

BASF Corporation

DRAFT Basis of Design Report Preliminary 30% Design Perimeter Barrier Remedy

BASF North Works Site Wyandotte, Michigan

September 2022

DRAFT BASIS OF DESIGN REPORT PRELIMINARY 30% DESIGN PERIMETER BARRIER REMEDY

BASF North Works Site Wyandotte, Michigan

September 2022

Prepared By:

Arcadis of Michigan, LLC 28550 Cabot Drive, Suite 500 Novi Michigan 48377 Phone: 248 994 2240

Our Ref:

30133323

DRAFT

Carsten Becker, P.E. Principal Engineer

DRAFT

Andrea Krevinghaus, P.E. Principal Engineer

DRAFT

Jackie Saling, P.E. Vice President/Project Manager

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Prepared For:

BASF Corporation 1609 Biddle Avenue Wyandotte Michigan 48192

CONTENTS

1	I	ntro	ductio	n	. 1
2	S	Site	Descr	iption and Background	. 1
	2.1		Site H	listory	2
	2.2		Subs	urface Conditions	2
	2	.2.1	Ge	otechnical Investigation	2
	2	.2.2	Hy	drogeologic Investigation	3
3	F	Perir	neter	Barrier Remedy Basis	3
	3.1		Desig	ın Criteria	4
	3.2		Propo	osed Remedy Description	4
	3.3		Corre	ctive Action Objectives	5
	3.4		Perfo	rmance Standards	5
	3.5		ARAF	Rs, Pertinent Codes, and Standards	6
4	F	Perir	neter	Barriers	8
	4.1		Barrie	er Considerations	8
	4	.1.1	Sul	bsurface Containment Barriers	8
		4.1	.1.1	Ex-Situ Mixed Site Soil-Cement Barrier via Excavator	9
		4.1	.1.2	Ex-Situ Mixed Borrow Soil-Cement Barrier via Excavator	9
		4.1	.1.3	Steel Sheet Piles	.9
		4.1	.1.4	Cement Bentonite Barrier (Self-Hardening Slurry)	9
		4.1	.1.5	Soil-Cement Barrier Via Trenching	10
	4	.1.2	Sh	oreline Containment Barrier	10
		4.1	.2.1	Steel Bulkhead Barrier	10
	4.2		Deve	lopment of Containment Barrier	10
	4	.2.1	No	rthern Perimeter	11
	4	.2.2	No	rthern Shoreline	11
	4	.2.3	So	uth Dock	11
	4	.2.4	Rip	Rap Shoreline	11
	4	.2.5	So	uthern Perimeter	12
	4.3		Barrie	er Design	12
	4	.3.1	Soi	il-Cement Wall	12
		4.3	3.1.1	Bench Test Results	12

4.3.1.2	Material Selection	13
4.3.1.3	Wall Alignment	13
4.3.1.4	Vall Properties	13
4.3.2 Subs	urface Sheet Pile Walls	14
4.3.2.1	Material Selection	15
4.3.2.2	Wall Alignment	15
4.3.2.3	Pile Depths	15
4.3.3 Steel	Bulkhead Design at South Dock	16
4.3.3.1	Background	16
4.3.3.1.1	Existing Structures Along South Dock	16
4.3.3.1.2	Upper Trenton Channel Dredging Project	16
4.3.3.1.3	Subsurface Conditions	16
4.3.3.2	Bulkhead Wall Preliminary Design	17
4.3.3.2.1	Bulkhead Structural Components	17
4.3.3.2.2	Design Criteria and Assumptions	18
4.3.3.2.3	Results of the Preliminary 30% Design Calculations	18
4.3.3.3	Construction Methods and Constructability Considerations	19
4.3.3.3.1	Sheet Pile and Combination Wall Construction	19
4.3.3.3.2	Shear Pin Installation	20
4.3.3.3.3	Anchor System Components	20
4.3.3.3.4	Backfill Placement	21
4.3.3.3.5	Existing Subsurface Structures and Stability of Existing South Dock	21
4.3.3.4	Alternative Design Elements and Construction Methods	21
4.3.3.4.1	Rock Socketing of King Piles	22
4.3.3.4.2	Reinforced Concrete Anchor Wall Installed as Slurry Wall	22
4.3.3.4.3	A-Frame Batter Pile Structure for Anchoring	22
4.3.3.4.4	Lightweight Fill as Backfill Behind the Bulkhead Wall	22
4.3.3.4.5	No-Dredge Alternative	22
4.3.3.4.6	Buttressing to Increase Passive Resistance	23
4.4 Existing	Sheet Pile Wall	23
4.5 Barrier I	ntersections	24
Groundwater	Extraction and Conveyance System	24
5.1 Extraction	on Trench Network	24

5

	511	Summary of Groundwater Modeling Results	24
	5.1.2		. 25
	5.2	Conveyance Network	. 26
	5.2.1	Sump Network	. 26
	5.2.2	Conveyance Piping	. 26
6	Abov	e-Grade Treatment System	. 27
	6.1	Treatability Study	. 27
	6.2	Influent Characteristics	. 27
	6.2.1	Influent Flow Rates	. 27
	6.2.2	Influent Chemical Characteristics	. 27
	6.3	Major Unit Processes	. 29
	6.3.1	Influent Equalization	. 29
	6.3.2	pH Neutralization	. 29
	6.3.3	Precipitation, Coagulation, and Flocculation	. 30
	6.3.4	Clarification	. 31
	6.3.5	Pump-Out Tank and Bag Filtration	. 31
	6.3.6	Liquid-Phase Granular-Activated Carbon	. 31
	6.3.7	Ion Exchange Resin	. 32
	6.3.8	Discharge	. 33
	6.4	Ancillary Processes	. 33
	6.4.1	System Pumps	. 33
	6.4.2	Solids Management	. 34
	6.4.3	Tank Mixing	. 34
	6.4.4	Compressed Air	. 34
	6.4.5	Instrumentation and Controls	. 35
	6.4.6	Fire Protection	. 35
	6.4.7	Utilities	. 35
	6.4.8	Secondary Containment	. 35
	6.4.9	Hazardous Area Classification	. 35
7	Wast	e Management and Characterization	. 35
8	Healt	h and Safety Plan	. 36
	8.1	Health and Safety Considerations	. 36
	8.2	Site Safety	. 37

8	.3	Safety in Design	. 37
9	Futu	re Design Considerations	. 37
10	Data	a Gaps	. 37
1	0.1	Subsurface	. 37
1	0.2	New Bulkhead	. 38
1	0.3	Above-Grade System	. 38
11	Perr	nit Plan	. 39
12	Ope	ration, Monitoring, and Maintenance Requirements	. 39
13	Ren	nedial Design Management	. 40
1	3.1	Design and Construction Schedule	. 40
1	3.2	Construction Approach	. 40
	13.2	.1 Cost Estimates	. 40
	13.2	.2 Procurement Methods and Contracting Strategy	. 40
	13.2	.3 Construction Sequence	. 41
1	3.3	Phasing Alternatives	. 42
1	3.4	Roles and Responsibilities	. 42
1	3.5	Sample and Data Collection Methodology and Quality Assurance	. 43
14	Refe	erences	. 43

TABLES

Table 1. Design Criteria Components	4
Table 2. Regulatory Requirements	6
Table 3. Barrier Remedy	11
Table 4. Summary of Minimum Bulkhead Structural Requirements for Preliminary 30% Design	19
Table 5. Groundwater Modeling Drain Rates at Drain Locations	26
Table 6. Influent Groundwater Characteristics	28
Table 7. Influent Equalization Tank Design Parameters	29
Table 8. pH Neutralization Design Parameters	30
Table 9. Proposed Metal Precipitant Chemicals and Doses	30
Table 10. Clarifier Design Parameters	31
Table 11. Pump-Out Tank Design Parameters	31
Table 12. Liquid-Phase Granular-Activated Carbon Design Parameters	32

www.arcadis.com

Table 13. Ion Exchange Design Parameters	33
Table 14. Pump Design Parameters	33
Table 15. Solids Management Design Parameters	34
Table 16. Project Roles and Responsibilities	42

FIGURES

Figure 1	Site Location
Figure 2	Site Layout
Figure 3	Site and Subsurface Exploration Location Map
Figure 4	Barrier Remedy Option 1 Layout

Appendices

Appendix A	Preliminary 30% Design Drawings
Appendix B	Design Calculations
Appendix C	Preliminary Cost Estimate and Bill of Materials
Appendix D	Preliminary Construction Schedule
Appendix E	Subsurface Barrier Options Summary Table
Appendix F	Draft Final Perimeter Barrier Remedy Design Drawing List
Appendix G	Perimeter Barrier Treatment System Specifications

ACRONYMS AND ABBREVIATIONS

%	percent
µg/L	micrograms per liter
AG	above grade
AOC	area of concern
Arcadis	Arcadis of Michigan, LLC
BASF	BASF Corporation
BFS	blast furnace slag
bgs	below ground surface
BOD	Basis of Design
CCR	Current Conditions Report
cm/sec	centimeters per second
COC	contaminant of concern
Consent Order	1994 Administrative Order on Consent (Docket No. V-W-011-94)
СРТ	cone penetrometer test
DBO	distiller blow-off
DTH	down the hole
DUWA	Downriver Utility Wastewater Authority
EBCT	empty bed contact time
EDZ	engineered discharge zone
EGLE	Michigan Department of Environment, Great Lakes, and Energy
F&G	funnel and gate
GAC	granular-activated carbon
GLLA	Great Lakes Legacy Act
gpm	gallons per minute
H&S	health and safety
H:V	horizontal unit to vertical unit
HASP	Health & Safety Plan
НМІ	human machine interface
HPT	hydraulic profiling tool
HSU	hydrostratigraphic unit
JSA	job safety analysis
LWD	low water datum

www.arcadis.com

mg/L	milligrams per liter			
NAVD88	North American Vertical Datum of 1988			
NFPA	National Fire Protection Association			
ng/L	nanograms per liter			
NPDES	National Pollutant Discharge Elimination System			
O&M	operation and maintenance			
OSHA	Occupational Safety and Health Administration			
P&ID	piping and instrumentation diagram			
P&T	pump and treat			
PC	Portland cement			
PDI	pre-design investigation			
PFAS	per- and polyfluoroalkyl substances			
PLC	programmable logic controller			
POTW	publicly owned treatment works			
PPE	personal protective equipment			
psi	pounds per square inch			
QAPP	Quality Assurance Project Plan			
QST	QST Environmental			
RCRA	Resource Conservation and Recovery Act of 1976			
RD	Remedial Design			
RFI	RCRA Facility Investigation			
RSSCT	rapid small-scale column test			
S.U.	standard units			
SCADA	supervisory control and data acquisition			
SVOC	semi-volatile organic compound			
SWMU	solid waste management unit			
USACE	United States Army Corps of Engineers			
USEPA	United States Environmental Protection Agency			
VE	value engineering			
VOC	volatile organic compound			
Woodward-Clyde	Woodward-Clyde Group			

1 Introduction

On behalf of BASF Corporation (BASF), Arcadis of Michigan, LLC (Arcadis) has prepared this Basis of Design (BOD) Report for a groundwater remedy at the BASF North Works site in Wyandotte, Michigan (the Site). This BOD Report describes the Preliminary (30%) Design of the remedy, which consists of a physical containment barrier and a groundwater collection and treatment system to manage/mitigate off-site migration of groundwater at the downgradient site perimeter. The physical containment barrier will block groundwater from entering the Detroit River. The groundwater collection system is necessary to prevent groundwater elevations from rising when the containment barrier is installed. The groundwater collection system will be operated to lower the groundwater table and further reduce the potential for migration and is comprised of drains, sumps, and a conveyance network that will be constructed to extract site groundwater. Extracted groundwater will be treated before being discharged to the local publicly owned treatment works (POTW).

This document is being submitted as part of a Preliminary 30% Design as requested by the United States Environmental Protection Agency, Region V (USEPA) for a site-wide downgradient perimeter groundwater remedy. The other components of the 30% Design include Preliminary 30% Design Drawings (Appendix A), Design Calculations (Appendix B), Cost Estimate (Appendix C), and Construction Schedule (Appendix D).

This BOD Report was developed consistent with applicable USEPA guidance, including:

- Guidance for Scoping the Remedial Design (USEPA 1995a);
- Remedial Design/Remedial Action Handbook (USEPA 1995b);
- EPA Oversight of Remedial Designs and Remedial Actions Performed by Potentially Responsible Parties, Interim Final (USEPA 1990); and
- Handbook on the Benefits, Costs, and Impacts of Land Cleanup and Reuse (USEPA 2011).

2 Site Description and Background

The Site is located on the west bank of the Detroit River in Wyandotte, Wayne County, Michigan, and occupies approximately 230 acres (Figure 1). The Site is bounded by Perry Place to the north, the Detroit River to the east, James Desana Drive to the south, and Biddle Avenue to the west. The Site is an active industrial property used for manufacturing chemicals and other products. Facility operations and workforce have expanded since issuance of the 1994 Administrative Order on Consent (Docket No. V-W-011-94) (Consent Order) and continue to grow.

At present, approximately 50% of the Site is developed with buildings, paved streets, parking lots, tank farms, and docks. Many of the former site features associated with discontinued processes have been demolished, although concrete surfaces and foundations at or below grade remain. The site boundary with the river is approximately 5,750 feet long and consists of the following shoreline perimeter structures and features:

• A pier structure and a timber Wakefield wall constructed in the early 1900s extends approximately 4,920 feet south from the northern property boundary at Perry Place (Figure 2). The pier structure consists of a soil-covered concrete deck supported on timber piles. The Wakefield wall serves as a bulkhead wall between the upland area and the pier structure and consists of oak sheets with tongue-and-groove joints keyed into the river bottom. The width of the soil-covered concrete deck increases from approximately 3 feet at the northern end of the Site to approximately 34 feet at the southern end of the pier (Arcadis 2019b).

- An anchored steel sheet pile wall was installed in the 1990s on the river side of the existing- pier structure/Wakefield wall described above (Figure 2). The sheet pile wall extends approximately 3,300 feet south from the northern site boundary (i.e., the northern end of the existing pier structure) and was installed as part of a shoreline stabilization project.
- A pile-supported concrete dock (South Dock) extends approximately 1,620 feet south from the anchored sheet pile wall to the rip rap-protected portion of the riverbank.
- The riverbank south of the existing pier structure is protected by an approximately 830-foot-long rip rap revetment (Figure 2).

Detailed descriptions of the site physical and hydrogeological settings and distribution of chemicals of concern (COCs) are provided in the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Report (QST Environmental [QST] 1999) and the RFI Current Conditions Report (CCR) (Woodward-Clyde Group [Woodward-Clyde] 1994).

2.1 Site History

A comprehensive description of the site history is presented in the RCRA RFI Report (QST 1999) and the CCR (Woodward-Clyde 1994). Various industrial operations have been implemented at the Site since the late 1800s, and the RFI Report identified several areas of concern (AOCs) and solid waste management units (SWMUs) requiring corrective measures. Detailed information on each AOC/SWMU is provided in the RFI Report (QST 1999) and the CCR (Woodward-Clyde 1994). In addition, land reclamation activities conducted at the Site have led to the widespread distribution of fill material containing site-related constituents. Constituents present in groundwater as a result of past site-related activities include volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and metals (including mercury). Elevated metals concentrations in groundwater are driven by the site geochemistry (e.g., strongly reducing conditions resulting from the presence of organic matter and elevated pH levels associated with fill material in the subsurface). Due to the extent of groundwater impacts at the Site, BASF proposed to address groundwater as a site-wide AOC, managed at the downgradient site perimeter. USEPA concurred with this approach in its letter to BASF dated August 26, 2016 (USEPA 2016).

2.2 Subsurface Conditions

Subsurface conditions in the upland and near-shore areas of the Site have been investigated extensively. Most recently, geotechnical and hydrogeological preliminary design investigations (PDIs) were performed along the perimeter of the Site (upland and near shore) in 2020 to support the Preliminary 30% Design of the containment barrier. The results of the PDIs are summarized below.

2.2.1 Geotechnical Investigation

Between June 17 and August 5, 2020, 17 geotechnical borings and 17 cone penetrometer test (CPT) explorations were performed in the upland and near shore areas along the proposed barrier alignments in the South Dock area and along the rip rap-protected riverbank south of the South Dock at the approximate locations shown on Figure 3. Four of the geotechnical borings and 14 of the CPT explorations were completed in the river, within 50 feet of the shoreline, using barge-mounted equipment (Figure 3). The findings of this investigation are summarized in the *BASF North Works Geotechnical Data Report* (Arcadis 2021a).

Fill was encountered below the surficial coverings at the Site extending up to 32 feet below ground surface. The fill consists of various types of soil, concrete, crushed stone, gravel, other debris, and distiller blow off (DBO). Concrete

slabs are also encountered at some locations below ground surface in the upland area. These fill characteristics influenced the selection of the perimeter barriers as discussed in Section 4.

A very soft, alluvial silt layer was encountered in some of the upland borings with a thickness of 7 to 15 feet. Loose to medium dense lacustrine sand was encountered in the upland areas, either below the alluvial silt or directly below the fill where no alluvial silt was encountered. The sand layer varied in thickness from approximately 5 to 17 feet. The alluvial silt and the lacustrine sand were not encountered in the in-water explorations.

A soft to medium stiff layer of lacustrine clay was encountered ranging in thickness from approximately 25 to 43.5 feet in the upland area and from approximately 15 to 25 feet in the river. The overburden soils overlying the till and bedrock in the upland ranges in total thickness from approximately 62 to 65 feet. In the river, the total thickness of the overburden soils ranges from approximately 39 to 41 feet. The geotechnical properties and thickness of these overburden soils influences the selection of the perimeter barriers as discussed in Section 4.

2.2.2 Hydrogeologic Investigation

A Hydraulic Pre-Design Investigation Report was submitted to document the results of the hydraulic pre-design investigation activities conducted at the Site (Arcadis 2021c). The purpose of the PDI work was to collect the hydraulic data needed to support the Preliminary 30% Design for a perimeter barrier remedy. The conclusions of the Hydraulic PDI were as follows:

• **Transducer evaluation.** Communication was observed between the river and the unconfined aquifer in the rip rap zone on the south end of the shoreline. Communication between the aquifer and the river was not observed in the north portion of the site adjacent to the steel seawall.

Hydraulic profiling tool (HPT) investigation. A consistent and well-defined depth of basal clay was confirmed along the shoreline, northern, and southern property boundaries. A high-resolution hydraulic conductivity profile was developed using HPT data, which has clearly defined areas of relatively low and high-K zones correlating to zones of lower and higher groundwater discharge, respectively. The hydraulic conductivity profile was used to select areas for pumping tests and to update the numerical groundwater model.

- **Groundwater pumping tests.** Pumping tests were completed at three high-K zones identified during the HPT investigation. The results of the pumping tests confirmed a hydraulic no-flow boundary adjacent to the sea wall and the high-flow boundary associated with the river in the south where the rip-rap is present at the shoreline. The pumping tests better estimated the K at locations were the HPT estimated K was beyond the range of the tool. The higher range of K was used to further calibrate the numerical groundwater model and estimate groundwater discharge.
- **Calibration/update of the groundwater model.** Data gathered from the additional hydraulic testing were used to correlate/update and spatially define the hydraulic conductivity distribution used within the numerical model for the Site. Updates to the model were based on a review of the existing model (Waterloo Hydrogeologic 2002) in conjunction with new and relevant data collected since the original model was developed, including but not limited to data collected during the Hydraulic PDI work. The updated groundwater model (Arcadis 2021b) serves as a design tool estimating flow scenarios for the groundwater collection and abovegrade treatment systems.

3 Perimeter Barrier Remedy Basis

From June 2015 to September 2017, BASF submitted various documents proposing remedy options to manage/mitigate potential off-site migration of groundwater at the downgradient site perimeter to adjacent

properties and the Detroit River. Ultimately, on April 24, 2018, USEPA provided a letter to BASF outlining the following key requirements for a downgradient perimeter remedy:

- USEPA requires physical stabilization of the Site and a downgradient perimeter barrier to contain groundwater for treatment prior to off-site discharge.
- Site stabilization, a containment barrier, and on-site groundwater treatment are essential for integrating the RCRA corrective action with the Great Lakes Legacy Act (GLLA) project.
- Any proposed remedy must include plans to address sediment under the overhanging dock and to physically stabilize the Site to prevent erosion of fill from the facility to the river.
- Demolition of the dock and shoreline reconstruction are suggested as an optimal alternative for physical stabilization.

In 2018, BASF and USEPA agreed upon a perimeter barrier remedy, including groundwater extraction and on-site groundwater treatment, to facilitate site stabilization, containment, and treatment as requested by USEPA in its April 24, 2018, letter.

On June 5, 2018, USEPA issued a letter indicating concurrence with BASF's proposal to submit a work plan for completion of a preliminary 30% design for a site-wide downgradient perimeter groundwater remedy (USEPA 2018). BASF's proposal is documented in its May 29, 2018, letter to USEPA (BASF 2018). USEPA was acting under the authority of the Consent Order, which requires that BASF perform corrective action at the Site pursuant to RCRA of 1976 as amended by the Hazardous and Solid Waste Amendments of 1984.

3.1 Design Criteria

In lieu of preparing a separate Design Criteria Report (DCR), the components of the DCR summarized in the EPA Handbook (EPA, 1995b) are included in the sections of this BOD report as referenced Table 1.

Required Design Component	Report Section		
Corrective action objects and performance standards	Sections 3.3 and 3.4		
Compliance with pertinent regulatory requirements	Section 3.5		
Technical Factors of Importance	Sections 4.1; 4.4; 4.5; 6.2		
Volume and type of each medium requiring treatment	Sections 4.3.4.1; 4.3.4.2; 6.2; 7 and Appendix E		
Treatment schemes	Sections 6.3; 6.4.2		
Waste management and characterization requirements	Section 8		
Operation and maintenance (O&M) requirements	Section 14		

Table 1. Design Criteria Components

3.2 Proposed Remedy Description

Once USEPA and BASF agreed upon a path forward a Remedial Design (RD) Work Plan was submitted in May 2019 (Arcadis 2019a) and provided the framework for design of the perimeter barrier remedy. Based on current site conditions, the technical feasibility and cost benefit of an F&G system are not apparent, and the F&G option was not carried forward. A funnel and gate may be considered in the future if site conditions change. This preliminary 30% design therefore includes a physical downgradient perimeter containment barrier with a P&T system.

The remedy will include a combination of subsurface and shoreline barriers, along with a series of groundwater collection drains and an above-grade groundwater treatment system that discharges treated groundwater to the local POTW. The groundwater collection drains will operate to manage groundwater once the containment barrier is installed.

The physical barrier option considered and the basis for barrier selection is detailed in Section 4. The groundwater extraction and conveyance system components of the barrier remedy are described in Section 5, and the above-grade treatment system design is discussed in Section 6.

3.3 Corrective Action Objectives

Corrective action objectives (CAOs) are being developed in coordination with USEPA and the Michigan Department of Environment, Great Lakes, and Energy (EGLE) concurrently with the design. For the purposes of the preliminary 30% design, it is agreed that the CAOs will specify the following:

- The contaminants of concerns
- The exposure route(s) and receptor(s)
- An acceptable contaminate level or range of levels for each exposure route

The CAOs will be developed based on:

- USEPA and EGLE law, policy, and guidance
- Threshold criteria: Protech human health and the environment, achieve media cleanup objectives, control sources
- Conceptual site model
- Current uses and exposures
- Reasonably expected future uses and exposures
- Resource values (ecological, groundwater, etc.)

Details of the CAOs will continue to be developed in collaboration with USEPA and EGLE as the design progresses and will be presented with the final design package.

3.4 Performance Standards

Performance standards are being developed by BASF and USEPA, in consultation with EGLE, concurrently with design development. For the purposes of the preliminary 30% design, it has been agreed upon by BASF, USEPA, and EGLE during monthly meetings that the performance standards, with specific metrics, will address the following key elements:

- Physical containment barrier will contain groundwater and mitigate groundwater from entering the Detroit River. Performance standards will assign appropriate value to the presence of the physical containment barrier.
- The groundwater collection system will prevent groundwater elevations from rising upland of the containment barrier. Performance standards will incorporate a hydraulic gradient component that is protective of the Detroit River in combination with the physical containment barrier.
- Performance standards will be adaptable to future site conditions and manage risk over the lifetime operation of the barrier remedy.

Specific metrics of the performance standards will continue to be developed in collaboration with USEPA and EGLE as the design progresses and will be presented with the final design package. Recommendations of the amount of

time needed to reach specific performance metrics after system commissioning will also be included as part of the final design.

3.5 ARARs, Pertinent Codes, and Standards

The Barrier Remedy will be designed in accordance with ARARs, codes, and standards. Potential regulatory requirements, including requirement description and applicability, are listed in Table 2.

Requirement	Description	Applicability	Notes
Resource Conservation and Recovery Act (RCRA; 42 USC, Ch. 82); Hazardous Waste Management (NREPA, 1994 PA 451, as amended, Part 111)	Hazardous waste management requirements	RCRA Corrective Action at Michigan facility; waste generation anticipated	Applicable to the management of generated wastes, including tank storage of extracted groundwater characterized as hazardous
Environmental Remediation (NREPA, 1994 PA 451, as amended, Part 201)	Protects the environment and natural resources of the State of Michigan	RCRA Corrective Action at Michigan facility	Applicable to the development of performance standards for groundwater venting to surface water
Clean Water Act (33 USC, Ch. 26)	Regulations for the discharge of pollutants into waters of the United States	Groundwater vents to a surface water of the United States	Applicable to the development of performance standards for groundwater venting to surface water
Safe Drinking Water Act (42 USC, § 300f et seq.)	Program and performance standards for underground injection programs	Potential for underground injection	Class V Underground Injection Control requirements may be applicable to air sparging systems
Clean Air Act (42 USC, Ch. 85); Air Pollution Control (NREPA, 1994 PA 451, as amended, Part 55)	Protect quality of air and promote public health	Potential for producing air emissions of regulated air pollutants (including particulate emissions)	Emission standards may be applicable
Migratory Bird Treaty Act (16 USC, §§ 703–712)	Protects almost all species of native migratory birds in the United States from unregulated "take"	Potential presence of migratory birds	Measures will be taken to evaluate whether migratory birds are present; project activities will be scheduled to not disturb migratory birds, or depredation permits will be obtained if necessary

Table 2. Regulatory Requirements

Requirement	Description	Applicability	Notes
Endangered Species Act (16 USC, Ch. 35)	Requires that federal agencies ensure that any action authorized, funded, or carried out by an agency is not likely to jeopardize the continued existence of any threatened or endangered species and will not destroy or adversely modify critical habitat	Potential presence of federal-listed species	Work will be conducted in disturbed areas and is not anticipated to affect federal-listed species; however, the United States Fish and Wildlife Service (USFWS) and Michigan Department of Natural Resources (MDNR) will be consulted
Fish and Wildlife Coordination Act (16 USC, Ch. 5A)	Requires that activities avoid adverse effect and minimize potential harm, preserve natural and beneficial values, and/or compensate for impacts to fish, wildlife, and their habitats through restoration	Potential impacts to fish/wildlife habitat	USFWS and the MDNR will be consulted regarding the impacts on fish and wildlife resources and measures to avoid, minimize, and mitigate the impacts
Bald and Golden Eagle Protection Act (16 USC, Ch. 5A)	Provides for the protection of the bald eagle and the golden eagle by prohibiting, except under certain specified conditions, the taking, possession, and commerce of such birds	Potential presence of bald eagle habitat	USFWS will be consulted regarding potential impacts to bald eagles
Coast Guard Notification	The United States Coast Guard is responsible for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to mariners on the waters of the United States	Potential in-river work	Appropriate notifications will be provided to the United States Coast Guard District 9 Commander
Soil Erosion and Sediment Control (SESC) Permit (NREPA, 1994 PA 451, as amended, Part 91)	Protects the waters of the State of Michigan and adjacent properties by minimizing erosion and controlling off-site sedimentation	Potential land disturbance within 500 feet of lake or stream (applies to work affecting 1 or more acres)	SESC permit coverage will be obtained as applicable

Design codes and standards deemed applicable to construction of the perimeter barrier remedy include the following:

- The design of buildings will comply with the 2015 Michigan Building Code, as currently adopted by the City of Wyandotte.
- The design of electric utility services and electrically powered installations will comply with the following:
 - o Utility standards designated by Wyandotte Municipal Services;
 - o 2015 Michigan Electrical Code, as currently adopted by the City of Wyandotte; and
 - o 2017 National Electrical Code, as currently adopted by the City of Wyandotte.
- The design of plumbing and mechanical installations will comply with the following:
 - o 2015 Michigan Plumbing and Mechanical Code, as currently adopted by the City of Wyandotte.
- Extraction and conveyance equipment will be designed in accordance with applicable codes, standards, and regulations.

4 Perimeter Barriers

Perimeter containment barriers will be constructed along the north, east, and south sides of the property perimeter. For the Preliminary 30% Design, the barrier alignment is further subdivided into the following (Figure 2):

- Northern boundary (approximately 950 feet of planned barrier along Perry Place to the property boundary);
- Northern shoreline (existing 3,300-foot-long sheet pile wall);
- South Dock (approximately 1,700 feet long);
- Rip Rap Area (approximately 850 feet of existing rip rap-covered riverbank between the South Dock and southern site boundary); and
- Southern boundary (approximately 1,450 feet of proposed barrier along the northern edge of Desana Drive).

These sections of the proposed barrier alignment are shown on Figure 2. The planned barrier network consists of approximately 4,950 linear feet of new barrier construction along the northern boundary, the South Dock, the rip rap area, and the southern boundary. The existing sheet pile wall along the northern shoreline will be incorporated into the barrier network. No additional barrier construction is planned for the northern shoreline section.

The following sections describe the barrier options (Section 4.1), provide the rationale for the selection of barrier types for each section of the perimeter alignment (Section 4.2), and present the Preliminary 30% Design of the selected barriers (Section 4.3).

4.1 Barrier Considerations

The barrier types considered as part of the design process include "subsurface barriers" and "shoreline barriers." Subsurface barriers are barriers that are constructed in upland areas, away from the shoreline, and are completely below the ground surface. Shoreline barriers are defined herein as barrier options directly along the shoreline that are in-water and may be exposed or partially exposed above the ground or sediment surface. All are low permeability and a barrier to groundwater flow.

4.1.1 Subsurface Containment Barriers

Five subsurface barrier types were evaluated for the proposed subsurface portion of the barrier network:

- Ex-Situ Mixed Site Soil-Cement Barrier via Excavator
- Ex-Situ Mixed Borrow Soil-Cement Barrier via Excavator
- Steel sheet piles
- Cement Bentonite Barrier (Self-Hardening Slurry)
- Soil-Cement Barrier via Trencher

Each barrier type is low permeability to mitigate groundwater discharge and requires embedment into the clay layer. Each barrier type includes installation of a groundwater collection and treatment system on the upland side of the barrier. Evaluation criteria included geologic considerations, constructability, overall effectiveness, and cost. Appendix E summarizes the options and evaluation criteria. Following sections provide a brief description of each barrier type.

4.1.1.1 Ex-Situ Mixed Site Soil-Cement Barrier via Excavator

For this barrier type, the subsurface barrier would be constructed using existing site soils blended with the required reagents (e.g., Portland cement [PC], blast furnace slag [BFS]) at dosages based on the results of a bench-scale treatability study (Arcadis 2022a). A slurry wall trench is first excavated utilizing conventional and specialized long stick excavators under an engineered fluid (bentonite slurry) for trench support. A wide bench/platform is constructed along the alignment to control the slurry and for equipment operation. The excavated peat and DBO site soils/materials from the trench excavation would be separated and transported for off-site disposal. Remaining suitable site soils are blended on site with the reagents and placed into the trench as backfill. As the wall construction progresses, the slurry is continually tested, and old slurry replaced or rejuvenated as appropriate. Displaced bentonite slurry is typically mixed with soils scheduled for off-site disposal.

4.1.1.2 Ex-Situ Mixed Borrow Soil-Cement Barrier via Excavator

This alternative is similar in site preparation, construction methodologies, and waste management to the previous option with the exception of using imported soils instead of existing site soils as the wall backfill. The wall is constructed under an engineered fluid utilizing a hydraulic excavator, working on a wide, prepared platform surface. All excavated soils for this alternative are transported for off-site disposal.

4.1.1.3 Steel Sheet Piles

This alternative includes driving interlocking steel sheet piles into the low-permeability clay layer. Prior to pile installation, pre-trenching would be required for removal of debris and obstructions to the extent practicable, followed by backfilling with borrow soil as needed. Prior to sheet pile installation, an interlock sealant would be applied to each sheet pile interlock.

4.1.1.4 Cement Bentonite Barrier (Self-Hardening Slurry)

Cement bentonite walls are constructed similarly to the soil-cement wall options discussed above. A working platform is constructed along the alignment, and the wall trench is excavated under slurry using a hydraulic excavator. The slurry mixture typically consists of cement bentonite, water, and other admixtures, if needed, and is pumped into the trench as excavation proceeds. Soils are excavated through the slurry and transported for off-site disposal. Once the excavation is to full depth, the bottom is scraped for removal of loose soil and the cement bentonite slurry is allowed to harden. No soil (imported or existing) is used as backfill for this option. Controlled mixing of slurry and consistency of slurry materials provide for an effective containment barrier.

The wall is constructed in panels, typically a minimum of 20 feet in length, which are excavated incrementally (every other panel). The panels are overlapped between 12 and 18 inches and sequenced so that the slurry is still

removable for developing the tie-in of adjacent panels. This process is repeated until a continuous barrier is formed. The contractor typically prepares an execution plan prior to implementation that addresses the specifics regarding target depths, panel layout and sequencing, and method of documenting that the minimum overlap or tie-in to the previous panel is sufficient.

4.1.1.5 Soil-Cement Barrier Via Trenching

This option involves use of a one-pass trencher for wall construction in lieu of a hydraulic excavator. Because of the potential for obstructions and the unsuitable fill soils along the alignment, the trencher would need to make two passes along the alignment. The first pass would include advancing the trencher from ground surface to the bottom of the fill and peat layers for removal of unsuitable site soils. As the trencher progresses along the wall alignment for this first pass, the trench would be backfilled with imported sand. A supporting excavator would be positioned along the alignment for removal of obstructions where the trencher is limited in this capacity. Then, a second pass with the trencher would be completed for in-situ mixing of the sand backfill, native soils, and required reagents (cement/bentonite). Soils/materials from the first trencher pass would be transported for off-site disposal.

4.1.2 Shoreline Containment Barrier

The shoreline containment barrier consists of a steel bulkhead and a groundwater collection and treatment system on the upland side of the barrier.

4.1.2.1 Steel Bulkhead Barrier

This option involves installation of a steel bulkhead wall along the shoreline, on the outboard side of the existing South Dock structure, to serve as a containment barrier. Interlock sealant would be applied between sheet piles to minimize the potential for seepage.

This type of barrier can also serve as a structural wall that can be designed to support the existing South Dock waterfront structure by tying the wall to anchors placed inland of the existing structure and by placing fill underneath the existing pile-supported concrete deck (i.e., the existing South Dock structure). The installation of the sheet pile would support dredging of sediment near the wall, if the wall is installed first, without destabilizing the dock

Based on Preliminary 30% Design calculations, the bulkhead wall would need to consist of a headwall on the outboard side of the existing dock that is anchored to a deadman structure located behind the headwall in the upland area. The deadman structure could consist of a subsurface steel sheet pile anchor wall, an A-frame anchor structure constructed of H-piles, or similar anchor structure. Tie rods would be installed at regular intervals between the headwall and the anchor structure. The headwall would likely need to consist of a combination wall system. A combination wall is a relatively strong and stiff wall that consists of king piles and intermediate sheet piles. The king piles can consist of large H-piles or pipe piles.

4.2 Development of Containment Barrier

This section describes which subsurface and shoreline barrier types evaluated were selected for each area of the site perimeter to develop two options for the containment barrier system. Preliminary 30% Design drawings showing the proposed location for each barrier selected are included in Appendix A. The proposed types of barriers for the containment barrier system in this Preliminary 30% design are summarized in Table 3.

Table 3. Barrier Remedy

Area	Barrier Type
Northern Perimeter	Subsurface Barrier – Steel Sheet Pile
Northern Shoreline	Shoreline Barrier – Existing Steel Sheet Pile
South Dock	Shoreline Barrier – Steel Bulkhead
Rip Rap Shoreline	Subsurface Barrier – Ex-Situ Mixed Borrow Soil-Cement Wall
Southern Perimeter	Subsurface Barrier – Ex-Situ Mixed Borrow Soil-Cement Wall and Steel Sheet Pile

The basis for selection of each barrier type by area is included in the following sections.

4.2.1 Northern Perimeter

The steel sheet pile is proposed for the subsurface barrier along the northern perimeter of the Site (Figure 4 and Appendix A). It was selected for this area because of the thinning fill layer and the lower potential for encountering obstructions during pile driving. It was also selected for the northern perimeter alignment since this portion is within a public roadway and has the advantage of reduced disruption during installation when compared to the other subsurface barrier options considered. The steel sheet pile barrier will extend along the northern perimeter of the Site, within Perry Place, for approximately 950 feet to the west from the existing northern bulkhead.

4.2.2 Northern Shoreline

An anchored sheet pile wall was installed along the northern shoreline in the 1990s (Figure 4 and Appendix A). A description of this wall is provided in Section 2. The existing wall forms a relatively low-permeability barrier that will become part of the proposed network of containment barriers. While available information indicates the existing the sheet pile interlocks of this wall are not sealed, hydraulic testing completed behind the wall suggests it is a robust barrier to flow (Arcadis 2021c). Section 4.4 includes additional detail on the known construction aspects of this wall and the steps that will be taken to incorporate it into the barrier remedy.

4.2.3 South Dock

An independent steel bulkhead wall will be installed outboard of the South Dock and associated structures in a way that would provide long-term structural support and stability to the South Dock. The steel bulkhead could allow for dredging of contaminated sediments up to the sheet pile bulkhead, if designed accordingly, which could benefit the dredging planned by USEPA.

The Preliminary 30% Design basis is discussed in Section 4.3.3 and 4.3.4, respectively. The steel bulkhead is shown on Figure 4 and in Appendix A.

4.2.4 Rip Rap Shoreline

An ex-situ mixed borrow soil-cement wall will be constructed along the rip rap shoreline (Figure 4 and Appendix A) in conjunction with the steel bulkhead wall along the South Dock. Construction of the wall would be through excavation under slurry with either a conventional excavator or a specialized long stick excavator. This technology was selected due to the thickness of the fill layer in this area and the high potential of encountering obstructions in the fill. The estimated fill thickness is between 20 and 25 feet below grade along the proposed soil-cement wall alignment. Compared to other containment wall technologies considered for the Site, this method of slurry wall construction is more adaptable to addressing and removing obstructions and debris. The soil-cement wall will lie

within the limits of the Site, which is also more accommodating to the working platform requirements and aboveground operations that are typically part of this wall technology.

4.2.5 Southern Perimeter

The southern perimeter of the barrier network will consist of a combination of two barrier types, a soil-cement wall and a steel sheet pile wall (Figure 4 and Appendix A).

The ex-situ mixed borrow soil-cement wall will wrap the southeastern corner of the Site and continue from the shoreline barrier to the west for approximately 550 feet. This technology was selected for this portion of the southern perimeter due to the thickness of the fill layer and its alignment relative to the existing fire water impoundment. This method of wall construction, when considering the generation of vibrations, is considered less impactful to adjacent sensitive features. It is also more adaptable to addressing and removing obstructions and debris.

At the western end of the soil-cement wall, the barrier network will transition to a driven steel sheet pile wall and continue westward along the southern perimeter of the Site for approximately 900 feet. Similar to the northern perimeter, the steel sheet pile wall type was selected for the southern perimeter because of the thinning fill layer and lower potential for obstructions. In addition, the southern perimeter alignment is within a public roadway, and this wall type offers the advantage of reduced disruption during installation compared to the other subsurface barrier options.

4.3 Barrier Design

4.3.1 Soil-Cement Wall

A soil-cement wall was selected for portions of the barrier network. This section provides the basis of design of the soilcement barrier and includes a summary of subsurface conditions, treatability test results, and items specific to the wall properties and alignment. Data gaps that must be filled before subsequent design phases are discussed in Section 10.

4.3.1.1 Bench Test Results

Arcadis performed a bench-scale treatability study in support of the proposed slurry wall design. This treatability study evaluated the efficacy of soil/cement and soil/bentonite mix formulations using both native site soil and a clean borrow soil source. Details of the testing procedures and findings of the study are summarized in the treatability study report (Arcadis 2022a).

The purpose of the bench-scale testing was to optimize one or more mix designs for the slurry wall. The specific performance targets were to achieve mixes that demonstrated the following:

- Unconfined compressive strength values of at least 30 pounds per square inch (psi) at 28 days of curing.
- Hydraulic conductivity values less than 1×10⁻⁶ cm/sec.

Soil from three geotechnical borings and two visual screening borings was collected from locations along the proposed subsurface barrier alignment, and a groundwater sample was collected from an on-site monitoring well. Mix formulations tested included BFS and Types I/II PC in combination with either native soil or a borrow soil.

Through this bench-scale barrier wall treatability study, Arcadis identified mix formulations that are expected to meet or exceed geotechnical performance goals for a slurry wall using either native soil or a borrow soil replacement strategy. As discussed in the treatability study report, Arcadis concluded that three of the mixes for slurry wall implementation with a 1.5:1 water/cement ratio meet the established performance requirements, discussed below, and are considered

viable for full-scale design and construction (Arcadis 2022a). In addition, results of a long-term permeability test indicate that the integrity of a soil/cement mixture will not be negatively impacted by exposure to site groundwater.

4.3.1.2 Material Selection

The treatability testing resulted in development of acceptable mix designs incorporating site soils or using borrow soils from an off-site source. As indicated in the treatability study report, Mix-3 (2.5% PC plus 5% BFS by soil dry mass using site soils) and Mix-9 (2.1% PC plus 4.2% BFS by soil dry mass using borrow soil) achieved unconfined compressive strength in exceedance of the 30-psi target at 7 days of curing and continued to develop compressive strength at all subsequent testing intervals through 56 days of curing (Arcadis 2022a). Both mix formulations resulted in hydraulic conductivity values (at 56 days of curing) that were approximately one order of magnitude lower than the maximum allowable goal of 1.0×10^{-6} cm/sec.

Although an acceptable mix using site soils was developed during the laboratory treatability study, borings in proximity to the proposed alignment encountered significant variability within the fill portion of the soil column, which presents concerns with respect to wall properties and consistency during implementation. The practicality of effectively separating DBO and peat from the appropriate soils for mixing is a concern, and if these materials are not properly separated, there is a greater potential for wall inconsistencies. Based on these concerns, borrow soil is proposed for the slurry wall backfill. The use of borrow soil will provide a more consistent and engineered wall section that meets the performance criteria for the full wall section. If site soil is used for the wall backfill, there is a greater potential for zones of low strength in the wall based on the heterogeneity and overall poor quality of the fill soils (e.g., debris, DBO, peat).

4.3.1.3 Wall Alignment

The proposed limits of the soil-cement wall for the bulkhead option of the barrier network are based on positioning the alignment along the rip rap-protected shoreline at an offset distance that allows for construction of the wall using conventional techniques. Typically, a working platform is constructed along a slurry wall alignment to provide a uniform surface for equipment operation and to aid in control of slurry as the wall is being excavated. The platform is typically 2 to 3 feet in height, 20 to 25 feet in width, and constructed of soil. The alignment of the slurry wall portion along the existing shoreline accounts for this platform width and assumes a minimum distance between the slurry wall centerline and the edge of rip rap to be approximately 25 feet.

As the soil-cement wall alignment extends to the south and west, the alignment then accounts for the existing embankment for the fire water impoundment. This earthen embankment is approximately 11 feet in height and slopes at approximately 4H:1V (4 horizontal units to 1 vertical unit). For protection of the impoundment, the soil-cement wall is positioned approximately 30 feet from its toe. This offset also allows for positioning of the collection trench and conveyance piping between the barrier and the embankment.

4.3.1.4 Wall Properties

The soil-cement wall will be designed to meet the following performance criteria:

- Unconfined compressive strength values of at least 30 psi at 28 days of curing; and
- Hydraulic conductivity values less than 1×10⁻⁶ cm/sec.

Based on the findings of the treatability study, a design mix that incorporates borrow-source soil with 2.5% PC and 5% BFS will meet the performance criteria and is proposed for construction of the slurry wall. Borrow soil with this proposed reagent dosage will be mixed at the ground surface and placed into the trench via a dozer, front-end

loader, excavator, or other approved method proposed by a contractor. Conceptual details of a partial wall profile and a plan detail are shown in Appendix A. A minimum wall width of 2 feet is proposed.

The wall is proposed to be excavated under slurry using a hydraulic excavator or long stick excavator. The soils excavated will be transported off site for disposal, and the wall will be backfilled with the specified design mix. A benefit of this construction method is the ability to confirm the top of the impermeable surface during construction. Quality control criteria will be established for confirming embedment into the clay layer through visual observations as the wall construction progresses. Quality control plans for this type of wall construction typically involve a geotechnical engineer or other qualified person continuously observing the excavation and backfilling process. The soils removed at depth will be examined to confirm that the contractor is sufficiently tagging the clay and embedding the wall into the clay to the required depth. This confirmation of tagging and embedding is typically recorded no less than every 25 feet and as often as every 10 feet. As shown by the barrier details on the Design Drawings (Appendix A), the wall will extend a minimum of 3 feet into the clay layer, which is considered sufficient embedment into an impermeable layer for developing a bottom seal for the barrier. The overall embedment depth as measured from existing grade will range from 13 to 30 feet.

Because of the shallow groundwater level at the Site, the top of the soil-cement wall must be above the frost depth to remain an effective containment barrier. Typically, the tops of soil-cement walls do not extend above the frost depth due to impacts from the freeze-thaw action and the potential for development of cracks through the wall. It is common to require removal of the soil-cement to the frost depth and backfill with select soil to grade. Given the shallow groundwater at the Site, removal of soil-cement may not be an option and other methods for addressing freeze-thaw impacts to the barrier need to be developed.

As part of the final design of the soil-cement barrier, the potential for freeze-thaw damage of the soil-cement wall will be assessed. This assessment may include the following options:

- Testing the proposed mix design for frost resiliency and pending results, adjusting the reagent dosage to optimize the mix against freeze-thaw impacts. Soil-cement removal for this option would extend to approximately 12 inches below grade, or as needed for restoration surfaces.
- Replacing the upper 4 feet of soil-cement (i.e., estimated frost depth) with clay or flowable fill. This option
 requires proper sequencing to ensure that a sufficient bond is formed between the soil-cement wall and
 overlying material so as not to promote a preferential path. Wall removal within 7 days of construction is
 recommended for placement of clay or flowable fill.
- Installing a hanging wall to a depth of 5 feet below grade. This option would not require removal of the soilcement wall. As the slurry trench is backfilled, a liner would be positioned along the side of the trench extending from grade to approximately 5 feet. The liner would be supported by the backfill and serve as a second barrier should cracks develop in the soil-cement wall from freeze-thaw actions. This option has been incorporated into the soil-cement wall details shown on the Design Drawings.

4.3.2 Subsurface Sheet Pile Walls

As discussed previously, the limits of the soil-cement wall were established based on considering a combination of fill material thickness, potential for deep obstructions, vibration impacts, and minimization of disruption to public roadways. The remaining segments of the subsurface barrier are proposed to be driven, steel sheet piling. This section provides the basis of design of the steel sheet piling and includes a summary of subsurface conditions and items specific to the wall properties and alignment. Data gaps that must be filled before subsequent design phases are discussed in Section 10.

4.3.2.1 Material Selection

The sheet pile section material will be selected based on drivability through the subsurface, potential for encountering obstructions/debris at depth, corrosion potential, and type of interlock joint. The hydraulic conductivity for this wall type will meet the criteria established from the site groundwater model of 1×10^{-6} cm/sec and, when considering the application of a sealant at each interlock joint, is expected to range between 1×10^{-6} and 1×10^{-7} cm/sec.

For this Preliminary 30% Design, a Z-shaped pile is assumed. This pile type is common and widely available in the United States. The interlocks for this pile shape are the Larssen type, and each joint will be sealed with a hydrophilic sealant. Given the currently available subsurface information along the alignment, pile sections are expected to range from an NZ-20 to NZ-22.

4.3.2.2 Wall Alignment

The alignments of sheet pile segments of the barrier are shown on the Design Drawings (Appendix A). For the northern perimeter, the sheet pile alignment is in Perry Place, generally positioned within the southern portion of the roadway. A watertight connection to the existing bulkhead is required at its eastern end. The wall length is approximately 950 feet.

The southern alignment of the proposed sheet pile wall extends from the western end of the soil-cement wall and continues along James Desana Drive for approximately 900 feet. The majority of the wall will be positioned along the northern edge of the roadway.

Both the northern and southern alignments will intersect existing public utilities. Approximate locations of the utility crossings are shown on the Design Drawings for the northern sheet pile alignment (Appendix A). Utility information for the southern alignment is limited and will be obtained during future phases of design. Each utility crossing will be addressed with the utility owners. Options for addressing utilities could include requiring temporary bypass systems or incorporating another wall technology (e.g., jet grouting) to maintain the barrier properties.

4.3.2.3 Pile Depths

The steel sheet piles will be driven into the clay layer to provide a bottom seal for the barrier. Similar to the soilcement wall, a minimum of a 3-foot embedment into the clay layer is proposed for the sheet piles and is considered sufficient embedment for an effective vertical seal along the wall alignment. Based on currently available subsurface information, the pile depths for the northern alignment of the sheet pile wall will vary from approximately 16 feet below proposed grade at the western end to 25 feet at the connection to the existing sheet pile bulkhead. For the southern alignment, the pile depths will range from approximately 10 to 28 feet below proposed grade. The tops of sheet piles will be above groundwater surface but also at a sufficient depth (approximately 12 inches) below grade for placement of restoration materials.

Prior to pile driving, the alignment of the sheet pile wall will be pre-trenched through the fill layer or to a maximum depth of 10 to 12 feet below grade, dependent on trench stability. If deeper obstructions are found during pre-construction work, they will be removed prior to wall installation during pre-trenching activities. Excavated materials from the pre-trenching activities will be staged and loaded for off-site disposal.

Unlike for the soil-cement wall, visual confirmation of embedment into the clay layer for each sheet pile is not possible. Additional investigations along the alignment will be conducted to obtain greater certainty of the clay profile for each alignment and to allow for greater efficiency in the required pile lengths.

4.3.3 Steel Bulkhead Design at South Dock

The steel bulkhead provides stability to the existing historical structures on the shoreline, does not change the footprint of the Site, and is a "tried and true" approach for a groundwater barrier along a surface water body.

In addition to design information, this section provides background information, the rationale for the wall type selection, and discussions of construction methods, constructability, and sequencing the steel sheet pile bulkhead with a steel sheet pile anchor wall at the South Dock. Alternative design elements for the bulkhead to be evaluated as part of the final design are also introduced. Data gaps that must be filled before subsequent design phases are discussed in Section 10.

4.3.3.1 Background

This section provides a brief description of background information relevant to the steel bulkhead design including the existing structures along the South Dock, information about planned dredging in the Detroit River adjacent to the Site, and subsurface conditions.

4.3.3.1.1 Existing Structures Along South Dock

The existing South Dock structure consists of a soil-covered concrete deck supported on timber piles. Previous design drawings are available for some of the waterfront structures and are included in the RCRA RFI Response (Arcadis 2017). A 1939 drawing of an outfall structure shows a cross section through the concrete deck at the South Dock (Drawing 92/9, titled "Alterations to Dock for Main Sewer Outfall," dated October 10, 1939, Michigan Alkali Company, Engineering Department; note that portions of the drawing are barely legible).

In addition to the pier structure, there is a Wakefield wall (a tongue-and-groove timber sheet pile bulkhead) between the concrete deck and the upland area. Based on drawings for similar structures located north of the South Dock, it is assumed that lateral support for the Wakefield wall is provided by steel tie rods connected to timber piles that were driven into the ground in the upland area. At the locations to the north, there are two rows of timber piles that are used as anchors, one approximately 30 feet behind the Wakefield wall and another row approximately 50 feet behind the Wakefield wall (Arcadis 2017).

4.3.3.1.2 Upper Trenton Channel Dredging Project

A sediment remediation project that involves dredging in the UTC including along North Works adjacent to the South Dock is currently being developed by BASF and other non-federal partners in collaboration with USEPA (CH2M HILL, Inc. 2019). The current dredge prism design along the South Dock includes a 10-foot offset from the face of the pier structure and a 3H:1V (3 horizontal units to 1 vertical unit) downward dredge slope away from the shoreline.

Although not currently incorporated in the UTC project dredge prism design, for this Preliminary 30% Design it is assumed that dredging can be performed to an elevation of 540 feet NAVD88 up to the new bulkhead, after installation of the bulkhead. This assumption is included in the Preliminary 30% Design to evaluate the feasibility of a bulkhead wall that would allow sediment removal next to the wall. Note that this assumption may change in later stages of the design.

4.3.3.1.3 Subsurface Conditions

Detailed information regarding subsurface conditions and physical characteristics of the geologic units in the alignment of at steel bulkhead wall are provided in the Geotechnical Data Report for the Site (Arcadis 2021a).

The subsurface soils predominantly consist of relatively loose and soft soils over bedrock. During the 2020 subsurface investigation, the till was encountered at elevations between approximately 514 feet and 519 feet NAVD88. Based on the borings drilled in 2020, the top-of-bedrock elevation varies between approximately 509 feet and 516 feet NAVD88.

The combination of soft soils over relatively shallow bedrock provides a challenge in terms of achieving passive resistance for the bulkhead wall. The necessary amount of passive resistance to prevent the toe of a wall from "kicking out" (i.e., excessive movement to the point of wall failure) is typically achieved by increasing sheet pile embedment depth into the subsurface materials. The shallow bedrock makes this difficult because it is not possible to drive sheet piles into relatively competent bedrock requiring the design to incorporate constructable methods of embedding components of the wall into bedrock.

4.3.3.2 Bulkhead Wall Preliminary Design

This section provides descriptions of the bulkhead structural components, the design criteria and assumptions, and the results of calculations performed for the Preliminary 30% Design the steel bulkhead wall.

4.3.3.2.1 Bulkhead Structural Components

The steel bulkhead structure will consist of an anchored steel sheet pile wall. A typical cross section through the wall system is provided in Appendix A. For the Preliminary 30% Design, the bulkhead system consists of a headwall on the outboard side (river side) of the existing South Dock waterfront structure and a parallel anchor wall in the upland area behind the South Dock. To achieve sufficient structural capacity, the headwall will likely need to be constructed using a combination wall system consisting of steel king piles with intermediate sheet piles. The structural requirements are provided in Section 4.3.3.3. The king piles can consist of H-piles or pipe piles. A wall system consisting of interlocking steel pipe piles may also be considered.

Combination walls and interlocking pipe pile systems are readily available from steel suppliers and generally provide higher capacities and wall stiffnesses than regular sheet pile walls without king piles. These systems also are often more efficient in terms of the ratio of steel weight (which largely determines the cost of the steel) and the structural capacity (and stiffness) of the wall. However, combination walls are generally more expensive than regular sheet pile walls in terms of installation costs because of overall lower production rates during installation.

For the Preliminary 30% Design, it was assumed that the headwall will be anchored to a continuous subsurface, steel sheet pile anchor wall through steel tie rods. Anchors will be needed because of the significant lateral loads that will be imposed on the headwall. The anchors will provide lateral support for the headwall, reduce structural demand on the headwall, and limit wall deflections. The tie rods will be installed at regular intervals, perpendicular to the headwall and anchor wall alignments (i.e., approximately perpendicular to the river). During final design, the anchor wall alignment will be reviewed, and adjustments incorporated to the anchor wall as needed to facilitate groundwater recovery in the collection trench. These adjustments could include incorporation of weep holes in the sheet pile, staggering segments of the anchor wall (i.e., a discontinuous anchor wall), or an A-frame anchor as described in Section 4.3.3.4.3.

Walers will be used to transfer loads from the tie rods to the anchor wall and will likely consist of two parallel steel channel sections that will be installed near the top of the anchor wall. At the connection point between the tie rod and headwall wall, a waler may not be needed and the tie rod may be connected directly to each king pile spaced at the bulkhead wall system width (i.e., the center-to-center spacing of the king piles). Note that design of connections and walers is not included in the Preliminary 30% Design and will be included in the final design.

Because of the limited available embedment depth into subsurface soils (Section 4.3.1.5), it was assumed for the Preliminary 30% Design that the steel king piles and intermittent sheet piles will be driven to the top of bedrock. It was also assumed that shear pins (also referred to as rock bolts) will be installed to connect the bottom of the headwall to the bedrock and provide sufficient resistance to prevent the toe of the wall from "kicking out" (i.e., experiencing excessive movement to the point of failure). Shear pins are typically approximately 8 feet long and installed through steel casing that is welded to the sheet piles and/or king piles before pile installation. The pins consist of high-strength steel and are typically up to approximately 3.5 inches in diameter. Half of the shear pin length (approximately 4 feet) is typically embedded in the bedrock through drilling. Other potential options for providing passive resistance and preventing a failure scenario are discussed under Section 4.3.3.4.

4.3.3.2.2 Design Criteria and Assumptions

The bulkhead wall will be designed to form a low-permeability containment barrier to mitigate the flow of groundwater toward the Detroit River. In addition, the wall will be designed to withstand structural loads, including lateral earth pressures, hydrostatic pressures, and a temporary surcharge load.

The Preliminary 30% Design calculations for the headwall and anchor loads were performed in general accordance with the United States Army Corps of Engineers (USACE) guidance document titled "Design of Sheet Pile Walls" (USACE 1994). The analysis methodology and assumptions are provided with the bulkhead wall calculations in Appendix B. The assumptions in Appendix B include the following:

- Design cross section showing the assumed geometry and soil and bedrock stratigraphy;
- Factors of safety;
- Design loads, including temporary surcharge load and hydrostatic loads; and
- Design soil parameters.

To reduce seepage through the sheet pile interlocks, a sealant will be applied to the interlocks prior to installation of the sheet piles and king piles. Additionally, the use of Larssen-type sheet pile interlocks and connectors (or similar) will be specified to avoid the use of ball-and-socket interlocks. Larssen interlocks provide a tighter connection than ball-and-socket interlocks and are therefore less prone to seepage through the interlocks.

4.3.3.2.3 Results of the Preliminary 30% Design Calculations

The Preliminary 30% Design calculations are provided in Appendix B. For this level of design, calculations were performed to determine preliminary requirements for the headwall only. The purpose of the calculations was to determine the following:

- Structural demand on the headwall;
- Wall type: regular sheet pile wall or combination wall (i.e., king piles and intermediate sheet pile or similar system);
- Required embedment/need for shear pins; and
- Anchor load.
- The minimum structural requirements for the Preliminary 30% Design are summarized in Table 4. The calculations will be refined further as part of the final design and will likely include additional analysis methods, as outlined in Appendix B. Requirements for the anchor wall will also be established during the next design phase and may include requirements for the alternative structural components described in Section 4.3.3.4 (e.g., A-frame anchor instead of anchor wall).

As discussed in Appendix B, the calculations indicate that, because of the relatively shallow bedrock at the Site, there is insufficient available embedment depth in the clay unit and glacial till to achieve the factors of safety needed for wall stability. Therefore, it is assumed that shear pins will be required to achieve sufficient resistance against rotational failure (i.e., kickout of the headwall toe).

Structural Component	Description/Parameter	Type/Value	
Steel Headwall	Wall Type	Combination wall (steel king piles with intermediate steel sheet piles)	
	Steel Grade	ASTM A 572 Grade 50	
	Minimum Section Modulus (in. ³ /ft)	163.3	
	Top-of-Wall Elevation (feet NAVD88)	578.0	
	King Pile Length (feet)	Approximately 62 to 69 feet (installation to top of competent bedrock; shear pins required)	
	Intermediate Sheet Pile Length (feet)	Approximately 61 to 63 feet (driven 1 foot in glacial till)	
Steel Anchor Wall	Wall Type	Sheet pile	
	Steel Grade	ASTM A 572 Grade 50	
	Minimum Section Modulus (in. ³ /ft)	77.0	
	Top-of-Wall Elevation (feet NAVD88)	576 (2 feet bgs)	
	Sheet Pile Length (feet)	40	
Steel Tie Rods	Design Capacity (kips/foot)	29.21	
	Tie Rod Length (feet)	105	

Table 4. Summary of Minimum Bulkhead Structural Requirements for Preliminary 30% Design

Notes:

Structural requirements for walers have not been determined.

in.³/ft = cubic inches per foot

kips = kilo pounds

4.3.3.3 Construction Methods and Constructability Considerations

This section describes the construction methods, constructability considerations, and anticipated construction sequence for the steel bulkhead along the South Dock. A Construction Quality Assurance Plan will be included with the Pre-final Design (95%) that describes quality assurance controls to monitor and verify that the steel bulkhead wall is installed per specification requirements. The Construction Quality Assurance Plan will also include contingency measures for field adjustments to meet the specification requirements. The use of construction quality monitoring results to adapt the construction methods and/or the construction monitoring methods may be needed to achieve installation of the steel bulkhead wall.

4.3.3.3.1 Sheet Pile and Combination Wall Construction

Sheet piles and king piles will likely be driven into the subsurface soils using a vibratory hammer. A crane will be required to lift the piles in position for driving. Driving the piles through the relatively loose and soft native subsurface soils is anticipated to be relatively easy and smooth. Based on the stiffness of the glacial till, a vibratory hammer is anticipated to be able to drive the king piles and sheet piles of the combination wall system to the top of

bedrock. However, an impact hammer may be used to drive the piles through the glacial till to the top of the bedrock, if necessary.

Difficult conditions may be encountered during pile driving for the anchor wall in the upland fill soils, which contain various types of debris, including concrete debris and even slabs. The contractor will be prepared to remove subsurface obstructions. To the extent possible, the contractor will locate and remove debris and other obstructions prior to pile driving. Based on experience during the subsurface investigation, subsurface obstructions are more prevalent in the upland fill soils. CPTs conducted in the upland areas frequently encountered debris and difficult conditions in the fill materials. The CPT probe generally encountered less resistance and fewer obstructions along the river bottom.

Combination walls are typically installed using a heavy, prefabricated template to ensure that king piles are installed plumb and at the right spacing. After the king piles are installed using the template, the intermediate sheet pile pairs are installed between the king piles, forming a continuous steel wall.

Although the bulkhead wall can be installed from the river side using deck barges, it may also be possible to position a crane on the upland side for pile installation. Because of the condition of the South Dock, it may not be possible to position the crane on the dock. Instead, the crane would likely be positioned on the upland side of the concrete deck. Based on a maximum deck width of approximately 34 feet, the crane should be within reach of the headwall alignment at that distance.

A sealant will be applied to the sheet pile interlocks prior to sheet pile installation. Various interlock sealants are commercially available and are routinely applied by contractors or fabricators.

4.3.3.3.2 Shear Pin Installation

Shear pins may be needed at every king pile location and potentially at the intermediate sheet pile pairs. The technology is described in an ArcelorMittal guidance document (ArcelorMittal 2018). Embedment of the king piles into the bedrock (referred to as rock socketing) may also be considered at later stages of design (Section 4.3.3.4.1).

For the shear pin installation, steel casing will be welded to the king piles and/or sheet piles. Welding is typically performed at an off-site location prior to delivery of the pilings to the Site. The diameter of the casing is slightly larger than the diameter of the shear pins. After installation of the piles, the contractor will use drilling equipment, similar to equipment used for drilling of geotechnical borings, to drill through the casing and into the bedrock below the tip of the king piles and/or sheet piles. The drill cuttings will then be removed from the hole and grout will be tremied to the bottom. Immediately after grouting, the shear pin will be pushed or hammered through the casing to the bottom of the hole. Because of the condition of the existing South Dock structure, and the need for the drill rig to be directly above the headwall and casing, shear pin installation is expected to be performed using barge-mounted equipment.

4.3.3.3.3 Anchor System Components

Once the headwall and anchor wall are in place, walers will be installed on the walls for load transfer from the tie rods to the walls. A waler may not be required for the connection to the bulkhead wall. However, this detail will be addressed as part of the final design. Waler installation will involve some welding and bolting.

The tie rods will be installed at a relatively shallow depth below the ground surface, within the soil cover on top of the concrete deck of the existing South Dock. This installation will require excavating trenches between the headwall and anchor wall. The river side edge of the existing concrete deck consists of a "concrete kneewall" that retains the soil on the concrete deck. The contractor will need to cut notches into the concrete kneewall to allow penetration of the tie rod through the concrete bulkhead.

For the Preliminary 30% Design, it is assumed that the tie rod headwall connection will be near the top of the headwall (approximate elevation of 576 feet NAVD88) to keep the tie rods above the concrete deck and the connection points above the river water surface elevation to avoid underwater welding. At the anchor wall, the connection point will likely be lower (approximate elevation of 574 feet NAVD88) to keep the top of the anchor wall at least 2 feet bgs.

4.3.3.3.4 Backfill Placement

Because the concrete deck of the existing South Dock structure would remain in place, backfill to fill the void behind the new bulkhead wall, underneath the concrete deck, must be placed either through a tremie pipe hydraulically or using gravity. Access points need to be created through the concrete deck by first removing some of the soil on the deck to expose the concrete and then cutting holes into the concrete.

Placement of fill will likely induce consolidation settlement in the underlying clay unit. As a result, the fill surface will move away from the concrete deck above over time. Therefore, filling the gap completely during initial backfilling will not be beneficial; the concrete deck will still be supported by the timber piles. Settlement monitoring of the fill surface should be performed to assess the progress of consolidation in the clay unit. Pore pressure monitoring equipment may also be installed in the clay unit, through an opening in the concrete deck, to monitor consolidation.

Once consolidation settlement is complete or nearly complete, which could take several years, the gap between the fill and the concrete will be closed by pumping flowable, cementitious grout into the gap. To reduce the amount of grout that might enter the void space of the backfill material, the backfill material will be selected such that the fill is progressively finer (i.e., relatively coarse aggregate near the bottom and finer materials such as sand near the top of the fill).

While it may not be possible to completely close the gap between the fill surface and the concrete, it may not be necessary to do so. Over time, the existing deck might develop cracks as the timber piles deteriorate, and some minor ground settlement may occur above the concrete deck. This scenario would then be treated as part of maintenance, which may include regrading of the surface. This scenario is not considered a safety concern because the new bulkhead structure will be designed to carry the full weight of the backfill and the old concrete deck.

4.3.3.3.5 Existing Subsurface Structures and Stability of Existing South Dock

There are various existing structures that will either stay in place or will need to be removed during bulkhead construction. Data gaps regarding the locations of existing subsurface structures that need to be filled before the next design phase are discussed in Section 10. The need for maintaining the anchoring for the existing Wakefield wall during construction must be assessed further. The anchor wall (or alternative anchor structure such as an A-frame anchor as described in Section 4.3.3.4.3) for the new bulkhead may need to be located behind the existing timber piles used for anchoring of the Wakefield wall. An anchor wall would likely need to be located approximately 100 feet or more behind the existing timber piles in any case to avoid overlapping the active soil wedge behind the headwall and the passive soil wedge in front of the anchor wall. An A-frame structure could potentially be placed closer to the headwall, although stability of the Wakefield wall may need to be maintained during construction of the new anchored bulkhead structure until the gap behind the bulkhead is backfilled. Installation of new tie rods for the bulkhead will require cutting notches into the concrete kneewall along the face of the existing South Dock structure.

4.3.3.4 Alternative Design Elements and Construction Methods

The anchored wall design presented above is generally considered feasible. Certain aspects of the design will be evaluated further during subsequent phases of the design, including technologies to improve constructability and

approaches to lower the structural demand on the wall system. The alternative technologies and approaches are described below.

4.3.3.4.1 Rock Socketing of King Piles

As an alternative to the shear pins described in Section 4.3.3.3.2, the king piles within the headwall can be embedded into the bedrock. This is referred to as rock socketing, which will require the use of down-the-hole drilling (DTH) either within a casing or within a pipe pile (i.e., pipe pile installed as king pile).

For the installation of H-piles as king piles, a casing would be driven through the sediment and soil to the top of bedrock first. Then, a DTH drill is inserted into the casing to remove the soil inside the casing and then drilled several feet into the underlying bedrock. A king pile can then be inserted and grout placed via a tremie pipe to the top of bedrock. Following grouting, the casing would be removed and the next king pile can be installed in the same fashion.

Technology exists to install pipe piles into rock without the use of a casing. Mincon makes DTH drills that allow advancing pipe piles into rock directly without installing casing first. However, this technology may not be widely available in the United States at this time.

4.3.3.4.2 Reinforced Concrete Anchor Wall Installed as Slurry Wall

As described previously, the upland fill soils contain debris that will likely make driving sheet pile relatively difficult. An alternative to a sheet pile wall as the anchor wall is a reinforced concrete wall installed as a slurry wall. A trench is excavated under slurry to prevent collapse of the trench, a rebar cage is inserted into the trench, and the trench is then backfilled with structural concrete. The advantage over a sheet pile wall is that debris can be removed during trench excavation. Note that the construction process is similar to the process used for the subsurface barrier. However, the anchor wall will serve as a structural wall, not a subsurface barrier.

4.3.3.4.3 A-Frame Batter Pile Structure for Anchoring

An alternative to an anchor wall is an A-frame batter pile structure. The batter piles would consist of steel H-piles driven to refusal in the bedrock. The piles are driven at an angle (at a batter) to increase lateral resistance of the structure. Several batter piles are typically tied together near the ground surface by a reinforced concrete block or continuous beam. The tie rods from the bulkhead wall are later connected to the concrete block or beam. A potential advantage of an A-frame over a sheet pile anchor wall is that it can be easier to install H-piles through debris than to install sheet pile in the same material. However, predrilling some of the piles may be needed in case of heavy resistance during pile driving.

4.3.3.4.4 Lightweight Fill as Backfill Behind the Bulkhead Wall

A fill material with a unit weight that is significantly less than that of aggregates or soil could potentially reduce structural demand and sheet pile lengths. There are lightweight aggregates and lightweight controlled low-strength materials ("flowable fills") that may be suitable for filling behind the bulkhead wall, under water.

4.3.3.4.5 No-Dredge Alternative

The design described in Section 4.3.3 includes accommodating dredging directly adjacent to the bulkhead wall to allow for the removal of contaminated sediments. Removal of the sediments will reduce passive resistance, which results in higher structural demand on the wall and longer required sheet piles. The benefits of implementing the planned dredge offset from the waterfront structure will be evaluated further as part of the final design.

4.3.3.4.6 Buttressing to Increase Passive Resistance

If the sediments in front of the headwall are removed to the depth described in Section 4.3.3.1.2, placing a sand and gravel buttress in front of the wall is expected to reduce the structural demand and the required wall embedment depth. Buttressing in combination with using lightweight fill could potentially reduce the required wall embedment depth enough to prevent the need for installation of shear pins.

4.4 Existing Sheet Pile Wall

The existing bulkhead extends approximately 3,300 feet north of the South Dock. It was constructed in the mid-1990s and consists of interlocking steel AZ-13 sheet piles that are approximately 40 to 45 feet deep and embedded into the clay layer. This bulkhead is offset approximately 2 feet on the river side of the original wooden bulkhead and concrete seawall when present. Its anchorage system extends 30 to 70 feet upland of the bulkhead. Historical drawings do no indicate that the interlock joints were sealed or that corrosion protection measures (i.e., coatings, cathodic protection) were applied to the piles. However, hydraulic testing and groundwater modeling completed as part of the pre-design investigation concluded that this bulkhead is an effective barrier to groundwater flow (Arcadis 2021c). The groundwater model is discussed further in Section 5.1.1.

In May 2018, Arcadis conducted a visual inspection of the shoreline structures at the Site, including the existing bulkhead north of the South Dock. The visible portions of the piling above the water surface were inspected. General findings from this inspection concluded that the existing bulkhead was in good, stable condition. The existing sheet piles appeared to be in proper alignment with no signs of rotation or other failures. The visible portions of the sheet pile wall and its components (pile caps, waler, tie rods) also appeared to be in good condition with no significant signs of corrosion or steel section loss.

Arcadis performed a desktop evaluation of the estimated corrosion rates for the existing bulkhead in support of this BOD Report. The purpose of the evaluation was to assess the anticipated lifespan of the existing sheet piles from a steel thickness loss aspect. Thickness loss rates were determined using Eurocode 3 – Design of Steel Structures – Part 5: Piling (European Committee for Standardization 2007), which provides loss rates based on environmental conditions typical of industrial sites. The existing sheet pile wall is approximately 30 years old. The estimated corrosion loss over 30 years is approximately 0.05 inches or 15% of the pile's original thickness of 0.375 inches. Longer timeframes of 60 to 80 years result in expected corrosion losses of 0.10 to 0.15 inches or approximately 25 to 40% of the original pile thickness.

Although, from a containment barrier aspect, the estimated corrosion losses would not compromise the steel wall's ability to be an adequate barrier to groundwater flow, the structural capacity of the steel section and the potential for the bulkhead's failure from excessive rotation or bending could be of concern. For those piles where corrosion losses do progress during the pile lifespan, the expected failures would be localized areas of bulging or cracking/splitting of the sheet pile section. An effective monitoring and maintenance program can optimize the lifespan of the existing bulkhead by identifying and addressing these types of failures on a case-by-case basis. Monitoring and maintenance requirements will be in place for the existing bulkhead as discussed in Section 12.

Based on groundwater model findings and results of the 2018 inspection, an additional visual inspection of the bulkhead will be conducted to identify and address any areas noted in the inspection as deficient or in need of repair from a containment barrier perspective. The inspection will focus on those areas of soil and/or water seepage identified in 2018 and include observations of pile conditions above and below the water surface. The ground surface behind the bulkhead will also be inspected for signs of soil loss, such as localized depressions, pavement cracking, and utility displacement. Specific repair measures will be developed after the visual inspection is

completed and included as part of the final design. Repair measures might include welding steel plates over former outfalls and/or sealing around existing outfalls.

4.5 Barrier Intersections

Construction of the barrier system will require design of appropriate transition zones from one barrier type to the next. These transition zones will be designed so that the intersections of the barrier types are properly overlapped or sealed and provides a continuous barrier along the downgradient perimeter of the Site.

There are four intersections along the network. The northernmost connection is common to both barrier network options and is between the existing steel bulkhead and the subsurface sheet pile barrier wall. For this intersection, it is proposed to seal the two walls through a series of jet grout columns extending from grade to a minimum embedment of 3 feet into the clay layer. Another option for this intersection involves directly connecting the sheet pile into the interlock of the existing bulkhead sheet piling. This option requires further investigation of the sheet pile configuration of the existing bulkhead.

For the South Dock area, piles will be connected with the existing bulkhead at the dock's northern end and with the soil-cement barrier at the dock's southern end. Approaches for connecting the bulkhead piles to the existing piles will be similar to the options discussed above for the northernmost barrier connection.

At the connection to the soil-cement barrier, a transition zone will be designed between the steel sheet pile of the bulkhead and the soil-cement wall. At the southern end of the soil-cement barrier, a similar transition between wall types will occur at the soil-cement wall and the subsurface steel sheeting intersection along James Desana Drive. For both of these intersections, the design will consider the following methods for sealing:

- Series of jet grout columns at the intersection of the two wall types; and
- Extension of the steel sheet piling approximately 10 feet into the alignment of the soil-cement wall. At each end, a cement-bentonite wall (instead of the soil-cement wall) would be installed, and the piles driven to depth in this zone.

5 Groundwater Extraction and Conveyance System

The BOD for the groundwater extraction and conveyance system is described in this section. The layout of the drainage and conveyance network is shown on Figure 4. Piping and instrumentation diagrams (P&IDs) are provided with the Design Drawings (Appendix A).

5.1 Extraction Trench Network

5.1.1 Summary of Groundwater Modeling Results

To support the Preliminary 30% Design of the barrier remedy, the numerical groundwater flow model of the localized groundwater flow system at the Site (Waterloo Hydrogeologic 2002) was updated. Updates were based on a review of the existing model in conjunction with new and relevant data collected since the original model was developed, including but not limited to data collected during the Hydraulic PDI work (Arcadis 2021c). Model updates included recent water level data, boundary conditions, hydraulic conductivity distribution, applied recharge, and the model grid. In addition to the model design changes, recent versions of the modeling software were used. The objective of the effort to update the groundwater flow model was to simulate localized groundwater dynamics at the

Site to support the design of the barrier remedy. The model updates were summarized in the Groundwater Modeling Report (Arcadis 2021b).

The model was calibrated by systematically adjusting the model boundary conditions and input parameters to obtain as close a match as possible between observed and simulated water levels. The model was calibrated using 84 groundwater level measurements collected in March 2021 from locations distributed throughout the Site. The model was also validated using 77 groundwater level measurements collected in March 2021 from locations distributed throughout the Site. Based on both quantitative (e.g., calibration statistics) and qualitative (e.g., groundwater flow directions) data, the groundwater flow model was determined to be well calibrated. A sensitivity analysis was performed to improve the model calibration and to assess the uncertainty associated with the model.

The updated calibrated model was used to simulate a low-permeability downgradient perimeter barrier located 950 feet along the northern property boundary, located along the entire eastern boundary, and located 1,340 feet along the southern boundary. A non-continuous drain was simulated behind the barrier to estimate an expected drain rate that would meet performance objectives for the Site. The overall drain rate was modeled to be approximately 45.5 gallons per minute (gpm) using an average recharge of 3.5 inches per year.

