Ammonia Removal Best Practices Excel-Based Tool

Mike Beck

Environmental Scientist

Certified Wastewater Operator: California/Virginia

Eastern Research Group, Inc.

Introduction

Compliance Advisors for Sustainable Water Systems

• Technical Support Program that develops customized evaluation tools, SOPs, checklists and other unique documents that a system can utilize to return to compliance.

Why the tool was developed

- It was identified throughout Illinois wastewater systems that ammonia exceedances are one of the most common NPDES permit violation.
- A need for additional operator guidance was suggested creating a collaboration between Illinois, EPA Region 5 and ERG to develop this tool.

Where the tool can be found

<u>https://www.epa.gov/compliance/compliance-advisors-sustainable-water-systems-program#tools</u>

Tools for Compliance Success

Compliance advisors have developed dozens of standard operating procedures (SOPs), checklists, tools and other products to help systems return to compliance. A few examples of these SOPs/tools include:

- Drinking Water Sampling Calendar (pdf) (32.95 KB) sampling requirements for drinking water systems can be complex and confusing to small operators. The example calendar illustrates when the operator should sample for different parameters.
- Cross Connection Handout (docx) (983.28 KB) this handout is intended for drinking water system operators to distribute to customers. It describes backflow and cross connection scenarios and prevention practices.
- Drinking Water System Weekly Inspection Checklist (docx) (30.23 KB) this is a checklist for drinking water system operators to use while they conduct a weekly inspection of their system.
- Ammonia Removal Best Practices Tool (xltm) (2.91 MB) Excel-based best management practice (BMP) tool to evaluate elevated wastewater treatment plant ammonia effluent levels.

Tool Overview (Part 1)

General Background Information:

- Why Ammonia Removal is important?
- Sources of Ammonia
- Diagnosing your system and using this tool
- How to control for Ammonia in wastewater systems
 - 5 main control parameters
 - Alkalinity
 - Dissolved Oxygen
 - Solids Retention Time
 - Temperature
 - Biomass

Ammonia Removal Best Practices

SEPA

Illinois Wastewater Plants

Why is Ammonia Removal Important?

Excessive ammonia discharged to receiving waters can cause serious ecological problems, such as eutrophication resulting in the depletion of dissolved oxygen, and excessive algal growth. Substantial concentrations of ammonia in wastewater can also cause toxicity to fish and wildlife.

Sources of Ammonia

Ammonia comes from many source. Biological sources include animal protein (meat, blood), Urea, and Amino Acids. Nitrogen in the air is fixated by plants into ammonia. Ammonia is also introduced to waterbodies by many municipal, industrial, and agricultural activities (for example, the use of fertilizers, corrosion inhibitors, production process chemicals, and cleaning chemicals).

Diagnosing your system and using this tool

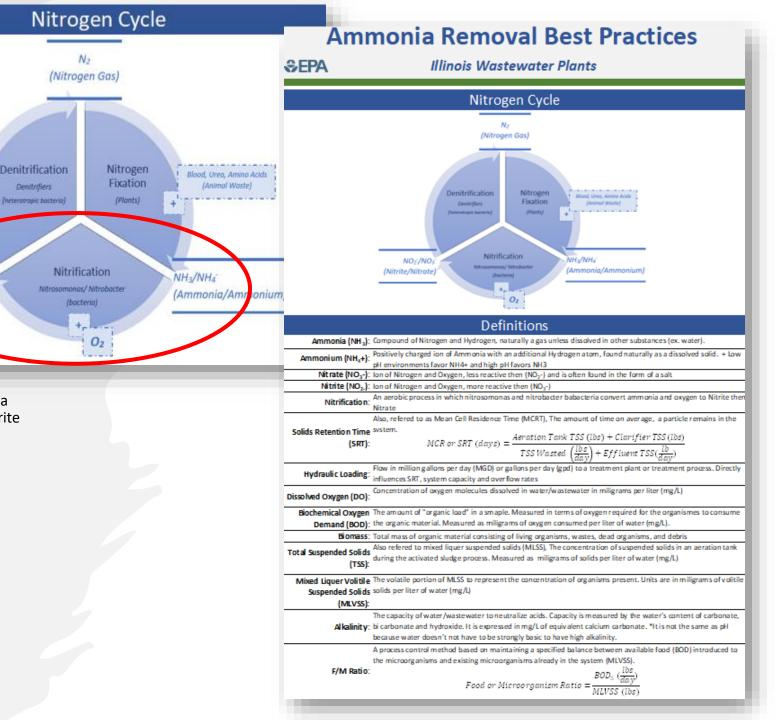
To diagnose your system after an ammonia exceedance, have the "System Profile Data Sheet" on hand including the necessary monitoring materials recommended. After initial data gathering, review the "Process Flow Chart" for actions and tips to reduce ammonia nitrogen based on the observed parameters of operation.

How to control for Ammonia in Wastewater Systems?

In order to remove ammonia from wastewater, ammonia needs to be converted to Nitrite/Nitrate or directly axidized. This requires specific conditions in wastewater to allow for the preferred microorganisms to grow and multiply thereby removing ammonia from the system. The 5 main parameters that promote this process include A kalinity, Dissolved Oxygen, Solids Retention Time, Temperature, Biomass. If your plant is experiencing excessive ammonia levels regularly or periodically, knowledge of one's own system is important to accurately analyze and promote specific conditions for ammonia removal by modifying or "optimizing" the treatment process. This analysis is guided by performing a system profile across different parts of the treatment system.

Tool Overview (Part 2)

Nitrogen Cycle


- Nitrogen Fixation
- Nitrification
 - An aerobic process in which Nitrosomonas and Nitrobacter bacteria convert ammonia and oxygen into Nitrite and Nitrate

NO2/NO3

(Nitrite/Nitrate)

- This tool is optimizing conditions for Nitrification
- Denitrification

Definitions and formulas used throughout the tool

Tool Overview (Part 3)

System Profile Data Sheet

- Values surrounded by a red box are calculated automatically based on the data entered above.
- Bottom of the sheet has a short list of equipment needed to collect all the sufficient data.
- The data sheet is formatted to be printed out and brought in the field if desired.

