE
В	DECOUPLED EXPLOSIVE* WITH PROPELLANT PUSHER (WATER PAD)	0.83	5.6	7	NO FRACTURES APPARENT
С	SMALL DIAMETER PROPELLANT WITH PRESSURIZED WATER PAD	0.0015	0.008**	5**	MULTIPLE FRACTURES (VERY NARROW)
D	THREE SHOTS OF CASE C WITH PRESSURIZED WATER PAD	0.007	0,034	5	MULTIPLE FRACTURES (NARROW)
E	FULL BORE, PROGRESSIVELY- BURNING PROPELLANT WITH AIR PAD	0.014	25.0	1800	MULTIPLE FRACTURES (WIDE)

*EXPLOSIVE DID NOT DETONATE

•

**SOME PERMEABILITY INCREASE MAY BE DUE TO FRACTURE CAUSED BY EXPERIMENT E

TABLE 3

PRESSURE LOADING CHARACTERISTICS VS. OBSERVED BEHAVIOR

	EXPERIMENT	PEAK PRESSURE (MPa)	PRESSURE Rate (KPa <i>iµ</i> s)	RESULTING BEHAVIOR
	(GF1	43	0.6	HYDRAULIC FRACTURE
PREVIOUS GAS FRAC TEST SERIES ²	GF2	95	140	MULTIPLE FRACTURES
TEST SERIES-	GF3	~200	>10,000	EXPLOSIVE STRESS CAGE
	EXPERIMENT E	250	430	MULTIPLE FRACTURES

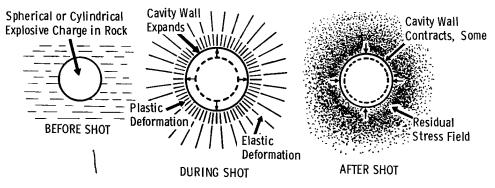
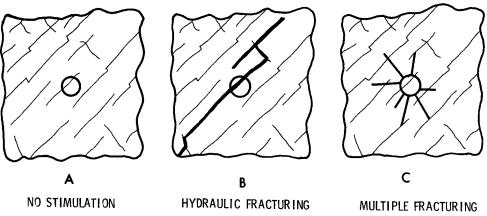



Fig. 1 - General behavior of deeply-buried charge.

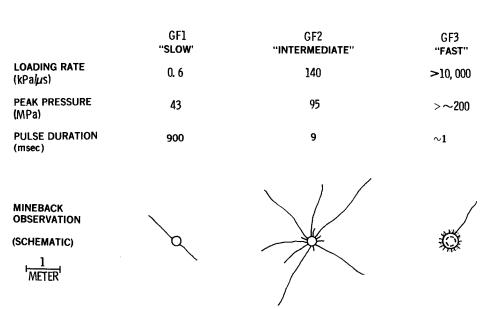


Fig. 3 - Results of gas frac $experiments^2$.

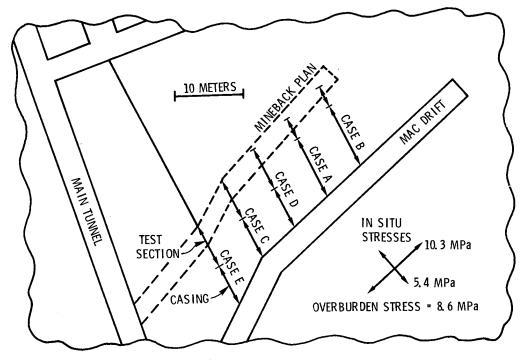
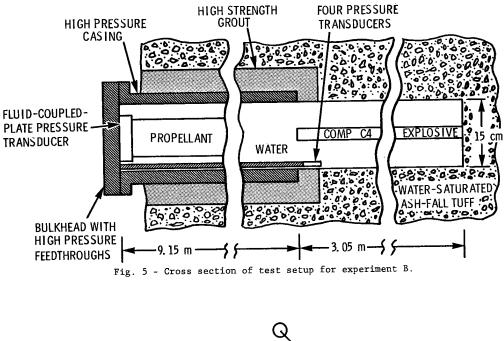



Fig. 4 - Tunnel plan for multi-frac test series.

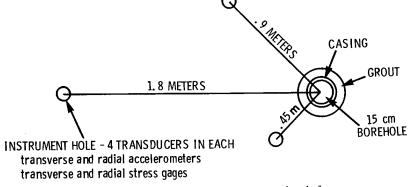


Fig. 6 - Layout of instrumentation holes.

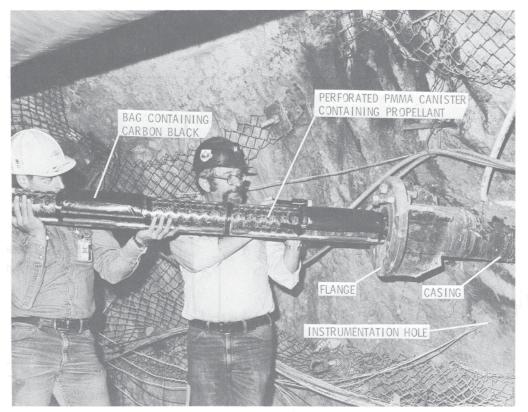


Fig. 7 - Loading of propellant device for experiment E.

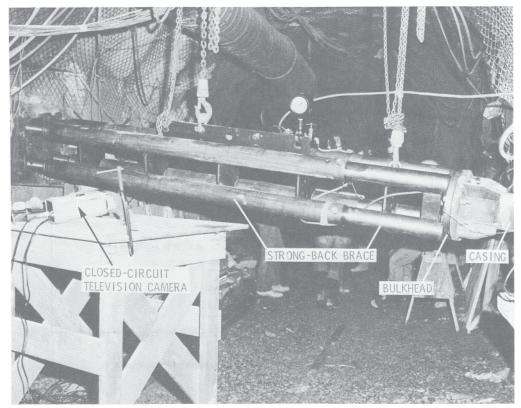
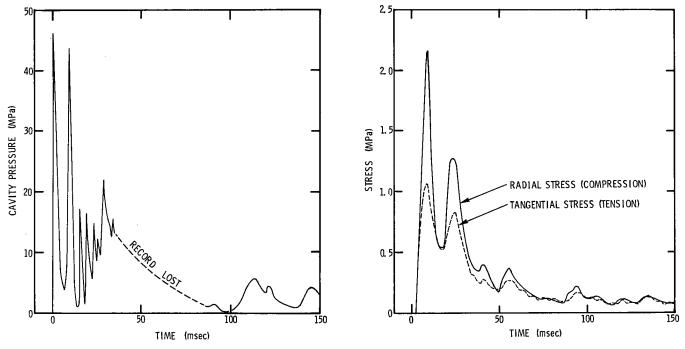
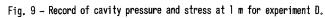
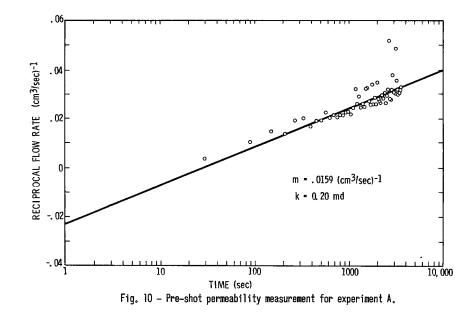





Fig. 8 - Typical view of experiment ready for arming and firing.

APPENDIX F: Cross-Reference Table of Class VI Injection Well Rules (40 CFR Subpart H)