The calibrated groundwater flow model was also used to assess the sensitivity of the remedial design to different recharge and river/drain elevations. The Detroit River elevation was varied between 569 ft IGLD 85 and 574.39 ft IGLD 85, representing the anticipated low river elevation for the Detroit River and the average March 2021 stage, respectively. The recharge rate used in the model was varied between 3.5 and 7 in/yr, representing the calibrated recharge rate over the model domain and two times the calibrated recharge rate, respectively. The drain elevation was varied between 0 ft and 5.39 ft less than the Detroit River elevation. The resulting drain rate ranged between 42 and 77.7 gpm.

The drain rates presented this report are not an estimate of groundwater discharge to the Detroit River under current conditions (i.e. no perimeter barrier).

5.1.2 Initial Design

To adequately capture groundwater flux and prevent flooding of the Site behind the barrier, a passive perimeter groundwater drainage system is proposed for the Site. Vertical wells and horizontal wells were evaluated as options for collecting groundwater behind the perimeter barriers. For vertical wells, the highly heterogeneous nature of the site soils would likely result in varying capture zones that would be difficult to predict in localized areas. Use of vertical wells for groundwater capture would also require significantly more pumping equipment and therefore significantly more maintenance. With horizontal wells, it is difficult to control drawdown and capture across the length of a horizontal well screen in heterogenous soils. In addition, the inability to design and install a filter pack around the screen of a horizontal well would likely result in fine sediment entering the wells and the associated conveyance and groundwater treatment system. The presences of these solids would lead to management and operation and maintenance (O&M) issues. Vertical wells may be utilized to supplement passive drains, as needed, and/or in cases where passive drains cannot be installed due to subsurface obstructions.

Based on results of the updated groundwater model, the HPT investigation, and groundwater pumping tests, the drainage network will consist of eight collection drains capturing groundwater on the northern, eastern, and southern boundaries of the Site. The drain alignment is presented in the Preliminary 30% Design Drawings (Appendix A).

Drain lengths and locations required to hydraulically capture groundwater flux were established based on groundwater model simulations. Design elements considered to identify the drain type included ease of installation, ease of operation, and long-term operation, maintenance, and monitoring requirements. Design parameters for the collection drains are presented in Table 5.

Drain ID	Boundary Location	Length (feet)	Drain Rate (gpm)
1	North	400	6.4
2	East	220	4.7
3	East	715	8.6
4	East	170	1.3
5	East	2,045	12.1
6	East	95	7.3
7	East	875	5.1
8	South	115	

Table 5. Groundwater Modeling Drain Rates at Drain Locations

The collection drainage network will consist of perforated pipe installed at a targeted depth interval of approximately 569 feet above mean sea level, consistent with 20-year historical river low-flow levels. Drainage trenches will be backfilled with a high-permeability material (i.e., pea stone) to promote maximum drainage. To monitor groundwater levels and support the evaluation of drainage efficiency, a series of piezometers will be installed within and adjacent to the drains. Groundwater will drain into the perforated pipe and will flow by gravity into sumps, where the groundwater will be pumped through a conveyance network to a treatment system.

5.2 Conveyance Network

5.2.1 Sump Network

Groundwater captured in the collection drains will flow by gravity into a sump network. The sump locations are presented on the Preliminary 30% Design Drawings (Appendix A). Thirteen sumps will be placed at intervals of approximately 500 feet along each segment of the collection drainage network. Each sump will be equipped with a primary pump and a redundant pump, both with variable frequency drives, pressure transducers to monitor water levels, valves, and a level transducer. Additionally, level switches (floats) will act as equipment safety devices in the event the level transducer fails. Each pump will be sized to operate at the maximum flow rate for the sump as determined by anticipated drainage flow rates.

5.2.2 Conveyance Piping

Groundwater collected at the sumps will be pumped through a network of below-grade conveyance piping to a treatment system. The lateral piping from each sump will connect to a singular header pipe that runs to the treatment system as depicted on the Preliminary 30% Design Drawings (Appendix A). To mitigate potential flooding risks from unexpected conveyance issues (line breaks, fouling, etc.), a network of redundant lateral piping from the sumps to a redundant header pipe will also be installed. The conveyance network will be constructed with buried high-density polyethylene and above-grade carbon steel piping. Pipe sizing was determined using total dynamic head calculations, which account for static head and head loss or frictional loss (e.g., pipe lengths, fittings, instrumentation) for the conveyance line within the conveyance network. Conveyance line hydraulic calculations are included in Appendix B.

To mitigate freezing risk, conveyance piping will be buried below the frost line. Pipe fouling within the conveyance network will be mitigated by installing cleanouts placed at intervals of approximately 500 feet. The piping will be cleaned as part of scheduled routine maintenance or when the conveyance network demonstrates increasing pressure or decreased flow as a result of blockages.

6 Above-Grade Treatment System

The BOD for the above-grade (AG) treatment system is described in this section. P&IDs and a drawing depicting the general arrangement of the treatment building are included in the Preliminary 30% Design Drawings (Appendix A).

6.1 Treatability Study

In March 2022, an AG treatment treatability study was initiated to support the design of the AG treatment system using groundwater collected from monitoring wells throughout the Site. The treatability study included the following main components:

- Site groundwater sampling Groundwater samples for analysis of key constituents were collected from select perimeter monitoring wells (i.e., those located in the zones of highest hydraulic conductivity). These data, along with existing analytical data, were used to evaluate the range of potential influent water quality for bench-scale testing.
- Treatability test groundwater collection Groundwater used for bench-scale testing was collected from select
 perimeter monitoring wells. Water from these wells was blended to represent reasonably anticipated influent
 water quality for a full-scale AG treatment system.
- Laboratory treatability testing Bench-scale testing included the following: pH neutralization (via acid addition), chemical-physical treatment (using coagulant and flocculant), sludge dewatering, and implementation of a granular-activated carbon (GAC) rapid small-scale column test (RSSCT).

An evaluation of the results of the treatability study provided the basis for the design of each major process unit (Arcadis 2022b). Groundwater characteristics of the Site and treatability study results are discussed in the following sections.

6.2 Influent Characteristics

Influent groundwater chemical characteristics and anticipated flow rates were evaluated to inform system design. Treated groundwater will be discharged to the local POTW, and as such influent chemical characteristics were compared to predicted local POTW criteria. Anticipated flow rates were utilized to understand mass loading and needed system capacity.

6.2.1 Influent Flow Rates

The treatment system will be designed to process a maximum flow rate of 100 gpm. Based on the groundwater modeling calculations and pre-design field investigations, anticipated operational flow rates will be approximately 50 gpm based on an average recharge rate of 3.5 inches per year. The design flow rate of 100 gpm is based on a reasonable worse-case recharge rate of 7.0 inches per year, which would increase the flow rate to 75 gpm, and an applied 33% contingency. The increased flow rate will provide a safety factor for significant precipitation recharge and aid in site drainage. In addition, a means of additional on-site storage such as a retention pond or temporary tank storage will be considered in the Pre-final design (95%) to handle unanticipated temporary influent flow surges.

6.2.2 Influent Chemical Characteristics

On November 11, 2021, and December 16, 2021, Arcadis collected samples from 10 monitoring wells at the perimeter of the Site based on the results of perimeter groundwater monitoring and hydraulic testing as described in the pre-design investigation report (Arcadis 2021c). The monitoring wells sampled are located in zones with the highest hydraulic conductivity and therefore are expected to drive the treatment system influent water quality on a mass flux basis. To ensure the water quality characteristics of the groundwater samples were representative of
anticipated influent contaminant of concern (COC) concentrations, the groundwater samples were blended to best replicate the predicted influent flow concentrations of a full-scale P&T system (e.g., higher percentage of water from areas with higher expected groundwater flux). The primary COCs based on local POTW limits are mercury, VOCs, SVOCs, and per- and polyfluoroalkyl substances (PFAS). The analytical results for the COCs detected and general chemistry in the blended groundwater samples are presented in Table 6.

SVOCs	Concentration (µg/L)
1,4-Dioxane	1.1 J
2,4-Dimethylphenol	0.76 J
2-Methylnaphthalene	0.89
2-Methylphenol	0.92 J
3-Metylhpenol, 4-Methylphenol	22
Carbazole	1.0
Naphthalene	8.5
Phenol	43
VOCs	Concentration (µg/L)
1,1-Dichloroethane	2.1
1,2-Dichloropropane	1.1
Acetone	25
Ethylbenzene	1.1
m&p-Xylenes	2.3
o-Xylene	2.1
Toluene	2.4
Inorganics	Concentration (mg/L)
pH (standard units)	12.4
Alkalinity	930
Total Suspended Solids	114
Total Dissolved Solids	5300
Total Organic Carbon	29
Total Mercury	0.00052
Total Mercury (Low Level)	0.00058
PFAS	Concentration (ng/L)
Perfluorohexane sulfonic acid (PFHxS)	33
Perfluorohexanoic acid (PFHxA)	9.6
Perfluorooctane sulfonic acid (PFOS)	68
Perfluorooctanoic acid (PFOA)	12
Perfluoropentoanoic acid (PFPeA)	9.4

Table 6. Influent Groundwater Characteristics

Notes:

J = estimated value

µg/L = micrograms per liter

mg/L = milligrams per liter

6.3 Major Unit Processes

Eight major components comprise the AG treatment system. These components were determined and designed based on treatability study findings (Arcadis 2022b). Influent water is first sent to an equalization tank to dampen variable flow rates. Neutralization is then completed to reduce the pH and prepare the influent water for metals precipitation via coagulation, flocculation, and clarification. Following metals precipitation, process water is then fed to a pump-out tank to facilitate transfer to bag filter, GAC, and ion exchange units to address SVOCs, VOCs, and PFAS. Further detail is provided in the following sections and in the Preliminary 30% Design Drawings included in Appendix A.

6.3.1 Influent Equalization

An influent equalization tank will receive untreated groundwater from the extraction sump network. The equalization tank will be designed to control and dampen variable flow rates into and out of the unit process. The influent equalization tank will be sized to allow groundwater extraction to continue during routine anticipated maintenance. During normal operation, the tank will operate to maintain a hydraulic residence time of at least 20 minutes. Transfer pumps with a variable frequency drive will be used to facilitate transfer of influent equalization tank water to the rest of the system within the design flow rates. The influent equalization tank parameters are summarized in Table 7.

Design Parameter	Value
Treated Equalization Detention Time (minutes)	20
Target Equalization Tank Volume (gallons)	20,000
Equalization Height (feet)	16
Calculated Equalization Tank Diameter (feet)	15
Equalization Tank Freeboard (feet)	1
Operating Equalization Tank Volume (gallons)	20,000

Table 7. Influent Equalization Tank Design Parameters

Tank level will be maintained using control loops to communicate with associated pumps, flow meters, and automated valves. Control loop setpoints will be established for continuous operation, and alarm conditions will be defined that interlock the process equipment as a safety measure to protect equipment and prevent a release.

As noted, a means of additional on-site storage for influent equalization purposes such as a retention pond or temporary tank storage will be considered in the Pre-final design (95%) to handle unanticipated temporary influent flow surges.

6.3.2 pH Neutralization

The treatability study (Arcadis 2022b) included a pH neutralization test to determine the acid dosage needed to reduce the groundwater pH level. A circumneutral pH is necessary to efficiently remove metals by coagulation and flocculation treatment, prevent fouling of downstream piping and equipment, and ensure discharge is in compliance with the maximum POTW limit of 9.0 standard units (S.U.). The pH level in the blended influent water used for the treatability study measured at approximately 12.4 S.U. The blended influent water was titrated with sulfuric acid to determine the volume of acid needed to neutralize the pH level. Sulfuric acid was selected for pH adjustment due to its effectiveness in pH neutralization with similar groundwater chemistry. The design parameters based on the influent water quality and pH neutralization test are presented in Table 8.

Table 6. pri Neutralization Design Parameters	Table 8.	pH Neutralization	Design	Parameters
---	----------	-------------------	--------	------------

Design Parameter	Value
Process Flow Rate (gpm)	100
Initial pH (S.U.)	12.4
Target pH (S.U.)	9.0
Total Alkalinity (prior to pH adjustment) (mg/L)	930
Sulfuric Acid Dosage for pH 9 s.u. (mg/L)	1,900

Sulfuric acid will be delivered in bulk and fed from a 7,000-gallon operational capacity tank using a metering pump. The acid dose initially will be set according to the bench-scale test results and adjusted by the operator as needed during startup and operation, maintenance, and monitoring of the system. The metering pump feed rate will be paced to accommodate the system flow rate.

6.3.3 Precipitation, Coagulation, and Flocculation

The pH-neutralized process stream will be treated with organosulfide metal precipitant (i.e., MetClear) to precipitate solids and thereby reduce mercury concentrations to less than 200 nanograms per liter (ng/L) per the POTW discharge limitation. The blended influent was bench tested at various pH conditions and MetClear doses to determine the optimal MetClear dose to precipitate dissolved mercury into solid form. Using a 20-mg/L MetClear dosage at a pH-adjusted value of 9.0, the test demonstrated a significant decrease in total and dissolved mercury concentrations, visible indication of mercury precipitation, and gravity settling of precipitates after 30 minutes.

Following MetClear treatment, coagulation and flocculation treatment will be implemented to remove the precipitated mercury from the process stream. The treatability study tested varying doses of coagulants and flocculants to determine the optimal combinations to remove mercury. The blended groundwater, sampled with total mercury concentration range of 480 ng/L to 620 ng/L, was used for jar test screening. As presented in the treatability study report (Arcadis 2022b), all test conditions or combinations of doses and coagulant/flocculant solutions met performance objectives. The total and dissolved mercury concentrations decreased to 23 ng/L and 1.4 ng/L following coagulation and flocculation treatment, below the local POTW permit limit of 200 ng/L. The recommended chemical additions and doses are indicated in Table 9.

Chemical	Stock Solution	Dose
Metals Precipitant	MetClear MR2405 (100%)	20 mg/L
Coagulant	Ferric Iron KlairAid IC1251	10 mg/L
Cationic Flocculant	Polyfloc AE1703	3 mg/L

Table 9. Proposed Metal Precipitant Chemicals and Doses

Following pH neutralization, the metals precipitant will be metered into the process stream while it is gravity fed into a rapid mixing chamber. The coagulant will be metered into the rapid mix tank and mixed for approximately 1.1 minutes at 100 gpm. Following coagulant mixing, process water will be gravity fed into the slow mix flocculation tank. The flocculation tank will be sized to provide approximately 3.2 minutes of retention time at 100 gpm. Retention time is based on equipment specifications for a clarifier at the 100-gpm design point.

6.3.4 Clarification

Process flow will continue from the flocculation tank by gravity into the inclined plate clarifier. The clarifier will be designed with an industry standard loading rate for metals precipitation of not more than 0.25 gpm/square foot to allow the flocculant to settle. From the clarifier, process water will flow by gravity into a transfer tank for feeding the filtration system. Solids will be removed periodically from the bottom of the clarifier using a pneumatic-diaphragm pump and transferred into a sludge holding tank. The design parameters for the clarifier are presented in Table 10.

Table 10. Clarifier Design Parameters

Design Parameter	Value
Clarifier Solids (%)	1.5
Total Pretreatment Tank Volume (gallons)	426
Flash Mix Tank Volume (gallons)	110
Clarifier Overall Height (feet)	12.3
Clarifier Overall Length (feet)	11.3
Clarifier Overall Width (feet)	6.4

6.3.5 Pump-Out Tank and Bag Filtration

Clarifier effluent will be gravity fed to a pump-out tank. Transfer pumps will convey process flow to bag filters to remove suspended sediment and large particles. Bag filtration will increase the longevity of media in the GAC unit by reducing the solids loading. The filtration process will start with a 5-micron bag filter and be adjusted based on observed conditions during startup. The bag filters will be provided on a dual filter skid and automatically switch from one housing to the other based on pressure drop setpoints or have the option of running in parallel. Bags will be changed by the operator on site, as needed. The pump-out tank design parameters are presented in Table 11.

Table 11. Pump-Out Tank Design Parameters

Design Parameter	Value
Process Flow Rate (gpm)	100
Total Pump-Out Tank Volume (gallons)	2,000
Tank Overall Height (feet)	6.9
Tank Overall Diameter (feet)	7.5

6.3.6 Liquid-Phase Granular-Activated Carbon

The GAC unit process will support the removal of total organic carbon, PFAS, SVOCs, VOCs, and additional particulate solids. An RSSCT was conducted to determine the effectiveness of SVOC and VOC removal with GAC. The blended influent groundwater collected from the Site used for the RSSCT was pretreated with sulfuric acid to neutralize pH to 9 S.U. and mixed with the recommended chemicals to remove mercury (i.e., 20 mg/L of MetClear, 10 mg/L of KlarAid IC1251, and 3 mg/L of Polyfloc AE1703). A Calgon DSR-C reactivated carbon was used for the RSSCT with two columns each of which had a 20-minute empty bed contact time (EBCT). The RSSCT was used to establish that the selected GAC is capable of treating VOCs and SVOCs to below POTW limits. An existing on-site GAC system was used to determine a target EBCT for the AG treatment system. Hydraulics were then used to establish the parameters for the GAC unit process design. At the maximum flow rate of 100 gpm, four GAC vessels

will be operated as two trains of two vessels. During normal anticipated operation of 50 gpm, one train will be operational. The unit process will automatically switch between both operational modes based on the influent flow rate and have the capability to alternate lead-lag operation in each treatment train. The GAC unit process parameters are listed in Table 12.

Design Parameter	Value
Design Flow Rate (gpm)	100
Design Hydraulic Loading (gpm/square feet)	2
Design EBCT (minutes)	20
No. of Vessels in Series	2
No. of Vessels in Parallel	4
Maximum Flow Per Vessel (gpm)	50
Calculated Vessel Area Required (square feet)	177
Calculated Vessel Diameter Required (feet)	7.5
Selected Vessel Diameter (feet)	6
Calculated Vessel Area (square feet)	28
Actual Hydraulic Loading (gpm/square feet)	3.5
Minimum GAC Volume, Per Vessel (cubic feet)	135
Selected GAC Volume, Per Vessel (cubic feet)	180
GAC Specific Gravity (grams/cubic centimeter)	0.54
Vessel Height (feet)	9.9
Minimum GAC Bed Height (inches)	72
Minimum GAC Bed Height (feet)	6
GAC, Per Vessel (pounds)	5,000
Actual EBCT, Per Vessel (minutes)	30

Table 12. Liquid-Phase Granular-Activated Carbon Design Parameters

6.3.7 Ion Exchange Resin

An ion-exchange resin will be used for the removal of PFAS following GAC treatment. Similar to the GAC process, the resin units will be configured in series with a valve tree to enable alternating lead-lag operation. The vessels will be equipped with a differential pressure indicator for each stage to monitor pressure drop across the system. A sample port will be provided between vessels to check for COC breakthrough. Purolite PFA694 pilot testing data collected for another on-site groundwater treatment system were used to determine the resin unit process design. Pilot data showed successful PFAS treatment to non-detectable levels with influent concentration levels up to 2,500 ng/L utilizing a 3-minute EBCT. Elevated total dissolved solids primarily due to chloride and sulfate are present in the influent water used for the treatability study. These general chemistry characteristics were not noted in the pilot testing completed but are known to potentially interfere with PFAS treatment via resin. Further analysis, including potential field pilot testing, to determine if additional pretreatment processes are warranted will be completed during the final design. Resin vessel parameters for the Preliminary 30% Design are based on the 2-minute EBCT at maximum design flowrate and 4-minute EBCT at nominal flows and hydraulic loading between 6 and 18 gpm/ft2. Design parameters are provided in Table 13.

Table 13. Ion Exchange Design Parameters

Design Parameter	Value
Design Flow Rate (gpm)	100
Design EBCT Per Vessel (minutes)	2
No. of Vessels in Series	2
No. of Vessels in Parallel	0
Maximum Flow Per Vessel (gpm)	100
Calculated Vessel Area Required (square feet)	1.32
Calculated Vessel Diameter Required (feet)	2.7
Minimum Ion Exchange Volume, Per Vessel (cubic feet)	27
Vessel Height (feet)	5

6.3.8 Discharge

Effluent samples will be collected regularly for analysis to confirm the treatment system is meeting POTW discharge limitations. Bulk flow will be metered using a magnetic meter and will be discharged to the POTW via sanitary sewer lines. A tie-in to the existing line will be installed and equipped with check and isolation valves to prevent backflow from the site sanitary connection.

6.4 Ancillary Processes

6.4.1 System Pumps

Pump and motor sizes were determined using supporting hydraulic calculations for all unit processes as presented in Appendix B. Total dynamic head calculations to determine pump size and type include length of conveyance, anticipated process flow rates, conveyance pipe diameter, conveyance material, material compatibility, discharge elevation, and head loss through respective unit processes. The preliminary pump and motor parameters are presented in Table 14.

Pump ID	Number of Pumps	Description	Pump Type	Design Flow Rate (gpm)	Head (feet)	Horsepower
P-0XX	8	Collection Sump Pump	Submersible	3.5 to 6.0	80 to 88	1
P-0XX	16	Collection Sump Pump	Submersible	12.8 to 17.2	80 to 122	2
P-100/101	2	Transfer Pump	Centrifugal	100	11	3
P-200/201	2	Transfer Pump	Centrifugal	100	195	10
P-40X	7	Dosing Pump	Diaphragm	0.15 to 2.0	134 (maximum)	-
P-50X	5	Sludge Wasting Pump	Diaphragm	15	15	-
P-505	1	Sump Pump	Submersible	30	22	0.5

Table 14. Pump Design Parameters

6.4.2 Solids Management

Solids from the influent equalization tank and clarifier will be removed periodically during operation. Sludge removal will be a manual process from the equalization tank and an automatic process from the clarifier. Solids or sludge transfer intervals will be determined and optimized during initial operation to ensure adequate removal of total suspended solids. The collected sludge will be stored in a holding tank prior to dewatering. To dewater the sludge, a thickening agent will be added and the sludge will pass through a filter press prior to being stored in a disposal container. The treatability study included an assessment of solids from each process, including sludge volume generated, and solids content was recorded (Arcadis 2022b). A Toxicity Characteristic Leaching Procedure analysis was performed on the sludge to evaluate the potential waste characteristics. The treatability study results indicated very little sludge generation. To be conservative, reference design standards were used to establish the parameters for the solids management process design as listed in Table 15.

Design Parameter	Value	
Holding Tank Influent Flow Rate (gallons/day)	1,826	
Retention Time (days)	5	
Holding Tank Sludge (wet) (pounds/day)	15,420	
Holding Tank Solids (dry) (pounds/day)	204	
Holding Tank Solids (%)	2	
Hold Tank Decant Volume (gallons/day)	626	
Filter Press Sludge (wet) (pounds/day)	10,196	
Filter Press Solids (dry) (pounds/day)	204	
Cake Solids (%)	35	
Cake Density (pounds/cubic feet)	75	
Minimum Filter Press Size (cubic feet)	19	
Cycles per week	3	
Dewatered Sludge (wet) pounds/day	583	
Filtrate (gallons/day)	1,153	

Table 15. Solids Management Design Parameters

6.4.3 Tank Mixing

The coagulant tank and flocculation tank will be equipped with a mixing component (rapid vertical mixing unit, picket fence vertical mixing unit, etc.) to distribute chemical additions and promote aggregation of dissolved and suspended particles in the process stream. Rapid mixing will occur in the coagulation tank, while slow mixing will occur in the flocculation tank. Aggregation of particulate will facilitate efficient flocculation formation to promote settling in the inclined plate clarifier.

6.4.4 Compressed Air

A compressor will be sized based on treatment system air demand and future expansion capacity. The compressor will be coupled with a refrigerated air dryer and filters to mitigate the risk of damaging air-driven sludge pumps. The compressor will operate at less than a 40% uptime to reduce equipment wear, reduce noise, and protect the system from overheating caused by high ambient temperatures.

6.4.5 Instrumentation and Controls

The treatment system will include a programmable logic controller (PLC) based supervisory control and data acquisition (SCADA) system. The SCADA system will provide monitoring, control, alarming, and data collection. Flow and pump control at the perimeter drains will be programmed for automatic operation with the ability to operate manually when necessary. Treatment system process pumps and instrumentation will be monitored and controlled by the SCADA system. A human machine interface (HMI) will be used to operate equipment and display SCADA information.

Alarm interlocks based on the monitored process variables will be programmed into the PLC to enable an automatic shutdown of process pumps and equipment. Examples of alarm conditions requiring shutdown include low/high discharge flow, high discharge pressure, low/high tank levels, and motor overloads. Critical alarm conditions (e.g., leak detection) will shut down the entire system, requiring operator review of the alarm and a determination as to whether to restart the system. An interlock table describing process alarm conditions and associated process responses will be provided with the final design.

6.4.6 Fire Protection

All required federal, state, National Fire Protection Association (NFPA), and Occupational Safety and Health Administration (OSHA) fire protection standards will be implemented and followed based on the design, construction, and operation of the proposed barrier and AG treatment system.

6.4.7 Utilities

All required federal, state, local, and OSHA utility codes and standards will be implemented and followed based on the design, construction, and operation of the proposed barrier and AG treatment system.

6.4.8 Secondary Containment

The treatment system will be constructed with secondary containment to reduce the risk of a process stream and chemical release. All secondary containment will be designed to contain 120% of the capacity of the largest volume tank in the contained area. Secondary containment for treatment chemicals will be isolated from general plant containment.

6.4.9 Hazardous Area Classification

The proposed design will include an evaluation of hazardous area classifications to ensure process safety for all personnel involved in the construction and operation of the proposed barrier and AG treatment system.

7 Waste Management and Characterization

The following waste streams will be subject to characterization in accordance with local, state, and federal regulations prior to transportation and off-site disposal during construction of the perimeter containment barrier and groundwater collection and conveyance system:

- Excavation and shoreline spoils, including subsurface concrete and debris,
- Excess soil-cement slurry,
- Groundwater generated during dewatering, and
- Packaging for materials and equipment.

Soil and/or sediment generated from trenching and subgrade wall installation will be pre-characterized for waste disposal in accordance with applicable regulations prior to construction activities. All soils will be disposed of at a licensed waste facility. Groundwater generated during dewatering will either be characterized prior to construction activities for disposal or to confirm it can be treated through the abovegrade treatment system (if available). Non-impacted packaging for materials and equipment will be disposed of with general refuse.

The following waste streams will be generated during the operation of the groundwater treatment system:

- Sludge cake from clarification
- Bag filters from filtration
- Spent GAC from GAC treatment
- Spent IX resin from IX treatment

Waste streams associated with operation of the groundwater treatment system will be characterized for waste disposal and disposed of at a licensed waste facility.

8 Health and Safety Plan

A project-specific health and safety plan (HASP) will be developed for the construction and operation of the proposed remedy at the Site. The HASP will describe the health and safety commitment of all office and field employees, contractors, and site visitors. The HASP will be structured to contain information regarding emergency points of contact and details of the hospital route. The HASP will be supplemented by appropriate Job Safety Analyses (JSAs) for all safety-critical tasks conducted on the Site. It is expected that these JSAs will be modified in the field by the personnel conducting the tasks to integrate real-time conditions and hazards at the time of the task. Safety Data Sheets will be available for all materials managed on the Site during construction and operation of the proposed remedy.

All tasks performed under the project HASP will follow the BASF Health and Safety Standards of Procedure. All project personnel will be required to sign the certification page included at the end of the HASP acknowledging that they have read, understand, and will abide by the plan. Any supplemental contractor HASP that addresses specific hazards for tasks conducted by the subcontractor will be stored with the project-specific HASP.

8.1 Health and Safety Considerations

During construction and operation of the proposed remedy, H&S protocols will be developed, implemented, and enforced to provide for the safety of project team members and visitors to the Site. Examples of H&S considerations during construction and operation of the barrier remedy include the following:

- · Potential hazards during construction activity conducted in the Detroit River or any water body;
- Potential hazards during excavation and shoring activities (i.e., cave-ins);
- · Potential to encounter below- and above-grade utilities;
- Heavy equipment operation risks;
- Fall protection;
- Confined spaces;
- · Potential to encounter impacted vapors, soil, and/or groundwater; and
- Handling of chemicals associated with construction and the treatment system process.

www.arcadis.com

8.2 Site Safety

All personnel working on the project are responsible for completing tasks safely and have the responsibility to stop the work of a coworker or contractor if working conditions or behaviors are deemed unsafe. All BASF and OSHArequired general safety equipment, including personal protective equipment (PPE) standards, will be identified and followed by all personnel involved in the construction and operation of the proposed barriers, conveyance network, and AG treatment system. All staff and subcontractors are required to complete a safe work permit prior to the start of each workday, describing the tasks performed at the start of the day with an evaluation of hazards and mitigations for those hazards. Prior to initiation of site activities, all staff and contractors are required to take BASF site-specific safety and site-awareness training.

8.3 Safety in Design

During the final design phase, a comprehensive program, documentation, and review tool will be applied to identify potential hazards and provide guidance for best practices associated with system fail safes, remedy construction, O&M, and regulatory codes. The hazard analysis will systematically identify potential concerns and provide a hazard rating related to the process unit design. The analysis will outline engineering and administrative controls that can mitigate the identified hazards.

9 Future Design Considerations

A draft list of Final Barrier Remedy Design Drawings is provided in Appendix F. Following final design and during remedy operation, optimization of the barrier system will be considered to meet the established corrective action objectives. The perimeter containment barrier, extraction network, conveyance network, and treatment system design will allow for potential adaptive management, optimization, and/or expansion to potentially improve upon the effectiveness of the proposed barrier remedy to meet the performance objectives. Potential areas of expansion include the following:

- Enhancement of barriers to mitigate the risk of extracting and treating river water;
- Addition or removal of sumps and/or vertical extraction wells to improve or optimize hydraulic control to meet performance standards;
- Treatment system expansion or contraction optimize the process stream capacity based on the potential of increased or decreased influent flow rates; and
- Addition or removal of transfer pumps, carbon vessels, and tank freeboard to optimize treatment.

10 Data Gaps

During this Preliminary (30%) Design phase of the project, data gaps were identified for elements of the remedy that must be addressed prior to completing the next design phase (95% and 100%). This section summarizes the additional information and/or assessment activities necessary to address the data gaps.

10.1 Subsurface

The following assessment will be performed regarding the subsurface barriers and extraction/conveyance networks:

- Presence and locations of utilities along proposed excavation areas. Locations of these utilities and subsurface structures will be evaluated in coordination with Wyandotte Municipal Services, BASF, and other parties (as appropriate);
- Geophysical surveys of the barrier and extraction/conveyance trench network alignments to identify subgrade obstructions;
- Geophysics and/or additional soil borings, if necessary, along the alignment of the barrier to further define the top of the clay layer;
- Presence and locations of utilities along the proposed barrier and extraction/conveyance trench network alignments. Locations of these utilities and subsurface structures will be evaluated in coordination with Wyandotte Municipal Services, BASF, and other parties (as appropriate);
- Geotechnical assessment and/or investigation (as appropriate) for foundation design of the abovegrade treatment system building; and
- Additional evaluations of the soil-cement design mix to address potential freeze-thaw issues and compositional changes to PC.

10.2 New Bulkhead

The following additional information will be collected regarding the existing South Dock structures:

- Soil thickness on concrete deck;
- Top-of-concrete elevation for the soil-covered deck and the concrete bulkhead at the face of the dock;
- Concrete deck thickness;
- Approximate locations of tie rods and timber piles that provide lateral support to the Wakefield wall; and
- Geophysics for constructability of the anchor wall.

No drawings appear to exist that show the South Dock structures in detail. To obtain the information listed above, may be necessary to excavate test pits at various locations to expose the existing structures and take measurements. It may also be necessary to cut holes into the existing concrete deck to measure its thickness.

10.3 Above-Grade System

The following assessment activities will be performed regarding the AG system:

- Field pilot test to investigate ion-exchange PFAS treatment interferences:
 - o Total organic carbon; and
 - o Total dissolved solids (particularly sulfate and chloride).
- Evaluation and addition of ion-exchange pretreatment technologies, if warranted.

11 Permit Plan

The following is a summary of the preliminary list of required permits prior to or during construction:

- National Pollutant Discharge Elimination System (NPDES). A Construction General Permit will be submitted for approval prior to the start of construction. The permit will include a developed Stormwater Pollution Prevention Plan, a Notice of Intent submittal, and a list of required inspections to verify compliance with the permit.
- EGLE/USACE. A Joint Permit Application will be submitted to cover requirements derived from state and federal rules and regulations for construction activities within and near the Detroit River. A summary of the site background, a project description, and site plans will be submitted in the application for review and approval.
- Downriver Utility Wastewater Authority (DUWA). Discharging treated groundwater into a DUWA sewage collection system tributary requires an approved Wastewater Discharge Permit. A permit application will be submitted a minimum of 90 days prior to the proposed discharge for evaluation and approval. An alternative to a new permit would be a modification to the existing Wastewater Discharge Permit obtained by BASF. A request to modify the existing permit would be submitted to DUWA for approval.
- **Wayne County**. A Soil Erosion and Sedimentation Control Permit is required for earthwork within 500 feet of a water of the state.
- **City of Wyandotte**. Construction of a new building may require approved building, electrical, plumbing, mechanical, and utility permits from the Engineering and Building Department.
- Air Permitting. Air permitting requirements for construction associated with diesel operated equipment and/or generators will be assessed and completed, if applicable. At this time, the design does not include active air discharges; however, any air emissions identified prior to construction and system operation will be evaluated and addressed in the Pre-final (95%) and Final (100%) Design.
- **Spill Control**. All liquids included in treatment system design and operation will be evaluated to determine spill control requirements. Any tanks or drums containing flammable, combustible, or corrosive liquid will be subject to containment standards set by federal, state, OHSA, and NFPA code.

Additional activities to be completed prior to or during construction include the following:

- Access agreements with adjacent property owners for installation of sheet pile along Perry Place and James Desana Drive;
- Institutional controls will be obtained from the property owner (i.e., City of Wyandotte, or private party) to restrict excavation into the off-site sheet pile; and
- Notice to Mariners.

12 Operation, Monitoring, and Maintenance Requirements

An O&M manual for the barrier remedy will be submitted with the pre-final (95%) design package. The O&M manual will address routine inspections of remedy components (e.g., below-water inspections of barriers and bulkhead, ground surface grades and features behind bulkhead); O&M of the extraction and treatment systems including management of waste streams; collection of performance monitoring data for active remedy components (extraction and treatment systems); and compliance monitoring. The O&M manual will present the procedures for O&M activities, sampling and monitoring, and implementation of contingency measures associated with the barrier remedy.

For the pre-final/final design phase submittal of the proposed barrier, extraction and conveyance network, and AG treatment system, a draft O&M manual including schedules and procedures will be submitted for approval.

13 Remedial Design Management

This section describes the proposed approach to carry out the design and implement the remedial strategy. An outline of technical specifications required to complete the barrier remedy is provided in Appendix G. The pre-final design (95%) will present an outline of technical specifications for the selected barrier remedy and will include each element of the remedy (i.e., barrier, extraction, and treatment systems).

As the barrier, extraction/conveyance network, and treatment system design progresses, the design elements will continue to be evaluated in an effort to reduce overall costs. Opportunities for value engineering (VE) include the following:

- Evaluation of cost versus function to identify high-cost design elements that may be candidates for a formal VE study;
- Consideration of material/equipment factors including capital cost, complexity, high-volume, critical materials, difficulty of use in construction, high O&M costs, required specialized skills to construct, and potential for materials and methods to become obsolete;
- Evaluation of proprietary technology requiring trained personnel to operate;
- Allowance of substituted equipment that meets the design specifications at a reduced cost;
- Use of industry established design technology;
- Use of pre-designed skids or equipment packages;
- Allowance in schedule and/or budget for VE redesign activities; and
- Recommendation supporting or rejecting the need for a full-scale VE study.

13.1 Design and Construction Schedule

A preliminary design and construction schedule is presented in Appendix D.

13.2 Construction Approach

13.2.1 Cost Estimates

A preliminary cost estimate to construct the containment barriers, extraction/conveyance network, and AG treatment system based on the proposed Preliminary 30% Design is between \$34 million and \$74 million. The preliminary cost estimate is presented in Appendix C. Appendix C also includes a preliminary bill of materials for the treatment system.

13.2.2 Procurement Methods and Contracting Strategy

Contractors for construction, startup, and operation, maintenance, and monitoring of the barrier remedy will be selected in conformance with BASF purchasing and procurement requirements, and considering factors such as cost, qualifications, and health and safety (H&S). The current contracting strategy is design-bid-build. Under this approach, the design would be reviewed and approved by USEPA at the final design phase. The design-bid-build approach allows bidding from multiple contractors on well-defined work that can be implemented using standard construction methods (i.e., significant design modifications or constructability issues are not anticipated). If

warranted (e.g., due to need for an expedited schedule), alternate contracting strategies, such as design-build or sole-source procurement, may be adopted for certain remedial components. Under the design-build approach, contractor procurement and construction elements can be initiated during the design. In this case, USEPA would not review a final design before construction; therefore, a design review process would need to be developed and agreed upon with USEPA to allow adequate time for agency review and approval of the field design and construction submittals.

A Construction/Corrective Action Implementation Work Plan and O&M manual will be submitted as part of the prefinal (95%)/final (100%) design. The Construction/Corrective Action Implementation Work Plan will present the strategy and procedures for construction and startup of the barrier remedy, including the overall management strategy, site management plan, H&S considerations, construction quality assurance procedures, and procedures/sequencing for construction of the remedial components, and will address contractor, labor, and equipment availability concerns. A Construction Quality Assurance Plan will be included in the Construction/Corrective Action Implementation Work Plan.

13.2.3 Construction Sequence

The construction sequence of the steel bulkhead barrier, extraction network, conveyance network, and AG treatment system is generally that the abovegrade treatment system and groundwater extraction and conveyance systems will be completed prior to the completion of the perimeter barriers. This sequence is important so that the groundwater can be managed before the perimeter barriers are completed to avoid flooding of the Site. Therefore, the general construction sequencing for the steel bulkhead barrier is expected to be as follows:

- Treatment building construction.
- Installation of treatment system equipment (tanks, pumps, mixers, etc.).
- Installation of treatment system piping.
- Conveyance network trenching and pipe installation.
- Extraction network sump and collection drain trenching and installation.
- Preparation of soil staging and mixing area to support off-site removal of excavated materials and mixing of imported materials with reagents for ex situ borrow soil cement barrier construction.
- Debris removal along the headwall and anchor wall alignments where subsurface obstructions are known exist.
- Pre-trenching and debris removal along the alignment, followed by backfilling with borrow soil, ahead of the proposed northern and southern perimeter sheet pile wall installation.
- Debris removal along the barrier alignment where subsurface obstructions are known to exist in the rip rap shoreline for the proposed soil-cement barrier. Backfilling of pre-trench to grade.
- Construction of working platform along wall alignment in the rip rap shoreline area.
- Preparation of the South Dock area for installation of tie rods and placement of backfill under the existing dock, including concrete cutting along the concrete bulkhead at the face of the wharf and creation of access holes through the existing concrete deck.
- Off-site fabrication/installation of casing for shear pin installation (shear pin installation method is described separately).
- Application of sheet pile interlock sealant (may be performed off site by steel supplier or fabricator) for the bulkhead and sheet pile walls.

- Installation/driving of bulkhead wall, anchor walls, and subgrade sheet pile walls to specified depths.
- Installation of shear pins along the toe of the headwall.
- Installation of walers and structural connection elements.
- Installation of tie rods, including soil removal/trenching along tie rod alignments.
- Installation of a cast-in-place concrete cap along the top of the bulkhead wall.
- Backfilling with aggregate fill material behind the new bulkhead wall and under the existing concrete deck.
- Installation/driving of sheet piles to specified depths.
- Removal of the top of the sheet pile to a maximum of 12 inches below final grade.
- Backfilling over the sheet pile with fill and surface restoration materials as appropriate.
- Installation of soil-cement barrier via excavation under slurry and backfilling of the trench with mixed imported soils.
- Off-site disposal of excavated soils from the soil-cement barrier trench.
- Complete surface restoration along the soil-cement barrier alignment as appropriate.
- Dredging in front of the new bulkhead wall (separate project/contract).

13.3 Phasing Alternatives

The remedial design phase has included field/laboratory work to support the Preliminary 30% Design, major elements of the Preliminary 30% Design submittal, and components leading to the final design. To accelerate the project objective, phasing alternatives will be considered and evaluated to meet or fast-track the remedial strategy approach and scheduling. The construction sequence alternatives may be implemented to mitigate the risk of delays or improve scheduling timelines. BASF will have monthly check-in meetings with USEPA to discuss work completed since the last meeting and the schedule for upcoming work. Any actionable feedback requiring phasing alternatives will be implemented accordingly.

13.4 Roles and Responsibilities

The responsibilities and authority of organizations and key personnel involved in the RD process are summarized in Table 16.

Name	Title	Organization
Mr. Michael Gerdenich	Expert, Remediation Senior Specialist	BASF
Ms. Jacelyn Saling, PE	Project Manger	Arcadis
Ms. Andrea Krevinghaus, PE	Engineer of Record	Arcadis
Mr. Carsten Becker, PE	Engineer of Record	Arcadis
Molly Finn	Project Manger	USEPA
Jacob Runge	Project Manger	EGLE

Table 16. Project Roles and Responsibilities

13.5 Sample and Data Collection Methodology and Quality Assurance

Sampling and analytical activities conducted have followed quality assurance/quality control procedures as detailed in the RFI Quality Assurance Project Plan (Environmental Science & Engineering, Inc. 1996) and its subsequent revisions and addenda (Arcadis 2008), collectively referred to as the existing Quality Assurance Project Plan (QAPP). A QAPP supplement was prepared to address laboratory activities proposed in the RD Work Plan that extend beyond the scope of the existing QAPP (Arcadis 2018).

14 References

- Arcadis. 2008. RCRA Facility Investigation Quality Assurance Project Plan (QAPP) Addendum for Phase II Sediment Investigation: Core Collection and Analysis Work Plan. October.
- Arcadis. 2017. RFI Response Document. March.
- Arcadis. 2018. RCRA Facility Investigation Quality Assurance Project Plan Supplement for Barrier Remedial Design Activities. Wyandotte, Michigan. August.
- Arcadis. 2019a. Above Ground Treatment System Treatability Work Plan. BASF North Works Site, Wyandotte, Michigan. May.
- Arcadis 2019b. Under Dock Pre-Design Investigation Data Report. BASF North Works Site, Wyandotte, Michigan. May.
- Arcadis. 2020. Remedial Design Work Plan. BASF North Works Site, Wyandotte, Michigan. January 23.
- Arcadis. 2021a. BASF North Works Geotechnical Data Report. Wyandotte, Michigan. June 28.
- Arcadis. 2021b. Groundwater Model Report. BASF North Works Site, Wyandotte, Michigan. August 10.
- Arcadis. 2021c. Hydraulic Pre-Design Investigation Report. Wyandotte, Michigan. August 27.
- Arcadis. 2022a. BASF North Works: Barrier Wall Treatability Study. Wyandotte, Michigan. April 7.
- Arcadis. 2022b. Above-grade System Treatability Study Report. July 26.
- ArcelorMittal. 2018. Rock Bolts Horizontal Toe Support for Steel Sheet Piles on Bedrock. ArcelorMittal Sheet Piling Group, Luxembourg.
- BASF. 2018. Letter to USEPA Re: EPA Requirements for Corrective Action at the BASF Corporation North Works Wyandotte, MI Facility, EPA ID No. MID 064 197 742, EPA Docket No. V-W-011-94. May 29.
- CH2M HILL, Inc. 2019. Final Basis of Design Report Remedial Design Upper Trenton Channel, Detroit River Area of Concern, Wyandotte, Michigan. EPA Great Lakes Architect Engineer Services (GLAES) Contract, Task Order 0018/Contract No. EP-R5-11-09. October.
- Environmental Science & Engineering, Inc. 1996. RCRA Facility Investigation Quality Assurance Project Plan (QAPP), BASF Corporation, EPA ID Number MID 064197742, Wyandotte, Michigan. May 14.
- European Committee for Standardization. 2007. Eurocode 3 Design of Steel Structures Part 5: Piling. European Standard EN 1993-5. February.

Michigan Alkali Company. 1939. Drawing 92/9, Alterations to Dock for Main Sewer Outfall. October 10.

QST. 1999. RCRA Facility Investigation (RFI) Report. BASF Corporation Wyandotte Facility.

- USACE. 1994. Design of Sheet Pile Walls. U.S. Army Corps of Engineers. Engineer Manual 1110-2-2504. March 31.
- USEPA. 1990. EPA Oversight of Remedial Designs and Remedial Actions Performed by Potentially Responsible Parties, Interim Final. EPA/540/G-90/001. Office of Emergency and Remedial Response. April.
- USEPA. 1995a. Guidance for Scoping the Remedial Design. EPA/540/R-95/025. Office of Solid Waste and Emergency Response. March.
- USEPA. 1995b. Remedial Design/Remedial Action Handbook. EPA 540/R-95/059. Office of Solid Waste and Emergency Response. June.
- USEPA. 2011. Handbook on the Benefits, Costs, and Impacts of Land Cleanup and Reuse. EPA/240/R-11/001. Office of Policy and Office Solid Waste and Emergency Response. October.
- USEPA. 2016. Letter to Mr. Michael Gerdenich, Remediation Senior Specialist, BASF Corporation Re: Review of BASF North Works CMS, 1609 Biddle Avenue, North Works, BASF Corporation, Wyandotte, Michigan 48192-3729. August 26.
- USEPA. 2017. Letter to Mr. Michael Gerdenich, Remediation Senior Specialist, BASF Corporation Re: Mercury Remedial Goal for Groundwater, BASF Corporation North Works, RCRA Corrective Action Site, Wyandotte, Michigan. October 24.
- USEPA. 2018. Letter to Mr. Michael Gerdenich, Remediation Senior Specialist, BASF Corporation Re: EPA Requirements for Corrective Action at the BASF Corporation North Works Wyandotte, MI Facility (EPA ID: MID 064 197 742), EPA Docket No. V-W-011-94. June 5.
- USEPA. 2022. Adaptive Site Management A Framework for Implementing Adaptive Management at Contaminated Sediment Superfund Sites. OLEM Directive Number 9200.1-166. June.
- Waterloo Hydrogeologic. 2002. BASF Wyandotte North Works Corrective Measures Study Groundwater Modeling, Conceptual Hydrogeologic Model and Model Calibration Report. June.

Woodward-Clyde. 1994. RFI Current Conditions Report. BASF Corporation Wyandotte Facility.

Figures

30133323 COORDINATE SYSTEM: NAD 1963 StatePlane Michigan South FIPS 2113 Feet PM BY TYAMMAAN PROJECT NUMBER: TR. T. I 20002 ML 2 0 Md CITY: NOVI, MI DIV: ENV DB: TRY PIC: J. Saing

Appendix A

Preliminary 30% Design Drawings

PRELIMINARY 30% DESIGN DRAWINGS FOR

PERIMETER BARRIER REMEDY

KEY CONTACTS:

OWNER: BASF **1609 BIDDLE AVENUE** WYANDOTTE, MI 48192 CONTACT: MICHAEL GERDENICH TELEPHONE: (734) 324-6298

ENGINEER: ARCADIS OF MICHIGAN, LLC 28550 CABOT DRIVE SUITE 500 NOVI, MI 48377 CONTACT: ANDREA KREVINGHAUS, PE TELEPHONE: (248) 994-2282

REFERENCE: IMAGE 2022 MICROSOFT CORPORATION

LOCATION MAP 2000 GRAPHIC SCALE

SITE ADDRESS:

1609 BIDDLE AVENUE

WYANDOTTE, MI 48192

DRAFT

DATE ISSUED **SEPTEMBER 2022**

INDEX TO DRAWINGS

CIVIL

0154-WYN-SITE-C-101 OVERALL SITE PLAN 0154-WYN-B30-C-102 0154-WYN-E6N-C-103 0154-WYN-E5N-C-105 0154-WYN-D15S-C-106 0154-WYN-C15S-C-107 0154-WYN-SITE-C-301 0154-WYN-SITE-C-302 BULKHEAD CROSS SECTION

PROCESS

0154-WYN-E5N-I-001 0154-WYN-E5N-I-002 0154-WYN-E5N-I-101 0154-WYN-E5N-I-103 0154-WYN-E5N-I-104 0154-WYN-E5N-I-105

MECHANICAL

0154-WYN-E5N-I-106

0154-WYN-E5N-I-107

0154-WYN-E5N-I-108

0154-WYN-E5N-M-101 MECHANICAL PLAN

BASF NORTH WORKS WYANDOTTE, MICHIGAN **ARCADIS PROJECT NO. 30133323**

The Chemical Company

ARCADIS OF MICHIGAN, LLC

- AREA A PROPOSED NORTHERN PERIMETER SHEET PILE BARRIER AND COLLECTION DRAIN ALIGNMENT
- AREA B PROPOSED COLLECTION DRAIN ALIGNMENT
- 0154-WYN-D15N-C-104 AREA C PROPOSED COLLECTION DRAIN ALIGNMENT
 - AREA D PROPOSED BULKHEAD AND COLLECTION DRAIN ALIGNMENT
 - AREA E PROPOSED BULKHEAD, SOIL-CEMENT BARRIER AND COLLECTION DRAIN ALIGNMENT
 - AREA F PROPOSED SOUTHERN PERIMETER SHEET PILE BARRIER AND COLLECTION DRAIN ALIGNMENT
 - SUBSURFACE BARRIER WALL DETAILS SOIL-CEMENT AND SHEET PILE

PIPING & INSTRUMENTATION DIAGRAM LEGEND, SYMBOLS AND ABBREVIATIONS SHEET PIPING & INSTRUMENTATION DIAGRAM LEGEND, SYMBOLS AND ABBREVIATIONS SHEET 2 PROCESS FLOW DIAGRAM

0154-WYN-E5N-I-102 PROCESS FLOW DIAGRAM - MASS BALANCE

PIPING & INSTRUMENTATION DIAGRAM - SUMP PUMPING FLOW HEADERS

- PIPING & INSTRUMENTATION DIAGRAM -CHEMICAL INJECTION AND CLARIFICATION
- PIPING & INSTRUMENTATION DIAGRAM -FILTRATION FEED AND BAG FILTERS
- PIPING & INSTRUMENTATION DIAGRAM GAC VESSELS AND SYSTEM DISCHARGE
- **PIPING & INSTRUMENTATION DIAGRAM CHEMICAL FEED**
- **PIPING & INSTRUMENTATION DIAGRAM -SOLIDS REMOVAL**

LEGEND:

LLLLLLLLLLLLLL

000000000000000000000000000000000000000	PROPOSED SOIL-CEMENT BARRIER					
	APPROXIMATE SITE BOUNDARY		EXISTING BUILDING	NNNN	EXISTING NITROGEN SYSTEM LI	NE
	PROPOSED SHEET PILE WALL	RXXXX	CONFIRMED FORMER BUILDING FOUNDATIONS		EXISTING STEAM SYSTEM LINE	
ILLULULULULULULULULULULULULULULULULULUL	PROPOSED STEEL BULKHEAD		FORMER BUILDING FOUNDATIONS		EXISTING RIVER WATER LINE	
	PROPOSED ANCHOR WALL AND TIERODS		RIP RAP		EXISTING WATER LINE	
	PROPOSED SUMP	586	EXISTING CONTOUR		EXISTING TELEPHONE LINE	
	PROPOSED CONVEYANCE PIPING		EXISTING GAS LINE	-ф-	FIRE HYDRANT	
	PROPOSED COLLECTION DRAIN		EXISTING FIRE WATER HIGH PRESSURE LINE	\oplus	GATE VALVE W/VALVE BOX	
x	FENCE	EEE	EXISTING POWER AND LIGHTING SYSTEM	\bowtie	GATE VALVE	
	WATER BOUNDARY	DDD	EXISTING STORM SEWER LINE		CATCH BASIN / STORM DRAIN	
(SIDEWALK	SSS	EXISTING SANITARY SEWER LINE	-Q-	LIGHT POLE	
	EXISTING SHEET PILE WALL		EXISTING SITE AIR SYSTEM LINE		SIGN	Г
	EXISTING WAKEFIELD WALL		MATCH PLAN			

1. ADDITIONAL INVESTIGATION OF SITE CONDITIONS ARE PROPOSED AS PART OF THE NEXT DESIGN PHASE. ALIGNMENTS OF PROPOSED BARRIERS AND COLLECTION DRAINS SHOWN ARE SUBJECT TO CHANGE BASED ON ADDITIONAL INFORMATION OBTAINED DURING THESE INVESTIGATIONS AND/OR SITE CONDITIONS ENCOUNTERED DURING CONSTRUCTION.

					C)	_	ł	500'			1000'	
					L		GF	RAPH	IIC S	CAL	E		
	1							-					
									-		1		
0	09/06/22	GEC	AK	PRELIN	IINARY DES	IGN (30%)							
REV	DATE	BY	APPROVED		DESCRIPTION		REV	DATE	BY	APPROVE	ED	DESCRIPTION	
ORIC	GINATION		BY	DATE	PROJECT I	NFORMATION		~ -	_		_	D - RA	SE
DRAWN		GE	C		1.O. NO.		ARCADIS						
DES	IGN	AL			PROJ NO.			ARC	ADIS U.S.,	INC.		The Chemical Co	mpany
CHE	CKED	MO	3		ARCADIS PROJ NO.	30133323							
APP	ROVAL		BY	DATE	SITE INFOR	RMATION			OV	ERA	LL S	SITE PLAN	
					SITE								
					PLANT				PERI	MEIE	R BAI	RRIER REMEDY	
					SYSTEM	-			W	YANL	DOTTE	E, MICHIGAN	T prov
					BLDG. NO.				DR/	AWING	NUME	BER	REV
					- 			01	54-W	/YN-	SITE	E-C-101	0
							0	TE	LOCAT	ION	TYPE	NUMBER	-

G BUILDING	N N N	EXISTING NITROGEN SYSTEM LI	NE
IED FORMER BUILDING FOUNDATIONS		EXISTING STEAM SYSTEM LINE	
BUILDING FOUNDATIONS		EXISTING RIVER WATER LINE	
		EXISTING WATER LINE	
GCONTOUR	TTT	EXISTING TELEPHONE LINE	
G GAS LINE	-ф-	FIRE HYDRANT	
G FIRE WATER HIGH PRESSURE LINE	\oplus	GATE VALVE W/VALVE BOX	
G POWER AND LIGHTING SYSTEM	\bowtie	GATE VALVE	
S STORM SEWER LINE		CATCH BASIN / STORM DRAIN	
G SANITARY SEWER LINE	-Ö-	LIGHT POLE	
S SITE AIR SYSTEM LINE		SIGN	D
PLAN			

DB: 5248 300 N SC S DIV/G CUSE, NY 1012/ACCI ITY: SY NUsers DUC

G BUILDING		EXISTING NITROGEN SYSTEM LIN	IE
MED FORMER BUILDING FOUNDATIONS	STST	EXISTING STEAM SYSTEM LINE	
BUILDING FOUNDATIONS		EXISTING RIVER WATER LINE	
	WW	EXISTING WATER LINE	
G CONTOUR	TTT	EXISTING TELEPHONE LINE	
G GAS LINE	- \$ -	FIRE HYDRANT	
G FIRE WATER HIGH PRESSURE LINE	\oplus	GATE VALVE W/VALVE BOX	
G POWER AND LIGHTING SYSTEM	\bowtie	GATE VALVE	
G STORM SEWER LINE		CATCH BASIN / STORM DRAIN	
G SANITARY SEWER LINE	Q	LIGHT POLE	
G SITE AIR SYSTEM LINE		SIGN	D
PLAN		l	

DB: L.POSE 5248-BASF TH CHAND 200 N S źö CITY: SY C:\Users PI OTTF

G BUILDING	NNNN	EXISTING NITROGEN SYSTEM LINE	Ξ
MED FORMER BUILDING FOUNDATIONS	STST	EXISTING STEAM SYSTEM LINE	
BUILDING FOUNDATIONS		EXISTING RIVER WATER LINE	
	WW	EXISTING WATER LINE	
GCONTOUR	TTT	EXISTING TELEPHONE LINE	
G GAS LINE	-¢-	FIRE HYDRANT	
G FIRE WATER HIGH PRESSURE LINE	\oplus	GATE VALVE W/VALVE BOX	
G POWER AND LIGHTING SYSTEM	\bowtie	GATE VALVE	
G STORM SEWER LINE		CATCH BASIN / STORM DRAIN	
G SANITARY SEWER LINE	Q	LIGHT POLE	
G SITE AIR SYSTEM LINE		SIGN	D
PLAN			-

3 BUILDING	NNN	EXISTING NITROGEN SYSTEM LINI	E
MED FORMER BUILDING FOUNDATIONS	STST	EXISTING STEAM SYSTEM LINE	
BUILDING FOUNDATIONS		EXISTING RIVER WATER LINE	
	W	EXISTING WATER LINE	
GCONTOUR	TT	EXISTING TELEPHONE LINE	
G GAS LINE	-¢-	FIRE HYDRANT	
G FIRE WATER HIGH PRESSURE LINE	\oplus	GATE VALVE W/VALVE BOX	
G POWER AND LIGHTING SYSTEM	\bowtie	GATE VALVE	
G STORM SEWER LINE		CATCH BASIN / STORM DRAIN	
G SANITARY SEWER LINE	Q	LIGHT POLE	
G SITE AIR SYSTEM LINE		SIGN	D
ΡΙΑΝ		L	_

DETROIT RIVER

FIRE WATER IMPOUNDMENT

SEALED CONNECTION AT INTERSECTION OF **PROPOSED SOIL-CEMENT BARRIER** AND PROPOSED SHEET PILE WALL

BUILDING	N	N		
IED FORMER BUILDING FOUNDATIONS	5	(s	Ť	-
BUILDING FOUNDATIONS		V	R9#	-
	W			5
CONTOUR	ī	τ	-T	
GAS LINE		-¢-		
FIRE WATER HIGH PRESSURE LINE		\oplus		
POWER AND LIGHTING SYSTEM		\bowtie		
S STORM SEWER LINE		∭⊘		
SANITARY SEWER LINE		ġ.		
SITE AIR SYSTEM LINE		-		

EXISTING NITROGEN SYSTEM LIN	Е
EXISTING STEAM SYSTEM LINE	
EXISTING RIVER WATER LINE	
EXISTING WATER LINE	
EXISTING TELEPHONE LINE	
FIRE HYDRANT	
GATE VALVE W/VALVE BOX	
GATE VALVE	
CATCH BASIN / STORM DRAIN	
LIGHT POLE	
SIGN	Г

BUILDING	NNN	EXISTING NITROGEN SYSTEM LIN	NE
IED FORMER BUILDING FOUNDATIONS		EXISTING STEAM SYSTEM LINE	
BUILDING FOUNDATIONS		EXISTING RIVER WATER LINE	
		EXISTING WATER LINE	
CONTOUR	TTTTT	EXISTING TELEPHONE LINE	
GAS LINE	-\$-	FIRE HYDRANT	
G FIRE WATER HIGH PRESSURE LINE	\oplus	GATE VALVE W/VALVE BOX	
POWER AND LIGHTING SYSTEM	\bowtie	GATE VALVE	
S STORM SEWER LINE		CATCH BASIN / STORM DRAIN	
SANITARY SEWER LINE	Q	LIGHT POLE	
SITE AIR SYSTEM LINE	<u></u>	SIGN	D
PLAN			

BERM		o NOTE: DURIN CONS	JAMES SEALI IG NEX TRUCT	ED CONN T PHASE TION AND	IECTI BAS ADV	ON	DETA	AIL T XIS		ERMIN	ED	
0 REV	09/06/22 GE DATE BY GINATION	C AK APPROVED BY	PRELIMIN DATE	ARY DESIGN (3 SCRIPTION PROJECT INFORM	30%) ATION	GF					\S	
	SIGN A SIGN A CKED N PROVAL	SEC AL AG BY IGN, INCLUDING, BI poration AND ARE No BY BASF Corporation	DATE :	O. NO. PROJ NO. ARCADIS PROJ NO. ARCADIS SITE INFORMATION SITE PLANT SYSTEM BLDG. NO. TO, ALL PATENTED AND DUCED IN WHOLE OR PLINED SUBJECT T	0 PATENTABL				The REA F N PERII CTION I BARRIE TTE, MIC UMBER 15S-C	METER S DRAIN AL R REMED CHIGAN -107	Compar HEET IGNMI Y	ny PILE ENT REV

PARTIAL WALL PROFILE NOT TO SCALE SOIL-CEMENT BARRIER WALL

OUI

PARTIAL WALL PROFILE NOT TO SCALE SHEET PILE BARRIER WALL

LEGEND:

SOIL-CEMENT WALL

SHEET PILE WALL

	FILL
	SAND
	PEAT
	CLAY
<u></u>	APPROXIMATE GROUNDWATER LEVEL
	EXISTING GRADE
	TOP OF WALL

NOTES:

- 1. SOIL TYPES AND SUBSURFACE CONTACTS SHOWN ARE FOR SCHEMATIC PURPOSES ONLY TO SUPPORT THIS PRELIMINARY DESIGN. ACTUAL SUBSURFACE CONDITIONS ENCOUNTERED DURING THE WORK WILL VARY FROM THOSE SHOWN.
- 2. BARRIER WALLS SHALL KEY INTO THE CLAY LAYER BY A MINIMUM OF 3 FEET.
- 3. A VERTICAL HDPE LINER POSITIONED ALONG EDGE OF TRENCH IS ONE OPTION UNDER CONSIDERATION FOR ADDRESSING POTENTIAL FREEZE-THAW IMPACTS TO THE SOIL-CEMENT WALL. ADDITIONAL ALTERNATIVES FOR FROST RESILIENCY WILL BE DEVELOPED AND EVALUATED AS THE WALL DESIGN PROGRESSES AND FINAL SELECTION WILL BE SPECIFIED IN THE FINAL DESIGN PACKAGE.

0	09/06/22	GEC	AK	PRELIN	IINARY DES	SIGN (30%)					_		
REV	DATE	BY	APPROVED		DESCRIPTION	ESCRIPTION		DATE	BY	APPRO	VED	DESCRIPTION	
ORI	GINATION		BY	DATE	PROJECT I	NFORMATION		-			augi -	D .BA	<u>SE</u>
DRA	WN	GE	c		1.O. NO.		- ARCADIS					9F	
DES	IGN	AL			PROJ NO.		ARCADIS U.S., INC. The Chemical Con					mpany	
CHE	CKED	MO	3		ARCADIS PROJ NO.	30133323					11 9 11		
APP	ROVAL		BY	DATE	SITE INFOR	RMATION	3	0000					
					SITE			SOIL	-CE	ME	NT A	ND SHEET PI	LE
					PLANT			1	PERI	MET	ER BAR	RRIER REMEDY	
		+		1	SYSTEM				W	YAN	DOTTE	E, MICHIGAN	15
_		+		1	BLDG. NO.	+[DR/	AWIN	g nume	BER	REV
							0154-WYN-SIT				-SITE	E-C-301	0
							S	ITE	LOCAT	ION	TYPE	NUMBER	

ΰü

		INST	RUMENT IDE	N	NTIFICATION L	EGEND
Г			b		-	SUCCEEDING
ł		MEASURED OR	NODIFIER	Н	READOUT OR	OUTP
ŀ		INITIATING VARIABLE,	MODIFIER	Н	PASSIVE FUNCTION	FUNCT
ł	B	BURNER FLAME		Η	NOT USED	NOT U
ſ	С			Π	· ·	CONT
ł	D	DENSITY (MASS) OR		Η		
ł	F	SPECIFIC GRAVITY	DITERENTIAL	Н	PRIMARY FLEMENT	
t	F	FLOW RATE	RATIO (FRACTION)			
I	G	INTRUSION			GLASS GAGE (UNCALIBRATED)	
İ	н			Π		
ł		CURRENT		Η		
ŀ	1	(ELECTRICAL)	CO.411	Ц	INDICATE	
ł	J	TIME OR TIME	SCAN	Н	9	
ŀ	ĸ	SCHEDULE		Ц		CONTROL
ł	L 14	MOISTURE OR		Η		
ŀ	м	HUMIDITY		Ц		
	Ν	SEQUENCE, STRATEGY			NOT USED	NOT U
ſ	0	NOT USED			ORIFICE (RESTRICTION)	
ł	P	PRESSURE OR		Η	POINT	PIII
ł	- #39 2011	VACUUM	INTEGRATE OR	Н	(TEST CONNECTION)	1.02
ļ	Q	QUANTITY	TOTALIZE	Ц		
ł	R	RADIOACTIVITY	SAFETY	Η	-	SWIT
ł	T	TEMPERATURE	SALLI	Η		TRANS
ļ	U	MULTIVARIABLE			MULTIFUNCTION	MULTIFUN
I	۷	VIBRATION				OR LO
ŀ	W	WEIGHT OR FORCE			WELL	UNCLAS
ł	Y	EVENT STATUS	X AXIS Y AXIS	Н	UNCLASSIFIED	RELAY OR
İ	z	POSITION				DRIVE, ACT UNCLASSIFI
			······································		BASE INS	STRUME
	X#	FIELD I/O POINT	O DISPLAY		XXX ### IN	STRUMENT (
	X#	XX SOFT I/O POINT F HH DISPLAY (BROKEN	FOR SHARED VIDEO LINE)		—(HSS)— S/	AFETY PULL
	K	SOFTWARE INTERL	OCKS/LOGIC RY LOCATION.		ZS BE	ELT ALIGNME
		SOFTWARE INTERL	OCKS/LOGIC DARY LOCATION.		FR AR FF	& AR TWO
	(#	INSTRUMENT ON F (BROKEN LINE). A DEACTIVATES CON SWITCHES AT PRE Δ DIFFERENCE > HIGH SELEC < LOW SELEC P/I PNEUMATIC, I/I CURRENT/C (REPEATER) Σ SUMMATION AV AVERAGE	REAR OF PANEL CTIVATES AND ITROL AND/OR ALAF SET SIGNAL VALUES TOR TOR /CURRENT CONVERTER)	RM S. EF	R H1 R H1 R H1 R H1 R H1 R H1 R H1 R H1	JPERSCRIPTS 14-METHANE 2-CHLORINE 0MB-COMBUS 0-DISSOLVED 0CI3-FERRIC 2S-HYDROGE 3P04-PHOSP 2S04-SULFU 02S205-SOD
		% RATIO			411-	ORIFICE F
	XX	INSTRUMENT IDEN X SHEET FOR INSTRUCES LEGEND AND NUM	UMENT IDENTIFICATION BERING SYSTEM)	IS DN		VENTURI
	##	CONTROL STRATE	GY NUMBER IN			
	۵	INPUT (DISCRETE)				FLUME
	V	OUTPUT (DISCRETI	E)			
	,	OUTPUT (ANALOG))			MAGNE II
	(XX ##	FIELD INSTRUMENT REQUIRED LOCALL	T. POWER SUPPLY Y WHERE SHOWN.			ULTRASO

	10:38 AN	
	8/29/2022	
	PLOTTED:	
	BLE: F	
	ISTYLETAI	
	: PLOT	
	PAGESETUP	
	S TECH)	
	24.2S (LM	
	ACADVER:	
	2 9:48 AM	
	D: 8/29/202	
	01 SAVEL	
	YN-E5N-1-0	
	JT: 0154-W	
	vg LAYOU	
	001-PFD.dv	
REF*	S-DESIGN-(
V=*;OFF=*F	WG/GWTS	
YR:(Opt)ON	Process/E	
NEEKS L	les/01 - WII	
PM/TM: D.	s\Project Fi	
ENAUER	North Work	
DB: L.POSI	5248-BASF	
P: IM/DV	AUS-30005	
DIV/GROU	ocs/Arcadis/	DRAKANTH
USE, NY	012\ACCDc	TH. CHAND
Y: SYRAC	Users/cti01	THORWA
E	1:0	3

	ABBREVIATIONS	PANEL DEVICE SYMBOLS	Ι
LETTERS JT ION MODIFIER SED NOT USED ROL CLOSED ROL CLOSED HIGH HIGH STATION LOW MIDDLE OR INTERMEDIATE SED NOT USED OPEN SE OPEN SE OPEN SE OPEN SE OPEN SE OPEN SE OPEN SE OPEN SE DUNCLASSIFIED CH SIFIED UNCLASSIFIED COMPUTE UVER SIFIED UNCLASSIFIED COMPUTE UVER SIFIED UNCLASSIFIED COMPUTE UVER SIFIED UNCLASSIFIED COMPUTE UNCLASSIFIED COMPUTE COMPUTE UNCLASSIFIED COMPUTE COMP	ABBRE VIATIONS CU FT GAC GALON CALLON CALLON PMC HON EXCHANCE NA NON-DETECT PHC PH CONTROL Y0 YARD CARDON CONTROL Y0 YARD NON-DETECT PHC PH CONTROL Y0 YARD INTERCONNECTING LINES WITH DOT INDICATES ROUTING OF THE SAME SIGNAL. C INTERCONNECTING LINES WITH DOT INDICATES ROUTING OF THE SAME SIGNAL. 1 INTERCONNECTING LINES WITH DOT INDICATES ROUTING OF THE SAME SIGNAL. 1 INTERCONNECTING LINES WITHOUT DOT INDICATES ROUTING OF THE SAME SIGNAL. 1 INTERCONNECTING LINES WITHOUT DOT INDICATES ROUTING OF MORE THAN ONE SIGNAL. 1 INSTRUMENT AIR SUPPLY 120V 120V 120V AC POWER SUPPLY 24V 24V 24V DC POWER SUPPLY	PANEL DEVICE SYMBOLS	BIOP C1 DI CPVC FRP HDPE2 PTFE PEX PVCT PP2 C2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2
(X) FOR ANALYTIC DEVICES: TIBLES OXYGEN CHLORIDE N SULFIDE HORIC ACID RIC ACID UM BISULFITE	120V 120V AC POWER SUPPLY 480V 480V AC POWER SUPPLY 24V 24V DC POWER SUPPLY	LINE IDENTIFICATION	P-F P-F SG SU WWI
FLOW ELEMENT		VALVE & GATE IDENTIFICATION AA-BB-001	ANG CNT DCT DNT FLB MOD
C FLOW ELEMENT		SERVICE DESIGNATION	OC MD

THIS DRAWING AND DESIGN, INCLUDING, BUT NOT LIMITED TO, ALL PATENTED AND PATENTABLE FEATURES SEPARATELY OR COLLECTIVELY SHOWN ARE THE PROPERTY OF BASE Corporation AND ARE NOT TO BE REPRODUCED IN WHOLE OR PART, NOR EMPLOYED FOR ANY PURPOSE OTHER THAN SPECIFICALLY PERMITTED IN WRITING BY BASE Corporation. THIS DRAWING IS LOANED SUBJECT TO RETURN ON DEMAND.

SITE LOCATION TYPE NUMBER

	A	F	Т
--	---	---	---

				221	12.9 <u>1</u>	
	PIPING AND MISCEL	LANEOU	IS SYMBOLS		INSTRUMEN	NTATION
	SAMPLE CONNECTION	\rightarrow	- REDUCER	17. 1	M	
KH OR KH	STRAINER (Y-TYPE)		- UNION			IHS
, , , , , , , , , , , , , , , , , , ,	QUICK DISCONNECT	D	- CONCENTRIC REDUCER		AGITATOR	BASKET ST
	BELLOWS/EXP. JOINT	$\vdash \checkmark$	VACUUM BREAKER USING SWING CHECK VALVE	8		
\sim	FLEX HOSE	Ĵ	SANITARY CONNECTION		S	IEL I
	FLEX HOSE W/ PERMANENT FIXED END AND QUICK DISCONNECT END		(IRI-CLAMP)			EDUCT
	FLEXIBLE HOSE W/ QUICK DISCONNECT END	Δ	SPRAYBALL OR SPRAY NOZ (INSIDE VESSEL)	ZLE		LUGGI
	INSULATION FOR ANTI-SWEAT				\bigcirc	Ø
	INSULATION	FRL	(F) FILTER/(R) REGULATOR, WITH PRESSURE INDICATOR	(L) LUBRICATOR		
	INSULATION BREAK		PSE (RUPTURE DISK)		LOBE PUMP	PERISTALTI
<u> </u>					s	(T)
 	STEAM TRACED	4	PSV (EMERGENCY RELIEF V/	ALVE)	1 1 1	
	ORIFICE PLATE	VB	VACUUM BREAKER (AUTO)		SOLENOID ACTUATOR	STEAM TH
M	FLOW METER	BFP	BACKFLOW PREVENTER			
MM	MASS METER	VE	VENT VALVE (AUTO)			
Т	STEAM TRAP				VERTICAL PRESSURE VESSEL	WEIR G
中	DIAPHRAGM SEAL	cv	PRESSURE/VACUUM CONSER	VATION VENT	PROCESS S	YMBOLS,
	LIGHT AND SIGHT GLASS	CVF	PRESSURE/VACUUM CONSER	VATION VENT		
Я П			DROVINITY SWITCH		₽-	
L I		FLOAT	PROXIMITE SWITCH		ANGLE BODY RELIEF VALVE	ANGLE V
IØI	SIGHT GLASS, 30	Q	FIGHT			5
	SIGHT GLASS, SG	X	FLOAT			P2
			TU 17/50		DIAPHRAGM VALVE	DIVERTER
	PIPELINE SERV	ICES-U	IILTIES			冈
	[SERVI	CE ABBREVIATION			
<u> </u>	ł į	SERVIO	CE		MANUAL DISPENSE	NEEDLE VA
[11] C	WS COOLING WATER SUPPLY	30	N NITROGEN			
12 C	WR COOLING WATER RETURN	31				BALL C
13 D	W WATER-DEMINERALIZED	32	V TO ATMOSHPHERE		SLOPE	VALV
<u>14</u> к	W WATER-COAGULATED	33	TO FLARE			
15 P	W WATER-POTABLE	34				
16 F	W WATER-FIRE PROTECTION	35	SEWER-SANITARY		WATER LEVEL	DIFFUS
17 c	HS CHILLED WATER SUPPLY	36	DP SEWER-PROCESS			
18 c	HR CHILLED WATER RETURN	37	SW SEWER-STORM			
19 s	H STEAM-HIGH PRESSURE	38	D TO GRADE		FOOT VALVE	
20 s	M STEAM-MEDIUM PRESSURE	39	SAMPLE CONNECTION			-
21 s	L STEAM-LOW PRESSURE	40	SAMPLE WITH COOLER	R	49	
22 s	LL STEAM-LOW LOW PRESSURE	41			50	
23		42	HOSE CONNECTION			
24 c	M CONDENSATE-MEDIUM PRESSURE	43	DRAIN CONNECTION			
25 c	L CONDENSATE-LOW PRESSURE	44	VENT CONNECTION			
26		45	PURGE CONNECTION			
27 P	A AIR-PLANT	46	GAS DETECTOR			
E1 5		47				
[29] N	G NATURAL GAS	48	CA CAUSTIC			

D.V N N CITY: SYRACUSE, NY C:\Users\cti01012\ACCD PV· THORWATH CHAN

AND E	QUIPMENT SY	MBOLS					
				-+- DENOTES SPEC. CHANGE	XXX XXX DENOTES AREA CHANGE	E] SLIDE GATE	PNEUMATIC CYLINDER ACTUATOR (SINGLE OR DOUBLE ACTING)
TOR	ELECTRICAL QUICK	FILTER	HEAT EXCHANGER	OVERFLOW POT	HORIZONTAL PRESSURE VESSEL	HOSE BARB	PNEUMATIC DIAPHRAGM ACTUATOR (SPRING OPPOSED OR SINGLE OR DOUBLE ACTING)
D IC PUMP				CHEMICAL DOSING PUMP		M MOTORIZED ACTUATOR	VALVE POSITIONER PNEUMATIC DIAPHRAGM ACTUATOR (WITH VALVE POSITIONER)
RAP		TANK DRAIN	TANK LIGHT	TANK VENT			
GATE	MOTOR			ISO LOOP			HXOXOXC static mixer
VALV	ES AND MISCEL	LANEOUS					
/ALVE	BALANCE VALVE	NORMALLY OPEN BALL VALVE	NORMALLY CLOSED BALL VALVE	GAS CYLINDER	ارمرا BUTTERFLY VALVE		REGULATING SIDE BACK PRESSURE OR PRESSURE REGULATING VALVE
VALVE	DRY QUICK DISCONNECT	ECCENTRIC REDUCER	FLANGED CONNECTIONS WELDED OR SCREWED	FLOW ARROW	FOUR-WAY VALVE	GATE VALVE / KNIFE GATE VALVE	
ALVE		SILENT CHECK VALVE			N SWING CHECK VALVE		PLUG VALVE
J CHECK VE	TWO WAY SOLENOID VALVE	M THREE-WAY VALVE	VALVE POSITIONER AUTO FLOW CONTROL VALVE (WITH MANUAL OVERIDE FOR HAND OPERATION)	INSIDE BUILDING	FA FLAME ARRESTOR		-1>=F DUCK BILL CHECK VALVE
, 	Y	Â					CLEANOUT
JER	URAIN	LUCK	FLOAT SWITCH	HUSE BIB	FIFE END WITH PLUG	FITTING	

INTER DRAWING CONNECTORS

INTER DRAW	NG CONNECTORS
<u></u>	- PIPING SERVICE
WW 001 DRAWING NO. TO OR FROM XXX	PROCESS CONNECTOR
	ORIGIN OR DESTINATION FLOW CONNECTOR NUMBER
	- PIPING SERVICE
WW 001 DRAWING NO. TO OR FROM XXX	INSTRUMENT CONNECTOR
	ORIGIN OR DESTINATION FLOW CONNECTOR NUMBER
LINE	SYMBOLS
PF	IMARY PROCESS LINE
AU	JXILIARY PROCESS LINE
EX	ISTING PROCESS LINE
	STRUMENT AIR
EL	ECTRICAL SIGNAL
Sk	ID BOUNDARY ACKAGED EQUIPMENT
so	FTWARE OR DATA LINE
<u> L </u>	TRAULIC SIGNAL
GENERA	L NOTES

COORDINATE WORK WITH OTHER DRAWINGS AND DISCIPLINES.
 THE SYMBOLS SHOWN ON THIS SHEET ARE STANDARD DESIGNATIONS. NOT ALL SYMBOLS ARE APPLICABLE TO THE INCLUDED DIAGRAMS AND INSTRUMENT TAG NUMBERING SYSTEM.
 NOT ALL PIPING, FITTINGS, AND TANK DETAILS ARE SHOWN. REFER TO PROCESS DRAWINGS FOR ACTUAL DETAILS.
 VALVES ARE SHOWN AS NORMALLY OPEN. NORMALLY CLOSED VALVES HAVE SOLID FILL.