Type of Ammonia Excursion?	Yes/No	Date of Samples	1	
Always "High"				
Seasonal				
Sporadic				
Alkalinity (mg/L CaCO3)		Temperature (*F)	
Influent/Before Treatment		Influent/Before Treatment		
Under Aeration		Under Aeration		
Effluent		Effluent		
DO (mg/L)		BOD (mg/L)		
Concentration Under Aeration		Influent/Before Treatment		
Aerator Run Time (hours/day)		Before Aeration		
		Effluent		
Flow (MGD)		*If no additional process is accounted	ed for use	
Design Flow Influent Flow		Influent BOD value		
Effluent Flow		F/M Ratio		
Hydralic Loading Capacity (%)	#DIV/0!	Food to Microorganism Ratio	#DIV/0!	
Hydraic coading capacity (%)	#010/01	Food to which obliganish Ratio	#010/0	
SRT (days)				
Volume Under Aeration (MG)		Ammonia (mg/L))	
Volume Under Clarification (MG)		Collection System		
Volume Wasted (MG)		Influent/Before Treatment		
TSS Under Clarification (mg/L)		Under Aeration		
TSS Under Aeration (mg/L)		Effluent		
TSS Wasted (WAS) (mg/L)		% Removal	#DIV/0!	
Effluent TSS (mg/L)				
Volatile Portion (MLVSS) (mg/L)				
SRT (days)	#DIV/0!			
 Values surrounded by a red box 	are calculated au	tomatically, no input is required.		
	Equipmen			
Lab TSS Analysis or TSS Prot		BOD Lab Analysis		
Lab Ammonia Analysis or Ammoni	a l'est Kit	Thermometer		
DO Meter Alkalinity Test Strips or Prot		SludgeJudge		

System Profile Data Sheet

Tool Overview (Part 3)

Data Collection Using the System Profile Data Sheet

 Important to collect data as soon as an ammonia excursion is known as system conditions can change quickly and the resulting microbial population will reflect that.

Note: not all cells need to be filled in, a lagoon system is not going to have as many control mechanisms as an activated sludge system.

- Type of ammonia excursion
 - Always "high"
 - Seasonal
 - Sporadic
 - understanding the type of excursion experienced can tell you a lot as to why the excursion is happening

Turne of Ammonia Furnerica 7		Data of Complex	-	
Type of Ammonia Excursion?	Yes/No	Date of Samples	Ş	
Always "High"				
Seasonal				
Sporadic				
Alkalinity (mg/L CaCO3)		Temperature (*F	3	
Influent/Before Treatment		Influent/Before Treatment	<u> </u>	
Under Aeration		Under Aeration		
Effluent		Effluent		
DO (mg/L)		BOD (mg/L)		
Concentration Under Aeration		Influent/Before Treatment		
Aerator Run Time (hours/day)		Before Aeration		
		Effluent		
Flow (MGD)		*If no additional process is account	ed for use	
Design Flow		Influent BOD value		
influent Flow				
Effluent Flow		F/M Ratio		
Hydralic Loading Capacity (%)	#DIV/0!	Food to Microorganism Ratio	#DIV/0!	
SRT (days)				
Volume Under Aeration (MG)		Ammonia (mg/L)	
Volume Under Clarification (MG)		Collection System		
Volume Wasted (MG)		Influent/Before Treatment		
TSS Under Clarification (mg/L)		Under Aeration		
TSS Under Aeration (mg/L)		Effluent		
TSS Wasted (WAS) (mg/L)		% Removal	#DIV/0!	
Effluent TSS (mg/L)				
Volatile Portion (MLVSS) (mg/L)				
SRT (days)	#DIV/0!			
*Values surrounded by a red box a		temptically, as issue is required	_	
values surrounded by a red box a		contactionly, no input is required.		
	Equipmen	t List		
Lab TSS Analysis or TSS Prob		BOD Lab Analysis	5	
Lab Ammonia Analysis or Ammonia		Thermometer		
DO Meter		SludgeJudge		
Alkalinity Test Strips or Prob	0			

System Profile Data Sheet

Tool Overview (Part 4)

Process Flow Chart

- Start at 1. and progressively move to 2. 3. 4. 5. as each parameter meets specifications.
- Each parameter has a **Yes** or **No** option and **Tips** to achieve the desired range
- The 5 steps correlate with data categories in the System Profile Data Sheet
- "Your Value" boxes are automatically populated based on data entered in the **System Profile Data Sheet**. The value will • indicate a check mark, explanation point or X depending on how far it is outside the recommend range.
- Each modification may take more then 1 SRT • (Biological Growth Cycle) for changes to be observed in system.

