

Reshaping The Grid Through Gas Stewardship:

How Insulating Gas Reconditioning and Recycling Can Lower Your Carbon Footprint

Let's start with a

$SF_6 - A$ brief overview

Discovered in 1901 by Henri Moissan & Paul LaBeau

- Characteristics:
 - Manmade
 - Colorless & Odorless
 - Inert
 - Dielectrically Strong & Unmatched Arc Quenching
 - Thermally Stable
 - Self-Healing


- 100-year Global Warming Potential (GWP) 23,900¹
- Atmospheric Lifespan of 3,200 years¹
- Ilb of SF₆ emitted is equal to 10.3 tons CO₂
 - 2.2 Passenger vehicles driven for one year OR
 - 24,786 miles driven by an average passenger vehicle

1: Source: Climate Change 1995, The Science of Climate Change: Summary for Policymakers and Technical Summary of the Working Group I Report, page 22 Retrieved from: http//unfccc.int/process/transparency-and-reporting/greenhouse-gas-data/greenhouse-gas-data-unfccc/global-warming-potentials

- Manufactured by method of electrolysis
- Manufacturing in North America outlawed by the Kyoto Protocol
 - Currently manufactured overseas in Russia and Asia
- By-products and impurities are a side effect of production
 - SF₄, SF₂, S₂F₂, S₂F₁₀
 - Air, moisture, CO₂
- Contaminants are filtered as a part of the refining process
- Approximately 10,000 tons of SF₆ are produced each year
- Manufacturing process is known source of emissions²

2: Source: Hu Jianxin, et al. "Sulfur Hexafluoride (SF6) Emission Estimates for China: An Inventory for 1990-2010 and a Projection to 2020." Environmental Science & Technology, April 2013, Vol. 47, Issue 8, pp 3848–3855.

SF₆ Gas – The Challenge

Initiating a Greener Solution

In Nov 2002, at the International Conference on SF_6 and the Environment: Emission and Reduction Strategies EPA workshop, a Technical Paper & Case Study by Solvay Fluor, AGA Gas and AEP, was presented regarding a program launched which provided the opportunity to initiate an SF_6 gas reuse program consistent with environmental awareness and protection. The case study summarized the process to the following highlighted principles:

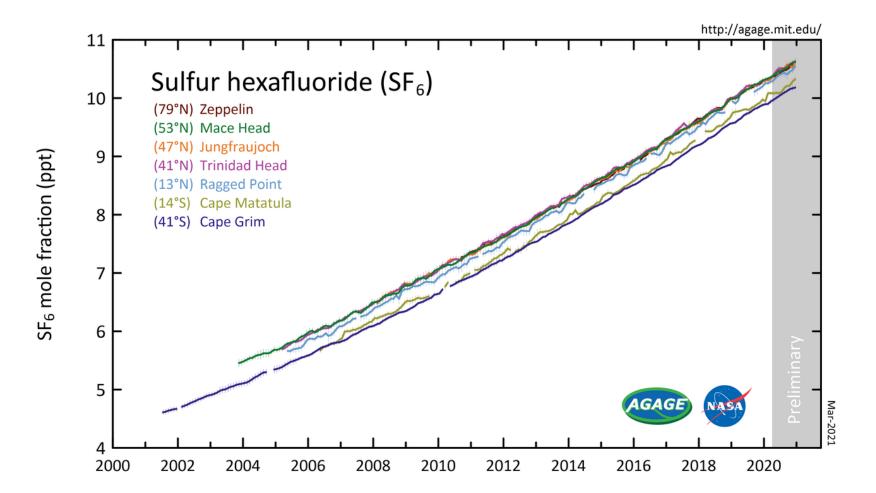
- Analyze failed SF₆ gas
- Recover & reclaim SF₆ gas into temp storage containers for proper transport
- Transport SF₆ gas
- Perform reconditioning
- Return to the supply stream for use in GIE

They understood that the SF_6 gas needed to meet the requirements for GIE that previously relied on the use of virgin SF_6 gas. The case study also outlined the importance of inventory management. It was very clear that the user needed transparency to ensure that every kilogram/pound of used SF_6 was accounted for and tracked throughout the cycle of the Re-Use Program.