											-		
0	09/06/22	GEC	AK	PRELIN	IINARY DES	GN (30%)							
REV	DATE	BY	APPROVED		DESCRIPTION		REV	DATE	BY	APPR	OVED	DESCRIPTION	
ORIC	GINATION		BY	DATE	PROJECT I	NFORMATION		-	- Kasa	i Nes	in Marian	H .RA	CE
DRA	WN	GE	EC		1.O. NO.		6	AP	RC/	٩D	IS		SE
DES	IGN	MS	8		PROJ NO.			ARC	ADIS U.S.,	INC.		The Chemical Co	mpany
CHE	CKED	R)		ARCADIS PROJ NO.	30133323	P	IPING	AND	INS	TRUM	ENTATION DIAG	RAM
APP	ROVAL		BY	DATE	SITE INFOR	RMATION	L	EGEN	D, SY	MB	OLS, A	ND ABBREVIAT	ONS
					SITE						SHEE	ET 2	
					PLANT				PERI	MET	ER BA	RRIER REMEDY	
		1			SYSTEM				N	/YAN	NDOTT	E, MICHIGAN	
		+-		-	BLDG. NO.	1			DR	AWIN	IG NUME	BER	REV
								01	54-V	٧Y	N-E5	N-I-002	0
		1					SI	TE	LOCAT	ION	TYPE	NUMBER	

DXHI

Image: Street				GAC SKID	1/T-302/T- VESSEL BS EACH															
Image: Construction of the second																				
0 09/06/22 GEC AK PRELIMINARY DESIGN (30%) Image: Constraint of the second sec	 		5																	
REV DATE BY APPROVED DESCRIPTION REV DATE BY DATE PROJECT INFORMATION DRAWN GEC I.O. NO. I.O. NO. Image: Comparison of the compari			5																	
ORIGINATION BY DATE PROJECT INFORMATION DRAWN GEC I.O. NO. Image: Constraint of the constra	 0	09/06/22	GEC		PRELIM	/INARY DESIGN (30%	······································													
DRAWN GEC I.O. NO. MS PROJ NO. DESIGN MS PROJ NO. ARCADIS U.S., INC. The Chemical Company CHECKED RD ARCADIS 3013323 APPROVAL BY DATE SITE INFORMATION PROJINO. Image: Company of the company SITE PROJINO. PROJINO. Image: Company of the company SITE OTAWING NUMBER RI Image: Company of the company SITE Image: Company of the company Image: Company Image: Company<	 0 REV	09/06/22 DATE	GEC	AK	PRELIN	/INARY DESIGN (30% DESCRIPTION) REV	DATE	BY	APPROVED	DESCRIPT	TION								
CHECKED RD ARCADIS PROJNO. 30133323 APPROVAL BY DATE SITE INFORMATION SITE PLANT PERIMETER BARRIER REMEDY WYANDOTTE, MICHIGAN SYSTEM BLDG. NO. DRAWING NUMBER BLDG. NO. SITE 0154-WYN-E5N-I-101 SITE LOCATION SITE LOBARWING AND DESIGN, INCLUDING, BUT NOT LIMITED TO. ALL PATENTED AND PATENTABLE FEATURES SEPARATELY OR COLLECTIVELY SHOWN ARE THE	 0 REV ORIG	09/06/22 DATE	GEC	AK APPROVED BY	PRELIN	AINARY DESIGN (30% DESCRIPTION PROJECT INFORMATIC) REV	DATE	BY		DESCRIPT									
APPROVAL BY DATE SITE INFORMATION PROCESS FLOW DIAGRAM SITE PLANT PERIMETER BARRIER REMEDY PERIMETER BARRIER REMEDY SYSTEM SYSTEM DRAWING NUMBER R BLDG. NO. DRAWING NUMBER R SITE LOCATION TYPE NUMBER THIS DRAWING AND DESIGN, INCLUDING, BUT NOT LIMITED TO. ALL PATENTED AND PATENTABLE FEATURES SEPARATELY OR COLLECTIVELY SHOWN ARE THE	 0 REV ORIGI DRAW DESIG	09/06/22 DATE INATION /N	GEC BY GE	AK APPROVED BY C	PRELIM	AINARY DESIGN (30% DESCRIPTION PROJECT INFORMATIC 1.0. NO. PROJECT INFORMATIC) REV		BY RC/ ADIS U.S.											
SITE PERIMETER BARRIER REMEDY WYANDOTTE, MICHIGAN SYSTEM DRAWING NUMBER BLDG. NO. DRAWING NUMBER BLDG. NO. 0154-WYN-E5N-I-101 SITE LOCATION TYPE THIS DRAWING AND DESIGN, INCLUDING, BUT NOT LIMITED TO. ALL PATENTED AND PATENTABLE FEATURES SEPARATELY OR COLLECTIVELY SHOWN ARE THE	 0 REV ORIGI DRAW DESIG	09/06/22 DATE INATION /N SN KED	GEC BY GE MS RD	AK APPROVED BY C	PRELIN	AINARY DESIGN (30% DESCRIPTION PROJECT INFORMATIC 1.0. NO. PROJ NO. ARCADIS PROJ NO. ARCADIS 30133323) REV	DATE DATE	BY RC/ADIS U.S.		DESCRIPT	TION BASE Ical Compan								
PLANT PERIMETER BARRIER REMEDY WYANDOTTE, MICHIGAN SYSTEM WYANDOTTE, MICHIGAN BLDG. NO. DRAWING NUMBER BLDG. NO. 0154-WYN-E5N-I-101 SITE LOCATION THIS DRAWING AND DESIGN, INCLUDING, BUT NOT LIMITED TO, ALL PATENTED AND PATENTABLE FEATURES SEPARATELY OR COLLECTIVELY SHOWN ARE THE	0 REV ORIG DRAW DESIC CHEC APPR	09/06/22 DATE INATION /N SN KED COVAL	GEC BY GE MS RD	AK APPROVED BY C S D BY	PRELIN DATE DATE	AINARY DESIGN (30% DESCRIPTION PROJECT INFORMATIC I.O. NO. PROJ NO. ARCADIS PROJ NO. 30133323 SITE INFORMATION) REV		BY RC/ ADIS U.S.		DESCRIPT	TION BASE Ical Compan								
SYSTEM DRAWING NUMBER R BLDG. NO. DRAWING NUMBER R O154-WYN-E5N-I-101 O154-WYN-E5N-I-101 (THIS DRAWING AND DESIGN, INCLUDING, BUT NOT LIMITED TO, ALL PATENTED AND PATENTABLE FEATURES SEPARATELY OR COLLECTIVELY SHOWN ARE THE NUMBER	0 REV ORIGI DRAW DESIC CHEC APPR	09/06/22 DATE INATION /N GN KED COVAL	GEC BY GE MS RD	AK APPROVED BY C S D BY	DATE	AINARY DESIGN (30% DESCRIPTION PROJECT INFORMATIC I.O. NO. PROJ NO. ARCADIS PROJ NO. 30133323 SITE INFORMATION SITE) REV		BY RC/ ADIS U.S.		DESCRIPT	TION BASE Ical Compan RAM								
THIS DRAWING AND DESIGN, INCLUDING, BUT NOT LIMITED TO, ALL PATENTED AND PATENTABLE FEATURES SEPARATELY OR COLLECTIVELY SHOWN ARE THE	 0 REV ORIGI DRAW DESIC CHEC	09/06/22 DATE INATION /N SN KED :OVAL	GEC BY GE MS RD	AK APPROVED BY C S D BY	PRELIM	AINARY DESIGN (30% DESCRIPTION PROJECT INFORMATIC I.O. NO. PROJ NO. ARCADIS PROJ NO. ARCADIS PROJ NO. SITE INFORMATION SITE PLANT) REV		BY BY RC/ ADIS U.S. COC PERI											
U154-VVYN-E5N-I-101 (SITE LOCATION TYPE NUMBER	 0 REV ORIGI DRAW DESIG CHEC APPR	09/06/22 DATE INATION /N SN KED :OVAL	GEC BY GE MS RD	AK APPROVED BY C S BY	PRELIN DATE DATE	AINARY DESIGN (30% DESCRIPTION PROJECT INFORMATIC I.O. NO. PROJ NO. ARCADIS PROJ NO. ARCADIS SITE INFORMATION SITE PLANT SYSTEM DUBO NO) REV	DATE PR			DESCRIPT DESCRIPT The Chemi LOW DIAG BARRIER REMI TTE, MICHIGAN JMBER	TION BASE Cal Compan GRAM EDY N								
THIS DRAWING AND DESIGN, INCLUDING, BUT NOT LIMITED TO, ALL PATENTED AND PATENTABLE FEATURES SEPARATELY OR COLLECTIVELY SHOWN ARE THE	0 REV ORIGI DESIC CHEC APPR	09/06/22 DATE INATION /N SN KED :OVAL	GEC BY GE MS RD	AK APPROVED BY C BY	PRELIN DATE DATE	AINARY DESIGN (30% DESCRIPTION PROJECT INFORMATIC I.O. NO. PROJ NO. ARCADIS PROJ NO. ARCADIS PROJ NO. SITE INFORMATION SITE PLANT SYSTEM BLDG. NO.) REV	DATE DATE PR	BY BY RC/ ADIS U.S. PERI V DR		DESCRIPT DESCRIPT The Chemi LOW DIAG BARRIER REMI TTE, MICHIGAN JMBER	TION BASE Ical Compan BRAM EDY N								
THIS DRAWING AND DESIGN, INCLUDING, BUT NOT LIMITED TO, ALL PATENTED AND PATENTABLE FEATURES SEPARATELY OR COLLECTIVELY SHOWN ARE THE	0 REV ORIGI DRAW DESIC CHEC APPR	09/06/22 DATE INATION /N SN KED COVAL	GEC BY GE MS RD	AK APPROVED BY C BY	PRELIN DATE DATE	AINARY DESIGN (30% DESCRIPTION PROJECT INFORMATIC I.O. NO. PROJ NO. ARCADIS PROJ NO. ARCADIS SITE INFORMATION SITE PLANT SYSTEM BLDG. NO.) REV	DATE PR	BY BY RC/ ADIS U.S. PERI V DR 54-\		DESCRIPT DES	TION BASE Ical Compan BRAM EDY N								
USUBLETT DE RASE CAMARINA AND ADE NOT TO DE DESDROBUICES IN UNIONE ON BURN FUND ENDI AUTO AUTO ENDI AUT	0 REV ORIGI DRAW DESIC CHEC APPR	09/06/22 DATE INATION /N SN KED OVAL	GEC BY GE MS RD	AK APPROVED BY C S BY	PRELIN DATE DATE	AINARY DESIGN (30% DESCRIPTION PROJECT INFORMATIC I.O. NO. PROJ NO. ARCADIS PROJ NO. ARCADIS PROJ NO. SITE INFORMATION SITE PLANT SYSTEM BLDG. NO.) REV		BY BY RC ADISUS ADISUS ADISUS ADISUS		DESCRIPT DESCRIPT DESCRIPT The Chemia LOW DIAG BARRIER REMI TTE, MICHIGAN JMBER 5N-I-101	TION BASE Cal Compan GRAM EDY N								
Stream		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
-------------------------	---------------------------	-------------	---------------------------------------	-------------------------------	-------------------------------	--------------------	--------------	---	------------------	-------------------	--------------------------	-------------	----------------	---------------	------------------------	---------------------------------------	-----------	--------------------	-------------	-------------------------------
Description	Units	Groundwater	pH Neutralization Tank Effluent	MetClear Addition Effluent	Flocculation Tank Effluent	Clarifier Effluent	GAC Effluent	IX Effluent	Clarifier Sludge	Settled Sludge	Filter Press Influent	Sludge Cake	EQ Tank Sludge	Sludge Decant	Filter Press Decant	Sulfuric Acid	MetClear	Coagulant	Flocculant	Sludge Thickening Agent
Instantaneous Vol. Flow	gpm	100	101	101	101	101	100	100	0.59	0.83	0.83	0.04	0.68	0.44	0.80	0.1751	0.0018	0.0007	0.0003	0.00007
Volumetric Flow	MGD	0.144	0.145	0.145	0.145	0.145	0.144	0.144	0.001	0.0012	0.0012	0.0001	0.0010	0.0006	0.0011	0.0003	0.000003	0.000001	0.0000	0.0000001
Mass Flow	lb/hr	50,257				50,632	50,335	50,335	300	425	425	24	342	218	401	123	1.00	0.50	0.15	0.08
General Parameters																				
Density	kg/L	1.004	-			1.004	1.004	1.004	1.014	1.019	1.019	1.349	1.004	1.004	1.004	1.40	1.14	1.40	1.20	1.20
Pressure	psi	atm	atm	atm	atm	atm	42	18	4	atm	4	atm	4	atm	atm	13	10	10	11	10
General Water Quality																				
pН	S.U.	11.70	9.00	NA	NA	8.91	8.91	8.91	NA	NA	NA	NA	NA	8.91	8.91	<1	11.10		4.00	4.00
Alkalinity	mg/L as CaCO ₃	930	NA	NA	NA	63.0	NA	NA	NA	NA	NA	NA	NA	63.0	63.0					
Hardness	mg/L as CaCO ₃	2,200	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			(#)		
TSS	mg/L	114	79.8	NA	NA	22.8	NA	NA	15,000	20,000	NA	350,000	5,000	22.8	22.8			2 2		
TDS	mg/L	5,300	NA	NA	NA	5,500	NA	NA	NA	NA	NA	NA	NA	5,500	5,500			·		
COD	mg/L	220	NA	NA	NA	220	NA	NA	NA	NA	NA	NA	NA	220	220			(
BOD	mg/L	40.0	NA	NA	NA	34	NA	NA	NA	NA	NA	NA	NA	34.0	34.0			(
тос	mg/L	29.0	NA	NA	NA	26	ND	ND	NA	NA	NA	NA	NA	26.0	26.0			3 3		
Anions			1000000																	
Chloride	mg/L	2,400	NA	NA	NA	4,100	NA	NA	NA	NA	NA	NA	NA	4,100	4,100		22	1,700		
Sulfate	mg/L	150	NA	NA	NA	1,100	NA	NA	NA	NA	NA	NA	NA	1,100	1,100	950				122
Cations																				
Calcium	mg/L	870	NA	NA	NA	880	NA	NA	NA	NA	NA	NA	NA	880	880		200		<u>1201</u>	<u>122</u>)
Magnesium	mg/L	7.2	NA	NA	NA	5.6	NA	NA	NA	NA	NA	NA	NA	5.60	5.60					
Potassium	mg/L	58.0	NA	NA	NA	60.0	NA	NA	NA	NA	NA	NA	NA	60.0	60.0			-		-
Sodium	mg/L	1,100	NA	NA	NA	1,100	NA	NA	NA	NA	NA	NA	NA	1,100	1,100	i i i i i i i i i i i i i i i i i i i				
Metals																				
Mercury	mg/L	0.00058	NA	0.00042	0.000023	0.000001	NA	NA	NA	0.07	0.07	1.61	NA	0.00	0.00		2770		1005	077
Organics																				
VOCs	mg/L	0.036	NA	NA	NA	0.231	0.102	ND	NA	NA	NA	NA	NA	0.23	0.23			10.000		New York
SVOCs	mg/L	0.075	NA	NA	NA	0.068	0.000	ND	NA	NA	NA	NA	NA	0.07	0.07	185	200	(175)		
PFAS								19 day 19 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -												
PFHxS	ng/L	33	NA	NA	NA	37.0	37.0	ND	NA	NA	NA	NA	NA	37.0	37.0			. .		
PFHxA	ng/L	10	NA	NA	NA	8.5	8.5	ND	NA	NA	NA	NA	NA	8.5	8.5			0.000		
PFOS	ng/L	68	NA	NA	NA	64.0	64.0	ND	NA	NA	NA	NA	NA	64.0	64.0			() -()		2
PFOA	ng/L	12	NA	NA	NA	13.0	13.0	ND	NA	NA	NA	NA	NA	13.0	13.0			() -)		
PFPeA	ng/L	9	NA	NA	NA	6.2	6.2	ND	NA	NA	NA	NA	NA	6.2	6.2					
Chemical Additives				2.2					1			-								
Concentration in Stream	ppm		1,900	20	10/3			1 44			3	-) ==	400,000	1,000,000	1,000,000	2,500	2,500
Additive to Stream			Sulfuric Acid	MetClear	Coagulant/Flocculant				0											
Inputs																				
Potable Water	%			22	522231		<u></u>	199		5 22 %	<u></u>	325			122	22		[2 22]	95.5	95.5

ΰü

A statistical sta

NOTES:

- DATA FOR STREAMS 1 THROUGH 6 BASED ON GROUNDWATER TREATABILITY STUDY.
 FOR DESIGN PURPOSES IT IS ASSUMED NO PFAS TREATMENT WILL OCCUR DURING GAC TREATMENT.
- 3. CONCENTRATIONS IN DECANT FROM SLUDGE TANK AND FILTER PRESS ASSUMED TO BE EQUIVALENT TO CLARIFIER EFFLUENT.
- 4. CHEMICAL DATA FOR STREAMS 15 TO 19 BASED ON SAFETY DATA SHEETS.
- 5. ASSUME 30% OF SOLIDS SETTLE OUT IN EQUALIZATION TANK.
- ASSUME FLOCCULENT AND SLUDGE THICKENER STOCKS ARE 0.25% SOLUTION AND ARE MADE DOWN TO A 0.05% SOLUTION PRIOR TO INJECTION.
- 7. SYSTEM PRESSURES ARE ESTIMATES, SUBJECT TO CHANGE BASED ON FINAL EQUIPMENT SELECTION AND CONFIGURATION.
- 8. DECANT INPUTS TO THE BUILDING SUMP AND RETURNED TO THE EQUALIZATION TANK ARE ASSUMED TO BE NEGLIGIBLE.
- 9. IX AND GAC EFFLUENT pH ASSUMED TO BE EQUAL TO CLARIFIER EFFLUENT.
- 10. GAC EFFLUENT TOTAL VOCS ELEVATED DUE TO TREATABILITY STUDY CONDITIONS NOT EXPECTED TO BE PRESENT IN THE FULL SCALE DESIGN.

										2				
0	09/06/22	GEC	AK	PRELIM		GIGN (30%)	REV	DATE	BY		IVED		DESCRIPTION	
	SINATION		BV	DATE	PROJECT	NEORMATION	NLV.	DATE		1000				CF
DRA	WN	GE	iC		1.0. NO.		6	A F	RC	AD	IS		• D A	JF
DES	IGN	MS	3	1	PROJ NO.			ARCA	ADIS U.S.	, INC.		The	Chemical C	ompany
CHE	CKED	RD)		ARCADIS PROJ NO.	30133323			DDC					
APF	ROVAL		BY	DATE	SITE INFOR	RMATION			PRC	MAA	SFLU			
					SITE					IVIA	133 DA	LAN	UE	
					PLANT				PERI	MET	ER BA	RRIE	R REMEDY	
		+			SYSTEM				V	VYAN	DOTT	E, MIC	CHIGAN	
_		-		+	BLDG. NO.	+E			DR	AWIN	g nume	BER		REV
								01	54-\	NVI	N-E51	N-I-1	02	0
							SI	TE	LOCA	TION	TYPE	-	NUMBER	-

ūυ

D.W N N VCUSE, NY DIV/GRO 01012/ACCDocs/Arcadi /ATH, CHANDRAKANT LO SI

1012/ACCDC E S S

						SU	P-505 JMP PUI	MP MP				
									OFF	SITE DISPO	DSAL	\supset
									1			
0 09/06/22	GEC	AK	PRELIM	IINARY DES	IGN (30%)							
0 09/06/22 REV DATE	GEC	AK	PRELIM	IINARY DES	IGN (30%)	REV	DATE	BY	APPROVED		DESCR	IPTION
0 09/06/22 REV DATE ORIGINATION	GEC	AK APPROVED BY	PRELIM	IINARY DES DESCRIPTION PROJECT IN	IGN (30%)	REV	DATE	BY	APPROVED		DESCRI	
0 09/06/22 REV DATE ORIGINATION DRAWN	GEC BY GEC	AK APPROVED BY C	PRELIM	IINARY DES DESCRIPTION PROJECT II 1.0. NO.	IGN (30%)	REV	DATE	BY RC				IPTION BA
0 09/06/22 REV DATE ORIGINATION DRAWN DESIGN	GEC BY GEC MS	AK APPROVED BY C	PRELIM	IINARY DES DESCRIPTION PROJECT II I.O. NO. PROJ NO. ARCADIS	IGN (30%)	REV	DATE	BY ADIS U.S.				
0 09/06/22 REV DATE ORIGINATION DRAWN DESIGN CHECKED	GEC BY GEC MS RD	AK APPROVED BY C	DATE	IINARY DES DESCRIPTION PROJECT II I.O. NO. PROJ NO. ARCADIS PROJ NO.	IGN (30%) NFORMATION 30133323	REV		BY RC ADIS U.S.		T		
0 09/06/22 REV DATE ORIGINATION DRAWN DESIGN CHECKED APPROVAL	GEC BY GEC MS RD	AK APPROVED BY C BY	PRELIM DATE DATE DATE	IINARY DES DESCRIPTION PROJECT II I.O. NO. PROJ NO. ARCADIS PROJ NO. SITE INFOR	IGN (30%) NFORMATION 30133323 MATION	REV		BY ADIS U.S.		UMEN S REM		
0 09/06/22 REV DATE ORIGINATION DRAWN DESIGN CHECKED APPROVAL	GEC BY GEC MS RD	AK APPROVED BY C	PRELIM DATE DATE	IINARY DES DESCRIPTION PROJECT II I.O. NO. PROJ NO. ARCADIS PROJ NO. SITE INFOR SITE PRO ANT	IGN (30%) NFORMATION 30133323 MATION	REV		BY RC/ ADIS U.S. AND		UMEN S REM BARRI		
0 09/06/22 REV DATE ORIGINATION DRAWN DESIGN CHECKED APPROVAL	GEC BY GEC MS RD	AK APPROVED BY C BY	PRELIM DATE DATE	IINARY DES DESCRIPTION PROJECT II I.O. NO. PROJ NO. ARCADIS PROJ NO. SITE INFOR SITE PLANT SYSTEM	IGN (30%) NFORMATION 30133323 MATION	REV	DATE ARC/ IPING	BY ADIS U.S. AND PERI		UMEN S REM BARRI DTTE. N		
0 09/06/22 REV DATE ORIGINATION DRAWN DESIGN CHECKED APPROVAL	GEC BY GEC MS RD	AK APPROVED BY C BY	PRELIM DATE DATE	IINARY DES DESCRIPTION PROJECT II I.O. NO. PROJ NO. ARCADIS PROJ NO. SITE INFOR SITE PLANT SYSTEM BLDG NO	IGN (30%)	REV	DATE ARC/ IPING	BY ADIS U.S. AND PERI V DR	APPROVED ADIS NC. INSTR SOLIDS METER VYANDO AWING N	UMEN S REM BARRI DTTE, N UMBER		IPTION BA nical Co N DIAO MEDY AN
0 09/06/22 REV DATE ORIGINATION DRAWN DESIGN CHECKED APPROVAL	GEC BY GEC MS RD	AK APPROVED BY C BY	PRELIM DATE DATE	IINARY DES DESCRIPTION PROJECT II I.O. NO. PROJ NO. ARCADIS PROJ NO. SITE INFOR SITE PLANT SYSTEM BLDG. NO.	IGN (30%)	REV		BY ADISUS AND PERI V DR 54-\	APPROVED ADIS INSTR SOLIDS IMETER VYANDO AWING N	UMEN S REM BARRI DTTE, M UMBER E5N-I	DESCRI TATION OVAL ER REM MICHIGA	IPTION BA nical Co N DIAC

SCALE: 3/16" = 1'-0"

ö DB:

\$	1	1	r	-	-
1	ŀ	٩	ľ		

0 REV	09/06/22	GEC		PRELIM	INARY DES	SIGN (30%)	REV	DATE	BY	APPRO	WED	DESCRIPTION	
ORIGINATION		T	BY	DATE	PROJECT I		-		[T.RA	6E	
DRA	WN	GE	C		1.O. NO.		(AR	RC/	٩D	IS	E - Dra	J
DES	IGN	MS	6		PROJ NO.		~	ARC	ADIS U.S.,	INC.	Propulsies	The Chemical Co	mpany
CHE	CKED	R)		ARCADIS PROJ NO.	30133323							
APP	ROVAL		BY	DATE	SITE INFOR	MATION			ME	CH	IANIC	CAL PLAN	
					SITE								
					PLANT				PERIN	METE	ER BAF	RRIER REMEDY	
				1	SYSTEM				W	YAN	DOTTE	, MICHIGAN	
		+			BLDG. NO.	1[DR	AWIN	IG NUME	BER	RE
		+		<u> </u>		1		015	54-W		I-E5N	J-M-101	
		+						010	/ T 11	64.15			
							S	TE	LOCAT	ION	TYPE	NUMBER	-

Appendix B

Design Calculations

DRAFT PRELIMINARY

CALCULATIONS

Subject:	Sheet Pile Design Calculations for New A	nchored Bulkh	lead
	(Preliminary 30% Design)		
Project:	BASF North Works, Wyandotte, Michigan		
Client:	BASF	Project No.:	30005248
Prepared by:	Carsten Becker	Date:	5/9/2022
Checked by:	Liz Pitman	Date:	7/8/2022

OBJECTIVE

The calculations provided herein were performed for the Preliminary 30% Design of a new anchored bulkhead wall along the South Dock at the BASF North Works site in Wyandotte, Michigan. These calculations focus on determining the structural requirements for the headwall, headwall embedment requirements, and anchor forces for the preliminary design of the new anchored bulkhead. Other design components needed for the anchored bulkhead will be provided elsewhere or in subsequent stages of design. Calculation methods used and assumptions made for the Preliminary 30% Design may be adjusted during subsequent stages of design as the design evolves further toward final design. The Preliminary 30% Design calculations are geared toward evaluating feasibility and providing input for estimating construction costs.

BACKGROUND

The proposed anchored bulkhead wall will be installed on the riverside of an existing pier structure along the South Dock. The existing pier structure consists of a concrete deck supported on timber piles. The concrete deck of the existing structure is overlain by several feet of soil. The existing structure is in poor condition and, for the purpose of this design, it is assumed that the timber piles will deteriorate to the point where they will no longer support the concrete deck and overlying soils. Following construction of the proposed bulkhead, the void behind the bulkhead wall and underneath the existing concrete deck will be filled using aggregate fill materials, which will eventually transfer the weight from the concrete deck and overlying soil to the new bulkhead. For the Preliminary 30% Design calculations, the existing structure was not modeled, which is a conservative assumption, as it would currently serve as a relieving platform that reduces the load on the new bulkhead. It is further assumed that dredging to be performed in the river for a separate USEPA-led remediation project will extend to the new bulkhead wall. The assumed dredge elevation along the wall is provided in the Assumptions section below.

Subsurface Conditions and Associated Challenges

The subsurface conditions at the Site, along with physical characteristics of the geologic units are provided in the geotechnical data report for the Site (Arcadis 2021). The subsurface soils predominantly consist of relatively loose and soft soils over bedrock. A relatively thin layer of stiff to very stiff glacial till overlies the bedrock. During the 2020 subsurface investigation, the till was encountered at elevations between approximately 514 feet and 519 feet NAVD88. Bedrock was encountered at relatively shallow depths. Based on the borings drilled in 2020, the top-of-bedrock elevation varies between approximately elevation 509 feet and 516 feet NAVD88.

The combination of soft soils over relatively shallow bedrock provides a challenge in terms of achieving passive resistance for the bulkhead wall. The necessary amount of passive resistance to prevent the toe of the wall from "kicking out" (i.e., excessive movement to the point of wall failure) is typically achieved by increasing sheet pile embedment into the subsurface materials. The shallow bedrock makes this difficult because it is not possible to drive sheet piles into relatively competent bedrock.

For the Preliminary 30% Design calculations, the bedrock was not modeled in the calculations. Instead, the glacial till that overlies the bedrock was extended down beyond the bedrock surface to provide thick layer for pile embedment. It was then assumed that if the calculation results indicate that penetration into bedrock is needed, it may be necessary to embed the wall in the bedrock or drive the piles to the top of the bedrock and then install shear pins to connect the toe of the sheet pile wall to the bedrock. This construction method is described in the main text of the 30% basis of design report.

Groundwater Conditions

During the 2020 subsurface investigation and based on recent monitoring well data, groundwater along the South Dock is at approximately elevation 575 feet IGLD85 (approximately 575.3 feet NAVD88).

It should be noted that, once the barrier walls have been installed and the groundwater treatment system is operating, the groundwater table on the upland side of the bulkhead wall will be controlled by the treatment system.

The assumed groundwater elevations for Preliminary 30% Design are provided in the Assumptions section below.

River Water Surface Elevations

Based on data from the National Oceanic and Atmospheric Administration (NOAA) for NOAA Station 9044030 in Wyandotte, Michigan, the river water levels have varied widely over the years, with a historic monthly low level of 567.7 feet IGLD85 (International Great Lakes Datum of 1985) (568 feet NAVD88 [North American Vertical Datum of 1988]) in March of 1964 and monthly high of 577.0 feet IGLD85 (577.3 feet NAVD88) in June 1973. Over the last 30 years, the average water surface elevation was at approximately 573.3 feet IGLD85 (573.6 feet NAVD 88). The assumed river water surface elevations for Preliminary 30% Design are provided in the Assumptions section below.

ANALYSIS METHODOLOGIES AND GENERAL ASSUMPTIONS

Method of Analysis

For the Preliminary 30% Design calculations, the public domain computer program ProSheet (ArcelorMittal 2012) was used to perform the sheet pile wall analyses. ProSheet uses the Blum theory to calculate

DRAFT PRELIMINARY 30% DESIGN CALCULATIONS

embedment depths, wall deflections, forces, and bending moments using earth pressure theory. Calculations were performed using both, drained and undrained soil shear strength parameters.

Simplifying assumptions regarding the soil stratigraphy were made for this preliminary stage of design to allow use of earth pressure theory (i.e., earth pressure coefficients; refer to Earth Pressure Calculations section below); soil layers were assumed to be horizontal layers and the backfill under the pier structure was not modeled as a separate soil unit. For the Preliminary 30% Design, these are appropriate assumptions, assuming the backfill has higher strength than the site soils and similar unit weight.

For the Preliminary 30% Design, the bedrock was omitted from the model. This approach yielded the required embedment without bedrock. Where the calculations indicated that penetration into bedrock was needed, it was assumed it will be necessary to drive the sheet pile to the top of the bedrock and then install shear pins to connect the toe of the sheet pile wall to the bedrock.

It is anticipated that additional modeling using more sophisticated methods (e.g., p-y, finite element, or similar methods) will be performed during later stages of design to assess the options discussed in the BODR main text, including the use of lightweight backfill and placement of a buttress in front of the bulkhead wall to provide lateral resistance. The more sophisticated methods should also allow a more realistic assessment of the performance of the structure in terms of deflections and ground deformations.

Earth Pressure Calculations

Active and passive earth pressures were used for the design of the enclosure walls. The computer program ProSheet computes Caquot-Kerisel earth pressures based on shear strength and wall friction assumptions (Caquot and Kerisel 1958).

Earth pressures for drained conditions were calculated by multiplying the effective vertical stress of the soil by the appropriate earth pressure coefficient. For drained analyses, the soil's angle of internal friction and an appropriate wall friction angle were used to calculate the earth pressure coefficients. Soil parameters used for design are provided further below in these calculations.

Earth pressures for undrained analyses were calculated as follows:

Active:	$\sigma_a = \sigma'_v - 2s_u$
Passive:	$\sigma_p = \sigma'_v + 2s_u$

Where:

 σ_a = active lateral earth pressure

 σ_p = passive lateral earth pressure

 σ'_v = effective vertical stress

su = undrained shear strength

Using the above equation for calculation of the active earth pressure, the active pressure could become negative at low effective vertical stresses. Where this occurred, the active pressure was assumed to be equal to zero. Undrained shear strength and unit weights used for the soils are provided further below in these calculations.

Calculations of Design Soil Shear Strength for Passive Earth Pressures

For calculation of embedment depths required for wall stability, a factor of safety was applied to the soil strength used for calculation of passive earth pressures. No factors of safety were applied to active earth

pressures. Design shear strength parameters used for calculation of passive earth pressures were calculated as follows:

Undrained Strength: $s_{u,design} = \frac{s_u}{FS_p}$ Drained Strength: $\tan \phi_{design} = \frac{\tan \phi}{FS_p}$

Where:

 ϕ = angle of internal friction (drained strength parameter)

FSp = factor of safety applied to soil strength prior to calculation of passive earth pressures

Factors of Safety

Using guidelines provided in Design of Sheet Pile Walls (USACE 1994), factors of safety for calculation of wall embedment depths were selected based on the loading case, type of loading, and type of soil. The walls were designed using usual, unusual, and extreme loading cases per USACE design procedures (USACE 1994). These loading cases correlate with the likelihood of the load occurring. More severe and less likely loading cases are generally assigned smaller factors of safety than less severe loading cases that occur regularly under normal operating conditions. The factors of safety recommended in the USACE guidelines are provided in Table 1.

Loading Case	Fine-Grained Soils	Free-Draining Soils
Usual	2.0 (Q-Case) 1.5 (S-Case)	1.5 (S-Case)
Unusual	1.75 (Q-Case) 1.25 (S-Case)	1.25 (S-Case)
Extreme	1.5 (Q-Case) 1.1 (S-Case)	1.1 (S-Case)

Table 1. Factors of Safety (FS_p) for Calculation of Wall Embedment Depths (Applied to Passive Pressure)

Notes:

FSp = factor of safety applied to soil strength prior to calculation of passive earth pressures

Q-case = "quick" load application/undrained analysis; factor of safety used with undrained shear strength parameters

S-case = "slow" load application/drained analysis; factor of safety used with drained shear strength parameters

In the calculations presented herein, the Q-case factors of safety were not used as shown in Table 1 and were therefore not applied per the USACE guidelines. A more conservative approach was used because the USACE guidelines do not address the stress path dependence of the undrained shear strength.

Undrained shear strength is often measured in an unconsolidated undrained triaxial compressive shear strength test. This test simulates conditions that are similar to those in the active zone behind a retaining wall. A triaxial extension test would be more suitable for the conditions in the passive zone, in front of the sheet pile wall. In this zone, the undrained shear strength is equal to approximately one half of the strength under triaxial compression (Terzaghi, Peck, and Mesri 1996). Accordingly, the undrained shear strengths on

the passive side for the calculations presented herein were taken as approximately one half of the undrained strength in triaxial compression.

Using these reduced strengths with the Q-case factors of safety in Table 1 would results in overly conservative wall embedment depths. Instead, the S-case factors of safety were used for the Q-case, which results in equivalent Q-case factors of safety of 3, 2.5, and 2.2 for the usual, unusual, and extreme cases, respectively, indicating an overall more conservative approach than what is recommended in the 1994 USACE guidance.

Forces and Moments for Structural Design

To avoid compounding factors of safety, the structural components (i.e., the sheet pile sections) were designed using a factor of safety of 1 on the soil strengths to calculate the forces and moments with the factor of safety applied to the structural steel strength. To calculate required embedment depths, the analyses were then repeated, applying the appropriate factor of safety on the passive earth pressure side.

Allowable Stresses for Steel Sheet Piling

Allowable stresses for steel for usual loading conditions were calculated per USACE design procedures (USACE 1994) as follows:

 $f_b = 0.5 f_y$ (combined bending and axial load)

 $f_v = 0.33 f_y$ (shear)

For the unusual loading conditions, the allowable stress equations were increased 33% above that for usual loading conditions:

 $f_b = 1.33 (0.5 f_y) = 0.67 f_y$

For the extreme loading conditions, the allowable stress equations were increased 75% above that for usual loading conditions:

 $f_b = 1.75 (0.5 f_y) = 0.875 f_y$

Where:

f_b = combined bending and axial load

fv = shear stress

 f_y = yield stress of the steel

Specifications for Structural Steel

The selected steel grade for sheet piles is American Society for Testing and Materials A572 – Grade 50. This grade is a standard grade.

Wall Deflection Limitations

No wall deflection limitations were used for the Preliminary 30% Design. The performance of the wall was strictly based on achieving stability and structural integrity. Wall performance in terms of deflections and ground deformations will be assessed during later stages of design using more sophisticated methods (refer to Method of Analysis section above).

ASSUMPTIONS

Design Cross Section

The design cross section used for the Preliminary 30% Design calculations is shown on Figure 1. Figure 1 shows the assumed geometry for the bulkhead wall and subsurface stratigraphy. Note that the backfill behind the proposed bulkhead wall was not modeled. Instead, the existing site soils were extended laterally to the bulkhead wall (refer to Method of Analysis section).

Soil Parameters

Engineering properties of the geologic units were estimated based on in-situ test and laboratory test data in conjunction with engineering judgment as well as guidance provided in textbooks and design manuals (e.g., Terzaghi, Peck, and Mesri 1996 and USACE 1994). The soil parameters that were used in the calculations are provided in Table 2.

Geologic Unit	γ (pcf)	γ' (pcf)	φ' (°)	c' (psf)	δ (°)	Su (psf)
Existing Fill	120	57.6	28	0	14	
Very Soft Silt (Alluvium)	110	47.6	25	0	8	300
Loose to Medium Dense Sand (Lacustrine)	125	62.6	32	0	16	
Soft Silty Clay (Lacustrine) – Active Side	110	47.6	27	0	9	700
Soft Silty Clay (Lacustrine) – Passive Side	110	47.6	27	0	9	300
Glacial Till – Active Side	135	72.6	28	500	12	2,000
Glacial Till – Passive Side	135	72.6	28	500	12	1,000
Bedrock ^a						

Table 2. Design Soil Parameters

Footnotes:

^a The bedrock was not modeled in ProSheet. Instead, the glacial till was extended down beyond the bedrock surface to provide a thick layer for pile embedment. Calculated sheet pile lengths that exceeded the length available between the top of the wall and the top of bedrock indicate that the wall either needs to be bolted to the underlying rock or embedded into the rock (refer to Method of Analysis section).

Symbols:

 γ = total unit weight

 γ' = submerged unit weight

 ϕ ' = effective friction angle (drained shear strength)

° = degrees

Initialisms:

psf = pounds per square foot

pcf = pounds per cubic foot

c' = effective cohesion (drained shear strength)

 δ = wall interface friction angle

 s_u = undrained shear strength

Surcharge Load

To represent temporary live loads due to access by vehicles and light construction or maintenance equipment during the lifetime of the bulkhead structure, a uniform surcharge load of 250 pounds per square foot (psf) was applied in all of the loading cases.

Hydrostatic Loads

In addition to lateral earth pressures and surcharge loads, hydrostatic loads were used for the 30% headwall design with increasing water level differentials for usual, unusual, and extreme loading cases. The hydrostatic load assumptions are provided in Table 3. Additional information regarding the ground water conditions and river water surface elevations at the Site is provided in the Background section above.

Engineering judgment was used to select appropriate elevations for each of the loading cases. For the Preliminary 30% Design, the groundwater treatment system was assumed to keep the groundwater level slightly below the river water surface elevation to maintain an inward groundwater gradient. This scenario is reflected in the "usual loading case". For the usual case, it was assumed that there is no water level differential and the net hydrostatic pressure on the wall will be zero. The unusual and extreme loading cases reflect two levels of treatment system malfunction with relatively high assumed groundwater levels and low assumed river water levels.

Table	3.	Hydrostatic	Load	Assumptions	
-------	----	-------------	------	-------------	--

Loading Case	Groundwater Surface Elevation (feet NAVD88)	River Water Surface Elevation (feet NAVD88)	Water Level Differential (feet)
Usual	574.5	574.5	0
Unusual	575.0	571	4
Extreme	577.0	570.0	7

CALCULATION RESULTS

Calculations were performed for three drained and three undrained load cases. The ProSheet calculations are provided in Attachment 1. Table 4 provides a summary of the results for the six cases, in terms of the minimum required sheet pile length, calculated anchor force, maximum moment in the wall, and the required section modulus for the wall. The critical values are bolted in the table.

Based on the required section modulus, a combination wall consisting of king piles with intermediate sheet piles will be required. The king piles can consist of H-piles or pipe piles. The minimum required sheet pile length exceeds the length available between the top of the wall and the top of bedrock, which varies between approximately 62 and 69 feet, based on the borings drilled near the alignment of the headwall. Therefore, it will be necessary to either connect the toe of the wall to the bedrock using rock bolts or to embed the king piles into the bedrock through rock socketing.

DRAFT PRELIMINARY 30% DESIGN CALCULATIONS

Table 4. Calculation Results

Analysis Type	Load Case	Minimum Required Sheet Pile Length (ft)	Anchor Force (kips/ft)	Maximum Moment (ft-kips/ft)	Required Section Modulus (in. ³ /ft)
	Usual	62.2	12.7	162.8	78.1
Drained	Unusual	62.7	18.5	254.2	91.0
	Extreme	62.5	21.9	316.0	86.7
	Usual	70.1	20.4	339.2	162.8
Undrained	Unusual	71.7	27.1	466.9	167.3
	Extreme	71.8	30.0	524.8	143.9

Units:

in. = inch/inches ft = foot/feet

kips = kilo pounds force

REFERENCES

Arcadis. 2021. Geotechnical Data Report (Draft). Barrier Wall Pre-Design Investigation. BASF North Works, Wyandotte, Michigan. June 28.

ArcelorMittal. 2012. ProSheet 2.2. Sheet pile analysis computer program developed by ArcelorMittal.

Caquot, A.I., and Kerisel, J.L. 1948. Tables for the calculation of passive pressure, active pressure and bearing capacity of foundations. Published by Gautier-Villar, Paris.

Terzaghi, Peck, Mesri. 1996. Soil Mechanics in Engineering Practice. Third Edition.

USACE. 1994. Design of Sheet Pile Walls. U.S. Army Corps of Engineers. Engineer Manual 1110-2-2504. March 31.

Sheet Pile Design According to Blum-Method

Project Name:	BASF North Works - Bulkhead Wall
Date:	6/10/2022
Author:	Arcadis
Company:	Arcadis
Comment:	Drained / Usual / Embedment

Geodata

	Unit
Sheet Pile Top Level [ft]	0.000
Sheet Pile Tip Level [ft]	62.164
Soil Level in Front [ft]	38.000
Soil Level behind [ft]	0.000
Anchorlevel [ft]	2.000
Water Level in Front [ft]	3.500
Water Level behind [ft]	3.500
Soil Surface Inclination in Front [Deg]	0.000
Soil Surface Inclination behind [Deg]	0.000
Caquot Surcharge in Front [kip/ft2]	0.000
Caquot Surcharge behind [kip/ft2]	0.250
Anchor Inclination [Deg]	0.000
Earth Support	Free

Soil Layers

Layers in Front

	Layer Tip [ft]	Density Moist [kip/ft3]	Density Submerged [kip/ft3]	Kph	Phi [Deg]	Delta [Deg]	Cohesion [kip/ft2]
Layer 1	62.000	0.110	0.048	2.262	18.800	-6.000	0.000
Layer 2	114.000	0.135	0.073	2.433	19.500	-8.000	0.333

Layers behind

	Layer Tip [ft]	Density Moist [kip/ft3]	Density Submerged [kip/ft3]	Kph	Phi [Deg]	Delta [Deg]	Cohesion [kip/ft2]
Layer 1	15.000	0.120	0.058	0.317	28.000	14.000	0.000
Layer 2	26.000	0.110	0.048	0.374	25.000	8.000	0.000
Layer 3	36.000	0.125	0.063	0.267	32.000	16.000	0.000
Layer 4	62.000	0.110	0.048	0.344	27.000	9.000	0.000
Layer 5	114.000	0.135	0.073	0.322	28.000	12.000	0.500

Pile Check

		Depth [ft]	l
Name	AZ18		
Inertia [in4/ft]	250.439		
Modulus [in3/ft]	33.480		
Area [in2/ft]	7.106		
Mass [lbs/ft2]	24.189		
Steel Grade [lb/in2]	50000.000		
Minimal Moment [kipft/ft]	-202.014	29.281	
Maxmimal Moment [kipft/ft]	0.209	2.000	
Normal Forces at Max. Moment [kip/ft]	2.459	29.281	
Normal Forces at Min. Moment [kip/ft]	0.058	2.000	
Deflection at Min. Moment [ft]	-1.332	29.281	1
Deflection at Max. Moment [ft]	0.000	2.000	
Min. Stress at Min. Moment [lb/in2]	-73231.430	29.281	
Max. Stress at Min. Moment [lb/in2]	73923.523	29.281	ľ
Min. Stress at Max. Moment [lb/in2]	-66.688	2.000	Ì
Max. Stress at Max. Moment [lb/in2]	83.134	2.000	
Safety < Req. Safety = 2.000	0.676		
Sheet Pile Top Level [ft]	0.000		
Sheet Pile Tip Level [ft]	62.164		
Sheet Pile Length [ft]	62.164		
Included OverLength [ft]	0.000		
Vertical Equilibrium [kip/ft]	4.697		
Anchor Force (horiz.) [kip/ft]	-12.661		

Earth Pressure Diagram

Water Pressure Diagram

Total Pressure Diagram

Cross Force Diagram

Moment Diagram

Sheet Pile Design According to Blum-Method

Project Name:	BASF North Works - Bulkhead Wall
Date:	6/10/2022
Author:	Arcadis
Company:	Arcadis
Comment:	Drained / Usual / Structural Demand

Geodata

	Unit
Sheet Pile Top Level [ft]	0.000
Sheet Pile Tip Level [ft]	55.225
Soil Level in Front [ft]	38.000
Soil Level behind [ft]	0.000
Anchorlevel [ft]	2.000
Water Level in Front [ft]	3.500
Water Level behind [ft]	3.500
Soil Surface Inclination in Front [Deg]	0.000
Soil Surface Inclination behind [Deg]	0.000
Caquot Surcharge in Front [kip/ft2]	0.000
Caquot Surcharge behind [kip/ft2]	0.250
Anchor Inclination [Deg]	0.000
Earth Support	Free

Soil Layers

Layers in Front

	Layer Tip [ft]	Density Moist [kip/ft3]	Density Submerged [kip/ft3]	Kph	Phi [Deg]	Delta [Deg]	Cohesion [kip/ft2]
Layer 1	62.000	0.110	0.048	3.498	27.000	-9.000	0.000
Layer 2	114.000	0.135	0.073	3.997	28.000	-12.000	0.500

Layers behind

	Layer Tip [ft]	Density Moist [kip/ft3]	Density Submerged [kip/ft3]	Kph	Phi [Deg]	Delta [Deg]	Cohesion [kip/ft2]
Layer 1	15.000	0.120	0.058	0.317	28.000	14.000	0.000
Layer 2	26.000	0.110	0.048	0.374	25.000	8.000	0.000
Layer 3	36.000	0.125	0.063	0.267	32.000	16.000	0.000
Layer 4	62.000	0.110	0.048	0.344	27.000	9.000	0.000
Layer 5	114.000	0.135	0.073	0.322	28.000	12.000	0.500

Pile Check

		Depth [ft]	l
Name	AZ18		
Inertia [in4/ft]	250.439		
Modulus [in3/ft]	33.480		
Area [in2/ft]	7.106		
Mass [lbs/ft2]	24.189		
Steel Grade [lb/in2]	51468.883		
Minimal Moment [kipft/ft]	-162.807	26.820	
Maxmimal Moment [kipft/ft]	0.209	2.000	
Normal Forces at Max. Moment [kip/ft]	2.083	26.820	
Normal Forces at Min. Moment [kip/ft]	0.058	2.000	
Deflection at Min. Moment [ft]	-0.853	26.820	1
Deflection at Max. Moment [ft]	0.000	2.000	
Min. Stress at Min. Moment [lb/in2]	-58695.098	26.820	
Max. Stress at Min. Moment [lb/in2]	59281.301	26.820	ľ
Min. Stress at Max. Moment [lb/in2]	-66.688	2.000	Ì
Max. Stress at Max. Moment [lb/in2]	83.134	2.000	
Safety < Req. Safety = 2.000	0.868		
Sheet Pile Top Level [ft]	0.000		
Sheet Pile Tip Level [ft]	55.225		
Sheet Pile Length [ft]	55.225		
Included OverLength [ft]	0.000		
Vertical Equilibrium [kip/ft]	2.784		
Anchor Force (horiz.) [kip/ft]	-11.166		

Earth Pressure Diagram

Total Pressure Diagram

Cross Force Diagram

Moment Diagram

Sheet Pile Design According to Blum-Method

Project Name:	BASF North Works - Bulkhead Wall
Date:	6/10/2022
Author:	Arcadis
Company:	Arcadis
Comment:	Drained / Unusual / Embedment

Geodata

	Unit
Sheet Pile Top Level [ft]	0.000
Sheet Pile Tip Level [ft]	62.689
Soil Level in Front [ft]	38.000
Soil Level behind [ft]	0.000
Anchorlevel [ft]	2.000
Water Level in Front [ft]	7.000
Water Level behind [ft]	3.000
Soil Surface Inclination in Front [Deg]	0.000
Soil Surface Inclination behind [Deg]	0.000
Caquot Surcharge in Front [kip/ft2]	0.000
Caquot Surcharge behind [kip/ft2]	0.250
Anchor Inclination [Deg]	0.000
Earth Support	Free

Soil Layers

Layers in Front

	Layer Tip [ft]	Density Moist [kip/ft3]	Density Submerged [kip/ft3]	Kph	Phi [Deg]	Delta [Deg]	Cohesion [kip/ft2]
Layer 1	62.000	0.110	0.048	2.687	22.200	-7.200	0.000
Layer 2	114.000	0.135	0.073	2.953	23.000	-9.600	0.400

Layers behind

	Layer Tip [ft]	Density Moist [kip/ft3]	Density Submerged [kip/ft3]	Kph	Phi [Deg]	Delta [Deg]	Cohesion [kip/ft2]
Layer 1	15.000	0.120	0.058	0.317	28.000	14.000	0.000
Layer 2	26.000	0.110	0.048	0.374	25.000	8.000	0.000
Layer 3	36.000	0.125	0.063	0.267	32.000	16.000	0.000
Layer 4	62.000	0.110	0.048	0.344	27.000	9.000	0.000
Layer 5	114.000	0.135	0.073	0.322	28.000	12.000	0.500

Pile Check

		Depth [ft]
Name	AZ18	
Inertia [in4/ft]	250.439	
Modulus [in3/ft]	33.480	
Area [in2/ft]	7.106	
Mass [lbs/ft2]	24.189	
Steel Grade [lb/in2]	51468.883	
Minimal Moment [kipft/ft]	-289.428	29.281
Maxmimal Moment [kipft/ft]	0.209	2.000
Normal Forces at Max. Moment [kip/ft]	2.404	29.281
Normal Forces at Min. Moment [kip/ft]	0.058	2.000
Deflection at Min. Moment [ft]	-1.944	29.281
Deflection at Max. Moment [ft]	0.000	2.000
Min. Stress at Min. Moment [lb/in2]	-105070.758	29.281
Max. Stress at Min. Moment [lb/in2]	105747.508	29.281
Min. Stress at Max. Moment [lb/in2]	-66.688	2.000
Max. Stress at Max. Moment [lb/in2]	83.134	2.000
Safety < Req. Safety = 2.000	0.487	
Sheet Pile Top Level [ft]	0.000	
Sheet Pile Tip Level [ft]	62.689	
Sheet Pile Length [ft]	62.689	
Included OverLength [ft]	0.000	
Vertical Equilibrium [kip/ft]	2.774	
Anchor Force (horiz.) [kip/ft]	-18.494	19 1

Earth Pressure Diagram

Water Pressure Diagram

Total Pressure Diagram

Cross Force Diagram

Moment Diagram

Sheet Pile Design According to Blum-Method

Project Name:	BASF North Works - Bulkhead Wall
Date:	6/10/2022
Author:	Arcadis
Company:	Arcadis
Comment:	Drained / Unusual / Structural Demand

Geodata

	Unit
Sheet Pile Top Level [ft]	0.000
Sheet Pile Tip Level [ft]	58.833
Soil Level in Front [ft]	38.000
Soil Level behind [ft]	0.000
Anchorlevel [ft]	2.000
Water Level in Front [ft]	7.000
Water Level behind [ft]	3.000
Soil Surface Inclination in Front [Deg]	0.000
Soil Surface Inclination behind [Deg]	0.000
Caquot Surcharge in Front [kip/ft2]	0.000
Caquot Surcharge behind [kip/ft2]	0.250
Anchor Inclination [Deg]	0.000
Earth Support	Free

Soil Layers

Layers in Front

	Layer Tip [ft]	Density Moist [kip/ft3]	Density Submerged [kip/ft3]	Kph	Phi [Deg]	Delta [Deg]	Cohesion [kip/ft2]
Layer 1	62.000	0.110	0.048	3.498	27.000	-9.000	0.000
Layer 2	114.000	0.135	0.073	3.997	28.000	-12.000	0.500

Layers behind

	Layer Tip [ft]	Density Moist [kip/ft3]	Density Submerged [kip/ft3]	Kph	Phi [Deg]	Delta [Deg]	Cohesion [kip/ft2]
Layer 1	15.000	0.120	0.058	0.317	28.000	14.000	0.000
Layer 2	26.000	0.110	0.048	0.374	25.000	8.000	0.000
Layer 3	36.000	0.125	0.063	0.267	32.000	16.000	0.000
Layer 4	62.000	0.110	0.048	0.344	27.000	9.000	0.000
Layer 5	114.000	0.135	0.073	0.322	28.000	12.000	0.500

Pile Check

		Depth [ft]	
Name	AZ18		
Inertia [in4/ft]	250.439		
Modulus [in3/ft]	33.480		
Area [in2/ft]	7.106		
Mass [lbs/ft2]	24.189		
Steel Grade [lb/in2]	51468.883		
Minimal Moment [kipft/ft]	-254.161	27.640	
Maxmimal Moment [kipft/ft]	0.209	2.000	Ì
Normal Forces at Max. Moment [kip/ft]	2.154	27.640	Ì
Normal Forces at Min. Moment [kip/ft]	0.058	2.000	ĺ
Deflection at Min. Moment [ft]	-1.500	27.640	ĺ
Deflection at Max. Moment [ft]	0.000	2.000	ĺ
Min. Stress at Min. Moment [lb/in2]	-91948.188	27.640	ĺ
Max. Stress at Min. Moment [lb/in2]	92554.539	27.640	Ì
Min. Stress at Max. Moment [lb/in2]	-66.688	2.000	Ì
Max. Stress at Max. Moment [lb/in2]	83.134	2.000	ĺ
Safety < Req. Safety = 2.000	0.556		
Sheet Pile Top Level [ft]	0.000		
Sheet Pile Tip Level [ft]	58.833		
Sheet Pile Length [ft]	58.833		
Included OverLength [ft]	0.000		
Vertical Equilibrium [kip/ft]	1.538		
Anchor Force (horiz.) [kip/ft]	-17.167		

Earth Pressure Diagram

Water Pressure Diagram

Total Pressure Diagram

Cross Force Diagram

Moment Diagram

Sheet Pile Design According to Blum-Method

Project Name:	BASF North Works - Bulkhead Wall
Date:	6/10/2022
Author:	Arcadis
Company:	Arcadis
Comment:	Drained / Extreme / Embedment

Geodata

	Unit
Sheet Pile Top Level [ft]	0.000
Sheet Pile Tip Level [ft]	62.459
Soil Level in Front [ft]	38.000
Soil Level behind [ft]	0.000
Anchorlevel [ft]	2.000
Water Level in Front [ft]	8.000
Water Level behind [ft]	1.000
Soil Surface Inclination in Front [Deg]	0.000
Soil Surface Inclination behind [Deg]	0.000
Caquot Surcharge in Front [kip/ft2]	0.000
Caquot Surcharge behind [kip/ft2]	0.250
Anchor Inclination [Deg]	0.000
Earth Support	Free

Soil Layers

Layers in Front

	Layer Tip [ft]	Density Moist [kip/ft3]	Density Submerged [kip/ft3]	Kph	Phi [Deg]	Delta [Deg]	Cohesion [kip/ft2]
Layer 1	62.000	0.110	0.048	3.106	24.900	-8.200	0.000
Layer 2	114.000	0.135	0.073	3.483	25.800	-10.900	0.455

Layers behind

	Layer Tip [ft]	Density Moist [kip/ft3]	Density Submerged [kip/ft3]	Kph	Phi [Deg]	Delta [Deg]	Cohesion [kip/ft2]
Layer 1	15.000	0.120	0.058	0.317	28.000	14.000	0.000
Layer 2	26.000	0.110	0.048	0.374	25.000	8.000	0.000
Layer 3	36.000	0.125	0.063	0.267	32.000	16.000	0.000
Layer 4	62.000	0.110	0.048	0.344	27.000	9.000	0.000
Layer 5	114.000	0.135	0.073	0.322	28.000	12.000	0.500

Pile Check

		Depth [ft]
Name	AZ18	
Inertia [in4/ft]	250.439	
Modulus [in3/ft]	33.480	
Area [in2/ft]	7.106	
Mass [lbs/ft2]	24.189	
Steel Grade [lb/in2]	50000.000	
Minimal Moment [kipft/ft]	-334.854	29.051
Maxmimal Moment [kipft/ft]	0.216	2.000
Normal Forces at Max. Moment [kip/ft]	2.174	29.051
Normal Forces at Min. Moment [kip/ft]	0.056	2.000
Deflection at Min. Moment [ft]	-2.227	29.051
Deflection at Max. Moment [ft]	0.000	2.000
Min. Stress at Min. Moment [lb/in2]	-121444.555	29.051
Max. Stress at Min. Moment [lb/in2]	122056.539	29.051
Min. Stress at Max. Moment [lb/in2]	-69.661	2.000
Max. Stress at Max. Moment [lb/in2]	85.418	2.000
Safety < Req. Safety = 2.000	0.410	
Sheet Pile Top Level [ft]	0.000	
Sheet Pile Tip Level [ft]	62.459	
Sheet Pile Length [ft]	62.459	
Included OverLength [ft]	0.000	
Vertical Equilibrium [kip/ft]	0.831	
Anchor Force (horiz.) [kip/ft]	-21.889	

Earth Pressure Diagram

Water Pressure Diagram

Total Pressure Diagram

Cross Force Diagram

Moment Diagram

Sheet Pile Design According to Blum-Method

SF North Works - Bulkhead Wall
0/2022
adis
adis
ained / Extreme / Structural Demand

Geodata

	Unit
Sheet Pile Top Level [ft]	0.000
Sheet Pile Tip Level [ft]	60.900
Soil Level in Front [ft]	38.000
Soil Level behind [ft]	0.000
Anchorlevel [ft]	2.000
Water Level in Front [ft]	8.000
Water Level behind [ft]	1.000
Soil Surface Inclination in Front [Deg]	0.000
Soil Surface Inclination behind [Deg]	0.000
Caquot Surcharge in Front [kip/ft2]	0.000
Caquot Surcharge behind [kip/ft2]	0.250
Anchor Inclination [Deg]	0.000
Earth Support	Free

Soil Layers

Layers in Front

	Layer Tip [ft]	Density Moist [kip/ft3]	Density Submerged [kip/ft3]	Kph	Phi [Deg]	Delta [Deg]	Cohesion [kip/ft2]
Layer 1	62.000	0.110	0.048	3.498	27.000	-9.000	0.000
Layer 2	114.000	0.135	0.073	3.997	28.000	-12.000	0.500

Layers behind

	Layer Tip [ft]	Density Moist [kip/ft3]	Density Submerged [kip/ft3]	Kph	Phi [Deg]	Delta [Deg]	Cohesion [kip/ft2]
Layer 1	15.000	0.120	0.058	0.317	28.000	14.000	0.000
Layer 2	26.000	0.110	0.048	0.374	25.000	8.000	0.000
Layer 3	36.000	0.125	0.063	0.267	32.000	16.000	0.000
Layer 4	62.000	0.110	0.048	0.344	27.000	9.000	0.000
Layer 5	114.000	0.135	0.073	0.322	28.000	12.000	0.500

Pile Check

		Depth [ft]
Name	AZ18	
Inertia [in4/ft]	250.439	
Modulus [in3/ft]	33.480	
Area [in2/ft]	7.106	
Mass [lbs/ft2]	24.189	
Steel Grade [lb/in2]	50000.000	
Minimal Moment [kipft/ft]	-316.004	28.329
Maxmimal Moment [kipft/ft]	0.216	2.000
Normal Forces at Max. Moment [kip/ft]	2.055	28.329
Normal Forces at Min. Moment [kip/ft]	0.056	2.000
Deflection at Min. Moment [ft]	-1.990	28.329
Deflection at Max. Moment [ft]	0.000	2.000
Min. Stress at Min. Moment [lb/in2]	-114435.539	28.329
Max. Stress at Min. Moment [lb/in2]	115014.055	28.329
Min. Stress at Max. Moment [lb/in2]	-69.661	2.000
Max. Stress at Max. Moment [lb/in2]	85.418	2.000
Safety < Req. Safety = 2.000	0.435	
Sheet Pile Top Level [ft]	0.000	
Sheet Pile Tip Level [ft]	60.900	
Sheet Pile Length [ft]	60.900	
Included OverLength [ft]	0.000	
Vertical Equilibrium [kip/ft]	0.282	
Anchor Force (horiz.) [kip/ft]	-21.182	

Earth Pressure Diagram

Water Pressure Diagram

0.000 [ft] (0.000	
0.00		
8.000 [ft]).445
15 000 (81		145
15.000 [it]		.440
19.101 (ft)		.445
100		
26.000 [ft]).445
36 000 (#1		145
30.000 [it]		.445
60.900 [ft]	n	.445
	[kip/ft2]	

Total Pressure Diagram

Cross Force Diagram

Moment Diagram

Sheet Pile Design According to Blum-Method

Project Name:	BASF North Works - Bulkhead Wall
Date:	7/20/2022
Author:	Arcadis
Company:	Arcadis
Comment:	Undrained / Usual / Embedment

Geodata

	Unit
Sheet Pile Top Level [ft]	0.000
Sheet Pile Tip Level [ft]	70.137
Soil Level in Front [ft]	38.000
Soil Level behind [ft]	0.000
Anchorlevel [ft]	2.000
Water Level in Front [ft]	3.500
Water Level behind [ft]	3.500
Soil Surface Inclination in Front [Deg]	0.000
Soil Surface Inclination behind [Deg]	0.000
Caquot Surcharge in Front [kip/ft2]	0.000
Caquot Surcharge behind [kip/ft2]	0.250
Anchor Inclination [Deg]	0.000
Earth Support	Free

Soil Layers

Layers in Front

	Layer Tip [ft]	Density Moist [kip/ft3]	Density Submerged [kip/ft3]	Kph	Phi [Deg]	Delta [Deg]	Cohesion [kip/ft2]
Layer 1	62.000	0.110	0.048	1.000	0.000	0.000	0.200
Layer 2	114.000	0.135	0.073	1.000	0.000	0.000	0.667

Layers behind

	Layer Tip [ft]	Density Moist [kip/ft3]	Density Submerged [kip/ft3]	Kph	Phi [Deg]	Delta [Deg]	Cohesion [kip/ft2]
Layer 1	15.000	0.120	0.058	0.317	28.000	14.000	0.000
Layer 2	26.000	0.110	0.048	1.000	0.000	0.000	0.300
Layer 3	36.000	0.125	0.063	0.267	32.000	16.000	0.000
Layer 4	62.000	0.110	0.048	1.000	0.000	0.000	0.700
Layer 5	114.000	0.135	0.073	1.000	0.000	0.000	2.000

Pile Check

		Depth [ft]
Name	AZ18	
Inertia [in4/ft]	250.439	
Modulus [in3/ft]	33.480	
Area [in2/ft]	7.106	
Mass [lbs/ft2]	24.189	
Steel Grade [lb/in2]	50000.000	
Minimal Moment [kipft/ft]	-389.589	35.022
Maxmimal Moment [kipft/ft]	0.209	2.000
Normal Forces at Max. Moment [kip/ft]	2.525	35.022
Normal Forces at Min. Moment [kip/ft]	0.058	2.000
Deflection at Min. Moment [ft]	-3.442	35.022
Deflection at Max. Moment [ft]	0.000	2.000
Min. Stress at Min. Moment [lb/in2]	-142391.625	35.022
Max. Stress at Min. Moment [lb/in2]	143102.313	35.022
Min. Stress at Max. Moment [lb/in2]	-66.688	2.000
Max. Stress at Max. Moment [lb/in2]	83.134	2.000
Safety < Req. Safety = 1.500	0.349	
Sheet Pile Top Level [ft]	0.000	
Sheet Pile Tip Level [ft]	70.137	
Sheet Pile Length [ft]	70.137	
Included OverLength [ft]	0.000	
Vertical Equilibrium [kip/ft]	2.710	
Anchor Force (horiz.) [kip/ft]	-20.447	

Earth Pressure Diagram

Water Pressure Diagram

Total Pressure Diagram

Cross Force Diagram

Moment Diagram

Sheet Pile Design According to Blum-Method

Project Name:	BASF North Works - Bulkhead Wall
Date:	7/20/2022
Author:	Arcadis
Company:	Arcadis
Comment:	Undrained / Usual / Structural Demand

Geodata

	Unit
Sheet Pile Top Level [ft]	0.000
Sheet Pile Tip Level [ft]	67.610
Soil Level in Front [ft]	38.000
Soil Level behind [ft]	0.000
Anchorlevel [ft]	2.000
Water Level in Front [ft]	3.500
Water Level behind [ft]	3.500
Soil Surface Inclination in Front [Deg]	0.000
Soil Surface Inclination behind [Deg]	0.000
Caquot Surcharge in Front [kip/ft2]	0.000
Caquot Surcharge behind [kip/ft2]	0.250
Anchor Inclination [Deg]	0.000
Earth Support	Free

Soil Layers

Layers in Front

	Layer Tip [ft]	Density Moist [kip/ft3]	Density Submerged [kip/ft3]	Kph	Phi [Deg]	Delta [Deg]	Cohesion [kip/ft2]
Layer 1	62.000	0.110	0.048	1.000	0.000	0.000	0.300
Layer 2	114.000	0.135	0.073	1.000	0.000	0.000	1.000

Layers behind

	Layer Tip [ft]	Density Moist [kip/ft3]	Density Submerged [kip/ft3]	Kph	Phi [Deg]	Delta [Deg]	Cohesion [kip/ft2]
Layer 1	15.000	0.120	0.058	0.317	28.000	14.000	0.000
Layer 2	26.000	0.110	0.048	1.000	0.000	0.000	0.300
Layer 3	36.000	0.125	0.063	0.267	32.000	16.000	0.000
Layer 4	62.000	0.110	0.048	1.000	0.000	0.000	0.700
Layer 5	114.000	0.135	0.073	1.000	0.000	0.000	2.000

Pile Check

		Depth [ft]
Name	AZ18	
Inertia [in4/ft]	250.439	
Modulus [in3/ft]	33.480	
Area [in2/ft]	7.106	
Mass [lbs/ft2]	24.189	
Steel Grade [lb/in2]	51468.883	
Minimal Moment [kipft/ft]	-339.154	32.562
Maxmimal Moment [kipft/ft]	0.209	2.000
Normal Forces at Max. Moment [kip/ft]	2.081	32.562
Normal Forces at Min. Moment [kip/ft]	0.058	2.000
Deflection at Min. Moment [ft]	-2.781	32.562
Deflection at Max. Moment [ft]	0.000	2.000
Min. Stress at Min. Moment [lb/in2]	-123337.109	32.562
Max. Stress at Min. Moment [lb/in2]	123922.703	32.562
Min. Stress at Max. Moment [lb/in2]	-66.688	2.000
Max. Stress at Max. Moment [lb/in2]	83.134	2.000
Safety < Req. Safety = 1.500	0.415	
Sheet Pile Top Level [ft]	0.000	
Sheet Pile Tip Level [ft]	67.610	
Sheet Pile Length [ft]	67.610	
Included OverLength [ft]	0.000	
Vertical Equilibrium [kip/ft]	2.710	
Anchor Force (horiz.) [kip/ft]	-18.867	19 1

Earth Pressure Diagram

Water Pressure Diagram

Total Pressure Diagram

Cross Force Diagram

Moment Diagram

Sheet Pile Design According to Blum-Method

Project Name:	BASF North Works - Bulkhead Wall
Date:	7/19/2022
Author:	Arcadis
Company:	Arcadis
Comment:	Undrained / Unusual / Embedment

Geodata

	Unit
Sheet Pile Top Level [ft]	0.000
Sheet Pile Tip Level [ft]	71.711
Soil Level in Front [ft]	38.000
Soil Level behind [ft]	0.000
Anchorlevel [ft]	2.000
Water Level in Front [ft]	7.000
Water Level behind [ft]	3.000
Soil Surface Inclination in Front [Deg]	0.000
Soil Surface Inclination behind [Deg]	0.000
Caquot Surcharge in Front [kip/ft2]	0.000
Caquot Surcharge behind [kip/ft2]	0.250
Anchor Inclination [Deg]	0.000
Earth Support	Free

Soil Layers

Layers in Front

	Layer Tip [ft]	Density Moist [kip/ft3]	Density Submerged [kip/ft3]	Kph	Phi [Deg]	Delta [Deg]	Cohesion [kip/ft2]
Layer 1	62.000	0.110	0.048	1.000	0.000	0.000	0.240
Layer 2	114.000	0.135	0.073	1.000	0.000	0.000	0.800

Layers behind

	Layer Tip [ft]	Density Moist [kip/ft3]	Density Submerged [kip/ft3]	Kph	Phi [Deg]	Delta [Deg]	Cohesion [kip/ft2]
Layer 1	15.000	0.120	0.058	0.317	28.000	14.000	0.000
Layer 2	26.000	0.110	0.048	1.000	0.000	0.000	0.300
Layer 3	36.000	0.125	0.063	0.267	32.000	16.000	0.000
Layer 4	62.000	0.110	0.048	1.000	0.000	0.000	0.700
Layer 5	114.000	0.135	0.073	1.000	0.000	0.000	2.000

Pile Check

		Depth [ft]
Name	AZ18	
Inertia [in4/ft]	250.439	
Modulus [in3/ft]	33.480	
Area [in2/ft]	7.106	
Mass [lbs/ft2]	24.189	
Steel Grade [lb/in2]	51468.883	
Minimal Moment [kipft/ft]	-501.842	34.202
Maxmimal Moment [kipft/ft]	0.209	2.000
Normal Forces at Max. Moment [kip/ft]	2.325	34.202
Normal Forces at Min. Moment [kip/ft]	0.058	2.000
Deflection at Min. Moment [ft]	-4.588	34.202
Deflection at Max. Moment [ft]	0.000	2.000
Min. Stress at Min. Moment [lb/in2]	-183360.859	34.202
Max. Stress at Min. Moment [lb/in2]	184015.344	34.202
Min. Stress at Max. Moment [lb/in2]	-66.688	2.000
Max. Stress at Max. Moment [lb/in2]	83.134	2.000
Safety < Req. Safety = 1.500	0.280	
Sheet Pile Top Level [ft]	0.000	
Sheet Pile Tip Level [ft]	71.711	6
Sheet Pile Length [ft]	71.711	
Included OverLength [ft]	0.000	
Vertical Equilibrium [kip/ft]	2.657	
Anchor Force (horiz.) [kip/ft]	-27.074	

Earth Pressure Diagram

Water Pressure Diagram

Total Pressure Diagram

Cross Force Diagram

Moment Diagram

Sheet Pile Design According to Blum-Method

Project Name:	BASF North Works - Bulkhead Wall
Date:	7/19/2022
Author:	Arcadis
Company:	Arcadis
Comment:	Undrained / Unusual / Structural Demand

Geodata

	Unit
Sheet Pile Top Level [ft]	0.000
Sheet Pile Tip Level [ft]	69.940
Soil Level in Front [ft]	38.000
Soil Level behind [ft]	0.000
Anchorlevel [ft]	2.000
Water Level in Front [ft]	7.000
Water Level behind [ft]	3.000
Soil Surface Inclination in Front [Deg]	0.000
Soil Surface Inclination behind [Deg]	0.000
Caquot Surcharge in Front [kip/ft2]	0.000
Caquot Surcharge behind [kip/ft2]	0.250
Anchor Inclination [Deg]	0.000
Earth Support	Free

Soil Layers

Layers in Front

	Layer Tip [ft]	Density Moist [kip/ft3]	Density Submerged [kip/ft3]	Kph	Phi [Deg]	Delta [Deg]	Cohesion [kip/ft2]
Layer 1	62.000	0.110	0.048	1.000	0.000	0.000	0.300
Layer 2	114.000	0.135	0.073	1.000	0.000	0.000	1.000

Layers behind

	Layer Tip [ft]	Density Moist [kip/ft3]	Density Submerged [kip/ft3]	Kph	Phi [Deg]	Delta [Deg]	Cohesion [kip/ft2]
Layer 1	15.000	0.120	0.058	0.317	28.000	14.000	0.000
Layer 2	26.000	0.110	0.048	1.000	0.000	0.000	0.300
Layer 3	36.000	0.125	0.063	0.267	32.000	16.000	0.000
Layer 4	62.000	0.110	0.048	1.000	0.000	0.000	0.700
Layer 5	114.000	0.135	0.073	1.000	0.000	0.000	2.000

Pile Check

		Depth [ft]
Name	AZ18	
Inertia [in4/ft]	250.439	
Modulus [in3/ft]	33.480	
Area [in2/ft]	7.106	
Mass [lbs/ft2]	24.189	
Steel Grade [lb/in2]	51468.883	
Minimal Moment [kipft/ft]	-466.935	33.349
Maxmimal Moment [kipft/ft]	0.209	2.000
Normal Forces at Max. Moment [kip/ft]	2.179	33.349
Normal Forces at Min. Moment [kip/ft]	0.058	2.000
Deflection at Min. Moment [ft]	-4.069	33.349
Deflection at Max. Moment [ft]	0.000	2.000
Min. Stress at Min. Moment [lb/in2]	-170225.141	33.349
Max. Stress at Min. Moment [lb/in2]	170838.484	33.349
Min. Stress at Max. Moment [lb/in2]	-66.688	2.000
Max. Stress at Max. Moment [lb/in2]	83.134	2.000
Safety < Req. Safety = 1.500	0.301	
Sheet Pile Top Level [ft]	0.000	
Sheet Pile Tip Level [ft]	69.940	
Sheet Pile Length [ft]	69.940	
Included OverLength [ft]	0.000	
Vertical Equilibrium [kip/ft]	2.657	
Anchor Force (horiz.) [kip/ft]	-25.980	

Earth Pressure Diagram

Water Pressure Diagram

Total Pressure Diagram

Cross Force Diagram

Moment Diagram

Sheet Pile Design According to Blum-Method

Project Name:	BASF North Works - Bulkhead Wall
Date:	7/20/2022
Author:	Arcadis
Company:	Arcadis
Comment:	Undrained / Extreme / Embedment

Geodata

	Unit
Sheet Pile Top Level [ft]	0.000
Sheet Pile Tip Level [ft]	71.810
Soil Level in Front [ft]	38.000
Soil Level behind [ft]	0.000
Anchorlevel [ft]	2.000
Water Level in Front [ft]	8.000
Water Level behind [ft]	1.000
Soil Surface Inclination in Front [Deg]	0.000
Soil Surface Inclination behind [Deg]	0.000
Caquot Surcharge in Front [kip/ft2]	0.000
Caquot Surcharge behind [kip/ft2]	0.250
Anchor Inclination [Deg]	0.000
Earth Support	Free

Soil Layers

Layers in Front

	Layer Tip [ft]	Density Moist [kip/ft3]	Density Submerged [kip/ft3]	Kph	Phi [Deg]	Delta [Deg]	Cohesion [kip/ft2]
Layer 1	62.000	0.110	0.048	1.000	0.000	0.000	0.273
Layer 2	114.000	0.135	0.073	1.000	0.000	0.000	0.909