Process Flow Chart		
Start at 1. and progressively move to 2. 3. 4. 5. as each parameter meets specifications.		
SEPA Note that this process may take more than one SRT (biological growth cycle) to complete.		
1. Alkalinity	CaCO3)	
Is the Alkalinity concentration between 75 mg/L CaCO 3 and 250 mg/L CaCO 3?	🖋 156	
Yes Proceed to DO		
No Consider the tips below to increase your alkalinity concentration to at least 75 mg/L		
Tips		
Alkalinity is the first parameter to change in the system as opposed to pH which has a lag time due	to how	
quickly CO 2 can be released into the air. Low alkalinity results in incomplete nitrification and depre nitrification to occur, 7.1 mg/CaCO3 is depleted per 1 mg of Ammonia oxidized to Nitrate/Nitrite.	essed pH. For	
To increase Alkalinity, you can add sodium bicarbonate or lime prior to aeration. The amount requ	ired	
dependent on how much ammonia needs to be oxidized (8:1 mass ratio of Alkalinity to Ammonia i used).	is commonly	
Well water often has significantly higher alkalinity than surface water and can often be added to the	ne treatment	Nitrifying bacteria are slow growing compared to other bacteria found in wastewater and require at least 7
process supplementing a system's alkalinity needs.		days to become established. If the plant is running above design capacity (>100%) and SRT is too low, there may
2. Dissolved Oxygen (DO)	Your Value (mg/L)	not enough time for the bacteria to absorb/convert ammonia to Nitrite/Nitrate. Conversely, if the system is
Is the DO concentration under a eration between 0.5 mg/L and 5 mg/L?	2.5	being underutilized and has a high SRT, accumulated solids can be anaerobically digested and ammonia can be
Yes Proceed to Solids Retention Time and Hydraulic Loading Capacity		re-released into the system.
No Consider the tips below to move your DO concentration to the recommended range		If the system allows, run treatment trains in parallel to decrease SRT or sequential to increase SRT Take process units online or offline as appropriate to stay within the recommended percent capacity of system
		design (e.g., pond cells, aeration basins, secondary clarifiers).
Tips		Install baffling in key locations to slow down flow and prevent short circuiting.
The nitrification process consumes a large quantity of oxygen. If there is not enough DO available to microgramming then the process can be suppressed. Nitrifying besteria need 4.6 ma of any on the second s	lo lne	Adjust the amount of solids removed from the system per day to achieve the recommended SRT.
microorganisms then the process can be suppressed. Nitrifying bacteria need 4.6 mg of oxygen to c of Ammonia to Nitrite/Nitrate.	onven 1 mg	During colder months, increase SRT to account for lower biological activity and slower growth from the
To increase DO in the system: increase blower, aerator speed or increase the cycle time "on".		nitrifying bacteria.
Add additional æration equipment to system as needed to maintain adequate DO and allow for a	more even	4. Temperature Your Value ("F)
distribution.		Is the temperature of the wastewater under aeration between 61*F and 113*F? 🔗 68
Expose the microorganisms to the atmosphere by removing covers/vegetation and anything that v	would reduce	Yes Proceed to Biomass
air movement across the surface of the basin.		No Consider the tips below to move temperature to the recommended range
Ponds: remove floating aquatic vegetation (e.g., duckweed). Significant duckweed can reduce the	natural	
oxygen transfer from the atmosphere to the pond water.	_	Tips
3. Solids Retention Time (SRT) & Hydraulic Loading Capacity (HLC)	Your Value	Biological activity and nitrification are highly dependent on temperature; the lower the temperature the slower
Is the SRT between 7 and 14 days? SRT (days) Is the hydraulic loading canacity between 50% and 99%? HLC (%)		the biological activity. Below 41 degrees F, nitrification ceases.
	v	Cover basins to retain heat.
Yes Proceed to Temperature No Consider the tips below to move your SRT and/or HLC to the recommended range		Increase SRT to accommodate slower biological activity. If the air is warmer than the water, create surface disturbance to allow more water to make contact with the
		air, this can be achieved by surface aerators or mixers.
Tips		Your Volue (EM
	_	5. Biomass ratio
		system? (F/M Ratio 0.2 - 0.6)
		Yes Proceed to Additional Actions
		No Consider the tips below to improve the F/M ratio
		Tips
		11ps
		The performance of the system can be suppressed if there is not an adequate population of nitrifying bacteria to
		accommodate the incoming waste stream or if the incoming waste stream is too little for the microorganisms to
		reproduce. The system may be overloaded or underloaded for the following reasons:
		- seasonal load patterns such as offseason or tourist seasons,
		- microorganisms are under aeration for too long and they have consumed all of the existing food available,
		 - incomeing waste lacks specific components for continued nitrifying bacteria growth, such as industrial waste.
		Supplement BOD by adding a food source to the system (e.g., dog food, glucose) Results compared and mission of the system (e.g., dog food, glucose)
		Provide supplemental mixing to keep food and microorganisms suspended and in contact with each other A diviting the active process upits of the plant to account for the approximate loading observed (e.g., shutting
		Adjusting the active process units of the plant to account for the approximate loading observed (e.g., shutting down or isolating treatment trains to concentrate existing microbes or temporarily increasing capacity for
		down or isolating treatment trains to concentrate existing microbes or temporarily increasing capacity for seasonal loading fluxes).
	-	seasoniar loading nuxes).

Process Flow Chart

Tool Overview (Part 5)

Additional Actions

- Sometimes there may be factors that the system operator cannot control that are contributing to ammonia noncompliance.
- In these cases, it is important to understand potential contributors by performing additional analysis.

Alternative Ammonia Removal Methods

- In cases where system design does not allow additional optimization for ammonia removal, alternative methods can be utilized.
- There is typically significant capital investment involved

Additional Actions

Are there any site-specific variables, such as those listed below, that are contributing to the elevated ammonia levels?

Microbial Assessment - How abundant are the nitrifying bacteria? (e.g., lab microscope assessment) Shock load Identification - Are there major fluctuations in loading to the plant? (e.g., RV park discharge, septic hauler)

Collection System Survey - Where is the high ammonia influent coming from?

Industrial or Illegal Dumping - Could there be any unknown contributors to the system?

Lab Water Analysis - Could there be a contaminant that is depressing biological activity? (e.g., disinfecting agent from cleaning operations)

Internal Process Change - Were there any major plant adjustments or changes in operations within 1 SRT of the most recent ammonia excursion?

Alternative Ammonia Removal Methods

These methods are an option when the current system design and capacity do not allow for additional ammonia removal (the system is fully optimized in the current state). Methods are usually applied late in the process at plant effluent. There is typically significant capital investment or operational changes involved.

Ammonia Stripping - Ammonia is converted to a gas in the presence of high pH wastewater (10.5-11.5) and air. Breakpoint Chlorination - Adding chlorine until the ammonia has been oxidized to nitrogen gas. Ion Exchange - Passing ammonia-laden wastewater through a series of columns packed with natural or synthetic resins with a particular charge (zeolite/clinoptilolite).

Tool Overview (Part 6)

- References
- Sampling equipment examples
- Contact Information

€EPA

References

Kerri, Kenneth D. Advanced Waste Treatment: A Field Study Training Program . 5th ed., California State University, 2006.

ABC Formula/Conversion Table for Wastewater Treatment, Industrial, Collection and Laboratory Exams. https://www.abccert.org/pdf_docs/abcwwtfctable.pdf.

WEF. Wastewater Treatment Fundamentals I: Liquid Treatment. 1st ed., Water Environment Federation, 2018.

Sampling Equipment Examples

Multi-parameter Field Test Kit

Sludge Judge

Equipment Vendors

https://www.usabluebook.com/default.aspx https://www.hach.com/ https://www.ysi.com/ https://www.chemetrics.com/

> For Additional Infromation or Questions Contact: Ted Flatebo (he/him) Environmental Engineer Water Enforcement and Compliance Assurance Branch U.S. Environmental Protection Agency, Region 5 77 W. Jackson Blvd. (ECW-15J) Chicago, IL 60604 Phone: 312-886-9402 Email: Flatebo.Ted @epa.gov

> > Mike Beck

Environmental Scientist Certified Wastewater Treatment Plant Operator: California|Virginia Eastern Research Group, Inc. 14555 Avion Parkway, Suite 200, Chantilly, VA 20151 Phone: (703) 633-1614 Email: Mike.Beck@erg.com

Demonstration

Sampling Event 1

- System Type: Recirculating Sand Filter
- Initial Excursion Type: Always "High"
- Effluent Ammonia Limit: 5 mg/L

Note:

• City uses a surface water source for drinking water needs

Type of Ammonia Excursion?	Yes/No	Date of Samples		
Always "High"	x	9/1/2022		
Seasonal				
Sporadic				
Alkalinity (mg/L CaCO3)		Temperature (*F)		
nfluent/Before Treatment	70	Influent/Before Treatment	6	
Jnder Aeration	60	Under Aeration	6	
ffluent	35	Effluent	70	
DO (mg/L)		BOD (mg/L)		
Concentration Under Aeration	2	Influent/Before Treatment	350	
Aerator Run Time (hours/day)	24	Before Aeration	24	
		Effluent	3	
Flow (MGD)		*If no additional process is accou	nted for us	
Design Flow	1.5	Influent BOD value		
nfluent Flow	0.9			
filuent Flow	0.85	F/M Ratio		
Hydralic Loading Capacity (%)	57	Food to Microorganism Ratio	#DIV/0!	
SRT (days)	_			
/olume Under Aeration (MG)		Ammonia (mg/L)		
/olume Under Clarification (MG)		Collection System	1	
/olume Wasted (MG)		Influent/Before Treatment	14	
TSS Under Clarification (mg/L)		Under Aeration	12	
SS Under Aeration (mg/L)		Effluent	10	
TSS Wasted (WAS) (mg/L)		% Removal	29	
Effluent TSS (mg/L)				
/olatile Portion (MLVSS) (mg/L)				
GRT (days)	#DIV/0!			
ini (uays)	#010/0:			
alues surrounded by a red box are	e calculated au	utomatically, no input is requir	e	
	Equipment	List		
Lab TSS Analysis or TSS Pro		BOD Lab Analysis		
Lab Ammonia Analysis or Ammor		Thermometer		
DO Meter		Sludge Judge		

Sampling Event 1

- The alkalinity does not fall within the recommend range, so the first answer is *No.
- Once a *No is answered, stop moving through the process flow chart until the parameter is within range using the tips provided.
- Why is alkalinity important?
 - Each parameter has a similar (why important?) section.
- Tips to increase alkalinity

Process Flow Chart

Start at 1. and progressively move to 2. 3. 4. 5. as each parameter meets specifications. Note that this process may take more than one SRT (biological growth cycle) to complete.

\$EPA

Yes

No

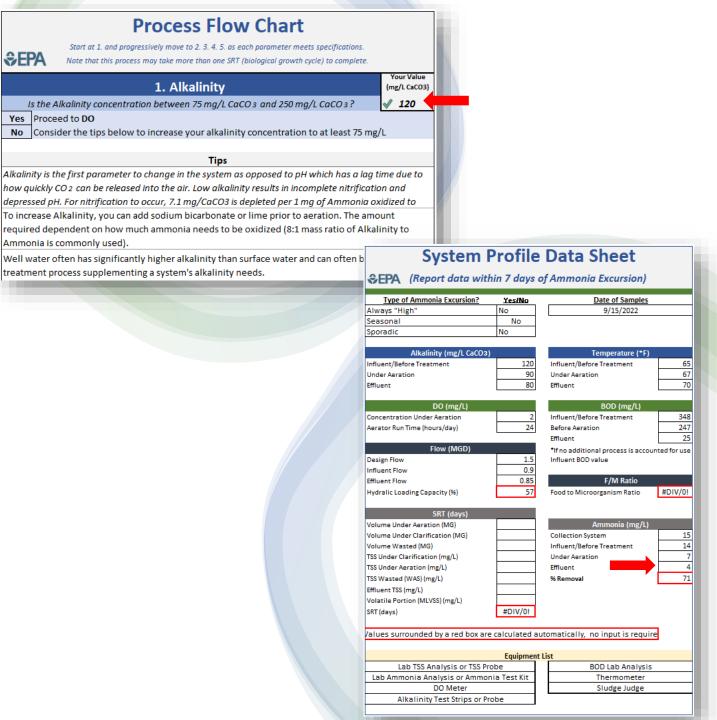
	Your Value
1. Alkalinity	(mg/L CaCO3)
the Alkalinity concentration between 75 mg/L CaCO 3 and 250 mg/L CaCO 3?	70
Proceed to DO	
Consider the tips below to increase your alkalinity concentration to at least 75 mg/	/1

Tips

Alkalinity is the first parameter to change in the system as opposed to pH which has a lag time due to how quickly CO₂ can be released into the air. Low alkalinity results in incomplete nitrification and depressed pH. For nitrification to occur, 7.1 mg/CaCO3 is depleted per 1 mg of Ammonia oxidized to To increase Alkalinity, you can add sodium bicarbonate or lime prior to aeration. The amount required dependent on how much ammonia needs to be oxidized (8:1 mass ratio of Alkalinity to Ammonia is commonly used).

Well water often has significantly higher alkalinity than surface water and can often be added to the treatment process supplementing a system's alkalinity needs.

• System Changes


 Added sodium bicarbonate every other day to the influent to increase alkalinity

SEPA

No

Sampling Event 2

- Systems operators collected new data 14 days after the start of the alkalinity addition.
- Alkalinity is now at 120 mg/L, well within the recommended range.
- System is now within compliance at 4 mg/L

Sampling Event 1

- System Type: Multi-cell lagoon
- Initial Excursion: Always "High"
- Ammonia Permit Limit: 4 mg/L

Note: Significant vegetation on and around lagoon

Type of Ammonia Excursion?	Yes/No	Date of Samples	
Always "High"	Yes	8/1/2022	
Seasonal		-, -,	
Sporadic			
•			
Alkalinity (mg/L CaCO3))	Temperature (*F)	
Influent/Before Treatment	215	Influent/Before Treatment	6
Under Aeration	150	Under Aeration	6
Effluent	125	Effluent	7
DO (mg/L)		BOD (mg/L)	
Concentration Under Aeration	0.4	Influent/Before Treatment	31
Aerator Run Time (hours/day)	6	Before Aeration	21
Relator Kun hine (nours/day)		Effluent	21
Flow (MGD)		*If no additional process is accounted	
Design Flow	1.2	Influent BOD value	for us
Influent Flow	0.8		
Effluent Flow	0.79	F/M Ratio	
Hydralic Loading Capacity (%)	66		0/VI
SRT (days)			
Volume Under Aeration (MG)		Ammonia (mg/L)	
Volume Under Clarification (MG)		Collection System	1
Volume Wasted (MG)		Influent/Before Treatment	1
TSS Under Clarification (mg/L)		Under Aeration	1
TSS Under Aeration (mg/L)		Effluent	
TSS Wasted (WAS) (mg/L)		% Removal	4
Effluent TSS (mg/L)			
Volatile Portion (MLVSS) (mg/L)			
SRT (days)	#DIV/0!		
alues surrounded by a red box are	calculated a	itomatically, no input is require	
	Equipment	List	
Lab TSS Analysis or TSS Pro	obe	BOD Lab Analysis	
Lab Ammonia Analysis or Ammor	nia Test Kit	Thermometer	
DO Meter		Sludge Judge	