Class VI Well Regulatory Requirements	Application Section Where Addressed
Sec. 146.82 Required Class VI permit information. (a) Prior to the issuance of a permit for the construction of a new Class VI well or the conversion of an existing Class I, Class II, or Class V well to a Class VI well, the owner or operator shall submit, pursuant to § 146.91(e), and the Director shall consider the following:	
(1) Information required in § 144.31(e)(1) through (6) of this chapter;	Attachment A
(2) A map showing the injection well for which a permit is sought and the applicable area of review consistent with § 146.84. Within the area of review, the map must show the number or name, and location of all injection wells, producing wells, abandoned wells, plugged wells or dry holes, deep stratigraphic boreholes, State- or EPA-approved subsurface cleanup sites, surface bodies of water, springs, mines (surface and subsurface), quarries, water wells, other pertinent surface features including structures intended for human occupancy, State, Tribal, and Territory boundaries, and roads. The map should also show faults, if known or suspected. Only information of public record is required to be included on this map;	Section 4
(3) Information on the geologic structure and hydrogeologic properties of the	
 proposed storage site and overlying formations, including: (i) Maps and cross sections of the area of review; (ii) The location, orientation, and properties of known or suspected faults and fractures that may transect the confining zone(s) in the area of review and a 	
 determination that they would not interfere with containment; (iii) Data on the depth, areal extent, thickness, mineralogy, porosity, permeability, and capillary pressure of the injection and confining zone(s); including geology/facies changes based on field data which may include geologic cores, outcrop data, seismic surveys, well logs, and names and lithologic descriptions; (iv) Geomechanical information on fractures, stress, ductility, rock strength, and in situ fluid pressures within the confining zone(s); (v) Information on the seismic history including the presence and depth of seismic sources and a determination that the seismicity would not interfere with containment; and (vi) Geologic and topographic maps and cross sections illustrating regional geology, hydrogeology, and the geologic structure of the local area. 	Sec. 3.3.2 Sec. 3.6 Sec. 3.8 Sec. 3.4
(4) A tabulation of all wells within the area of review which penetrate the injection or confining zone(s). Such data must include a description of each well's type, construction, date drilled, location, depth, record of plugging and/ or completion, and any additional information the Director may require;	Appendix B
(5) Maps and stratigraphic cross sections indicating the general vertical and lateral limits of all USDWs, water wells and springs within the area of review, their positions relative to the injection zone(s), and the direction of water movement, where known;	Appendix B
(6) Baseline geochemical data on subsurface formations, including all USDWs in the area of review;	Sec. 3.5, Sec. 4.3
 (7) Proposed operating data for the proposed geologic sequestration site: (i) Average and maximum daily rate and volume and/or mass and total anticipated volume and/or mass of the carbon dioxide stream; (ii) Average and maximum injection pressure; (iii) The source(s) of the carbon dioxide stream; and 	Section 4.1.4 Section 8.2 Sec. 1.1

(iv) An analysis of the chemical and physical characteristics of the carbon dioxide stream.	Sec. 8.6
(8) Proposed pre-operational formation testing program to obtain an analysis of the chemical and physical characteristics of the injection zone(s) and confining zone(s) and that meets the requirements at § 146.87;	Sec. 7.5
Sec. 146.82 Required Class VI permit information. (cont'd) (9) Proposed stimulation program, a description of stimulation fluids to be used and a determination that stimulation will not interfere with containment;	Sec. 8.5.2
(10) Proposed procedure to outline steps necessary to conduct injection operation;	Sec. 8.5
(11) Schematics or other appropriate drawings of the surface and subsurface construction details of the well;	Fig. 6.1.6-1, Fig. 6.1.6-2
(12) Injection well construction procedures that meet the requirements of § 146.86;	Sec. 6
(13) Proposed area of review and corrective action plan that meets the requirements under § 146.84;	Sec. 4.4
(14) A demonstration, satisfactory to the Director, that the applicant has met the financial responsibility requirements under § 146.85;	Sec. 5 and Appendix A
(15) Proposed testing and monitoring plan required by § 146.90;	Sec. 9
(16) Proposed injection well plugging plan required by § 146.92(b);	Sec. 10
(17) Proposed post-injection site care and site closure plan required by § 146.93(a);	Sec. 11
(18) At the Director's discretion, a demonstration of an alternative post-injection site care timeframe required by § 146.93(c);	Sec. 11.3
(19) Proposed emergency and remedial response plan required by § 146.94(a);	Sec. 12
 (20) A list of contacts, submitted to the Director, for those States, Tribes, and Territories identified to be within the area of review of the Class VI project based on information provided in paragraph (a)(2) of this section; and 	Section 2
(21) Any other information requested by the Director.	Agency action
 (b) The Director shall notify, in writing, any States, Tribes, or Territories identified to be within the area of review of the Class VI project based on information provided in paragraphs (a)(2) and (a)(20) of this section of the permit application and pursuant to the requirements at § 145.23(f)(13) of this chapter. 	Agency action
 (c) Prior to granting approval for the operation of a Class VI well, the Director shall consider the following information: (1) The final area of review based on modeling, using data obtained during logging and testing of the well and the formation as required by paragraphs (c)(2), (3), (4), (6), (7), and (10) of this section; 	
(2) Any relevant updates, based on data obtained during logging and testing of the well and the formation as required by paragraphs (c)(3), (4), (6), (7), and (10) of this section, to the information on the geologic structure and hydrogeologic properties of the proposed storage site and overlying formations, submitted to satisfy the requirements of paragraph (a)(3) of this section;	
(3) Information on the compatibility of the carbon dioxide stream with fluids in the injection zone(s) and minerals in both the injection and the confining zone(s), based on the results of the formation testing program, and with the materials used to construct the well;	

 (4) The results of the formation testing program required at paragraph (a)(8) of this section; (5) Final injection well construction procedures that meet the requirements of § 146.86; (6) The status of corrective action on wells in the area of review; (7) All a sile black basis and testing any sequence allows a flow of the state of	Agency action
(7) All available logging and testing program data on the well required by § 146.87;	
 (8) A demonstration of mechanical integrity pursuant to § 146.89; (9) Any updates to the proposed area of review and corrective action plan, testing and monitoring plan, injection well plugging plan, post-injection site care and site closure plan, or the emergency and remedial response plan submitted under paragraph (a) of this section, which are necessary to address new information collected during logging and testing of the well and the formation as required by all paragraphs of this section, and any updates to the alternative post-injection site care timeframe demonstration submitted under paragraph (a) of this section, which are necessary to address new information collected during the logging and testing of the well and the formation as required by all paragraphs of this section as required by all paragraphs of this section, and testing of the well and the logging and testing of the well and the formation as required by all paragraphs of this section, which are necessary to address new information collected during the logging and testing of the well and the formation as required by all paragraphs of this section; and 	
(10) Any other information requested by the Director.	
 (d) Owners or operators seeking a waiver of the requirement to inject below the lowermost USDW must also refer to § 146.95 and submit a supplemental report, as required at § 146.95(a). The supplemental report is not part of the permit application. 	Not applicable
§ 146.83 Minimum criteria for siting.	
(a) Owners or operators of Class VI wells must demonstrate to the satisfaction of the Director that the wells will be sited in areas with a suitable geologic system. The owners or operators must demonstrate that the geologic system comprises:	Section 2
(1) An injection zone(s) of sufficient areal extent, thickness, porosity, and permeability to receive the total anticipated volume of the carbon dioxide stream;	Sec. 3.3.2
(2) Confining zone(s) free of transmissive faults or fractures and of sufficient areal extent and integrity to contain the injected carbon dioxide stream and displaced	Sec. 3.3
formation fluids and allow injection at proposed maximum pressures and volumes without initiating or propagating fractures in the confining zone(s).	Sec. 3.12
(b) The Director may require owners or operators of Class VI wells to identify and characterize additional zones that will impede vertical fluid movement, are free of faults and fractures that may interfere with containment, allow for pressure dissipation, and provide additional opportunities for monitoring, mitigation, and remediation.	Agency action
§ 146.84 Area of review and corrective action.	
(a) The area of review is the region surrounding the geologic sequestration project where USDWs may be endangered by the injection activity. The area of review is delineated using computational modeling that accounts for the physical and chemical properties of all phases of the injected carbon dioxide stream and is based on available site characterization, monitoring, and operational data.	Sections 5.1 and Attachment B

-	
(b) The owner or operator of a Class VI well must prepare, maintain, and comply with a plan to delineate the area of review for a proposed geologic sequestration project, periodically reevaluate the delineation, and perform corrective action that meets the requirements of this section and is acceptable to the Director. The requirement to maintain and implement an approved plan is directly enforceable regardless of whether the requirement is a condition of the permit. As a part of the permit application for approval by the Director, the owner or operator must submit an area of review and corrective action plan that includes the following information:	Section 5.6
corrective action plan that includes the following information: (1) The method for delineating the area of review that meets the requirements of paragraph (c) of this section, including the model to be used, assumptions that will be made, and the site characterization data on which the model will be based;	Sec. 4.2
 (2) A description of: (i) The minimum fixed frequency, not to exceed five years, at which the owner or operator proposes to reevaluate the area of review; (ii) The monitoring and operational conditions that would warrant a reevaluation of the area of review prior to the next scheduled reevaluation as determined by the minimum fixed frequency established in paragraph (b)(2)(i) of this section. (iii) How monitoring and operational data (e.g., injection rate and pressure) will be used to inform an area of review reevaluation; and (iv) How corrective action will be conducted to meet the requirements of paragraph (d) of this section, including what corrective action will be performed prior to injection and what, if any, portions of the area of review will have corrective action addressed on a phased basis and how the phasing will be determined; how corrective action will be guaranteed for 	Section 4.4
future corrective action. (c) Owners or operators of Class VI wells must perform the following actions to delineate the area of review and identify all wells that require corrective action:	
 (1) Predict, using existing site characterization, monitoring and operational data, and computational modeling, the projected lateral and vertical migration of the carbon dioxide plume and formation fluids in the subsurface from the commencement of injection activities until the plume movement ceases, until pressure differentials sufficient to cause the movement of injected fluids or formation fluids into a USDW are no longer present, or until the end of a fixed time period as determined by the Director. The model must: (i) Be based on detailed geologic data collected to characterize the injection zone(s), confining zone(s) and any additional zones; and anticipated operating data, including injection pressures, rates, and total volumes over the proposed life of the geologic sequestration project; 	Sec. 9.5
 (ii) Take into account any geologic heterogeneities, other discontinuities, data quality, and their possible impact on model predictions; and (iii) Consider potential migration through faults, fractures, and artificial 	
 penetrations. (iv) § 146.84 Area of review and corrective action.(cont'd) (2) Using methods approved by the Director, identify all penetrations, including active and abandoned wells and underground mines, in the area of review that may penetrate the confining zone(s). Provide a description of each well's type, construction, date drilled, location, depth, record of plugging and/ or completion, and any additional information the Director may require; and 	Appendix B