Layers behind

	Layer Tip [ft]	Density Moist [kip/ft3]	Density Submerged [kip/ft3]	Kph	Phi [Deg]	Delta [Deg]	Cohesion [kip/ft2]
Layer 1	15.000	0.120	0.058	0.317	28.000	14.000	0.000
Layer 2	26.000	0.110	0.048	1.000	0.000	0.000	0.300
Layer 3	36.000	0.125	0.063	0.267	32.000	16.000	0.000
Layer 4	62.000	0.110	0.048	1.000	0.000	0.000	0.700
Layer 5	114.000	0.135	0.073	1.000	0.000	0.000	2.000

Pile Check

		Depth [ft]
Name	AZ18	
Inertia [in4/ft]	250.439	
Modulus [in3/ft]	33.480	
Area [in2/ft]	7.106	
Mass [lbs/ft2]	24.189	
Steel Grade [lb/in2]	50000.000	
Minimal Moment [kipft/ft]	-541.036	33.874
Maxmimal Moment [kipft/ft]	0.216	2.000
Normal Forces at Max. Moment [kip/ft]	2.120	33.874
Normal Forces at Min. Moment [kip/ft]	0.056	2.000
Deflection at Min. Moment [ft]	-4.940	33.874
Deflection at Max. Moment [ft]	0.000	2.000
Min. Stress at Min. Moment [lb/in2]	-197367.625	33.874
Max. Stress at Min. Moment [lb/in2]	197964.344	33.874
Min. Stress at Max. Moment [lb/in2]	-69.661	2.000
Max. Stress at Max. Moment [lb/in2]	85.418	2.000
Safety < Req. Safety = 1.500	0.253	
Sheet Pile Top Level [ft]	0.000	
Sheet Pile Tip Level [ft]	71.810	
Sheet Pile Length [ft]	71.810	
Included OverLength [ft]	0.000	
Vertical Equilibrium [kip/ft]	2.435	
Anchor Force (horiz.) [kip/ft]	-30.021	10 A

Earth Pressure Diagram

Water Pressure Diagram

Total Pressure Diagram

Cross Force Diagram

Moment Diagram

Sheet Pile Design According to Blum-Method

Project Name:	BASF North Works - Bulkhead Wall
Date:	7/20/2022
Author:	Arcadis
Company:	Arcadis
Comment:	Undrained / Extreme / Structural Demand

Geodata

	Unit
Sheet Pile Top Level [ft]	0.000
Sheet Pile Tip Level [ft]	70.990
Soil Level in Front [ft]	38.000
Soil Level behind [ft]	0.000
Anchorlevel [ft]	2.000
Water Level in Front [ft]	8.000
Water Level behind [ft]	1.000
Soil Surface Inclination in Front [Deg]	0.000
Soil Surface Inclination behind [Deg]	0.000
Caquot Surcharge in Front [kip/ft2]	0.000
Caquot Surcharge behind [kip/ft2]	0.250
Anchor Inclination [Deg]	0.000
Earth Support	Free

Soil Layers

Layers in Front

	Layer Tip [ft]	Density Moist [kip/ft3]	Density Submerged [kip/ft3]	Kph	Phi [Deg]	Delta [Deg]	Cohesion [kip/ft2]
Layer 1	62.000	0.110	0.048	1.000	0.000	0.000	0.300
Layer 2	114.000	0.135	0.073	1.000	0.000	0.000	1.000

Layers behind

	Layer Tip [ft]	Density Moist [kip/ft3]	Density Submerged [kip/ft3]	Kph	Phi [Deg]	Delta [Deg]	Cohesion [kip/ft2]
Layer 1	15.000	0.120	0.058	0.317	28.000	14.000	0.000
Layer 2	26.000	0.110	0.048	1.000	0.000	0.000	0.300
Layer 3	36.000	0.125	0.063	0.267	32.000	16.000	0.000
Layer 4	62.000	0.110	0.048	1.000	0.000	0.000	0.700
Layer 5	114.000	0.135	0.073	1.000	0.000	0.000	2.000

Pile Check

		Depth [ft]
Name	AZ18	
Inertia [in4/ft]	250.439	
Modulus [in3/ft]	33.480	
Area [in2/ft]	7.106	
Mass [lbs/ft2]	24.189	
Steel Grade [lb/in2]	50000.000	
Minimal Moment [kipft/ft]	-524.779	33.349
Maxmimal Moment [kipft/ft]	0.216	2.000
Normal Forces at Max. Moment [kip/ft]	1.982	33.349
Normal Forces at Min. Moment [kip/ft]	0.056	2.000
Deflection at Min. Moment [ft]	-4.679	33.349
Deflection at Max. Moment [ft]	0.000	2.000
Min. Stress at Min. Moment [lb/in2]	-191129.891	33.349
Max. Stress at Min. Moment [lb/in2]	191687.656	33.349
Min. Stress at Max. Moment [lb/in2]	-69.661	2.000
Max. Stress at Max. Moment [lb/in2]	85.418	2.000
Safety < Req. Safety = 1.500	0.261	
Sheet Pile Top Level [ft]	0.000	
Sheet Pile Tip Level [ft]	70.990	
Sheet Pile Length [ft]	70.990	
Included OverLength [ft]	0.000	
Vertical Equilibrium [kip/ft]	2.435	
Anchor Force (horiz.) [kip/ft]	-29.506	

Earth Pressure Diagram

Water Pressure Diagram

Total Pressure Diagram

Cross Force Diagram

Moment Diagram

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE: 1-Jun-2022
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE: 2-Jun-2022
SUBJECT: Between T-101 and Clarifier	APPVD. BY: [NAME]	DATE: [DATE]

TBD	Pump ID:
Water	Fluid:
Groundwat	Fluid Description: Enter Fluid Density if Other than Water (lb/ft ³):
	Enter Fluid Viscosity if Other than Water (cp): Enter Vapor Pressure if Other than Water (psi):
30	Minimum Flow Rate (gpm):
60	Design Flow Rate (gpm):
100	Maximum Flow Rate (gpm):
14.7	Pressure of System to be Pumped, Psys1 (psia):
14.7	Pressure of System Discharged, P ₁₉₉₂ (psia):
60	Fluid Temperature (*F):
1	Elevation of Fluid to be Pumped (ft):
2	Pump Impeller Centerline Elevation (ft):
4	Discharge Elevation (ft):
2	Static Head of Discharge Line , H _{st2} (ft):
-1	Suction Lift of Liquid to be Pumped, H _{sr1} (ft):
	Static Head of Liquid to be Pumped, H _{st1} (ft):
5.0%	Safety Factor:
0.592	Vapor Pressure (ft. w.c.):
62.36	Fluid density, p (lb/ft ³):
1.21E-05	Fluid Kinematic Viscosity, ŋ (ft ² /s):
Yes	Include Exit Headloss at Discharge, H _v :

ARCADIS Design & Consultancy for natural and built assets

Flow Rates (gpm):	30.0	40.0	50.0	60.0	73.3	86.6	100.0
(gpd):	42,000	56,000	70,000	84,000	102,620	121,240	140,000
(MGD):	0.04	0.06	0.07	0.08	0.10	0.12	0.14
Optional - Pump Head (ft w.c.):				,			
Optional - NSPH Required (ft w.c.):							

In-Line Equipment Headloss:

	Pressure Los	s Pr	Pressure Loss
Equipment Tag	(ft w.c.)	Equipment Tag	(ft w.c.)
	- 30 - 50 - 50		
Subtotal:	0.0	Subtotal:	0.0 Total Headloss (ft w.c.): 0.0

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE: 1-Jun-202	2
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE: 2-Jun-202	2
SUBJECT: Between T-101 and Clarifier	APPVD. BY: [NAME]	DATE: [DATE]	

Suction Line Segment No. 1 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K	80	
Nominal Pipe Diameter (in):	3	Ball Valve			0.05	2	0.1]	I
Pipe Inner Diameter, ID (in):	2.9	Standard Tee, thru branc	h		1.08	1	1.08]	
Pipe Length, L (ft):	10.00	Standard Elbow, 90°		í	0.54	2	1.08		I
Pipe Material:	SCH 80 - PVC/CPVC						0		I
Pipe Type:	Smooth Pipes (PE and other						0]	I
56355 Log 687 Log	thermoplastics)						0]	I
Roughness, e (ft):	0.000005			2			0		I
e / ID:	2.06897E-05					Total K:	2.3		I
			-		-				
		Segment Flowrate (gpm):	30	40	50	60	73.3	86.6	100
		Eqn. (1) - Velocity, v (ft/s):	1.46	1.94	2.43	2.91	3.56	4.21	4.86
		Eqn. (2) - Reynolds Number, Re:	2.92E+04	3.87E+04	4.85E+04	5.81E+04	7.11E+04	8.41E+04	9.71E+04
		Pipe Friction Factor, f:	0.0237	0.0222	0.0211	0.0203	0.0194	0.0188	0.0182
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0032	0.0054	0.008	0.0111	0.0158	0.0214	0.0276
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	23.05	24.60	25.88	26.90	28.15	29.05	30.01
	Eqn. (4b) Equiva	alent Length of Pipe Segment, L _{eq} (ft):	33.05	34.60	35.88	36.90	38.15	39.05	40.01
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	0.11	0.19	0.29	0.41	0.60	0.84	1.10

Suction Line Segment No. 2 Headloss:

	5	Total K	No. Units	ĸ	51		Valve/Fitting Tag	1	Flow Ratio:
	0	0						3	Nominal Pipe Diameter (in):
		0						2.9	Pipe Inner Diameter, ID (in):
		0		1				0.00	Pipe Length, L (ft):
		0						SCH 80 - PVC/CPVC	Pipe Material:
	1	0]			Smooth Pipes (PE and other	Pipe Type:
		0						thermoplastics)	i.e. 85
		0			*			0.000005	Roughness, e (ft):
		0.0	Total K:					2.06897E-05	e / ID:
									2000007
100	86.6	73.3	60	50	40	30	Segment Flowrate (gpm):		
4.86	4.21	3.56	2.91	2.43	1.94	1.46	Eqn. (1) - Velocity, v (ft/s):		
4 9.71E+04	8.41E+04	7.11E+04	5.81E+04	4.85E+04	3.87E+04	2.92E+04	Eqn. (2) - Reynolds Number, Re:		
0.0182	0.0188	0.0194	0.0203	0.0211	0.0222	0.0237	Pipe Friction Factor, f:		
0.0276	0.0214	0.0158	0.0111	0.008	0.0054	0.0032	loss Across Pipe Segment, H (ft w.c./ft):	Eqn. (3) - Head Lo	
		0.00	0.00	0.00	0.00	0.00	(4a) - Fittings Equivalent Length, LF (ft):	Eqn. (4	
0.00	0.00	0.00					가슴 그렇는 데 그는 것을 알 것 같아. 이 것 같아. 이 것 같아. 이 것 같아. 이 것 같아. 이 것 같아.		
0.00	0.00	0.00	0.00	0.00	0.00	0.00	ivalent Length of Pipe Segment, Leg (ft):	Eqn. (4b) Equiv	

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE:	1-Jun-2022	1
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE:	2-Jun-2022	-
SUBJECT: Between T-101 and Clarifier	APPVD. BY: [NAME]	DATE:	[DATE]	

Suction Line Segment No. 3 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		20	к	No. Units	Total K	80	
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00			í l			0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics)						0		
Roughness, e (ft):	0.000005						0		
e / ID:	1.95567E-05	Si				Total K:	0.0		
		Segment Flowrate (gpm):	30	40	50	60	73.3	86.6	100
		Eqn. (1) - Velocity, v (ft/s):	1.30	1.74	2.17	2.60	3.18	3.76	4.34
		Eqn. (2) - Reynolds Number, Re:	2.75E+04	3.68E+04	4.59E+04	5.49E+04	6.72E+04	7.94E+04	9.17E+04
		Pipe Friction Factor, 1:	0.024	0.0225	0.0214	0.0205	0.0197	0.019	0.0184
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0025	0.0041	0.0061	0.0084	0.0121	0.0163	0.0211
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Suction Line Segment No. 4 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K	35	
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068			î.			0		
Pipe Length, L (ft):	0.00	3					0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
20469 - 81362	thermoplastics)					_	0		
Roughness, e (ft):	0.000005			2			0		
e / ID:	1.95567E-05					Total K:	0.0		
		- 							
		Segment Flowrate (gpm):	30	40	50	60	73.3	86.6	100
		Eqn. (1) - Velocity, v (ft/s):	1.30	1.74	2.17	2.60	3.18	3.76	4.34
		Eqn. (2) - Reynolds Number, Re:	2.75E+04	3.68E+04	4.59E+04	5.49E+04	6.72E+04	7.94E+04	9.17E+04
		Pipe Friction Factor, f:	0.024	0.0225	0.0214	0.0205	0.0197	0.019	0.0184
	Eqn. (3) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0.0025	0.0041	0.0061	0.0084	0.0121	0.0163	0.0211
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leg (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE: 1-Jun-2022
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE: 2-Jun-2022
SUBJECT: Between T-101 and Clarifier	APPVD. BY: [NAME]	DATE: [DATE]

Suction Line Segment No. 5 Headloss:

ARCADIS Design & Consultancy for natural and built assets

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K	50 C	
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics)						0		
Roughness, e (ft):	0.000005						0		
e / ID:	1.95567E-05	55				Total K:	0.0		
		2							
		Segment Flowrate (gpm):	30	40	50	60	73.3	86.6	100
		Eqn. (1) - Velocity, v (ft/s):	1.30	1.74	2.17	2.60	3.18	3.76	4.34
		Eqn. (2) - Reynolds Number, Re:	2.75E+04	3.68E+04	4.59E+04	5.49E+04	6.72E+04	7.94E+04	9.17E+04
		Pipe Friction Factor, f:	0.024	0.0225	0.0214	0.0205	0.0197	0.019	0.0184
	Eqn. (3) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0.0025	0.0041	0.0061	0.0084	0.0121	0.0163	0.0211
	Eqn. (4	 a) - Fittings Equivalent Length, L_F (ft): 	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Suction	Piping Headloss, H _{p(suction)} (ft w.c.):	0.11	0.19	0.29	0.41	0.60	0.84	1.10
	Eqn. (6) Available Net Pos	itive Suction Head, NPSH _a (ft w.c.):	32.25	32.17	32.07	31.95	31.76	31.52	31.26

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE:	1-Jun-2022
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE:	2-Jun-2022
SUBJECT: Between T-101 and Clarifier	APPVD. BY: [NAME]	DATE:	DATE]

Discharge Line Segment No. 1 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K	20 C	1
Nominal Pipe Diameter (in):	3	Ball Valve			0.05	2	0.1		I
Pipe Inner Diameter, ID (in):	2.9			1			0	1	I
Pipe Length, L (ft):	22.25	Standard Elbow, 90°		Ĩ	0.54	1	0.54		I
Pipe Material:	SCH 80 - PVC/CPVC						0		I
Pipe Type:	Smooth Pipes (PE and other	Standard Tee, thru branch			1.08	1	1.08		I
	thermoplastics)	2x3 reducer	A10-5		0.28	1	0.28		I
Roughness, e (ft):	0.000005						0		I
e / ID:	2.06897E-05	Si				Total K:	2.0		
							· · · · · · · · · · · · · · · · · · ·		
		Segment Flowrate (gpm):	30	40	50	60	73.3	86.6	100
		Eqn. (1) - Velocity, v (ft/s):	1.46	1.94	2.43	2.91	3.56	4.21	4.86
		Eqn. (2) - Reynolds Number, Re:	2.92E+04	3.87E+04	4.85E+04	5.81E+04	7.11E+04	8.41E+04	9.71E+04
		Pipe Friction Factor, f:	0.0237	0.0222	0.0211	0.0203	0.0194	0.0188	0.0182
	Eqn. (3) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0.0032	0.0054	0.008	0.0111	0.0158	0.0214	0.0276
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	20.39	21.77	22.91	23.81	24.91	25.71	26.56
	Eqn. (4b) Equiva	lent Length of Pipe Segment, Leq (ft):	42.64	44.02	45.16	46.06	47.16	47.96	48.81
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	0.14	0.24	0.36	0.51	0.75	1.03	1.35

Discharge Line Segment No. 2 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	к	No. Units	Total K	14	
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068			î.			0	1	
Pipe Length, L (ft):							0	1	
Pipe Material:	SCH 40 - Steel			2			0]	
Pipe Type:	Smooth Pipes (PE and other						0]	
50205 2.24 2.26 2.4 0.	thermoplastics}						0]	
Roughness, e (ft):	0.000005			3			0]	
e / ID:	1.95567E-05					Total K:	0.0	1	
		-						•	0.000
		Segment Flowrate (gpm):	30	40	50	60	73.3	86.6	100
		Eqn. (1) - Velocity, v (ft/s):	1.30	1.74	2.17	2.60	3.18	3.76	4.34
		Eqn. (2) - Reynolds Number, Re:	2.75E+04	3.68E+04	4.59E+04	5.49E+04	6.72E+04	7.94E+04	9.17E+04
		Pipe Friction Factor, f:	0.024	0.0225	0.0214	0.0205	0.0197	0.019	0.0184
	Eqn. (3) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0.0025	0.0041	0.0061	0.0084	0.0121	0.0163	0.0211
	Eqn. (4	4a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Ean (E)	Dina Sagmant Handloos H (ft w a):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE:	1-Jun-2022
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE:	2-Jun-2022
SUBJECT: Between T-101 and Clarifier	APPVD. BY: [NAME]	DATE:	[DATE]

Discharge Line Segment No. 3 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K	50 S	
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0		
Pipe Length, L (ft):	0.00			í			0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics)						0		
Roughness, e (ft):	0.000005						0	1	
e / ID:	1.95567E-05	35				Total K:	0.0		
		Segment Flowrate (gpm):	30	40	50	60	73.3	86.6	100
		Eqn. (1) - Velocity, v (ft/s):	1.30	1.74	2.17	2.60	3.18	3.76	4.34
		Eqn. (2) - Reynolds Number, Re:	2.75E+04	3.68E+04	4.59E+04	5.49E+04	6.72E+04	7.94E+04	9.17E+04
		Pipe Friction Factor, f:	0.024	0.0225	0.0214	0.0205	0.0197	0.019	0.0184
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0025	0.0041	0.0061	0.0084	0.0121	0.0163	0.0211
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Discharge Line Segment No. 4 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		6	к	No. Units	Total K	14	
Nominal Pipe Diameter (in):	3			- U			0	1	
Pipe Inner Diameter, ID (in):	3.068			Ĩ			0	1	
Pipe Lenth, L (ft):	0.00						0]	
Pipe Material:	SCH 40 - Steel						0]	
Pipe Type:	Smooth Pipes (PE and other						0	1	
	thermoplastics)						0]	
Roughness, e (ft):	0.000005			3			0]	
e / ID:	1.95567E-05	0				Total K:	0.0		
		- 						•	10 Port 1
		Segment Flowrate (gpm):	30	40	50	60	73.3	86.6	100
		Eqn. (1) - Velocity, v (ft/s):	1.30	1.74	2.17	2.60	3.18	3.76	4.34
		Eqn. (2) - Reynolds Number, Re:	2.75E+04	3.68E+04	4.59E+04	5.49E+04	6.72E+04	7.94E+04	9.17E+04
		Pipe Friction Factor, f:	0.024	0.0225	0.0214	0.0205	0.0197	0.019	0.0184
	Eqn. (3) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0.0025	0.0041	0.0061	0.0084	0.0121	0.0163	0.0211
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE:	1-Jun-2022	
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE:	2-Jun-2022	-
SUBJECT: Between T-101 and Clarifier	APPVD. BY: [NAME]	DATE:	[DATE]	

Discharge Line Segment No. 5 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		20	к	No. Units	Total K	80 -	
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068			1			0		
Pipe Length, L (ft):	0.00			- í			0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics)						0		
Roughness, e (ft):	0.000005						0	1	
e / ID:	1.95567E-05	35				Total K:	0.0		
		-							
		Segment Flowrate (gpm):	30	40	50	60	73.3	86.6	100
		Eqn. (1) - Velocity, v (ft/s):	1.30	1.74	2.17	2.60	3.18	3.76	4.34
		Eqn. (2) - Reynolds Number, Re:	2.75E+04	3.68E+04	4.59E+04	5.49E+04	6.72E+04	7.94E+04	9.17E+04
		Pipe Friction Factor, f:	0.024	0.0225	0.0214	0.0205	0.0197	0.019	0.0184
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0025	0.0041	0.0061	0.0084	0.0121	0.0163	0.0211
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Discharge Line Segment No. 6 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K	14	
Nominal Pipe Diameter (in):	3			- U			0	1	
Pipe Inner Diameter, ID (in):	3.068			Ĩ			0	1	
Pipe Length, L (ft):	0.00						0]	
Pipe Material:	SCH 40 - Steel						0]	
Pipe Type:	Smooth Pipes (PE and other						0	1	
	thermoplastics)						0]	
Roughness, e (ft):	0.000005			3			0]	
e / ID:	1.95567E-05	0				Total K:	0.0		
		- 						•	100 Box 54
		Segment Flowrate (gpm):	30	40	50	60	73.3	86.6	100
		Eqn. (1) - Velocity, v (ft/s):	1.30	1.74	2.17	2.60	3.18	3.76	4.34
		Eqn. (2) - Reynolds Number, Re:	2.75E+04	3.68E+04	4.59E+04	5.49E+04	6.72E+04	7.94E+04	9.17E+04
		Pipe Friction Factor, f:	0.024	0.0225	0.0214	0.0205	0.0197	0.019	0.0184
	Eqn. (3) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0.0025	0.0041	0.0061	0.0084	0.0121	0.0163	0.0211
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE:	1-Jun-2022	
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE:	2-Jun-2022	-
SUBJECT: Between T-101 and Clarifier	APPVD. BY: [NAME]	DATE:	[DATE]	

Discharge Line Segment No. 7 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K	50 S	
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068			1			0		
Pipe Length, L (ft):	0.00						0	1	
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics)						0	1	
Roughness, e (ft):	0.000005						0	1	
e / ID:	1.95567E-05	35				Total K:	0.0		
		Segment Flowrate (gpm):	30	40	50	60	73.3	86.6	100
		Eqn. (1) - Velocity, v (ft/s):	1.30	1.74	2.17	2.60	3.18	3.76	4.34
		Eqn. (2) - Reynolds Number, Re:	2.75E+04	3.68E+04	4.59E+04	5.49E+04	6.72E+04	7.94E+04	9.17E+04
		Pipe Friction Factor, 1:	0.024	0.0225	0.0214	0.0205	0.0197	0.019	0.0184
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0025	0.0041	0.0061	0.0084	0.0121	0.0163	0.0211
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Discharge Line Segment No. 8 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		6	к	No. Units	Total K	14	
Nominal Pipe Diameter (in):	3			- U			0	1	
Pipe Inner Diameter, ID (in):	3.068			1			0]	
Pipe Length, L (ft):	0.00						0]	
Pipe Material:	SCH 40 - Steel						0]	
Pipe Type:	Smooth Pipes (PE and other						0	1	
	thermoplastics)						0]	
Roughness, e (ft):	0.000005			3			0]	
e / ID:	1.95567E-05	0				Total K:	0.0		
		- 						•	10 Port 1
		Segment Flowrate (gpm):	30	40	50	60	73.3	86.6	100
		Eqn. (1) - Velocity, v (ft/s):	1.30	1.74	2.17	2.60	3.18	3.76	4.34
		Eqn. (2) - Reynolds Number, Re:	2.75E+04	3.68E+04	4.59E+04	5.49E+04	6.72E+04	7.94E+04	9.17E+04
		Pipe Friction Factor, f:	0.024	0.0225	0.0214	0.0205	0.0197	0.019	0.0184
	Eqn. (3) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0.0025	0.0041	0.0061	0.0084	0.0121	0.0163	0.0211
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE:	1-Jun-2022	
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE:	2-Jun-2022	
SUBJECT: Between T-101 and Clarifier	APPVD. BY: [NAME]	DATE:	[DATE]	

Discharge Line Segment No. 9 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			К	No. Units	Total K	2.7	
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0]	
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics}						0	1	
Roughness, e (ft):	0.000005				2		0		
e / ID:	1.95567E-05				2	Total K:	0.0		
							0		
		Segment Flowrate (gpm):	30	40	50	60	73.3	86.6	100
		Eqn. (1) - Velocity, v (ft/s):	1.30	1.74	2.17	2.60	3.18	3.76	4.34
		Eqn. (2) - Reynolds Number, Re:	2.75E+04	3.68E+04	4.59E+04	5.49E+04	6.72E+04	7.94E+04	9.17E+04
		Pipe Friction Factor, f:	0.024	0.0225	0.0214	0.0205	0.0197	0.019	0.0184
	Eqn. (3) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0.0025	0.0041	0.0061	0.0084	0.0121	0.0163	0.0211
	Eqn. (4	Ia) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Discharge Line Segment No. 10 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	к	No. Units	Total K	35	
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068						0		
Pipe Length, L (ft):	0.00				1		0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
2407 - 2700-	thermoplastics)				-		0		
Roughness, e (ft):	0.000005			1			0		
e / ID:	1.95567E-05		Total K: 0.0		0.0				
								•	
		Segment Flowrate (gpm):	30	40	50	60	73.3	86.6	100
		Eqn. (1) - Velocity, v (ft/s):	1.30	1.74	2.17	2.60	3.18	3.76	4.34
		Eqn. (2) - Reynolds Number, Re:			4.59E+04	5.49E+04	6.72E+04	7.94E+04	9.17E+04
		Pipe Friction Factor, f:	0.024	0.0225	0.0214	0.0205	0.0197	0.019	0.0184
	Eqn. (3) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0.0025	0.0041	0.0061	0.0084	0.0121	0.0163	0.0211
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leg (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Discharge P	ining Headloss, H	0.14	0.74	0.36	0.51	0.75	1.03	1 35
	Exit V	elocity at Liquid Discharge v (ft/s):	1.46	1.94	2.43	2.91	3.56	4.21	4.86
	Ean (7) Exit Lo	ss at Liquid Discharge H (ft w c)	0.03	0.06	0.09	0.13	0.20	0.28	0.37
	Eqn. (1) Exit Eo	Total Dynamic Head TDH (ft w.c.):	3.28	3.49	3.74	4.05	4 55	5.15	5.87
	Design System TDH y	with 5.0% Eactor of Safety (ft w.c.).	3.44	3.66	3.93	4.05	4.55	5.41	6.11
	beargin bystein TDH v	and store ractor of ballety, (it w.c.).	2144	5.00	3.33	4.4.5	4.70	3,41	0.11

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE: 1-Jun-2022
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE: 2-Jun-2022
SUBJECT: Between T-101 and Clarifier	APPVD. BY:	[NAME]	DATE: [DATE]

References:

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

Eqn. (2):

 $Re = \frac{v \cdot \frac{10}{12}}{\eta}$

Eqn. (1): $v = \frac{gpm}{\frac{440.8312}{\pi} \cdot \left(\frac{ID}{12}\right)^2}$

Egn. (4a):

 $L_F = \frac{k \cdot \frac{lD}{12}}{f}$

Eqn. (4b): $L_{eq} = L + L_P$ Eqn. (6): $NSPH_{a} = 2.31 \cdot (P_{sys1} - P_{vay}) - H_{p(sucction)} \pm H_{st1}$

Eqn. (7):
$$H_{\nu} = \frac{v^2}{2 \cdot g} = \frac{v^2}{2 \cdot (32.174)}$$

Eqn. (8):

Eqn. (5):

 $H_p = H \cdot L_{ea}$

Suction Lift:

 $TDH = 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{st2} + Inline \ Equipment \ Headloss + H_{p(discharge)} + H_{v} + H_{p(suction)} + H_{st1} + H_{st2} + Inline \ Equipment \ Headloss + H_{p(discharge)} + H_{v} + H_{p(suction)} + H_{st1} + H_{st2} + Inline \ Equipment \ Headloss + H_{p(discharge)} + H_{v} + H_{p(suction)} + H_{st1} + H_{st2} + Inline \ Equipment \ Headloss + H_{p(discharge)} + H_{v} + H_{p(suction)} + H_{st1} + H_{st2} + Inline \ Equipment \ Headloss + H_{p(discharge)} + H_{v} + H_{p(suction)} + H_{st1} + H_{st2} + Inline \ Equipment \ Headloss + H_{p(discharge)} + H_{v} + H_{p(suction)} + H_{st1} + H_{st2} + Inline \ Headloss + H_{p(discharge)} + H_{v} + H_{p(suction)} + H_{st1} + H_{st2} + Inline \ Headloss + H_{p(discharge)} + H_{v} + H_{p(suction)} + H_{st1} + H_{st2} + Inline \ Headloss + H_{p(discharge)} + H_{v} + H_{p(suction)} + H_{st1} + H_{st2} + Inline \ Headloss + H_{p(discharge)} + H_{v} + H_{p(suction)} + H_{st2} + Inline \ Headloss + H_{p(discharge)} + H_{v} + H_{p(suction)} + H_{st2} + Inline \ Headloss + H_{p(discharge)} + H_{v} + H_{p(suction)} + H_{st2} + H_{st3}

 $TDH = 2.31 \cdot (P_{syst} - P_{sys1}) + H_{stt} + Inline Equipment Headloss + H_{p(discharge)} + H_{v} + H_{p(suction)} - H_{st1}$

ARCADIS	Design & Consultancy for natural and built assets
----------------	---

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE: 4-Ma	y-2022
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE: 6-Ma	y-2022
SUBJECT: P-200/201 Transfer Pumps	APPVD. BY: [NAME]	DATE: [DAT	E]

P-200/P-201	Pump ID:
Water	Fluid:
Groundwater	Fluid Description:
	Enter Fluid Density if Other than Water (lb/ft ³):
	Enter Fluid Viscosity if Other than Water (cp):
	Enter Vapor Pressure if Other than Water (psi):
30	Minimum Flow Rate (gpm):
60	Design Flow Rate (gpm):
100	Maximum Flow Rate (gpm):
14.7	Pressure of System to be Pumped, P _{sys1} (psia):
14.7	Pressure of System Discharged, P _{sys2} (psia):
60	Fluid Temperature (°F):
3	Elevation of Fluid to be Pumped (ft):
1	Pump Impeller Centerline Elevation (ft):
-7	Discharge Elevation (ft):
-8	Static Head of Discharge Line , H _{st2} (ft):
	Suction Lift of Liquid to be Pumped, H _{sta} (ft):
2	Static Head of Liquid to be Pumped, H _{st1} (ft):
5.0%	Safety Factor:
0.592	Vapor Pressure (ft. w.c.):
62.36	Fluid density, p (lb/ft ³):
1.21E-05	Fluid Kinematic Viscosity, ŋ (ft ² /s):
Yes	Include Exit Headloss at Discharge, H _v :

Notes: Bag filter, GAC, IX delta P @ max fouling

Assume constant T-200 level of 1000 gallons/3 feet

Flow Rates (gpm): 30.0 40.0 60.0 73.3 86.6 100.0 50.0 (gpd): 42,000 56,000 70,000 84,000 102,620 121,240 140,000 (MGD): 0.04 0.06 0.07 0.08 0.10 0.12 0.14 Optional - Pump Head (ft w.c.): Optional - NSPH Required (ft w.c.):

In-Line Equipment Headloss:

2 19	Pressure Loss		Pressure Loss	
Equipment Tag	(ft w.c.)	Equipment Tag	(ft w.c.)	
Flow Meter	15.0	IX vessels at max delta P	57.0	
Bag filter at max delta P	23.1			
GAC vessels at max delta P	46.2			an ann ann ann a tharraige an
Subtotal:	84.3	Subtotal:	57.0	Total Headloss (ft w.c.): 141.3

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Ha	nnula DAT	E: 4-May-2022
JOB NO.: 30133323	CHKD. BY: M. Sa	Imp DAT	E: 6-May-2022
SUBJECT: P-200/201 Transfer Pumps	APPVD. BY: [NAN	1E] DAT	E: [DATE]

Suction Line Segment No. 1 Headloss:

Flow Ratio:	1	Valve/Fitting Tag K No. Units Total K			12	1			
Nominal Pipe Diameter (in):	3	Ball Valve			0.05	2	0.1	1	
Pipe Inner Diameter, ID (in):	2.9	Standard Tee, thru branc	h		1.08	1	1.08		
Pipe Length, L (ft):	10.00				}		0	1	
Pipe Material:	SCH 80 - PVC/CPVC						0		
Pipe Type:	Smooth Pipes (PE and other						0]	
246 - 3270	thermoplastics)			0]				
Roughness, e (ft):	0.000005			2			0		
e / ID:	2.06897E-05				Total K:	1.2			
					24 24				
		Segment Flowrate (gpm):	30	40	50	60	73.3	86.6	100
		Eqn. (1) - Velocity, v (ft/s):	1.46	1.94	2.43	2.91	3.56	4.21	4.86
		Eqn. (2) - Reynolds Number, Re:	2.92E+04	3.87E+04	4.85E+04	5.81E+04	7.11E+04	8.41E+04	9.71E+04
		Pipe Friction Factor, f:	0.0237	0.0222	0.0211	0.0203	0.0194	0.0188	0.0182
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0032	0.0054	0.008	0.0111	0.0158	0.0214	0.0276
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	12.03	12.85	13.52	14.05	14.70	15.17	15.67
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leq (ft):	22.03	22.85	23.52	24.05	24.70	25.17	25.67
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	0.07	0.12	0.19	0.27	0.39	0.54	0.71

Suction Line Segment No. 2 Headloss:

	Total K	No. Units	к			Valve/Fitting Tag	1	Flow Ratio:
	0						3	Nominal Pipe Diameter (in):
	0			(2.9	Pipe Inner Diameter, ID (in):
	0			100			0.00	Pipe Length, L (ft):
	0						SCH 80 - PVC/CPVC	Pipe Material:
	0			1			Smooth Pipes (PE and other	Pipe Type:
	0						thermoplastics)	12 - 62
	0			3			0.000005	Roughness, e (ft):
	0.0	Total K:					2.06897E-05	e / ID:
			5					-041-0012FC-
86.6 100	73.3	60	50	40	30	Segment Flowrate (gpm):		
4.21 4.86	3.56	2.91	2.43	1.94	1.46	Eqn. (1) - Velocity, v (ft/s):		
1E+04 9.71E+04	7.11E+04 8.	5.81E+04	4.85E+04	3.87E+04	2.92E+04	Eqn. (2) - Reynolds Number, Re:		
.0188 0.0182	0.0194 0	0.0203	0.0211	0.0222	0.0237	Pipe Friction Factor, f:		
.0214 0.0276	0.0158 0	0.0111	0.008	0.0054	0.0032	Loss Across Pipe Segment, H (ft w.c./ft):	Eqn. (3) - Head Los	
0.00 0.00	0.00	0.00	0.00	0.00	0.00	(4a) - Fittings Equivalent Length, L _F (ft):	Eqn. (4	
0.00 0.00	0.00	0.00	0.00	0.00	0.00	ivalent Length of Pipe Segment, Leg (ft):	Eqn. (4b) Equiv	
0.00 0.00	0.00	0.00	0.00	0.00	0.00	Pipe Segment Headloss, H. (ft w.c.):	Eon. (5) F	

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE:	4-May-2022	
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE:	6-May-2022	
SUBJECT: P-200/201 Transfer Pumps	APPVD. BY:	[NAME]	DATE:	[DATE]	

Suction Line Segment No. 3 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			K	No. Units	Total K	19	
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068			()			0		
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
1940.00 (1969).DC	thermoplastics}						0	1	
Roughness, e (ft):	0.000005			2			0		
e / ID:	1.95567E-05					Total K:	0.0		
		20 20/07/ 002/ 20		al					
		Segment Flowrate (gpm):	30	40	50	60	73.3	86.6	100
		Eqn. (1) - Velocity, v (ft/s):	1.30	1.74	2.17	2.60	3.18	3.76	4.34
		Eqn. (2) - Reynolds Number, Re:	2.75E+04	3.68E+04	4.59E+04	5.49E+04	6.72E+04	7.94E+04	9.17E+04
		Pipe Friction Factor, f:	0.024	0.0225	0.0214	0.0205	0.0197	0.019	0.0184
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0025	0.0041	0.0061	0.0084	0.0121	0.0163	0.0211
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, L _{eq} (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Suction Line Segment No. 4 Headloss:

	57	Total K	No. Units	К	59		Valve/Fitting Tag	1	Flow Ratio:
		0						3	Nominal Pipe Diameter (in):
	· · · · ·	0						3.068	Pipe Inner Diameter, ID (in):
		0						0.00	Pipe Length, L (ft):
		0						SCH 40 - Steel	Pipe Material:
		0						Smooth Pipes (PE and other	Pipe Type:
		0						thermoplastics)	81 - 67 -
		0			, y			0.000005	Roughness, e (ft):
		0.0	Total K:					1.95567E-05	e / ID:
100	86.6	73.3	60	50	40	30	Segment Flowrate (gpm):		
4.34	3.76	3.18	2.60	2.17	1.74	1.30	Eqn. (1) - Velocity, v (ft/s):		
9.17E+04	7.94E+04	6.72E+04	5.49E+04	4.59E+04	3.68E+04	2.75E+04	Eqn. (2) - Reynolds Number, Re:		
0.0184	0.019	0.0197	0.0205	0.0214	0.0225	0.024	Pipe Friction Factor, f:		
0.0211	0.0163	0.0121	0.0084	0.0061	0.0041	0.0025	Loss Across Pipe Segment, H (ft w.c./ft):	Eqn. (3) - Head Los	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	(4a) - Fittings Equivalent Length, L _F (ft):	Eqn. (4	
1 10.00			0.00	0.00	0.00	0.00	ivalent Length of Pipe Segment, Leg (ft):	Egn. (4b) Equiv	
0.00	0.00	0.00	0.00	0.00	0.00				

PROJECT: BASF Northworks Perimeter Barrier	Remedy BY: S. Hannula	DATE: 4-May-2022
JOB NO.: 30133323	CHKD, BY: M, Samp	DATE: 6-May-2022
SUBJECT: P-200/201 Transfer Pumps	APPVD. BY: [NAME]	DATE: [DATE]

ARCADIS	Design & Consultancy for natural and built assets
---------	---

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	3						0	1	
Pipe Inner Diameter, ID (in): Pipe Length, L (ft): Pipe Material:	1): 3.068 1): 0.00						0	1	
							0	1	
	SCH 40 - Steel						0	1	
Pipe Type:	Smooth Pipes (PE and other						0	1	
AMDERA JALON	thermoplastics)						0	1	
Roughness, e (ft): e / ID:	0.000005						0	1	
	1.95567E-05	1				Total K:	0.0	1	
		Segment Flowrate (gpm): Eqn. (1) - Velocity, v (ft/s):	30 1.30	40	50 2.17	60 2.60	73.3	86.6 3.76	100 4.34
		Eqn. (1) - Velocity, V (rus):	1.30	1.74	2.1/	2.60	3.18	3.76	4.34
		Pine Eriction Eactor	0.024	0.0225	4.592404	0.0305	0.0107	0.010	0.0194
	Ean (2) Head La	Pipe Friction Factor, 7.	0.024	0.0225	0.0214	0.0205	0.019/	0.019	0.0184
	Eqn. (3) - Head Lo	ss Across Pipe Segment, H (it w.c./it).	0.0025	0.0041	0.0001	0.0064	0.0121	0.0165	0.0211
	Eqn. (4	(ii) - Fitungs Equivalent Length, LF (it).	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5)	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Suction	Piping Headloss, H _{p(suction)} (ft w.c.):	0.07	0.12	0.19	0.27	0.39	0.54	0.71
	Eqn. (6) Available Net Po	sitive Suction Head, NPSH _a (ft w.c.):	35.29	35.24	35.17	35.09	34.97	34.82	34.65

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE: 4	-May-2022
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE: 6	-May-2022
SUBJECT: P-200/201 Transfer Pumps	APPVD. BY:	[NAME]	DATE: [DATE]

Discharge Line Segment No. 1 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		8	K	No. Units	Total K	22	
Nominal Pipe Diameter (in):	3	Ball Valve			0.05	16	0.8		
Pipe Inner Diameter, ID (in):	2.9	Swing Check Valve (wye	style)		1.8	1	1.8		
Pipe Length, L (ft):	1,700.00	Standard Elbow, 90°	N. Control		0.54	16	8.64	6	
Pipe Material:	SCH 80 - PVC/CPVC	Standard Tee, thru flow			0.36	9	3.24		
Pipe Type:	Smooth Pipes (PE and other	Standard Tee, thru branc	h		1.08	4	4.32		
AURISTA AZON	thermoplastics)	2x3 reducer			0.28	1	0.28	1	
Roughness, e (ft):	0.000005						0		
e / ID:	2.06897E-05	-				Total K:	19.1		
		- 					0		
		Segment Flowrate (gpm):	30	40	50	60	73.3	86.6	100
		Eqn. (1) - Velocity, v (ft/s):	1.46	1.94	2.43	2.91	3.56	4.21	4.86
		Eqn. (2) - Reynolds Number, Re:	2.92E+04	3.87E+04	4.85E+04	5.81E+04	7.11E+04	8.41E+04	9.71E+04
		Pipe Friction Factor, f:	0.0237	0.0222	0.0211	0.0203	0.0194	0.0188	0.0182
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0032	0.0054	0.008	0.0111	0.0158	0.0214	0.0276
Eqn. (4a) - Fittings Equivalent Length, L _F (ft):			194.56	207.70	218.53	227.14	237.68	245.27	253.35
	Eqn. (4b) Equivalent Length of Pipe Segment, Leg (ft):			1,907.70	1,918.53	1,927.14	1,937.68	1,945.27	1,953.35
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	6.06	10.30	15.35	21.39	30.62	41.63	53.91

Discharge Line Segment No. 2 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	К	No. Units	Total K	2	
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068			1			0	1	
Pipe Length, L (ft):							0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
Salaria (Albana)	thermoplastics)						0		
Roughness, e (ft):	0.000005			1			0	÷	
e / ID:	1.95567E-05					Total K:	0.0		
		107 OPACINY 470-55 35.							
		Segment Flowrate (gpm):	30	40	50	60	73.3	86.6	100
		Eqn. (1) - Velocity, v (ft/s):	1.30	1.74	2.17	2.60	3.18	3.76	4.34
		Eqn. (2) - Reynolds Number, Re:	2.75E+04	3.68E+04	4.59E+04	5.49E+04	6.72E+04	7.94E+04	9.17E+04
		Pipe Friction Factor, f:	0.024	0.0225	0.0214	0.0205	0.0197	0.019	0.0184
	Eqn. (3) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0.0025	0.0041	0.0061	0.0084	0.0121	0.0163	0.0211
Eqn. (4a) - Fittings Equivalent Length, L _F (ft):			0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equivalent Length of Pipe Segment, Leg (ft):		0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE	4-May-2022
JOB NO.: 30133323	CHKD, BY: M. Samp	DATE	6-May-2022
SUBJECT: P-200/201 Transfer Pumps	APPVD. BY: [NAME]	DATE	[DATE]

Discharge Line Segment No. 3 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		2	ĸ	No. Units	Total K	22	
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0]	
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
0.2249 Presson	thermoplastics)						0		
Roughness, e (ft):	0.000005			2			0		
e / ID:	1.95567E-05					Total K:	0.0		
		- 					0		
		Segment Flowrate (gpm):	30	40	50	60	73.3	86.6	100
		Eqn. (1) - Velocity, v (ft/s):	1.30	1.74	2.17	2.60	3.18	3.76	4.34
		Eqn. (2) - Reynolds Number, Re:	2.75E+04	3.68E+04	4.59E+04	5.49E+04	6.72E+04	7.94E+04	9.17E+04
		Pipe Friction Factor, f:	0.024	0.0225	0.0214	0.0205	0.0197	0.019	0.0184
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0025	0.0041	0.0061	0.0084	0.0121	0.0163	0.0211
Eqn. (4a) - Fittings Equivalent Length, L _F (ft):			0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equivalent Length of Pipe Segment, Lea (ft):		0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Discharge Line Segment No. 4 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		6	К	No. Units	Total K	26	
Nominal Pipe Diameter (in):	3						0	1	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Lenth, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
5624m - 5554m	thermoplastics)						0	1	
Roughness, e (ft):	0.000005			1			0		
e / ID:	1.95567E-05					Total K:	0.0		
		- 107 - CHARTER ATLANT - 25-	in the state						
		Segment Flowrate (gpm):	30	40	50	60	73.3	86.6	100
		Eqn. (1) - Velocity, v (ft/s):	1.30	1.74	2.17	2.60	3.18	3.76	4.34
		Eqn. (2) - Reynolds Number, Re:	2.75E+04	3.68E+04	4.59E+04	5.49E+04	6.72E+04	7.94E+04	9.17E+04
		Pipe Friction Factor, f:	0.024	0.0225	0.0214	0.0205	0.0197	0.019	0.0184
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0025	0.0041	0.0061	0.0084	0.0121	0.0163	0.0211
	Eqn. (4a) - Fittings Equivalent Length, L_F (ft):			0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equivalent Length of Pipe Segment, Leg (ft)		0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE	4-May-2022
JOB NO.: 30133323	CHKD, BY: M. Samp	DATE	6-May-2022
SUBJECT: P-200/201 Transfer Pumps	APPVD. BY: [NAME]	DATE	[DATE]

Discharge Line Segment No. 5 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		2	ĸ	No. Units	Total K	22	
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
0.236 / H.W.M.	thermoplastics)						0]	
Roughness, e (ft):	0.000005			2			0		
e / ID:	1.95567E-05					Total K:	0.0		
		- 					0		
		Segment Flowrate (gpm):	30	40	50	60	73.3	86.6	100
		Eqn. (1) - Velocity, v (ft/s):	1.30	1.74	2.17	2.60	3.18	3.76	4.34
		Eqn. (2) - Reynolds Number, Re:	2.75E+04	3.68E+04	4.59E+04	5.49E+04	6.72E+04	7.94E+04	9.17E+04
		Pipe Friction Factor, f:	0.024	0.0225	0.0214	0.0205	0.0197	0.019	0.0184
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0025	0.0041	0.0061	0.0084	0.0121	0.0163	0.0211
	Eqn. (4	a) - Fittings Equivalent Length, LF (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equivalent Length of Pipe Segment, Leg (ft):		0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Discharge Line Segment No. 6 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		12	К	No. Units	Total K	26	
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0	1	
Same Street	thermoplastics)						0	1	
Roughness, e (ft):	0.000005						0		
e / ID:	1.95567E-05					Total K:	0.0	1	
		-	in the state						
		Segment Flowrate (gpm):	30	40	50	60	73.3	86.6	100
		Eqn. (1) - Velocity, v (ft/s):	1.30	1.74	2.17	2.60	3.18	3.76	4.34
		Eqn. (2) - Reynolds Number, Re:	2.75E+04	3.68E+04	4.59E+04	5.49E+04	6.72E+04	7.94E+04	9.17E+04
		Pipe Friction Factor, f:	0.024	0.0225	0.0214	0.0205	0.0197	0.019	0.0184
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0025	0.0041	0.0061	0.0084	0.0121	0.0163	0.0211
	Eqn. (4a) - Fittings Equivalent Length, L_F (ft):			0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equivalent Length of Pipe Segment, Lea (ft)		0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Ha	nnula	DATE:	4-May-2022
JOB NO.: 30133323	CHKD. BY: M. Sa	amp	DATE:	6-May-2022
SUBJECT: P-200/201 Transfer Pumps	APPVD. BY: [NAN	AE]	DATE:	[DATE]

Discharge Line Segment No. 7 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	к	No. Units	Total K	22	
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0]	
Pipe Length, L (ft):	0.00						0	li i i i	
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
0.0.00 A (6.0.0)	thermoplastics)						0		
Roughness, e (ft):	0.000005						0		
e / ID:	1.95567E-05					Total K:	0.0		
		- 					0		
		Segment Flowrate (gpm):	30	40	50	60	73.3	86.6	100
		Eqn. (1) - Velocity, v (ft/s):	1.30	1.74	2.17	2.60	3.18	3.76	4.34
		Eqn. (2) - Reynolds Number, Re:	2.75E+04	3.68E+04	4.59E+04	5.49E+04	6.72E+04	7.94E+04	9.17E+04
		Pipe Friction Factor, f:	0.024	0.0225	0.0214	0.0205	0.0197	0.019	0.0184
Eqn. (3) - Head Loss Across Pipe Segment, H (ft w.c./ft):		0.0025	0.0041	0.0061	0.0084	0.0121	0.0163	0.0211	
Eqn. (4a) - Fittings Equivalent Length, L _F (ft):		0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Eqn. (4b) Equivalent Length of Pipe Segment, Leg (ft):		0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Eqn. (5) Pipe Segment Headloss, H _p (ft w.c.):		0.00	0.00	0.00	0.00	0.00	0.00	0.00	

Discharge Line Segment No. 8 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		12	К	No. Units	Total K	26	
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
anter Street	thermoplastics)						0	1	
Roughness, e (ft):	0.000005						0		
e / ID:	1.95567E-05					Total K:	0.0	1	
		-	in the state						
		Segment Flowrate (gpm):	30	40	50	60	73.3	86.6	100
Eqn. (1) - Velocity, v (ft/s):		1.30	1.74	2.17	2.60	3.18	3.76	4.34	
Eqn. (2) - Reynolds Number, Re:		2.75E+04	3.68E+04	4.59E+04	5.49E+04	6.72E+04	7.94E+04	9.17E+04	
Pipe Friction Factor, f:		0.024	0.0225	0.0214	0.0205	0.0197	0.019	0.0184	
Eqn. (3) - Head Loss Across Pipe Segment, H (ft w.c./ft):		0.0025	0.0041	0.0061	0.0084	0.0121	0.0163	0.0211	
Eqn. (4a) - Fittings Equivalent Length, L _F (ft):		0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Eqn. (4b) Equivalent Length of Pipe Segment, Let (ft):		0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Eqn. (5) Pipe Segment Headloss, H _p (ft w.c.):		0.00	0.00	0.00	0.00	0.00	0.00	0.00	

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE	4-May-2022	
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE	6-May-2022	-
SUBJECT: P-200/201 Transfer Pumps	APPVD. BY: [NAME]	DATE	[DATE]	

Discharge Line Segment No. 9 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K	97	
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068						0		
Pipe Length, L (ft):	0.00			2			0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
1.8 389	thermoplastics)						0		
Roughness, e (ft):	0.000005						0		
e / ID:	1.95567E-05					Total K:	0.0		
1.0.02.011								• :. 	
		Segment Flowrate (gpm):	30	40	50	60	73.3	86.6	100
		Eqn. (1) - Velocity, v (ft/s):	1.30	1.74	2.17	2.60	3.18	3.76	4.34
		Eqn. (2) - Reynolds Number, Re:	2.75E+04	3.68E+04	4.59E+04	5.49E+04	6.72E+04	7.94E+04	9.17E+04
		Pipe Friction Factor, f:	0.024	0.0225	0.0214	0.0205	0.0197	0.019	0.0184
	Eqn. (3) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0.0025	0.0041	0.0061	0.0084	0.0121	0.0163	0.0211
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Discharge Line Segment No. 10 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			К	No. Units	Total K		
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068						0		
Pipe Length, L (ft):	0.00))		0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
0.4 78	thermoplastics)						0		
Roughness, e (ft):	0.000005			1			0		
e / ID:	1.95567E-05					Total K:	0.0		
		Segment Flowrate (gpm):	30	40	50	60	73.3	86.6	100
		Eqn. (1) - Velocity, v (ft/s):	1.30	1.74	2.17	2.60	3.18	3.76	4.34
		Eqn. (2) - Reynolds Number, Re:	2.75E+04	3.68E+04	4.59E+04	5.49E+04	6.72E+04	7.94E+04	9.17E+04
		Pipe Friction Factor, f:	0.024	0.0225	0.0214	0.0205	0.0197	0.019	0.0184
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0025	0.0041	0.0061	0.0084	0.0121	0.0163	0.0211
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Discharge P	iping Headloss, H _{p(discharge)} (ft w.c.):	6.06	10.30	15.35	21.39	30.62	41.63	53.91
	Exit V	elocity at Liquid Discharge, v (ft/s):	1.46	1.94	2.43	2.91	3.56	4.21	4.86
	Eqn. (7) Exit Lo	oss at Liquid Discharge, H _v (ft w.c.):	0.03	0.06	0.09	0.13	0.20	0.28	0.37
	Eqn. (8)	Total Dynamic Head, TDH (ft w.c.):	137.46	141.78	146.93	153.09	162.51	173.75	186.29
	Design System TDH v	with 5.0% Factor of Safety, (ft w.c.):	144.33	148.87	154.28	160.74	170.64	182.44	195.60

PROJECT: BASE Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE: 4-May-2022
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE: 6-May-2022
SUBJECT: P-200/201 Transfer Pumps	APPVD. BY:	[NAME]	DATE: [DATE]

References:

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

Eqn. (1): $y = \frac{gpm}{\frac{449.8312}{\frac{\pi}{4} \cdot \left(\frac{ID}{12}\right)^2}}$ Eqn. (2): $Re = \frac{y \cdot \frac{ID}{12}}{\eta}$

Eqn. (3): $\mu = f \cdot v^2 = - f \cdot v^2$	Eqn. (5): $H_P = H \cdot L_{eq}$
$n = \frac{1}{2 \cdot g \cdot \frac{ID}{12}} = \frac{1}{2 \cdot (32.174) \cdot \frac{ID}{12}}$	$\frac{5}{2} = Eqn. (6):$
Eqn. (4a): $L_{r} = \frac{k \cdot \frac{ID}{12}}{k \cdot \frac{ID}{12}}$	Eqn. (7): $v^2 = v^2$
f Eqn. (4b):	$H_{v} = \frac{1}{2 \cdot g} = \frac{1}{2 \cdot (32.174)}$
$L_{eq} = L + L_P$	Eqn. (8): Suction Lift: $TDH = 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{st2} + Inline Equipmediate Superiors$

Eqn. (8): Suction Lift: $TDH = 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{st2} + Inline Equipment Headloss + H_{p(discharge)} + H_{v} + H_{p(suction)} + H_{st1}$

 $\frac{1}{1} \ln - 2.51 \cdot (r_{sys2} - r_{sys1}) + n_{st2} + n_{une} Equipment nearbox + n_p(discharge) + n_p + n_p(suction) + n_{st1}$ Flooded Suction:

 $TDH = 2.31 \cdot (P_{sys2} - P_{syr1}) + H_{st2} + Inline Equipment Headloss + H_p(discharge) + H_p + H_p(suction) - H_{st1}$

ARCADIS	Design & Consultancy for natural and built assets
----------------	---

Enter Specific Weight of Sludge, A (lbm/ft3):

Coefficient of Rigidity from Sludge Rheology

Enter Solids Content of the Sludge (%):

Enter Yield Stress from Sludge Rheology

Enter Vapor Pressure if Other than Water (psi)

Pressure of System to be Pumped, Psys1 (psia):

Pressure of System Discharged, Psyst2 (psia):

Elevation of Fluid to be Pumped (ft):

Pump Impeller Centerline Elevation (ft):

Static Head of Discharge Line , H_{st2} (ft):

Suction Lift of Liquid to be Pumped, H_{stI} (ft): Static Head of Liquid to be Pumped, H_{stI} (ft):

Pump ID:

Fluid Description:

Curves, n (lb_/ft-s):

Curves, s (lb₁/ft²):

Minimum Flow Rate (gpm):

Maximum Flow Rate (gpm):

Design Flow Rate (gpm):

Fluid Temperature (*F):

Discharge Elevation (ft):

Vapor Pressure (ft. w.c.):

Fluid density, p (lbg/ft3):

Coefficient of Rigidity, n (lb,,/ft-s):

Include Exit Headloss at Discharge, H_v

Safety Factor

Fluid:

P-500

Sludge

EQ Underflow

71.4

0.04

0.26

1.0%

0.28

2

5

10

14.7

14.7

60

11.5

1

8

7

10.5

5.0%

0.601

71.4

0.040

Yes

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE: 4-May-2022
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE: 6-May-2022
SUBJECT: P-50 Sludge Transfer Pump	APPVD. BY: [NAME]	DATE: [DATE]

Flow Rates (gpm):	2.0	3.0	4.0	5.0	6.7	8.4	10.0
(gpd):	2,800	4,200	5,600	7,000	9,380	11,760	14,000
(MGD):	0.00	0.00	0.01	0.01	0.01	0.01	0.01
Optional - Pump Head (ft w.c.):							
Optional - NSPH Required (ft w.c.):	9	8 3			8	2 E	

In-Line Equipment Headloss:

Notes:

	Pressure Loss		Pressure	Loss
Equipment Tag	(ft w.c.)	Equipment Tag	(ft w.	c.)
Flow Meter	15.0			
Subtotal:	15.0	62	Subtotal: 0.0	Total Headloss (ft w.c.): 15.0

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE: 4-May-2022	-
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE: 6-May-2022	
SUBJECT: P-50 Sludge Transfer Pump	APPVD. BY:	[NAME]	DATE: [DATE]	

Suction Line Segment No. 1 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		2	к	No. Units	Total K	83	
Nominal Pipe Diameter (in):	1.5	Ball Valve			0.06	1	0.06		
Pipe Inner Diameter, ID (in):	1.5	Gate Valve			0.15	2	0.3		
Pipe Length, L (ft):	20.00	Standard Elbow, 90°			0.63	3	1.89		
Pipe Material:	SCH 80 - PVC/CPVC						0		
Pipe Type:	Smooth Pipes (PE and other						0		
522.00 - 310.000	thermoplastics)						0		
Roughness, e (ft):	0.000005						0		
e / ID:	0.00004					Total K:	2.3	-	
	4.5 1494 (2014)							•	
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.36	0.54	0.73	0.91	1.22	1.53	1.82
		Eqn. (2) - Reynolds Number, Re:	8.03E+01	1.20E+02	1.63E+02	2.03E+02	2.72E+02	3.41E+02	4.06E+02
		Eqn. (3) - Hedstrom Number, He:	6.28E+03	6.28E+03	6.28E+03	6.28E+03	6.28E+03	6.28E+03	6.28E+03
		Pipe Friction Factor, f:	0.045	0.045	0.045	0.045	0.045	0.045	0.045
	Eqn. (4) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0.0033	0.0075	0.0137	0.0212	0.0382	0.0600	0.0849
	Eqn. (5	a) - Fittings Equivalent Length, L _F (ft):	6.25	6.25	6.25	6.25	6.25	6.25	6.25
	Eqn. (5b) Equiva	alent Length of Pipe Segment, Leg (ft):	26.25	26.25	26.25	26.25	26.25	26.25	26.25
	Eqn. (6) P	ipe Segment Headloss, H _p (ft w.c.):	0.09	0.20	0.36	0.56	1.00	1.58	2.23

Suction Line Segment No. 2 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K		
Nominal Pipe Diameter (in):	8						0		
Pipe Inner Diameter, ID (in):	7.981						0		
Pipe Length, L (ft):							0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other			9			0		
	thermoplastics)			3			0		
Roughness, e (ft):	0.000005						0		
e / ID:	7.51785E-06					Total K:	0.0	1	
14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -			5			· · · · · · · · · · · · · · · · · · ·	(
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.045	0.045	0.045	0.045	0.045	0.045	0.045
	Eqn. (4) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Eqn. (5a) - Fittings Equivalent Length, L _F (ft):				0.00	0.00	0.00	0.00	0.00
	Eqn. (5b) Equivalent Length of Pipe Segment, Leg (ft):			0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (6) P	ipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE:	4-May-2022	1
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE:	6-May-2022	-
SUBJECT: P-50 Sludge Transfer Pump	APPVD. BY:	[NAME]	DATE:	[DATE]	

No. Units

Total K:

5

0.03

3.56E+01

1.78E+05

0.045

0.0000

0.00

0.00

0.00

0.00

0.0

6.7

0.04

4.75E+01

1.78E+05

0.045

0.0000

0.00

0.00

0.00

8.4

0.05

5.94E+01

1.78E+05

0.045

0.0000

0.00

0.00

0.00

10

0.06

7.12E+01

1.78E+05

0.045

0.0000

0.00

0.00

0.00

Suction Line Segment No. 3 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	к
Nominal Pipe Diameter (in):	8				
Pipe Inner Diameter, ID (in):	7.981				
Pipe Length, L (ft):					
Pipe Material:	SCH 40 - Steel	1			
Pipe Type:	Smooth Pipes (PE and other				
AUX DEVICE AUX DEVICES	thermoplastics)				
Roughness, e (ft):	0.000005				
e / ID:	7.51785E-06				
		• • • • • • • • • • • • • • • • • • • •			
		Segment Flowrate (gpm):	2	3	4
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01
		Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.045	0.045	0.045
	Eqn. (4) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000
	Eqn. (5	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00
	Eqn. (5b) Equiv	alent Length of Pipe Segment, Lea (ft):	0.00	0.00	0.00

Edu. (ob) Eduration Conductor the Segment, Leg (r).	0.00	0.00	
Eqn. (6) Pipe Segment Headloss, Hp (ft w.c.):	0.00	0.00	Γ
			_

Suction Line Segment No. 4 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		27	ĸ	No. Units	Total K	55	
Nominal Pipe Diameter (in):	8				2000		0		
Pipe Inner Diameter, ID (in):	7.981			()			0		
Pipe Length, L (ft):							0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics)			1			0		
Roughness, e (ft):	0.000005						0		
e / ID:	7.51785E-06					Total K:	0.0		
					2		2	22	
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.045	0.045	0.045	0.045	0.045	0.045	0.045
	Eqn. (4) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Eqn. (5a	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5b) Equiva	lent Length of Pipe Segment, Leg (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (6) Pi	pe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE:	4-May-2022
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE:	6-May-2022
SUBJECT: P-50 Sludge Transfer Pump	APPVD. BY: [NAME]	DATE:	[DATE]

Suction Line Segment No. 5 Hea	adloss:

Flow Ratio:	1	Valve/Fitting Tag		2	K	No. Units	Total K	10	2
Nominal Pipe Diameter (in):	8						0		
Pipe Inner Diameter, ID (in):	7.981						0		
Pipe Length, L (ft):							0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
1.000 M 200	thermoplastics)						0	1	
Roughness, e (ft):	0.000005			3			0		
e / ID:	7.51785E-06					Total K:	0.0		
		- 	a - a - a				0		
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.045	0.045	0.045	0.045	0.045	0.045	0.045
	Eqn. (4) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Eqn. (5	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5b) Equiva	alent Length of Pipe Segment, Leg (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (6) P	ipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Suction	Piping Headloss, H _{p(suction)} (ft w.c.):	0.09	0.20	0.36	0.56	1.00	1.58	2.23
	Eqn. (7) Available Net Pos	itive Suction Head, NPSH _a (ft w.c.):	43.77	43.66	43.50	43.30	42.86	42.28	41.63

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE:	4-May-2022
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE:	6-May-2022
SUBJECT: P-50 Sludge Transfer Pump	APPVD. BY: [NAME]	DATE:	[DATE]

Discharge Line Segment No. 1 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K		
Nominal Pipe Diameter (in):	1.5	Standard Elbow, 90°			0.63	3	1.89		
Pipe Inner Diameter, ID (in):	1.5						0		
Pipe Length, L (ft):	20.00	Gate Valve			0.15	1	0.15		
Pipe Material:	SCH 80 - PVC/CPVC						0		
Pipe Type:	Smooth Pipes (PE and other						0		
Autorite Autor	thermoplastics)	3x2 reducer			0.28	1	0.28	1	
Roughness, e (ft):	0.000005	2x0.75 reducer		2	0.43	1	0.43		
e / ID:	0.00004					Total K:	2.8		
		- 							
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.36	0.54	0.73	0.91	1.22	1.53	1.82
		Eqn. (2) - Reynolds Number, Re:	8.03E+01	1.20E+02	1.63E+02	2.03E+02	2.72E+02	3.41E+02	4.06E+02
		Eqn. (3) - Hedstrom Number, He:	6.28E+03	6.28E+03	6.28E+03	6.28E+03	6.28E+03	6.28E+03	6.28E+03
		Pipe Friction Factor, f:	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	Eqn. (4) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0022	0.0050	0.0091	0.0142	0.0254	0.0400	0.0566
	Eqn. (5	a) - Fittings Equivalent Length, L _F (ft):	11.46	11.46	11.46	11.46	11.46	11.46	11.46
	Eqn. (5b) Equiva	alent Length of Pipe Segment, Leg (ft):	31.46	31.46	31.46	31.46	31.46	31.46	31.46
	Eqn. (6) P	Pipe Segment Headloss, H _p (ft w.c.):	0.07	0.16	0.29	0.45	0.80	1.26	1.78

Discharge Line Segment No. 2 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		27	к	No. Units	Total K	25	
Nominal Pipe Diameter (in):	8				2120		0	1	
Pipe Inner Diameter, ID (in):	7.981			3			0		
Pipe Length, L (ft):							0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics)						0	÷	
Roughness, e (ft):	0.000005						0		
e / ID:	7.51785E-06					Total K:	0.0	1	
12	50 B				· · · · · · · · · · · · · · · · · · ·			1620	
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Egn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	Eqn. (4) - Head Loss	s Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Eqn. (5a	i) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5b) Equival	lent Length of Pipe Segment, Leg (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (6) Pi	pe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASE Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE:	4-May-2022	
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE:	6-May-2022	
SUBJECT: P-50 Sludge Transfer Pump	APPVD. BY:	[NAME]	DATE:	[DATE]	

Discharge Line Segment No. 3 Headloss:

Flow Ratio:	1	Valve/Fitting Tag
Nominal Pipe Diameter (in):	8	
Pipe Inner Diameter, ID (in):	7.981	
Pipe Length, L (ft):	1	
Pipe Material:	SCH 40 - Steel	
Pipe Type:	Smooth Pipes (PE and other thermoplastics)	
Roughness, e (ft):	0.000005	
e / ID:	7.51785E-06	
		Segment Flowrate (gpm): Eqn. (1) - Velocity, v (ft/s): Eqn. (2) - Reynolds Number, Re: 1 Eqn. (3) - Hedstrom Number, He: 1
		Pipe Friction Factor, 1:
	Eqn. (4) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):

Eqn.

Valve/Fitting Tag			ĸ	No. Units	Total K		
					0		
					0		
					0		
					0	1	
other					0		
					0		
					0		
				Total K:	0.0		
						•	
Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
Pipe Friction Factor, f:	0.03	0.03	0.03	0.03	0.03	0.03	0.03
- Head Loss Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Eqn. (5a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
(5b) Equivalent Length of Pipe Segment, Leg (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Egn. (6) Pipe Segment Headloss, H. (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Discharge Line Segment No. 4 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		27	К	No. Units	Total K	55	
Nominal Pipe Diameter (in):	8				2.20		0		
Pipe Inner Diameter, ID (in):	7.981						0		
Pipe Lenth, L (ft):				-			0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics)			1			0		
Roughness, e (ft):	0.000005						0		
e / ID:	7.51785E-06					Total K:	0.0	1	
14	1945 1947							52	
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	Eqn. (4) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Eqn. (5a	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5b) Equiva	lent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (6) P	ipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASE Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE:	4-May-2022	
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE:	6-May-2022	
SUBJECT: P-50 Sludge Transfer Pump	APPVD. BY:	[NAME]	DATE:	[DATE]	

Discharge Line Segment No. 5 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	8						0]	
Pipe Inner Diameter, ID (in):	7.981						0]	
Pipe Length, L (ft):							0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0	1	
A A CARA SECTION	thermoplastics)						0		
Roughness, e (ft):	0.000005						0		
e / ID:	7.51785E-06	-				Total K:	0.0		
		- 						•	
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	Eqn. (4) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Eqn. (5	ia) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5b) Equiv	alent Length of Pipe Segment, Leg (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (6) F	Pipe Segment Headloss, Hp (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Discharge Line Segment No. 6 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		2.0	к	No. Units	Total K	25	
Nominal Pipe Diameter (in):	8				2.20		0	1	
Pipe Inner Diameter, ID (in):	7.981				}		0		
Pipe Length, L (ft):							0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics)						0	÷	
Roughness, e (ft):	0.000005			2			0		
e / ID:	7.51785E-06					Total K:	0.0	1	
170	100 M							52	
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	Eqn. (4) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Eqn. (5a	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5b) Equiva	lent Length of Pipe Segment, Leg (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (6) Pi	ipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASE Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE:	4-May-2022	
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE:	6-May-2022	
SUBJECT: P-50 Sludge Transfer Pump	APPVD. BY:	[NAME]	DATE:	[DATE]	

K

No. Units

Total K

0.00

0.00

0.00

0.00

0.00

0.00

Discharge Line Segment No. 7 Headloss:

	Flow Ratio:	1	Valve/Fitting Tag	
	Nominal Pipe Diameter (in):	8		
	Pipe Inner Diameter, ID (in):	7.981		
	Pipe Length, L (ft):			
8	Pipe Material:	SCH 40 - Steel		
	Pipe Type:	Smooth Pipes (PE and other thermoplastics)		_
	Roughness, e (ft):	0.000005		
	e / ID:	7.51785E-06	1	
			Segment Flowrate (gpm)	2
			Eqn. (1) - Velocity, v (ft/s):	0.0
			Eqn. (2) - Reynolds Number, Re:	1.19
			Eqn. (3) - Hedstrom Number, He:	1.78
			Pipe Friction Factor, f:	0.0
		Eqn. (4) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0.00
				0.0

				-	0		
					0		
-					0	1	
					0		
N .					0		
					0	1	
					0		
				Total K:	0.0		
	<u>a a a</u>				0		
Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
Pipe Friction Factor, f:	0.03	0.03	0.03	0.03	0.03	0.03	0.03
ad Loss Across Pine Segment, H (ft w.c./ft)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Eqn. (6) Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00
Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00
Eqn. (5a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00
n. (4) - Head Loss Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.000

Discharge Line Segment No. 8 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		27	к	No. Units	Total K	25	
Nominal Pipe Diameter (in):	8				2000		0		
Pipe Inner Diameter, ID (in):	7.981			()			0		
Pipe Length, L (ft):							0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics)						0		
Roughness, e (ft):	0.000005						0		
e / ID:	7.51785E-06					Total K:	0.0	1	
112								56	
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Egn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	Eqn. (4) - Head Loss	s Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Eqn. (5a	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5b) Equival	lent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (6) Pi	pe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE: 4-May-2022	
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE: 6-May-2022	
SUBJECT: P-50 Sludge Transfer Pump	APPVD. BY:	[NAME]	DATE: [DATE]	

Discharge Line Segment No. 9 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		25	к	No. Units	Total K	92	
Nominal Pipe Diameter (in):	8						0	1	
Pipe Inner Diameter, ID (in):	7.981						0		
Pipe Length, L (ft):							0	÷	
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
0.8 382	thermoplastics)						0	1	
Roughness, e (ft):	0.000005			4			0		
e / ID:	7.51785E-06					Total K:	0.0		
1100/02/001				11.1				• . 	
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	Eqn. (4) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Eqn. (5	5a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5b) Equiv	alent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (6) F	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Discharge Line Segment No. 10 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K	25	
Nominal Pipe Diameter (in):	8	100 (1800 A208)					0	1 1	
Pipe Inner Diameter, ID (in):	7.981			1)		0		
Pipe Length, L (ft):							0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics)						0	÷	
Roughness, e (ft):	0.000005						0		
e / ID:	7.51785E-06					Total K:	0.0	1	
125			_		2		2	22	
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Eqn. (4) - Head Loss Across Pipe Segment, H (ft w.c./ft):			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Eqn. (5a) - Fittings Equivalent Length, L _F (ft):			0.00	0.00	0.00	0.00	0.00	0.00	0.00
Eqn. (5b) Equivalent Length of Pipe Segment, Leg (ft):			0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (6) P	ipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE: 4-May-2022	~ ~
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE: 6-May-2022	1
SUBJECT: P-50 Sludge Transfer Pump	APPVD. BY: [NAME]	DATE: [DATE]	

Discharge Piping Headloss, H _{p(discharge)} (ft w.c.):	0.07	0.16	0.29	0.45	0.80	1.26	1.78
Exit Velocity at Liquid Discharge, v (ft/s):	0.36	0.54	0.73	0.91	1.22	1.53	1.82
Eqn. (8) Exit Loss at Liquid Discharge, H, (ft w.c.):	0.00	0.00	0.01	0.01	0.02	0.04	0.05
Eqn. (9) Total Dynamic Head, TDH (ft w.c.):	11.66	11.86	12.16	12.52	13.32	14.38	15.56
Design System TDH with 5.0% Factor of Safety, (ft w.c.):	12.24	12.45	12.77	13.15	13.99	15.10	16.34

References:

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

7. Wastewater Engineering Treatment, Disposal, and Reuse, Third Edition, Metcalf & Eddy, Inc., 1991.

8. EPA 625/1-79-011, Process Design Manual for Sludge Treatment and Disposal, U.S. EPA, Sept. 1979.

Equations:

Eqn. (1):	Egn. (4):	Eqn. (5):
$m = \frac{gpm}{448.8312}$	$H_{j,\mu_{r}} = \frac{2 \cdot f \cdot \lambda \cdot v^2}{D}$	$H_p = H \cdot L_{eq}$
$\frac{\pi}{4} \cdot \left(\frac{ID}{12}\right)^2$	$\left\langle \frac{1}{fi^2 \cdot fi} \right\rangle$ $g_c \cdot \frac{10}{12}$	Eqn. (7):
Fan (2):	$H_{iff(w,c)} = \left(\frac{2.31}{144}\right) \cdot H_{j(ubc)}$	$NSPH_a = 2.31 \cdot (P_{sys1} - P_{vap}) - H_{p(suction)} \pm H_{st1}$
$\lambda \cdot v \cdot \frac{ID}{12}$	(Je) (144) (Je2. Je)	Eqn. (8):
$Re = \frac{12}{\eta}$		$H_{\nu} = \frac{\nu^2}{2 \cdot \rho}$
Ecn. (3):	Ean (Sal)	where:
$\left(\frac{ID}{12}\right)^2 \cdot s \cdot \lambda \cdot g_c$	k · <u>1D</u>	$g = 32.174 \frac{ft}{s^2}$
$He = \frac{1}{\eta^2}$	$L_F = \frac{12}{f}$	Eqn. (9):
where: $g_e = 32.174 \frac{lb \cdot ft}{t}$	Eqn. (5b): $L_{eq} = L + L_F$	Suction Lift: $TDH - 2.31 \cdot (P_{s\gamma s2} - P_{s\gamma s1}) + H_{s12} + Inline Equipment Headloss + H_p(discharge) + H_v + H_p(suction) + H_{s12}$ Flooced Suction:
w _f · s ²		$TDH = 2.31 \cdot \left(P_{eye2} - P_{eye1}\right) + H_{et2} + Inline \ Equipment \ Headloss + H_p(discharge) + H_v + H_p(suction) - H_{et1} + H_{et2} + H_{et$

ARCADIS	Design & Consultancy for natural and built assets
----------------	---

Enter Specific Weight of Sludge, A (lbm/ft3):

Coefficient of Rigidity from Sludge Rheology

Enter Solids Content of the Sludge (%):

Enter Yield Stress from Sludge Rheology

Enter Vapor Pressure if Other than Water (psi)

Pressure of System to be Pumped, Psys1 (psia):

Pressure of System Discharged, Psyst2 (psia):

Elevation of Fluid to be Pumped (ft):

Pump Impeller Centerline Elevation (ft):

Static Head of Discharge Line , Hst2 (ft):

Suction Lift of Liquid to be Pumped, Hst (ft):

Static Head of Liquid to be Pumped, Hara (ft):

Pump ID:

Fluid Description:

Curves, n (lb_/ft-s):

Curves, s (lb₁/ft²):

Minimum Flow Rate (gpm):

Maximum Flow Rate (gpm):

Design Flow Rate (gpm):

Fluid Temperature (*F):

Discharge Elevation (ft):

Vapor Pressure (ft. w.c.):

Fluid density, p (lbg/ft3):

Coefficient of Rigidity, n (lb,,/ft-s):

Include Exit Headloss at Discharge, H_v

Safety Factor

Fluid:

P-501/P-502

Sludge

Clarifier Underflow

71.4

0.04

0.26

1.0%

0.28

2

5

10

14.7

14.7

60

11.5

1

8

7

10.5

5.0%

0.601

71.4

0.040

Yes

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE: 4-May-2022
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE: 6-May-2022
SUBJECT: P-501/P-502 Sludge Transfer Pumps	APPVD. BY: [NAME]	DATE: [DATE]

Flow Rates (gpm):	2.0	3.0	4.0	5.0	6.7	8.4	10.0
(gpd):	2,800	4,200	5,600	7,000	9,380	11,760	14,000
(MGD):	0.00	0.00	0.01	0.01	0.01	0.01	0.01
Optional - Pump Head (ft w.c.):							
Optional - NSPH Required (ft w.c.):	ý.	8			5	Q (2	

In-Line	Equipment	Headloss:
---------	-----------	-----------

Notes:

	Pressure Loss		Pressure Los	55
Equipment Tag	(ft w.c.)	Equipment Tag	(ft w.c.)	
Flow Meter	15.0			
Subtotal:	15.0	Subt	tal: 0.0	Total Headloss (ft w.c.): 15.0

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE: 4-May-2022
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE: 6-May-2022
SUBJECT: P-501/P-502 Sludge Transfer Pumps	APPVD. BY:	[NAME]	DATE: [DATE]