System Profile Data Sheet

Sampling Event 1

- Step 1: Alkalinity concentrations look to be within range so answer *Yes to proceed to Step 2: DO
- DO concentration is low at 0.4 and not within range, therefore the answer is *No
- Why is dissolved oxygen important?
- Tips for increasing DO in a system

	Process Flow Chart	
0.554	Start at 1. and progressively move to 2. 3. 4. 5. as each parameter meets specifications.	
€EPA	Note that this process may take more than one SRT (biological growth cycle) to complete.	
	1. Alkalinity	Your Value (mg/L CaCO3)
	e Alkalinity concentration between 75 mg/L CaCO 3 and 250 mg/L CaCO 3 ?	√ 215
	isider the tips below to increase your alkalinity concentration to at least 75 mg	/L
	Tips	
how quickly	the first parameter to change in the system as opposed to pH which has a lag to y CO 2 can be released into the air. Low alkalinity results in incomplete nitrificati. pH. For nitrification to occur, 7.1 mg/CaCO3 is depleted per 1 mg of Ammonia o.	on and
required de	e Alkalinity, you can add sodium bicarbonate or lime prior to aeration. The amo ependent on how much ammonia needs to be oxidized (8:1 mass ratio of Alka is commonly used).	
	r often has significantly higher alkalinity than surface water and can often be a	dded to the
treatment	process supplementing a system's alkalinity needs.	
	2. Dissolved Oxygen (DO)	Your Value (mg/L)
Is	the DO concentration under aeration between 0.5 mg/L and 5 mg/L?	₩ 0.4
Yes Pro	ceed to Solids Retention Time and Hydraulic Loading Capacity	
No Con	sider the tips below to move your DO concentration to the recommended ran	ge
	Tips	
	Tips ation process consumes a large quantity of oxygen. If there is not enough DO a	vailable to
The nitrifico		
The nitrifico the microoi convert 1 n	ation process consumes a large quantity of oxygen. If there is not enough DO a rganisms then the process can be suppressed. Nitrifying bacteria need 4.6 mg o	f oxygen to
The nitrifico the microol convert 1 n To increase Add additio	ation process consumes a large quantity of oxygen. If there is not enough DO a rganisms then the process can be suppressed. Nitrifying bacteria need 4.6 mg o ng of Ammonia to Nitrite/Nitrate.	f oxygen to 'on".
The nitrifica the microol convert 1 n To increase Add additio more even Expose the	ation process consumes a large quantity of oxygen. If there is not enough DO a rganisms then the process can be suppressed. Nitrifying bacteria need 4.6 mg o ng of Ammonia to Nitrite/Nitrate. DO in the system: increase blower, aerator speed or increase the cycle time " onal aeration equipment to system as needed to maintain adequate DO and a	f oxygen to 'on". Iow for a

- System Changes:
- Removed aquatic vegetation around the parameter of the lagoon and on the lagoon surface
- Increased aerator run time to 18 hours a day

Sampling Event 2

- Systems operators collected new data 14 days after the changes were performed.
- DO is now at 2.0 mg/L
- Ammonia is now within compliance at 3 mg/L

System Pr		Data Sheet		
	7 days oj			
	<u>Yes/No</u>	Date of Samples		
Always "High" Y	es	8/14/2022		
Seasonal				
Sporadic				
Alkalinity (mg/L CaCO3)		Temperature (*F)		
Influent/Before Treatment	215	Influent/Before Treatment	67	
Under Aeration	150	Under Aeration	68	
Effluent	125	Effluent	71	low Chart
				1. 5. as each parameter meets specifications.
DO (mg/L)		BOD (mg/L)		one SRT (biological growth cycle) to complete.
Concentration Under Aeration	2	Influent/Before Treatment	312	Your Value
	18	•	212	
Aerator Run Time (hours/day)	10	Before Aeration	212	з/L CaCOз and 250 mg/L CaCOз? 🛛 🖋 215
FL (MOD)		Effluent		y 2 caces and 200 mg/2 caces i
Flow (MGD)		*If no additional process is accoun	ted for use	kalinity concentration to at least 75 mg/L
Design Flow	1.2	Influent BOD value		
Influent Flow	0.8			ips
Effluent Flow	0.79	F/M Ratio		stem as opposed to pH which has a lag time due to
Hydralic Loading Capacity (%)	66	Food to Microorganism Ratio	#DIV/0!	alkalinity results in incomplete nitrification and
				CO3 is depleted per 1 mg of Ammonia oxidized to
SRT (days)				nate or lime prior to aeration. The amount
Volume Under Aeration (MG)		Ammonia (mg/L)		s to be oxidized (8:1 mass ratio of Alkalinity to
Volume Under Clarification (MG)		Collection System	15	· · · · · · · · · · · · · · · · · · ·
Volume Wasted (MG)		Influent/Before Treatment		/ than surface water and can often be added to the
TSS Under Clarification (mg/L)		Under Aeration		linity needs.
				Your Value
TSS Under Aeration (mg/L)		Effluent	3	(mg/L)
TSS Wasted (WAS) (mg/L)		% Removal	79	etween 0.5 mg/L and 5 mg/
Effluent TSS (mg/L)				aulic Loading Capacity
Volatile Portion (MLVSS) (mg/L)				oncentration to the recommended range
SRT (days)	#DIV/0!			
				ips
/alues surrounded by a red box are ca	lculated auto	matically, no input is require		of oxygen. If there is not enough DO available to
		,,	•	essed. Nitrifying bacteria need 4.6 mg of oxygen to
	Equipment Lis	st		rator speed or increase the cycle time "on".
Lab TSS Analysis or TSS Probe		BOD Lab Analysis		eeded to maintain adequate DO and allow for a
Lab Ammonia Analysis or Ammonia		Thermometer		,
DO Meter		Sludge Judge		removing covers/vegetation and anything that
	I '	Shudge Shuge		the basin.
Alkalinity Test Strips or Probe				luckweed). Significant duckweed can reduce the
				ne pond water.

Sampling Event 1

- System Type: Small activated sludge plant
- Initial Excursion: Sporadic ٠
- Ammonia permit limit 4 mg/L

Note: It is after the height of tourist season and loading into the plant has decreased

An activated sludge plant contains enough complexity to input values for all cells.