(3) Determine which abandoned wells in the area of review have been plugged in a	
manner that	
prevents the movement of carbon dioxide or other fluids that may endanger USDWs,	Appendix B
including use of materials compatible with the carbon dioxide stream.	
(d) Owners or operators of Class VI wells must perform corrective action on all wells in	
the area of	
review that are determined to need corrective action, using methods designed to	Sec. 4.4
prevent the movement of fluid into or between USDWs, including use of materials	
compatible with the carbon dioxide stream, where appropriate.	
(e) At the minimum fixed frequency, not to exceed five years, as specified in the area	
of review and corrective action plan, or when monitoring and operational conditions	
warrant, owners or operators	
must:	
(1) Reevaluate the area of review in the same manner specified in paragraph (c)(1) of	
this section;	
(2) Identify all wells in the reevaluated area of review that require corrective action in	
the same manner specified in paragraph (c) of this section;	
(2) Derform corrective ection on wells requiring corrective ection in the requely stad	
(3) Perform corrective action on wells requiring corrective action in the reevaluated	
area of review in the same manner specified in paragraph (d) of this section; and	Sec. 4
(4) Submit an amended area of review and corrective action plan or demonstrate to	Sec. 4
the Director through monitoring data and modeling results that no amendment to the	
area of review and corrective action plan is needed. Any amendments to the area of	
review and corrective action plan must be	
approved by the Director, must be incorporated into the permit, and are subject to the	
permit modification requirements at §§ 144.39 or 144.41 of this chapter, as	
appropriate.	
(f) The emergency and remedial response plan (as required by § 146.94) and the	
demonstration of	
financial responsibility (as described by § 146.85) must account for the area of review	
delineated as specified in paragraph (c)(1) of this section or the most recently	Sec. 12 and Sec. 5
evaluated area of review delineated under paragraph (e) of this section, regardless of	
whether or not corrective action in the area of review is phased.	
(g) All modeling inputs and data used to support area of review reevaluations under	
	Sec. 9
paragraph (e) of this section shall be retained for 10 years.	Sec. 9
§ 146.85 Financial responsibility.	
3 140.05 Financial responsibility.	
(a) The owner or operator must demonstrate and maintain financial responsibility as	
determined by the Director that meets the following conditions:	
(b) The requirement to maintain adequate financial responsibility and resources is	
directly enforceable regardless of whether the requirement is a condition of the permit.	
,	
(c) The owner or operator must have a detailed written estimate, in current dollars, of	
the cost of performing corrective action on wells in the area of review, plugging the	
injection well(s), post- injection site care and site closure, and emergency and remedial	
response	
(d) The owner or operator must notify the Director by certified mail of adverse	Sec. 5, Appendix A
financial conditions such as bankruptcy that may affect the ability to carry out injection	
well plugging and post-injection site care and site closure	
· ·	-

 (e) The owner or operator must provide an adjustment of the cost estimate to the Director within 60 days of notification by the Director, as required by § 146.84, if the Director determines during the annual evaluation of the qualifying financial instrument(s) that the most recent demonstration is no longer adequate to cover the cost of corrective action (as required by § 146.84), injection well plugging (as required by § 146.92), post-injection site care and site closure (as required by § 146.93), and emergency and remedial response (as required by § 146.94). (f) The Director must approve the use and length of pay-in-periods for trust funds or escrow accounts. 	Agency action
 § 146.86 Injection well construction requirements. (a) General. The owner or operator must ensure that all Class VI wells are constructed and completed to: (1) Prevent the movement of fluids into or between USDWs or into any unauthorized zones; (2) Permit the use of appropriate testing devices and workover tools; and (3) Permit continuous monitoring of the annulus space between the injection tbg and long string casing. 	Sec. 6
 (b) Casing and Cementing of Class VI Wells. (1) Casing and cement or other materials used in the construction of each Class VI well must have sufficient structural strength and be designed for the life of the geologic sequestration project. All well materials must be compatible with fluids with which the materials may be expected to come into contact and must meet or exceed standards developed for such materials by the American Petroleum Institute, ASTM International, or comparable standards acceptable to the Director. The casing and cementing program must be designed to prevent the movement of fluids into or between USDWs. In order to allow the Director to determine and specify casing and cementing requirements, the owner or operator must provide the following information: 	Sec. 6.1, Sec. 6.2
 (i) Depth to the injection zone(s); (ii) Injection pressure, external pressure, internal pressure, and axial loading; (iii) Hole size; (iv) Size and grade of all casing strings (wall thickness, external diameter, 	6.1.1 Fig 6.1-3 Fig.6.1-4, Fig. 6.1.7.3 Sec. 6.2.7.1, Table 6.2.7.1-1 Sec. 6.1.7.2 Table 6.1.7.2-1
 nominal weight, length, joint specification, and construction material); (v) Corrosiveness of the carbon dioxide stream and formation fluids; (vi) Down-hole temperatures; (vii) Lithology of injection and confining zone(s); (viii) Type or grade of cement and cement additives; and (ix) Quantity, chemical composition, and temperature of the carbon dioxide stream. 	Sec. 3.5 Sec. 7.3.7, Table 7.3.7-1 Sec. 7.3.1 Sec. 6.1.7.2 Table 6.1.7.2-1 Sec. 8.6
 (2) Surface casing must extend through the base of the lowermost USDW and be cemented to the surface through the use of a single or multiple strings of casing and cement. (3) At least one long string casing, using a sufficient number of centralizers, must extend to the injection 	Sec. 6.1.7.1, Table 6.1.7.1-1 6.1.7.2, Table 6.1.7.2-1
zone and must be cemented by circulating cement to the surface in one or more stages. (4) Circulation of cement may be accomplished by staging. The Director may approve an alternative method of cementing in cases where the cement cannot be recirculated to the surface, provided the owner or operator can demonstrate by using logs that the cement does not allow fluid movement behind wellbore.	

(5) Cement and cement additives must be compatible with the carbon dioxide stream and formation fluids and of sufficient quality and quantity to maintain integrity over the design life of the geologic sequestration project. The integrity and location of the cement shall be verified using technology capable of evaluating cement quality radially and identifying the location of channels to ensure that USDWs are not endangered.	Sec. 6.1.7
 (c) Tubing and packer. (1) Tubing and packer materials used in the construction of each Class VI well must be compatible with fluids with which the materials may be expected to come into contact and must meet or exceed standards developed for such materials by the American Petroleum Institute, ASTM International, or comparable standards acceptable to the Director. 	Sec. 6.1.7
(2) All owners or operators of Class VI wells must inject fluids through tubing with a packer set at a depth opposite a cemented interval at the location approved by the Director.	Packer depth TBD.
 (3) In order for the Director to determine and specify requirements for tubing and packer, the owner or operator must submit the following information: (i) Depth of setting; (ii) Characteristics of the carbon dioxide stream (chemical content, corrosiveness, temperature, and density) and formation fluids; (iii) Maximum proposed injection pressure; (iv) Maximum proposed annular pressure; (v) Proposed injection rate (intermittent or continuous) and volume and/or mass of the carbon dioxide stream; (vi) Size of tubing and casing; and (vii) Tubing tensile, burst, and collapse strengths. 	Packer depth TBD. Sec. 8.6 Sec. 8.2, Table 8.2-1 Fig. 6.1-3, 6.1-4, 6.1-5 Sec. 8.1 Table 6.1.7.3-1 Sec. 6.1.7.3, Table 6.1.7.3-1