Suction Line Segment No. 1 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		8	к	No. Units	Total K	22	- î
Nominal Pipe Diameter (in):	1.5	Ball Valve			0.06	1	0.06		
Pipe Inner Diameter, ID (in):	1.5	Gate Valve			0.15	2	0.3	1	
Pipe Length, L (ft):	20.00	Standard Elbow, 90°			0.63	2	1.26]	
Pipe Material:	SCH 80 - PVC/CPVC	Standard Tee, thru branc	h		1.26	1	1.26	1	
Pipe Type:	Smooth Pipes (PE and other						0]	
100 million - 20 million	thermoplastics)						0]	
Roughness, e (ft):	0.000005			1			0		
e / ID:	0.00004					Total K:	2.9	1	
20200008	12.00 (0.0) (0.00 (0.0))	-					A	•	
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.36	0.54	0.73	0.91	1.22	1.53	1.82
		Eqn. (2) - Reynolds Number, Re:	8.03E+01	1.20E+02	1.63E+02	2.03E+02	2.72E+02	3.41E+02	4.06E+02
		Eqn. (3) - Hedstrom Number, He:	6.28E+03	6.28E+03	6.28E+03	6.28E+03	6.28E+03	6.28E+03	6.28E+03
		Pipe Friction Factor, 1:	0.045	0.045	0.045	0.045	0.045	0.045	0.045
	Eqn. (4) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0033	0.0075	0.0137	0.0212	0.0382	0.0600	0.0849
	Eqn. (5a) - Fittings Equivalent Length, L _F (ft): Eqn. (5b) Equivalent Length of Pipe Segment, L _{en} (ft):		8.00	8.00	8.00	8.00	8.00	8.00	8.00
			28.00	28.00	28.00	28.00	28.00	28.00	28.00
	Eqn. (6) P	Pipe Segment Headloss, Hp (ft w.c.):	0.09	0.21	0.38	0.59	1.07	1.68	2.38

Suction Line Segment No. 2 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K		
Nominal Pipe Diameter (in):	8						0		
Pipe Inner Diameter, ID (in):	7.981				3		0	÷	
Pipe Length, L (ft):							0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics)			3			0		
Roughness, e (ft):	0.000005						0		
e / ID:	7.51785E-06					Total K:	0.0	j.	
14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -			5			۵ <u>ــــــــــــــــــــــــــــــــــــ</u>	(St	
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.045	0.045	0.045	0.045	0.045	0.045	0.045
	Eqn. (4) - Head Loss Across Pipe Segment, H (ft w.c./ft)		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Eqn. (5a) - Fittings Equivalent Length, L _F (ft):		0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	Eqn. (5b) Equivalent Length of Pipe Segment, Lea (ft):		0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (6) P	ipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE: 4-May-2022	-
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE: 6-May-2022	
SUBJECT: P-501/P-502 Sludge Transfer Pumps	APPVD. BY:	[NAME]	DATE: [DATE]	

K

0.00

No. Units

0.00

Total K

0.00

0.00

0.00

Suction Line Segment No. 3 Headloss:

3	Flow Ratio:	1	Valve/Fitting Tag	
1	Nominal Pipe Diameter (in):	8		
	Pipe Inner Diameter, ID (in):	7.981		
0	Pipe Length, L (ft):			
8	Pipe Material:	SCH 40 - Steel		
	Pipe Type:	Smooth Pipes (PE and other thermoplastics)		
	Roughness, e (ft):	0.000005		
3	e / ID:	7.51785E-06	1-2	
			Segment Flowrate (gpm):	2
			Eqn. (1) - Velocity, v (ft/s):	0.01
			Eqn. (2) - Reynolds Number, Re:	1.19E+
			Eqn. (3) - Hedstrom Number, He:	1.78E+
			Pipe Friction Factor, f:	0.04
		Eqn. (4) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0.000

<u></u>						0		
1						0		
1						0		
Steel						0	1	
PE and other						0		
astics)						0	1	
005						0		
5E-06					Total K:	0.0		
	-							
	Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
	Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
	Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
	Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
	Pipe Friction Factor, f:	0.045	0.045	0.045	0.045	0.045	0.045	0.045
n. (4) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Eqn. (5	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Eqn. (5b) Equiva	alent Length of Pipe Segment, Leg (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

0.00

0.00

Suction Line Segment No. 4 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		27	ĸ	No. Units	Total K	35	
Nominal Pipe Diameter (in):	8				2000		0	1	
Pipe Inner Diameter, ID (in):	7.981			3			0		
Pipe Length, L (ft):							0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other					_	0		
	thermoplastics)						0	0	
Roughness, e (ft):	0.000005						0		
e / ID:	7.51785E-06					Total K:	0.0		
		-			2		2	22. 	
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.045	0.045	0.045	0.045	0.045	0.045	0.045
	Eqn. (4) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Eqn. (5a) - Fittings Equivalent Length, Le (ft):		0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Eqn. (5b) Equivalent Length of Pipe Segment, Let (ft):		0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	Eqn. (6) Pi	ipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Eqn. (6) Pipe Segment Headloss, Hp (ft w.c.):

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE:	4-May-2022	
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE:	6-May-2022	
SUBJECT: P-501/P-502 Sludge Transfer Pumps	APPVD. BY:	[NAME]	DATE:	[DATE]	

Suction	Line	Segment	No.	5	Headloss:
---------	------	---------	-----	---	-----------

Flow Ratio:	1	Valve/Fitting Tag		8	K	No. Units	Total K	22	8
Nominal Pipe Diameter (in):	8						0		
Pipe Inner Diameter, ID (in):	7.981						0		
Pipe Length, L (ft):	1						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
Autoria dalar	thermoplastics)						0		
Roughness, e (ft):	0.000005						0		
e / ID:	7.51785E-06					Total K:	0.0		
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.045	0.045	0.045	0.045	0.045	0.045	0.045
	Eqn. (4) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Eqn. (5	5a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5b) Equiv	alent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (6) F	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Suction	Piping Headloss, H _{p(suction)} (ft w.c.):	0.09	0.21	0.38	0.59	1.07	1.68	2.38
	Eqn. (7) Available Net Pos	sitive Suction Head, NPSH _a (ft w.c.):	43.77	43.65	43.48	43.27	42.79	42.18	41.48

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE: 4-May-2022	
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE: 6-May-2022	
SUBJECT: P-501/P-502 Sludge Transfer Pumps	APPVD. BY:	[NAME]	DATE: [DATE]	

Discharge Line Segment No. 1 Headloss:

	IK	Total K	No. Units	к	Valve/Fitting Tag		Valve/Fitting Tag	1	Flow Ratio:
	9	1.89	3	0.63	Standard Elbow, 90°		Standard Elbow, 90°	1.5	Nominal Pipe Diameter (in):
	ζ	0						1.5	ipe Inner Diameter, ID (in):
	5	0.15	1	0.15			Gate Valve	20.00	Pipe Length, L (ft):
		0						SCH 80 - PVC/CPVC	Pipe Material:
		0						Smooth Pipes (PE and other	Pipe Type:
	6 T	0						thermoplastics)	A-46545A-242.00
		0		3				0.000005	Roughness, e (ft):
	1	2.0	Total K:					0.00004	e / ID:
8.4 10	8.4	6.7	5	4	3	2	Segment Flowrate (gpm):		
1.53 1.82	2 1.53	1.22	0.91	0.73	0.54	0.36	Eqn. (1) - Velocity, v (ft/s):		
41E+02 4.06E+02	+02 3.41E+0	2.72E+02	2.03E+02	1.63E+02	1.20E+02	8.03E+01	Eqn. (2) - Reynolds Number, Re:		
28E+03 6.28E+03	+03 6.28E+0	6.28E+03	6.28E+03	6.28E+03	6.28E+03	6.28E+03	Eqn. (3) - Hedstrom Number, He:		
0.03 0.03	3 0.03	0.03	0.03	0.03	0.03	0.03	Pipe Friction Factor, f:		
0.0400 0.0566	54 0.0400	0.0254	0.0142	0.0091	0.0050	0.0022	oss Across Pipe Segment, H (ft w.c./ft):	Eqn. (4) - Head Los	
8.50 8.50	0 8.50	8.50	8.50	8.50	8.50	8.50	Eqn. (5a) - Fittings Equivalent Length, L _F (ft):		
28.50 28.50	0 28.50	28.50	28.50	28.50	28.50	28.50	Eqn. (5b) Equivalent Length of Pipe Segment, Lee (ft):		
1.14 1.61	2 1.14	0.72	0.40	0.26	0.14	0.06	Pipe Segment Headloss, H _p (ft w.c.):	Eqn. (6) F	

Discharge Line Segment No. 2 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		27	K	No. Units	Total K	55	
Nominal Pipe Diameter (in):	8				2000		0	1	
Pipe Inner Diameter, ID (in):	7.981			(0		
Pipe Length, L (ft):							0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics)						0	÷	
Roughness, e (ft):	0.000005			2			0		
e / ID:	7.51785E-06					Total K:	0.0	1	
ik.	5.5 1							52	
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Egn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	Eqn. (4) - Head Loss	s Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Eqn. (5a) - Fittings Equivalent Length, L _F (ft):			0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5b) Equivalent Length of Pipe Segment, Leg (ft):		0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (6) Pi	pe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE:	4-May-2022	7
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE:	6-May-2022	
SUBJECT: P-501/P-502 Sludge Transfer Pumps	APPVD. BY:	[NAME]	DATE:	[DATE]	

Discharge Line Segment No. 3 Headloss:

Flow Ratio:	1	Valve/Fitting Tag
Nominal Pipe Diameter (in):	8	
Pipe Inner Diameter, ID (in):	7.981	
Pipe Length, L (ft):		
Pipe Material:	SCH 40 - Steel	
Pipe Type:	Smooth Pipes (PE and other thermoplastics)	
Roughness, e (ft):	0.000005	
e / ID:	7.51785E-06	
		Segment Flowrate Eqn. (1) - Velocity, v
		Eqn. (2) - Reynolds Number
		Eqn. (3) - Hedstrom Number
		Pipe Friction Fac
	Eqn. (4) - Head Lo	oss Across Pipe Segment, H (ft v

Valve/Fitting Tag		0	к	No. Units	Total K	22	
					0		
1					0		
					0		
Steel					0		
PE and other					0		
astics)					0	1	
005					0		
5E-06				Total K:	0.0	2	
di 1488 100 15							
Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
Pipe Friction Factor, 1:	0.03	0.03	0.03	0.03	0.03	0.03	0.03
n. (4) - Head Loss Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Eqn. (5a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Eqn. (5b) Equivalent Length of Pipe Segment, Leg (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Discharge Line Segment No. 4 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		27	к	No. Units	Total K		
Nominal Pipe Diameter (in):	8				1.20		0		
Pipe Inner Diameter, ID (in):	7.981			9			0		
Pipe Lenth, L (ft):							0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics)			1			0		
Roughness, e (ft):	0.000005						0		
e / ID:	7.51785E-06					Total K:	0.0	1	
102									
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	Eqn. (4) - Head Loss	s Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Eqn. (5a) - Fittings Equivalent Length, L _F (ft):		0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5b) Equiva	lent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (6) Pi	ipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Eqn. (6) Pipe Segment Headloss, Hp (ft w.c.):

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE:	4-May-2022	7
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE:	6-May-2022	
SUBJECT: P-501/P-502 Sludge Transfer Pumps	APPVD. BY:	[NAME]	DATE:	[DATE]	

Discharge Line Segment No. 5 Headloss:

	Flow Ratio:	1	Valve/Fitting T
	Nominal Pipe Diameter (in):	8	
	Pipe Inner Diameter, ID (in):	7.981	
	Pipe Length, L (ft):		
8	Pipe Material;	SCH 40 - Steel	
	Pipe Type:	Smooth Pipes (PE and other thermoplastics)	
	Roughness, e (ft):	0.000005	
3	e / ID:	7.51785E-06	
			Segment Flowra Eqn. (1) - Velocit
			Eqn. (2) - Reynolds Nur
			Eqn. (3) - Hedstrom Nur
			Dina Eriction (

	Valve/Fitting Tag			к	No. Units	Total K		
						0]	
						0	1	
						0	1	
						0	1	
						0	1	
						0	1	
			1			0	1	
					Total K:	0.0	1	
	Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
	Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
Eqn.	(2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+0
				the second second second second second second second second second second second second second second second se	the second second second second second second second second second second second second second second second se	and the second state of th	the state of the s	

Edu: (1) Tolooid, T (100).	0.01	0.02	0.05	0.05	0.04	0.05	0.00
Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
Pipe Friction Factor, 1:	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Eqn. (4) - Head Loss Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Eqn. (5a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Eqn. (6) Pipe Segment Headloss, Hp (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Discharge Line Segment No. 6 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		2.0	к	No. Units	Total K		
Nominal Pipe Diameter (in):	8				2.20		0		
Pipe Inner Diameter, ID (in):	7.981						0		
Pipe Length, L (ft):							0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics)			2			0		
Roughness, e (ft):	0.000005			22			0		
e / ID:	7.51785E-06					Total K:	0.0		
182		_						56	
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	Eqn. (4) - Head Loss	s Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Eqn. (5a	i) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5b) Equival	lent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (6) Pi	pe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE:	4-May-2022	7
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE:	6-May-2022	
SUBJECT: P-501/P-502 Sludge Transfer Pumps	APPVD. BY:	[NAME]	DATE:	[DATE]	

Discharge Line Segment No. 7 Headloss:

Flow Ratio:	1	Valve/Fitting Tag
Nominal Pipe Diameter (in):	8	
Pipe Inner Diameter, ID (in):	7.981	
Pipe Length, L (ft):		
Pipe Material:	SCH 40 - Steel	
Pipe Type:	Smooth Pipes (PE and other thermoplastics)	
Roughness, e (ft):	0.000005	
e / ID:	7.51785E-06	
		Segment Flowrate (gr Eqn. (1) - Velocity, v (f
		Eqn. (2) - Reynolds Number,
		Eqn. (3) - Hedstrom Number,
		Pipe Friction Factor
	Eqn. (4) - Head Lo	ss Across Pipe Segment, H (ft w.c

Valve/Fitting Tag		0	ĸ	No. Units	Total K	22	
					0	1	
					0		
					0		
					0	1	
ther					0		
					0		
		3			0		
				Total K:	0.0	1	
	a - a - au					••• ••••••••	
Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
Pipe Friction Factor, f:	0.03	0.03	0.03	0.03	0.03	0.03	0.03
lead Loss Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Eqn. (5a) - Fittings Equivalent Length, Lr (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Discharge Line Segment No. 8 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		27	к	No. Units	Total K	25	
Nominal Pipe Diameter (in):	8				2000		0	1	
Pipe Inner Diameter, ID (in):	7.981						0		
Pipe Length, L (ft):				-			0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics)			1			0	÷	
Roughness, e (ft):	0.000005						0		
e / ID:	7.51785E-06					Total K:	0.0	1	
18	9.0 1							52	
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	Eqn. (4) - Head Los	is Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Eqn. (5	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5b) Equiva	alent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (6) P	ipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft):

Eqn. (6) Pipe Segment Headloss, Hp (ft w.c.):

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE: 4-May-2022
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE: 6-May-2022
SUBJECT: P-501/P-502 Sludge Transfer Pumps	APPVD. BY:	[NAME]	DATE: [DATE]

Discharge Line Segment No. 9 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K	9	
Nominal Pipe Diameter (in):	8						0	1	
Pipe Inner Diameter, ID (in):	7.981						0		
Pipe Length, L (ft):							0	÷	
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
CF 389	thermoplastics)						0	1	
Roughness, e (ft):	0.000005			4			0		
e / ID:	7.51785E-06					Total K:	0.0		
170320015				11.1 min				• . 	
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	Eqn. (4) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Eqn. (5	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5b) Equiva	alent Length of Pipe Segment, Leg (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (6) P	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Discharge Line Segment No. 10 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K	~	1
Nominal Pipe Diameter (in):	8	10 00 000 000					0		
Pipe Inner Diameter, ID (in):	7.981			1			0		
Pipe Length, L (ft):							0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics)						0	0	
Roughness, e (ft):	0.000005						0		
e / ID:	7.51785E-06					Total K:	0.0		
(A)					2			92. 	
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	Eqn. (4) - Head Los	is Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Eqn. (5	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5b) Equiva	alent Length of Pipe Segment, Leg (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (6) P	ipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE:	4-May-2022
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE:	6-May-2022
SUBJECT: P-501/P-502 Sludge Transfer Pumps	APPVD. BY: [NAME]	DATE:	[DATE]

Discharge Piping Headloss, H _{p(discharge)} (ft w.c.):	0.06	0.14	0.26	0.40	0.72	1.14	1.61
Exit Velocity at Liquid Discharge, v (ft/s):	0.36	0.54	0.73	0.91	1.22	1.53	1.82
Eqn. (8) Exit Loss at Liquid Discharge, H _v (ft w.c.):	0.00	0.00	0.01	0.01	0.02	0.04	0.05
Eqn. (9) Total Dynamic Head, TDH (ft w.c.):	11.65	11.85	12.15	12.50	13.31	14.36	15.54
Design System TDH with 5.0% Factor of Safety, (ft w.c.):	12.23	12.44	12.76	13.13	13.98	15.08	16.32

References:

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

7. Wastewater Engineering Treatment, Disposal, and Reuse, Third Edition, Metcalf & Eddy, Inc., 1991.

8. EPA 625/1-79-011, Process Design Manual for Sludge Treatment and Disposal, U.S. EPA, Sept. 1979.

Equations:

Eqn. (1):	Egn. (4):	Eqn. (5):
$v = \frac{\frac{gpm}{448.8312}}{\frac{gpm}{2}}$	$H_{j \ lb_f} = \frac{2 \cdot f \cdot \lambda \cdot v^2}{ID}$	$H_P = H \cdot L_{eq}$
$\frac{\pi}{4} \cdot \left(\frac{ID}{12}\right)^4$	(Ti2. Ti) ge . 12	Eqn. (7):
Ean. (2):	$H_{\frac{f(w,c)}{2}} = \left(\frac{2.31}{144}\right) \cdot H_{\frac{1}{2}}$	$NSPH_a = 2.31 \cdot (P_{syr1} - P_{rep}) - H_{p(suction)} \pm H_{st1}$
1. w. ID	Te / (Traine)	Eqn. (8):
$Re = \frac{n - 12}{\eta}$		$H_{y} = \frac{v^2}{2 \cdot q}$
Ecn. (3):	12 82535	where:
$u_{c} = \left(\frac{ID}{12}\right)^2 \cdot s \cdot \lambda \cdot g_c$	Eqn. (5a): k • <u>17</u>	$g = 32.174 \frac{ft}{s^2}$
$He = \frac{\eta^2}{\eta^2}$	$L_F = -\frac{12}{f}$	Eqn. (9):
where: $g_c = 32.174 \frac{lb \cdot ft}{dt}$	Eqn. (5b): $L_{eg} = L + L_{F}$	Suction Lift: $TDH - 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{st2} + Inline Equipment Headloss + H_p(discharge) + H_v + H_p(suction) + H_{st2}$ Floored Suction:
lbf · St	1990 - 1990 - 1990 - 1990 - 1997 - 19	$TDH = 2.31 \cdot (P_{eye2} - P_{eye1}) + H_{et2} + Inline Equipment Headloss + H_p(discharge) + H_v + H_p(suction) - H_{et2} + H$

ARCADIS	Besign & Consultancy for natural and built assets
----------------	---

Enter Specific Weight of Sludge, A (lbm/ft3):

Coefficient of Rigidity from Sludge Rheology

Enter Solids Content of the Sludge (%):

Enter Yield Stress from Sludge Rheology

Enter Vapor Pressure if Other than Water (psi)

Pressure of System to be Pumped, Psys1 (psia):

Pressure of System Discharged, Psyst2 (psia):

Elevation of Fluid to be Pumped (ft):

Pump Impeller Centerline Elevation (ft):

Static Head of Discharge Line , Hst2 (ft):

Suction Lift of Liquid to be Pumped, H_{st1} (ft):

Static Head of Liquid to be Pumped, Hara (ft):

Pump ID:

Fluid Description:

Curves, n (lb_/ft-s):

Curves, s (lb₁/ft²):

Minimum Flow Rate (gpm):

Maximum Flow Rate (gpm):

Design Flow Rate (gpm):

Fluid Temperature (*F):

Discharge Elevation (ft):

Vapor Pressure (ft. w.c.):

Fluid density, p (lbg/ft3):

Coefficient of Rigidity, n (lb,,/ft-s):

Include Exit Headloss at Discharge, H_v:

Safety Factor

Fluid:

P-503/P-504

Sludge

Settled Sludge

71.4

0.04

0.26

3.0%

0.28

2

5

10

14.7

14.7

60

10

1

8

7

9

5.0%

0.601

71.4

0.040

Yes

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE: 4-May-2022
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE: 6-May-2022
SUBJECT: P-503/P-504 Sludge Transfer Pumps	APPVD. BY: [NAME]	DATE: [DATE]

Flow Rates (gpm):	2.0	3.0	4.0	5.0	6.7	8.4	10.0
(gpd):	2,800	4,200	5,600	7,000	9,380	11,760	14,000
(MGD):	0.00	0.00	0.01	0.01	0.01	0.01	0.01
Optional - Pump Head (ft w.c.):							
Optional - NSPH Required (ft w.c.):	9	8 3			6	2 · · · · · · ·	

In-Line Equipment Headloss:

Notes:

	Pressure Loss		P	ressure Loss	
Equipment Tag	(ft w.c.)	Equipment Tag		(ft w.c.)	
Flow Meter	15.0				
Subtotal:	15.0	dz.	Subtotal:	0.0	Total Headloss (ft w.c.): 15.0

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE: 4-May-2022	
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE: 6-May-2022	
SUBJECT: P-503/P-504 Sludge Transfer Pumps	APPVD. BY:	[NAME]	DATE: [DATE]	

Suction Line Segment No. 1 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		8	к	No. Units	Total K	22	
Nominal Pipe Diameter (in):	1.5	Ball Valve			0.06	2	0.12]	
Pipe Inner Diameter, ID (in):	1.5						0	1	
Pipe Length, L (ft):	10.00	Standard Elbow, 90°			0.63	2	1.26	F	
Pipe Material:	SCH 80 - PVC/CPVC	Standard Tee, thru branc	h		1.26	1	1.26		
Pipe Type:	Smooth Pipes (PE and other						0]	
525-0	thermoplastics)						0]	
Roughness, e (ft):	0.000005						0		
e / ID:	0.00004					Total K:	2.6	1	
10×10004	20000000000000000000000000000000000000	-					A	•	
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.36	0.54	0.73	0.91	1.22	1.53	1.82
		Eqn. (2) - Reynolds Number, Re:	8.03E+01	1.20E+02	1.63E+02	2.03E+02	2.72E+02	3.41E+02	4.06E+02
		Eqn. (3) - Hedstrom Number, He:	6.28E+03	6.28E+03	6.28E+03	6.28E+03	6.28E+03	6.28E+03	6.28E+03
		Pipe Friction Factor, f:	0.045	0.045	0.045	0.045	0.045	0.045	0.045
	Eqn. (4) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0033	0.0075	0.0137	0.0212	0.0382	0.0600	0.0849
	Egn. (5	a) - Fittings Equivalent Length, Lr (ft):	7.33	7.33	7.33	7.33	7.33	7.33	7.33
	Eqn. (5b) Equiv	alent Length of Pipe Segment, Leo (ft):	17.33	17.33	17.33	17.33	17.33	17.33	17.33
	Eqn. (6) F	Pipe Segment Headloss, H _p (ft w.c.):	0.06	0.13	0.24	0.37	0.66	1.04	1.47

Suction Line Segment No. 2 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K		1
Nominal Pipe Diameter (in):	8						0	8	
Pipe Inner Diameter, ID (in):	7.981				-		0		
Pipe Length, L (ft):							0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics)			3			0		
Roughness, e (ft):	0.000005						0		
e / ID:	7.51785E-06					Total K:	0.0	1	
150			5			š?			
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.045	0.045	0.045	0.045	0.045	0.045	0.045
	Eqn. (4) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Eqn. (5	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5b) Equiva	alent Length of Pipe Segment, Leg (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (6) P	ipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE: 4-May-2022
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE: 6-May-2022
SUBJECT: P-503/P-504 Sludge Transfer Pumps	APPVD. BY:	[NAME]	DATE: [DATE]

AL. 11.74

10

T

Suction Line Segment No. 3 Headloss:

Flow Ratio:	1	Valve/Fitting Tag	
Nominal Pipe Diameter (in):	8		
Pipe Inner Diameter, ID (in):	7.981		
Pipe Length, L (ft):	1		
Pipe Material:	SCH 40 - Steel		
Pipe Type:	Smooth Pipes (PE and other thermoplastics)		
Roughness, e (ft):	0.000005		
e / ID:	7.51785E-06	-	
		Segment Flowrate (gpm):	2
		Eqn. (1) - Velocity, v (ft/s):	0.01
		Eqn. (2) - Reynolds Number, Re:	1.19E+
		Eqn. (3) - Hedstrom Number, He:	1.78E+
		Pipe Friction Factor, 1:	0.045
	Eqn. (4) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0.000

· 3	valve/Fitting Tag			ĸ	No. Units	Total K		1
						0	1	
1						0		
1						0		
Steel						0	1	
PE and other						0		
astics)						0		
005						0		
E-06					Total K:	0.0		
	Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
	Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
	Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
	Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
	Pipe Friction Factor, f:	0.045	0.045	0.045	0.045	0.045	0.045	0.045
n. (4) - Head Loss Ad	cross Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Eqn. (5a) -	Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Eqn. (5b) Equivalent	Length of Pipe Segment, Leg (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Eqn. (6) Pipe	Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K		
Nominal Pipe Diameter (in):	8				2.50		0		
Pipe Inner Diameter, ID (in):	7.981						0		
Pipe Length, L (ft):							0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics)			1)		0	ė.	
Roughness, e (ft):	0.000005						0		
e / ID:	7.51785E-06					Total K:	0.0		
12.					2		2	- 2.	
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.045	0.045	0.045	0.045	0.045	0.045	0.045
	Eqn. (4) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Eqn. (5a) - Fittings Equivalent Length, Lr (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5b) Equiv	alent Length of Pipe Segment, Leg (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Egn. (6)	Pipe Segment Headloss, H, (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE:	4-May-2022	-
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE:	6-May-2022	
SUBJECT: P-503/P-504 Sludge Transfer Pumps	APPVD. BY:	[NAME]	DATE:	[DATE]	

· · · ·			***		11	
Suction	Line	Segment	NO.	5	Head	IOSS:

Flow Ratio:	1	Valve/Fitting Tag		2	ĸ	No. Units	Total K	22	
Nominal Pipe Diameter (in):	8						0		
Pipe Inner Diameter, ID (in):	7.981						0		
Pipe Length, L (ft):							0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
N.85655.24.55	thermoplastics)						0	1	
Roughness, e (ft):	0.000005						0		
e / ID:	7.51785E-06					Total K:	0.0		
		-						•	
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.045	0.045	0.045	0.045	0.045	0.045	0.045
	Eqn. (4) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Eqn. (5	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5b) Equiva	alent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (6) P	lipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Suction	Piping Headloss, H _{p(suction)} (ft w.c.):	0.06	0.13	0.24	0.37	0.66	1.04	1.47
	Eqn. (7) Available Net Pos	itive Suction Head, NPSH _a (ft w.c.):	42.30	42.23	42.12	41.99	41.70	41.32	40.89

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE: 4-May-2022
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE: 6-May-2022
SUBJECT: P-503/P-504 Sludge Transfer Pumps	APPVD. BY:	[NAME]	DATE: [DATE]

Discharge Line Segment No. 1 Headloss:

1	Valve/Fitting Tag			ĸ	No. Units	Total K		
1.5						0		
1.5	Standard Elbow, 90°			0.63	2	1.26		
20.00	Gate Valve			0.15	1	0.15		
SCH 80 - PVC/CPVC	Standard Tee, thru branc	h		1.26	1	1.26		
Smooth Pipes (PE and other	Standard Tee, thru flow			0.42	1	0.42		
thermoplastics)						0	1	
0.000005						0		
0.00004	-				Total K:	3.1		
	•						•	
	Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
	Eqn. (1) - Velocity, v (ft/s):	0.36	0.54	0.73	0.91	1.22	1.53	1.82
	Eqn. (2) - Reynolds Number, Re:	8.03E+01	1.20E+02	1.63E+02	2.03E+02	2.72E+02	3.41E+02	4.06E+02
	Eqn. (3) - Hedstrom Number, He:	6.28E+03	6.28E+03	6.28E+03	6.28E+03	6.28E+03	6.28E+03	6.28E+03
	Pipe Friction Factor, f:	0.03	0.03	0.03	0.03	0.03	0.03	0.03
Eqn. (4) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0022	0.0050	0.0091	0.0142	0.0254	0.0400	0.0566
Eqn. (5	a) - Fittings Equivalent Length, L _F (ft):	12.88	12.88	12.88	12.88	12.88	12.88	12.88
Eqn. (5b) Equiva	alent Length of Pipe Segment, Leg (ft):	32.88	32.88	32.88	32.88	32.88	32.88	32.88
Eqn. (6) P	ipe Segment Headloss, Hp (ft w.c.):	0.07	0.16	0.30	0.47	0.84	1.32	1.86
	1 1.5 1.5 20.00 SCH 80 - PVC/CPVC Smooth Pipes (PE and other thermoplastics) 0.000005 0.00004 Eqn. (4) - Head Los Eqn. (5) Eqn. (5b) Equiva Eqn. (6) P	1 Valve/Fitting Tag 1.5 Standard Elbow, 90° 30.00 Gate Valve ScH 80 - PVC/CPVC Standard Tee, thru branc Smooth Pipes (PE and other thermoplastics) Standard Tee, thru branc 0.000005 Segment Flowrate (gpm): Eqn. (1) - Velocity, v (ft/s): Eqn. (2) - Reynolds Number, Re: Eqn. (3) - Hedstrom Number, He: Pipe Friction Factor, f: Eqn. (4) - Head Loss Across Pipe Segment, H (ft w.c./ft): Eqn. (5a) - Fittings Equivalent Length, L _F (ft): Eqn. (5b) Equivalent Length of Pipe Segment, L _{eq} (ft): Eqn. (6) Pipe Segment Headloss, H _p (ft w.c.):	1 Valve/Fitting Tag 1.5 Standard Elbow, 90° 20.00 Standard Elbow, 90° Sch 80 - PVC/CPVC Standard Tee, thru branch Standard Tee, thru branch Standard Tee, thru flow 0.000005 Segment Flowrate (gpm): 0.00004 Eqn. (1) - Velocity, v (ft/s): 0.36 Eqn. (2) - Reynolds Number, Re: 8.03E+01 Eqn. (3) - Hedstrom Number, He: 6.28E+03 Pipe Friction Factor, f: 0.03 Eqn. (5a) - Fittings Equivalent Length, L _F (ft): 1.5 Eqn. (5b) Equivalent Length of Pipe Segment, L _{eq} (ft): 32.88 Eqn. (6) Pipe Segment Headloss, H _o (ft w.c.);	1 Valve/Fitting Tag 1.5 Standard Elbow, 90° 20.00 Gate Valve Sch 80 - PVC/CPVC Standard Tee, thru branch Smooth Pipes (PE and other thermoplastics) Standard Tee, thru flow 0.000005 Segment Flowrate (gpm): 2 0.000004 Eqn. (1) - Velocity, v (ft/s): 0.36 0.54 Eqn. (2) - Reynolds Number, Re: Eqn. (3) - Hedstrom Number, He: Pipe Friction Factor, f: 6.28E+03 6.28E+03 Eqn. (4) - Head Loss Across Pipe Segment, H (ft w.c./ft): 0.0022 0.0050 Eqn. (5a) - Fittings Equivalent Length, L _F (ft): 12.88 12.88 Eqn. (5b) Equivalent Length of Pipe Segment, L _{eq} (ft): 32.88 32.88 Eqn. (6) Pipe Segment Headloss, H _a (ft w.c.): 0.07 0.16	1 Valve/Fitting Tag K 1.5 1.5 20.00 Standard Elbow, 90° 0.63 Gate Valve 0.15 Standard Tee, thru branch 1.26 Standard Tee, thru flow 0.42 thermoplastics) 0.000005 0.00004 Segment Flowrate (gpm): 2 3 4 Leqn. (1) - Velocity, v (ft/s): 0.36 0.54 0.73 Eqn. (2) - Reynolds Number, Re: 8.03E+01 1.20E+02 1.63E+02 Pipe Friction Factor, f: 0.03 0.03 0.03 Pipe Friction Factor, f: 0.03 0.03 0.03 Eqn. (4) - Head Loss Across Pipe Segment, H (ft w.c./ft): 0.0022 0.0050 0.0091 Eqn. (5a) - Fittings Equivalent Length, L _F (ft): 12.88 12.88 12.88 Eqn. (5b) Equivalent Length of Pipe Segment, L _{eq} (ft): 32.88 32.88 32.88 <td>1 K No. Units 1.5 5 5 5 5 5 5 5 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 1 5 1 5 5 5 1 <t< td=""><td>1 Valve/Fitting Tag K No. Units Total K 1.5 1.5 1 0 0 20.00 Standard Elbow, 90° 0.63 2 1.26 Gate Valve 0.15 1 0.15 SCH 80 - PVC/CPVC Standard Tee, thru branch 1.26 1 1.26 Smooth Pipes (PE and other thermoplastics) 0.000005 0.42 1 0.42 0 0.000005 Total K: 3.1 0 0 0.00004 Segment Flowrate (gpm): Eqn. (1) - Velocity, v (ft/s): 2 3 4 5 6.7 Eqn. (2) - Reynolds Number, Re: 8.03E+01 1.20E+02 1.63E+02 2.03E+02 2.72E+02 Eqn. (2) - Reynolds Number, Re: 8.03E+01 1.20E+02 1.63E+02 2.03E+03 6.28E+03 Pipe Friction Factor, f 0.03 0.03 0.03 0.03 0.03 0.03 Eqn. (4) - Head Loss Across Pipe Segment, H (ft w.c./ft) 0.0022 0.0050 0.0091 0.0142 0.0254 Eqn. (5a) - Fitti</td><td>1 K No. Units Total K 1.5 1.5 0 0 1.5 1.6 0 1.26 20.00 Gate Valve 0.15 1 0.15 SCH 80 - PVC/CPVC Standard Elbow, 90° 0.633 2 1.26 Smooth Pipes (PE and other thermoplastics) 0.422 1 0.422 0.000005 0.000005 0 0 0 0 0.000004 Segment Flowrate (gpm): Eqn. (1) - Velocity, v (ft/s): Eqn. (2) - Reynolds Number, Rei Eqn. (3) - Hedstrom Number, Hei Pipe Friction Factor, f: 0.03 0.03 0.03 0.03 0.03 0.03 Eqn. (4) - Head Loss Across Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment,</td></t<></td>	1 K No. Units 1.5 5 5 5 5 5 5 5 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6 1 5 1 5 5 5 1 <t< td=""><td>1 Valve/Fitting Tag K No. Units Total K 1.5 1.5 1 0 0 20.00 Standard Elbow, 90° 0.63 2 1.26 Gate Valve 0.15 1 0.15 SCH 80 - PVC/CPVC Standard Tee, thru branch 1.26 1 1.26 Smooth Pipes (PE and other thermoplastics) 0.000005 0.42 1 0.42 0 0.000005 Total K: 3.1 0 0 0.00004 Segment Flowrate (gpm): Eqn. (1) - Velocity, v (ft/s): 2 3 4 5 6.7 Eqn. (2) - Reynolds Number, Re: 8.03E+01 1.20E+02 1.63E+02 2.03E+02 2.72E+02 Eqn. (2) - Reynolds Number, Re: 8.03E+01 1.20E+02 1.63E+02 2.03E+03 6.28E+03 Pipe Friction Factor, f 0.03 0.03 0.03 0.03 0.03 0.03 Eqn. (4) - Head Loss Across Pipe Segment, H (ft w.c./ft) 0.0022 0.0050 0.0091 0.0142 0.0254 Eqn. (5a) - Fitti</td><td>1 K No. Units Total K 1.5 1.5 0 0 1.5 1.6 0 1.26 20.00 Gate Valve 0.15 1 0.15 SCH 80 - PVC/CPVC Standard Elbow, 90° 0.633 2 1.26 Smooth Pipes (PE and other thermoplastics) 0.422 1 0.422 0.000005 0.000005 0 0 0 0 0.000004 Segment Flowrate (gpm): Eqn. (1) - Velocity, v (ft/s): Eqn. (2) - Reynolds Number, Rei Eqn. (3) - Hedstrom Number, Hei Pipe Friction Factor, f: 0.03 0.03 0.03 0.03 0.03 0.03 Eqn. (4) - Head Loss Across Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment,</td></t<>	1 Valve/Fitting Tag K No. Units Total K 1.5 1.5 1 0 0 20.00 Standard Elbow, 90° 0.63 2 1.26 Gate Valve 0.15 1 0.15 SCH 80 - PVC/CPVC Standard Tee, thru branch 1.26 1 1.26 Smooth Pipes (PE and other thermoplastics) 0.000005 0.42 1 0.42 0 0.000005 Total K: 3.1 0 0 0.00004 Segment Flowrate (gpm): Eqn. (1) - Velocity, v (ft/s): 2 3 4 5 6.7 Eqn. (2) - Reynolds Number, Re: 8.03E+01 1.20E+02 1.63E+02 2.03E+02 2.72E+02 Eqn. (2) - Reynolds Number, Re: 8.03E+01 1.20E+02 1.63E+02 2.03E+03 6.28E+03 Pipe Friction Factor, f 0.03 0.03 0.03 0.03 0.03 0.03 Eqn. (4) - Head Loss Across Pipe Segment, H (ft w.c./ft) 0.0022 0.0050 0.0091 0.0142 0.0254 Eqn. (5a) - Fitti	1 K No. Units Total K 1.5 1.5 0 0 1.5 1.6 0 1.26 20.00 Gate Valve 0.15 1 0.15 SCH 80 - PVC/CPVC Standard Elbow, 90° 0.633 2 1.26 Smooth Pipes (PE and other thermoplastics) 0.422 1 0.422 0.000005 0.000005 0 0 0 0 0.000004 Segment Flowrate (gpm): Eqn. (1) - Velocity, v (ft/s): Eqn. (2) - Reynolds Number, Rei Eqn. (3) - Hedstrom Number, Hei Pipe Friction Factor, f: 0.03 0.03 0.03 0.03 0.03 0.03 Eqn. (4) - Head Loss Across Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft): Eqn. (5b) Equivalent Length of Pipe Segment,

Discharge Line Segment No. 2 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		2.0	ĸ	No. Units	Total K	55	
Nominal Pipe Diameter (in):	8				2.20		0	1	
Pipe Inner Diameter, ID (in):	7.981						0		
Pipe Length, L (ft):							0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics)						0	÷	
Roughness, e (ft):	0.000005			2			0		
e / ID:	7.51785E-06					Total K:	0.0	1	
12	50 - C							54	
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	Eqn. (4) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Eqn. (5a	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5b) Equiva	lent Length of Pipe Segment, Leg (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (6) Pi	pe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE:	4-May-2022	1
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE:	6-May-2022	-
SUBJECT: P-503/P-504 Sludge Transfer Pumps	APPVD. BY:	[NAME]	DATE:	[DATE]	

Discharge Line Segment No. 3 Headloss:

Flow Ratio:	1	Valve/Fitting Tag
Nominal Pipe Diameter (in):	8	
Pipe Inner Diameter, ID (in):	7.981	
Pipe Length, L (ft):		
Pipe Material:	SCH 40 - Steel	
Pipe Type:	Smooth Pipes (PE and other thermoplastics)	
Roughness, e (ft):	0.000005	
e / ID:	7.51785E-06	
		Segment Flowrate Eqn. (1) - Velocity, v
		Eqn. (2) - Reynolds Number
		Eqn. (3) - Hedstrom Number
		Pipe Friction Fac

1 Valve/Fitting Tag			ĸ	No. Units	Total K		
8					0	1	
.981					0		
					0		
IO - Steel					0	1	
s (PE and other					0		
oplastics)					0		
00005					0		
785E-06				Total K:	0.0		
	19 bec					•	
Segment Flowrate (gp	n): 2	3	4	5	6.7	8.4	10
Eqn. (1) - Velocity, v (ft	s): 0.01	0.02	0.03	0.03	0.04	0.05	0.06
Eqn. (2) - Reynolds Number, F	Re: 1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
Eqn. (3) - Hedstrom Number, H	le: 1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
Pipe Friction Factor,	1: 0.03	0.03	0.03	0.03	0.03	0.03	0.03
Eqn. (4) - Head Loss Across Pipe Segment, H (ft w.c./	ft): 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Eqn. (5a) - Fittings Equivalent Length, L _F	ft): 0.00	0.00	0.00	0.00	0.00	0.00	0.00
Eqn. (5b) Equivalent Length of Pipe Segment, Leg (ft): 0.00	0.00	0.00	0.00	0.00	0.00	0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Discharge Line Segment No. 4 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		27	к	No. Units	Total K	55	
Nominal Pipe Diameter (in):	8				2000		0		
Pipe Inner Diameter, ID (in):	7.981						0		
Pipe Lenth, L (ft):							0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics)						0	÷	
Roughness, e (ft):	0.000005	0							
e / ID:	7.51785E-06					Total K:	0.0	1	
104	107							54	
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	Eqn. (4) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Eqn. (5a	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5b) Equiva	lent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (6) P	ipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Eqn. (6) Pipe Segment Headloss, Hp (ft w.c.):

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE:	4-May-2022
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE:	6-May-2022
SUBJECT: P-503/P-504 Sludge Transfer Pumps	APPVD. BY:	[NAME]	DATE:	[DATE]

8.4

0.05

5.94E+01

1.78E+05

0.03

0.0000

0.00

0.00

0.00

10

0.06

7.12E+01

1.78E+05

0.03

0.0000

0.00

0.00

0.00

Discharge Line Segment No. 5 Headloss:

Flow Ratio:	1	Valve/Fitting Tag	к	No. Units	Total K		
Nominal Pipe Diameter (in):	8						0
Pipe Inner Diameter, ID (in):	7.981						0
Pipe Length, L (ft):							0
Pipe Material:	SCH 40 - Steel						0
Pipe Type:	Smooth Pipes (PE and other						0
A. 826A 33.02	thermoplastics)						0
Roughness, e (ft):	0.000005			2	3		0
e / ID:	7.51785E-06					Total K:	0.0
		- 					
		Segment Flowrate (gpm):	2	3	4	5	6.7
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01
		Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.03	0.03	0.03	0.03	0.03
	Eqn. (4) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000
	Eqn. (5	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00
Eqn. (5b) Equivalent Length of Pipe Segment, Leg (ft): 0.00 0.00 0.00						0.00	0.00
	Eqn. (6) P	ipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00

Discharge Line Segment No. 6 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		27	ĸ	No. Units	Total K	25	
Nominal Pipe Diameter (in):	8				2.20		0	1	
Pipe Inner Diameter, ID (in):	7.981			3	}		0		
Pipe Length, L (ft):							0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics)						0	÷	
Roughness, e (ft):	0.000005	0							
e / ID:	7.51785E-06					Total K:	0.0	1	
12	20							197	
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Egn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	Eqn. (4) - Head Loss	s Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Eqn. (5a	i) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5b) Equival	lent Length of Pipe Segment, Leg (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (6) Pi	pe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE:	4-May-2022
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE:	6-May-2022
SUBJECT: P-503/P-504 Sludge Transfer Pumps	APPVD. BY:	[NAME]	DATE:	[DATE]

Discharge Line Segment No. 7 Headloss:

Flow Ratio:	1	Valve/Fitting Tag
Nominal Pipe Diameter (in):	8	
Pipe Inner Diameter, ID (in):	7.981	
Pipe Length, L (ft):		
Pipe Material:	SCH 40 - Steel	
Pipe Type:	Smooth Pipes (PE and other thermoplastics)	
Roughness, e (ft):	0.000005	
e / ID:	7.51785E-06	
		Segment Flowrate (gpm): Eqn. (1) - Velocity, v (ft/s): Eqn. (2) - Reynolds Number, Re: Eqn. (3) - Hedstrom Number, He: Pipe Friction Factor, f:
	Egn. (4) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):

3	Valve/Fitting Tag		0	K	No. Units	Total K	22 C	
						0	1	
						0		
						0		
1						0	1	
						0		
						0		
						0		
	-				Total K:	0.0		
	C 9720 699 74							
	Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
	Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
	Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
	Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
	Pipe Friction Factor, f:	0.03	0.03	0.03	0.03	0.03	0.03	0.03
oss	Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

Eqn. (5a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00
Eqn. (5b) Equivalent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00
Eqn. (6) Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00

Discharge Line Segment No. 8 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		27	K	No. Units	Total K	35.	
Nominal Pipe Diameter (in):	8				2000		0	1	
Pipe Inner Diameter, ID (in):	7.981			3			0		
Pipe Length, L (ft):							0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics)						0	÷	
Roughness, e (ft):	0.000005						0		
e / ID:	7.51785E-06					Total K:	0.0	1	
174	8.5							82	
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	Eqn. (4) - Head Loss	Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	Eqn. (5a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5b) Equival	ent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (6) Pi	pe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE: 4-May-2022
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE: 6-May-2022
SUBJECT: P-503/P-504 Sludge Transfer Pumps	APPVD. BY:	[NAME]	DATE: [DATE]

Discharge Line Segment No. 9 Headloss:

	Total K	No. Units	к	25		Valve/Fitting Tag	1	Flow Ratio:
	0						8	Nominal Pipe Diameter (in):
	0						7.981	Pipe Inner Diameter, ID (in):
	0			- 2				Pipe Length, L (ft):
	0						SCH 40 - Steel	Pipe Material:
	0						Smooth Pipes (PE and other	Pipe Type:
	0						thermoplastics)	C3
	0			4			0.000005	Roughness, e (ft):
	0.0	Total K:					7.51785E-06	e / ID:
								10000000
8.4 10	6.7	5	4	3	2	Segment Flowrate (gpm):		
0.05 0.06	0.04	0.03	0.03	0.02	0.01	Eqn. (1) - Velocity, v (ft/s):		
5.94E+01 7.12E+01	4.75E+01	3.56E+01	3.56E+01	2.37E+01	1.19E+01	Eqn. (2) - Reynolds Number, Re:		
1.78E+05 1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	Eqn. (3) - Hedstrom Number, He:		
0.03 0.03	0.03	0.03	0.03	0.03	0.03	Pipe Friction Factor, f:		
0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	oss Across Pipe Segment, H (ft w.c./ft):	Eqn. (4) - Head Lo	
0.00 0.00	0.00	0.00	0.00	0.00	0.00	(5a) - Fittings Equivalent Length, L _F (ft):	Eqn. (5	
0.00 0.00	0.00	0.00	0.00	0.00	0.00	valent Length of Pipe Segment, Leg (ft):	Eqn. (5b) Equiv	
0.00 0.00	0.00	0.00	0.00	0.00	0.00	Pipe Segment Headloss, H _o (ft w.c.):	Eqn. (6) F	

Discharge Line Segment No. 10 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K	20	1
Nominal Pipe Diameter (in):	8	10 00 000 000					0	1 1	
Pipe Inner Diameter, ID (in):	7.981)		0		
Pipe Length, L (ft):							0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics)						0	÷	
Roughness, e (ft):	0.000005						0		
e / ID:	7.51785E-06					Total K:	0.0	1	
(A)					2		2	52.	
		Segment Flowrate (gpm):	2	3	4	5	6.7	8.4	10
		Eqn. (1) - Velocity, v (ft/s):	0.01	0.02	0.03	0.03	0.04	0.05	0.06
		Eqn. (2) - Reynolds Number, Re:	1.19E+01	2.37E+01	3.56E+01	3.56E+01	4.75E+01	5.94E+01	7.12E+01
		Eqn. (3) - Hedstrom Number, He:	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05	1.78E+05
		Pipe Friction Factor, f:	0.03	0.03	0.03	0.03	0.03	0.03	0.03
	Eqn. (4) - Head Los	is Across Pipe Segment, H (ft w.c./ft):	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Eqn. (5a) - Fittings Equivalent Length, Lp (ft):			0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5b) Equiva	alent Length of Pipe Segment, Leg (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (6) P	ipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE:	4-May-2022
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE:	6-May-2022
SUBJECT: P-503/P-504 Sludge Transfer Pumps	APPVD. BY: [NAME]	DATE:	[DATE]

Discharge Piping Headloss, H _{p(discharge)} (ft w.c.):	0.07	0.16	0.30	0.47	0.84	1.32	1.86
Exit Velocity at Liquid Discharge, v (ft/s):	0.36	0.54	0.73	0.91	1.22	1.53	1.82
Eqn. (8) Exit Loss at Liquid Discharge, H, (ft w.c.):	0.00	0.00	0.01	0.01	0.02	0.04	0.05
Eqn. (9) Total Dynamic Head, TDH (ft w.c.):	13.13	13.29	13.55	13.85	14.52	15.40	16.38
Design System TDH with 5.0% Factor of Safety, (ft w.c.):	13.79	13.95	14.23	14.54	15.25	16.17	17.20

References:

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

7. Wastewater Engineering Treatment, Disposal, and Reuse, Third Edition, Metcalf & Eddy, Inc., 1991.

8. EPA 625/1-79-011, Process Design Manual for Sludge Treatment and Disposal, U.S. EPA, Sept. 1979.

Equations:

Eqn. (1):	Egn. (4):	Eqn. (5):
$m = \frac{gpm}{448.8312}$	$H_{1,\mu_{e}} = \frac{2 \cdot f \cdot \lambda \cdot v^2}{n}$	$H_P = H \cdot L_{eq}$
$\frac{\pi}{4} \cdot \left(\frac{ID}{12}\right)^2$	$\left\langle \frac{1}{f^{1^2}f^2} \right\rangle \mathcal{B}_c \cdot \frac{12}{12}$	Eqn. (7):
Eqn. (2):	$H_{iftw.c.} = \left(\frac{2.31}{144}\right) \cdot H_{jtbr}$	$NSPH_{a} = 2.31 \cdot (P_{sys1} - P_{vap}) - H_{p(suction)} \pm H_{st1}$
$\lambda \cdot v \cdot \frac{ID}{12}$	i fe / (111) (fe3.fe)	Eqn. (8):
$Re = \frac{\pi a}{\eta}$		$H_{\nu} = \frac{v^2}{2 \cdot q}$
Ecn. (3):	Fon. (5a):	where:
$\mu_{c} = \left(\frac{h}{12}\right)^{2} \cdot s \cdot \lambda \cdot g_{c}$	$k \cdot \frac{ID}{12}$	$g = 32.174 \frac{ft}{s^2}$
ne =	$L_F = \frac{L_C}{f}$	Eqn. (9): Suction Lift
where: $a = 32.174 b \cdot ft$	Eqn. (5b):	$TDH - 2.31 \cdot (P_{s\gamma s2} - P_{s\gamma s1}) + H_{st2} + Inline Equipment Headloss + H_p(discharge) + H_v + H_p(suction) + H_{st2}$
$g_e = 3z.174 lb_f \cdot s^2$	und - n t nb	TDH = $2.31 \cdot (P_{eye2} - P_{eye1}) + H_{et2} + Inline Equipment Headloss + H_p(discharge) + H_v + H_p(suction) - H_{et1}$

	PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE: 4-May-2022
ARCADIS for natural and hulf accepts	JOB NO.: 30133323	CHKD. BY: M. Samp	DATE: 6-May-2022
	SUBJECT: P-400 pH Adjustment Pump	APPVD. BY: [NAME]	DATE: [DATE]

P-400	Pump ID:
Water	Fluid:
Acid	Fluid Description:
81	Enter Fluid Density if Other than Water (lb/ft ³):
	Enter Fluid Viscosity if Other than Water (cp): Enter Vapor Pressure if Other than Water (psi):
0.1	Minimum Flow Rate (gpm):
0.15	Design Flow Rate (gpm):
0.2	Maximum Flow Rate (gpm):
14.7	Pressure of System to be Pumped, Psys1 (psia):
14.7	Pressure of System Discharged, P _{sys2} (psia):
60	Fluid Temperature (*F):
10	Elevation of Fluid to be Pumped (ft):
2	Pump Impeller Centerline Elevation (ft):
10	Discharge Elevation (ft):
8	Static Head of Discharge Line , H _{st2} (ft):
	Suction Lift of Liquid to be Pumped, H _{st1} (ft):
8	Static Head of Liquid to be Pumped, H _{sr1} (ft):
5.0%	Safety Factor:
0.592	Vapor Pressure (ft. w.c.):
62.36	Fluid density, p (lb/ft3):
1.21E-05	Fluid Kinematic Viscosity, ŋ (ft ² /s):
Yes	Include Exit Headloss at Discharge, H _v :

osia	
Î	
$H_{st1} = 8.0 \text{ ft w.c.}$	H _{st2} = 8.0 ft w.c.
]
	psia H _{st1} = 8.0 ft w.c.

Flow Rates (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
(gpd):	140	140	140	280	280	280	280
(MGD):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Optional - Pump Head (ft w.c.):							
Optional - NSPH Required (ft w.c.):							

In-Line Equipment Headloss:

	Pressure Loss		Pressure Los	5
Equipment Tag	(ft w.c.)	Equipment Tag	(ft w.c.)	- 1
Flow Meter				
			1	
				145 (515) (678) (514) (519 <u>)</u> (528) (53
Subtotal:	0.0	Subtot	al: 0.0	Total Headloss (ft w.c.): 0.0

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE	4-May-2022	1
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE	6-May-2022	
SUBJECT: P-400 pH Adjustment Pump	APPVD. BY: [NAME]	DATE	[DATE]	

Suction Line Segment No. 1 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			K	No. Units	Total K		
Nominal Pipe Diameter (in):	0.5	Ball Valve			0.08	3	0.24]	
Pipe Inner Diameter, ID (in):	0.546						0	1	
Pipe Length, L (ft):	10.00						0		
Pipe Material:	SCH 80 - PVC/CPVC						0		
Pipe Type:	Uncoated Steel						0]	
500 mil	20202010/20160.00-01P						0]	
Roughness, e (ft):	0.00013						0		
e / ID:	0.002857143					Total K:	0.2		
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.14	0.14	0.14	0.27	0.27	0.27	0.27
		Eqn. (2) - Reynolds Number, Re:	5.26E+02	5.26E+02	5.26E+02	1.02E+03	1.02E+03	1.02E+03	1.02E+03
		Pipe Friction Factor, 1:	0.1216	0.1216	0.1216	0.063	0.063	0.063	0.063
	Eqn. (3) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0.0008	0.0008	0.0008	0.0016	0.0016	0.0016	0.0016
	Eqn. (4	4a) - Fittings Equivalent Length, L _F (ft):	0.09	0.09	0.09	0.17	0.17	0.17	0.17
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leg (ft):	10.09	10.09	10.09	10.17	10.17	10.17	10.17
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	0.01	0.01	0.01	0.02	0.02	0.02	0.02

Suction Line Segment No. 2 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K	-01	
Nominal Pipe Diameter (in):	3						0	1	
Pipe Inner Diameter, ID (in):	2.9						0		
Pipe Length, L (ft):	0.00				- All and a second seco		0		
Pipe Material:	SCH 80 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
57 22	thermoplastics)						0		
Roughness, e (ft):	0.000005			3			0		
e / ID:	2.06897E-05					Total K:	0.0		
								·	
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.00	0.00	0.01	0.01	0.01	0.01
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	0.00E+00	0.00E+00	2.00E+02	2.00E+02	2.00E+02	2.00E+02
		Pipe Friction Factor, f:	0	0	0	0.3204	0.3204	0.3204	0.3204
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leg (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE	4-May-2022	7
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE	6-May-2022	
SUBJECT: P-400 pH Adjustment Pump	APPVD. BY: [NAME]	DATE	[DATE]	

Suction Line Segment No. 3 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			K	No. Units	Total K		
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068						0		
Pipe Length, L (ft):	0.00						0	1	
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
0.236 / H.W.M.	thermoplastics)						0	1	
Roughness, e (ft):	0.000005			2		(0		
e / ID:	1.95567E-05					Total K:	0.0		
		- 							
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.00	0.00	0.01	0.01	0.01	0.01
	Eqn. (2) - Reynolds Number, Re:		0.00E+00	0.00E+00	0.00E+00	2.11E+02	2.11E+02	2.11E+02	2.11E+02
	Pipe Friction Factor, f:		0	0	0	0.3029	0.3029	0.3029	0.3029
Eqn. (3) - Head Loss Across Pipe Segment, H (ft w.c./ft):		0	0	0	0	0	0	0	
Eqn. (4a) - Fittings Equivalent Length, L _F (ft):		#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00	
Eqn. (4b) Equivalent Length of Pipe Segment, Leq (ft):		#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00	
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00

Suction Line Segment No. 4 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		6	к	No. Units	Total K	26	
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
197 - 193 - 197	thermoplastics)						0		
Roughness, e (ft):	0.000005						0		
e / ID:	1.95567E-05					Total K:	0.0		
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
Eqn. (1) - Velocity, v (ft/s):		0.00	0.00	0.00	0.01	0.01	0.01	0.01	
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	0.00E+00	0.00E+00	2.11E+02	2.11E+02	2.11E+02	2.11E+02
	Pipe Friction Factor, 1:		0	0	0	0.3029	0.3029	0.3029	0.3029
	Eqn. (3) - Head Loss Across Pipe Segment, H (ft w.c./ft):		0	0	0	0	0	0	0
Eqn. (4a) - Fittings Equivalent Length, L _F (ft):		#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00	
Eqn. (4b) Equivalent Length of Pipe Segment, Leg (ft):		#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00	
	Eqn. (5) P	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00

PROJECT: BA	SF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE:	4-May-2022
JOB NO.: 30	133323	CHKD. BY: M. Samp	DATE:	6-May-2022
SUBJECT: P-4	00 pH Adjustment Pump	APPVD. BY: [NAME]	DATE:	[DATE]

Suction Line Segment No. 5 Headloss:									
Flow Ratio:	1	Valve/Fitting Tag		0	K	No. Units	Total K	22	
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068						0		
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
A ACAA ALLA	thermoplastics)						0		
Roughness, e (ft):	0.000005						0		
e / ID:	1.95567E-05					Total K:	0.0		
		Segment Flowrate (gpm): Eqn. (1) - Velocity, v (ft/s):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (2) - Reynolds Number, Re.	0.00E+00	0.000:+00	0.00000	2.116+02	2.116+02	2.11E+02	2.11E+02
	Eco (3) Head Lo	es Across Dine Segment H (ft w.c. /ft):	0	0	0	0.5025	0.5029	0.3029	0.5029
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Suction	Piping Headloss, H _{p(suction)} (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.02	0.02	0.02	0.02
	Eqn. (6) Available Net Pos	sitive Suction Head, NPSH _a (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	41.34	41.34	41.34	41.34

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE:	4-May-2022	
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE:	6-May-2022	
SUBJECT: P-400 pH Adjustment Pump	APPVD. BY:	[NAME]	DATE:	[DATE]	

Discharge Line Segment No. 1 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		8	к	No. Units	Total K	83	
Nominal Pipe Diameter (in):	0.5	Ball Valve			0.08	2	0.16	1	
Pipe Inner Diameter, ID (in):	0.546	Standard Elbow, 90°			0.81	4	3.24	1	
Pipe Length, L (ft):	85.00	Swing Check Valve (wye :	style)		2.7	1	2.7	li i i i	
Pipe Material:	SCH 80 - PVC/CPVC						0		
Pipe Type:	Smooth Pipes (PE and other						0		
A.6634A.94222	thermoplastics)						0		
Roughness, e (ft):	0.000005			1			0		
e / ID:	0.00010989					Total K:	6.1		
		- 			19 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19				
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.14	0.14	0.14	0.27	0.27	0.27	0.27
		Eqn. (2) - Reynolds Number, Re:	5.26E+02	5.26E+02	5.26E+02	1.02E+03	1.02E+03	1.02E+03	1.02E+03
		Pipe Friction Factor, f:	0.1216	0.1216	0.1216	0.063	0.063	0.063	0.063
	Eqn. (3) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0.0008	0.0008	0.0008	0.0016	0.0016	0.0016	0.0016
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	2.28	2.28	2.28	4.41	4.41	4.41	4.41
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leq (ft):	87.28	87.28	87.28	89.41	89.41	89.41	89.41
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	0.07	0.07	0.07	0.14	0.14	0.14	0.14

Discharge Line Segment No. 2 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	к	No. Units	Total K	20	
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):							0]	
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0]	
and the statement	thermoplastics)						0]	
Roughness, e (ft):	0.000005						0]	
e / ID:	1.95567E-05					Total K:	0.0		
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.00	0.00	0.01	0.01	0.01	0.01
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	0.00E+00	0.00E+00	2.11E+02	2.11E+02	2.11E+02	2.11E+02
		Pipe Friction Factor, f:	0	0	0	0.3029	0.3029	0.3029	0.3029
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leq (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (5) P	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. H	annula	DATE:	4-May-2022	
JOB NO.: 30133323	CHKD. BY: M. S	amp	DATE:	6-May-2022	
SUBJECT: P-400 pH Adjustment Pump	APPVD. BY: [NA	ME]	DATE:	[DATE]	

Discharge Line Segment No. 3 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0	F	
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
0.2.250 Areasia	thermoplastics)						0		
Roughness, e (ft):	0.000005			2			0		
e / ID:	1.95567E-05					Total K:	0.0		
		- 							
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.00	0.00	0.01	0.01	0.01	0.01
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	0.00E+00	0.00E+00	2.11E+02	2.11E+02	2.11E+02	2.11E+02
		Pipe Friction Factor, f:	0	0	0	0.3029	0.3029	0.3029	0.3029
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00

Discharge Line Segment No. 4 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		12	к	No. Units	Total K	36	
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068						0		
Pipe Lenth, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
Salar (Alari	thermoplastics)						0		
Roughness, e (ft):	0.000005			1			0	÷	
e / ID:	1.95567E-05					Total K:	0.0		
	- 10	- 							
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.00	0.00	0.01	0.01	0.01	0.01
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	0.00E+00	0.00E+00	2.11E+02	2.11E+02	2.11E+02	2.11E+02
		Pipe Friction Factor, f:	0	0	0	0.3029	0.3029	0.3029	0.3029
	Eqn. (3) - Head Los	is Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leq (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE	4-May-2022	7
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE	6-May-2022	
SUBJECT: P-400 pH Adjustment Pump	APPVD. BY: [NAME]	DATE	[DATE]	

Discharge Line Segment No. 5 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
0.2249 Presson	thermoplastics)						0		
Roughness, e (ft):	0.000005			2			0		
e / ID:	1.95567E-05					Total K:	0.0		
		- 							
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.00	0.00	0.01	0.01	0.01	0.01
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	0.00E+00	0.00E+00	2.11E+02	2.11E+02	2.11E+02	2.11E+02
		Pipe Friction Factor, f:	0	0	0	0.3029	0.3029	0.3029	0.3029
	Eqn. (3) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00

Discharge Line Segment No. 6 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	к	No. Units	Total K	2	
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068			1			0	1	
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
Salari (Osra)	thermoplastics)						0		
Roughness, e (ft):	0.000005			1			0		
e / ID:	1.95567E-05					Total K:	0.0		
	- 30	-						•••	
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.00	0.00	0.01	0.01	0.01	0.01
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	0.00E+00	0.00E+00	2.11E+02	2.11E+02	2.11E+02	2.11E+02
		Pipe Friction Factor, f:	0	0	0	0.3029	0.3029	0.3029	0.3029
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leg (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. H	annula	DATE:	4-May-2022	
JOB NO.: 30133323	CHKD. BY: M. S	amp	DATE:	6-May-2022	
SUBJECT: P-400 pH Adjustment Pump	APPVD. BY: [NA	ME]	DATE:	[DATE]	

Discharge Line Segment No. 7 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
0.2249 Presson	thermoplastics)						0		
Roughness, e (ft):	0.000005			2			0		
e / ID:	1.95567E-05					Total K:	0.0		
		- 							
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.00	0.00	0.01	0.01	0.01	0.01
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	0.00E+00	0.00E+00	2.11E+02	2.11E+02	2.11E+02	2.11E+02
		Pipe Friction Factor, f:	0	0	0	0.3029	0.3029	0.3029	0.3029
	Eqn. (3) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00

Discharge Line Segment No. 8 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		6	К	No. Units	Total K	26	
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
Salarin - Albura	thermoplastics)						0		
Roughness, e (ft):	0.000005			1			0		
e / ID:	1.95567E-05					Total K:	0.0		
	- 30	-						•••	
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.00	0.00	0.01	0.01	0.01	0.01
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	0.00E+00	0.00E+00	2.11E+02	2.11E+02	2.11E+02	2.11E+02
		Pipe Friction Factor, f:	0	0	0	0.3029	0.3029	0.3029	0.3029
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leg (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE	4-May-2022
JOB NO.: 30133323	CHKD, BY: M. Samp	DATE	6-May-2022
SUBJECT: P-400 pH Adjustment Pump	APPVD. BY: [NAME]	DATE	[DATE]

Discharge Line Segment No. 9 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K	27	
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0]	
Pipe Length, L (ft):	0.00			2			0]	
Pipe Material:	SCH 40 - Steel						0]	
Pipe Type:	Smooth Pipes (PE and other						0	1	
U.S. 282	thermoplastics)						0		
Roughness, e (ft):	0.000005						0]	
e / ID:	1.95567E-05					Total K:	0.0		
		- 							
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.00	0.00	0.01	0.01	0.01	0.01
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	0.00E+00	0.00E+00	2.11E+02	2.11E+02	2.11E+02	2.11E+02
		Pipe Friction Factor, f:	0	0	0	0.3029	0.3029	0.3029	0.3029
	Eqn. (3) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
Eqn. (4a) - Fittings Equivalent Length, L _F (ft):		#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00	
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00

Discharge Line Segment No. 10 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			К	No. Units	Total K	18	
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068						0		
Pipe Length, L (ft):	0.00)		0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
NK 20	thermoplastics)						0		
Roughness, e (ft):	0.000005			5			0	÷	
e / ID:	1.95567E-05					Total K:	0.0		
								•	
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.00	0.00	0.01	0.01	0.01	0.01
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	0.00E+00	0.00E+00	2.11E+02	2.11E+02	2.11E+02	2.11E+02
		Pipe Friction Factor, f:	0	0	0	0.3029	0.3029	0.3029	0.3029
	Eqn. (3) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	lent Length of Pipe Segment, Leq (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (5) P	pe Segment Headloss, Hp (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	145 34051	10. 2000 - 200 - 2000 - 200	×	20 - D				1	
	Discharge P	ping Headloss, H _{p(discharge)} (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.14	0.14	0.14	0.14
	Exit V	elocity at Liquid Discharge, v (ft/s):	#VALUE!	#VALUE!	#VALUE!	0.27	0.27	0.27	0.27
Eqn. (7) Exit Loss at Liquid Discharge, H, (ft w.c.):		#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00	
	Eqn. (8) Total Dynamic Head, TDH (ft w.c.):		#VALUE!	#VALUE!	#VALUE!	0.16	0.16	0.16	0.16
	Design System TDH v	vith 5.0% Factor of Safety, (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.17	0.17	0.17	0.17

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE: 4-May-2022
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE: 6-May-2022
SUBJECT: P-400 pH Adjustment Pump	APPVD. BY:	[NAME]	DATE: [DATE]

References:

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

Eqn. (3):

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

 $Re = \frac{v \cdot \frac{ID}{12}}{12}$

Egn. (1): p = 448.831 Eqn. (2):

 $NSPH_a = 2.31 \cdot (P_{sys1} - P_{vap}) - H_{p(suction)} \perp H_{st1}$

$$H_v = \frac{v^2}{2 \cdot g} = \frac{v^2}{2 \cdot (32.174)}$$

Eqn. (5):

 $H_P = H \cdot L_{eq}$

 $TDH = 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{st2} + Inline Equipment Headloss + H_p(discharge) + H_p + H_p(suction) + H_{st1}$ Flooded Suction:

 $TDH = 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{st2} + Inline \ Equipment \ Headloss + H_p(discharge) + H_p + H_p(sustion) - H_{st1}$

ARCADIS	Design & Consultancy for natural and built assets
---------	---

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE: 4-May-2022
JOB NO.: 30133323	CHKD, BY: M. Samp	DATE: 6-May-2022
SUBJECT: P-404 pH Adjustment Pump	APPVD. BY: [NAME]	DATE: [DATE]

Pump ID:	T-404
Fluid:	Water
Fluid Description:	Polymer
Enter Fluid Density if Other than Water (lb/ft ³):	75
Enter Fluid Viscosity if Other than Water (cp): Enter Vapor Pressure if Other than Water (psi):	
Minimum Flow Rate (gpm):	0.1
Design Flow Rate (gpm):	0.4
Maximum Flow Rate (gpm):	0.7
Pressure of System to be Pumped, Psys1 (psia):	14.7
Pressure of System Discharged, P _{sys2} (psia):	14.7
Fluid Temperature (*F):	60
Elevation of Fluid to be Pumped (ft):	3
Pump Impeller Centerline Elevation (ft):	1
Discharge Elevation (ft):	10
Static Head of Discharge Line , H _{st2} (ft):	9
Suction Lift of Liquid to be Pumped, H _{stz} (ft):	
Static Head of Liquid to be Pumped, Harr (ft):	2
Safety Factor:	5.0%
Vapor Pressure (ft. w.c.):	0.592
Fluid density, p (lb/ft ³):	62.36
Fluid Kinematic Viscosity, η (ft ² /s):	1.21E-05
Include Exit Headloss at Discharge, H.:	Yes

-	-		-	-	-
N 1	~		÷.	÷	÷
	v	Ļ	c	2	÷

Flow Rates (gpm):	0.1	0.2	0.3	0.4	0.5	0.6	0.7
(gpd):	140	280	420	560	700	840	980
(MGD):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Optional - Pump Head (ft w.c.):							
Optional - NSPH Required (ft w.c.):	1						

In-Line Equipment Headloss:

	Pressure Loss	s Pr	Pressure Loss
Equipment Tag	(ft w.c.)	Equipment Tag	(ft w.c.)
Flow Meter	10 C 1		
Subtotal:	0.0	Subtotal:	0.0 Total Headloss (ft w.c.): 0.0

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannu	ula DATE:	4-May-2022
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE	6-May-2022
SUBJECT: P-404 pH Adjustment Pump	APPVD. BY: [NAME]	DATE	[DATE]

Suction Line Segment No. 1 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	K	No. Units	Total K	22	
Nominal Pipe Diameter (in):	0.5	Ball Valve			0.08	3	0.24]	
Pipe Inner Diameter, ID (in):	0.546						0	1	
Pipe Length, L (ft):	10.00						0		
Pipe Material:	SCH 80 - PVC/CPVC						0		
Pipe Type:	Smooth Pipes (PE and other						0]	
525m (22m)	thermoplastics)						0]	
Roughness, e (ft):	0.000005					_	0		
e / ID:	0.00010989					Total K:	0.2		
101010									
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.4	0.5	0.6	0.7
		Eqn. (1) - Velocity, v (ft/s):	0.14	0.27	0.41	0.55	0.69	0.82	0.96
		Eqn. (2) - Reynolds Number, Re:	5.26E+02	1.02E+03	1.54E+03	2.07E+03	2.59E+03	3.08E+03	3.61E+03
		Pipe Friction Factor, 1:	0.1216	0.063	0.0415	0.049	0.0456	0.0433	0.0413
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0008	0.0016	0.0024	0.0051	0.0074	0.0099	0.013
Eqn. (4a) - Fittings Equivalent Length, L _F (ft):		0.09	0.17	0.26	0.22	0.24	0.25	0.26	
	Eqn. (4b) Equivalent Length of Pipe Segment, Let (ft):		10.09	10.17	10.26	10.22	10.24	10.25	10.26
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	0.01	0.02	0.02	0.05	0.08	0.10	0.13

Suction Line Segment No. 2 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K	:0:	
Nominal Pipe Diameter (in):	3						0	ji	
Pipe Inner Diameter, ID (in):	2.9						0		
Pipe Length, L (ft):	0.00						0	8	
Pipe Material:	SCH 80 - PVC/CPVC						0		
Pipe Type:	Smooth Pipes (PE and other						0		
57 22	thermoplastics)						0		
Roughness, e (ft):	0.000005			3			0		
e / ID:	2.06897E-05	-				Total K:	0.0	J.	
nation - Andrews									
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.4	0.5	0.6	0.7
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.01	0.01	0.02	0.02	0.03	0.03
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	2.00E+02	2.00E+02	3.99E+02	3.99E+02	5.99E+02	5.99E+02
		Pipe Friction Factor, f:	0	0.3204	0.3204	0.1602	0.1602	0.1068	0.1068
	Eqn. (3) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leg (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE	4-May-2022
JOB NO.: 30133323	CHKD, BY: M. Samp	DATE	6-May-2022
SUBJECT: P-404 pH Adjustment Pump	APPVD. BY: [NAME]	DATE	[DATE]

Suction Line Segment No. 3 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			K	No. Units	Total K		2
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068						0		
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
0.236 / H.W.M.	thermoplastics)						0	1	
Roughness, e (ft):	0.000005						0		
e / ID:	1.95567E-05					Total K:	0.0		
		- 						•	
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.4	0.5	0.6	0.7
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.01	0.01	0.02	0.02	0.03	0.03
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	2.11E+02	2.11E+02	4.23E+02	4.23E+02	6.34E+02	6.34E+02
		Pipe Friction Factor, f:	0	0.3029	0.3029	0.1514	0.1514	0.101	0.101
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00

Suction Line Segment No. 4 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		6	к	No. Units	Total K	56	
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0]	
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0	1	
5.C 20	thermoplastics)						0		
Roughness, e (ft):	0.000005						0]	
e / ID:	1.95567E-05					Total K:	0.0		
-C.+C.+C.2					2				
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.4	0.5	0.6	0.7
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.01	0.01	0.02	0.02	0.03	0.03
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	2.11E+02	2.11E+02	4.23E+02	4.23E+02	6.34E+02	6.34E+02
		Pipe Friction Factor, f:	0	0.3029	0.3029	0.1514	0.1514	0.101	0.101
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leg (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE: 4-May-2022
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE: 6-May-2022
SUBJECT: P-404 pH Adjustment Pump	APPVD. BY: [NAME]	DATE: [DATE]

ARCADIS	Design & Consultancy for natural and built assets
---------	---

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K		
Nominal Pipe Diameter (in):	3	1					0	1	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0	1	
Pipe Material:	SCH 40 - Steel						0	1	
Pipe Type:	Smooth Pipes (PE and other	1					0	1	
AGED STATES	thermoplastics)						0	1	
Roughness, e (ft):	0.000005						0	1	
e / ID:	1.95567E-05	1				Total K:	0.0	1	
		Segment Flowrate (gpm): Eqn. (1) - Velocity, v (ft/s):	0.1	0.2	0.3	0.4	0.5	0.6	0.7
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.01	0.01	0.02	0.02	0.03	0.03
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	2.11E+02	2.11E+02	4.23E+02	4.23E+02	6.34E+02	6.34E+U2
	En ON Handler	Pipe Friction Factor, 7.	0	0.3029	0.3029	0.1514	0.1514	0.101	0.101
	Eqn. (3) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) I	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Suction	Piping Headloss, H _{p(suction)} (ft w.c.):	#VALUE!	0.02	0.02	0.05	0.08	0.10	0.13
	Eqn. (6) Available Net Pos	sitive Suction Head, NPSH _a (ft w.c.):	#VALUE!	35.34	35.34	35.31	35.28	35.26	35.23

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE: 4-May-2022	-
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE: 6-May-2022	
SUBJECT: P-404 pH Adjustment Pump	APPVD. BY:	[NAME]	DATE: [DATE]	

Discharge Line Segment No. 1 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	к	No. Units	Total K	83	1
Nominal Pipe Diameter (in):	0.5	Ball Valve			0.08	2	0.16	1	
Pipe Inner Diameter, ID (in):	0.546	Standard Elbow, 45°			0.43	4	1.72	1	
Pipe Length, L (ft):	60.00	Swing Check Valve (wye :	style)		2.7	1	2.7	F	
Pipe Material:	SCH 80 - PVC/CPVC						0		
Pipe Type:	Smooth Pipes (PE and other						0		
A AGAM WALF	thermoplastics)						0	1	
Roughness, e (ft):	0.000005			2			0		
e / ID:	0.00010989					Total K:	4.6		
		- 						•••	
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.4	0.5	0.6	0.7
		Eqn. (1) - Velocity, v (ft/s):	0.14	0.27	0.41	0.55	0.69	0.82	0.96
		Eqn. (2) - Reynolds Number, Re:	5.26E+02	1.02E+03	1.54E+03	2.07E+03	2.59E+03	3.08E+03	3.61E+03
		Pipe Friction Factor, f:	0.1216	0.063	0.0415	0.049	0.0456	0.0433	0.0413
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0008	0.0016	0.0024	0.0051	0.0074	0.0099	0.013
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	1.71	3.31	5.02	4.25	4.57	4.81	5.05
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leq (ft):	61.71	63.31	65.02	64.25	64.57	64.81	65.05
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	0.05	0.10	0.16	0.33	0.48	0.64	0.85

Discharge Line Segment No. 2 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	к	No. Units	Total K	20	
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):							0]	
Pipe Material:	SCH 40 - Steel						0	1	
Pipe Type:	Smooth Pipes (PE and other						0]	
10 mil	thermoplastics)						0]	
Roughness, e (ft):	0.000005			1			0]	
e / ID:	1.95567E-05					Total K:	0.0		
	- 20 1 (Ale Ale - 1 (Ale Ale - 1 (Ale - 107 CHANN 41012 31.								
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.4	0.5	0.6	0.7
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.01	0.01	0.02	0.02	0.03	0.03
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	2.11E+02	2.11E+02	4.23E+02	4.23E+02	6.34E+02	6.34E+02
		Pipe Friction Factor, f:	0	0.3029	0.3029	0.1514	0.1514	0.101	0.101
	Eqn. (3) - Head Los	is Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4a) - Fittings Equivalent Length, L _F (ft):		#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leq (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannu	ula DATE:	4-May-2022
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE	6-May-2022
SUBJECT: P-404 pH Adjustment Pump	APPVD. BY: [NAME]	DATE	[DATE]