Process Flow Chart

1. Alkalinity is below recommended range

System F				
Type of Ammonia Excursion?	<u>Yes/No</u>		Date of Samples	
Always "High"			8/15/2022	
Seasonal	<u> </u>			
Sporadic	Yes			
oporadic				
Alkalinity (mg/L CaCO3)			Temperature (*F)	
Influent/Before Treatment	74	Influe	nt/Before Treatment 67	
Under Aeration	60		Aeration 68	
Effluent	40	Efflue		
DO (mg/L)			BOD (mg/L)	
Concentration Under Aeration	0.75	Influe	nt/Before Treatment 312	
Aerator Run Time (hours/day)	12	Befor	e Aeration 212	
		Efflue	nt <u>20</u>	
Flow (MGD)			additional process is accounted for use	
Design Flow	1.5	Influe	nt BOD value	
Influent Flow	1.2			
Effluent Flow	1.2		F/M Ratio	
Hydralic Loading Capacity (%)	80	Food	to Microorganism Ratio 0.40	
SRT (days)				
Volume Under Aeration (MG)	0.5		Ammonia (mg/L)	
Volume Under Clarification (MG)	0.5		ttion System 15	
Volume Wasted (MG)	0.03		nt/Before Treatment 14	
TSS Under Clarification (mg/L)	2100		Aeration 12	
TSS Under Aeration (mg/L)	2100	Efflue		
TSS Wasted (WAS) (mg/L)	8500	% Rer	noval 29	
Effluent TSS (mg/L)	20			
Volatile Portion (MLVSS) (mg/L)	0.6		Process Flow Chart	
SRT (days)	7.53			
(alues surrounded by a red boy are	colculated au	*****	Start at 1. and progressively move to 2. 3. 4. 5. as each parameter meets specifications.	
/alues surrounded by a red box are		tomati	SEPA Note that this process may take more than one SRT (biological growth cycle) to complete.	
	Equipment	ist		Your Value
Lab TSS Analysis or TSS Pro			1. Alkalinity	mg/L CaCO3)
Lab Ammonia Analysis or Ammon			Is the Alkalinity concentration between 75 mg/L CaCO 3 and 250 mg/L CaCO 3?	74
DO Meter				/4
Alkalinity Test Strips or Pro	be		Yes Proceed to DO	
			No Consider the tips below to increase your alkalinity concentration to at least 75 mg/L	
			Tips	
			Alkalinity is the first parameter to change in the system as opposed to pH which has a lag tim	e due to
			how quickly CO2 can be released into the air. Low alkalinity results in incomplete nitrification	and
			depressed pH. For nitrification to occur, 7.1 mg/CaCO3 is depleted per 1 mg of Ammonia oxidi	
			To increase Alkalinity, you can add sodium bicarbonate or lime prior to aeration. The amoun	
			required dependent on how much ammonia needs to be oxidized (8:1 mass ratio of Alkalini	
			Ammonia is commonly used).	-,
			Well water often has significantly higher alkalinity than surface water and can often be adde	ed to the
			treatment process supplementing a system's alkalinity needs.	

System Brofile Data Shoot

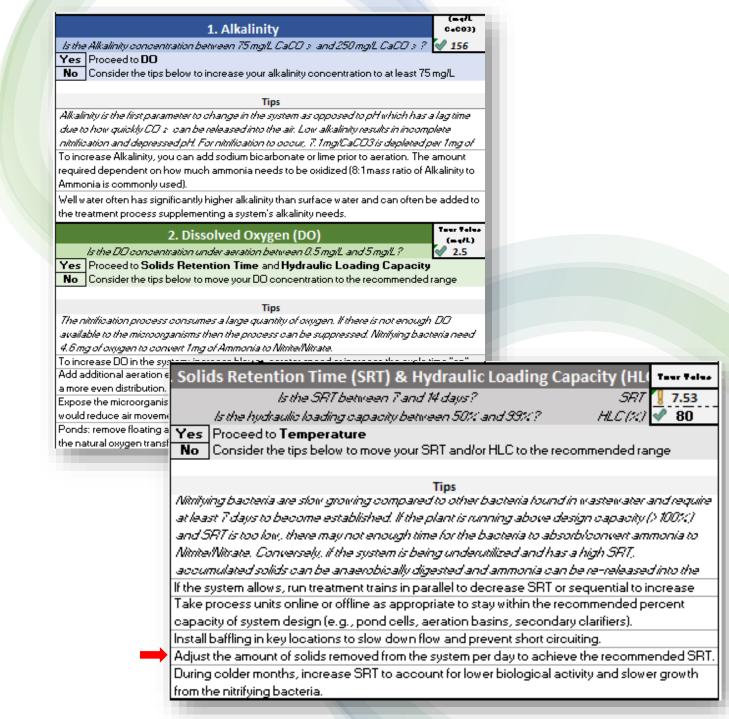
Sampling Event 2

 To increase alkalinity, the system elected to add lime as a source of CaCO3 since it was readily available. Increasing the alkalinity to 156mg/L, well within range.

- Ammonia in the effluent was reduced from 10 to 8
- 2. DO is close to still being within range. However, if the oxygen is not well distributed then it is a best practice to provide a buffer of additional DO.