§ 146.87 Logging, sampling, and testing prior to injection well operation.	
(a) During the drilling and construction of a Class VI injection well, the owner or	
operator must run appropriate logs, surveys and tests to determine or verify the depth,	
thickness, porosity, permeability, and lithology of, and the salinity of any formation	
fluids in all relevant geologic formations to ensure conformance with the injection well	
construction requirements under § 146.86 and to establish accurate baseline data	
against which future measurements may be compared. The owner or operator must	
submit to the Director a descriptive report prepared by a knowledgeable log analyst	
that includes an interpretation of the results of such logs and tests. At a minimum, such	
logs and tests must include:	
(1) Deviation checks during drilling on all holes constructed by drilling a pilot hole	
which is enlarged by reaming or another method. Such checks must be at sufficiently	
frequent intervals to determine the location of the borehole and to ensure that vertical	Sec. 7.1
avenues for fluid movement in the form of diverging holes are not created during	
drilling; and (2) Before and upon installation of the surface casing:	
(i) Resistivity, spontaneous potential, and caliper logs before the casing is	
installed; and	Sec. 6.1.7.9
(ii) A cement bond and variable density log to evaluate cement quality	
radially, and a temperature log after the casing is set and cemented.	Sec. 6.1.7.9
(3) Before and upon installation of the long string casing:	
(i) Resistivity, spontaneous potential, porosity, caliper, gamma ray,	6.4.7.4
fracture finder logs, and any other logs the Director requires for the given	6.1.7.4
geology before the casing is installed; and	1 1

I	
(ii) A cement bond and variable density log, and a temperature log after	6.1.7.4
the casing is set and cemented.	
(4) A series of tests designed to demonstrate the internal and external mechanical	
integrity of injection wells, which may include:	
(i) A pressure test with liquid or gas;	Sec. 6.2.9.3
(ii) A tracer survey such as oxygen-activation logging;	Sec. 7.5.3.2
(iii) A temperature or noise log;	Sec. 7.5.3.2
(iv) A casing inspection log; and	Sec. 7.5.3.2
(5) Any alternative methods that provide equivalent or better information and that are	N/a
required by and/or approved of by the Director.	
(b) The owner or operator must take whole cores or sidewall cores of the injection zone	
and confining	
system and formation fluid samples from the injection zone(s), and must submit to the	
Director a detailed report prepared by a log analyst that includes: Well log analyses	
(including well logs), core analyses, and formation fluid sample information. The	Sec. 7.3
Director may accept information on cores from nearby wells if the owner or operator	566. 7.5
can demonstrate that core retrieval is not possible and that such	
cores are representative of conditions at the well. The Director may require the owner	
or operator to core other formations in the borehole.	
(c) The owner or operator must record the fluid temperature, pH, conductivity,	
reservoir pressure, and	Sect. 7.5.3.6
static fluid level of the injection zone(s).	
(d) At a minimum, the owner or operator must determine or calculate the	
following information	
concerning the injection and confining zone(s):	
(1) Fracture pressure;	Sec. 7.4.2.9
(2) Other physical and chemical characteristics of the injection and confining	Sec. 7.2
zone(s); and	
(3) Physical and chemical characteristics of the formation fluids in the injection	Sec. 7.3.3.1
zone(s).	
(e) Upon completion, but prior to operation, the owner or operator must conduct	
the following tests to	
verify hydrogeologic characteristics of the injection zone(s):	
(1) A pressure fall-off test; and,	Sec. 7.5.3.6
(2) A pump test; or	Sec. 7.1.2
(3) Injectivity tests.	N/a
(f) The owner or operator must provide the Director with the opportunity to witness all	
logging and testing by this subpart. The owner or operator must submit a schedule of	
such activities to the Director	Sec. 6.1.7.9
30 days prior to conducting the first test and submit any changes to the schedule 30	
days prior to the next scheduled test.	
	•
δ 146 88 Injection well operating requirements	

§ 146.88 Injection well operating requirements.	
(a) Except during stimulation, the owner or operator must ensure that injection pressure does not exceed 90 percent of the fracture pressure of the injection zone(s) so as to ensure that the injection does not initiate new fractures or propagate existing fractures in the injection zone(s). In no case may injection pressure initiate fractures in the confining zone(s) or cause the movement of injection or formation fluids that endangers a USDW. Pursuant to requirements at § 146.82(a)(9), all stimulation programs must be approved by the Director as part of the permit application and incorporated into the permit.	Sec. 8.2
(b) Injection between the outermost casing protecting USDWs and the well bore is prohibited.	Sec. 8.5

(c) The owner or operator must fill the annulus between the tubing and the long string	
casing with a non-corrosive fluid approved by the Director. The owner or operator must	
maintain on the annulus a pressure that exceeds the operating injection pressure,	Sec. 8.4.2
unless the Director determines that such	
requirement might harm the integrity of the well or endanger USDWs.	
(d) Other than during periods of well workover (maintenance) approved by the Director	
in which the sealed tubing-casing annulus is disassembled for maintenance or	Sec. 7 5 2 7
corrective procedures, the owner or	Sec. 7.5.3.7
operator must maintain mechanical integrity of the injection well at all times.	
(e) The owner or operator must install and use:	
(1) Continuous recording devices to monitor: The injection pressure; the rate, volume	
and/or mass, and temperature of the carbon dioxide stream; and the pressure on the	Sec. 6.4
annulus between the tubing and the long string casing and annulus fluid volume; and	300. 0.4
annulus between the tubing and the long string casing and annulus huld volume, and	
(2) Alarms and automatic surface shut-off systems or, at the discretion of the Director,	Sect. 8.7
down-hole shut- off systems (<i>e.g.</i> , automatic shut-off, check valves) for onshore wells	
or, other mechanical devices that provide equivalent protection; and	
or, other mechanical devices that provide equivalent protection, and	
(3) Alarms and automatic down-hole shut-off systems for wells located offshore but	N/A
within State territorial waters, designed to alert the operator and shut-in the well when	
operating parameters such as annulus pressure, injection rate, or other parameters	
diverge beyond permitted ranges and/or gradients	
specified in the permit.	
(f) If a shutdown (<i>i.e.</i> , down-hole or at the surface) is triggered or a loss of mechanical	
integrity is discovered, the owner or operator must immediately investigate and	
identify as expeditiously as possible the cause of the shutoff. If, upon such	
investigation, the well appears to be lacking mechanical integrity, or if monitoring	
required under paragraph (e) of this section otherwise indicates that the well may be	
lacking mechanical integrity, the owner or operator must:	
(1) Immediately cease injection;	Sect. 12 ERRP
(2) Take all steps reasonably necessary to determine whether there may have been a	Sect. 12 LAAF
release of the injected carbon dioxide stream or formation fluids into any unauthorized	
zone; (3) Notify the Director within 24 hours;	
(4) Restore and demonstrate mechanical integrity to the satisfaction of the Director	
prior to resuming injection; and	
(5) Notify the Director when injection can be expected to resume.	
(5) Notify the Director when hijection can be expected to resume.	
§ 146.89 Mechanical integrity.	
(a) A Class VI well has mechanical integrity if:	
(1) There is no significant leak in the casing, tubing, or packer; and	Sec. 7.5.3.7, Sec. 9.2
(2) There is no significant fluid movement into a USDW through channels adjacent to	
the injection well bore.	
(b) To evaluate the absence of significant leaks under paragraph (a)(1) of this section,	
owners or operators must following an initial annulus pressure test, continuously	

owners or operators must, following an initial annulus pressure test, continuously	
monitor injection pressure,	Sec. 9.5.2.1 and Sec. 6.5
rate, injected volumes; pressure on the annulus between tubing and long-string casing;	
and annulus fluid volume as specified in § 146.88 (e);	
(c) At least once per year, the owner or operator must use one of the following	
methods to determine the absence of significant fluid movement under paragraph	
(a)(2) of this section:	Sec. 7.5.3.2
(1) An approved tracer survey such as an oxygen-activation log; or	
(2) A temperature or noise log.	