Discharge Line Segment No. 3 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K		
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068						0		
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
0.236 / H.W.M.	thermoplastics)						0	1	
Roughness, e (ft):	0.000005						0		
e / ID:	1.95567E-05					Total K:	0.0		
		- 						•	
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.4	0.5	0.6	0.7
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.01	0.01	0.02	0.02	0.03	0.03
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	2.11E+02	2.11E+02	4.23E+02	4.23E+02	6.34E+02	6.34E+02
		Pipe Friction Factor, f:	0	0.3029	0.3029	0.1514	0.1514	0.101	0.101
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, LF (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leq (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00

Discharge Line Segment No. 4 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	к	No. Units	Total K	56	
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Lenth, L (ft):	0.00			- 8			0	1	
Pipe Material:	SCH 40 - Steel						0	1	
Pipe Type:	Smooth Pipes (PE and other						0]	
52500 - 22500	thermoplastics)						0]	
Roughness, e (ft):	0.000005						0]	
e / ID:	1.95567E-05					Total K:	0.0	1	
		-						•••	
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.4	0.5	0.6	0.7
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.01	0.01	0.02	0.02	0.03	0.03
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	2.11E+02	2.11E+02	4.23E+02	4.23E+02	6.34E+02	6.34E+02
		Pipe Friction Factor, f:	0	0.3029	0.3029	0.1514	0.1514	0.101	0.101
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leg (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannu	ula DATE:	4-May-2022
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE	6-May-2022
SUBJECT: P-404 pH Adjustment Pump	APPVD. BY: [NAME]	DATE	[DATE]

Discharge Line Segment No. 5 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K		
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0]	
Pipe Material:	SCH 40 - Steel						0]	
Pipe Type:	Smooth Pipes (PE and other						0]	
N.2450 / Kelok	thermoplastics)						0]	
Roughness, e (ft):	0.000005						0		
e / ID:	1.95567E-05					Total K:	0.0		
		- 							
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.4	0.5	0.6	0.7
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.01	0.01	0.02	0.02	0.03	0.03
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	2.11E+02	2.11E+02	4.23E+02	4.23E+02	6.34E+02	6.34E+02
		Pipe Friction Factor, f:	0	0.3029	0.3029	0.1514	0.1514	0.101	0.101
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, LF (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leq (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00

Discharge Line Segment No. 6 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	к	No. Units	Total K	24	
Nominal Pipe Diameter (in):	3						0	1	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0]	
Salari (Osra)	thermoplastics)						0	1	
Roughness, e (ft):	0.000005						0	1	
e / ID:	1.95567E-05					Total K:	0.0	1	
		-						•	
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.4	0.5	0.6	0.7
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.01	0.01	0.02	0.02	0.03	0.03
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	2.11E+02	2.11E+02	4.23E+02	4.23E+02	6.34E+02	6.34E+02
		Pipe Friction Factor, f:	0	0.3029	0.3029	0.1514	0.1514	0.101	0.101
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leq (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannu	ula DATE:	4-May-2022
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE	6-May-2022
SUBJECT: P-404 pH Adjustment Pump	APPVD. BY: [NAME]	DATE	[DATE]

Discharge Line Segment No. 7 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K		2
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0	li i i i	
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
N.2450 / Keloki A	thermoplastics)						0		
Roughness, e (ft):	0.000005						0		
e / ID:	1.95567E-05	-				Total K:	0.0		
		- 						•••	
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.4	0.5	0.6	0.7
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.01	0.01	0.02	0.02	0.03	0.03
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	2.11E+02	2.11E+02	4.23E+02	4.23E+02	6.34E+02	6.34E+02
		Pipe Friction Factor, f:	0	0.3029	0.3029	0.1514	0.1514	0.101	0.101
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00

Discharge Line Segment No. 8 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		12	к	No. Units	Total K	56	
Nominal Pipe Diameter (in):	3						0	1	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0]	
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0	1	
56260 - 55560	thermoplastics)						0]	
Roughness, e (ft):	0.000005			1			0]	
e / ID:	1.95567E-05					Total K:	0.0	1	
		- 107 - CHARLES - ALLES - ST.						•••	
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.4	0.5	0.6	0.7
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.01	0.01	0.02	0.02	0.03	0.03
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	2.11E+02	2.11E+02	4.23E+02	4.23E+02	6.34E+02	6.34E+02
		Pipe Friction Factor, f:	0	0.3029	0.3029	0.1514	0.1514	0.101	0.101
	Eqn. (3) - Head Los	is Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leq (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE	4-May-2022	
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE	6-May-2022	
SUBJECT: P-404 pH Adjustment Pump	APPVD. BY: [NAME]	DATE	[DATE]	

Discharge Line Segment No. 9 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		22	к	No. Units	Total K	97	
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068						0]	
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0	1	
UK 282	thermoplastics)						0		
Roughness, e (ft):	0.000005						0		
e / ID:	1.95567E-05					Total K:	0.0		
1000000								•	
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.4	0.5	0.6	0.7
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.01	0.01	0.02	0.02	0.03	0.03
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	2.11E+02	2.11E+02	4.23E+02	4.23E+02	6.34E+02	6.34E+02
		Pipe Friction Factor, f:	0	0.3029	0.3029	0.1514	0.1514	0.101	0.101
	Eqn. (3) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leg (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00

Discharge Line Segment No. 10 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			К	No. Units	Total K		
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068						0		
Pipe Length, L (ft):	0.00)		0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
6.× - 20	thermoplastics)						0		
Roughness, e (ft):	0.000005			5			0		
e / ID:	1.95567E-05				_	Total K:	0.0		
					2			5-11	
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.4	0.5	0.6	0.7
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.01	0.01	0.02	0.02	0.03	0.03
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	2.11E+02	2.11E+02	4.23E+02	4.23E+02	6.34E+02	6.34E+02
		Pipe Friction Factor, 1:	0	0.3029	0.3029	0.1514	0.1514	0.101	0.101
	Eqn. (3) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4a	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	lent Length of Pipe Segment, Leg (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	pe Segment Headloss, H _p (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Discharge Bi	ning Headless H /# w s \v	MUALLIEL	0.10	0.16	0.22	0.49	0.64	0.95
	Discharge Pi	ping Headloss, H _{p(discharge)} (It w.c.).	#VALUE!	0.10	0.10	0.55	0.40	0.04	0.05
	Exit ve	elocity at Liquid Discharge, V (ftrs):	#VALUE!	0.27	0.41	0.55	0.69	0.82	0.96
	Eqn. (7) Exit Lo	ss at Liquio Discharge, Η, (π w.c.):	#VALUE!	0.00	0.00	0.00	0.01	0.01	0.01
	Eqn. (8)	Total Dynamic Head, TDH (ft w.c.):	#VALUE!	7.12	7.18	7.38	7.57	7.75	7.99
	Design System TDH v	with 5.0% Factor of Safety, (ft w.c.):	#VALUE!	7.48	7.54	7.75	7.95	8.14	8.39

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE: 4-May-2022	1
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE: 6-May-2022	
SUBJECT: P-404 pH Adjustment Pump	APPVD. BY:	[NAME]	DATE: [DATE]	ĺ

References:

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

 $Re = \frac{v \cdot \frac{ID}{12}}{12}$

Egn. (1): v = 448.831 Eqn. (2):

Eqn. (5):

Flooded Suction:

 $TDH - 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{st2} + Inline Equipment Headloss + H_{p(discharge)} + H_{p} + H_{p(suction)} - H_{st1}$

G A DCA DIC	ion & Consultance	PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE: 4-May-2022
ARCADIS for natural and	JOB NO.: 30133323	CHKD. BY: M. Samp	DATE: 6-May-2022	
	a assets	SUBJECT: P-402/T-403 MetClear/Coagulation Pumps	APPVD. BY: [NAME]	DATE: [DATE]

Pump ID:	T-402/T-403
Fluid:	Water
Fluid Description:	Acid/Base
Enter Fluid Density if Other than Water (lb/ft ³):	71
Enter Fluid Viscosity if Other than Water (cp):	
Enter Vapor Pressure if Other than Water (psi):	
Minimum Flow Rate (gpm):	0.1
Design Flow Rate (gpm):	0.15
Maximum Flow Rate (gpm):	0.2
Pressure of System to be Pumped, Psyst (psia):	14.7
Pressure of System Discharged, P _{sys2} (psia):	14.7
Fluid Temperature (*F):	60
Elevation of Fluid to be Pumped (ft):	3
Pump Impeller Centerline Elevation (ft):	1
Discharge Elevation (ft):	10
Static Head of Discharge Line , H _{st2} (ft):	9
Suction Lift of Liquid to be Pumped, H _{str} (ft):	
Static Head of Liquid to be Pumped, H _{st1} (ft):	2
Safety Factor:	5.0%
Vapor Pressure (ft. w.c.):	0.592
Fluid density, p (lb/ft ³):	62.36
Fluid Kinematic Viscosity, ŋ (ft ² /s):	1.21E-05
Include Exit Headloss at Discharge, H.:	Yes

-	_	_	-	-
N	0	te	÷	
	v	•••	-	

Flow Rates (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
(gpd):	140	140	140	280	280	280	280
(MGD):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Optional - Pump Head (ft w.c.):							
Optional - NSPH Required (ft w.c.):	1						

In-Line Equipment Headloss:

	Pressure Loss	1	Pres	sure Loss	
Equipment Tag	(ft w.c.)	Equipment Tag	(f	t w.c.)	
Flow Meter			3.00		
				1	
and the second second second second second second second second second second second second second second second					ing many many many states and any
Subtotal:	0.0		Subtotal:	0.0	Total Headloss (ft w.c.): 0.0

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE: 4-May-2022	
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE: 6-May-2022	
SUBJECT: P-402/T-403 MetClear/Coagulation Pumps	APPVD. BY:	[NAME]	DATE: [DATE]	

Suction Line Segment No. 1 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		2	к	No. Units	Total K	82	
Nominal Pipe Diameter (in):	0.5	Ball Valve			0.08	3	0.24	1	
Pipe Inner Diameter, ID (in):	0.546						0		
Pipe Length, L (ft):	10.00						0		
Pipe Material:	SCH 80 - PVC/CPVC						0		
Pipe Type:	Smooth Pipes (PE and other						0		
522.04 (2004)	thermoplastics)						0		
Roughness, e (ft):	0.000005			1			0	÷	
e / ID:	0.00010989					Total K:	0.2		
					25. 10				
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.14	0.14	0.14	0.27	0.27	0.27	0.27
		Eqn. (2) - Reynolds Number, Re:	5.26E+02	5.26E+02	5.26E+02	1.02E+03	1.02E+03	1.02E+03	1.02E+03
		Pipe Friction Factor, 1:	0.1216	0.1216	0.1216	0.063	0.063	0.063	0.063
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0008	0.0008	0.0008	0.0016	0.0016	0.0016	0.0016
	Eqn. (4a) - Fittings Equivalent Length, L _F (ft):			0.09	0.09	0.17	0.17	0.17	0.17
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leg (ft):	10.09	10.09	10.09	10.17	10.17	10.17	10.17
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	0.01	0.01	0.01	0.02	0.02	0.02	0.02

Suction Line Segment No. 2 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K	-01	
Nominal Pipe Diameter (in):	3						0	1	
Pipe Inner Diameter, ID (in):	2.9						0		
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 80 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
57 22	thermoplastics)						0		
Roughness, e (ft):	0.000005			3			0		
e / ID:	2.06897E-05					Total K:	0.0		
								·	
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.00	0.00	0.01	0.01	0.01	0.01
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	0.00E+00	0.00E+00	2.00E+02	2.00E+02	2.00E+02	2.00E+02
		Pipe Friction Factor, f:	0	0	0	0.3204	0.3204	0.3204	0.3204
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4a) - Fittings Equivalent Length, L _F (ft):			#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (4b) Equivalent Length of Pipe Segment, Leg (ft)		#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE: 4-	May-2022
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE: 6-	May-2022
SUBJECT: P-402/T-403 MetClear/Coagulation Pumps	APPVD. BY:	[NAME]	DATE: [D	DATE]

Suction Line Segment No. 3 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	K	No. Units	Total K	22	
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068						0		
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
0.226 / H. W. M.	thermoplastics)						0	1	
Roughness, e (ft):	0.000005			ž,			0		
e / ID:	1.95567E-05					Total K:	0.0		
		- 							
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.00	0.00	0.01	0.01	0.01	0.01
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	0.00E+00	0.00E+00	2.11E+02	2.11E+02	2.11E+02	2.11E+02
		Pipe Friction Factor, f:	0	0	0	0.3029	0.3029	0.3029	0.3029
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
Eqn. (4a) - Fittings Equivalent Length, L _F (ft):			#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (4b) Equivalent Length of Pipe Segment, Lea (ft):			#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (5) P	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00

Suction Line Segment No. 4 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		6	К	No. Units	Total K	26	
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
0.4 20	thermoplastics)						0		
Roughness, e (ft):	0.000005			2			0		
e / ID:	1.95567E-05					Total K:	0.0		
-0.00									
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.00	0.00	0.01	0.01	0.01	0.01
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	0.00E+00	0.00E+00	2.11E+02	2.11E+02	2.11E+02	2.11E+02
		Pipe Friction Factor, f:	0	0	0	0.3029	0.3029	0.3029	0.3029
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4a) - Fittings Equivalent Length, L _F (ft):			#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leg (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (5) P	Pipe Segment Headloss, Hp (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00

PROJECT: BASE Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE: 4-May-2022
JOB NO.: 30133323	CHKD, BY: M. Samp	DATE: 6-May-2022
SUBJECT: P-402/T-403 MetClear/Coagulation Pumps	APPVD. BY: [NAME]	DATE: [DATE]

Suction Line Segment No. 5 Headloss:									
Flow Ratio:	1	Valve/Fitting Tag		8	K	No. Units	Total K	22	
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0	1	
Pipe Material:	SCH 40 - Steel						0	1	
Pipe Type:	Smooth Pipes (PE and other						0	1	
Addition 44.52	thermoplastics)						0	1	
Roughness, e (ft):	0.000005						0	1	
e / ID:	1.95567E-05					Total K:	0.0		
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.00	0.00	0.01	0.01	0.01	0.01
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	0.00E+00	0.00E+00	2.11E+02	2.11E+02	2.11E+02	2.11E+02
		Pipe Friction Factor, f:	0	0	0	0.3029	0.3029	0.3029	0.3029
	Eqn. (3) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leg (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (5) I	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Suction	Piping Headloss, H _{plsuction} (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.02	0.02	0.02	0.02
	Eqn. (6) Available Net Pos	sitive Suction Head, NPSH _a (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	35.34	35.34	35.34	35.34

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE: 4-May-2022	
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE: 6-May-2022	
SUBJECT: P-402/T-403 MetClear/Coagulation Pumps	APPVD. BY:	[NAME]	DATE: [DATE]	

Discharge Line Segment No. 1 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		2	к	No. Units	Total K	22	
Nominal Pipe Diameter (in):	0.5	Ball Valve			0.08	2	0.16]	
Pipe Inner Diameter, ID (in):	0.546	Standard Elbow, 45°			0.43	4	1.72	1	
Pipe Length, L (ft):	60.00	Swing Check Valve (wye :	style)		2.7	1	2.7		
Pipe Material:	SCH 80 - PVC/CPVC						0		
Pipe Type:	Smooth Pipes (PE and other						0		
A 4067A 24000	thermoplastics)						0	1	
Roughness, e (ft):	0.000005						0		
e / ID:	0.00010989					Total K:	4.6		
		-						•••	
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.14	0.14	0.14	0.27	0.27	0.27	0.27
		Eqn. (2) - Reynolds Number, Re:	5.26E+02	5.26E+02	5.26E+02	1.02E+03	1.02E+03	1.02E+03	1.02E+03
		Pipe Friction Factor, f:	0.1216	0.1216	0.1216	0.063	0.063	0.063	0.063
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0008	0.0008	0.0008	0.0016	0.0016	0.0016	0.0016
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	1.71	1.71	1.71	3.31	3.31	3.31	3.31
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leq (ft):	61.71	61.71	61.71	63.31	63.31	63.31	63.31
	Eqn. (5) P	Pipe Segment Headloss, H _p (ft w.c.):	0.05	0.05	0.05	0.10	0.10	0.10	0.10

Discharge Line Segment No. 2 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	к	No. Units	Total K	20	
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):							0]	
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0]	
and the statement	thermoplastics)						0]	
Roughness, e (ft):	0.000005						0]	
e / ID:	1.95567E-05					Total K:	0.0		
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.00	0.00	0.01	0.01	0.01	0.01
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	0.00E+00	0.00E+00	2.11E+02	2.11E+02	2.11E+02	2.11E+02
		Pipe Friction Factor, f:	0	0	0	0.3029	0.3029	0.3029	0.3029
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leq (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (5) P	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE: 4-May-2022
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE: 6-May-2022
SUBJECT: P-402/T-403 MetClear/Coagulation Pumps	APPVD. BY:	[NAME]	DATE: [DATE]

Discharge Line Segment No. 3 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		2	ĸ	No. Units	Total K	22	
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0]	
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
A.46.6 M (44.12)	thermoplastics)						0		
Roughness, e (ft):	0.000005			2			0		
e / ID:	1.95567E-05					Total K:	0.0		
		- 							
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.00	0.00	0.01	0.01	0.01	0.01
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	0.00E+00	0.00E+00	2.11E+02	2.11E+02	2.11E+02	2.11E+02
		Pipe Friction Factor, f:	0	0	0	0.3029	0.3029	0.3029	0.3029
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00

Discharge Line Segment No. 4 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	K	No. Units	Total K	36	
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068			1			0		
Pipe Lenth, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
anter Street	thermoplastics)						0		
Roughness, e (ft):	0.000005			1			0		
e / ID:	1.95567E-05					Total K:	0.0		
		- 107 - CHARTER ATLAN - 10-						•••	
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.00	0.00	0.01	0.01	0.01	0.01
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	0.00E+00	0.00E+00	2.11E+02	2.11E+02	2.11E+02	2.11E+02
		Pipe Friction Factor, f:	0	0	0	0.3029	0.3029	0.3029	0.3029
	Eqn. (3) - Head Los	is Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leg (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE: 4-May-2022
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE: 6-May-2022
SUBJECT: P-402/T-403 MetClear/Coagulation Pumps	APPVD. BY:	[NAME]	DATE: [DATE]

Discharge Line Segment No. 5 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
0.2249 Presson	thermoplastics)						0		
Roughness, e (ft):	0.000005			2			0		
e / ID:	1.95567E-05					Total K:	0.0		
		- 							
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.00	0.00	0.01	0.01	0.01	0.01
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	0.00E+00	0.00E+00	2.11E+02	2.11E+02	2.11E+02	2.11E+02
		Pipe Friction Factor, f:	0	0	0	0.3029	0.3029	0.3029	0.3029
	Eqn. (3) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00

Discharge Line Segment No. 6 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		6	K	No. Units	Total K	26	
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
562600 - 552600	thermoplastics)						0		
Roughness, e (ft):	0.000005			1			0		
e / ID:	1.95567E-05					Total K:	0.0		
		-							
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.00	0.00	0.01	0.01	0.01	0.01
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	0.00E+00	0.00E+00	2.11E+02	2.11E+02	2.11E+02	2.11E+02
		Pipe Friction Factor, f:	0	0	0	0.3029	0.3029	0.3029	0.3029
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leq (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE: 4-May-2022
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE: 6-May-2022
SUBJECT: P-402/T-403 MetClear/Coagulation Pumps	APPVD. BY:	[NAME]	DATE: [DATE]

Discharge Line Segment No. 7 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		2	ĸ	No. Units	Total K	22	
Nominal Pipe Diameter (in):	3						0	1	
Pipe Inner Diameter, ID (in):	3.068						0]	
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
N.245.0 / Kelok	thermoplastics)						0		
Roughness, e (ft):	0.000005						0		
e / ID:	1.95567E-05					Total K:	0.0		
		- 							
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.00	0.00	0.01	0.01	0.01	0.01
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	0.00E+00	0.00E+00	2.11E+02	2.11E+02	2.11E+02	2.11E+02
		Pipe Friction Factor, f:	0	0	0	0.3029	0.3029	0.3029	0.3029
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00

Discharge Line Segment No. 8 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	к	No. Units	Total K	26	
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068						0		
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
anter Street	thermoplastics)						0		
Roughness, e (ft):	0.000005			1			0		
e / ID:	1.95567E-05					Total K:	0.0		
	a dos esta construction de la const	- 107 - CHARLES - ALLES - ST.							
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.00	0.00	0.01	0.01	0.01	0.01
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	0.00E+00	0.00E+00	2.11E+02	2.11E+02	2.11E+02	2.11E+02
		Pipe Friction Factor, f:	0	0	0	0.3029	0.3029	0.3029	0.3029
	Eqn. (3) - Head Los	is Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leg (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE: 4-May-2022	
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE: 6-May-2022	
SUBJECT: P-402/T-403 MetClear/Coagulation Pumps	APPVD. BY:	[NAME]	DATE: [DATE]	

Discharge Line Segment No. 9 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		22	ĸ	No. Units	Total K	97	
Nominal Pipe Diameter (in):	3						0	1	
Pipe Inner Diameter, ID (in):	3.068						0]	
Pipe Length, L (ft):	0.00			2			0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0	1	
1.8 282	thermoplastics)						0		
Roughness, e (ft):	0.000005						0		
e / ID:	1.95567E-05					Total K:	0.0		
100.000								•	
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.00	0.00	0.01	0.01	0.01	0.01
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	0.00E+00	0.00E+00	2.11E+02	2.11E+02	2.11E+02	2.11E+02
		Pipe Friction Factor, f:	0	0	0	0.3029	0.3029	0.3029	0.3029
	Eqn. (3) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leg (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00

Discharge Line Segment No. 10 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			К	No. Units	Total K	18	
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068						0		
Pipe Length, L (ft):	0.00)		0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
0.4 78	thermoplastics)						0		
Roughness, e (ft):	0.000005			2			0	÷	
e / ID:	1.95567E-05					Total K:	0.0		
		Segment Flowrate (gpm):	0.1	0.1	0.1	0.2	0.2	0.2	0.2
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.00	0.00	0.01	0.01	0.01	0.01
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	0.00E+00	0.00E+00	2.11E+02	2.11E+02	2.11E+02	2.11E+02
		Pipe Friction Factor, f:	0	0	0	0.3029	0.3029	0.3029	0.3029
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leq (ft):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00
		an 1995 - 20 6 00 - 20	×	· · · ·				1	
	Discharge P	iping Headloss, H _{p(discharge)} (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	0.10	0.10	0.10	0.10
Exit Velocity at Liquid Discharge, v (ft/s):		#VALUE!	#VALUE!	#VALUE!	0.27	0.27	0.27	0.27	
Eqn. (7) Exit Loss at Liquid Discharge, H _v (ft w.c.):		#VALUE!	#VALUE!	#VALUE!	0.00	0.00	0.00	0.00	
Eqn. (8) Total Dynamic Head, TDH (ft w.c.):		#VALUE!	#VALUE!	#VALUE!	7.12	7.12	7.12	7.12	
	Design System TDH v	with 5.0% Factor of Safety, (ft w.c.):	#VALUE!	#VALUE!	#VALUE!	7.48	7.48	7.48	7.48

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE: 4-May-2022
JOB NO.: 30133323	CHKD, BY: M. Samp	DATE: 6-May-2022
SUBJECT: P-402/T-403 MetClear/Coagulation Pumps	APPVD. BY: [NAME]	DATE: [DATE]

References:

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

Eqn. (1): v = 448.8312 π.

Eqn. (3): $H = \frac{f \cdot v^2}{f \cdot v^2} = \frac{f \cdot v^2}{f \cdot v^2}$	Eqn. (5): $H_P = H \cdot L_{eq}$
$2 \cdot g \cdot \frac{ID}{12} 2 \cdot (32.174) \cdot \frac{ID}{12}$	Eqn. (6):
Egn. (4a):	$NSPH_a = 2.31 \cdot (P_{sys1} - P_{vap}) - H_{p(such$
k - 1D	Eqn. (7):
$L_F = \frac{12}{f}$	$H_{\nu} = \frac{v^2}{2 \cdot a} = \frac{v^2}{2 \cdot (32.174)}$
Eqn. (4b):	2 9 2 (02111)
$L_{eq} = L + L_P$	Eqn. (8):
-77*191 - CC172020	Suction Lift:
	$TDH = 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{st2} + In$

ection) 1 Hat1

nline Equipment Headloss + $H_{p(discharge)} + H_{p} + H_{p(suction)} + H_{st1}$ Flooded Suction:

 $TDH = 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{st2} + Inline \ Equipment \ Headloss + H_p(discharge) + H_p + H_p(sustion) - H_{st1}$

ARCADIS	Design & Consultancy for natural and built assets
----------------	---

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE: 4-May-2022
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE: 6-May-2022
SUBJECT: P-406 Sludge Floc Pump	APPVD. BY: [NAME]	DATE: [DATE]

P-406	Pump ID:
Water	Fluid:
Polymer	Fluid Description:
75	Enter Fluid Density if Other than Water (lb/ft ³):
	Enter Fluid Viscosity if Other than Water (cp):
	Enter Vapor Pressure if Other than Water (psi):
0.1	Minimum Flow Rate (gpm):
0.3	Design Flow Rate (gpm):
0.5	Maximum Flow Rate (gpm):
14.7	Pressure of System to be Pumped, P _{sys1} (psia):
14.7	Pressure of System Discharged, P _{sys2} (psia):
60	Fluid Temperature (*F):
3	Elevation of Fluid to be Pumped (ft):
1	Pump Impeller Centerline Elevation (ft):
10	Discharge Elevation (ft):
9	Static Head of Discharge Line , H _{st2} (ft):
	Suction Lift of Liquid to be Pumped, H _{st1} (ft):
2	Static Head of Liquid to be Pumped, Hara (ft):
5.0%	Safety Factor:
0.592	Vapor Pressure (ft. w.c.):
62.36	Fluid density, p (lb/ft ³):
1.21E-05	Fluid Kinematic Viscosity, ŋ (ft ² /s):
Yes	Include Exit Headloss at Discharge, H _v :

-	_	-	-	-	-	•
N 1	~		ä	÷		
	v	Ļ	ç	2		

Flow Rates (gpm):	0.1	0.2	0.3	0.3	0.4	0.5	0.5
(gpd):	140	280	420	420	560	700	700
(MGD):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Optional - Pump Head (ft w.c.):							
Optional - NSPH Required (ft w.c.):	1						

In-Line Equipment Headloss:

	Pressure Loss		Pressure Lo	55
Equipment Tag	(ft w.c.)	Equipment Tag	(ft w.c.)	
Flow Meter	0.0		200 20	
Subtotal:	0.0	Sub	otal: 0.0	Total Headloss (ft w.c.): 0.0

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE:	4-May-2022
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE:	6-May-2022
SUBJECT: P-406 Sludge Floc Pump	APPVD. BY: [NAME]	DATE:	[DATE]

Suction Line Segment No. 1 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		8	к	No. Units	Total K	22	
Nominal Pipe Diameter (in):	0.5	Ball Valve			0.08	3	0.24]	
Pipe Inner Diameter, ID (in):	0.546						0	1	
Pipe Length, L (ft):	10.00						0		
Pipe Material:	SCH 80 - PVC/CPVC						0		
Pipe Type:	Smooth Pipes (PE and other						0]	
525-0 - 235-04	thermoplastics)						0]	
Roughness, e (ft):	0.000005						0		
e / ID:	0.00010989					Total K:	0.2		
2010-01-01-02									
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.3	0.4	0.5	0.5
		Eqn. (1) - Velocity, v (ft/s):	0.14	0.27	0.41	0.41	0.55	0.69	0.69
		Eqn. (2) - Reynolds Number, Re:	5.26E+02	1.02E+03	1.54E+03	1.54E+03	2.07E+03	2.59E+03	2.59E+03
		Pipe Friction Factor, f:	0.1216	0.063	0.0415	0.0415	0.049	0.0456	0.0456
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0008	0.0016	0.0024	0.0024	0.0051	0.0074	0.0074
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.09	0.17	0.26	0.26	0.22	0.24	0.24
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leg (ft):	10.09	10.17	10.26	10.26	10.22	10.24	10.24
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	0.01	0.02	0.02	0.02	0.05	0.08	0.08

Suction Line Segment No. 2 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K	:0:	
Nominal Pipe Diameter (in):	3						0	ji	
Pipe Inner Diameter, ID (in):	2.9						0		
Pipe Length, L (ft):	0.00					_	0	8	
Pipe Material:	SCH 80 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
54 - 22	thermoplastics)						0		
Roughness, e (ft):	0.000005			3			0		
e / ID:	2.06897E-05					Total K:	0.0		
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.3	0.4	0.5	0.5
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.01	0.01	0.01	0.02	0.02	0.02
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	2.00E+02	2.00E+02	2.00E+02	3.99E+02	3.99E+02	3.99E+02
		Pipe Friction Factor, f:	0	0.3204	0.3204	0.3204	0.1602	0.1602	0.1602
	Eqn. (3) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leg (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE	4-May-2022
JOB NO.: 30133323	CHKD, BY: M. Samp	DATE	6-May-2022
SUBJECT: P-406 Sludge Floc Pump	APPVD. BY: [NAME]	DATE	[DATE]

Suction Line Segment No. 3 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			K	No. Units	Total K		2
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0]	
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
0.236 / H.W.M.	thermoplastics)						0		
Roughness, e (ft):	0.000005						0		
e / ID:	1.95567E-05					Total K:	0.0		
		- 						•••	
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.3	0.4	0.5	0.5
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.01	0.01	0.01	0.02	0.02	0.02
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	2.11E+02	2.11E+02	2.11E+02	4.23E+02	4.23E+02	4.23E+02
		Pipe Friction Factor, f:	0	0.3029	0.3029	0.3029	0.1514	0.1514	0.1514
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00

Suction Line Segment No. 4 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		6	К	No. Units	Total K	20	
Nominal Pipe Diameter (in):	3						0	1	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0]	
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0]	
07 20	thermoplastics)						0		
Roughness, e (ft):	0.000005			2			0]	
e / ID:	1.95567E-05					Total K:	0.0		
-0.4045.000					2				
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.3	0.4	0.5	0.5
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.01	0.01	0.01	0.02	0.02	0.02
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	2.11E+02	2.11E+02	2.11E+02	4.23E+02	4.23E+02	4.23E+02
		Pipe Friction Factor, f:	0	0.3029	0.3029	0.3029	0.1514	0.1514	0.1514
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leg (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	Pipe Segment Headloss, Hp (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE: 4-May-2022
JOB NO.: 30133323	CHKD, BY: M, Samp	DATE: 6-May-2022
SUBJECT: P-406 Sludge Floc Pump	APPVD. BY: [NAME]	DATE: [DATE]

ARCADIS	Design & Consultancy for natural and built assets
---------	---

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K		
Nominal Pipe Diameter (in):	3						0	1	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0	1	
Pipe Material:	SCH 40 - Steel						0	1	
Pipe Type:	Smooth Pipes (PE and other	1					0	1	
A A D S A D A D A D A D A D A D A D A D	thermoplastics)						0	1	
Roughness, e (ft):	0.000005						0	1	
e / ID:	1.95567E-05	1				Total K:	0.0	1	
		Segment Flowrate (gpm): Egn. (1) - Velocity, v (ft/s):	0.1	0.2	0.3	0.3	0.4	0.5	0.5
		Ean. (2) - Revnolds Number, Re:	0.00E+00	2.11E+02	2.11E+02	2.11E+02	4.23E+02	4.23E+02	4.23E+02
		Pipe Friction Factor, f:	0	0.3029	0.3029	0.3029	0.1514	0.1514	0.1514
	Eqn. (3) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leg (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5)	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Suction	Piping Headloss, H _{plsuction} (ft w.c.):	#VALUE!	0.02	0.02	0.02	0.05	0.08	0.08
	Eqn. (6) Available Net Po	sitive Suction Head, NPSH _a (ft w.c.):	#VALUE!	35.34	35.34	35.34	35.31	35.28	35.28

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE: 4-May-2022
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE: 6-May-2022
SUBJECT: P-406 Sludge Floc Pump	APPVD. BY:	[NAME]	DATE: [DATE]

Discharge Line Segment No. 1 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	к	No. Units	Total K	83	
Nominal Pipe Diameter (in):	0.5	Ball Valve			0.08	2	0.16	1	
Pipe Inner Diameter, ID (in):	0.546	Standard Elbow, 45°			0.43	4	1.72	1	
Pipe Length, L (ft):	20.00	Swing Check Valve (wye	style)		2.7	1	2.7	F	
Pipe Material:	SCH 80 - PVC/CPVC						0		
Pipe Type:	Smooth Pipes (PE and other						0		
A AGAM WALF	thermoplastics)						0	1	
Roughness, e (ft):	0.000005			2			0		
e / ID:	0.00010989					Total K:	4.6		
							0		
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.3	0.4	0.5	0.5
		Eqn. (1) - Velocity, v (ft/s):	0.14	0.27	0.41	0.41	0.55	0.69	0.69
		Eqn. (2) - Reynolds Number, Re:	5.26E+02	1.02E+03	1.54E+03	1.54E+03	2.07E+03	2.59E+03	2.59E+03
		Pipe Friction Factor, f:	0.1216	0.063	0.0415	0.0415	0.049	0.0456	0.0456
	Eqn. (3) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0.0008	0.0016	0.0024	0.0024	0.0051	0.0074	0.0074
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	1.71	3.31	5.02	5.02	4.25	4.57	4.57
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leq (ft):	21.71	23.31	25.02	25.02	24.25	24.57	24.57
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	0.02	0.04	0.06	0.06	0.12	0.18	0.18

Discharge Line Segment No. 2 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		6	К	No. Units	Total K	36	
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):							0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
122 m - 120 m	thermoplastics)						0]	
Roughness, e (ft):	0.000005			1			0		
e / ID:	1.95567E-05					Total K:	0.0		
		- 107 - CHARLES - ALLES - ST.						•	
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.3	0.4	0.5	0.5
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.01	0.01	0.01	0.02	0.02	0.02
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	2.11E+02	2.11E+02	2.11E+02	4.23E+02	4.23E+02	4.23E+02
		Pipe Friction Factor, f:	0	0.3029	0.3029	0.3029	0.1514	0.1514	0.1514
	Eqn. (3) - Head Los	is Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leq (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE	4-May-2022
JOB NO.: 30133323	CHKD, BY: M. Samp	DATE	6-May-2022
SUBJECT: P-406 Sludge Floc Pump	APPVD. BY: [NAME]	DATE	[DATE]

Discharge Line Segment No. 3 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		8	к	No. Units	Total K	22	
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0]	
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
0.2249 Presson	thermoplastics)						0		
Roughness, e (ft):	0.000005						0		
e / ID:	1.95567E-05					Total K:	0.0		
		-							
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.3	0.4	0.5	0.5
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.01	0.01	0.01	0.02	0.02	0.02
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	2.11E+02	2.11E+02	2.11E+02	4.23E+02	4.23E+02	4.23E+02
		Pipe Friction Factor, f:	0	0.3029	0.3029	0.3029	0.1514	0.1514	0.1514
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00

Discharge Line Segment No. 4 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	К	No. Units	Total K	26	
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Lenth, L (ft):	0.00						0	1	
Pipe Material:	SCH 40 - Steel						0	1	
Pipe Type:	Smooth Pipes (PE and other						0]	
52 mil	thermoplastics)						0]	
Roughness, e (ft):	0.000005			1			0]	
e / ID:	1.95567E-05					Total K:	0.0		
		-							
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.3	0.4	0.5	0.5
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.01	0.01	0.01	0.02	0.02	0.02
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	2.11E+02	2.11E+02	2.11E+02	4.23E+02	4.23E+02	4.23E+02
		Pipe Friction Factor, f:	0	0.3029	0.3029	0.3029	0.1514	0.1514	0.1514
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leg (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE	4-May-2022
JOB NO.: 30133323	CHKD, BY: M. Samp	DATE	6-May-2022
SUBJECT: P-406 Sludge Floc Pump	APPVD. BY: [NAME]	DATE	[DATE]

Discharge Line Segment No. 5 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		8	к	No. Units	Total K	22	
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0]	
Pipe Length, L (ft):	0.00						0]	
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
0.2249 Presson	thermoplastics)						0		
Roughness, e (ft):	0.000005						0		
e / ID:	1.95567E-05					Total K:	0.0		
		-					0		
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.3	0.4	0.5	0.5
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.01	0.01	0.01	0.02	0.02	0.02
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	2.11E+02	2.11E+02	2.11E+02	4.23E+02	4.23E+02	4.23E+02
		Pipe Friction Factor, f:	0	0.3029	0.3029	0.3029	0.1514	0.1514	0.1514
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00

Discharge Line Segment No. 6 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	к	No. Units	Total K	56	
Nominal Pipe Diameter (in):	3						0	1	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0]	
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0	1	
56260 - 55560	thermoplastics)						0]	
Roughness, e (ft):	0.000005			1			0]	
e / ID:	1.95567E-05					Total K:	0.0	1	
		- 107 - CHARTER ATLANT - 105-							0.000
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.3	0.4	0.5	0.5
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.01	0.01	0.01	0.02	0.02	0.02
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	2.11E+02	2.11E+02	2.11E+02	4.23E+02	4.23E+02	4.23E+02
		Pipe Friction Factor, f:	0	0.3029	0.3029	0.3029	0.1514	0.1514	0.1514
	Eqn. (3) - Head Los	is Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leq (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE:	4-May-2022
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE:	6-May-2022
SUBJECT: P-406 Sludge Floc Pump	APPVD. BY: [NAME]	DATE:	[DATE]

Discharge Line Segment No. 7 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	K	No. Units	Total K	22	
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0]	
Pipe Material:	SCH 40 - Steel						0]	
Pipe Type:	Smooth Pipes (PE and other						0	1	
A.648-A.24220	thermoplastics)						0	1	
Roughness, e (ft):	0.000005						0		
e / ID:	1.95567E-05	-				Total K:	0.0		
							0		
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.3	0.4	0.5	0.5
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.01	0.01	0.01	0.02	0.02	0.02
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	2.11E+02	2.11E+02	2.11E+02	4.23E+02	4.23E+02	4.23E+02
		Pipe Friction Factor, f:	0	0.3029	0.3029	0.3029	0.1514	0.1514	0.1514
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00

Discharge Line Segment No. 8 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	к	No. Units	Total K	56	
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0]	
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0	1	
56260 - 55560	thermoplastics)						0]	
Roughness, e (ft):	0.000005			1			0]	
e / ID:	1.95567E-05					Total K:	0.0	1	
		- 107 - CHARLES - ALLES - ST.							
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.3	0.4	0.5	0.5
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.01	0.01	0.01	0.02	0.02	0.02
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	2.11E+02	2.11E+02	2.11E+02	4.23E+02	4.23E+02	4.23E+02
		Pipe Friction Factor, f:	0	0.3029	0.3029	0.3029	0.1514	0.1514	0.1514
	Eqn. (3) - Head Los	is Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leq (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE: 4-May-2022
JOB NO.: 30133323	CHKD, BY: M, Samp	DATE: 6-May-2022
SUBJECT: P-406 Sludge Floc Pump	APPVD. BY: [NAME]	DATE: [DATE]

Discharge Line Segment No. 9 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K	97	
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068						0]	
Pipe Length, L (ft):	0.00			2			0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0	1	
0.8 382	thermoplastics)						0		
Roughness, e (ft):	0.000005						0		
e / ID:	1.95567E-05					Total K:	0.0		
								•	
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.3	0.4	0.5	0.5
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.01	0.01	0.01	0.02	0.02	0.02
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	2.11E+02	2.11E+02	2.11E+02	4.23E+02	4.23E+02	4.23E+02
		Pipe Friction Factor, f:	0	0.3029	0.3029	0.3029	0.1514	0.1514	0.1514
	Eqn. (3) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Egn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leg (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00

Discharge Line Segment No. 10 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K	1	
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00)		0		
Pipe Material:	SCH 40 - Steel						0	1	
Pipe Type:	Smooth Pipes (PE and other						0	0	
	thermoplastics)						0	1	
Roughness, e (ft):	0.000005			2			0		
e / ID:	1.95567E-05					Total K:	0.0		
		Segment Flowrate (gpm):	0.1	0.2	0.3	0.3	0.4	0.5	0.5
		Eqn. (1) - Velocity, v (ft/s):	0.00	0.01	0.01	0.01	0.02	0.02	0.02
		Eqn. (2) - Reynolds Number, Re:	0.00E+00	2.11E+02	2.11E+02	2.11E+02	4.23E+02	4.23E+02	4.23E+02
		Pipe Friction Factor, f:	0	0.3029	0.3029	0.3029	0.1514	0.1514	0.1514
	Eqn. (3) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0	0	0
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	lent Length of Pipe Segment, Leq (ft):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.00	0.00
					0.05				
	Discharge P	ping Headloss, H _{p(discharge)} (ft w.c.):	#VALUE!	0.04	0.06	0.06	0.12	0.18	0.18
	Exit V	elocity at Liquid Discharge, v (ft/s):	#VALUE!	0.27	0.41	0.41	0.55	0.69	0.69
	Eqn. (7) Exit Lo	ss at Liquid Discharge, H _v (ft w.c.):	#VALUE!	0.00	0.00	0.00	0.00	0.01	0.01
	Eqn. (8)	Total Dynamic Head, TDH (ft w.c.):	#VALUE!	7.06	7.08	7.08	7.17	7.27	7.27
	Design System TDH v	with 5.0% Factor of Safety, (ft w.c.):	#VALUE!	7.41	7.43	7.43	7.53	7.63	7.63

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE: 4-May-2022
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE: 6-May-2022
SUBJECT: P-406 Sludge Floc Pump	APPVD. BY:	[NAME]	DATE: [DATE]

References:

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

Eqn. (3):

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

 $Re = \frac{v \cdot \frac{ID}{12}}{v \cdot \frac{ID}{12}}$

Eqn. (1):

$$v = \frac{gpm}{\frac{448.6312}{\frac{\pi}{4} \cdot \left(\frac{fD}{12}\right)^2}}$$
Eqn. (2):

 $NSPH_a = 2.31 \cdot (P_{sys1} - P_{vap}) - H_{p(suction)} \perp H_{st1}$

$$H_{\nu} = \frac{v^2}{2 \cdot g} = \frac{v^2}{2 \cdot (32.174)}$$

Eqn. (5):

 $H_p = H \cdot L_{eq}$

 $TDH = 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{st2} + Inline \ Equipment \ Headloss + H_p(discharge) + H_p + H_p(suction) + H_{st1}$ Flooded Suction:

 $TDH = 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{st2} + Inline \ Equipment \ Headloss + H_p(discharge) + H_p + H_p(suction) - H_{st1}$
G A DCA DIC	Jasian & Consultance	PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE: 4-May-2022
ARCADIS	or natural and	JOB NO.: 30133323	CHKD, BY: M, Samp	DATE: 6-May-2022
	And assets	SUBJECT: P-505 Sump Pump	APPVD. BY: [NAME]	DATE: [DATE]

Water	Fluid Description: Enter Fluid Density if Other than Water (lb/ft ³):
	Enter Fluid Viscosity if Other than Water (cp): Enter Vapor Pressure if Other than Water (psi):
10	Minimum Flow Rate (gpm):
15	Design Flow Rate (gpm):
20	Maximum Flow Rate (gpm):
14.7	Pressure of System to be Pumped, P _{sys1} (psia):
14.7	Pressure of System Discharged, P ₃₉₅₂ (psia):
60	Fluid Temperature (*F):
-4	Elevation of Fluid to be Pumped (ft):
-6	Pump Impeller Centerline Elevation (ft):
12	Discharge Elevation (ft):
18	Static Head of Discharge Line , H _{st2} (ft):
	Suction Lift of Liquid to be Pumped, H _{stz} (ft):
2	Static Head of Liquid to be Pumped, Harr (ft):
5.0%	Safety Factor:
0.592	Vapor Pressure (ft. w.c.):
62.36	Fluid density, p (lb/ft3):
1.21E-05	Fluid Kinematic Viscosity, ŋ (ft ² /s):
Yes	Include Exit Headloss at Discharge, H _v :

Notes:

Flow Rates (gpm):	10.0	11.7	13.4	15.0	16.7	18.4	20.0
(gpd):	14,000	16,380	18,760	21,000	23,380	25,760	28,000
(MGD):	0.01	0.02	0.02	0.02	0.02	0.03	0.03
Optional - Pump Head (ft w.c.):							
Optional - NSPH Required (ft w.c.):	1						

In-Line Equipment Headloss:

	Pressure Loss	P	Pressure Loss
Equipment Tag	(ft w.c.)	Equipment Tag	(ft w.c.)
	$ w \approx 1$		
Subtotal:	0.0	Subtotal:	: 0.0 Total Headloss (ft w.c.): 0.0

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE:	4-May-2022	- 1
JOB NO.: 30133323	CHKD, BY: M. Samp	DATE:	6-May-2022	
SUBJECT: P-505 Sump Pump	APPVD. BY: [NAME]	DATE:	[DATE]	

Suction Line Segment No. 1 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			K	No. Units	Total K		2
Nominal Pipe Diameter (in):	0.5						0		
Pipe Inner Diameter, ID (in):	0.546						0		
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 80 - PVC/CPVC						0		
Pipe Type:	Smooth Pipes (PE and other						0		
222-0- 372-04	thermoplastics)						0		
Roughness, e (ft):	0.000005					-	0		
e / ID:	0.00010989					Total K:	0.0		
		Segment Flowrate (gpm):	10	11.7	13.4	15	16.7	18.4	20
		Eqn. (1) - Velocity, v (ft/s):	13.70	16.03	18.36	20.55	22.88	25.21	27.41
		Eqn. (2) - Reynolds Number, Re:	5.15E+04	6.03E+04	6.90E+04	7.73E+04	8.60E+04	9.48E+04	1.03E+05
		Pipe Friction Factor, 1:	0.0212	0.0205	0.0199	0.0195	0.0191	0.0187	0.0185
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	1.359	1.7992	2.2911	2.8126	3.4151	4.0592	4.7473
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leg (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Suction Line Segment No. 2 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K	-0:	
Nominal Pipe Diameter (in):	3						0	1	
Pipe Inner Diameter, ID (in):	2.9						0		
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 80 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
54 - 22	thermoplastics)						0		
Roughness, e (ft):	0.000005			3			0		
e / ID:	2.06897E-05					Total K:	0.0	J.	
		Segment Flowrate (gpm):	10	11.7	13.4	15	16.7	18.4	20
		Eqn. (1) - Velocity, v (ft/s):	0.49	0.57	0.65	0.73	0.81	0.89	0.97
		Eqn. (2) - Reynolds Number, Re:	9.79E+03	1.14E+04	1.30E+04	1.46E+04	1.62E+04	1.78E+04	1.94E+04
		Pipe Friction Factor, f:	0.0311	0.0299	0.0289	0.028	0.0273	0.0267	0.0261
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0005	0.0006	0.0008	0.001	0.0012	0.0014	0.0016
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leg (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE:	4-May-2022	- 1
JOB NO.: 30133323	CHKD, BY: M. Samp	DATE:	6-May-2022	
SUBJECT: P-505 Sump Pump	APPVD. BY: [NAME]	DATE:	[DATE]	

Suction Line Segment No. 3 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	K	No. Units	Total K	82	8
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0	li i i i	
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics)						0		
Roughness, e (ft):	0.000005			2			0		
e / ID:	1.95567E-05					Total K:	0.0		
		-							
		Segment Flowrate (gpm):	10	11.7	13.4	15	16.7	18.4	20
		Eqn. (1) - Velocity, v (ft/s):	0.43	0.51	0.58	0.65	0.72	0.80	0.87
		Eqn. (2) - Reynolds Number, Re:	9.09E+03	1.08E+04	1.23E+04	1.37E+04	1.52E+04	1.69E+04	1.84E+04
		Pipe Friction Factor, f:	0.0317	0.0303	0.0293	0.0285	0.0277	0.027	0.0265
	Eqn. (3) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0.0004	0.0005	0.0006	0.0007	0.0009	0.0011	0.0012
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Suction Line Segment No. 4 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	к	No. Units	Total K	26	
Nominal Pipe Diameter (in):	3						0	1	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
W 20	thermoplastics)						0		
Roughness, e (ft):	0.000005			2			0		
e / ID:	1.95567E-05					Total K:	0.0		
		Segment Flowrate (gpm):	10	11.7	13.4	15	16.7	18.4	20
		Eqn. (1) - Velocity, v (ft/s):	0.43	0.51	0.58	0.65	0.72	0.80	0.87
		Eqn. (2) - Reynolds Number, Re:	9.09E+03	1.08E+04	1.23E+04	1.37E+04	1.52E+04	1.69E+04	1.84E+04
		Pipe Friction Factor, f:	0.0317	0.0303	0.0293	0.0285	0.0277	0.027	0.0265
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0004	0.0005	0.0006	0.0007	0.0009	0.0011	0.0012
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leg (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE: 4-May-2022
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE: 6-May-2022
SUBJECT: P-505 Sump Pump	APPVD. BY: [NAME]	DATE: [DATE]

ARCADIS	Design & Consultancy for natural and built assets
---------	---

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K		
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0	1	
Pipe Material:	SCH 40 - Steel						0	1	
Pipe Type:	Smooth Pipes (PE and other						0	1	
Automa accord	thermoplastics)						0	1	
Roughness, e (ft):	0.000005						0	1	
e / ID:	1.95567E-05	-				Total K:	0.0	1	
		Eqn. (1) - Velocity, v (ft/s):	0.43	0.51	0.58	0.65	0.72	0.80	0.87
		Eqn. (1) - Velocity, v (ft/s):	0.43	0.51	0.58	0.65	0.72	0.80	0.87
		Eqn. (2) - Reynolds Number, Re:	9.09E+03	1.08E+04	1.232+04	1.372+04	1.52E+04	1.69E+04	1.84E+04
	20 22040 300	Pipe Friction Factor, 7:	0.0317	0.0303	0.0293	0.0285	0.0277	0.027	0.0265
	Eqn. (3) - Head Loss	Across Pipe Segment, H (ft w.c./ft):	0.0004	0.0005	0.0006	0.0007	0.0009	0.0011	0.0012
	Eqn. (4a)	 Fittings Equivalent Length, L_F (ft): 	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equivale	ent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) Pip	e Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Suction P	iping Headloss, H _{p(suction)} (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Free (0) Averille ble bles Desild	we Sustian Used NDCU // we als	35 36	35 36	35 36	35 36	35.36	35 36	25.26

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE:	4-May-2022	- 1
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE:	6-May-2022	
SUBJECT: P-505 Sump Pump	APPVD. BY: [NAME]	DATE:	[DATE]	

Discharge Line Segment No. 1 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		8	K	No. Units	Total K	23	6
Nominal Pipe Diameter (in):	1.5	Standard Elbow, 90°			0.63	2	1.26	1	
Pipe Inner Diameter, ID (in):	1.5						0]	
Pipe Length, L (ft):	55.00						0		
Pipe Material:	SCH 80 - PVC/CPVC						0		
Pipe Type:	Smooth Pipes (PE and other	· · · · · · · · · · · · · · · · · · ·			. Marca		0		
0.2260 / 66.66.6	thermoplastics)	3 x 1.5 reducer			0.38	1	0.38		
Roughness, e (ft):	0.000005						0		
e / ID:	0.00004	-				Total K:	1.6		
		Segment Flowrate (gpm):	10	11.7	13.4	15	16.7	18.4	20
		Eqn. (1) - Velocity, v (ft/s):	1.82	2.12	2.43	2.72	3.03	3.34	3.63
		Eqn. (2) - Reynolds Number, Re:	1.88E+04	2.19E+04	2.51E+04	2.81E+04	3.13E+04	3.45E+04	3.75E+04
		Pipe Friction Factor, f:	0.0264	0.0254	0.0246	0.024	0.0234	0.0228	0.0224
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0109	0.0142	0.0181	0.0221	0.0267	0.0316	0.0367
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	7.77	8.07	8.33	8.54	8.76	8.99	9.15
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	62.77	63.07	63.33	63.54	63.76	63.99	64.15
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	0.68	0.90	1.15	1.40	1.70	2.02	2.35

Discharge Line Segment No. 2 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	К	No. Units	Total K	36	
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):							0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0	1	
Saturn (ADurn)	thermoplastics)						0	1	
Roughness, e (ft):	0.000005			1			0		
e / ID:	1.95567E-05					Total K:	0.0		
			in the state					•	
		Segment Flowrate (gpm):	10	11.7	13.4	15	16.7	18.4	20
		Eqn. (1) - Velocity, v (ft/s):	0.43	0.51	0.58	0.65	0.72	0.80	0.87
		Eqn. (2) - Reynolds Number, Re:	9.09E+03	1.08E+04	1.23E+04	1.37E+04	1.52E+04	1.69E+04	1.84E+04
		Pipe Friction Factor, f:	0.0317	0.0303	0.0293	0.0285	0.0277	0.027	0.0265
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0004	0.0005	0.0006	0.0007	0.0009	0.0011	0.0012
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leg (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE	4-May-2022
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE	6-May-2022
SUBJECT: P-505 Sump Pump	APPVD. BY: [NAME]	DATE	[DATE]

Discharge Line Segment No. 3 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
0.2.250 Areasia	thermoplastics)						0		
Roughness, e (ft):	0.000005			2			0		
e / ID:	1.95567E-05					Total K:	0.0		
		- 							
		Segment Flowrate (gpm):	10	11.7	13.4	15	16.7	18.4	20
		Eqn. (1) - Velocity, v (ft/s):	0.43	0.51	0.58	0.65	0.72	0.80	0.87
		Eqn. (2) - Reynolds Number, Re:	9.09E+03	1.08E+04	1.23E+04	1.37E+04	1.52E+04	1.69E+04	1.84E+04
		Pipe Friction Factor, f:	0.0317	0.0303	0.0293	0.0285	0.0277	0.027	0.0265
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0004	0.0005	0.0006	0.0007	0.0009	0.0011	0.0012
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Discharge Line Segment No. 4 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	к	No. Units	Total K	26	
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Lenth, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0	1	
ing me (String	thermoplastics)						0	1	
Roughness, e (ft):	0.000005						0		
e / ID:	1.95567E-05					Total K:	0.0	1	
		-	in the second second					•	
		Segment Flowrate (gpm):	10	11.7	13.4	15	16.7	18.4	20
		Eqn. (1) - Velocity, v (ft/s):	0.43	0.51	0.58	0.65	0.72	0.80	0.87
		Eqn. (2) - Reynolds Number, Re:	9.09E+03	1.08E+04	1.23E+04	1.37E+04	1.52E+04	1.69E+04	1.84E+04
		Pipe Friction Factor, f:	0.0317	0.0303	0.0293	0.0285	0.0277	0.027	0.0265
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0004	0.0005	0.0006	0.0007	0.0009	0.0011	0.0012
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE	4-May-2022
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE	6-May-2022
SUBJECT: P-505 Sump Pump	APPVD. BY: [NAME]	DATE	[DATE]

Discharge Line Segment No. 5 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	K	No. Units	Total K	22	2
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0	li i i i	
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
N.245.0 / Kelok	thermoplastics)						0		
Roughness, e (ft):	0.000005			2			0		
e / ID:	1.95567E-05					Total K:	0.0		
		- 							
		Segment Flowrate (gpm):	10	11.7	13.4	15	16.7	18.4	20
		Eqn. (1) - Velocity, v (ft/s):	0.43	0.51	0.58	0.65	0.72	0.80	0.87
		Eqn. (2) - Reynolds Number, Re:	9.09E+03	1.08E+04	1.23E+04	1.37E+04	1.52E+04	1.69E+04	1.84E+04
		Pipe Friction Factor, f:	0.0317	0.0303	0.0293	0.0285	0.0277	0.027	0.0265
	Eqn. (3) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0.0004	0.0005	0.0006	0.0007	0.0009	0.0011	0.0012
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Discharge Line Segment No. 6 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	к	No. Units	Total K	56	
Nominal Pipe Diameter (in):	3						0	1	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0]	
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0]	
Salar (Qual	thermoplastics)						0]	
Roughness, e (ft):	0.000005			1			0]	
e / ID:	1.95567E-05					Total K:	0.0	1	
		-	in the state						
		Segment Flowrate (gpm):	10	11.7	13.4	15	16.7	18.4	20
		Eqn. (1) - Velocity, v (ft/s):	0.43	0.51	0.58	0.65	0.72	0.80	0.87
		Eqn. (2) - Reynolds Number, Re:	9.09E+03	1.08E+04	1.23E+04	1.37E+04	1.52E+04	1.69E+04	1.84E+04
		Pipe Friction Factor, f:	0.0317	0.0303	0.0293	0.0285	0.0277	0.027	0.0265
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0004	0.0005	0.0006	0.0007	0.0009	0.0011	0.0012
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	alent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE: 4-May-2022
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE: 6-May-2022
SUBJECT: P-505 Sump Pump	APPVD. BY: [NAME]	DATE: [DATE]

Discharge Line Segment No. 7 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			K	No. Units	Total K		2
Nominal Pipe Diameter (in):	3						0]	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0	li i i i	
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
0.236 / H.W.M.	thermoplastics)						0		
Roughness, e (ft):	0.000005			2			0		
e / ID:	1.95567E-05					Total K:	0.0		
		- 							
		Segment Flowrate (gpm):	10	11.7	13.4	15	16.7	18.4	20
		Eqn. (1) - Velocity, v (ft/s):	0.43	0.51	0.58	0.65	0.72	0.80	0.87
		Eqn. (2) - Reynolds Number, Re:	9.09E+03	1.08E+04	1.23E+04	1.37E+04	1.52E+04	1.69E+04	1.84E+04
		Pipe Friction Factor, f:	0.0317	0.0303	0.0293	0.0285	0.0277	0.027	0.0265
	Eqn. (3) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0.0004	0.0005	0.0006	0.0007	0.0009	0.0011	0.0012
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Discharge Line Segment No. 8 Headloss:

Flow Ratio:	1	Valve/Fitting Tag		0	К	No. Units	Total K	26	
Nominal Pipe Diameter (in):	3						0	1	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00						0		
Pipe Material:	SCH 40 - Steel						0	1	
Pipe Type:	Smooth Pipes (PE and other						0	1	
Salari 20ari	thermoplastics)	1					0	1	
Roughness, e (ft):	0.000005			1			0	1	
e / ID:	1.95567E-05					Total K:	0.0	1	
			in the state					•	
		Segment Flowrate (gpm):	10	11.7	13.4	15	16.7	18.4	20
		Eqn. (1) - Velocity, v (ft/s):	0.43	0.51	0.58	0.65	0.72	0.80	0.87
		Eqn. (2) - Reynolds Number, Re:	9.09E+03	1.08E+04	1.23E+04	1.37E+04	1.52E+04	1.69E+04	1.84E+04
		Pipe Friction Factor, f:	0.0317	0.0303	0.0293	0.0285	0.0277	0.027	0.0265
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0004	0.0005	0.0006	0.0007	0.0009	0.0011	0.0012
	Eqn. (4a) - Fittings Equivalent Length, L _F (ft)			0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leg (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

PROJECT: BASF Northworks Perimeter Barrier Remedy	BY: S. Hannula	DATE:	4-May-2022	7
JOB NO.: 30133323	CHKD. BY: M. Samp	DATE:	6-May-2022	
SUBJECT: P-505 Sump Pump	APPVD. BY: [NAME]	DATE:	[DATE]	

Discharge Line Segment No. 9 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			к	No. Units	Total K	22	
Nominal Pipe Diameter (in):	3						0		
Pipe Inner Diameter, ID (in):	3.068						0]	
Pipe Length, L (ft):	0.00			?			0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
UK 30	thermoplastics)						0		
Roughness, e (ft):	0.000005						0		
e / ID:	1.95567E-05				6	Total K:	0.0		
		- 		and the second second					
		Segment Flowrate (gpm):	10	11.7	13.4	15	16.7	18.4	20
		Eqn. (1) - Velocity, v (ft/s):	0.43	0.51	0.58	0.65	0.72	0.80	0.87
		Eqn. (2) - Reynolds Number, Re:	9.09E+03	1.08E+04	1.23E+04	1.37E+04	1.52E+04	1.69E+04	1.84E+04
		Pipe Friction Factor, f:	0.0317	0.0303	0.0293	0.0285	0.0277	0.027	0.0265
	Eqn. (3) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0.0004	0.0005	0.0006	0.0007	0.0009	0.0011	0.0012
	Eqn. (4a) - Fittings Equivalent Length, L _F (ft):			0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equivalent Length of Pipe Segment, Lea (ft)			0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) F	Pipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Discharge Line Segment No. 10 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			K	No. Units	Total K	13	
Nominal Pipe Diameter (in):	3						0	1	
Pipe Inner Diameter, ID (in):	3.068						0	1	
Pipe Length, L (ft):	0.00)	· · · · · · · · · · · · · · · · · · ·	0		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Smooth Pipes (PE and other						0		
4.× 20	thermoplastics)						0		
Roughness, e (ft):	0.000005			2			0	<u>(</u>	
e / ID:	1.95567E-05					Total K:	0.0		
		Segment Flowrate (gpm):	10	11.7	13.4	15	16.7	18.4	20
		Eqn. (1) - Velocity, v (ft/s):	0.43	0.51	0.58	0.65	0.72	0.80	0.87
		Eqn. (2) - Reynolds Number, Re:	9.09E+03	1.08E+04	1.23E+04	1.37E+04	1.52E+04	1.69E+04	1.84E+04
		Pipe Friction Factor, f:	0.0317	0.0303	0.0293	0.0285	0.0277	0.027	0.0265
	Eqn. (3) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0.0004	0.0005	0.0006	0.0007	0.0009	0.0011	0.0012
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	elent Length of Pipe Segment, Leq (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (5) P	ipe Segment Headloss, H _p (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Discharge P	iping Headloss, Haldischarge) (ft w.c.):	0.68	0.90	1.15	1.40	1.70	2.02	2.35
	Exit V	elocity at Liquid Discharge, v (ft/s):	1.82	2.12	2.43	2.72	3.03	3.34	3.63
	Egn. (7) Exit Lo	ss at Liquid Discharge, H, (ft w.c.):	0.05	0.07	0.09	0.12	0.14	0.17	0.20
	Egn. (8)	Total Dynamic Head, TDH (ft w.c.):	16.73	16.97	17.24	17.52	17.84	18.19	18.55
	Design System TDH	with 5.0% Factor of Safety, (ft w.c.):	17.57	17.82	18.10	18.40	18.73	19.10	19.48

PROJECT: BASE Northworks Perimeter Barrier Remedy	BY:	S. Hannula	DATE: 4-May-2022
JOB NO.: 30133323	CHKD. BY:	M. Samp	DATE: 6-May-2022
SUBJECT: P-505 Sump Pump	APPVD. BY:	[NAME]	DATE: [DATE]

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

Eqn. (3):

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

 $Re = \frac{v \cdot \frac{ID}{12}}{v \cdot \frac{ID}{12}}$

Egn. (1): p = 448.831 Eqn. (2):

 $NSPH_a = 2.31 \cdot (P_{sys1} - P_{vap}) - H_{p(suction)} \perp H_{st1}$

an. (7):

$$H_{\nu} = \frac{v^2}{2 \cdot g} = \frac{v^2}{2 \cdot (32.174)}$$

Eqn. (5):

 $H_P = H \cdot L_{eq}$

 $TDH = 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{st2} + Inline \ Equipment \ Headloss + H_p(discharge) + H_p + H_p(suction) + H_{st1}$ Flooded Suction:

 $TDH = 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{st2} + Inline \ Equipment \ Headloss + H_p(discharge) + H_p + H_p(sustion) - H_{st1}$

	PROJECT: BASE Above Grade System Sump Hydraulics JOB NO.: 30005248			BY: S. Hannula CHKD, BY: M. Samp			10-May-2022 10-May-2022	
Dukt assets	SUBJECT: Segment 1		APPVD. 8Y:			DATE:		
	Discharge Piping Headloss, H _{otdischargel} (ft w.c.):	0.29	0.51	0.80	1.10	1.76	2.60	4.16
	Exit Velocity at Liquid Discharge, v (ft/s):	0.33	0.44	0.56	0.67	0.89	1.11	1.45
	Eqn. (7) Exit Loss at Liquid Discharge, H, (ft w.c.):	0.00	0.00	0.00	0.01	0.01	0.02	0.03
	Eqn. (8) Total Dynamic Head, TDH (ft w.c.):	6.49	6.71	7.00	7.31	7.97	8.82	10.39
Design System TDH with 5.0% Factor of Safety. (ft w.c.)			7.05	7.35	7.68	8.37	9.26	10.91

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

Eqn. (5): $H_P = H \cdot L_{eq}$

Eqn. (6): $NSPH_a = 2.31 \cdot (P_{sys1} - P_{pap}) - H_{p(suction)} \pm H_{st1}$

Eqn. (7): $H_{v} = \frac{v^{2}}{2 \cdot g} = \frac{v^{2}}{2 \cdot (32.174)}$

Eqn. (8): Suction Lift: $TDH = 2.31 \cdot (P_{eyy2} - P_{eyy1}) + H_{st2} + Inline Equipment Headloss + H_p(duscharps) + H_p + H_p(success) + H_{st1} + Inline Equipment Headloss + H_p(duscharps) + H_p + H_p(success) + H_{st1} + Inline Equipment Headloss + H_p(duscharps) + H_p + H_p(success) - H_{st1}$

	Design & Consultance	PROJECT: BASE Above Grade System Sump Hydraulics	BY: S. Hannula	DATE: 10-May-2022
	for matural and	JOB NO.: 30005248	CHKD, BY: M. Samp.	DATE: 10-May-2022
	SUBJE	SUBJECT: Segment 1	APPVD. BY:	DATE:

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	2	Ball Valve			0.06	1	0.06		
Pipe Inner Diameter, ID (in):	2.067	Stop Check Valve, flow th	iru		7.5	1	7.5		
Pipe Length, L (ft):	25.00	Standard Elbow, 90"			0.57	1	0.57		
Pipe Material:	SCH 40 - Steel	-					0		
Pipe Type:	Coated Steel	Standard Tee, thru branc	h	-	1.14	1	1.14		
10 00 00 00 00 00 00 00 00 00 00 00 00 0			200		1.000		0		
Roughness, e (ft):	0.00018						0	1	
e / ID:	0.001044993	3 SA			-	Total K:	9.3		
30/8590									
		Segment Flowrate (gpm):	3	4	5	6	8	10	13
		Eqn. (1) - Velocity, v (ft/s):	0.29	0.38	0.48	0.57	0.76	0.96	1.24
		Eqn. (2) - Reynolds Number, Re:	3.54£+03	4.64£+03	5.86£+03	6.96E+03	9.28£+03	1.17E+04	1.51E+04
		Pipe Friction Factor, 1:	0.0424	0.0393	0.037	0.0354	0.033	0.0313	0.0296
	Eqn. (3) - Head L	oss Across Pipe Segment, H (ft w.c./ft):	0.0003	0.0005	0.0008	0.001	0.0017	0.0026	0.0041
	Eqn.	(4a) - Fittings Equivalent Length, L _F (ft):	37.66	40.63	43.16	45.11	48.39	51.01	53.94
	Eqn. (4b) Equ	ivalent Length of Pipe Segment, Leo (ft):	62.66	65.63	68.16	70.11	73.39	76.01	78.94
	Ean (S	Pipe Segment Headloss, H. (ft w.c.):	0.02	0.03	0.05	0.07	0.12	0.20	0.32

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	2						0	1	
Pipe Inner Diameter, ID (in):	1.917	Standard Elbow, 45*			0.3	2	0.6	1	
Pipe Length, L (ft):	675.00	Standard Tee, thru brand	h.		1.14	-1-	1.14	1	
Pipe Material:	SDR 11 - HDPE						0		
Pipe Type:	Smooth Pipes (PE and other	-					0		
	thermoplastics)	5 m				()	0		
Roughness, e (ft):	0.000005	2			()		0		
e/ID:	3.12989E-05					Total K:	1.7	1	
() () () () () () () () () ()	10	and the same of the second				6			
		Segment Flowrate (gpm):	3	4	5	6	8	10	13
		Eqn. (1) - Velocity, v (ft/s):	0.33	0.44	0.56	0.67	0.89	1.11	1.45
		Egn. (2) - Reynolds Number, Re:	3.74E+03	4.99E+03	6.34E+03	7.59E+03	1.01E+04	1.26E+04	1.648+04
		Pipe Friction Factor, 1:	0.0407	0.0375	0.035	0.0333	0.0309	0.0291	0.0272
	Eqn. (3) - Head Loss	Across Pipe Segment, H (ft w.c./ft):	0.0004	0.0007	0.0011	0.0015	0.0024	0.0035	0.0056
	Egn. (4a)) - Fittings Equivalent Length, L _F (ft):	6.83	7.41	7.94	8.35	9.00	9.55	10.22
	Egn. (4b) Equivale	ent Length of Pipe Segment, Les (ft):	681.83	682.41	682.94	683.35	684.00	684.55	685.22
	Egn. (5) Pip	e Segment Headloss, H., (ft w.c.):	0.27	0.48	0.75	1.03	1.64	2.40	3.84

A DCA DIC	Design & Consultance	PROJECT: BASF Above Grade System Sump Hydraulics	BY: S. Hannula	DATE: 10-May-2022
ARCADIS	for matural and	JOB NO.: 30005248	CHKD, BY: M. Samp	DATE: 10-May-2022
	puer ansets	SUBJECT: Segment 1	APPVD. BY:	DATE

Segment 1	Pump iu:
Water	Fluid:
Groundwater	Fluid Description: Enter Fluid Density if Other than Water (lb/ft ³):
	Enter Fluid Viscosity if Other than Water (cp):
	Enter Vapor Pressure if Other than Water (psi):
3.2	Minimum Flow Rate (gpm):
6.4	Design Flow Rate (gpm):
12.8	Maximum Flow Rate (gpm):
14.7	Pressure of System to be Pumped, P _{syst} (psia):
14.7	Pressure of System Discharged, Provid (psia):
50	Fluid Temperature (*F):
-12	Elevation of Fluid to be Pumped (ft):
-15	Pump Impeller Centerline Elevation (ft):
-7	Discharge Elevation (ft)
8	Static Head of Discharge Line , H _{st2} (ft):
	Suction Lift of Liquid to be Pumped, Hatt (ft):
3	Static Head of Liquid to be Pumped, H _{art} (ft):
5.0%	Safety Factor:
0.411	Vapor Pressure (ft. w.c.):
62.41	Fluid density, p (lb/ft ³):
1.41E-05	Fluid Kinematic Viscosity, n (ft ² /s):
Yes	Include Exit Headloss at Discharge, H.:
	otes:

Line Lines (Phylicity)			-	· ·		4.0	
(bdg):	4,200	5,600	7,000	8,400	11,200	14,000	18,200
(MGD):	0.00	0.01	0.01	0.01	0.01	0.01	0.02
Optional - Pump Head (ft w.c.):							
Optional - NSPH Required (ft w.c.):		1 2	1 5	1 3	1 1	1 2	1

In-Line Equipment Headloss:

	Pressure Loss	Sector Control and the first sector	1	Pressure Loss	
Equipment Tag	(ft w.c.)	Equipment Tag		(ft w.c.)	
Flowmeter	1.2			-	
000.0000	R warm I		den a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a ser a se	1 10 10 1 N	VOCANA AND SOUTHER STRATE
Subtotol	1.2		Subtotol:	0.0	Total Headloss (ft w.c.): 1.2

ARCADIS Design & Consultances Built assets	PROJECT: BASE Above Grade System Sump Hydra JOB NO.: 30005248 SUBJECT: Segment 2	ulics	BY: CHKD. BY: APPVD. BY:	S. Hannula M. Samp	_	DATE: DATE: DATE:	10-May-202 10-May-202	2
	Discharge Piping Headloss, H _{etelschargei} (ft w.c.):	0.01	0.03	0.04	0.07	0.10	0.14	0.22
	Eqn. (7) Exit Loss at Liquid Discharge, H, (ft w.c.):	0.19	0.33	0.44	0.56	0.67	0.78	0.02
	Eqn. (8) Total Dynamic Head, TDH (ft w.c.): Design System TDH with 5.0% Factor of Safety, (ft w.c.):	6.21 6.52	6.23 6.54	6.24 6.55	6.27 6.58	6.31 6.63	6.35 6.67	6.44 6.76

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

Eqn. (5): $H_P = H \cdot L_{eq}$

Eqn. (6): $NSPH_a = 2.31 \cdot (P_{sys1} - P_{pap}) - H_{p(suction)} \pm H_{st1}$

Eqn. (7): $H_{v} = \frac{v^{2}}{2 \cdot g} = \frac{v^{2}}{2 \cdot (32.174)}$ Eqn. (8):

Suction Lift:

 $TDH = 2.31 \cdot \left(P_{tys2} - P_{sys1}\right) + H_{st2} + Inline Equipment Headloss + H_p(disenarge) + H_e + H_p(succes) + H_{st1} + Flooded Suction:$

 $TDH = 2.31 \cdot \left(P_{sys2} - P_{sys1}\right) + H_{sr2} + Inline Equipment Headloss + H_p(sischarge) + H_p + H_p(succion) - H_{sr1} + H_p(succion) - H_{sr2} + H_p(succion) - H_{s$

ARCADIS	INCONTRACTOR INCONTRACTOR INCONTRACTOR	BASF Above Grade System Sump Hydr 30005248	aulics	BY: CHKD. BY:	S. Hannula M. Samp		DATE: DATE:	10-May-202 10-May-202	2
	SUBJECT:	Segment 2		APPVD. BY:			DATE:	5	
Flow Ratio:	1	Valve/Fitting Tag		-	к	No. Units	Total K	a.	
Nominal Pipe Diameter (in):	2	Ball Valve			0.06	1	0.06		
Pipe Inner Diameter, ID (in):	2.067	Stop Check Valve, flow th	ru		7.5	1	7.5		
Pipe Length, L (ft):	25.00	Standard Elbow, 90"	1997 - C		0.57	1	0.57		
Pipe Material:	SCH 40 - Steel						0		
Pipe Type:	Coated Steel	Standard Tee, thru brand	h		1.14	1	1.14		
100 Mar 100						1 1	0		
Roughness, e (ft):	0.00018			1			0		
e/iD:	0.001044993					Total K:	9.3	1	
		Segment Flowrate (gpm):	2	3	4	5	6	7	9
		Eqn. (1) - Velocity, v (ft/s):	0.19	0.29	0.38	0.48	0.57	0.67	0.86
		Eng. (2) - Deugalde Mumber De	2 225-02	3 545-03	4 645-03	E 025-03	C 000.03	0 105-03	1.055-04

the second s							
Pipe Friction Factor, 1:	0.048	0.0424	0.0393	0.037	0.0354	0.034	0.0321
Eqn. (3) - Head Loss Across Pipe Segment, H (ft w.c./ft):	0.0002	0.0003	0.0005	0.0008	0.001	0.0014	0.0021
Eqn. (4a) - Fittings Equivalent Length, L _F (ft):	33.27	37.66	40.63	43.16	45.11	46.96	49.74
Eqn. (4b) Equivalent Length of Pipe Segment, Los (ft):	58.27	62.66	65.63	68.16	70.11	71.96	74.74
Egn. (5) Pipe Segment Headloss, H. (ft w.c.):	0.01	0.02	0.03	0.05	0.07	0.10	0.16

Discharge Line Segment No. 2 Headloss:

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	2						0	1	
Pipe Inner Diameter, ID (in):	1.917	Standard Elbow, 45*			0.3	1	0.3		
Pipe Length, L (ft):	12.50	Standard Tee, thru branc	h		1.14	1	1.14	1	
Pipe Material:	SDR 11 - HDPE		10F		- 23404C - 2		0		
Pipe Type:	Smooth Pipes (PE and other						0		
	thermoplastics)						0		
Roughness, e (ft)	0.000005				-	2 Summer	0		
e / ID:	3.12989E-05					Total K:	1.4		
		-							
		Segment Flowrate (gpm):	2	3	4	. 5	6	7	9
		Eqn. (1) - Velocity, v (ft/s):	0.22	0.33	0.44	0.56	0.67	0.78	1.00
		Eqn. (2) - Reynolds Number, Re:	2.49E+03	3.74E+03	4.99E+03	6.34E+03	7.59E+03	8.84E+03	1.13E+04
		Pipe Friction Factor, f:	0.0461	0.0407	0.0375	0.035	0.0333	0.032	0.0299
	Eqn. (3) - Head Lo	iss Across Pipe Segment, H (ft w.c./ft):	0.0002	0.0004	0.0007	0.0011	0.0015	0.0019	0.0029
	Egn. (+	4a) - Fittings Equivalent Length, L _F (ft):	4.99	5.65	6.13	6.57	6.91	7.19	7.69
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Les (ft):	17.49	18.15	18.63	19.07	19.41	19.69	20.19
	Egn. (5) I	Pipe Segment Headloss, H, (ft w.c.):	0.00	0.01	0.01	0.02	0.03	0.04	0.06