In reference to the recently updated Intergovernmental Panel on Climate Change (ipcc) document, <u>2019</u> <u>Refinement of the 2006 IPCC Guidelines for National Greenhouse Gas Inventories</u>, we determined that an estimate of 0.03kg to 0.08kg of SF_6 gas is emitted to the atmosphere per every 1kg (2.2lbs) of SF_6 gas produced.

Based on this estimate it may be determined that for every 100lbs (45.35kg) of Virgin SF_6 gas received into North America, an estimated 3.0lbs to 8.0lbs. of SF_6 gas is emitted into the atmosphere during production.

During the reconditioning process we estimate that for reconditioning of 100lbs (45.35kg) of SF_6 gas that starts at 95% pure and is reconditioned to 99.0% or greater, <0.64lbs of SF_6 gas is emitted into the atmosphere.


When proper handling is performed in the field during recycling, < 0.05 lbs of SF₆ gas is emitted.

The document goes on to further state, "In addition to the compounds being intentionally produced, a variety of fluorinated GHG by-products can be emitted from fluorochemical manufacturing processes. Emissions of these other fluorinated GHGs can exceed emissions of the compound being intentionally produced."

https://www.ipcc-nggip.iges.or.jp/public/2019rf/vol3.html

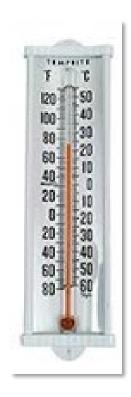
What about the alternatives?

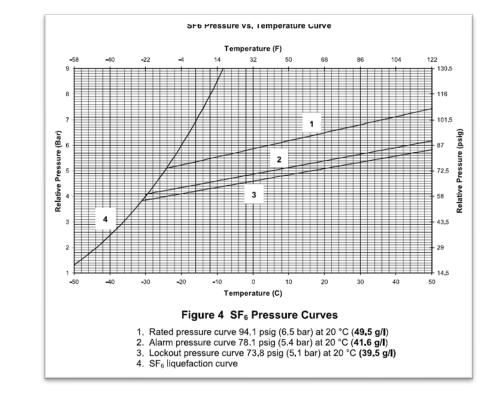
		Sulfur-hexafluoride	Clean-Air	Carbon Dioxide and Oxygen	C4-Fluoronitrile	C5-Fluroketone
	Chemical Formula	SF_6	80% N ₂ + 20% O ₂	70% CO ₂ + 30% O ₂	(CF ₃) ₂ CFCN	$(CF_3)_2 CFC(O)CF_3$
Gas	CO2 _e (<u>GWP</u>)	23,500	0	<1	2,210	1
Base	Boiling Point	-64°C	<-183°C	-50C	-5°C	+27°C
	Dielectric Strength	1.00	0.43	0.77	2.20	1.70
are	Background (gases)	Pure or with N_2 or CF_4	80% N ₂ + 20% O ₂	70% CO ₂ + 30% O ₂	~90% CO ₂	\sim 90% O ₂ With N ₂ or CO ₂
s Mixture	CO2 _e (<u>GWP</u>)	23,500	0	<1	~380	<1
Gas	Lowest Operating Temperature	-30°C *	-50°C	-50C	-30°C	0°C to +5°C -20°C possible
nternal Arc Reaction			If applicable: O ₃ , NO _x	cO, ΗF, Ο ₃	CO, HF, C _n F _{2n+2} , other Fluorinated Compounds	CO, HF, COF ₂ , C _x F _y , other Fluorinated Compounds
Interr Read	Toxicity of Decomposition Slightly toxic Products (Hodge-Sterner)		Typically None	Relatively harmless (Hodge-Sterner)		

Alternatives to SF₆ are proving to be a promising advancement in the environmental control of GHG emissions

- However, it is also important to consider the following¹:
 - No measurable improvements currently exist as it is related to safety for handling of SF₆ alternatives vs SF₆
 - New gas mixtures generate arc byproducts. Compatibility testing with existing switchgear materials have led to acceptable solutions
 - Toxicity of both the base gas and arc byproducts must be considered. Evaluation of these compounds for health and safety is paramount.
 - The interrupting capability of switchgear using SF₆ alternatives is largely based upon CO₂ gas mixtures. CO₂, in orders of magnitude, is more permeable than SF₆ and the sealing technologies of switchgear will be affected.
 - SF₆ alternative equipment using "Technical Grade Air" and vacuum interrupters operates at a significantly higher pressure than SF₆ equipment. The static seals and dynamic seals presently used in switchgear will be challenged to cope with the higher pressures.
 - Vacuum interrupters in equipment using "Technical Grade Air" currently are still limited in their power handling.
 - All the new gas mixtures operate at higher pressures as compared to SF₆. This presents two challenges; first, the design of pressure vessels which can operate safely and reliably for long periods of time; and second, customer acceptance of switchgear with higher operating pressures. Higher gas pressures can also mean higher leakage rates.