(d) If required by the Director, at a frequency specified in the testing and monitoring plan required at	
§ 146.90, the owner or operator must run a casing inspection log to determine the presence or absence of corrosion in the long-string casing.	Agency action
(e) The Director may require any other test to evaluate mechanical integrity under paragraphs (a)(1) or (a)(2) of this section. Also, the Director may allow the use of a test to demonstrate mechanical integrity other than those listed above with the written approval of the Administrator. To obtain approval for a new mechanical integrity test, the Director must submit a written request to the Administrator setting forth the proposed test and all technical data supporting its use. The Administrator may approve the request if he or she determines that it will reliably demonstrate the mechanical integrity of wells for which its use is proposed. Any alternate method approved by the	Agency action
Administrator will be published in the Federal Register and may be used in all States in accordance with applicable State law unless its use is restricted at the time of approval by the Administrator.	
(f) In conducting and evaluating the tests enumerated in this section or others to be allowed by the Director, the owner or operator and the Director must apply methods and standards generally accepted in the industry. When the owner or operator reports the results of mechanical integrity tests to the Director, he/she shall include a description of the test(s) and the method(s) used. In making	Sec. 7.5.3.7
his/her evaluation, the Director must review monitoring and other test data submitted since the previous evaluation.	
(g) The Director may require additional or alternative tests if the results presented by the owner or operator under paragraphs (a) through (d) of this section are not satisfactory to the Director to demonstrate that there is no significant leak in the casing, tubing, or packer, or to demonstrate that there is no significant movement of fluid into a USDW resulting from the injection activity as stated	Agency action
in paragraphs (a)(1) and (2) of this section.	
§ 146.90 Testing and monitoring requirements. The owner or operator of a Class VI well must prepare, maintain, and comply with a testing and monitoring plan to verify that the geologic sequestration project is operating as permitted and is not endangering USDWs. The requirement to maintain and implement an approved plan is directly enforceable regardless of whether the requirement is a condition of the permit. The testing and monitoring plan must be submitted with the permit application, for Director approval, and must include a description of how the owner or operator will meet the requirements of this section, including accessing sites for all necessary monitoring and testing during the life of the project. Testing and monitoring associated with geologic sequestration projects must, at a minimum, include:	Sec. 9
(a) Analysis of the carbon dioxide stream with sufficient frequency to yield data representative of its chemical and physical characteristics;	Sec. 9.1
(b) Installation and use, except during well workovers as defined in § 146.88(d), of continuous recording devices to monitor injection pressure, rate, and volume; the pressure on the annulus between the tubing and the long string casing; and the annulus fluid volume added;	Sec. 6.4
 (c) Corrosion monitoring of the well materials for loss of mass, thickness, cracking, pitting, and other signs of corrosion, which must be performed on a quarterly basis to ensure that the well components meet the minimum standards for material strength and performance set forth in § 146.86(b), by: (1) Analyzing coupons of the well construction materials placed in contact with the carbon dioxide stream; or 	Sec. 9.2

(2) Routing the carbon dioxide stream through a loop constructed with the material used in the well and inspecting the materials in the loop; or(3) Using an alternative method approved by the Director;	
 (d) Periodic monitoring of the ground water quality and geochemical changes above the confining zone(s) that may be a result of carbon dioxide movement through the confining zone(s) or additional identified zones including: (1) The location and number of monitoring wells based on specific information about the geologic sequestration project, including injection rate and volume, geology, the presence of artificial penetrations, and other factors; and (2) The monitoring frequency and spatial distribution of monitoring wells based on baseline geochemical data that has been collected under § 146.82(a)(6) and on any modeling results in the area of review evaluation required by § 146.84(c). 	Sec. 9.5.2.1, Table 9.5.2-2
(e) A demonstration of external mechanical integrity pursuant to § 146.89(c) at least once per year until the injection well is plugged; and, if required by the Director, a casing inspection log pursuant to requirements at § 146.89(d) at a frequency established in the testing and monitoring plan;	Sec. 7.5.3.7
(f) A pressure fall-off test at least once every five years unless more frequent testing is required by the Director based on site-specific information;	Sec. 9.3
(g) Testing and monitoring to track the extent of the carbon dioxide plume and the presence or absence of elevated pressure (<i>e.g.</i> , the pressure front) by using:	
 Direct methods in the injection zone(s); and, Indirect methods (<i>e.g.</i>, seismic, electrical, gravity, or electromagnetic surveys and/or down-hole carbon dioxide detection tools), unless the Director determines, based on site-specific geology, that such methods are not appropriate; 	

 § 146.90 Testing and monitoring requirements. (cont'd) (h) The Director may require surface air monitoring and/or soil gas monitoring to detect movement of carbon dioxide that could endanger a USDW. (1) Design of Class VI surface air and/ or soil gas monitoring must be based on potential risks to USDWs within the area of review; 	
 (2) The monitoring frequency and spatial distribution of surface air monitoring and/or soil gas monitoring must be decided using baseline data, and the monitoring plan must describe how the proposed monitoring will yield useful information on the area of review delineation and/or compliance with standards under § 144.12 of this chapter; (3) If an owner or operator demonstrates that monitoring employed under §§ 98.440 to 98.449 of this chapter (Clean Air Act, 42 U.S.C. 7401 <i>et seq.</i>) accomplishes the goals of paragraphs (h)(1) and (2) of this section, and meets the requirements pursuant to § 146.91(c)(5), a Director that requires surface air/soil gas monitoring must approve the use of monitoring employed under §§ 98.440 to 98.449 of this 	Sec. 3.9
chapter. Compliance with §§ 98.440 to 98.449 of this chapter pursuant to this provision is considered a condition of the Class VI permit;	
(i) Any additional monitoring, as required by the Director, necessary to support, upgrade, and improve computational modeling of the area of review evaluation required under § 146.84(c) and to determine compliance with standards under § 144.12 of this chapter;	Agency action

 (j) The owner or operator shall periodically review the testing and monitoring plan to incorporate monitoring data collected under this subpart, operational data collected under § 146.88, and the most recent area of review reevaluation performed under § 146.84(e). In no case shall the owner or operator review the testing and monitoring plan less often than once every five years. Based on this review, the owner or operator shall submit an amended testing and monitoring plan or demonstrate to the Director that no amendment to the testing and monitoring plan is needed. Any amendments to the testing and monitoring plan is needed. Any amendments to the testing and monitoring plan must be approved by the Director, must be incorporated into the permit, and are subject to the permit modification requirements at §§ 144.39 or 144.41 of this chapter, as appropriate. Amended plans or demonstrations shall be submitted to the Director as follows: (1) Within one year of an area of review reevaluation; (2) Following any significant changes to the facility, such as addition of monitoring wells or newly permitted injection wells within the area of review, on a schedule determined by the Director; or (3) When required by the Director. 	Section 9
 (k) A quality assurance and surveillance plan for all testing and monitoring requirements. 	
§ 146.91 Reporting requirements.	
The owner or operator must, at a minimum, provide, as specified in paragraph (e) of this section, the following reports to the Director, for each permitted Class VI well:	
 (a) Semi-annual reports containing: (1) Any changes to the physical, chemical, and other relevant characteristics of the carbon dioxide stream from the proposed operating data; (2) Monthly average, maximum, and minimum values for injection pressure, flow rate 	
 and volume, and annular pressure; (3) A description of any event that exceeds operating parameters for annulus pressure or injection pressure specified in the permit; (4) A description of any event which triggers a shut-off device required pursuant to § 146.88(e) and the response taken; 	
(5) The monthly volume and/or mass of the carbon dioxide stream injected over the reporting period and the volume injected cumulatively over the life of the project;	
(6) Monthly annulus fluid volume added; and(7) The results of monitoring prescribed under § 146.90.	
 (b) Report, within 30 days, the results of: (1) Periodic tests of mechanical integrity; (2) Any well workover; and, (3) Any other test of the injection well conducted by the permittee if required by the Director. 	
(c) Report, within 24 hours:(1) Any evidence that the injected carbon dioxide stream or associated pressure front may cause an endangerment to a USDW;	
 (2) Any noncompliance with a permit condition, or malfunction of the injection system, which may cause fluid migration into or between USDWs; (3) Any triggering of a shut-off system (<i>i.e.</i>, down-hole or at the surface); (4) Any failure to maintain mechanical integrity; or. 	
(5) Pursuant to compliance with the requirement at § 146.90(h) for surface air/soil gas monitoring or other monitoring technologies, if required by the Director, any release of carbon dioxide to the atmosphere or biosphere.	Sec. 9.7
(d) Owners or operators must notify the Director in writing 30 days in advance of:	

(1) Any planned well workover;
(2) Any planned stimulation activities, other than stimulation for formation testing
conducted under § 146.82; and
(3) Any other planned test of the injection well conducted by the permittee.
(e) Regardless of whether a State has primary enforcement responsibility, owners or
operators must submit all required reports, submittals, and notifications under subpart
H of this part to EPA in an
electronic format approved by EPA.
(f) Records shall be retained by the owner or operator as follows:
(1) All data collected under § 146.82 for Class VI permit applications shall be retained
throughout the life of the geologic sequestration project and for 10 years following site
closure.
(2) Data on the nature and composition of all injected fluids collected pursuant to
146.90(a) shall be retained until 10 years after site closure. The Director may require
the owner or operator to deliver the records to the Director at the conclusion of the
retention period.
(3) Monitoring data collected pursuant to § 146.90(b) through (i) shall be retained for
10 years after it is collected.
(4) Well plugging reports, post-injection site care data, including, if appropriate, data
and information used to develop the demonstration of the alternative post-injection
site care timeframe, and the site closure report collected pursuant to requirements at
§§ 146.93(f) and (h) shall be retained for 10 years following site closure.
(5) The Director has authority to require the owner or operator to retain any records
required in this subpart for longer than 10 years after site closure.