	Process Flow Chart
	Start at 1 and progressively move to 2, 3, 4, 5, as each parameter meets specifications.
	SEPA Note that this process may take more than one SRT (biological growth cycle) to complete.
	1. Alkalinity (=4/L C+CO3)
	Is the Alkalinity concentration between 75 mg/L CaCO s-and 250 mg/L CaCO s-? 🚺 156
	Yes Proceed to DO
	No Consider the tips below to increase your alkalinity concentration to at least 75 mg/L
	Ter
	Tips Alkalinity is the first parameter to change in the system as opposed to pH which has a lag time
	due to how quickly CD z can be released into the air. Low alkalinity results in incomplete
System Profile	nitrification and depressed pH. For nitrification to occur, 7. 1mg/CaCO3 is depleted per 1mg of
	To increase Alkalinity, you can add sodium bicarbonate or lime prior to aeration. The amount
SEPA (Report data within 7 days of	required dependent on how much ammonia needs to be oxidized (8:1 mass ratio of Alkalinity to
Type of Ammonia Excursion? Yes/No	Ammonia is commonly used).
Always "High"	Well water often has significantly higher alkalinity than surface water and can often be added to
Seasonal	the treatment process supplementing a system's alkalinity needs.
Sporadic Yes	2. Dissolved Oxygen (DO)
	Is the DD concentration under aeration between 0.5 mg/L and 5 mg/L? 🗱 0.4
Alkalinity (mg/L CaCO3) Influent/Before Treatment 156	Yes Proceed to Solids Retention Time and Hydraulic Loading Capacity
Under Aeration 135	No Consider the tips below to move your DO concentration to the recommended range
Effluent 90	
	Tips
DO (mg/L)	The nitrification process consumes a large quantity of oxygen. If there is not enough DO
Concentration Under Aeration 0.4	available to the microorganisms then the process can be suppressed. Nitrifying bacteria need
Aerator Run Time (hours/day) 12	4.6 mg of oxygen to convert 1 mg of Ammonia to Nitrite/Nitrate.
Flow (MGD)	To increase DD in the system: increase blower, aerator speed or increase the cycle time "on".
Design Flow 1.5	Add additional aeration equipment to system as needed to maintain adequate DO and allow for a more even distribution.
Influent Flow 1.2	Expose the microorganisms to the atmosphere by removing covers/vegetation and anything that
Effluent Flow 1.2	would reduce air movement across the surface of the basin.
Hydralic Loading Capacity (%) 80	Ponds: remove floating aquatic vegetation (e.g., duckweed). Significant duckweed can reduce
	the natural oxygen transfer from the atmosphere to the pond water.
SRT (days)	
Volume Under Aeration (MG) 0.5 Volume Under Clarification (MG) 0.5	Ammonia (mg/L) Collection System 15
Volume Under Clarification (MG) 0.3 Volume Wasted (MG) 0.03	Influent/Before Treatment 14
TSS Under Clarification (mg/L) 2100	Under Aeration 10
TSS Under Aeration (mg/L) 2100	Effluent 8
TSS Wasted (WAS) (mg/L) 8500	% Removal 43
Effluent TSS (mg/L) 20	
Volatile Portion (MLVSS) (mg/L) 0.6	
SRT (days) 7.53	

Sampling event 3


- DO is now up to 2.5 by increasing aerator run speed and time.
- Ammonia in the effluent has also improved, coming down from 8 to 6 mg/L

Type of Ammonia Excursion?	<u>Yes/No</u>	Date of Samples
Always "High"		8/29/2022
Seasonal		-//
Sporadic	Yes	
•		
Alkalinity (mg/L CaCO3)		Temperature (*F)
Influent/Before Treatment	156	Influent/Before Treatment 6
Under Aeration	135	Under Aeration 6
Effluent	90	Effluent
DO (mg/L)		BOD (mg/L)
Concentration Under Aeration	2.5	Influent/Before Treatment 31
Aerator Run Time (hours/day)	18	Before Aeration 21
		Effluent
Flow (MGD)		*If no additional process is accounted for us
Design Flow	1.5	Influent BOD value
Influent Flow	1.2	
Effluent Flow	1.2	F/M Ratio
Hydralic Loading Capacity (%)	80	Food to Microorganism Ratio 0.4
SRT (days)		
Volume Under Aeration (MG)	0.5	Ammonia (mg/L)
Volume Under Clarification (MG)	0.5	Collection System
Volume Wasted (MG)	0.03	Influent/Before Treatment
TSS Under Clarification (mg/L)	2100	Under Aeration
TSS Under Aeration (mg/L)	2100	Effluent
TSS Wasted (WAS) (mg/L)	8500	% Removal
Effluent TSS (mg/L)	20	
Volatile Portion (MLVSS) (mg/L)	0.6	
SRT (days)	7.53	
alues surrounded by a red box are	calculated a	utomatically, no input is require
	Equipment	list
Lab TSS Analysis or TSS Pro		BOD Lab Analysis
Lab Ammonia Analysis or Ammor		Thermometer

System Profile Data Shoot

Sampling event 3

- 3. SRT is currently at 7.53 and is on the low end to select optimize for nitrifying bacteria growth
- Tips for increasing SRT

Sampling Event 4

 Decreased Wasting from 30,000 to 22,000 gal.

- Increased TSS(MLSS) under aeration from 2100 to 2800 therefore increasing SRT to 13.27 days giving the Nitrifying Bacteria time to grow and multiply
- Ammonia is now within compliance at 3 mg/L

Solids Retention Time (SI	RT) & Hydraulic Loading Capacit	ty (HL(1 1-		
Is the SRT betwe	een 7 and 14 days?	SRT 📢 13.2	7	
ls the hydraulic loading cap	acity between 50% and 33%? h	LC(%) 🗹 80		
Yes Proceed to Temperature				
No Consider the tips below to r	System P	Profile	Data Sheet	
	System	TOTILE	Data Sheet	
40 X · · · · · · · · · · · · · · · · · ·	CEDA (Papart data with	in 7 days a	Ammonia Evoursion	
	SEPA (Report data with	m 7 aays o	n Ammonia Excursion	
at least 7 days to become establis. and SRT is too low, there may not i			D · · · · · ·	
Althite/Altrate. Conversely, if the sy	Type of Ammonia Excursion?	YesiNo	Date of Samples	
accumulated solids can be anaen		 	9/15/2022	
If the system allows, run treatment i	Seasonal			
Take process units online or offline	Sporadic	Yes		
capacity of system design (e.g., po				
Install baffling in key locations to sl	Alkalinity (mg/L CaCO3)		Temperature (*F)	
Adjust the amount of solids remove	Influent/Before Treatment	156	Influent/Before Treatment	67
During colder months, increase SF	Under Aeration	135	Under Aeration	68
from the nitrifying bacteria.	Effluent	90	Effluent	71
	DO (mg/L)		BOD (mg/L)	
	Concentration Under Aeration	2.5	Influent/Before Treatment	312
	Aerator Run Time (hours/day)	18	Before Aeration	212
			Effluent	20
	Flow (MGD)		*If no additional process is accounte	d for use
	Design Flow	1.5	Influent BOD value	
	Influent Flow	1.2		
	Effluent Flow	1.2	F/M Ratio	
	Hydralic Loading Capacity (%)	80	Food to Microorganism Ratio	0.30
	informe coopering copacity (10)			0.00
	SRT (days)			
		0.5	Ammonia (mg/L)	
	Volume Under Aeration (MG)			15
	Volume Under Clarification (MG)	0.5	Collection System	15
	Volume Wasted (MG)	0.022	Influent/Before Treatment	14
	TSS Under Clarification (mg/L)	2800	Under Aeration	6
	TSS Under Aeration (mg/L)	2800	Effluent	3
	TSS Wasted (WAS) (mg/L)	8500	% Removal	79
	Effluent TSS (mg/L)	20		
	Volatile Portion (MLVSS) (mg/L)	0.6		
	SRT (days)	13.27		