¹(Ref: Alt Gas Mixtures Status and Strategy Considerations – George Becker – Power Engineer)


On-Site Gas Processing for Immediate Re-Use



Accountability starts with nameplate value & actual pressure vs temperature (i.e. identifying leaks and/or previous reporting inaccuracies)

Key Tools and Resources

Having the proper tools is the key to success...

What size and type gas handling system is required?

How much gas storage?

Are adapter fittings needed?

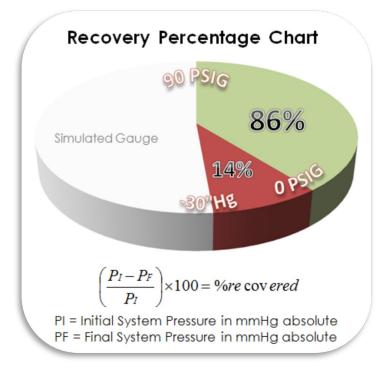
What is the quality of the gas?

Is additional filtration required?

- Perform condition analysis of the gas in the GIE
 - Ideally test at least three parameters:
 - Moisture content
 - Purity
 - Arc Byproduct
 - Alternative mixtures may require additional contaminants to be detected
 - This is also a good time to check your service hoses for integrity via the "leak-up" method

Contaminant	In-service	Re-use
Non-reactive gases (air / N ₂)	Up to 3%	Up to 3%
Reactive gases (SO ₂ , SOF ₂)	500 PPM _v	12 PPM _v
Moisture – GCB only	200 PPM _v	200 PPM _v

	IEC 60376 specification for new SF6 gas	IEC 60480 specification for used SF6 gas	IEC 62271-4 SF6 reuse specification
Air / CF ₄	Max. 1 vol%	< 3 vol%	< 30 vol-% air < 5 vol-% CF ₄
Moisture (Dew point)	-36 °C* at p _a 1 bar < 25 ppm (mass)	-23 °C* at p _a 1 bar (medium voltage) -36 °C* at p _a 1 bar (high voltage)	< 1,000 ppm (mass) approx. +4.5 °C at p _a 1 bar
Oil	< 10 ppm (mass)	< 10 ppm (mass)	< 1,000 ppm (mass)
HF, SO ₂	< 1 ppm _v	< 12 ppm _v SO ₂ < 50 ppm _v total	> 12 ppm _v SO ₂ > 50 ppm _v total

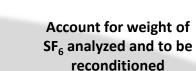

- On-site reconditioning is achieved with filtration systems
 - Pre-filter (external to gas handling cart)
 - On-board filters
 - A combination of both is ideal for best results
- Filtration systems reduce moisture and eliminate by-products
 - Air and other non-reactive gases <u>CANNOT</u> be removed by on-site processes
- Reconditioned gas qualifies for <u>immediate</u> re-use
- Standards for re-use are set by:
 - CIGRE
 - IEC
 - IEEE
 - ANSI

The perfect recovery is achieved with zero emissions

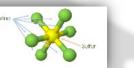
- Determine how much gas is recovered
 - Track the initial and final compartment pressure
 - Track and log weight of the gas recovered
- Different rules apply to leaking SF₆ GIE
 - Recovery prematurely stopped at 1-3 psig
 - Recover remaining gas into separate cylinders
 - Air intrusion is almost certain once in the vacuum stage of recovery
 - Separating the positive & vacuum stages ensures maximum reusable ${\rm SF_6}$ on-site
 - C4/C5 mixtures may require complete replacement due to ratio conflicts with partial recovery

FILLING

- Be sure to check the OEM's manual or nameplate for accurate SF₆ capacity information.
- Accidently overfilling GIE could result in an SF₆ emission by engaging a pressure relief valve (rupture disk).
- Tracking gas weights by documenting SF₆ movements and using a cylinder weight scale and/or mass flow meter can aid with preventing both positive and negative emissions.
- Always set regulators in a static environment. Failure to do so may result in excessive pressure settings and potential rupture disk failures.