	Design & Computing	PROJECT: BASE Above Grade System Sump Hydraulics	BY: S. Hannula	DATE: 10-May-2022
ARCADIS	for matural and	JOB NO.: 30005248	CHKD, BY: M. Samp	DATE: 10-May-2022
	and append	SUBJECT: Segment 2	APPVD, BY:	DATE:
	20	201 201 201 201 201 201 201 201 201 201		

beginein z	Pump to:
Water	Fluid:
Groundwater	Fluid Description: Enter Fluid Density if Other than Water (lb/ft ³):
	Enter Fluid Viscosity if Other than Water (cp): Enter Vapor Pressure if Other than Water (psi):
2.35	Minimum Flow Rate (gpm):
4.7	Design Flow Rate (gpm):
9.4	Maximum Flow Rate (gpm):
14.7	Pressure of System to be Pumped, Post (psia):
14.7	Pressure of System Discharged, Pasta (psia):
50	Fluid Temperature (*F):
-12	Elevation of Fluid to be Pumped (ft):
-15	Pump Impeller Centerline Elevation (ft):
-7	Discharge Elevation (ft):
8	Static Head of Discharge Line , H _{st2} (ft):
	Suction Lift of Liquid to be Pumped, Hett (ft):
3	Static Head of Liquid to be Pumped, H _{stf} (ft):
5.0%	Safety Factor:
0.411	Vapor Pressure (ft. w.c.):
62.41	Fluid density, p (lb/ft ³):
1.41E-05	Fluid Kinematic Viscosity, n (ft ² /s):
Yes	Include Exit Headloss at Discharge, He:
	otes:

In-Line Equipment Headloss:					
	Pressure Loss	NAMES OF A DESCRIPTION OF	1	Pressure Loss	
Equipment Tag	(ft w.c.)	Equipment Tag		(ft w.c.)	
Flowmeter	1.2	1			
	A second a	1	- market	a series of	19.774338 33 33 33 <u>339 4999 5</u> 7
Subtotal:	1.2		Subtotal:	0.0	Total Headloss (ft w.c.): 1.2

Optional - Pump Head (ft w.c.): Optional - NSPH Required (ft w.c.):

	ionculturicy and	PROJECT: BASE Above Grade System Sump Hyd JOB NO - 30005248	raulics	BY:	S. Hannula M. Samo		DATE	10-May-202	2
	8	SUBJECT: Segment 3		APPVD. BY:	-	_	DATE		-
Pump ID:	Segment 3	Flooded Suction:			-	P	mit =		
Fluid:	Water			7	E 1	• •	22	*	
Fluid Description: Enter Fluid Density if Other than Water (lb/ft ³):	Groundwater	Pwst		-					
Enter Fluid Viscosity if Other than Water (cp): Enter Vapor Pressure if Other than Water (psi):				1		L -		-	
Minimum Flow Rate (gpm):	5.55			er at	. 1	142 -			
Design Flow Rate (gpm):	11.1			1.0					
Maximum Flow Rate (gpm):	22.2			1	1				
Pressure of System to be Pumped, P _{set} (psia):	14.7			Seam	ent 3				
Pressure of System Discharged, Paul (psia):	14.7			Se gen	ent 2				
Fluid Temperature (*F):	50	Suction Lift:				D	10.14		
Elevation of Fluid to be Pumped (ft):	0	AL DEPENDING OF THE			-		n1.5	1	
Pump Impeller Centerline Elevation (ft):	0			7				*	
Discharge Elevation (ft):	0			rive "		- <u>-</u>		_	
Static Head of Discharge Line , Hatz (ft):	0	P 1051				40°*			
Suction Lift of Liquid to be Pumped, Hett (ft):				* (*0	<u>Y</u>	•			
Static Head of Liquid to be Pumped, Hurr (ft):			1.11	En una al a	2				
Safety Factor:	5.0%			segment a					
Vapor Pressure (ft. w.c.):	0.411		h	11					
Fluid density, p (lb/ft ³):	62.41		u	- °					
Fluid Kinematic Viscosity, n (ft ² /s):	1.41E-05			1					
Include Exit Headloss at Discharge, He	Yes								
iotes:		Flow Rates (gpm):	6	8	10	11	15	19	22
19940		(gpd):	8,400	11,200	14,000	15,400	21,000	26,600	30,80
		(MGD):	0.01	0.01	0.01	0.02	0.02	0.03	0.03
		Optional - Pump Head (ft w.c.):					_		

		Pressure Loss		P	ressure Loss	
Equipment Tag		(ft w.c.)	Equipment Tag		(ft w.c.)	
		-	1			
	CONTRACTOR STATES	1 101000 Pr		and a second sec	10100	1000 007 107 007 007 007 007
	Subtotol:	0.0		Subtotol:	0.0	Total Headloss (ft w.c.): 0.0

G ADCADIC	Design & Consultance	PROJECT: BASE Above Grade System Sump Hydraulics	BY: S. Hannula	DATE: 10-May-2022
ARCADIS	for matural and	JOB NO.: 30005248	CHKD, BY: M. Samp	DATE: 10-May-2022
	state answers	SUBJECT: Segment 3	APPVD. BY:	DATE

	Total K	No. Units	ĸ			Valve/Fitting Tag	1	Flow Ratio:
	0	1 1					2	Nominal Pipe Diameter (in):
	0	8					1.917	Pipe Inner Diameter, ID (in):
	0	1					825.00	Pipe Length, L (ft):
	0						SDR 11 - HDPE	Pipe Material:
	0	1 1					Smooth Pipes (PE and other	Pipe Type:
	0	1	: · · · · · · · · · · · · · · · · · · ·				thermoplastics)	1. T. A. S
	0						0.000005	Roughness, e (ft):
	0.0	Total K:				1	3.12989E-05	e / ID:
						5		Soler
19 22	15	11	10	8	6	Segment Flowrate (gpm):		
2.11 2.45	1.67	1.22	1.11	0.89	0.67	Eqn. (1) - Velocity, v (ft/s):		
2.39E+04 2.78E+0	1.89E+04	1.38E+04	1.268+04	1.018+04	7.59E+03	Eqn. (2) - Reynolds Number, Re:		
0.0249 0.024	0.0263	0.0284	0.0291	0.0309	0.0333	Pipe Friction Factor, 1:		
0.0108 0.014	0.0071	0.0041	0.0035	0.0024	0.0015	Loss Across Pipe Segment, H (ft w.c./ft):	Eqn. (3) - Head Lo	
the second	0.00	0.00	0.00	0.00	0.00	(4a) - Fittings Equivalent Length, L _F (ft):	Eqn. (
0.00 0.00		strength of the local data and a distance of the	and the second second second	and the second second	222.00	shartest I south of Piece Parament 1 (8)	Ware 1985 Wards	
0.00 0.00 825.00	825.00	825.00	825.00	825.00	825.00	avalent Length of Pipe Segment, Las (n).	Eqn. (40) Equiv	

	PROJECT: BASF Above Grade System Sump Hydraulics JOB NO.: 30005248 SUBJECT: Segment 3		BY: CHKD. BY: APPVD. BY:	S. Hannula M. Samp	_	DATE: DATE: DATE:	10-May-202 10-May-202	12
	Discharge Piping Headloss, H _{ptdischargel} (ft w.c.):	1.24	1.98	2.89	3.38	5.86	8.91	11.55
	Exit Velocity at Liquid Discharge, v (ft/s): Eqn. (7) Exit Loss at Liquid Discharge, H, (ft w.c.):	0.67	0.89	0.02	0.02	0.04	2.11	2.45
D	Eqn. (8) Total Dynamic Head, TDH (ft w.c.): esign System TDH with 5.0% Factor of Safety, (ft w.c.):	1.25	1.99 2.09	2.91 3.06	3.40 3.57	5.90 6.20	8.98 9.43	11.64 12.22

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

Eqn. (5): $H_P = H \cdot L_{eq}$

Eqn. (6): $NSPH_{a} = 2.31 \cdot (P_{sys1} - P_{pap}) - H_{p(suction)} \pm H_{st1}$

Eqn. (7): $H_{\nu} = \frac{\nu^2}{2 \cdot g} = \frac{\nu^2}{2 \cdot (32.174)}$ Eqn. (8):

Suction Lift:

 $TDH = 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{sr2} + Inline Equipment Headloss + H_p(discharge) + H_p + H_p(succes) + H_{sr1} + H_{sr2} + H_$

 $TDH = 2.31 \cdot \left(P_{sys2} - P_{sys1}\right) + H_{sr2} + Inline Equipment Headloss + H_p(discharge) + H_p + H_p(sustion) - H_{sr1} + H_p(sustion) + H_{sr2} + H_p(sustion) + H_{sr2} +$

	PROJECT: BASF Above Grade System Sump Hydraulics JOB NO.: 30005248 SUBJECT: Segment 4		BY: CHKD, BY: APPVD, BY:	S. Hannula M. Samp	_	DATE: DATE: DATE:	10-May-202 10-May-202	2
	Discharge Piping Headloss, H _{ptelschargel} (ft w.c.):	0.04	0.10	0.17	0.22	0.38	0.58	0.74
	Eqn. (7) Exit Loss at Liquid Discharge, H ₂ (ft w.c.):	0.00	0.01	0.01	0.02	0.03	0.04	0.06
D	Eqn. (8) Total Dynamic Head, TDH (ft w.c.): esign System TDH with 5.0% Factor of Safety, (ft w.c.):	6.24	6.31 6.63	6.38 6.70	6.44 6.76	6.61 6.94	6.82 7.16	7.00

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

Eqn. (5): $H_P = H \cdot L_{eq}$

Eqn. (6): $NSPH_{a} = 2.31 \cdot (P_{sys1} - P_{pap}) - H_{p(suction)} \pm H_{st1}$

Eqn. (7): $H_{\nu} = \frac{\nu^2}{2 \cdot g} = \frac{\nu^2}{2 \cdot (32.174)}$ Eqn. (8):

Suction Lift:

 $TDH = 2.31 \cdot \left(P_{eye2} - P_{eye1}\right) + H_{sr2} + Inline Equipment Headloss + H_p(discharge) + H_p + H_p(succes) + H_{sr1} + H_{sr2} + Inline Equipment Headloss + H_p(discharge) + H_p + H_p(succes) + H_{sr2} + Inline Equipment Headloss + H_p(discharge) + H_p + H_p(succes) + H_{sr2} + Inline Equipment Headloss + H_p(discharge) + H_p + H_p(succes) + H_{sr2} + Inline Equipment Headloss + H_p(succes) + H_p(succes) + H_{sr2} + Inline Equipment Headloss + H_p(succes) + H_p(succes) + H_{sr2} + H_{sr2} + Inline Equipment Headloss + H_p(succes) + H_p(succes) + H_{sr2} + H_{sr2} + Inline Equipment Headloss + H_p(succes) + H_p(succes) + H_{sr2} + H_{sr2} + H_{sr2} + Inline Equipment Headloss + H_p(succes) + H_{sr2} +$

 $TDH = 2.31 \cdot \left(P_{sys2} - P_{sys1}\right) + H_{sr2} + Inline Equipment Headloss + H_p(discharge) + H_p + H_p(sustion) - H_{sr1} + H_p(sustion) + H_{sr2} + H_p(sustion) + H_{sr2} +$

	Design & Consultance	PROJECT: BASF Above Grade System Sump Hydraulics	BY: S. Hannula	DATE: 10-May-2022
ARCADIS	for matural and	JOB NO.: 30005248	CHKD, BY: M. Samp	DATE: 10-May-2022
, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	and science	SUBJECT: Segment 4	APPVD. BY:	DATE:

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	2	Ball Valve			0.06	- 1 -	0.06	1	
Pipe Inner Diameter, ID (in):	2.067	Stop Check Valve, flow th	nu		7.5	1	7.5		
Pipe Length, L (ft):	25.00	Standard Elbow, 90"			0.57	1	0.57	1	
Pipe Material:	SCH 40 - Steel	-					0	1	
Pipe Type:	Coated Steel	Standard Tee, thru branc	h	-	1.14	1	1.14		
11 TO 16 DE 1			200		1 / W /		0	1	
Roughness, e (ft):	0.00018						0	1	
e / ID:	0.001044993	1				Total K:	9.3		
20/35/0					i			· · · · · · · · · · · · · · · · · · ·	
		Segment Flowrate (gpm):	4	6	8	9	12	15	17
		Eqn. (1) - Velocity, v (ft/s):	0.38	0.57	0.76	0.86	1.15	1.43	1.63
		Eqn. (2) - Reynolds Number, Re:	4.648+03	6.968+03	9.28£+03	1.05E+04	1.40E+04	1.758+04	1.998+04
		Pipe Friction Factor, 1:	0.0393	0.0354	0.033	0.0321	0.0301	0.0288	0.0281
	Eqn. (3) - Head I	oss Across Pipe Segment, H (ft w.c./ft):	0.0005	0.001	0.0017	0.0021	0.0036	0.0053	0.0067
	Eqn.	(4a) - Fittings Equivalent Length, L _F (ft):	40.63	45.11	48.39	49.74	\$3.05	55.44	56.82
	Eqn. (4b) Equ	ivalent Length of Pipe Segment, Leg (ft):	65.63	70.11	73.39	74.74	78.05	80.44	81.82
	Ean (S	Pipe Segment Headloss, H. (ft w.c.):	0.03	0.07	0.12	0.16	0.28	0.43	0.55

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	2						0	1	
Pipe Inner Diameter, ID (in):	1.917	Standard Elbow, 45*			0.3	1	0.3		
Pipe Length, L (ft):	12.50	Standard Tee, thru branc	h		1.14	- 1 -	1.14		
Pipe Material	SDR 11 - HDPE						0		
Pipe Type:	Smooth Pipes (PE and other	-					0		
1.5460 m	thermoplastics)					· · · · · · · · · · · · · · · · · · ·	0		
Roughness, e (ft):	0.000005	1					0		
e/ID:	3.12989E-05					Total K:	1.4		
10 V	12	5710 P. 35 10/07/2005 APRESS				Second M	and B		
		Segment Flowrate (gpm):	4	6	8	9	12	15	17
		Eqn. (1) - Velocity, v (ft/s):	0.44	0.67	0.89	1.00	1.33	1.67	1.89
		Egn. (2) - Reynolds Number, Re:	4.99€+03	7.59€+03	1.01E+04	1.13E+04	1.51E+04	1.89€+04	2.14E+04
		Pipe Friction Factor, 1:	0.0375	0.0333	0.0309	0.0299	0.0278	0.0263	0.0255
	Eqn. (3) - Head Loss	Across Pipe Segment, H (ft w.c./ft):	0.0007	0.0015	0.0024	0.0029	0.0048	0.0071	0.0089
	Egn. (4a) - Fittings Equivalent Length, L _F (ft):	6.13	6.91	7.44	7.69	8.27	8.75	9.02
	Egn. (4b) Equival	ent Length of Pipe Segment, Leg (ft):	18.63	19.41	19.94	20.19	20.77	21.25	21.52
	Eco (5) Pir	ne Segment Headloss, H. (ft w.c.)-	0.01	0.03	0.05	0.06	0.10	0.15	0.19

	Consultancy Land Is	PROJECT: BASF Above Grade System JOB NO.: 30005248 SUBJECT: Segment 4	n Sump Hydraulics	BY CHKD, BY APPVD, BY	S. Hannula M. Samp	DATE: DATE: DATE:	10-May-2022 10-May-2022
Pump ID:	Segment 4	Flooded Suction:				P _{ent} = 14.7 ps	a
Fluid:	Water			1	1	1	-

Fluid Description: Inter Fluid Density if Other than Water (lb/h ³):	Groundwater
Enter Fluid Viscosity if Other than Water (cp) Enter Vapor Pressure if Other than Water (psi)	
Minimum Flow Rate (gpm):	4.3
Design Flow Rate (gpm):	8.6
Maximum Flow Rate (gpm):	17.2
Pressure of System to be Pumped, Post (psia):	14.7
Pressure of System Discharged, Paul (psia):	14.7
Fluid Temperature (*F):	50
Elevation of Fluid to be Pumped (ft):	-12
Pump Impeller Centerline Elevation (ft):	-15
Discharge Elevation (ft):	-7
Static Head of Discharge Line , Hatz (ft):	8
Suction Lift of Liquid to be Pumped, Hett (ft):	
Static Head of Liquid to be Pumped, H _{MT} (ft):	3
Safety Factor:	5.0%
Vapor Pressure (ft. w.c.):	0.411
Fluid density, p (lb/ft ³):	62.41
Fluid Kinematic Viscosity, n (ft ² /s):	1.41E-05
Include Exit Headloss at Discharge, H ₂ :	Yes
des:	

Flow Rates (gpm):	4	6	8	9	12	15	17
(gpd):	5,600	8,400	11,200	12,600	16,800	21,000	23,800
(MGD):	0.01	0.01	0.01	0.01	0.02	0.02	0.02
Optional - Pump Head (ft w.c.):							
Optional - NSPH Required (ft w.c.):	1	1 0	1 9	1 2	1 9	1 0	1

In-Line E	quipment	Headloss:
-----------	----------	-----------

CONTRACTOR OF THE OWNER OWN	Pressure Loss		P	ressure Loss	
Equipment Tag	(ft w.c.)	Equipment Tag		(ft w.c.)	
Flowmeter	1.2				
	with and a		- married	and the second	1977-1978 23 23 23 23 <u>23 23 2</u> 7
Subt	tol: 1.2		Subtotal:	0.0	Total Headloss (ft w.c.): 1.2

ARCADIS	and	PROJECT: BASE Above Grade System Sump H JOB NO.: 30005248	draulics	BY: CHKD. BY:	S. Hannula M. Samp		DATE: DATE:	10-May-202 10-May-202	2
		SUBJECT: Segment 5		APPVD. BY:	-		DATE		
Pump ID:	Segment 5	Flooded Suction:			5114	P	est.#		
Fluid:	Water			7	E	• •		Y	
Fluid Description: Enter Fluid Density if Other than Water (lb/ft ³):	Groundwater	P	d =	-					
Enter Fluid Viscosity if Other than Water (cp): Enter Vapor Pressure if Other than Water (psi):				1		L		-	
Minimum Flow Rate (gpm):	9.85			river		442 **			
Design Flow Rate (gpm):	19.7			1.0	-	1 C C C			
Maximum Flow Rate (gpm):	39.4			1	ž				
Pressure of System to be Pumped, Post (psia):	14.7			Seam	ents				
Pressure of System Discharged, Paul (psia):	14.7			Sellin	ene s				
Fluid Temperature (*F):	50	Suction Lift:				D			
Elevation of Fluid to be Pumped (ft):	0	ACCURATE ACCOUNT			1000		al."	1	
Pump Impeller Centerline Elevation (ft):	0							Y	
Discharge Elevation (ft):	0			Plug *		1. Li		_	
Static Head of Discharge Line , Hatz (ft):	0	Pig	1 -		- "	42.0			
Suction Lift of Liquid to be Pumped, Hatt (ft):				* (*0	7 -	•			
Static Head of Liquid to be Pumped, Hurr (ft):				2	4				
Safety Factor:	5.0%			segment s	2				
Vapor Pressure (ft. w.c.):	0.411		h	1.1					
Fluid density, p (lb/ft ²):	62.41		U						
Fluid Kinematic Viscosity, n (ft ² /s):	1.41E-05			1					
Include Exit Headloss at Discharge, H.:	Yes								
iotes:		Flow Rates (gpm	: 10	13	16	20	26	32	39
and and a second second second second second second second second second second second second second second se		(gpc	: 14,000	18,200	22,400	28,000	36,400	44,800	54,600
		(MGC	0.01	0.02	0.02	0.03	0.04	0.04	0.05
		Optional - Pump Head (ft w.c	1	-					
		Optional - NSPH Required (ft w.c.	10						

The source and an arrivation of the source of the						
	Pressure	Loss	14112120 Aug 1990	1	Pressure Loss	
Equipment Tag	(ft w.	c.)	Equipment Tag		(ft w.c.)	
					-	
	and the second			an and a second	1 10 10 1 1	VERSION CONTRACTOR OF A CONTRACTOR
	Subtotol: 0.0			Subtotol:	0.0	Total Headloss (ft w.c.): 0.0

ARCADIS	Design & Consultancy	PRDJECT: BASE Above Grade System Sump Hydraulics	BY: S. Hannula	DATE: 10-May-2022
	for natural and	JOB NO.: 30005248	CHKD. BY: M. Samp	DATE: 10-May-2022
	and append	SUBJECT: Segment S	APPVD. BY:	DATE:

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	2	Standard Elbow, 45*			0.3	2	0.6	1	
Pipe Inner Diameter, ID (in):	1.917					1 A. S. 1	0		
Pipe Length, L (ft):	475.00						0	1	
Pipe Material:	SDR 11 - HDPE	-					0	1	
Pipe Type:	Smooth Pipes (PE and other			-		1	0		
12 (20) (20) (20)	thermoplastics)	1			1 1	(0	1	
Roughness, e (ft):	0.000005						0	1	
e / iD:	3.12989E-05	13 C				Total K:	0.6		
5/35/4	V-100020000 20							· · · · · · · · · · · · · · · · · · ·	
		Segment Flowrate (gpm):	10	13	16	20	26	32	39
		Eqn. (1) - Velocity, v (ft/s):	1.11	1.45	1.78	2.22	2.89	3.56	4.34
		Eqn. (2) - Reynolds Number, Re:	1.268+04	1.64£+04	2.02E+04	2.528+04	3.27E+04	4.03£+04	4.928+04
		Pipe Friction Factor, 1:	0.0291	0.0272	0.0259	0.0246	0.0231	0.022	0.0211
	Egn. (3) - Head Loss	s Across Pipe Segment, H (ft w.c./ft):	0.0035	0.0056	0.008	0.0118	0.0188	0.0271	0.0387
	Eqn. (4a	i) - Fittings Equivalent Length, L _F (ft):	3.29	3.52	3.70	3.90	4.15	4.36	4.54
	Eqn. (4b) Equival	lent Length of Pipe Segment, Leg (ft):	478.29	478.52	478.70	478.90	479.15	479.36	479.54
	Eon. (S) Pi	ne Segment Headloss, H. (ft w.c.):	1.67	2.68	3.83	5.65	9.01	12.99	18.56

PROJECT: BASF Above Grade System Sump Hydraulics JOB NO.: 30005248 SUBJECT: Segment 5		BY: S. Hannula CHKD. BY: M. Samp APPVD. BY:			DATE: DATE: DATE:	10-May-202 10-May-202	2
 Discharge Piping Headloss, Hattichargel (ft w.c.):	1.67	2.68	3.83	5.65	9.01	12.99	18.56
Exit Velocity at Liquid Discharge, v (ft/s):	1.11	1.45	1.78	2.22	2.89	3.56	4.34
Eqn. (7) Exit Loss at Liquid Discharge, H, (ft w.c.):	0.02	0.03	0.05	0.08	0.13	0.20	0.29
Eqn. (8) Total Dynamic Head, TDH (ft w.c.):	1.69	2.71	3.88	5.73	9.14	13.19	18.85
 esign System TDH with 5.0% Factor of Safety, (ft w.c.):	1.77	2.85	4.07	6.02	9.60	13.85	19.79

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

Eqn. (5): $H_P = H \cdot L_{eq}$

Eqn. (6): $NSPH_a = 2.31 \cdot (P_{sys1} - P_{pap}) - H_{p(suction)} \pm H_{st1}$

Eqn. (7): $H_{v} = \frac{v^{2}}{2 \cdot g} = \frac{v^{2}}{2 \cdot (32.174)}$ Eqn. (8):

Eqn. (8): Suction Lift: $TDH = 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{st2} + Inline Equipment Headloss + H_p(disenarge) + H_v + H_p(succes) + H_{st1}$ Flooded Suction:

 $TDH = 2.31 \cdot \left(P_{sys2} - P_{sys1}\right) + H_{sr2} + Inline Equipment Headloss + H_p(sischarge) + H_p + H_p(succion) - H_{sr1} + H_p(succion) - H_{sr2} + H_p(succion) - H_{s$

PROJECT: BASF Above Grade System Sump Hydraulics JOB NO.: 30005248 SUBJECT: Segment 6		BY: 5, Hannula CHKD, BY: M, Samp APPVD, BY:			DATE: DATE: DATE:	10-May-202 10-May-202	2
 Discharge Piping Headloss, H _{pielscharge} (ft w.c.):	0.00	0.00	0.00	0.00	0.01	0.03	0.03
Eqn. (7) Exit Loss at Liquid Discharge, H, (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
 Eqn. (8) Total Dynamic Head, TDH (ft w.c.): Design System TDH with 5.0% Factor of Safety, (ft w.c.):	6.20 6.51	6.20	6.20 6.51	6.20 6.51	6.21 6.52	6.23 6.54	6.23 6.54

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

Eqn. (5): $H_P = H \cdot L_{eq}$

Eqn. (6): $NSPH_a = 2.31 \cdot (P_{sys1} - P_{pap}) - H_{p(suction)} \pm H_{st1}$

Eqn. (7): $H_{v} = \frac{v^{2}}{2 \cdot g} = \frac{v^{2}}{2 \cdot (32.174)}$ Eqn. (8):

Eqn. (8): Suction Lift: $TDH = 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{sr2} + Inline Equipment Headloss + H_p(disenerge) + H_e + H_p(sucrass) + H_{sr1} + Hooded Suction:$ $TDH = 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{sr2} + Inline Equipment Headloss + H_p(disenerge) + H_e + H_p(sucrass) - H_{sr1}$

	Design & Consultance	PROJECT: BASF Above Grade System Sump Hydraulics	BY: S. Hannula	DATE: 10-May-2022
ARCADIS	for matural and	JOB NO.: 30005248	CHKD, BY: M. Samp	DATE: 10-May-2022
, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	and allocat	SUBJECT: Segment 6	APPVD. BY:	DATE

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K			
Nominal Pipe Diameter (in):	2	Ball Valve			0.06	1	0.06			
Pipe Inner Diameter, ID (in):	2.067	Stop Check Valve, flow th	hru		7.5	1	7.5			
Pipe Length, L (ft):	25.00	Standard Elbow, 90"			0.57	1	0.57	1		
Pipe Material:	SCH 40 - Steel						0			
Pipe Type:	Coated Steel	Standard Tee, thru branc	h		1.14	1	1.14			
11 (12 (16 kr))			200		2 1 1		0			
Roughness, e (ft):	0.00018						0	1		
e / ID:	0.001044993					Total K:	9.3			
503200										
		Segment Flowrate (gpm):	1	1	1	1	2	3	3	į
		Eqn. (1) - Velocity, v (ft/s):	0.10	0.10	0.10	0.10	0.19	0.29	0.29	ł
		Eqn. (2) - Reynolds Number, Re:	1.228+03	1.228+03	1.228+03	1.228+03	2.32E+03	3.54£+03	3.548+03	
		Pipe Friction Factor, 1:	0.0524	0.0524	0.0524	0.0524	0.048	0.0424	0.0424	
	Egn. (3) - Head	Loss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0	0.0002	0.0003	0.0003	
			ALC: 4 10	20.47	20.47	20.47	22.27	37.66	37.66	į
	Eqr	 (4a) - Fittings Equivalent Length, L_f (ft): 	30.47	30.47	30.47	30.47	33.27	37.00	37.00	
	Eqr. Eqn. (4b) Eq	 (4a) - Fittings Equivalent Length, L_f (ft): uivalent Length of Pipe Segment, L_{eo} (ft): 	30.47	55.47	55.47	55.47	58.27	62.66	62.66	ļ

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	2						0	1	
Pipe Inner Diameter, ID (in):	1.917	Standard Elbow, 45*			0.3	1	0.3		
Pipe Length, L (ft):	12.50	Standard Tee, thru branc	h		1.14	-1-	1.14	1	
Pipe Material	SDR 11 - HDPE						0		
Pipe Type:	Smooth Pipes (PE and other	1					0		
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	thermoplastics)					(0		
Roughness, e (ft):	0.000005					i	0		
e/ID:	3.12989E-05					Total K:	1.4	1	
	15	CENTRAL DE L'ANTINUE DE VORTEN				6 N			
		Segment Flowrate (gpm):	1	1	1	1	2	3	3
		Eqn. (1) - Velocity, v (ft/s):	0.11	0.11	0.11	0.11	0.22	0.33	0.33
		Egn. (2) - Reynolds Number, Re:	1.25E+03	1.25€+03	1.25€+03	1.25€+03	2.49E+03	3.74E+03	3.74£+03
		Pipe Friction Factor, 1:	0.0514	0.0514	0.0514	0.0514	0.0461	0.0407	0.0407
	Egn. (3) - Head Loss	Across Pipe Segment, H (ft w.c./ft):	0.0001	0.0001	0.0001	0.0001	0.0002	0.0004	0.0004
	Egn. (4a)) - Fittings Equivalent Length, L _F (ft):	4.48	4.48	4.48	4.48	4.99	5.65	5.65
	Egn. (4b) Equivale	ent Length of Pipe Segment, Leo (ft):	16.98	16.98	16.98	16.98	17.49	18.15	18.15
	Ean. (5) Pir	e Segment Headloss, H. (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.01	0.01

ARCADIS	cnsultavcy and	PROJECT: BASF Above Grade System Sump Hydraulics JOB NO.: 30005248	BY: S. Hannula CHKD, BY: M. Samp	DATE: 10-May-2022 DATE: 10-May-2022
		SUBJECT: Segment 6	APPVD. 8Y:	DATE:
Pump ID:	Segment 6	Flooded Suction:		P., . = 14.7 osia
Fluid	Water			-

FE G CCS	France.
Groundwater	Fluid Description:
	Enter Fluid Density if Other than Water (lb/ft ³):
	Enter Fluid Viscosity if Other than Water (cp):
	Enter Vapor Pressure if Other than Water (psi):
0.65	Minimum Flow Rate (gpm):
1.3	Design Flow Rate (gpm):
2.6	Maximum Flow Rate (gpm):
14.7	Pressure of System to be Pumped, Post (psia):
14.7	Pressure of System Discharged, Pasia (psia):
50	Fluid Temperature (*F):
-12	Elevation of Fluid to be Pumped (ft):
-15	Pump Impeller Centerline Elevation (ft):
-7	Discharge Elevation (ft):
8	Static Head of Discharge Line , H _{st2} (ft):
	Suction Lift of Liquid to be Pumped, H _{stt} (ft):
3	Static Head of Liquid to be Pumped, H _{stf} (ft):
5.0%	Safety Factor:
0.411	Vapor Pressure (ft. w.c.):
62.41	Fluid density, p (lb/ft ³):
1.41E-05	Fluid Kinematic Viscosity, n (ft ² /s):
	Include Exit Headloss at Discharge, H.:

Optional - Pump Head (ft w.c.):				
Optional - NSPH Required (ft w.c.):	5	1 0	1 0	1

In-Line	Equipment	Headloss:
---------	-----------	-----------

an an an an an an an an an an an an an a	Pressure Loss		P	ressure Loss	
Equipment Tag	(ft w.c.)	Equipment Tag		(ft w.c.)	
Flowmeter	1.2				
	S and a		- marine di	ALC: NO	1979-1998 - 29 - 28 - 202 <u>0 - 1986 - 19</u> 7
Subtotal:	1.2		Subtotal:	0.0	Total Headloss (ft w.c.): 1.2

	consultaryoy	PROJECT: BASE Abo	we Grade System Sump	Hydraulics	B1	S. Hannula	_	DATE	10-May-202	22
	s	SUBJECT: Segment	7		APPVD BY	M. Samp	-	DATE	10-May-202	
		Jobycer, Sephen			APPYD. 01			UMIL		_
Pump ID:	Segment 7	E	ooded Suction:				P	100		
Fluid:	Water							411	-	
Fluid Description:	Groundwater			D						
Enter Fluid Density if Other than Water (ib/ft ³):				1913 -	-	I	1 1			
Enter Fluid Viscosity if Other than Water (cp):					1					
Enter Vapor Pressure if Other than Water (psi):					Hart		ter #			
Minimum Flow Rate (gpm):	10.5				1		1			
Design Flow Rate (gpm):	21				1 + 6	-	+ Co. 1			
Maximum Flow Rate (gpm):	42				2	1				
Pressure of System to be Pumped, Post (psia):	14.7				Sear	nent 7				
Pressure of System Discharged, Paul (psia):	14.7				Self.					
Fluid Temperature (*F):	50		Suction Lift:				D	1.1.1.1.1.	10	
Elevation of Fluid to be Pumped (ft):	0		A 2000 COCCOM			100		yi1."	3 I I	
Pump Impeller Centerline Elevation (ft):	0		1				1		X	
Discharge Elevation (ft):	0			1.00	rive -		1. Li		-	
Static Head of Discharge Line , H _{st2} (ft):	0		P	sys1 =		- 1	4az.**			
Suction Lift of Liquid to be Pumped, Harr (ft):					* (*	- <u></u>	*			
Static Head of Liquid to be Pumped, H., (ft):					E E	4				
Safety Factor	5.0%				- Segment	/				
Vapor Pressure (ft. w.c.):	0.411				4 I T					
Fluid density, p (lb/ft ²):	62.41				1 1 1					
Fluid Kinematic Viscosity, o (ft ² /s):	1.41E-05		1							
Include Exit Headloss at Discharge, H.:	Yes									
otes:	9		Flow Rates (ga	m): 11	14	17	21	28	35	42
			(8	pd): 15,4	00 19,600	23,800	29,400	39,200	49,000	58,8
1994 (March 1997)			(64)	SOI: 0.0	2 0.02	0.02	0.03	0.04	0.05	-
			(have	44.4		_	the second second second second second second second second second second second second second second second se			0.0
		Opt	ional - Pump Head (ft w):						0.0

ressure Loss	1000 CO 4 2000 C	Pressure Loss	
(ft w.c.)	Equipment Tag	(ft w.c.)	
		-	
		-	
and a	in a second	and a	
0.0	Subtotol:	0.0	Total Headloss (ft w.c.): 0.0
	ressure Loss (ft w.c.) 0.0	ressure Loss Equipment Tag	Pressure Loss (ft w.c.) Equipment Tag (ft w.c.) 0.0 Subtotoi: 0.0

	Design & Consultance	PROJECT: BASE Above Grade System Sump Hydraulics	BY: S. Hannula	DATE: 10-May-2022
ARCADIS	for natural and	JOB NO.: 30005248	CHKD, BY: M. Samp	DATE: 10-May-2022
	and address	SUBJECT: Segment 7	APPVD. BY:	DATE:
<u>n de auter seur eu</u>		SUBJECT: Segment 7	APPVD. BY:	DATE

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	2	Standard Elbow, 45*			0.3	1	0.3	1	
Pipe Inner Diameter, ID (in):	1.917						0		
Pipe Length, L (ft):	700.00						0	1	
Pipe Material:	SDR 11 - HDPE	-					0	1	
Pipe Type:	Smooth Pipes (PE and other					i 1	0	1	
1, 12, 16, 56, 7	thermoplastics)				1		0	1	
Roughness, e (ft):	0.000005						0	1	
e / iD:	3.12989E-05				() () () () () () () () () ()	Total K:	0.3	1	
2018/01	V-0070770030 55							· · · · · · · · · · · · · · · · · · ·	
		Segment Flowrate (gpm):	11	14	17	21	28	35	42
		Eqn. (1) - Velocity, v (ft/s):	1.22	1.56	1.89	2.33	3.11	3.89	4.67
		Eqn. (2) - Reynolds Number, Re:	1.38E+04	1.77E+04	2.14E+04	2.648+04	3.52E+04	4.41£+04	5.29€+04
		Pipe Friction Factor, 1:	0.0284	0.0267	0.0255	0.0243	0.0227	0.0216	0.0207
	Eqn. (3) - Head Loss	Across Pipe Segment, H (ft w.c./ft):	0.0041	0.0063	0.0089	0.0128	0.0214	0.0318	0.0439
	Eqn. (4a) - Fittings Equivalent Length, L _F (ft):	1.69	1.79	1.88	1.97	2.11	2.22	2.32
	Eqn. (4b) Equival	ent Length of Pipe Segment, Leg (ft):	701.69	701.79	701.88	701.97	702.11	702.22	702.32
	Ean. (S) Pir	pe Segment Headloss, H. (ft w.c.):	2.88	4.42	6.25	8.99	15.03	22.33	30.83

	PROJECT: BASF Above Grade System Sump Hydra JOB NO.: 30005248 SUBJECT: Segment 7	ulics	BY: CHKD. BY: APPVD. BY:	S. Hannula M. Samp		DATE: DATE: DATE:	10-May-202 10-May-202	2
	Discharge Piping Headloss, H _{ptettichargel} (ft w.c.):	2.88	4.42	6.25	8.99	15.03	22.33	30.83
	Exit Velocity at Liquid Discharge, v (ft/s):	1.22	1.56	1.89	2.33	3.11	3.89	4.67
	Eqn. (7) Exit Loss at Liquid Discharge, H, (ft w.c.):	0.02	0.04	0.06	0.08	0.15	0.24	0.34
	Eqn. (8) Total Dynamic Head, TDH (ft w.c.):	2.90	4.46	6.31	9.07	15.18	22.57	31.17
D	esign System TDH with 5.0% Factor of Safety, (ft w.c.):	3.05	4.68	6.63	9.52	15.94	23.70	32.73

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

Eqn. (5): $H_P = H \cdot L_{eq}$

Eqn. (6): $NSPH_a = 2.31 \cdot (P_{sys1} - P_{pap}) - H_{p(suction)} \pm H_{st1}$

Eqn. (8): Suction Lift: $TDH = 2.31 \cdot (P_{eye2} - P_{eye1}) + H_{st2} + Inline Equipment Neadloss + H_p(dueharpe) + H_e + H_p(succust) + H_{st1} + Flooded Suction:$ $TDH = 2.31 \cdot (P_{eye2} - P_{eye1}) + H_{st2} + Inline Equipment Headloss + H_p(dueharpe) + H_e + H_p(succust) - H_{st1}$

ARCADIS Design & Constanting	PROJECT: BASF Above Grade System Sump Hydra JOB NO.: 30005248 SUBJECT: Segment 8	ulics	BY: CHKD. BY: APPVD. BY:	S. Hannula M. Samp	_	DATE: DATE: DATE:	10-May-202 10-May-202	2
	Discharge Piping Headloss, H _{pittichingei} (ft w.c.):	0.01	0.01	0.01	0.03	0.04	0.07	0.10
	Eqn. (7) Exit Loss at Liquid Discharge, H, (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.07
	Eqn. (8) Total Dynamic Head, TDH (ft w.c.): Design System TDH with 5.0% Factor of Safety, (ft w.c.):	6.21	6.21	6.21 6.52	6.23 6.54	6.24 6.55	6.27 6.58	6.31 6.63

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

Eqn. (5): $H_P = H \cdot L_{eq}$

Eqn. (6): $NSPH_{a} = 2.31 \cdot (P_{sys1} - P_{pap}) - H_{p(suction)} \pm H_{st1}$

Eqn. (7): $H_{\nu} = \frac{\nu^2}{2 \cdot g} = \frac{\nu^2}{2 \cdot (32.174)}$ Eqn. (8):

Suction Lift:

 $TDH = 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{sr2} + Inline Equipment Headloss + H_p(discharge) + H_p + H_p(surrien) + H_{sr1} + Flooded Suction:$

 $TDH = 2.31 \cdot \left(P_{sys2} - P_{sys1}\right) + H_{sr2} + Inline Equipment Headloss + H_p(discharge) + H_p + H_p(sustion) - H_{sr1} + H_p(sustion) + H_{sr2} + H_p(sustion) + H_{sr2} +$

	Desire & Consultance	PROJECT: BASF Above Grade System Sump Hydraulics	BY: S. Hannula	DATE: 10-May-2022
ARCADIS	for matural and	JOB NO.: 30005248	CHKD, BY: M. Samp	DATE: 10-May-2022
, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	and allocat	SUBJECT: Segment 8	APPVD. BY:	DATE:

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in)	2	Ball Valve			0.06	-1-	0.06		
Pipe Inner Diameter, ID (in):	2.067	Stop Check Valve, flow th	iru		7.5	1	7.5		
Pipe Length, L (ft):	25.00	Standard Elbow, 90"			0.57	1	0.57]	
Pipe Material:	SCH 40 - Steel	-					0	1	
Pipe Type:	Coated Steel	Standard Tee, thru branc	h	-	1.14	1	1.14		
11 TO 16 TO 16			300		1	1	0	1	
Roughness, e (ft):	0.00018						0	1	
e / ID:	0.001044993	3				Total K:	9.3		
2012/01					. — i			· · · · · · · · · · · · · · · · · · ·	
		Segment Flowrate (gpm):	2	2	2	3	4	5	6
		Eqn. (1) - Velocity, v (ft/s):	0.19	0.19	0.19	0.29	0.38	0.48	0.57
		Eqn. (2) - Reynolds Number, Re:	2.32E+03	2.32E+03	2.328+03	3.548+03	4.648+03	5.86£+03	6.968+03
		Pipe Friction Factor, 1:	0.048	0.048	0.048	0.0424	0.0393	0.037	0.0354
	Eqn. (3) - Head 1	Loss Across Pipe Segment, H (ft w.c./ft):	0.0002	0.0002	0.0002	0.0003	0.0005	0.0008	0.001
	Eqn	(4a) - Fittings Equivalent Length, L _F (ft):	33.27	33.27	33.27	37.66	40.63	43.16	45.11
	Eqn. (4b) Equ	ivalent Length of Pipe Segment, Leg (ft):	58.27	58.27	58.27	62.66	65.63	68.16	70.11
	Ean /S	Pipe Segment Headloss, H. (ft w.c.):	0.01	0.01	0.01	0.02	0.03	0.05	0.07

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	2						0	1	
Pipe Inner Diameter, ID (in):	1.917	Standard Elbow, 45*			0.3	1	0.3	1	
Pipe Length, L (ft):	12.50	Standard Tee, thru branc	h		1.14	-1-	1.14	1	
Pipe Material:	SDR 11 - HDPE						0		
Pipe Type:	Smooth Pipes (PE and other	-					0		
	thermoplastics)					()	0		
Roughness, e (ft):	0.000005				()	[]	0		
e/ID:	3.12989E-05					Total K:	1.4	1	
						6			
		Segment Flowrate (gpm):	2	2	2	3	4	5	6
		Eqn. (1) - Velocity, v (ft/s):	0.22	0.22	0.22	0.33	0.44	0.56	0.67
		Eqn. (2) - Reynolds Number, Re:	2.49E+03	2.49E+03	2.49€+03	3.74E+03	4.99€+03	6.34E+03	7.59€+03
		Pipe Friction Factor, 1:	0.0461	0.0461	0.0461	0.0407	0.0375	0.035	0.0333
	Eqn. (3) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0.0002	0.0002	0.0002	0.0004	0.0007	0.0011	0.0015
	Egn. (4	ia) - Fittings Equivalent Length, Lr (ft):	4.99	4.99	4.99	5.65	6.13	6.57	6.91
	Egn. (4b) Equiv	alent Length of Pipe Segment, Les (ft):	17.49	17.49	17.49	18.15	18.63	19.07	19.41
	Eco (5) (ine Seament Headloss M /ft w.c.b.	0.00	0.00	0.00	0.01	0.01	0.02	0.03

ARCADIS	Land	PROJECT: BASE Above Grade System Sump F JOB NO.: 30005248	tydraulics BY: <u>S. Hannula</u> CHKD. BY: <u>M. Samp</u>	DATE: 10-May-2022 DATE: 10-May-2022
		SUBJECT: Segment 8	APPVD. BY:	DATE
Pump ID:	Segment 8	Flooded Suction:	12 ASS -	P _{ovil} = 14.7 psia

water	Fluid:
Groundwater	Fluid Description: Enter Fluid Density if Other than Water (\b/ft ³):
	Enter Fluid Viscosity if Other than Water (cp): Enter Vapor Pressure if Other than Water (psi):
1.5	Minimum Flow Rate (gpm):
3	Design Flow Rate (gpm):
6	Maximum Flow Rate (gpm):
14.7	Pressure of System to be Pumped, P _{sn1} (psia):
14.7	Pressure of System Discharged, P ₁₀₁₇ (psia):
50	Fluid Temperature (*F):
-12	Elevation of Fluid to be Pumped (ft):
-15	Pump Impeller Centerline Elevation (ft):
-7	Discharge Elevation (ft):
8	Static Head of Discharge Line , H _{st2} (ft):
	Suction Lift of Liquid to be Pumped, Hatt (ft):
3	Static Head of Liquid to be Pumped, H _{str} (ft):
5.0%	Safety Factor:
0.411	Vapor Pressure (ft. w.c.):
62.41	Fluid density, p (lb/ft ³):
1.41E-05	Fluid Kinematic Viscosity, n (ft ² /s):
A1-446 4-4	

Flow Rates (gpm):	2	2	2	3	4		6
(bdg):	2,800	2,800	2,800	4,200	5,600	7,000	8,400
(MGD):	0.00	0.00	0.00	0.00	0.01	0.01	0.01
Optional - Pump Head (ft w.c.):							
Optional - NSPH Required (ft w.c.):		1 2	1 5	1 1	1 1	1	1

In-Line Equipment Headloss:

	Pressure Loss		1	Pressure Loss	
Equipment Tag	(ft w.c.)	Equipment Tag		(ft w.c.)	
Flowmeter	1.2			-	
	E room D		- marked	Contraction of	
Subtotal:	1.2		Subtotal:	0.0	Total Headloss (ft w.c.): 1.2

		JOB NO.	30005248	- de response		CHKD, BY: M. Samp			DATE	10-May-202	2	
mitasuets		SUBJECT: Segment 9				APPVD. BY:			DATE:	DATE		
20		10	2				-					
Pump ID:	Segment 9		Flooded Suction:					P.	et =			
Fluid:	Water					1	E 1			¥.		
Fluid Description: Enter Fluid Density if Other than Water (lb/ft ³):	Groundwater			Past	e							
Enter Fluid Viscosity if Other than Water (cp): Enter Vapor Pressure if Other than Water (psi):						1	2	-		-		
Minimum Flow Rate (gpm):	12					inver		42 *				
Design Flow Rate (gpm):	24					1.0	~					
Maximum Flow Rate (gpm):	48					(***	1					
Pressure of System to be Pumped, Post (psia):	14.7			<u> </u>		Seam	ent 9					
Pressure of System Discharged, Paul (psia):	14.7	Suction Lift:			Sellin	cite 2						
Fluid Temperature (*F):	50											
Elevation of Fluid to be Pumped (ft):	0							1.7	1			
Pump Impeller Centerline Elevation (ft):	0			(T		1				× .		
Discharge Elevation (ft):	0					Photo III				_		
Static Head of Discharge Line , H _{st2} (ft):	0			P sys1 "				40.4				
Suction Lift of Liquid to be Pumped, Hatt (ft):		1				* (*0	$\gamma - \cdot$	•				
Static Head of Liquid to be Pumped, Hur (ft):		1			1.1.1	2	2					
Safety Factor	5.0%			-		pegment a						
Vapor Pressure (ft. w.c.):	0.411				h	1.1						
Eluid deprity o (Ib/B ³):	62.41				U	· · · · · · · · · · · · · · · · · · ·						
Proportional and the second se	1 115 05	1		L		1						
Fluid Kinematic Viscosity, n (ft ² /s):	1.41E-05											
Fluid Kinematic Viscosity, ŋ (ft ² /s): Include Exit Headloss at Discharge, H.:	Yes											
Fluid Kinematic Viscosity, ŋ (ft²/s). Include Exit Headloss at Discharge, H _e	Yes		Flow Rat	es (gpm):	12	16	20	24	32	40	48	
Fluid Kinematic Viscosity, ŋ (ft²/s): Include Exit Headloss at Discharge, H _e otes:	Yes]	Flow Rat	ts (gpm): (gpd):	12 16,800	16 22,400	20 28,000	24 33,600	32 44,800	40 56,000	48	
Fluid Kinematic Viscosity, ŋ (ft²/s): Include Exit Headloss at Discharge, H _e otes:	1.41E-05 Yes]	Flow Rat	ts (gpm): (gpd): (MGD):	12 16,800 0.02	16 22,400 0.02	20 28,000 0.03	24 33,600 0.03	32 44,800 0.04	40 56,000 0.06	48 67,20 0.0	
Fluid Kinematic Viscosity, p (R ² /s): Include Exit Headloss at Discharge, H _e	Yes		Flow Rat	ts (gpm): (gpd): (MGD): (ft w.c.):	12 16,800 0.02	16 22,400 0.02	20 28,000 0.03	24 33,600 0.03	32 44,800 0.04	40 56,000 0.06	48 67,2 0.0	

Pressure Loss			NOT THE REPORT OF A DECK		Pressure Loss	5
quipment Tag (ft w.c.)		(ft w.c.)	Equipment Tag		(ft w.c.)	
			3			
	CONTRACTOR OF STREET,	1 A.M. 2		Ū. seasonen	1 100	2000-007-102200-2005-2001-07
	Subtotol:	0.0		Subtotol:	0.0	Total Headloss (ft w.c.): 0.0

ADCADIC	Desire & Consultance	PROJECT	BASE Above Grade System Sump Hydraulics		BY:	S. Hannula	DATE:	10-May-2022
ARCADIS	for natural and	JOB NO.	30005248	CHKD.	BY:	M. Samp	DATE:	10-May-2022
	and allocas	SUBJECT	: Segment 9	APPVD.	BY:	-	DATE	

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in).	2	Standard Elbow, 90*			0.57	-1-	0.57		
Pipe Inner Diameter, ID (in):	1.917				- 2000 - L		0		
Pipe Length, L (ft):	275.00						0]	
Pipe Material:	SDR 11 - HDPE						0	1	
Pipe Type:	Smooth Pipes (PE and other	Standard Tee, thru brand	h		1.14	1	1.14		
11 TO 16 TO 16	thermoplastics)	3" x 2" reducer	200		0.28	1	0.28	1	
Roughness, e (ft):	0.000005						0	1	
e / ID:	e / ID: 3.12989E-05				1	Total K:	2.0	1	
503-94	0.0000000000000000000000000000000000000							·	
		Segment Flowrate (gpm):	12	16	20	24	32	40	48
		Eqn. (1) - Velocity, v (ft/s):	1.33	1.78	2.22	2.67	3.56	4.45	5.34
		Eqn. (2) - Reynolds Number, Re:	1.51E+04	2.02E+04	2.528+04	3.03E+04	4.03E+04	5.04£+04	6.05E+04
		Pipe Friction Factor, 1:	0.0278	0.0259	0.0246	0.0235	0.022	0.021	0.0202
	Eqn. (3) - Head Loss	Across Pipe Segment, H (ft w.c./ft):	0.0048	0.008	0.0118	0.0163	0.0271	0.0405	0.056
	Eqn. (4a)) - Fittings Equivalent Length, L _F (ft):	11.44	12.27	12.92	13.53	14.45	15.14	15.74
	Eqn. (4b) Equivale	ent Length of Pipe Segment, Les (ft):	286.44	287.27	287.92	288.53	289.45	290.14	290.74
	Eng. (S) Pig	Segment Headloss M. (If w.c.):	1 37	2 30	3.40	4 70	7 84	11.75	16.28
PROJECT: BASF Above Grade System Sump Hydra JOB NO.: 30005248 SUBJECT: Segment 9	ulics	BY: CHKD. BY: APPVD. BY:	S. Hannula M. Samp	-	DATE: DATE: DATE:	10-May-202 10-May-202	2		
--	-------	--------------------------------	-----------------------	------	-------------------------	--------------------------	-------		
 Discharge Piping Headloss, H _{atelichargei} (ft w.c.):	1.37	2.30	3.40	4.70	7.84	11.75	16.28		
Exit Velocity at Liquid Discharge, v (ft/s):	1.33	1.78	2.22	2.67	3.56	4.45	5.34		
Eqn. (7) Exit Loss at Liquid Discharge, H, (ft w.c.):	0.03	0.05	0.08	0.11	0.20	0.31	0.44		
Eqn. (8) Total Dynamic Head, TDH (ft w.c.):	1.40	2.35	3.48	4.81	8.04	12.06	16.72		
 esign System TDH with 5.0% Factor of Safety, (ft w.c.):	1.47	2.47	3.65	5.05	8.44	12.66	17.56		

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

Eqn. (5): $H_P = H \cdot L_{eq}$

Eqn. (6): $NSPH_{a} = 2.31 \cdot (P_{sys1} - P_{pap}) - H_{p(suction)} \pm H_{st1}$

Suction Lift:

 $TDH = 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{sr2} + Inline Equipment Headloss + H_p(discharge) + H_v + H_p(succion) + H_{sr1} + Flooded Suction:$

	PROJECT: BASF Above Grade System Sump Hydra JOB NO.: 30005248 SUBJECT: Segment 10	rulics	BY: CHKD. BY: APPVD. BY:	S. Hannula M. Samp	_	DATE: 10-May-2022 DATE: 10-May-2022 DATE:		2
·	Discharge Piping Headloss, H _{ptehichargei} (ft w.c.):	0.04	0.04	0.04	0.09	0.09	0.09	0.18
	Exit Velocity at Liquid Discharge, v (ft/s):	0.11	0.11	0.11	0.22	0.22	0.22	0.33
	Eqn. (7) Exit Loss at Liquid Discharge, H, (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (8) Total Dynamic Head, TDH (ft w.c.):	6.24	6.24	6.24	6.29	6.29	6.29	6.38
	Design System TDH with 5.0% Factor of Safety, (ft w.c.):	6.55	6.55	6.55	6.60	6.60	6.60	6.70

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

Eqn. (5): $H_P = H \cdot L_{eq}$

Eqn. (6): $NSPH_{a} = 2.31 \cdot (P_{sys1} - P_{pap}) - H_{p(suction)} \pm H_{st1}$

Eqn. (7): $H_{\nu} = \frac{\nu^2}{2 \cdot g} = \frac{\nu^2}{2 \cdot (32.174)}$ Eqn. (8):

Suction Lift:

 $TDH = 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{sr2} + Inline Equipment Headloss + H_p(discharge) + H_p + H_p(surrien) + H_{sr1} + Flooded Suction:$

	Design & Consultance	PROJECT: BASE Above Grade System Sump Hydraulics	BY: S. Hannula	DATE: 10-May-2022
ARCADIS	for natural and	JOB NO.: 30005248	CHKD, BY: M. Samp	DATE: 10-May-2022
, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	and states	SUBJECT: Segment 10	APPVD. BY:	DATE:

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K	_		
Nominal Pipe Diameter (in):	2	Ball Valve			0.06	1	0.06	1		ļ
Pipe Inner Diameter, ID (in):	2.067	Stop Check Valve, flow th	hru		7.5	1	7.5	1		ļ
Pipe Length, L (ft):	25.00	Standard Elbow, 90"			0.57	1	0.57	1		ļ
Pipe Material:	SCH 40 - Steel	Standard Elbow, 45"			0.3	1	0.3	1		ļ
Pipe Type:	Coated Steel						0			ļ
1. T. T. S. T.	2010/03/2010/07/10				1		0	1		ļ
Roughness, e (ft):	0.00018						0	1		ļ
e / iD:	0.001044993				Total K: 8.4					ļ
20190								i		ļ
		Segment Flowrate (gpm):	1	1	1	2	2	2	3	į
		Eqn. (1) - Velocity, v (ft/s):	0.10	0.10	0.10	0.19	0.19	0.19	0.29	ļ
		Eqn. (2) - Reynolds Number, Re:	1.228+03	1.228+03	1.228+03	2.32E+03	2.32E+03	2.32E+03	3.54£+03	ļ
		Pipe Friction Factor, 1:	0.0524	0.0524	0.0524	0.048	0.048	0.048	0.0424	ļ
	Eqn. (3) - Head	Loss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0.0002	0.0002	0.0002	0.0003	ļ
Eqn. (4a) - Fittings Equivalent Length, L _e (ft):			27.71	27.71	27.71	30.25	30.25	30.25	34.25	ļ
	Eqn. (4b) Eq	avivalent Length of Pipe Segment, Les (ft):	52.71	52.71	52.71	55.25	55.25	55.25	59.25	l
		지수는 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같	the second second second second second second second second second second second second second second second s	and the second se	and the second se	and the second se	and the second sec	the second second second second second second second second second second second second second second second se		4

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	2						0	1	
Pipe Inner Diameter, ID (in):	1.917	Standard Elbow, 45*			0.3	1	0.3	1	
Pipe Length, L (ft):	400.00	Standard Tee, thru brand	h		1.14	-1-	1.14	1	
Pipe Material	SDR 11 - HDPE						0		
Pipe Type:	Smooth Pipes (PE and other	-					0		
1000 C	thermoplastics)	5 million (1997)		1	()	(0		
Roughness, e (ft):	0.000005	1					0		
e/ID:	3.12989E-05					Total K:	1.4	1	
	12	onto e ao estadora targonaria.				1			
		Segment Flowrate (gpm):	1	1	1	2	2	2	3
		Eqn. (1) - Velocity, v (ft/s):	0.11	0.11	0.11	0.22	0.22	0.22	0.33
		Egn. (2) - Reynolds Number, Re:	1.25€+03	1.25€+03	1.25€+03	2.49€+03	2.49E+03	2.49€+03	3.74E+03
		Pipe Friction Factor, 1:	0.0514	0.0514	0.0514	0.0461	0.0461	0.0461	0.0407
	Eqn. (3) - Head Loss	Across Pipe Segment, H (ft w.c./ft):	0.0001	0.0001	0.0001	0.0002	0.0002	0.0002	0.0004
	Egn. (4a) - Fittings Equivalent Length, L _F (ft):	4.48	4.48	4.48	4.99	4.99	4.99	5.65
	Egn. (4b) Equival	ent Length of Pipe Segment, Les (ft):	404.48	404.48	404.48	404.99	404.99	404.99	405.65
	Eco (5) Pir	ne Segment Headloss H dt w.c.h	0.04	0.04	0.04	0.08	0.08	0.08	0.16

	and Consultance	PROJECT: BASE Above Grade System Sump Hydraulics	BY: S. Hannula	DATE: 10-May-2022
ARCADIS :	matural and	J08 NO.: 30005248	CHKD, BY: M. Samp	DATE: 10-May-2022
	at assets	SUBJECT: Segment 10	APPVD, BY:	DATE
		1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4		

Segment 10	Pump ID:
Water	Fluid:
Groundwater	Fluid Description: Enter Fluid Density if Other than Water (lb/ft ³):
	Enter Fluid Viscosity if Other than Water (cp): Enter Vapor Pressure if Other than Water (psi):
0.85	Minimum Flow Rate (gpm):
1.7 3.4	Design Flow Rate (gpm): Maximum Flow Rate (gpm):
14.7	Pressure of System to be Pumped, Post (psia):
14.7	Pressure of System Discharged, Payl2 (psia):
50	Fluid Temperature (*F):
-12	Elevation of Fluid to be Pumped (ft):
-15	Pump Impeller Centerline Elevation (ft):
-7	Discharge Elevation (ft):
8	Static Head of Discharge Line , Hata (ft):
	Suction Lift of Liquid to be Pumped, Hatt (ft):
3	Static Head of Liquid to be Pumped, H _{MT} (ft):
5.0%	Safety Factor:
0.411	Vapor Pressure (ft. w.c.):
62.41	Fluid density, p (lb/ft ³):
1.41E-05	Fluid Kinematic Viscosity, n (ft ² /s):
Yes	Include Exit Headloss at Discharge, He:
	otes:

Flow Rates (gpm):	1	1	1	2	2	2	3
(gpd):	1,400	1,400	1,400	2,800	2,800	2,800	4,200
(MGD):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Optional - Pump Head (ft w.c.):							
Optional - NSPH Required (ft w.c.):		1 2	1 9	1 1	1 1	1 1	1

In-Line Equipment Headloss:

	Pressure Loss			Pressure Loss	
Equipment Tag	(ft w.c.)	Equipment Tag		(ft w.c.)	
Flowmeter	1.2			-	
	1 marsh a			and the second	CARACTER TO THE ATT A CARACTER
Subtotal	1.2		Subtotal:	0.0	Total Headloss (ft w.c.): 1.2

PROJECT: BASF Above Grade System Sump Hydraulics JOB NO.: 30005248 SUBJECT: Segment 11		BY: CHKD, BY: APPVD, BY:	5. Hannula M. Samp	_	DATE: DATE: DATE:	10-May-202 10-May-202	2
 Discharge Piping Headloss, H _{editionargei} (ft w.c.): Evit Velocity at Linuid Discharge v (filis)	0.00	0.00	0.00	0.01	0.01	0.01	0.03
Eqn. (7) Exit Loss at Liquid Discharge, H, (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
 Eqn. (8) Total Dynamic Head, TDH (ft w.c.): Design System TDH with 5.0% Factor of Safety, (ft w.c.):	6.20	6.20	6.20	6.21	6.21	6.21	6.23

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

Eqn. (5): $H_P = H \cdot L_{eq}$

Eqn. (6): $NSPH_a = 2.31 \cdot (P_{sys1} - P_{pap}) - H_{p(suction)} \pm H_{st1}$

Eqn. (7): $H_{v} = \frac{v^{2}}{2 \cdot g} = \frac{v^{2}}{2 \cdot (32.174)}$ Eqn. (8):

ARCADIS	Design & Consultance	PROJECT: BASE Abo
ARCADIS	for matural and	JOB NO.: 30005248
	and enders	SUBJECT: Segment :

Above Grade System Sump Hydraulics	BY:	S. Hannula	DATE:	10-May-2022
5248	CHKD, BY:	M. Samp	DATE:	10-May-2022
ent 11	APPVD. BY:		DATE:	

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	2	Ball Valve			0.06	1	0.06	1	
Pipe Inner Diameter, ID (in):	2.067	Stop Check Valve, flow th	hru		7.5	1	7.5	1	
Pipe Length, L (ft):	25.00	Standard Elbow, 90"			0.57	1	0.57	1	
Pipe Material:	SCH 40 - Steel	-					0	1	
Pipe Type:	Coated Steel	Standard Tee, thru brand	h	-	1.14	1	1.14		
21/32/A/54-7			200		2 1 1		0	1	
Roughness, e (ft):	0.00018						0	1	
e / ID:	0.001044993	1				Total K:	9.3	1	
Sole A		-							
		Segment Flowrate (gpm):	1	1	1	2	2	2	3
		Eqn. (1) - Velocity, v (ft/s):	0.10	0.10	0.10	0.19	0.19	0.19	0.29
		Eqn. (2) - Reynolds Number, Re:	1.228+03	1.228+03	1.228+03	2.32E+03	2.32E+03	2.32E+03	3.54£+03
		Pipe Friction Factor, 1:	0.0524	0.0524	0.0524	0.048	0.048	0.048	0.0424
	Eqn. (3) - Head	Loss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0.0002	0.0002	0.0002	0.0003
	Eqn	. (4a) - Fittings Equivalent Length, L _F (ft):	30.47	30.47	30.47	33.27	33.27	33.27	37.66
	Egn. (4b) Eg	uivalent Length of Pipe Segment, Les (ft):	55.47	55.47	55.47	58.27	58.27	58.27	62.66

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	2						0	1	
Pipe Inner Diameter, ID (in):	1.917	Standard Elbow, 45*			0.3	1	0.3	1	
Pipe Length, L (ft):	12.50	Standard Tee, thru branc	h		1.14	- 1 -	1.14	1	
Pipe Material	SDR 11 - HDPE						0	1	
Pipe Type:	Smooth Pipes (PE and other	-					0		
Statistics	thermoplastics)	5				·	0		
Roughness, e (ft):	0.000005						0	1	
e / ID:	3.12989E-05	-				Total K:	1.4	1	
	10					1			
		Segment Flowrate (gpm):	1	1	1	2	2	2	3
		Eqn. (1) - Velocity, v (ft/s):	0.11	0.11	0.11	0.22	0.22	0.22	0.33
		Eqn. (2) - Reynolds Number, Re:	1.25€+03	1.25€+03	1.25€+03	2.49E+03	2.49E+03	2.49E+03	3.74E+03
		Pipe Friction Factor, 1:	0.0514	0.0514	0.0514	0.0461	0.0461	0.0461	0.0407
	Eqn. (3) - Head Loss	Across Pipe Segment, H (ft w.c./ft):	0.0001	0.0001	0.0001	0.0002	0.0002	0.0002	0.0004
	Egn. (4a) - Fittings Equivalent Length, L _F (ft):	4.48	4.48	4.48	4.99	4.99	4.99	5.65
	Egn. (4b) Equival	ent Length of Pipe Segment, Les (ft):	16.98	16.98	16.98	17.49	17.49	17.49	18.15
	Eco (5) Pi	ne Conment Headloss H /ft w c h	0.00	0.00	0.00	0.00	0.00	0.00	0.01

	Danies & Consultances	PROJECT: BASF Above Grade System Sump Hydraulics	BY: S. Hannula	DATE: 10-May-2022
ARCADIS	for matural and	JOB NO.: 30005248	CHKD, BY: M. Samp	DATE: 10-May-2022
	source ensers	SUBJECT: Segment 11	APPVD. BY:	DATE:

Water	Fluid:
Groundwater	Fluid Description: Enter Fluid Density if Other than Water (lb/ft ³):
	Enter Fluid Viscosity if Other than Water (cp) Enter Vapor Pressure if Other than Water (psi)
0.85	Minimum Flow Rate (gpm):
1.7	Design Flow Rate (gpm):
3.4	Maximum Flow Rate (gpm):
14.7	Pressure of System to be Pumped, Post (psia):
14.7	Pressure of System Discharged, Posta (psia):
50	Fluid Temperature (*F):
-12	Elevation of Fluid to be Pumped (ft):
-15	Pump Impeller Centerline Elevation (ft):
-7	Discharge Elevation (ft):
8	Static Head of Discharge Line , Hata (ft):
	Suction Lift of Liquid to be Pumped, Hatt (ft):
3	Static Head of Liquid to be Pumped, Hart (ft):
5.0%	Safety Factor:
0.411	Vapor Pressure (ft. w.c.):
62.41	Fluid density, p (lb/ft ³):
1.41E-05	Fluid Kinematic Viscosity, n (ft ² /s):
	Include Exit Headloss at Discharge, H -

Flow haves (Epril).		 				· · · · ·	
(gpd):	1,400	1,400	1,400	2,800	2,800	2,800	4,200
(MGD):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Optional - Pump Head (ft w.c.):							
Optional - NSPH Required (ft w.c.):		1 2	1 5	1 1	1 1	1 1	1

In-Line Equipment Headloss:

	Pressure Loss		1	Pressure Loss	
Equipment Tag	(ft w.c.)	Equipment Tag		(ft w.c.)	
Flowmeter	1.2			1	
	R and S		a march of the	and the second	19.09008 20 00 000 <u>0 0000 0</u>
Subtotal	1.2		Subtotal:	0.0	Total Headloss (ft w.c.): 1.2

	CONSULT IN CONSULT.	PROJECT:	PROJECT: BASE Above Grade System Sump Hydraulics			BY: S. Hannula			DATE: 10-May-2022		
	Land	JOB NO.:	30005248			CHKD, BY:	M. Samp		DATE:	10-May-202	2
1.5 M. D. 5. March 21 May 22		SUBJECT:	Segment 12			APPVD. BY:	-		DATE:		
Pump ID:	Segment 12		Flooded Suction:					P.			
Fluid:	Water					1	E			¥1	
Fluid Description: Enter Fluid Density if Other than Water (lb/ft ³):	Groundwater			P _{syst} =		-					
Enter Fluid Viscosity if Other than Water (cp): Enter Vapor Pressure if Other than Water (psi):						1		L -		-	
Minimum Flow Rate (gpm):	1.7					1 ML	. 11				
Design Flow Rate (gpm):	3.4					1.0		+100			
Maximum Flow Rate (gpm):	6.8					2	1				
Pressure of System to be Pumped, Psont (psia):	14.7			-		Segme	ent 12				
Pressure of System Discharged, Paul (psia):	14.7										
Fluid Temperature (*F):	50		Suction Lift:					P	2.0		
Elevation of Fluid to be Pumped (ft):	0		ACTIVITY OF A				-		42	1	
Pump Impeller Centerline Elevation (ft):	0				-	Hus	1			4	
Discharge Elevation (ft):	0			0		1 1 1 1					
				P 5991 -			~"	40.4			
Static Head of Discharge Line , H _{st2} (ft):	0										
Static Head of Discharge Line , H _{at2} (ft): Suction Lift of Liquid to be Pumped, H _{at2} (ft):	0					- (0	1	_			
Static Head of Discharge Line , H _{HZ} (ft): Suction Lift of Liquid to be Pumped, H _{HZ} (ft): Static Head of Liquid to be Pumped, H _{HZ} (ft):	0					Saumont	ž				
Static Head of Discharge Line , H ₄₇₂ (ft): Suction Lift of Liquid to be Pumped, H ₄₁₇ (ft): Static Head of Liquid to be Pumped, H ₄₁₇ (ft): Safety Factor:	0 5.0%			_		Segment 1	1	<u> </u>			
Static Head of Discharge Line , H ₄₇₂ (ft): Suction Lift of Liquid to be Pumped, H ₄₁₇ (ft): Static Head of Liquid to be Pumped, H ₄₁₇ (ft): Safety Factor: Vapor Pressure (ft, w.c.):	0 5.0% 0.411					Segment 1	2				
Static Head of Discharge Line , H _{et2} (ft): Suction Lift of Liquid to be Pumped, H _{et1} (ft): Static Head of Liquid to be Pumped, H _{et1} (ft): Safety Factor: Vapor Pressure (ft, w.c.): Fluid density, p. (fb/ft ³):	0 5.0% 0.411 62.41					Segment 1	2	<u> </u>			
Static Head of Discharge Line , H ₄₂ (ft): Suction Lift of Liquid to be Pumped, H ₄₁₁ (ft): Static Head of Liquid to be Pumped, H ₄₁₁ (ft): Statey Factor: Vapor Pressure (ft. w.c.): Fluid density, o (fb/ft ²): Fluid Kinematic Viscosity, n (ft ² /s):	0 5.0% 0.411 62.41 1.41E-05					Segment 1	2	<u> </u>			
Static Head of Discharge Line , H _{eff} (ft): Suction Lift of Liquid to be Pumped, H _{eff} (ft): Static Head of Liquid to be Pumped, H _{eff} (ft): Safety Factor: Vapor Pressure (ft. w.c.): Fluid density, p (fb/ft ²): Fluid Kinematic Viscosity, p (ft ² /s): Include Exit Headloss at Discharge, H _e ;	0 5.0% 0.411 62.41 1.41E-05 Yes					Segment 1	2				
Static Head of Discharge Line , H _{eff} (ft): Suction Lift of Liquid to be Pumped, H _{eff} (ft): Static Head of Liquid to be Pumped, H _{eff} (ft): Safety Factor: Vapor Pressure (ft. w.c.): Fluid density, p (fb/ft ²): Fluid Kinematic Viscosity, ŋ (ft ² /s): Include Exit Headloss at Discharge, H _e	0 0.411 62.41 1.415-05 Yes		Flow Rate	s (gpm):	2	Segment 1	2	3	4	5	7
Static Head of Discharge Line , H _{eff} (ft): Suction Lift of Liquid to be Pumped, H _{eff} (ft): Static Head of Liquid to be Pumped, H _{eff} (ft): Safety Factor: Vapor Pressure (ft. w. c.): Fluid density, p (lb/ft ²): Fluid kinematic Viscosity, n (ft ² /s): Include Exit Headloss at Discharge, H _e : Stes:	0 5.0% 0.411 62.41 1.41E-05 Yes		Flow Rate	s (gpm): (gpd):	2 2,800	2 2,800	2 2 2,800	3 4,200	4 5,600	5 7,000	7 9,80
Static Head of Discharge Line , H _{et2} (ft): Suction Lift of Liquid to be Pumped, H _{et1} (ft): Static Head of Liquid to be Pumped, H _{et1} (ft): Safety Factor: Vapor Pressure (ft, w.c.): Fluid density, p (lb/ft ³): Fluid Kinematic Viscosity, ŋ (ft ² /s): Include Exit Headloss at Discharge, H _e :	0 5.0% 0.411 62.41 1.41E-05 Yes		Flow Rate	s (gpm): (gpd): (MGD):	2 2,800 0.00	Segment 1	2 2 2,800 0.00	3 4,200 0.00	4 5,600 0.01	5 7,000 0.01	7 9,80 0.01
Static Head of Discharge Line , H _{eff} (ft): Suction Lift of Liquid to be Pumped, H _{eff} (ft): Static Head of Liquid to be Pumped, H _{eff} (ft): Safety Factor: Vapor Pressure (ft. w.c.): Fluid density, o (fb/ft ³): Fluid Kinematic Viscosity, ŋ (ft ² /s): Include Exit Headloss at Discharge, H _e : Stes:	0 5.0% 0.411 62.41 1.41E-05 Yes		Flow Rate	s (gpm): (gpd): (MGD): (ft w.c.):	2 2,800 0.00	Segment 2 2,800 0.00	2 2,800 0.00	3 4,200 0.00	4 5,600 0.01	5 7,000 0.01	7 9,80 0.01

	Pressure Loss			Pressure Loss	
Equipment Tag	(ft w.c.)	Equipment Tag		(ft w.c.)	
	-				
				-	
00000000	R anno 2		(Assessed to a	Course D	2008-007.007000 000 <u>0.0000 0</u> 7
Subtotal	0.0		Subtotol:	0.0	Total Headloss (ft w.c.): 0.0

ARCADIS	Design & Consultancy	PROJECT: BASE Above Grade System Sump Hydraulics	BY: S. Hannula	DATE: 10-May-2022
	for natural and	JOB NO.: 30005248	CHKD. BY: M. Samp	DATE: 10-May-2022
	and address	SUBJECT: Segment 12	APPVD. BY:	DATE:

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	2				1		0	1	
Pipe Inner Diameter, ID (in):	1.917						0		
Pipe Length, L (ft):	550.00						0	1	
Pipe Material:	SDR 11 - HDPE						0	1	
Pipe Type:	Smooth Pipes (PE and other			-			0		
1, 12, 16, 26, 27	thermoplastics)				1	-	0	1	
Roughness, e (ft):	0.000005						0	1	
e / ID:	3.12989E-05					Total K:	0.0	1	
SOREDE	V 2222 222 222 2					2204040		· · · · · · · · · · · · · · · · · · ·	
		Segment Flowrate (gpm):	2	2	2	3	4	5	7
		Eqn. (1) - Velocity, v (ft/s):	0.22	0.22	0.22	0.33	0.44	0.56	0.78
		Eqn. (2) - Reynolds Number, Re:	2.49E+03	2.49E+03	2.49E+03	3.74£+03	4.99E+03	6.34E+03	8.84£+03
		Pipe Friction Factor, 1:	0.0461	0.0461	0.0461	0.0407	0.0375	0.035	0.032
	Egn. (3) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0.0002	0.0002	0.0002	0.0004	0.0007	0.0011	0.0019
	Egn. (4	(a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leo (ft):	550.00	550.00	550.00	550.00	550.00	550.00	550.00
	Eag. (5)	Sine Commant Mandloss M. dt w.c.b.	0.11	0.11	0.11	0.77	0.30	0.61	1.05

	PROJECT: BASF Above Grade System Sump Hydraulics JOB NO.: 30005248 SUBJECT: Segment 12		BY: S. Hannula CHKD. BY: M. Samp APPVD. BY:			DATE: DATE: DATE:	10-May-202 10-May-202	2
[Discharge Piping Headloss, H _{pidischargel} (ft w.c.):	0.11	0.11	0.11	0.22	0.39	0.61	1.05
	Exit Velocity at Liquid Discharge, V (fUs): Eqn. (7) Exit Loss at Liquid Discharge, H _v (ft w.c.):	0.00	0.00	0.22	0.33	0.44	0.56	0.78
De	Eqn. (8) Total Dynamic Head, TDH (ft w.c.): sign System TDH with 5.0% Factor of Safety, (ft w.c.):	0.11	0.11	0.11 0.12	0.22	0.39	0.61	1.06

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

Eqn. (5): $H_P = H \cdot L_{eq}$

Eqn. (6): $NSPH_{a} = 2.31 \cdot (P_{sys1} - P_{pap}) - H_{p(suction)} \pm H_{st1}$

Suction Lift:

 $TDH = 2.31 \cdot \left(P_{sys2} - P_{sys1}\right) + H_{sr2} + Inline Equipment Headloss + H_p(discharge) + H_p + H_p(succes) + H_{sr1} + Flooded Suction:$

PROJECT: BASF Above Grade System Sump Hydraulics JOB NO.: 30005248 SUBJECT: Segment 13			BY: <u>5. Hannula</u> CHKD, BY: <u>M. Samp</u> APPVD, BY:			10-May-202 10-May-202	2
Discharge Piping Headloss, H _{otthetarge} (ft w.c.): Exit Velocity at Linuid Discharge, y (ft)s:	0.00	0.00	0.00	0.01	0.01	0.01	0.03
Eqn. (7) Exit Loss at Liquid Discharge, H, (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
 Eqn. (8) Total Dynamic Head, TDH (ft w.c.): Design System TDH with 5.0% Factor of Safety, (ft w.c.):	6.20	6.20	6.20	6.21	6.21	6.21	6.23

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

Eqn. (5): $H_P = H \cdot L_{eq}$

Eqn. (6): $NSPH_{a} = 2.31 \cdot (P_{sys1} - P_{pap}) - H_{p(suction)} \pm H_{st1}$

Eqn. (7): $H_{\nu} = \frac{\nu^2}{2 \cdot g} = \frac{\nu^2}{2 \cdot (32.174)}$ Eqn. (8):

Suction Lift:

 $TDH = 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{sr2} + Inline Equipment Headloss + H_p(discharge) + H_p + H_p(succes) + H_{sr1} + H_{sr2} + H_$