 § 146.92 Injection well plugging. (a) Prior to the well plugging, the owner or operator must flush each Class VI injection well with a buffer fluid, determine bottomhole reservoir pressure, and perform a final external mechanical integrity test. 	Sec. 10.2.1
 (b) Well plugging plan. The owner or operator of a Class VI well must prepare, maintain, and comply with a plan that is acceptable to the Director. The requirement to maintain and implement an approved plan is directly enforceable regardless of whether the requirement is a condition of the permit. The well plugging plan must be submitted as part of the permit application and must include the following information: (1) Appropriate tests or measures for determining bottomhole reservoir pressure; (2) Appropriate testing methods to ensure external mechanical integrity as specified in § 146.89; (3) The type and number of plugs to be used; (4) The placement of each plug, including the elevation of the top and bottom of each plug; (5) The type, grade, and quantity of material to be used in plugging. The material must be compatible with the carbon dioxide stream; and (6) The method of placement of the plugs. 	Sec. 10.3 and Attachment D
(c) Notice of intent to plug. The owner or operator must notify the Director in writing pursuant to § 146.91(e), at least 60 days before plugging of a well. At this time, if any changes have been made to the original well plugging plan, the owner or operator must also provide the revised well plugging plan. The Director may allow for a shorter notice period. Any amendments to the injection well plugging plan must be approved by the Director, must be incorporated into the permit, and are subject to the permit modification requirements at §§ 144.39 or 144.41 of this chapter, as appropriate.	Sec. 10.1

(d) <i>Plugging report.</i> Within 60 days after plugging, the owner or operator must submit, pursuant to § 146.91(e), a plugging report to the Director. The report must be certified as accurate by the owner or operator and by the person who performed the plugging operation (if other than the owner or operator.) The owner or operator shall retain the well plugging report for 10 years following site closure.	Sec. 10.3		
§ 146.93 Post-injection site care and site closure.			
(a) The owner or operator of a Class VI well must prepare, maintain, and comply with a plan for post- injection site care and site closure that meets the requirements of paragraph (a)(2) of this section and is acceptable to the Director. The requirement to maintain and implement an approved plan is directly enforceable regardless of whether the requirement is a condition of the permit.	Sec. 11		
(1) The owner or operator must submit the post-injection site care and site closure plan as a part of the permit application to be approved by the Director.			
 (2) The post-injection site care and site closure plan must include the following information: (i) The pressure differential between pre-injection and predicted post- 			
injection pressures in the injection zone(s); (ii) The predicted position of the carbon dioxide plume and associated pressure front at site closure as demonstrated in the area of review evaluation required under § 146.84(c)(1);	Sec. 11.1		
 (iii) A description of post-injection monitoring location, methods, and proposed frequency; (iv) A proposed schedule for submitting post-injection site care monitoring 	Sec. 11.2		
results to the Director pursuant to § 146.91(e); and,	Sec. 11.5		
(v) The duration of the post-injection site care timeframe and, if approved by the Director, the demonstration of the alternative post-injection site care timeframe that ensures non- endangerment of USDWs.	Sec. 1.1 and Sec. 11.3		
(3) Upon cessation of injection, owners or operators of Class VI wells must either submit an amended post-injection site care and site closure plan or demonstrate to the Director through monitoring data and modeling results that no amendment to the plan is needed. Any amendments to the post-injection site care and site closure plan must be approved by the Director, be incorporated into the permit, and are subject to the permit modification requirements at §§ 144.39 or 144.41 of this chapter, as	Sec. 11.4 and 11.5		
appropriate. (4) At any time during the life of the geologic sequestration project, the owner or			
operator may modify and resubmit the post-injection site care and site closure plan for the Director's approval within 30 days of such change.	As noted		
(b) The owner or operator shall monitor the site following the cessation of injection to			
show the position of the carbon dioxide plume and pressure front and demonstrate that USDWs are not being endangered.	Sec. 11.2 and 11.5		

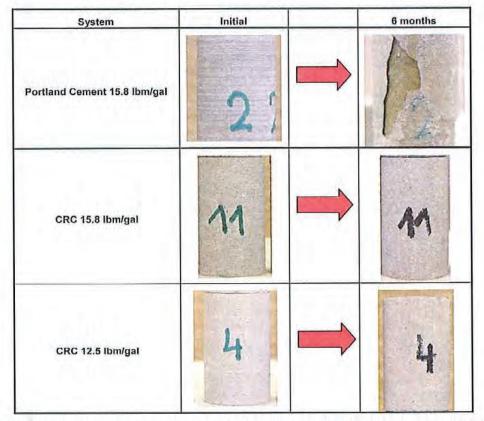
(1) Following the cessation of injection, the owner or operator shall continue to conduct monitoring as specified in the Director-approved post-injection site care and site closure plan for at least 50 years or for the duration of the alternative timeframe approved by the Director pursuant to requirements in paragraph (c) of this section, unless he/she makes a demonstration under (b)(2) of this section. The monitoring must continue until the geologic sequestration project no longer poses an endangerment to USDWs and the demonstration under (b)(2) of this section is submitted and approved by the Director.	Sec. 11.2 and 11.3
(2) If the owner or operator can demonstrate to the satisfaction of the Director before 50 years or prior to the end of the approved alternative timeframe based on monitoring and other site-specific data, that the geologic sequestration project no longer poses an endangerment to USDWs, the Director may approve an amendment to the post-injection site care and site closure plan to reduce the frequency of monitoring or may authorize site closure before the end of the 50-year period or prior to the end of the approved alternative timeframe, where he or she has substantial evidence that the geologic sequestration project no longer poses a risk of endangerment to USDWs.	Sec. 11.3
 (3) Prior to authorization for site closure, the owner or operator must submit to the Director for review and approval a demonstration, based on monitoring and other site-specific data, that no additional monitoring is needed to ensure that the geologic sequestration project does not pose an endangerment to USDWs. (4) If the demonstration in paragraph (b)(3) of this section cannot be made (<i>i.e.,</i> additional monitoring is needed to ensure that the geologic sequestration project does not pose an endangerment to USDWs) at the end of the 50-year period or at the end of the approved alternative timeframe, or if the Director does not approve the demonstration, the owner or operator must submit to the Director a plan to continue post-injection site care until a demonstration can be made and approved by the Director. 	Sec. 11.5 Sec. 11.3
 § 146.93 Post-injection site care and site closure. (cont'd) (c) Demonstration of alternative post-injection site care timeframe. At the Director's discretion, the Director may approve, in consultation with EPA, an alternative post-injection site care timeframe other than the 50 year default, if an owner or operator can demonstrate during the permitting process that an alternative post-injection site care timeframe is appropriate and ensures non-endangerment of USDWs. The demonstration must be based on significant, site-specific data and information including all data and information collected pursuant to §§ 146.82 and 146.83, and must contain substantial evidence that the geologic sequestration project will no longer pose a risk of endangerment to USDWs at the end of the alternative post-injection site care timeframe. (1) A demonstration of an alternative post-injection site care timeframe must include consideration and documentation of: (i) The results of computational modeling performed pursuant to delineation of the area of review under § 146.84; (ii) The predicted timeframe for pressure decline within the injection zone, and any other zones, such that formation fluids may not be forced into any USDWs; and/or the timeframe for pressure decline to pre-injection pressures; (iii) The predicted rate of carbon dioxide plume migration within the injection zone, and the predicted timeframe for the cessation of migration; (ii) A description of the site-specific processes that will result in carbon dioxide trapping including immobilization by capillary trapping, dissolution, and mineralization at the site; 	