Off-Site Reconditioning Process for Insulating Gases

Intake & Analysis of Used SF₆


- Low Purity
- High H_2O^*
- Presence of SO₂*

* CIGRE ; IEEE; ANSI; IEC; ASTM

Account for weight of SF₆ analyzed and reconditioned

Fill into clean (noncontaminated) SF₆ storage containers

Introduce into SF₆

supply stream

© DILO 2023 07/18/2023

Confirm analysis of reconditioned SF₆ meets/exceeds standards for re-

use*

Report#:	S-2975	Service#	0		Date:	1/20/2020	Pallet#	1
AssetTag Number	Cylinder Serial Number	Cylinder Certification Date	Purity (vol %)	Moisture	Decomp (SO ₂ /SOF ₂)	Tare Weight	Gross Weight	SF ₆ Weight
	SG862500Y	9/2014+	100.0%	<40 PPMv	PPMv	1,454.0 LBS	2,554.0 LBS	1,100.0 lbs
	6169-33	8/2014+	100.0%	<40 PPMv	PPMv	1,388.0 LBS	2,488.0 LBS	1,100.0 lbs
	4890-26	4/2011+	100.0%	<40 PPMv	PPMv	1,452.0 LBS	2,552.0 LBS	1,100.0 lbs
	4057-0	9/2014+	100.0%	<40 PPMv	PPMv	1,430.0 LBS	2,530.0 LBS	1,100.0 lbs
	4057-17	9/2014+	100.0%	<40 PPMv	PPMv	1,407.0 LBS	2,507.0 LBS	1,100.0 lbs

Perform SF₆ reconditioning

Analysis of Reconditioned SF₆

IEC specifications (standards) for sulphur hexafluoride

	IEC 60376 Specification for new SF ₆ gas	IEC 60480 Specification for used SF _s		
SF ₆	> 98.5 vol% For gas mixtures: > 99.7 Vol%	>97 Vol % For gas mixtures: ± 5 % from the nominal value		
Air/CF ₄	Air: < 10.000 µl/l (i.e. 1 Vol%) for pure SF ₆ gas For gas mixtures: < 2,000 µl/l (i.e. 0.2 vol%) CF ₄ : < 4,000 µl/l (i.e. 0.4 Vol%) for pure SF ₆ gas For gas mixtures: < 800 µl/l (i.e. 0.08 vol%)	 < 30,000 µl/l (i.e. 3 % vol.) For gas mixtures: SF₆/N₂ mixtures: < 30,000 µl/l (air and/or CF₄) SF₆/CF₄ mixtures: < 30,000 µl/l (air and/or N₂) 		
Moisture (dew point)	< 200 µl/l (.i.e. 200 ppm _y ; -36 °C frost point @ atm)	$<$ 200 μ l/l (i.e. 200 ppm_{v} -36 °C frost point @ atm.)		
Oil	< 10 mg/kg (i.e. 10 ppm _w)	< 10 mg/kg (i.e. 10 ppm _w)		
HF, SO ₂	< 7 µl/l (i.e. 7 ppm) total	$<50~\mu l/l$ total (i.e. 50 ppm) or 12 $\mu l/l$ (i.e. 12 ppm) For (SO_2+SOF_2) or 25 $\mu l/l$ (i.e. 25 ppm) HF		

	DILO	IEC 60376:2018*		
Substance	Certified Gas	(Virgin gas)	ASTM D2472-15	
SF ₆	> 99 Vol.%	> 98,5 Vol.%	≥99,8 wt%	
H ₂ O	≤ 8 µl/l	< 200 µl/l	≤8 ul/l	
Frost point (100 kPa)	≤ -62 °C	-36 °C	-62 °C	
Total acidity (HF equiv.)	< 0,1 µl/l	< 7 µl/l	≤ 0,3 ppm _w	
Air	< 500 µl/l	< 10.000 µl/l	$\leq 500 \text{ ppm}_{w} (\triangleq 2500 \mu l/l$	
CF ₄	< 500 µl/l	< 4.000 µl/l	$\leq 500 \; \text{ppm}_{w} (\triangleq 830 \; \mu\text{I/I})$	
Oil mist	< 1 mg/kg	< 10 mg/kg	-	
S0 ₂	< 0.1 ul/l	_	_	