Additional Process Considerations

Temperature

- Contributes to seasonal changes in plant performance
- Tips

Biomass

- Is there enough incoming food to support the current microbial population.
- F/M ratio is a good indicator of this.
- Tips

	4. Temperature	Taur To ("F)
ls.	the temperature of the wastewater under aeration between 61°F and 113°F?	68
Yes	Proceed to Biomass	
No	Consider the tips below to move temperature to the recommended range \sim	
	Tips	
Biolo	igical activity and nitrification are highly dependent on temperature; the lower ti	he
temp	erature the slower the biological activity. Below 41 degrees F, nitrification ceas	95.
Cove	r basins to retain heat.	
	ase SRT to accommodate slower biological activity.	
lf the	air is warmer than the water, create surface disturbance to allow more water to	make
conta	act with the air, this can be achieved by surface aerators or mixers.	
	5. Biomass	Tour T (F:Mrs
	is there enough food for the microorganisms to grow and multiply without	10.00
	overloading the system?(FIMRatio 0.2 - 0.6)	0.3
Yes	Proceed to Additional Actions	8 0.5
No	Consider the tips below to improve the F/M ratio	
110		
	Tips	
The _p	performance of the system can be suppressed if there is not an adequate popu	ilation oi
ninih	ing bacteria to accommodate the incoming waste stream or if the incoming wa	ste stres
istoc	n little for the microorganisms to reproduce. The system may be overloaded or u	nderloa
forth	ne following reasons:	
- 583	asonal load patterns such as offseason or tourist seasons,	
- mio	roorganisms are under aeration for too long and they have consumed all of the	existing
lood	lavailable,	
Supp	element BOD by adding a food source to the system (e.g., dog food, glucose)	
Provi	de supplemental mixing to keep food and microorganisms suspended and in co	ontact w
Adjus	sting the active process units of the plant to account for the approximate loadin	ig obser
(e.g.,	shutting down or isolating treatment trains to concentrate existing microbes or	tempora
	asing capacity for seasonal loading fluxes).	

When treatment conditions are within range of the 5 parameters and Ammonia compliance is still not achieved.

- Often more information is needed
 - Are site-specific variables contributing to elevated ammonia levels?
- Why the type of ammonia excursion is important
 - Seasonal: Temperature (ex. summer water temps vs. winter), Biomass (ex. tourist influx)
 - Sporadic: Potential industry discharge slug, septic hauler illegal discharge (i.e. popped manhole) or illegal drug production.

Additional Actions that systems can take

- Microbial Assessment
- Shock load identification
- Collection System Survey
- Industrial or Illegal Dumping
- Water Toxicity Analysis
- Internal Process Change

Additional Actions

Are there any site-specific variables, such as those listed below, that are contributing to the elevated ammonia levels?

Microbial Assessment – How abundant are the nitrifying bacteria? (e.g., lab microscope ass **Shock load Identification** – Are there major fluctuations in loading to the plant? (e.g., RV park discharge, septic hauler)

Collection System Survey – Where is the high ammonia influent coming from? Industrial or Illegal Dumping – Could there be any unknown contributors to the system? Lab Water Analysis – Could there be a contaminant that is depressing biological activity?

fe.a. . disinfecting agent from cleaning operations)

Internal Process Change – Were there any major plant adjustments or changes in operations within 1SRT of the most recent ammonia excursion?

When all else fails (Alternative Ammonia Removal Methods)

- The system may just not be capable of converting enough Ammonia even when fully optimized
- Practical as a polishing step to meet very low limits.

Alternative Ammonia Removal Methods

I hese methods are an option when the current system design and capacity do not allow for additional ammonia removal (the system is fully optimized in the current state). Methods are usually applied late in the process at plant effluent. There is typically significant capital investment or operational changes involved.

Ammonia Stripping – Ammonia is converted to a gas in the presence of high pH wastewater (10.5-11.5) and air.

Breakpoint Chlorination – Adding chlorine until the ammonia has been oxidized to nitrogen **Ion Exchange** – Passing ammonia-laden wastewater through a series of columns packed with natural or synthetic resins with a particular charge (zeolite/clinoptilolite).

Conclusion

- This tool is an example of a systematic approach to solving challenges:
 1) identify the issues
 - 2) change a variable and track the results

3) repeat the process as more data is collected to achieve desired solution.

- It takes time, changing too many variables at once makes it difficult to determine what was the major contributing factor that can be leveraged in the future that led to the return to compliance.
- Also, biological systems don't react instantly to changes, there is often a lag period of multiple days to weeks.

Conclusion

- It is often not just one parameter that is contributing to Ammonia noncompliance. There can be multiple influences that together are contributing to the challenges. Progressing methodically through the 5 parameters can identify the factors that are influencing you own system more than others.
- This is just one tool in an operator's toolbox, sometimes is takes multiple "tools" to solve the problem at hand.
- This Tool is continuously being modified based on operator input

€ EPA

References

Kerri, Kenneth D. Advanced Waste Treatment: A Field Study Training Program . 5th ed., California State University, 2006.

ABC Formula/Conversion Table for Wastewater Treatment, Industrial, Collection and Laboratory Exams. https://www.abccert.org/pdf_docs/abcw.wtfctable.pdf.

WEF. Wastewater Treatment Fundamentals I: Liquid Treatment . 1st ed., Water Environment Federation, 2018.

Sampling Equipment Examples

Test Strips

Multi-parameter Field Test Kit

Equipment Vendors

https://www.usabluebook.com/default.aspx https://www.hach.com/ https://www.ysi.com/ https://www.chemetrics.com/

Additional Resources

- References
- Sampling equipment

Questions

For Additional Infromation or Questions Contact : Ted Flatebo (he/him) Environmental Engineer Water Enforcement and Compliance Assurance Branch U.S. Environmental Protection Agency, Region 5 77 W. Jackson Blvd. (ECW-15J) Chicago, IL 60604 Phone: 312-886-9402 Email: Flatebo.Ted @epa.gov

Mike Beck En vironmental Scientist Certified Wastewater Treatment Plant Operator: California|Virginia Eastern Research Group, Inc. 14555 Avion Parkway, Suite 200, Chantilly, VA 20151 Phone: (703) 633-1614 Email: Mike.Beck@erg.com