 (iv) The predicted rate of carbon dioxide trapping in the immobile capillary phase, dissolved phase, and/or mineral phase; (v) The results of laboratory analyses, research studies, and/or field or site specific studies to verify the information required in paragraphs (iv) and (v) of this section; 	
(vi) A characterization of the confining zone(s) including a demonstration that it is free of transmissive faults, fractures, and micro-fractures and of appropriate thickness, permeability, and integrity to impede fluid (e.g., carbon dioxide, formation fluids) movement;	
(vii) The presence of potential conduits for fluid movement including planned injection wells and project monitoring wells associated with the proposed geologic sequestration project or any other projects in proximity to the predicted/modeled, final extent of the carbon dioxide plume and area of elevated pressure;	
 (viii) A description of the well construction and an assessment of the quality of plugs of all abandoned wells within the area of review; (ix) The distance between the injection zone and the nearest USDWs above and/ or below the injection zone; and (x) Any additional site-specific factors required by the Director. (2) Information submitted to support the demonstration in paragraph (c)(1) of this 	
 section must meet the following criteria: (i) All analyses and tests performed to support the demonstration must be accurate, reproducible, and performed in accordance with the established quality assurance standards; (ii) Estimation techniques must be appropriate and EPA-certified test protocols must be used where available; (iii) Predictive models must be 	
appropriate and tailored to the site conditions, composition of the carbon dioxide stream and injection and site conditions over the life of the geologic sequestration project; (iii) Predictive models must be calibrated using existing information (<i>e.g.</i> , a Class I, Class II, or Class V experimental technology well sites) where sufficient data are available;	t
(iv) Reasonably conservative values and modeling assumptions must be used and disclosed to the Director whenever values are estimated on the basis of known, historical information instead of site-specific measurements;	
(v) An analysis must be performed to identify and assess aspects of the alternative post-injection site care timeframe demonstration that contribute significantly to uncertainty. The owner or operator must conduct sensitivity analyses to determine the effect that significant uncertainty may contribute to the modeling demonstration.	
 (vi) An approved quality assurance and quality control plan must address all aspects of the demonstration; and, (vii) Any additional criteria required by the Director. (viii) 	
	,
§ 146.93 Post-injection site care and site closure. (cont'd) (d) Notice of integet for site closure. The purper or operator must patify the Director in	
(d) <i>Notice of intent for site closure.</i> The owner or operator must notify the Director in writing at least 120 days before site closure. At this time, if any changes have been	
made to the original post-injection	Sec. 11.5
site care and site closure plan, the owner or operator must also provide the revised	
plan. The Director may allow for a shorter notice period.	
(e) After the Director has authorized site closure, the owner or operator must plug all	
monitoring wells	Sec. 11 5

in a manner which will not allow movement of injection or formation fluids that endangers a USDW.	JCC. 11.J	
 (f) The owner or operator must submit a site closure report to the Director within 90 days of site closure, which must thereafter be retained at a location designated by the Director for 10 years. The report must include: 		
(1) Documentation of appropriate injection and monitoring well plugging as specified in § 146.92 and paragraph (e) of this section. The owner or operator must provide a copy of a survey plat which has been submitted to the local zoning authority designated by the Director. The plat must indicate the location of the injection well relative to permanently surveyed benchmarks. The owner or operator must also submit a copy of the plat to the Regional Administrator of the appropriate EPA Regional Office;	Sec. 11.5	
(2) Documentation of appropriate notification and information to such State, local and Tribal authorities that have authority over drilling activities to enable such State, local, and Tribal authorities to impose appropriate conditions on subsequent drilling activities that may penetrate the injection and confining zone(s); and		
(3) Records reflecting the nature, composition, and volume of the carbon dioxide stream.		
 (g) Each owner or operator of a Class VI injection well must record a notation on the deed to the facility property or any other document that is normally examined during title search that will in perpetuity provide any potential purchaser of the property the following information: The fact that land has been used to sequester carbon dioxide; The name of the State agency, local authority, and/or Tribe with which the survey plat was filed, as well as the address of the Environmental Protection Agency Regional Office to which it was submitted; and The volume of fluid injected, the injection zone or zones into which it was injected, and the period over which injection occurred. 	Sec. 11.5	
(h) The owner or operator must retain for 10 years following site closure, records collected during the post-injection site care period. The owner or operator must deliver the records to the Director at the conclusion of the retention period, and the records must thereafter be retained at a location designated by the Director for that purpose.	Sec. 11.5	
§ 146.94 Emergency and remedial response.		
(a) As part of the permit application, the owner or operator must provide the Director with an emergency and remedial response plan that describes actions the owner or operator must take to address movement of the injection or formation fluids that may cause an endangerment to a USDW during construction, operation, and post-injection site care periods. The requirement to maintain and implement an approved plan is directly enforceable regardless of whether the requirement is a	Sec. 12.1 and Attachment F	
condition of the permit. (b) If the owner or operator obtains evidence that the injected carbon dioxide stream		
and associated pressure front may cause an endangerment to a USDW, the owner or operator must: (1) Immediately cease injection;		
(2) Take all steps reasonably necessary to identify and characterize any release;	Sec. 12.1 and Attachment F	
(3) Notify the Director within 24 hours; and		

(3) Notify the Director within 24 hours; and(4) Implement the emergency and remedial response plan approved by the Director.

(c) The Director may allow the operator to resume injection prior to remediation if the owner or operator demonstrates that the injection operation will not endanger USDWs.	Agency action
(d) The owner or operator shall periodically review the emergency and remedial response plan developed under paragraph (a) of this section. In no case shall the owner or operator review the emergency and remedial response plan less often than once every five years. Based on this review, the owner or operator shall submit an amended emergency and remedial response plan or demonstrate to the Director that no amendment to the emergency and remedial response plan is needed. Any amendments to the emergency and remedial response plan must be approved by the Director, must be incorporated into the permit, and are subject to the permit modification requirements at §§ 144.39 or	Sec. 12.1 and Attachment F
 144.41 of this chapter, as appropriate. Amended plans or demonstrations shall be submitted to the Director as follows: (1) Within one year of an area of review reevaluation; (2) Following any significant changes to the facility, such as addition of injection or monitoring wells, on a schedule determined by the Director; or (3) When required by the Director. 	


APPENDIX G: CO₂ Resistant Cement Technical Specification

Schlumberger

CO₂ Resistant Cement Technical memo Section 1 Version 1

CO₂ Resistant Cement

Temperature range (BHST): 40 – 110 degC (104 – 230 degF) Density range: 12.5 – 16.0 lbm/gal [1.5 – 1.92 SG]

Physical aspect of conventional Portland and CRC before and after six months in carbon dioxide environments at 280 bars – 90 degC

1

Section 1

Schlumberger

Version 1

Design						
внст	40	degC [104 deg	F)	85	degC [185 deg	F]
BHST	50	degC [122 deg	F]	110 degC (230 degF)		JF)
Specific gravity [lbm/gal]	12.5	14.5	15.8	12.5	14.5	15.8
And and a second s	Rheolog	ical properties	s determined	with R1B5		
		After	mixing			
PV (cp)	247	234	208	264	214	175
T _y (lbf/100ft ²)	4.5	8.5	9	16.5	16.8	11.4
Service Service 1		After conditi	oning at BHC	Т		
PV (cp)	262	292	207	189	216	226
Ty (lbf/100ft ²)	4.4	11.2	15	9.0	2.2	2.7
10" [deg]	5	8	7	4	3	4
10' [deg]	41	40	32	40	32	33
1' [deg]	9	14	14	10	8	8
Stability	Ok	Ok	Ok	Ok	Ok	Ok
API Fluid loss at BHCT	34	40	54	54	56	50
		Thickening	time at BHCT			
30 Bc	6h 03min	5h 04min	3h 54min	4h 25min	5h 22min	6h 20min
70 Bc	7h 01min	5h 43min	4h 31min	4h 39min	5h 33min	6h 28min
		UCA	at BHST			1
50 psi	9h 52min	9h 04min	6h 16min	10h 08min	9h 56min	6h 16min
500 psi	11h 24min	11h 20min	8h 04min	10h 36min	10h 36min	6h 52min
CS at 24h [psi]	3036	2396	2982	2459	3463	2882

Properties of the CRC slurry as a function of the density and of the BHCT

2

Page 1

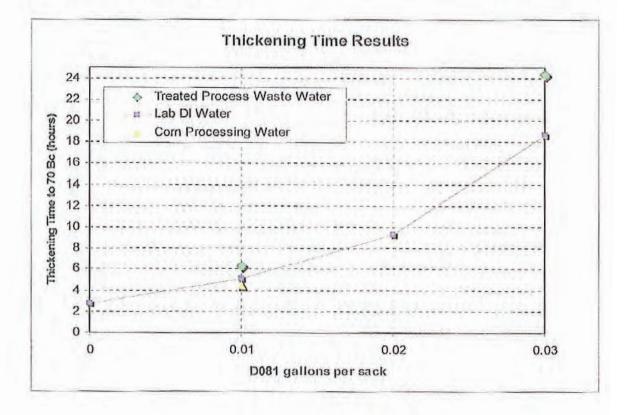
Laboratory Cement Test Report - CO2 Resistant EverCRETE®