*For use in mixtures with N₂/CF₄, SF₆ purity of 99.7 % by volume is recommended. μ I/I = ppmv; mg/kg = ppmw, wt% = percentage by weight

Off-site reconditioned SF₆ gas should come with the following report information for accurate recordkeeping:

Report#:	AIR#191017	Service#	S-2878		Date:	10/17/2019	Pallet#	1
AssetTag Number	Cylinder Serial Number	Cylinder Certification Date	Purity (vol %)	Moisture	Decomp (SO ₂ /SOF ₂)	Tare Weight	Gross Weight	SF ₆ Weight
EHR603	N-339679	07/17*	99.9%	<40 PPMv	PPMv	119.0 LBS	233.8 LBS	114.8 lbs
GTE931	419416	11/16+	99.9%	<40 PPMv	PPMv	121.8 LBS	236.3 LBS	114.5 lbs
HLY311	73251805	11/17+*	99.9%	<40 PPMv	PPMv	110.7 LBS	225.3 LBS	114.6 lbs
FKN258	SG2095B	7/14+*	99.9%	<40 PPMv	PPMv	123.0 LBS	238.3 LBS	115.3 lbs
HLY301	U36035	11/17+	99.9%	<40 PPMv	PPMv	117.4 LBS	232.7 LBS	115.3 lbs
HKV358	32	03/17+	99.9%	<40 PPMv	PPMv	118.0 LBS	233.2 LBS	115.2 lbs
GTC978	OX-4-408947	12/16+	99.9%	<40 PPMv	PPMv	114.0 LBS	228.8 LBS	114.8 lbs
FKP274	C6657014	08/16+*	99.9%	<40 PPMv	PPMv	121.0 LBS	235.9 LBS	114.9 lbs
HAW447	179273	08/17+	99.9%	<40 PPMv	PPMv	127.0 LBS	242.2 LBS	115.2 lbs
DJT090	N-278340	07/14+	99.9%	<40 PPMv	PPMv	118.0 LBS	232.9 LBS	114.9 lbs
JCU279	X-379544	07/18+	99.9%	<40 PPMv	PPMv	113.6 LBS	228.9 LBS	115.3 lbs

Example of Outgoing Report for over 1,200 pounds of reconditioned SF₆ gas in 115 Capacity Cyl's

Report#:	S-2975	Service#	0		Date:	1/20/2020	Pallet#	1
AssetTag Number	Cylinder Serial Number	Cylinder Certification Date	Purity (vol %)	Moisture	Decomp (SO ₂ /SOF ₂)	Tare Weight	Gross Weight	SF ₆ Weight
	SG862500Y	9/2014+	100.0%	<40 PPMv	PPMv	1,454.0 LBS	2,554.0 LBS	1,100.0 lbs
	6169-33	8/2014+	100.0%	<40 PPMv	PPMv	1,388.0 LBS	2,488.0 LBS	1,100.0 lbs
	4890-26	4/2011+	100.0%	<40 PPMv	PPMv	1,452.0 LBS	2,552.0 LBS	1,100.0 lbs
	4057-0	9/2014+	100.0%	<40 PPMv	PPMv	1,430.0 LBS	2,530.0 LBS	1,100.0 lbs
	4057-17	9/2014+	100.0%	<40 PPMv	PPMv	1,407.0 LBS	2,507.0 LBS	1,100.0 lbs

Example of Outgoing Report for 5,500 pounds of reconditioned SF₆ gas in 1,100 capacity tonners

What else can you do?

