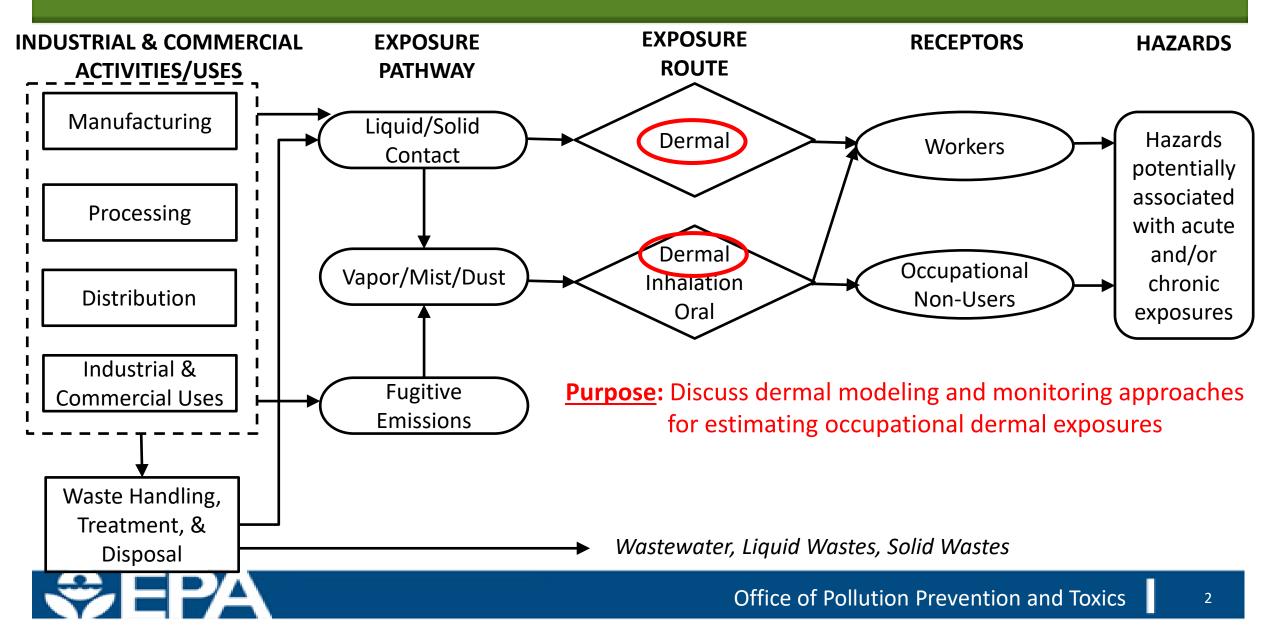
Dermal Exposure Modeling and Monitoring for Occupational Exposure Assessments

J. Aaron Murray

U.S. Environmental Protection Agency


Office of Chemical Safety and Pollution Prevention

Ţ

Office of Pollution Prevention and Toxics

Pathways and Routes of Exposure

Dermal Model for Finite Doses – Fractional Absorption

Model Applicability

- "Splash-type" exposures
- Non-immersive and non-occluded scenarios
- Liquids: < 10 μL/cm², Solids: 1 5 mg/ cm² (OECD 428 Guideline for Skin Absorption Testing)

$D_{exp} = Q_u \times f_{abs} \times SA \times FT \times Y_{derm}$

- D_{exp} = Dermal Exposure (mg/day)
- Q_u = Dermal Loading (mg/cm²-event)
- f_{abs} = Fractional Absorption
- SA = Area of Contact (cm²)
- FT = Frequency of Contact (events/day)
- Y_{derm} = Weight Fraction of Chemical

Challenge:

Choice of model for a given scenario is not always obvious

Dermal Model for Infinite Doses – Flux-Based Permeability

Model Applicability

- Continuous supply of chemical against skin
- Immersive or occluded scenarios
 - > Example: Material trapped under glove
- Liquids: >100 μL/cm², Solids >10 mg/ cm² (OECD 28 Guidance Document for the Conduct of Skin Absorption Studies)

$$D_{exp} = K_{p,c} \times C \times SA \times t_{exp}$$

- D_{exp} = Dermal Exposure (mg/day)
- $K_{p,c}$ = Skin Permeability Coefficent at Conc. C (cm/hr)
- *C* = Chemical Concentration (mg/cm³)
- SA = Area of Contact (cm²)
- t_{exp} = Contact Time (hrs/day)

Modeling and Monitoring Parameters of Dermal Exposure

PARAMETER	MODELING APPROACH	MONITORING APPROACH
DERMAL LOADING	Knowledge-based models: RISKOFDERM, DREAM Study Examples: Cinalli 1992, Lansink 1996	Interception methods: Gauze, Charcoal pad Removal methods: Wiping, washing
	<u>Challenge</u> : Models and studies may not be applicable to all representative conditions	 <u>Challenges</u>: Monitoring of volatile substances Representativeness of monitoring data
FRACTIONAL ABSORPTION	NIOSH model: Finite Dose Skin Permeation Calculator AIHA model: IH Skin Perm	In vitro absorption testing: Human & Animal Skin
	<u>Challenge</u> : Models may not be applicable to all representative conditions	In vivo absorption testing:
SKIN PERMEABILITY COEFFICIENT	 <u>Statistical regression</u>: Model using p-chem properties (Kow, MW) and regression analysis of chemical dataset <u>Regression Example</u>: Potts & Guy 1992 <u>Challenge</u>: Models may not be applicable to all representative conditions 	 Animal with PBPK modeling <u>Challenges</u>: Study conditions (<i>e.g.</i>, diluents) Utilization of data (<i>e.g.</i>, <i>in vitro/in vivo</i> extrapolation)

Challenges and Opportunities in Occupational Dermal Exposure Assessment

<u>Challenge 1</u>: Selecting appropriate dermal exposure model for given exposure scenario

> **Opportunity** - Development of clear decision logic for choosing appropriate dermal model

<u>Challenge 2</u>: Modeling dermal exposure parameters

> **Opportunity** - Development of more robust models that are applicable to broad range of conditions

Challenge 3: Dermal monitoring in the workplace

- > **Opportunity** Protocol development for dermal monitoring of volatile substances
 - Clear decision logic for representative monitoring based on condition of use

Challenge 4: Utilization of in vitro and in vivo dermal absorption testing data

- > **Opportunity** Dermal absorption testing that accounts for representative conditions
 - Further studies to compare in vitro and in vivo absorption results

<u>Challenge 5</u>: Incorporation of tiered approach for occupational dermal exposure assessments

TIER 1: Conservative Assumptions, TIER 2: Published Literature Values, TIER 3: Condition-Specific Evaluation

> **Opportunity** - Streamline dermal exposure assessments through efficient tiered approach

THANK YOU FOR ATTENDING

QUESTIONS/COMMENTS/DISCUSSION

Office of Pollution Prevention and Toxics