Construction of the second	ient : ADM Co rell Name : CO2 Inje		n : Illinols Basin : Mt. Simon	Signatures Terry Dammel Lab Specialist
Casing 130 degF 80 degF 400 psi				7500 (t 2900 psl 9 1.03 degF/min 9.5-2
10.00 1-1-1	Mala	4.00 001-1-	Mar Photo	2 10
				3.42 gal/sk Other
		11	Gianty type	
30 lb 57 lb 2 lb 11 lb				
Gondentration		Component	Elfend Donisity	Lot Number
3 16 collak	100 lb of BLEND	Blend Base Fluid	2.54 g/cm3	W2007.0150
		A THE AVEL AND A		11/2002 0022
				W2002-0033 W2007.0289
0.05 gal/sk		Dispersant		W2007.0398
0.01 gal/sk	Carl Charles	Retarder		W2005.0253
((iteg))				
	9.00.1			
8.0	7.	0		
	8			
	21	7		
Contraction of the second	1	5		
80 degF	110 d	legF		
k : 1.29E-2 lbf.s^n/	112 k: 1.92E-2 I	of.s^n/ft2		
n:0.781	n: 0.719			
Ty: 3.38 lbf/100ft2		100/12		
Thime (Lab	DI Water)	Time (ComPrese	sing Water) Time (T	reated Waste Water)
3	:22 hr:mn	2:45 hr:n	nn	5:24 hr:mn
	:09 hr:mn	3:32 hr:n		4:20 hr:mn
				A 101
5	:05 hr:mn :14 hr:mn	4:27 hr:n 4:39 hr:n	and the second se	6:18 hr:mn 6:29 hr:mn
	80 degF 400 psi 15.80 lb/gal 58.0 % Blend 1.9 SG Massibar Stark 30 lb 57 lb 2 lb 11 lb Contentration 3.16 gal/sk 0.03 gal/sk 0.03 gal/sk 0.03 gal/sk 0.01 gal/sk 0.01 gal/sk erage readings ((idag)) 163.0 119.5 71.5 48.5 29.5 11.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	B0 degF Time to Te 400 psi Time to Privation 15.80 lb/gal Yield 9 90 rosily Blend 1.9 SG_pilot Porosily 100 lb 50 lb 57 lb 2 lb 11 lb 100 lb of BLEND 3.16 gal/sk 0.03 gal/sk 0.01 gal/sk 0.01 gal/sk 0.01 gal/sk 100 lb of BLEND 119.5 122 71.5 75 48.5 51 29.5 32 11.0 11 8.0 7 60 degF 1100 lb 80 degF 1100 lb 11.0 11 8.0 7 119.5 122 71.5 75 48.5 51 29.5 32 11.0 11 80 degF 110 d k: 1.29E-2 lb(.s^n//it2 k: 1.92E-2 lb (.5^n//it2 n: 0.781 n: 0.719 Ty: 3.38 lb//100ft2 Ty: 1.	B0 degF Time to Temp. Time to Pressure 00:29 hr:mm 15.80 lb/gal Yield 1.09 ft3/sk 9 15.80 lb/gal Yield 1.09 ft3/sk 9 96.0 % Porosity 42.0 % Blend 1.9 SG_pilot Missurer Stack 30 lb 57 lb 30 lb 57 lb 2 lb 11 lb 100 lb of BLEND Blend Blend 3.16 gal/sk Antifoam 0.17 gal/sk Fluid loss 0.01 gal/sk Pluid loss 11.0 163.0 11.0 163.0 11.0 11.0 8 27 11.0 11.0 8 27 15 20 d	80 degr 400 psi Time to Temp. Time to Pressure 00:29 hr:mn Heating Rate Schodule 15.80 lb/gal Yield 1.09 ft3/sk Mix Fluid Schodule 15.80 lb/gal Yield 1.09 ft3/sk Mix Fluid Schodule 15.80 lb/gal Yield 1.09 ft3/sk Mix Fluid Schodule 100 lb of SG_pilot Mixselfar Sock Stury type Stury type 30 lb 57 lb 2 lb 11 lb Schodule 2.54 g/cm3 316 gal/sk Schodule Blend 2.54 g/cm3 2.54 g/cm3 3.16 gal/sk Antifoam Schodule 2.54 g/cm3 0.03 gal/sk Antifoam Schodule 2.54 g/cm3 0.01 gal/sk Fluid loss Dispersant 2.54 g/cm3 0.01 gal/sk Dispersant 2.55 g/cm3 2.0 110.0 163.0 163.0 110.0 110.0 11.0 11.0 11.0 8.0 27 15 32.0 11.0 115 80 degF 110 degF

Client	1	ADM Company
String	\$	Casing L/S
Country		USA

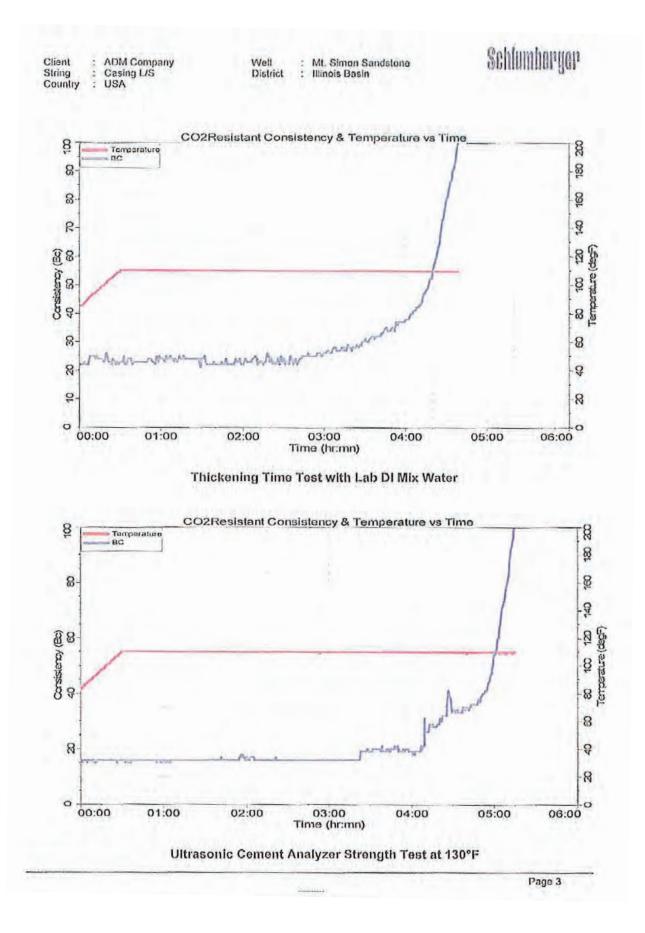
Mt. Simon Sandstone Illinois Basin Well ----District

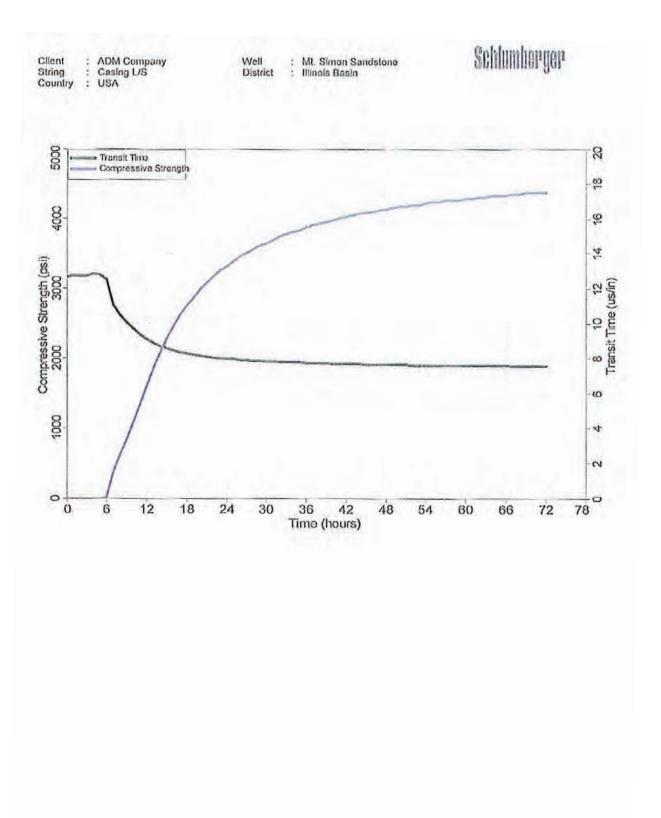
Schlumberger


Fluid Loss				
API Fluid Lo	SS	36	mL	
API Fluid Lo 18 mL in	30:00 mn:sc	at 110 degF	and 1000 psi	_

UCA Compressive Strength @ 130°F

6,5		
50 psi		
500 psl		
1604 psi		
3322 psi		
4379 psi		
bath @ 130°F)		
CS		
3230 psl		
Young's Modulus		
1,004,400 psl		


Comments


General Comment: Thickening Time test with new Location Water source from ADM Corn Processing Fann Reading Comment: R1, B1, F1. Thickening Time Comment: See attached plot with varying retarder D081 concentrations. Other test Commant: Fluid Loss tested with filter paper.

Thickening Time Test with Corn Processing Mix Water

Page 2

Page 4

.....

ADM - Decatur, IL CCS#5,6,7 Application April 2023

-End-