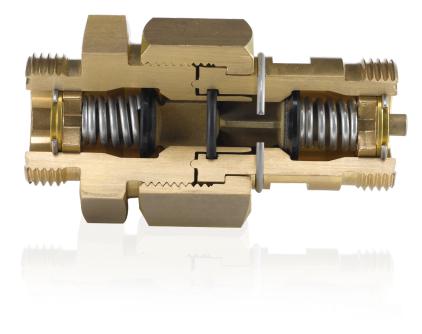
TRAINING

According to the Environmental Protection Agency:

"Training raises awareness of emissions, environmental and health impacts of SF₆ and by-products, and potential reduction options, but training also enables employees to follow procedures and protocols properly." ³

... And in most cases with equipment ownership, *IT'S FREE!*

... at least with DILO, it is. ;)

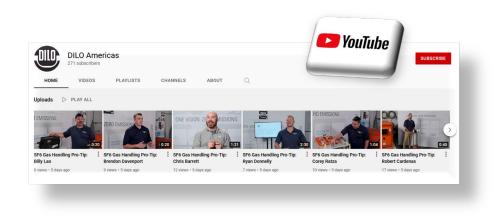


3: Source: (August 2018) Overview of SF₆ Emissions Sources and Reduction Options in Electric Power Systems.

Gas Connections & Material Replacements

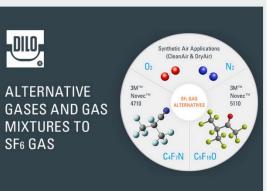
- Check to see that fittings used for connection to GIE and other accessories (manifolds, analyzers, cylinders, etc.) are leak tested.
- Refrain from using threaded connections, which are prone to leak over time:
 - NPT (Taper)
 - JIC (Flare)
 - Compression (i.e. Swagelok, HyLok, etc.)
- Identify and replace rubber components, such as hoses and diaphragms, every 5 years, if possible.

Cylinder Consolidation

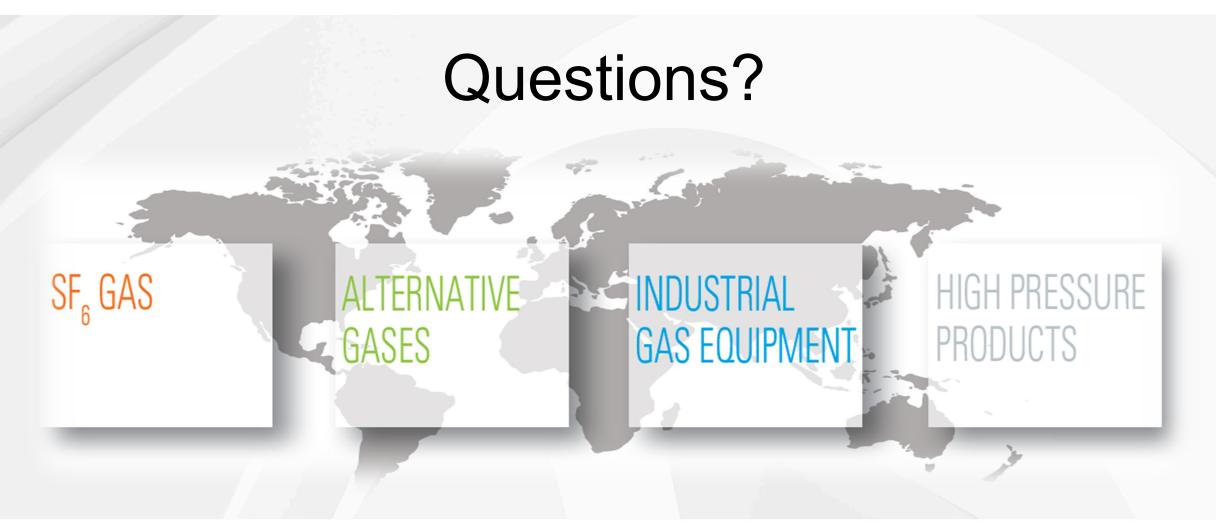

- Ensures all gas is accounted for throughout your locations.
- Ideally, all partial cylinders should be returned to a single inventory point, such as a dedicated bottle shop.
- Can also help to identify poor quality gas that will require reconditioning before being put back into service.

DILO. Whitepapers

- DILO. Training & Certification
- DILO Media
 - Check out our Blog!
 - Pro-tip videos
 - DILO Americas YouTube Channel


WELCOME TO THE DILO BLOG

Share Share Back to overview


07/06/202

ALTERNATIVES TO SF6 GAS: WHAT ARE THE AVAILABLE OPTIONS?

Alternatives to SF₆ gas are gaining traction in the Electrical Industry. Why are SF₆ alternatives becoming popular? What available options are there to replace SF₆ gas? Can users keep the same switchgear when looking for a replacement? Read on to learn all this and more.