A DOA DIO Instant	PROJECT: BASF Above Grade
ARCADIS forestarial and	JOB NO.: 30005248
	SUBJECT: Segment 13

				the second second second second second second second second second second second second second second second se	
Above Grade System Sump Hydraulics	BY:	S. Hannula	DATE	10-May-2022	
248	CHKD, BY:	M. Samp	DATE	10-May-2022	
ent 13	APPVD. BY:		DATE		

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	2	Ball Valve			0.06	1	0.06	1	
Pipe Inner Diameter, ID (in):	2.067	Stop Check Valve, flow th	ากม	7.5		1	7.5		
Pipe Length, L (ft):	25.00	Standard Elbow, 90"			0.57	1	0.57	1	
Pipe Material:	SCH 40 - Steel						0	1	
Pipe Type:	Coated Steel	Standard Tee, thru branc	h	-	1.14	1	1.14		
17 DE 16 DE 1			200 - C		2		0	1	
Roughness, e (ft):	0.00018						0	1	
e / iD:	0.001044993					Total K:	9.3	1	
20/89/0					i			· · · · · ·	
		Segment Flowrate (gpm):	1	1	1	2	2	2	3
		Eqn. (1) - Velocity, v (ft/s):	0.10	0.10	0.10	0.19	0.19	0.19	0.29
		Eqn. (2) - Reynolds Number, Re:	1.228+03	1.228+03	1.228+03	2.32E+03	2.32E+03	2.32E+03	3.54£+03
		Pipe Friction Factor, 1:	0.0524	0.0524	0.0524	0.048	0.048	0.048	0.0424
	Eqn. (3) - Head 1	Loss Across Pipe Segment, H (ft w.c./ft):	0	0	0	0.0002	0.0002	0.0002	0.0003
	Eqn	(4a) - Fittings Equivalent Length, L _F (ft):	30.47	30.47	30.47	33.27	33.27	33.27	37.66
	Eqn. (4b) Equ	uivalent Length of Pipe Segment, Leg (ft):	55.47	55.47	55.47	58.27	58.27	58.27	62.66
		요즘 같은 것은 것이 같은 것이 같은 것이 같이 있는 것이 같이 없다.	and the second second			A 44			

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	2						0	1	
Pipe Inner Diameter, ID (in):	1.917	Standard Elbow, 45*			0.3	1	0.3		
Pipe Length, L (ft):	12.50	Standard Tee, thru branc	h		1.14	-1-	1.14	1	
Pipe Material	SDR 11 - HDPE						0	1	
Pipe Type:	Smooth Pipes (PE and other	1					0	1	
No. 1997	thermoplastics)	2			1	5	0	1	
Roughness, e (ft):	0.000005						0		
e / ID:	3.12989E-05					Total K:	1.4	1	
	1					1			
		Segment Flowrate (gpm):	1	1	1	2	2	2	3
		Eqn. (1) - Velocity, v (ft/s):	0.11	0.11	0.11	0.22	0.22	0.22	0.33
		Ean. (2) - Reynolds Number, Re:	1.25€+03	1.25€+03	1.25€+03	2.49€+03	2.49E+03	2.49E+03	3.74E+03
		Pipe Friction Factor, 1:	0.0514	0.0514	0.0514	0.0461	0.0461	0.0461	0.0407
		The second s		the second second second second second second second second second second second second second second second s	the second second second second second second second second second second second second second second second s	the second second second second	the local data and the state of	the second second second second second second second second second second second second second second second s	The second second second second second second second second second second second second second second second se
	Egn. (3) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0.0001	0.0001	0.0001	0.0002	0.0002	0.0002	0.0004
	Eqn. (3) - Head Los Eqn. (4	a Across Pipe Segment, H (ft w.c./ft): a) - Fittings Equivalent Length, L _F (ft):	0.0001 4.48	0.0001 4.48	0.0001 4.48	0.0002	0.0002	0.0002 4.99	0.0004
	Eqn. (3) - Head Los Eqn. (4 Eqn. (4b) Equiva	a Across Pipe Segment, H (ft w.c./ft): a) - Fittings Equivalent Length, L _f (ft): alent Length of Pipe Segment, L _{eo} (ft):	0.0001 4.48 16.98	0.0001 4.48 16.98	0.0001 4.48 16.98	0.0002 4.99 17.49	0.0002 4.99 17.49	0.0002 4.99 17.49	0.0004 5.65 18.15

	Consultaively Land S	PROJECT: BASE Above Grade System Sump Hyd JOB NO.: 30005248 SUBJECT: Segment 13	APPVD. 8Y: 5. Hannula	DATE: 10-May-2022 DATE: 10-May-2022 DATE: DATE:
Pump ID: Fluid:	Segment 13 Water	Flooded Suction:		P _{oyit} = 14.7 psia

Fluid Description:	Groundwater
Enter Fluid Density if Other than Water (ib/ft'):	
Enter Fluid Viscosity if Other than Water (cp):	
Enter Vapor Pressure if Other than Water (psi):	
Minimum Flow Rate (gpm):	0.85
Design Flow Rate (gpm):	1.7
Maximum Flow Rate (gpm):	3.4
Pressure of System to be Pumped, P _{sn1} (psia):	14.7
Pressure of System Discharged, Posta (psia):	14.7
Fluid Temperature (*F):	50
Elevation of Fluid to be Pumped (ft):	-12
Pump Impeller Centerline Elevation (ft):	-15
Discharge Elevation (ft):	-7
Static Head of Discharge Line , Hatz (ft):	8
Suction Lift of Liquid to be Pumped, Hett (ft):	
Static Head of Liquid to be Pumped, H _{stt} (ft):	3
Safety Factor:	5.0%
Vapor Pressure (ft. w.c.):	0.411
Fluid density, p (lb/ft ³):	62.41
Fluid Kinematic Viscosity, n (ft ² /s):	1.41E-05
Include Exit Headloss at Discharge, H _e :	Yes
otes:	

In-Line	Equipment H	leadloss:
---------	-------------	-----------

	Pressure Loss	0008 000 60 360	1	Pressure Loss	
uipment Tag	(ft w.c.)	Equipment Tag		(ft w.c.)	
lowmeter	1.2		5	-	
	Contract of		- married	and a second	(3) (2) (2013) [201] [203] [203] [203] [204] [204]
Subtotal:	1.2		Subtotal:	0.0	Total Headloss (ft w.c.): 1.2

Optional - Pump Head (ft w.c.): Optional - NSPH Required (ft w.c.):

		BASE Above Grade System Sump H	ydraulics	BY:	S. Hannula	_	DATE: 10-May-2022		
	JOS NO.	30005248		CHKD. BY:	M. Samp	-	DATE:	10-May-202	2
	SUBJECT	Segment 14		APPVD. BY:	-		DATE	<u>.</u>	
Pump ID:	Segment 14	Flooded Suction:				P.		î	
Fluid:	Water			1	E 1		rss .	Y	
Fluid Description: Enter Fluid Density if Other than Water (lb/ft ³):	Groundwater	P	= tey	-					
Enter Fluid Viscosity if Other than Water (cp): Enter Vapor Pressure if Other than Water (psi):				T.				-	
Minimum Flow Rate (gpm):	2.55					1			
Design Flow Rate (gpm):	5.1			1.6		• 10 M			
Maximum Flow Rate (gpm):	10.2			2	1				
Pressure of System to be Pumped, Post (psia):	14.7			Segme	ent 14				
Pressure of System Discharged, P ₈₉₇ (psia):	14.7								
Fluid Temperature (*F):	50	Suction Lift:				P.	37.00	1.1	
Elevation of Fluid to be Pumped (ft):	0	AT 225 CPC 46 GO 112			-		an c	-1	
Pump Impeller Centerline Elevation (ft):	0			Hus	1	T I		-	
Discharge Elevation (ft):	0	P.	201			i in			
Static Head of Discharge Line , H _{at2} (ft):	0		- 18	110	~	40 -			
Suction Lift of Liquid to be Pumped, H _{str} (ft):				1 (0	ž	_			
Static Head of Liquid to be Pumped, H _{stf} (ft):			1.1	Segment 1	4				
Safety Factor:	5.0%			-					
Vapor Pressure (ft. w.c.):	0.411		h	1					
Fluid density, p (lb/ft ³):	62.41		U.						
Fluid Kinematic Viscosity, η (ft ² /s):	1.41E-05								
Include Exit Headloss at Discharge, He	Yes								
otes:		Flow Rates (gpm	n): 3	4	5	5	7	9	10
		(gp)	i): 4,200	5,600	7,000	7,000	9,800	12,600	14,00
		(MG	n: 0.00	0.01	0.01	0.01	0.01	0.01	0.01
		Optional - NSPH Required (ft w.c	1	1 0		1 0		1 0	
-Line Equipment Headloss:									
-Une Equipment Headloss:	unura lorr		Dragance Lo						-

		Pressure Loss		P	ressure Loss	
Equipment Tag		(ft w.c.)	Equipment Tag		(ft w.c.)	
		-	1			
	CONTRACTOR STATES	1 101 000 De		and a second sec	10100	1000 007 107 007 007 007 007
	Subtotol:	0.0		Subtotol:	0.0	Total Headloss (ft w.c.): 0.0

ARCADIS	Design & Consultancy	PROJECT: BASE Above Grade System Sump Hydraulics	BY: S. Hannula	DATE: 10-May-2022
	for instant and	JOB NO.: 30005248	CHKD. BY: M. Samp	DATE: 10-May-2022
	and append	SUBJECT: Segment 14	APPVD. BY:	DATE:

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K						
Nominal Pipe Diameter (in):	2				1		0	1					
Pipe Inner Diameter, ID (in):	1.917					1 1	0						
Pipe Length, L (ft):	440.00						0	1					
Pipe Material:	SDR 11 - HDPE	-					0	1					
Pipe Type:	Smooth Pipes (PE and other			-			0						
14 TO A 03 T	thermoplastics)	1			1	(0	1					
Roughness, e (ft):	0.000005	0.000005	0.000005	0.000005	0.000005	0.000005					0	1	
e / ID:	3.12989E-05				() () () () () () () () () ()	Total K:	0.0	1					
2012/01	V-0070720030							· · · · · · · · · · · · · · · · · · ·					
		Segment Flowrate (gpm):	3	4	5	5	7	9	10				
		Eqn. (1) - Velocity, v (ft/s):	0.33	0.44	0.56	0.56	0.78	1.00	1.11				
		Eqn. (2) - Reynolds Number, Re:	3.74£+03	4.99£+03	6.348+03	6.34E+03	8.84£+03	1.13£+04	1.268+04				
		Pipe Friction Factor, 1:	0.0407	0.0375	0.035	0.035	0.032	0.0299	0.0291				
	Eqn. (3) - Head Lo	ss Across Pipe Segment, H (ft w.c./ft):	0.0004	0.0007	0.0011	0.0011	0.0019	0.0029	0.0035				
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Leg (ft):	440.00	440.00	440.00	440.00	440.00	440.00	440.00				
	Eco /51	ine Segment Headloss M. (If w.c.):	0.18	0.31	0.48	0.48	0.84	1.79	1.54				

PROJECT: BASF Above Grade System Sump Hydra JOB NO.: 30005248 SUBJECT: Segment 14	ulics	BY: CHKD. BY: APPVD. BY:	S. Hannula M. Samp	-	DATE: DATE: DATE:	10-May-202 10-May-202	2
 Discharge Piping Headloss, H _{ptithistarget} (ft w.c.):	0.18	0.31	0.48	0.48	0.84	1.28	1.54
Exit Velocity at Liquid Discharge, v (ft/s):	0.33	0.44	0.56	0.56	0.78	1.00	1.11
Eqn. (7) Exit Loss at Liquid Discharge, H, (ft w.c.):	0.00	0.00	0.00	0.00	0.01	0.02	0.02
Eqn. (8) Total Dynamic Head, TDH (ft w.c.):	0.18	0.31	0.48	0.48	0.85	1.30	1.56
 Design System TDH with 5.0% Factor of Safety, (ft w.c.):	0.19	0.33	0.50	0.50	0.89	1.37	1.64

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

Eqn. (5): $H_P = H \cdot L_{eq}$

Eqn. (6): $NSPH_{a} = 2.31 \cdot (P_{sys1} - P_{pap}) - H_{p(suction)} \pm H_{st1}$

Eqn. (7): $H_{\nu} = \frac{\nu^2}{2 \cdot g} = \frac{\nu^2}{2 \cdot (32.174)}$ Eqn. (8):

Suction Lift:

 $TDH = 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{sr2} + Inline Equipment Headloss + H_p(discharge) + H_p + H_p(succion) + H_{sr1} + H_{sr2} + H$ Flooded Suction: $TDH = 2.31 \cdot \left(P_{sys2} - P_{sys1}\right) + H_{sr2} + Inline Equipment Headloss + H_p(discharge) + H_p + H_p(sustion) - H_{sr1} + H_p(sustion) + H_{sr2} + H_p(sustion) + H_{sr2} + H_p(sustion) + H_{sr2} + H_{s$

	PROJECT: BASF Above Grade System Sump Hydra JOB NO.: 30005248 SUBJECT: Segment 15	rulics	BY: CHKD. BY: APPVD. BY:	S. Hannula M. Samp	_	DATE: DATE: DATE:	10-May-202 10-May-202	2
, <mark></mark>	Discharge Piping Headloss, H _{ptetscharge} (ft w.c.):	0.04	0.07	0.10	0.14	0.27	0.44	0.58
	Exit Velocity at Liquid Discharge, v (ft/s):	0.44	0.56	0.67	0.78	1.11	1.45	1.67
	Eqn. (7) Exit Loss at Liquid Discharge, H, (ft w.c.):	0.00	0.00	0.01	0.01	0.02	0.03	0.04
	Eqn. (8) Total Dynamic Head, TDH (ft w.c.):	6.24	6.27	6.31	6.35	6.49	6.67	6.82
	esign System TDH with 5.0% Factor of Safety, (ft w.c.):	6.55	6.58	6.63	6.67	6.81	7.00	7.16

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

Eqn. (5): $H_P = H \cdot L_{eq}$

Eqn. (6): $NSPH_a = 2.31 \cdot (P_{sys1} - P_{pap}) - H_{p(suction)} \pm H_{st1}$

Eqn. (7): $H_{v} = \frac{v^{2}}{2 \cdot g} = \frac{v^{2}}{2 \cdot (32.174)}$ Eqn. (8):

	PROJECT: BASF Above G
ARCADIS formitural and	JOB NO.: 30005248
	SUBJECT: Segment 15

T: BASF Above Grade	System Sump Hydraulics	BY:	S. Hannula	DATE	10-May-2022
: 30005248		CHKD. BY:	M. Samp	DATE	10-May-2022
T: Segment 15		APPVD. BY:		DATE	

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	2	Ball Valve			0.06	1	0.06	1	
Pipe Inner Diameter, ID (in):	2.067	Stop Check Valve, flow th	hru		7.5	1	7.5		
Pipe Length, L (ft):	25.00	Standard Elbow, 90"			0.57	1	0.57	1	
Pipe Material:	SCH 40 - Steel	-					0	1	
Pipe Type:	Coated Steel	Standard Tee, thru brand	h		1.14	1	1.14		
14738 (A654)			200		2 1 1		0	1	
Roughness, e (ft):	0.00018						0	1	
e / ID:	0.001044993					Total K:	9.3		
20/19/0						- 200 King		· · · · · ·	
		Segment Flowrate (gpm):	4	5	6	7	10	13	15
		Eqn. (1) - Velocity, v (ft/s):	0.38	0.48	0.57	0.67	0.96	1.24	1.43
		Eqn. (2) - Reynolds Number, Re:	4.64£+03	5.86£+03	6.968+03	8.18E+03	1.17E+04	1.51£+04	1.758+04
		Pipe Friction Factor, 1:	0.0393	0.037	0.0354	0.034	0.0313	0.0296	0.0288
	Egn. (3) - Head	Loss Across Pipe Segment, H (ft w.c./ft):	0.0005	0.0008	0.001	0.0014	0.0026	0.0041	0.0053
	Eqr	. (4a) - Fittings Equivalent Length, L _F (ft):	40.63	43.16	45.11	46.96	51.01	\$3.94	55.44
	Eqn. (4b) Eq	uivalent Length of Pipe Segment, Leo (ft):	65.63	68.16	70.11	71.96	76.01	78.94	80.44
		그는 일상에는 것이 가지 않는 것이 없는 것이 있는 것이 같아요. 것이 같아요.		and the second se					

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K			
Nominal Pipe Diameter (in):	2						0	1		
Pipe Inner Diameter, ID (in):	1.917	Standard Elbow, 45*			0.3	1	0.3			
Pipe Length, L (ft):	12.50	Standard Tee, thru branc	h		1.14	-1-	1.14	1		
Pipe Material	SDR 11 - HDPE						0			
Pipe Type:	Smooth Pipes (PE and other	-					0			
2010 C	thermoplastics)					(0			
Roughness, e (ft):	0.000005	1				i	0			
e / ID:	3.12989E-05					Total K:	1.4			
	12					6				l
		Segment Flowrate (gpm):	4	5	6	7	10	13	15	l
		Eqn. (1) - Velocity, v (ft/s):	0.44	0.56	0.67	0.78	1.11	1.45	1.67	l
		Egn. (2) - Reynolds Number, Re:	4.99€+03	6.34E+03	7.59€+03	8.84E+03	1.26E+04	1.64E+04	1.89€+04	l
		Pipe Friction Factor, 1:	0.0375	0.035	0.0333	0.032	0.0291	0.0272	0.0263	l
	Egn. (3) - Head Los	is Across Pipe Segment, H (ft w.c./ft):	0.0007	0.0011	0.0015	0.0019	0.0035	0.0056	0.0071	l
		and a second second second second second second second second second second second second second second second			2.0.5	2.10	7.01	0.42	9.76	1
	Egn. (4	a) - Fittings Equivalent Length, L _F (ft):	6.13	6.57	6.91	7.19	1.92	0.40	0.73	
	Egn. (4 Egn. (4b) Eguive	a) - Fittings Equivalent Length, L _F (ft): alent Length of Pipe Segment, L _{eg} (ft):	6.13	6.57	19.41	19.69	20.41	20.96	21.25	ł

CA DCA DIC	Design & Consultance	PROJECT:	BASF Above Grade System Sump Hydraulics		BY:	S. Hannula	DATE	10-May-2022
ARCADIS	for matural and	JOB NO.:	30005248	CHKD.	BY:	M. Samp	DATE	10-May-2022
, , , , , , , , , , , , , , , , , , , ,	Same Sciences	SUBJECT:	Segment 15	APPVD.	. 8Y:		DATE	

Segment 15	Pump ID:
Water	Fluid:
Groundwater	Fluid Description: Enter Fluid Density if Other than Water (lb/ft ³):
	Enter Fluid Viscosity if Other than Water (cp): Enter Vapor Pressure if Other than Water (psi):
3.65	Minimum Flow Rate (gpm):
7.3 14.6	Design Flow Rate (gpm): Maximum Flow Rate (gpm):
14.7	Pressure of System to be Pumped, Post (psia):
14.7	Pressure of System Discharged, P _{lost} (psia):
50	Fluid Temperature (*F):
-12	Elevation of Fluid to be Pumped (ft):
-15	Pump Impeller Centerline Elevation (ft):
-7	Discharge Elevation (ft):
8	Static Head of Discharge Line , H _{st2} (ft):
	Suction Lift of Liquid to be Pumped, Hatt (ft):
3	Static Head of Liquid to be Pumped, H _{stf} (ft):
5.0%	Safety Factor:
0.411	Vapor Pressure (ft. w.c.):
62.41	Fluid density, p (lb/ft ³):
1.41E-05	Fluid Kinematic Viscosity, n (ft ² /s):
Yes	Include Exit Headloss at Discharge, He
165	tes:

Flow Rates (gpm):	4	5	6	7	10	13	15
(gpd):	5,600	7,000	8,400	9,800	14,000	18,200	21,000
(MGD):	0.01	0.01	0.01	0.01	0.01	0.02	0.02
Optional - Pump Head (ft w.c.):							
Optional - NSPH Required (ft w.c.):		1 2	4	1 3	1 1	1	

In-Line Equipment Headloss:

	Pressure Loss Pressure Loss		Pressure Loss		
Equipment Tag	(ft w.c.)	Equipment Tag		(ft w.c.)	
Flowmeter	1.2		3	-	
	Contract of		- married	Langer D	1979-1988 - 28 - 28 - 202 <u>0 - 1989 - 1</u>
Subtotal:	1.2		Subtotal:	0.0	Total Headloss (ft w.c.): 1.2

ARCADIS Design & Consumery built assets		JOB NO.: 30005248 SUBJECT: Segment 16			BY: CHKD, BY: APPVD, BY:	S. Hannula M. Samp		DATE: 10-May-2022 DATE: 10-May-2022 DATE:		2
Pump ID: Fluid Fluid Description: Enter Fluid Density if Other than Water (b)(ft'): Enter Fluid Viscosity if Other than Water (ps): Enter Vapor Pressure if Other than Water (ps): Minimum Flow Rate (gpm): Design Flow Rate (gpm): Maximum Flow Rate (gpm): Naximum Flow Rate (gpm): Pressure of System to be Pumped, P _{mil} (psia): Pressure of System Discharged, P _{mil} (psia): Fluid Temperature ('F): Elevation of Fluid to be Pumped (ft): Duscharge Elevation (ft): Discharge Elevation (ft):	Segment 16 Water Groundwater 6.2 12.4 24.8 14.7 14.7 50 0 0 0 0	Flooded Suction: Suction Lift:	P _{sys1}		H _{int} =	ent 16	P _a ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	nt =	× ×	
Static Head of Discharge Line , H _{st2} (ft): Suction Lift of Liquid to be Pumped, H _{st1} (ft): Static Head of Liquid to be Pumped, H _{st1} (ft): Safety Factor: Vapor Pressure (ft. w.c.): Fluid density, p (Ib/ft ²): Fluid Kinematic Viscosity, p (ft ² /s):	5.0% 0.411 62.41 1.41E-05				, Segment 1	6				
Static Head of Discharge Line , H _{st2} (ft): Suction Lift of Liquid to be Pumped, H _{st2} (ft): Static Head of Liquid to be Pumped, H _{st2} (ft): Stafey Factor: Vapor Pressure (ft. w.c.): Fluid density, o (lb/ft ³): Fluid Kinematic Viscosity, ŋ (ft ² /s): Include Exit Headloss at Discharge, H _s :	5.0% 0.411 62.41 1.41E-05 Yes				Segment 1	6		-		
Static Head of Discharge Line , H _{st2} (ft): Suction Lift of Liquid to be Pumped, H _{st1} (ft): Static Head of Liquid to be Pumped, H _{st1} (ft): Safety Factor: Vapor Pressure (ft. w.c.): Fluid density, p (lb/ft ²): Fluid kinematic Viscosity, n (lt ² /s): Include Exit Headloss at Discharge, H _s : otes:	5.0% 0.411 62.41 1.41E-05 Yes	Fiow Ra	tes (gpm):	6	Segment 1	10	12	16	20	25
Static Head of Discharge Line , H _{x2} (ft): Suction Lift of Liquid to be Pumped, H _{x17} (ft): Static Head of Liquid to be Pumped, H _{x17} (ft): Stafety Factor: Vapor Pressure (ft. w.c.): Fluid density, p (fb/ft ²): Fluid Kinematic Viscosity, ŋ (ft ² /s): Include Exit Headloss at Discharge, H _x : otes:	5.0% 0.411 62.41 1.41E-05 Yes	Flow Ra	tes (gpm): (gpd): (McO)-	6 8,400	Segment 1	10 14,000	12 16,800	16 22,400	20 28,000	25 35,000
Static Head of Discharge Line , H ₄₂ (ft): Suction Lift of Liquid to be Pumped, H ₄₁ (ft): Static Head of Liquid to be Pumped, H ₄₁ (ft): Safety Factor: Vapor Pressure (ft, w.c.): Fluid density, p (lb/ft ³): Fluid Kinematic Viscosity, ŋ (ft ² /s): Include Exit Headloss at Discharge, H ₄ : otes:	5.0% 0.411 62.41 1.41E-05 Yes	Flow Ra	tes (gpm): (gpd): d (frame):	6 8,400 0.01	8 11,200 0.01	10 14,000 0.01	12 16,800 0.02	16 22,400 0.02	20 28,000 0.03	25 35,000 0.04

Pressure Loss			Pre		
Equipment Tag	(ft w.c.)	Equipment Tag		(ft w.c.)	
	1	1			
100 (100 (100 (100 (100 (100 (100 (100	A sum of		(Conservation)	10100 B	according to the second second second second second second second second second second second second second se
Subtotol	0.0		Subtotal:	0.0	Total Headloss (ft w.c.): 0.0

ARCADIS	Design & Consultancy	PRDJECT: BASE Above Grade System Sump Hydraulics	BY: S. Hannula	DATE: 10-May-2022
	for natural and	JOB NO.: 30005248	CHKD. BY: M. Samp	DATE: 10-May-2022
	Dust assets	SUBJECT: Segment 16	APPVD. BY:	DATE:

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	2	Standard Elbow, 45*			0.3	1	0.3	1	
Pipe Inner Diameter, ID (in):	1.917						0		
Pipe Length, L (ft):	275.00						0	1	
Pipe Material:	SDR 11 - HDPE						0	1	
Pipe Type:	Smooth Pipes (PE and other			-		1	0		
1, 22, 656.2	thermoplastics)	1			1		0	1	
Roughness, e (ft):	0.000005						0	1	
e / ID:	3.12989E-05	3				Total K:	0.3	1	
S07897	1900000000 D							·	
		Segment Flowrate (gpm):	6	8	10	12	16	20	25
		Eqn. (1) - Velocity, v (ft/s):	0.67	0.89	1.11	1.33	1.78	2.22	2.78
		Eqn. (2) - Reynolds Number, Re:	7.59E+03	1.01E+04	1.268+04	1.51E+04	2.02E+04	2.52E+04	3.15E+04
		Pipe Friction Factor, 1:	0.0333	0.0309	0.0291	0.0278	0.0259	0.0246	0.0233
	Eqn. (3) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0.0015	0.0024	0.0035	0.0048	800.0	0.0118	0.0175
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	1.44	1.55	1.65	1.72	1.85	1.95	2.06
	Eqn. (4b) Equiva	lent Length of Pipe Segment, Les (ft):	276.44	276.55	276.65	276.72	276.85	276.95	277.06
	Eco. (5) P	ine Segment Headloss, H. (ft w.c.):	0.41	0.66	0.97	1.33	2.21	3.27	4.85

	PROJECT: BASF Above Grade System Sump Hydraulics JOB NO.: 30005248 SUBJECT: Segment 16		BY: S. Hannula CHKD. BY: M. Samp APPVD. BY:			DATE: DATE: DATE:	10-May-202 10-May-202	2
·	Discharge Piping Headloss, H _{ptithichargel} (ft w.c.):	0.41	0.66	0.97	1.33	2.21	3.27	4.85
	Exit Velocity at Liquid Discharge, v (ft/s):	0.67	0.89	1.11	1.33	1.78	2.22	2.78
	Eqn. (7) Exit Loss at Liquid Discharge, H, (ft w.c.):	0.01	0.01	0.02	0.03	0.05	0.08	0.12
	Eqn. (8) Total Dynamic Head, TDH (ft w.c.):	0.42	0.67	0.99	1.36	2.26	3.35	4.97
	esign System TDH with 5.0% Factor of Safety, (ft w.c.):	0.44	0.70	1.04	1.43	2.37	3.52	5.22

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

Eqn. (5): $H_P = H \cdot L_{eq}$

Eqn. (6): $NSPH_a = 2.31 \cdot (P_{sys1} - P_{pap}) - H_{p(suction)} \pm H_{st1}$

Eqn. (7): $H_{v} = \frac{v^{2}}{2 \cdot g} = \frac{v^{2}}{2 \cdot (32.174)}$ Eqn. (8):

Eqn. (8): Suction Lift: $TDH = 2.31 \cdot (P_{eye2} - P_{eye1}) + H_{st2} + Inline Equipment Headloss + H_p(dueharpe) + H_e + H_p(success) + H_{st1} + Hooded Suction:$ $TDH = 2.31 \cdot (P_{eye2} - P_{eye1}) + H_{st2} + Inline Equipment Headloss + H_p(dueharpe) + H_e + H_p(success) - H_{st1}$

PROJECT: BASF Above Grade System Sump Hydraulics JOB NO.: 30005248 SUBJECT: Segment 17		BY: S. Hannula CHKD. BY: M. Samp APPVD. BY:			DATE: DATE: DATE:	10-May-202 10-May-202	2
 Discharge Piping Headloss, H _{pothetherpe} (ft w.c.):	0.01	0.01	0.01	0.03	0.04	0.07	0.10
Eqn. (7) Exit Loss at Liquid Discharge, H, (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.07
 Eqn. (8) Total Dynamic Head, TDH (ft w.c.): Design System TDH with 5.0% Factor of Safety, (ft w.c.):	6.21	6.21	6.21 6.52	6.23 6.54	6.24 6.55	6.27 6.58	6.31 6.63

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

Eqn. (5): $H_P = H \cdot L_{eq}$

Eqn. (6): $NSPH_{a} = 2.31 \cdot (P_{sys1} - P_{pap}) - H_{p(suction)} \pm H_{st1}$

Eqn. (7): $H_{\nu} = \frac{\nu^2}{2 \cdot g} = \frac{\nu^2}{2 \cdot (32.174)}$ Eqn. (8):

Suction Lift:

 $TDH = 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{sr2} + Inline Equipment Headloss + H_p(discharge) + H_p + H_p(surrien) + H_{sr1} + Flooded Suction:$

ARCADIS	Design & Consultancy	PROJECT: BASE Above Grade System Sump Hydraulics	BY: S. Hannula	DATE: 10-May-2022
	for natural and	JOB NO.: 30005248	CHKD. BY: M. Samp	DATE: 10-May-2022
	June answes	SUBJECT: Segment 17	APPVD. BY:	DATE:

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	2	Ball Valve			0.06	1	0.06	1	
Pipe Inner Diameter, ID (in):	2.067	Stop Check Valve, flow th	nu		7.5	1	7.5	1	
Pipe Length, L (ft):	25.00	Standard Elbow, 90"			0.57	1	0.57	1	
Pipe Material:	SCH 40 - Steel						0	1	
Pipe Type:	Coated Steel	Standard Tee, thru branc	h	-	1.14	1	1.14		
1, 32 / 65 (1		0	1	
Roughness, e (ft):	0.00018						0	1	
e / iD:	0.001044993					Total K:	9.3	1	
SOLEY					. —			č	
		Segment Flowrate (gpm):	2	2	2	3	4	5	6
		Eqn. (1) - Velocity, v (ft/s):	0.19	0.19	0.19	0.29	0.38	0.48	0.57
		Eqn. (2) - Reynolds Number, Re:	2.32E+03	2.32E+03	2.32E+03	3.54£+03	4.64£+03	5.86£+03	6.968+03
		Pipe Friction Factor, 1:	0.048	0.048	0.048	0.0424	0.0393	0.037	0.0354
	Eqn. (3) - Head L	oss Across Pipe Segment, H (ft w.c./ft):	0.0002	0.0002	0.0002	0.0003	0.0005	0.0008	0.001
	Eqn.	(4a) - Fittings Equivalent Length, L _F (ft):	33.27	33.27	33.27	37.66	40.63	43.16	45.11
	Eqn. (4b) Equ	valent Length of Pipe Segment, Les (ft):	58.27	58.27	58.27	62.66	65.63	68.16	70.11
		Bin B	0.01	0.01	0.01	0.03	0.02	0.04	0.07

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	2					C	0	1	
Pipe Inner Diameter, ID (in):	1.917	Standard Elbow, 45*			0.3	1	0.3		
Pipe Length, L (ft):	12.50	Standard Tee, thru branc	h.		1.14	-1-	1.14	1	
Pipe Material	SDR 11 - HDPE						0		
Pipe Type:	Smooth Pipes (PE and other	-					0		
201000 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -	thermoplastics)					()	0		
Roughness, e (ft):	0.000005						0		
e/ID:	3.12989E-05					Total K:	1.4	1	
	1					(
		Segment Flowrate (gpm):	2	2	2	3	4	5	6
		Eqn. (1) - Velocity, v (ft/s):	0.22	0.22	0.22	0.33	0.44	0.56	0.67
		Egn. (2) - Reynolds Number, Re:	2.49E+03	2.49€+03	2.49€+03	3.74E+03	4.99E+03	6.34E+03	7.59E+03
		Pipe Friction Factor, 1:	0.0461	0.0461	0.0461	0.0407	0.0375	0.035	0.0333
	Eqn. (3) - Head Los	is Across Pipe Segment, H (ft w.c./ft):	0.0002	0.0002	0.0002	0.0004	0.0007	0.0011	0.0015
	Egn. (4	a) - Fittings Equivalent Length, Lr (ft):	4.99	4.99	4.99	5.65	6.13	6.57	6.91
	Egn. (4b) Equiva	alent Length of Pipe Segment, Les (ft):	17.49	17.49	17.49	18.15	18.63	19.07	19.41
	Eco. (5) P	ine Segment Headloss, H. (ft w.c.):	0.00	0.00	0.00	0.01	0.01	0.02	0.03

Discharge Line Segment No. 1 Headlo

	PROJECT: BASF Above Grade System Sump Hydraulics JOB NO.: 30005248 SIBUECT: Seement 12	BY: S. Hannula CHKD. BY: M. Samp	DATE: 10-May-2022 DATE: 10-May-2022
Pume ID: Seement 17	Elanded Surting		

and because we are	
Water	Fluid:
Groundwater	Fluid Description: Enter Fluid Density if Other than Water (lb/lt ³):
	Enter Fluid Viscosity if Other than Water (cp):
1.5	Minimum Flow Rate (ppm):
3	Design Flow Rate (gpm):
6	Maximum Flow Rate (gpm):
14.7	Pressure of System to be Pumped, Post (psia):
14.7	Pressure of System Discharged, Paul (psia):
50	Fluid Temperature (*F):
-12	Elevation of Fluid to be Pumped (ft):
-15	Pump Impeller Centerline Elevation (ft):
-7	Discharge Elevation (ft):
8	Static Head of Discharge Line , H _{st2} (ft):
	Suction Lift of Liquid to be Pumped, Hatt (ft):
3	Static Head of Liquid to be Pumped, H _{stf} (ft):
5.0%	Safety Factor:
0.411	Vapor Pressure (ft. w.c.):
62.41	Fluid density, p (lb/ft ²):
1.41E-05	Fluid Kinematic Viscosity, ŋ (ft ² /s):
	Include Exit Headloss at Discharge, H.:

In-Line	Equipment Headloss:	
---------	---------------------	--

	Pressure Loss	14015 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1		Pressure Loss
Equipment Tag	(ft w.c.)	Equipment Tag		(ft w.c.)
Flowmeter	1.2			1
	R and S		- marine and	Contraction of
Subtotal	1.2		Subtotal:	0.0

Optional - Pump Head (ft w.c.): Optional - NSPH Required (ft w.c.):

	Contolltavby	PROJECT: BASF Above Grade System Sum	p Hydraulics	BY:	S. Hannula	_	DATE:	10-May-202	2
	ts	SUBJECT: Seement 18		ADDUD BY-	M. Samp		DATE	10-May-202	4
		Sobreat, Septient 18		APP 10.01.	_		UNITE.		
Pump ID:	Segment 18	Flooded Suction:				P.	= tes		
Fluid:	Water		[7				¥	
Fluid Description: Enter Fluid Density if Other than Water (lb/ft ³):	Groundwater		P _{uvit} =	-					
Enter Fluid Viscosity if Other than Water (cp): Enter Vapor Pressure if Other than Water (psi):				1		L -		-	
Minimum Flow Rate (gpm):	7.7			1.41	. 13	442			
Design Flow Rate (gpm):	15.4			1.0		• ***			
Maximum Flow Rate (gpm):	30.8			20	1				
Pressure of System to be Pumped, P _{syst} (psia):	14.7			Seeme	ont 18				
Pressure of System Discharged, Pasta (psia):	14.7	Suction Lift:							
Fluid Temperature (*F):	50					p		1.1	
Elevation of Fluid to be Pumped (ft):	0	×122-012-0070			-		AL 7	1	
Pump Impeller Centerline Elevation (ft):	0		-					4	
Discharge Elevation (ft):	0		0	100.0		1. Li		_	
Static Head of Discharge Line , H _{st2} (ft):	0		Pays1 =		- I'	40.0			
Suction Lift of Liquid to be Pumped, Herr (ft):				- (*)	<u>}</u>	•			
Static Head of Liquid to be Pumped, H _{stf} (ft):				Segment 1	2				
Safety Factor:	5.0%								
	A		1 1	1					
Vapor Pressure (ft. w.c.):	0.411								
Vapor Pressure (ft. w.c.): Fluid density, p (/b/ft ³):	62.41		U	1					
Vapor Pressure (ft. w.c.): Fluid density, ρ (lb/ft ²): Fluid Kinematic Viscosity, η (lt ² /s):	62.41 1.41E-05		U						
Vapor Pressure (ft. w.c.): Fluid density, p (lb/ft ³): Fluid Kinematic Viscosity, ŋ (ft ² /s): Include Exit Headloss at Discharge, H _e :	62.41 1.41E-05 Yes								
Vapor Pressure (ft. w.c.): Fluid density, p (lb/tt ³): Fluid Kinematic Viscosity, ŋ (lt ² /s): Include Exit Headloss at Discharge, H _e : otes:	62.41 62.41 1.41E-05 Yes	Flow Rates ([pm): 8	10	12	15	20	25	31
Vapor Pressure (ft. w.c.): Fluid density, p (lb/ft ²): Fluid Kinematic Viscosity, ŋ (ft ² /s): Include Exit Headloss at Discharge, H _e : otes:	62.41 1.41E-05 Yes	Flow Rates (pm): 8 gpd): 11,200	10	12 16,800	15 21,000	20 28,000	25 35,000	31 43,400
Vapor Pressure (ft. w.c.): Fluid density, p (lb/ft ³): Fluid Kinematic Viscosity, ŋ (ft ⁷ /s): Include Exit Headloss at Discharge, H _e : otes:	62.41 1.41E-05 Yes	Flow Rates (gpm): 8 gpd): 11,200 (GD): 0.01	10 14,000 0.01	12 16,800 0.02	15 21,000 0.02	20 28,000 0.03	25 35,000 0.04	31 43,40 0.04
Vapor Pressure (ft. w.c.): Fluid density, p (fb/ft ³): Fluid Kinematic Viscosity, ŋ (ft ² /s): Include Exit Headloss at Discharge, H _e otes:	62.41 1.41E-05 Yes	Flow Rates ((M Optional - Pump Head (ft	gpm): 8 (gpd): 11,200 1GD): 0.01 w.c.):	10 14,000 0.01	12 16,800 0.02	15 21,000 0.02	20 28,000 0.03	25 35,000 0.04	31 43,40 0.04

Pressure Loss
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(ft w.c.)
Equipment Tag
(f

ARCADIS	Design & Consultavely	PROJECT: BASE Above Grade System Sump Hydraulics	BY: S. Hannula	DATE: 10-May-2022
	for natural and	JOB NO.: 30005248	CHKD. BY: M. Samp	DATE: 10-May-2022
	and ensets	SUBJECT: Segment 18	APPVD. BY:	DATE:

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	2				1		0		
Pipe Inner Diameter, ID (in):	1.917					8 B	0		
Pipe Length, L (ft):	450.00						0		
Pipe Material:	SDR 11 - HDPE	-					0		
Pipe Type:	Smooth Pipes (PE and other					1	0		
14 (20) A (20)	thermoplastics)	1			1	1	0		
Roughness, e (ft):	0.000005						0	1	
e / ID:	3.12989E-05	535			1	Total K:	0.0		
Soleda	1999/999/1997								
		Segment Flowrate (gpm):	8	10	12	15	20	25	31
		Eqn. (1) - Velocity, v (ft/s):	0.89	1.11	1.33	1.67	2.22	2.78	3.45
		Eqn. (2) - Reynolds Number, Re:	1.01E+04	1.268+04	1.51E+04	1.89€+04	2.528+04	3.15£+04	3.91£+04
		Pipe Friction Factor, 1:	0.0309	0.0291	0.0278	0.0263	0.0246	0.0233	0.0222
	Eqn. (3) - Head Los	ss Across Pipe Segment, H (ft w.c./ft):	0.0024	0.0035	0.0048	0.0071	0.0118	0.0175	0.0257
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiv	alent Length of Pipe Segment, Les (ft):	450.00	450.00	450.00	450.00	450.00	450.00	450.00
	Eco. (5) P	Pine Segment Headloss, H. (ft w.c.):	1.08	1.58	2.16	3.20	5.31	7.88	11.57

	PROJECT: BASE Above Grade System Sump Hydraulics JOB NO.: 30005248 SUBJECT: Segment 18		BY: CHKD. BY: APPVD. BY:	BY: S. Hannula DATE BY: M. Samp DATE BY: DATE			10-May-202 10-May-202	2
	Discharge Piping Headloss, Heithickargel (ft w.c.):	1.08	1.58	2.16	3.20	5.31	7.88	11.57
	Exit Velocity at Liquid Discharge, v (ft/s):	0.89	1.11	1.33	1.67	2.22	2.78	3.45
	Eqn. (7) Exit Loss at Liquid Discharge, H, (ft w.c.):	0.01	0.02	0.03	0.04	0.08	0.12	0.19
	Eqn. (8) Total Dynamic Head, TDH (ft w.c.):	1.09	1.60	2.19	3.24	5.39	8.00	11.76
D	esign System TDH with 5.0% Factor of Safety, (ft w.c.):	1.14	1.68	2.30	3.40	5.66	8.40	12.35

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

Eqn. (5): $H_P = H \cdot L_{eq}$

Eqn. (6): $NSPH_a = 2.31 \cdot (P_{sys1} - P_{pap}) - H_{p(suction)} \pm H_{st1}$

Eqn. (8): Suction Lift: $TDH = 2.31 \cdot (P_{eyy2} - P_{eyy1}) + H_{st2} + Inline Equipment Neadloss + H_p(dueharpe) + H_p + H_p(sucrum) + H_{st1} + Flooded Suction:$ $TDH = 2.31 \cdot (P_{eyy2} - P_{eyy1}) + H_{st2} + Inline Equipment Headloss + H_p(dueharpe) + H_p + H_p(sucrum) - H_{st1} + Inline Equipment Headloss + H_p(dueharpe) + H_p + H_p(sucrum) - H_{st1} + Inline Equipment Headloss + H_p(sucrum) + H_p + H_p(sucrum) + H_{st2} + Inline Equipment Headloss + H_p(sucrum) + H_p + H_p(sucrum) + H_{st2} + Inline Equipment Headloss + H_p(sucrum) + H_p(sucrum) + H_{st2} + Inline Equipment Headloss + H_p(sucrum) + H_p(sucrum) + H_{st2} + Inline Equipment Headloss + H_p(sucrum) + H_p(sucrum) + H_{st2} + Inline Equipment Headloss + H_p(sucrum) + H_p(sucrum) + H_{st2} + Inline Equipment Headloss + H_p(sucrum) + H_p(sucrum) + H_p(sucrum) + H_{st3} + Inline Equipment Headloss + H_p(sucrum) + H_p(sucrum) + H_{st3} + Inline Equipment Headloss + H_p(sucrum) + H_p(sucrum) + H_{st3} + Inline Equipment Headloss + H_p(sucrum) + H_{st3} + Inline Equipment + H_{st3} + Inline Equipment + H_p(sucrum) + H_{st3} + Inline Equipment + H_p(sucrum) + H_{st3} + Inline Equipment + H_p(sucrum) + H_{st3} + Inline Equipment + H_p(sucrum) + H_{st3} + Inline + H_p(sucrum) + H_{st3} + Inline + H_p(sucrum) + H_{st3} + Inline + H_p(sucrum) + H_{st3} + Inline + H_p(sucrum) + H_{st3} + Inline + H_p(sucrum) + H_p(sucrum$

ARCADIS Design & Consumery Mail results	PROJECT: BASE Above Grade System Sump Hydraulics JOB NO.: 30005248 SUBJECT: Segment 19		BY: CHKD. BY: APPVD. BY:	BY: S. Hannula DAT CHKD. BY: M. Samp DAT MPPVD. BY: DAT			10-May-202 10-May-202	2
, <mark></mark>	Discharge Piping Headloss, H _{ptBichargel} (ft w.c.):	0.01	0.01	0.01	0.03	0.04	0.07	0.10
	Exit Velocity at Liquid Discharge, v (ft/s): Eqn. (7) Exit Loss at Liquid Discharge, H, (ft w.c.):	0.19	0.19	0.19	0.33	0.44	0.56	0.67
	Eqn. (8) Total Dynamic Head, TDH (ft w.c.): Design System TDH with 5.0% Factor of Safety, (ft w.c.):	6.21 6.52	6.21 6.52	6.21 6.52	6.23 6.54	6.24 6.55	6.27 6.58	6.31 6.63

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

Eqn. (5): $H_P = H \cdot L_{eq}$

Eqn. (6): $NSPH_{a} = 2.31 \cdot (P_{sys1} - P_{pap}) - H_{p(suction)} \pm H_{st1}$

Eqn. (7): $H_{\nu} = \frac{\nu^2}{2 \cdot g} = \frac{\nu^2}{2 \cdot (32.174)}$ Eqn. (8):

Suction Lift:

 $TDH = 2.31 \cdot \left(P_{sys2} - P_{sys1}\right) + H_{sr2} + Inline Equipment Headloss + H_p(discharge) + H_p + H_p(succes) + H_{sr1} + Flooded Suction:$

	Design & Consultance	PROJECT: BASE Above Grade System Sump Hydraulics	BY: S. Hannula	DATE: 10-May-2022
ARCADIS	for matural and	JOB NO.: 30005248	CHKD, BY: M. Samp	DATE: 10-May-2022
, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	STATE STREET	SUBJECT: Segment 19	APPVD. BY:	DATE:

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	2	Ball Valve			0.06	-1-	0.06		
Pipe Inner Diameter, ID (in):	2.067	Stop Check Valve, flow th	iru		7.5	1	7.5		
Pipe Length, L (ft):	25.00	Standard Elbow, 90"			0.57	1	0.57]	
Pipe Material:	SCH 40 - Steel	-					0	1	
Pipe Type:	Coated Steel	Standard Tee, thru branc	h	-	1.14	1	1.14		
11 TO 10 TO 10			300		1 10 100 1	1	0	1	
Roughness, e (ft):	0.00018						0	1	
e / ID:	0.001044993	1 S.F.				Total K:	9.3		
3/45/0		5			i			· · · · · · · · · · · · · · · · · · ·	
		Segment Flowrate (gpm):	2	2	2	3	4	5	6
		Eqn. (1) - Velocity, v (ft/s):	0.19	0.19	0.19	0.29	0.38	0.48	0.57
		Eqn. (2) - Reynolds Number, Re:	2.32E+03	2.32E+03	2.32E+03	3.548+03	4.64£+03	5.86£+03	6.968+0
		Pipe Friction Factor, 1:	0.048	0.048	0.048	0.0424	0.0393	0.037	0.0354
	Eqn. (3) - Head L	oss Across Pipe Segment, H (ft w.c./ft):	0.0002	0.0002	0.0002	0.0003	0.0005	0.0008	0.001
	Eqn.	(4a) - Fittings Equivalent Length, L _F (ft):	33.27	33.27	33.27	37.66	40.63	43.16	45.11
	Eqn. (4b) Equi	valent Length of Pipe Segment, Leg (ft):	58.27	58.27	58.27	62.66	65.63	68.16	70.11
	Ean. (5)	Pipe Segment Headloss, H. (ft w.c.):	0.01	0.01	0.01	0.02	0.03	0.05	0.07

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	2						0	1	
Pipe Inner Diameter, ID (in):	1.917	Standard Elbow, 45*			0.3	1	0.3	1	
Pipe Length, L (ft):	12.50	Standard Tee, thru branc	h	-	1.14	-1-	1.14	1	
Pipe Material	SDR 11 - HDPE						0		
Pipe Type:	Smooth Pipes (PE and other	-					0		
104460 - 104460 - 104460 - 104460 - 104460 - 104460 - 104460 - 104460 - 104460 - 104460 - 104460 - 104460 - 104	thermoplastics)				1	()	0		
Roughness, e (ft):	0.000005	1			()		0		
e/ID:	3.12989E-05					Total K:	1.4	1	
	10					(
		Segment Flowrate (gpm):	2	2	2	3	4	5	6
		Eqn. (1) - Velocity, v (ft/s):	0.22	0.22	0.22	0.33	0.44	0.56	0.67
		Eqn. (2) - Reynolds Number, Re:	2.49E+03	2.49E+03	2.49€+03	3.74E+03	4.99E+03	6.34E+03	7.59E+03
		Pipe Friction Factor, 1:	0.0461	0.0461	0.0461	0.0407	0.0375	0.035	0.0333
	Eqn. (3) - Head Loss	s Across Pipe Segment, H (ft w.c./ft):	0.0002	0.0002	0.0002	0.0004	0.0007	0.0011	0.0015
	Eqn. (4a	i) - Fittings Equivalent Length, L _F (ft):	4.99	4.99	4.99	5.65	6.13	6.57	6.91
	Egn. (4b) Equival	lent Length of Pipe Segment, Leg (ft):	17.49	17.49	17.49	18.15	18.63	19.07	19.41
	Ean. (5) Pi	pe Segment Headloss, H., (ft w.c.):	0.00	0.00	0.00	0.01	0.01	0.02	0.03

	Design & Consultance	PROJECT: BASF Above Grade System Sump Hydrau	alics BY: S. Hannula	DATE: 10-May-2022
ARCADIS	for natural and	JOB NO.: 30005248	CHKD, BY: M. Samp	DATE: 10-May-2022
	STATE STREET	SUBJECT: Segment 19	APPVD. BY:	DATE:

Segment 19	Pump ID:
Water	Fluid:
Groundwater	Fluid Description: Enter Fluid Density if Other than Water (lb/ft ³):
	Enter Fluid Viscosity if Other than Water (cp): Enter Vapor Pressure if Other than Water (psi):
1.5	Minimum Flow Rate (gpm):
3	Design Flow Rate (gpm): Maximum Flow Rate (gpm):
14.7	Pressure of System to be Pumped, P _{sot} (psia):
14.7	Pressure of System Discharged, Paul (psia):
50	Fluid Temperature (*F):
-12	Elevation of Fluid to be Pumped (ft):
-15	Pump Impeller Centerline Elevation (ft):
-7	Discharge Elevation (ft):
8	Static Head of Discharge Line , Hatz (ft):
	Suction Lift of Liquid to be Pumped, Hatt (ft):
3	Static Head of Liquid to be Pumped, Hart (ft):
5.0%	Safety Factor:
0.411	Vapor Pressure (ft. w.c.):
62.41	Fluid density, p (lb/ft ³):
1.41E-05	Fluid Kinematic Viscosity, ŋ (ft ² /s):
	Include Evit Headloss at Discharge, H :

In-Line	Equipment	Headloss:
---------	-----------	-----------

2.50.00.000	Pressure Loss	147752 (14 House House)		Pressure Loss	
Equipment Tag	(ft w.c.)	Equipment Tag		(ft w.c.)	
Flowmeter	1.2	1		-	
	and and a			and the second	energians on the state ones of
Subtota	1.2		Subtotal:	0.0	Total Headloss (ft w.c.): 1.2

Optional - Pump Head (ft w.c.): Optional - NSPH Required (ft w.c.):

ARCADIS	concelliancy Land S	PROJECT: BASF Above Grade System Sump H JOB NO.: 30005248 SUBJECT: Segment 20	draulics	BY: CHKD, BY: APPVD, BY:	S. Hannula M. Samp	_	DATE: DATE: DATE:	10-May-202 10-May-202	2
Pump ID: Fluid Fluid Description: Enter Fluid Density if Other than Water (ps): Enter Fluid Viscosity if Other than Water (ps): Enter Vapor Pressure if Other than Water (ps): Mainmum Flow Rate (gpm): Design Flow Rate (gpm): Maximum Flow Rate (gpm): Maximum Flow Rate (gpm): Pressure of System to be Pumped, P _{and} (psia): Pressure of System Discharged, P _{and} (psia): Fluid Temperature ('F): Elevation of Fluid to be Pumped (ft): Discharge Elevation (ft): Discharge Elevation (ft): Static Head of Discharge Line , H _{ad} (ft): Static Head of Discharge Line , H _{ad} (ft): Static Head of Liquid to be Pumped, H _{att} (ft): Static Head (ft): Static Head (ft): Static Head (ft): Static Head (ft): Static Head (ft): Static Head (ft): Static Head (ft): Static Head (ft): Static Head (ft): Static Head (ft): Static Head (ft): Static Head (ft): Static Head (ft): Static Head (ft): Static Head (ft): Static Head (ft): Static Head (ft): Static Head (ft): Static Head (ft): Static	Segment 20 Water Groundwater 9,2 18,4 36,8 14,7 14,7 14,7 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Flooded Suction:	11 =	H _{et} =	ent 20	P ₄ ↓ ↓ ↓ ↓ ↓	rt = al =	×	
Fluid Kinematic Viscosity, n (ft'/s): Include Evit Headloss at Discharge H	1.41E-05								
and the state of t	199	Flow Rates (gpn	9	12	15	18	24	30	37
lotes:			13 600	16.800	21,000	25.200	33,600	43.000	
iotes:		(gp)	12,000					42,000	51,800
lotes:		(MGC	0.01	0.02	0.02	0.03	0.03	42,000	\$1,800 0.05

	Pressure Loss		Pressure Loss	
Equipment Tag	(ft w.c.)	Equipment Tag	(ft w.c.)	
		_		
1941	and the second		a mun ditermenter	2010/00/00/10/2010/00/10/2010/00/10/2010/00/
Su	btotol: 0.0		Subtotol: 0.0	Total Headloss (ft w.c.): 0.0

	Design & Consultance	PROJECT: BASF Above Grade System	Sump Hydraulics BY: 5	Hannula DATE	10-May-2022
ARCADIS	for matural and	JOB NO.: 30005248	CHKD, BY: N	1. Samp DATE:	10-May-2022
	and address	SUBJECT: Segment 20	APPVD. BY:	DATE	

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	2	Standard Elbow, 45*			0.3	1	0.3	1	
Pipe Inner Diameter, ID (in):	1.917						0		
Pipe Length, L (ft):	450.00						0	1	
Pipe Material:	SDR 11 - HDPE	-					0	1	
Pipe Type:	Smooth Pipes (PE and other			-		1 1	0		
10 (20) (20) (20)	thermoplastics)				1	-	0	1	
Roughness, e (ft):	0.000005						0	1	
e / ID:	3.12989E-05	3				Total K:	0.3	1	
50/15/21	V-1200221073 15							č	
		Segment Flowrate (gpm):	9	12	15	18	24	30	37
		Eqn. (1) - Velocity, v (ft/s):	1.00	1.33	1.67	2.00	2.67	3.33	4.11
		Eqn. (2) - Reynolds Number, Re:	1.13£+04	1.51E+04	1.89€+04	2.27E+04	3.03E+04	3.77E+04	4.668+04
		Pipe Friction Factor, 1:	0.0299	0.0278	0.0263	0.0252	0.0235	0.0224	0.0213
	Eqn. (3) - Head Los	s Across Pipe Segment, H (ft w.c./ft):	0.0029	0.0048	0.0071	0.0098	0.0163	0.0242	0.035
	Eqn. (4a	a) - Fittings Equivalent Length, L _F (ft):	1.60	1.72	1.82	1.90	2.04	2.14	2.25
	Eqn. (4b) Equiva	lent Length of Pipe Segment, Les (ft):	451.60	451.72	451.82	451.90	452.04	452.14	452.25
	Eon. (5) P	ine Segment Headloss, H. (ft w.c.):	1.31	2.17	3.21	4.43	7.37	10.94	15.83

PROJECT: BASF Above Grade System Sump Hydraulics JOB NO.: 30005248 SUBJECT: Segment 20		BY: S. Hannula CHKD. BY: M. Samp APPVD. BY:			DATE: DATE: DATE:	10-May-2022 10-May-2022	
 Discharge Piping Headloss, H _{eldischarge} (ft w.c.):	1.31	2.17	3.21	4.43	7.37	10.94	15.83
Exit Velocity at Liquid Discharge, v (ft/s):	1.00	1.33	1.67	2.00	2.67	3.33	4.11
Eqn. (7) Exit Loss at Liquid Discharge, H, (ft w.c.):	0.02	0.03	0.04	0.06	0.11	0.17	0.26
Eqn. (8) Total Dynamic Head, TDH (ft w.c.):	1.33	2.20	3.25	4.49	7.48	11.11	16.09
 esign System TDH with 5.0% Factor of Safety, (ft w.c.):	1.40	2.31	3.41	4.71	7.85	11.67	16.89

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

Eqn. (5): $H_P = H \cdot L_{eq}$

Eqn. (6): $NSPH_a = 2.31 \cdot (P_{sys1} - P_{pap}) - H_{p(suction)} \pm H_{st1}$

Suction Lift:

 $TDH = 2.31 \cdot \left(P_{tys2} - P_{sys1}\right) + H_{st2} + Inline Equipment Headloss + H_p(disenarge) + H_e + H_p(succes) + H_{st1} + Flooded Suction:$

 $TDH = 2.31 \cdot \left(P_{sys2} - P_{sys1}\right) + H_{sr2} + Inline Equipment Headloss + H_p(sischarge) + H_p + H_p(succion) - H_{sr1} + H_p(succion) - H_{sr2} + H_p(succion) - H_{s$

	PROJECT: BASF Above Grade System Sump Hydraulics JOB NO.: 30005248 SUBJECT: Segment 21		BY: S. Hannula CHKD. BY: M. Samp APPVD. BY:			DATE: DATE: DATE:	10-May-202 10-May-202	2
·	Discharge Piping Headloss, H _{ptetecharges} (ft w.c.):	0.01	0.01	0.01	0.03	0.04	0.07	0.10
	Exit Velocity at Liquid Discharge, v (ft/s):	0.19	0.19	0.19	0.33	0.44	0.56	0.67
	Eqn. (7) Exit Loss at Liquid Discharge, H, (ft w.c.):	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	Eqn. (8) Total Dynamic Head, TDH (ft w.c.):	6.21	6.21	6.21	6.23	6.24	6.27	6.31
	esign System TDH with 5.0% Factor of Safety, (ft w.c.):	6.52	6.52	6.52	6.54	6.55	6.58	6.63

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

Eqn. (5): $H_P = H \cdot L_{eq}$

Eqn. (6): $NSPH_{a} = 2.31 \cdot (P_{sys1} - P_{pap}) - H_{p(suction)} \pm H_{st1}$

Eqn. (7): $H_{\nu} = \frac{\nu^2}{2 \cdot g} = \frac{\nu^2}{2 \cdot (32.174)}$ Eqn. (8):

Suction Lift:

 $TDH = 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{sr2} + Inline Equipment Headloss + H_p(discharge) + H_p + H_p(surrien) + H_{sr1} + Flooded Suction:$

G A DCA DIC	Design & Consultance	PROJECT: BASE Above Grade System Sump Hydraulics	BY: S. Hannula	DATE: 10-May-2022
ARCADIS	for matural and	JOB NO.: 30005248	CHKD, BY: M. Samp	DATE: 10-May-2022
	SUI	SUBJECT: Segment 21	APPVD. BY:	DATE

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K	_		
Nominal Pipe Diameter (in):	2	Ball Valve			0.06	1	0.06	1		
Pipe Inner Diameter, ID (in):	2.067	Stop Check Valve, flow th	ากม		7.5	1	7.5	1		
Pipe Length, L (ft):	25.00	Standard Elbow, 90"			0.57	1	0.57	1		
Pipe Material:	SCH 40 - Steel						0	1		
Pipe Type:	Coated Steel	Standard Tee, thru brand	h		1.14	1	1.14			
17 TE (17 56 - 17			200 - C		2000		0	1		
Roughness, e (ft):	0.00018						0	1		
e / ID:	0.001044993				1	Total K:	9.3	1		
S0492							2.222.2	· · · · · ·		
		Segment Flowrate (gpm):	2	2	2	3	4	5	6	ĺ
		Eqn. (1) - Velocity, v (ft/s):	0.19	0.19	0.19	0.29	0.38	0.48	0.57	ĺ
		Eqn. (2) - Reynolds Number, Re:	2.32E+03	2.32E+03	2.32E+03	3.548+03	4.64£+03	5.86£+03	6.968+03	l
		Pipe Friction Factor, 1:	0.048	0.048	0.048	0.0424	0.0393	0.037	0.0354	
	Eqn. (3) - Head	Loss Across Pipe Segment, H (ft w.c./ft):	0.0002	0.0002	0.0002	0.0003	0.0005	0.0008	0.001	
	Eqr	n. (4a) - Fittings Equivalent Length, L _F (ft):	33.27	33.27	33.27	37.66	40.63	43.16	45.11	ĺ
	Eqn. (4b) Eq	uivalent Length of Pipe Segment, Leo (ft):	58.27	58.27	58.27	62.66	65.63	68.16	70.11	ĺ

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	2						0	1	
Pipe Inner Diameter, ID (in):	1.917	Standard Elbow, 45*			0.3	1	0.3	1	
Pipe Length, L (ft):	12.50	Standard Tee, thru brand	h		1.14	-1-	1.14	1	
Pipe Material	SDR 11 - HDPE						0		
Pipe Type:	Smooth Pipes (PE and other						0	1	
10.5400 m	thermoplastics)	5 m				(0		
Roughness, e (ft):	0.000005	2			ii	i	0		
e/ID:	3.12989E-05					Total K:	1.4	1	
	15					6			
		Segment Flowrate (gpm):	2	2	2	3	4	5	6
		Eqn. (1) - Velocity, v (ft/s):	0.22	0.22	0.22	0.33	0.44	0.56	0.67
		Egn. (2) - Reynolds Number, Re:	2.49E+03	2.49€+03	2.49€+03	3.74E+03	4.99€+03	6.34E+03	7.59€+03
		Pipe Friction Factor, 1:	0.0461	0.0461	0.0461	0.0407	0.0375	0.035	0.0333
	Egn. (3) - Head Loss	Across Pipe Segment, H (ft w.c./ft):	0.0002	0.0002	0.0002	0.0004	0.0007	0.0011	0.0015
	Egn. (4a)) - Fittings Equivalent Length, L _F (ft):	4.99	4.99	4.99	5.65	6.13	6.57	6.91
	Egn. (4b) Equivale	ent Length of Pipe Segment, Les (ft):	17.49	17.49	17.49	18.15	18.63	19.07	19.41
	Eco. (5) Pir	e Segment Headloss, H. (ft w.c.):	0.00	0.00	0.00	0.01	0.01	0.02	0.03
	Design & Consultance	PROJECT: BASF Above Grade System Sump Hydrau	lics BY: S. Hannula	DATE: 10-May-2022					
---	----------------------	--	---------------------	-------------------					
ARCADIS	for natural and	JOB NO.: 30005248	CHKD, BY: M. Samp	DATE: 10-May-2022					
, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	Second Sciences	SUBJECT: Segment 21	APPVD. BY:	DATE:					

Segment 21	Pump ID:
Water	Fluid:
Groundwater	Fluid Description: Enter Fluid Density if Other than Water (Ib/ft ³):
	Enter Fluid Viscosity if Other than Water (cp): Enter Vapor Pressure if Other than Water (psi):
1.5	Minimum Flow Rate (gpm):
3	Design Flow Rate (gpm): Maximum Flow Rate (gpm):
14.7	Pressure of System to be Pumped, Post (psia):
14.7	Pressure of System Discharged, Paul (psia):
50	Fluid Temperature (*F):
-12	Elevation of Fluid to be Pumped (ft):
-15	Pump Impeller Centerline Elevation (ft):
-7	Discharge Elevation (ft):
8	Static Head of Discharge Line , H _{st2} (ft):
	Suction Lift of Liquid to be Pumped, Hatt (ft):
3	Static Head of Liquid to be Pumped, Hart (ft):
5.0%	Safety Factor:
0.411	Vapor Pressure (ft. w.c.):
62.41	Fluid density, p (lb/ft ³):
1.41E-05	Fluid Kinematic Viscosity, ŋ (ft ² /s):
A1-786 99	· 이상 1 · · · · · · · · · · · · · · · · · ·

In-Line E	quipme	ent He	adloss:
-----------	--------	--------	---------

	Pressure Loss	10 12 CO 14 27 19 0 C		Pressure Loss	
Equipment Tag	(ft w.c.)	Equipment Tag		(ft w.c.)	
Flowmeter	1.2		3	-	
	a marine to			Constant of	NATIONS 11 10 1000 0000 0
Subtotal	1.2		Subtotal:	0.0	Total Headloss (ft w.c.): 1.2

Optional - Pump Head (ft w.c.): Optional - NSPH Required (ft w.c.):

$\square \Delta R(\Delta) \square $ to matural a	PROJECT: BASE Above Grade System Sump Hydraulics JOB NO.: 30005248			CHKD, BY: M. Samp			DATE: 10-May-2022 DATE: 10-May-2022		2	
Dultansets		SUBJECT: Segment 22			APPVD. BY:		DATE	DATE:		
Pump ID:	Segment 22	Flooded Suction:					P	et #		
Fluid:	Water			1				¥1		
Fluid Description: Enter Fluid Density if Other than Water (lb/lt ³):	Groundwater		Puest							
Enter Fluid Viscosity if Other than Water (cp): Enter Vapor Pressure if Other than Water (psi):					1		L -		-	
Minimum Flow Rate (gpm):	10.7				in all	. 13	442			
Design Flow Rate (gpm):	21.4				1.0		1000			
Maximum Flow Rate (gpm):	42.8				2	1				
Pressure of System to be Pumped, Post (psia):	14.7		-		Seema	ent 22				
Pressure of System Discharged, Paul (psia):	14.7	L .			segun				-	
Fluid Temperature (*F):	50	Suction Lift:				p		1.1		
Elevation of Fluid to be Pumped (ft):	0	2 12 12 12 12 12 12 12 12 12 12 12 12 12				-		4.7	- 1 - 1	
Pump Impeller Centerline Elevation (ft):	0				1	13			*	
Discharge Elevation (ft):	0				mut		1. L		-	
Static Head of Discharge Line , Hatz (ft):	0		Pays1			- 1	40° *			
Suction Lift of Liquid to be Pumped, Hatt (ft):					* (*)	<u>y</u>	•			
Static Head of Liquid to be Pumped, Hurr (ft):					2	2				
Safety Factor:	5.0%		-		Segment 2	2				
Vapor Pressure (ft. w.c.):	0.411			h	1.1					
Fluid density, p (lb/ft ³):	62.41			U						
Fluid Kinematic Viscosity, n (ft ² /s):	1.41E-05				1					
Include Exit Headloss at Discharge, H.:	Yes		_							
otes:		Flow Rat	es (gpm):	11	14	17	21	28	35	43
2010			(gpd):	15,400	19,600	23,800	29,400	39,200	49,000	60,20
			(MGD):	0.02	0.02	0.02	0.03	0.04	0.05	0.06
		Optional - Pump Head	(ft w.c.):							

12 - 6-78 (M.) (M.)	3	Pressure Loss		Pre	ssure Loss	
Equipment Tag		(ft w.c.)	Equipment Tag		(ft w.c.)	
			-	10		
	office and the	1 10100 D		Electrony and the second se	10100	2020 BEAU TO 2020 TO 2020 TO 2020 TO 2020
-	Subtotol:	0.0		Subtotol:	0.0	Total Headloss (ft w.c.): 0.0

A DCA DIC	Design & Consultance	PROJECT: BASE Above Grade System Sump Hydraulics	BY: 5. Hannula	DATE: 10-May-2022
ARCADIS	for matural and	JOB NO.: 30005248	CHKD, BY: M. Samp	DATE: 10-May-2022
	and access	SUBJECT: Segment 22	APPVD. BY:	DATE

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	2	Standard Tee, thru brand	h		1.14	1	1.14	1	
Pipe Inner Diameter, ID (in):	1.917			-		1 1	0		
Pipe Length, L (ft):	300.00	Standard Elbow, 90"			0.57	1	0.57	1	
Pipe Material:	SDR 11 - HDPE						0	1	
Pipe Type:	Smooth Pipes (PE and other	and the second sec			1	L	0	1	
1, 20, 65, 7	thermoplastics)	3" x 2" reducer			0.28	1	0.28	1	
Roughness, e (ft):	0.000005						0	1	
e / ID:	3.12989E-05	S.				Total K:	2.0	1	
2019/1	1979999978787 B							· · · · · ·	
		Segment Flowrate (gpm):	11	14	17	21	28	35	43
		Eqn. (1) - Velocity, v (ft/s):	1.22	1.56	1.89	2.33	3.11	3.89	4.78
		Eqn. (2) - Reynolds Number, Re:	1.38E+04	1.77E+04	2.14£+04	2.648+04	3.52E+04	4.41£+04	5.428+04
		Pipe Friction Factor, 1:	0.0284	0.0267	0.0255	0.0243	0.0227	0.0216	0.0206
	Eqn. (3) - Head Loss /	Across Pipe Segment, H (ft w.c./ft):	0.0041	0.0063	0.0089	0.0128	0.0214	0.0318	0.0458
	Eqn. (4a)	- Fittings Equivalent Length, L _F (ft):	11.19	11.91	12.47	13.08	14.00	14.72	15.43
	Eqn. (4b) Equivaler	nt Length of Pipe Segment, Les (ft):	311.19	311.91	312.47	313.08	314.00	314.72	315.43
	Eng. (S) Pige	Segment Headloss M. (If w.c.)	1.79	1.07	2 78	4.01	6.72	10.01	14.45

	PROJECT: BASF Above Grade System Sump Hydraulics JOB NO.: 30005248 SUBJECT: Segment 22		BY: <u>5</u> , Hannula CHKD. BY: <u>M. Samp</u> APPVD. BY:			DATE: DATE: DATE:	10-May-202 10-May-202	2
	Discharge Piping Headloss, Hoteleharger (ft w.c.):	1.28	1.97	2.78	4.01	6.72	10.01	14.45
	Exit Velocity at Liquid Discharge, v (ft/s):	1.22	1.56	1.89	2.33	3.11	3.89	4.78
	Eqn. (7) Exit Loss at Liquid Discharge, H, (ft w.c.):	0.02	0.04	0.06	0.08	0.15	0.24	0.36
	Eqn. (8) Total Dynamic Head, TDH (ft w.c.):	1.30	2.01	2.84	4.09	6.87	10.25	14.81
0	esign System TDH with 5.0% Factor of Safety, (ft w.c.):	1.37	2.11	2.98	4.29	7.21	10.76	15.55

References:

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

Eqn. (5): $H_P = H \cdot L_{eq}$

Eqn. (6): $NSPH_a = 2.31 \cdot (P_{sys1} - P_{pap}) - H_{p(suction)} \pm H_{st1}$

Eqn. (7): $H_{v} = \frac{v^{2}}{2 \cdot g} = \frac{v^{2}}{2 \cdot (32.174)}$ Eqn. (8):

Eqn. (8): Suction Lift: $TDH = 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{sr2} + Inline Equipment Headloss + H_p(disenerge) + H_e + H_p(sucrue) + H_{sr1} + Hooded Suction:$ $TDH = 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{sr2} + Inline Equipment Headloss + H_p(disenerge) + H_e + H_p(sucrue) - H_{sr1} + H_{sr2} + H_{sr$

		PROJECT: BASE Above Grade System Sump Hydraulics		BY: S. Hannula		_	DATE: 10-May-2022		2
	IS SUBJ	CT: Segment 23		APPVD. BY:	M. samp		DATE	10-May-202	2
Pump ID: Fluid Fluid Density if Other than Water (Ib)(t ³): Enter Fluid Density if Other than Water (Ib)(t ³): Enter Fluid Viscosity if Other than Water (ps)): Minimum Flow Rate (gpm): Design Flow Rate (gpm): Maximum Flow Rate (gpm): Pressure of System to be Pumped, 9 _{mat} (psia): Fluid Temperature (*F): Elevation of Fluid to be Pumped (ft): Pump Impeller Centerline Elevation (ft): Static Head of Discharge Line, H ₄₂ (ft): Suction Lift of Liquid to be Pumped, H ₄₇ (ft):	Segment 23 Water Groundwater 22.7 45.4 90.8 14.7 14.7 50 -7 -7 -7 10 17	Flooded Suction:	yst = yst =	H _{et} =	ent 23	P ₀	nt =	× ×	
Static Head of Liquid to be Pumped, H _{HT} (ft): Safety Factor: Vapor Pressure (ft. w.c.): Fluid density, p (fb/ft ³): Fluid Kinematic Viscosity, ŋ (ft ² /s):	5.0% 0.411 62.41 1.41E-05		b	Ţ					
Static Head of Liquid to be Pumped, H _{HT} (ft): Safety Factor: Vapor Pressure (ft. w.c.): Fluid density, p (fb/ft ²): Fluid Kinematic Viscosity, ŋ (ft ² /s): Include Exit Headloss at Discharge, H _e :	5.0% 0.411 62.41 1.41E-05 Yes		b	1	4.9				
Static Head of Liquid to be Pumped, H _{aff} (ft): Safety Factor: Vapor Pressure (ft. w.c.): Fluid density, p (lb)(ft ²): Fluid Kinematic Viscosity, n (lt ²): Include Exit Headloss at Discharge, H _e : iotes:	5.0% 0.411 62.41 1.41E-05 Yes	Flow Rates (gpr	n): 23 41: 33 200	30	37	45	60	75	91
Static Head of Liquid to be Pumped, H _{att} (ft): Safety Factor: Vapor Pressure (ft. w.c.): Fluid density, p (fb)(ft ³): Fluid Kinematic Viscosity, n (ft ² /s): Include Exit Headloss at Discharge, H _v : lotes:	5.0% 0.411 62.41 1.41E-05 Yes	Flow Rates (gpr	n): 23 d): 32,200 bi: 0.03	30 42,000	37 51,800	45 63,000	60 84,000 0.08	75 105,000	91 127,400 0.13
Static Head of Liquid to be Pumped, H _{att} (ft): Safety Factor: Vapor Pressure (ft. w.c.): Fluid density, p (lb/ft ³): Fluid Kinematic Viscosity, ŋ (ft ² /s): Include Exit Headloss at Discharge, H ₄ : otes:	5.0% 0.411 62.41 1.41E-05 Yes	Flow Rates (gpr (gp (MG) Optional - Parmo Head (ff w	n): 23 d): 32,200 D): 0.03	30 42,000 0.04	37 51,800 0.05	45 63,000 0.06	60 84,000 0.08	75 105,000 0.11	91 127,400 0.13

12 4 6 6 10 1 4 10 10 10 10 10 10 10 10 10 10 10 10 10		Pressure Loss		P	ressure Loss	
Equipment Tag		(ft w.c.)	Equipment Tag		(ft w.c.)	
	and a subscription	Course of		and a second second	aug 2	
	Subtotol:	0.0		Subtotol:	0.0	Total Headloss (ft w.c.): 0.0

Design & Consultancy	PROJECT: BASE Above Grade System Sump Hydraulics	BY: S. Hannula	DATE: 10-May-2022
for natural and	JOB NO.: 30005248	CHKD. BY: M. Samp	DATE: 10-May-2022
and analysis	SUBJECT: Segment 23	APPVD. BY:	

Flow Ratio:	1	Valve/Fitting Tag			ĸ	No. Units	Total K		
Nominal Pipe Diameter (in):	3						0	1	
Pipe Inner Diameter, ID (in):	2.825					1 1	0	1	
Pipe Length, L (ft):	350.00						0	1	
Pipe Material:	SDR 11 - HDPE						0	1	
Pipe Type:	Smooth Pipes (PE and other						0		
14 (20) A (20)	thermoplastics)	2				(0	1	
Roughness, e (ft):	0.000005						0	1	
e / ID:	2.12389E-05	ST-				Total K:	0.0	1	
503:04						2204000		· · · · · · · · · · · · · · · · · · ·	
		Segment Flowrate (gpm):	23	30	37	45	60	75	91
		Eqn. (1) - Velocity, v (ft/s):	1.18	1.54	1.89	2.30	3.07	3.84	4.66
		Eqn. (2) - Reynolds Number, Re:	1.97€+04	2.57E+04	3.16E+04	3.84E+04	5.138+04	6.41E+04	7.78E+04
		Pipe Friction Factor, 1:	0.026	0.0244	0.0233	0.0222	0.0209	0.0199	0.0191
	Eqn. (3) - Head Los	is Across Pipe Segment, H (ft w.c./ft):	0.0024	0.0038	0.0055	0.0078	0.013	0.0194	0.0274
	Eqn. (4	a) - Fittings Equivalent Length, L _F (ft):	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Eqn. (4b) Equiva	elent Length of Pipe Segment, Les (ft):	350.00	350.00	350.00	350.00	350.00	350.00	350.00
			0.94	1.99	1.03	3 72	4.00	6.70	0.50

PROJECT: BASE Above Grade System Sump Hydraulics JOB NO.: 30005248 SUBJECT: Segment 23		BY: S. Hannula CHKD. BY: M. Samp APPVD. BY:			DATE: DATE: DATE:	10-May-2022 10-May-2022	
Discharge Piping Headloss, H _{eddischargei} (ft w.c.):	0.84	1.33	1.93	2.73	4.55	6.79	9.59
Exit Velocity at Liquid Discharge, v (ft/s):	1.18	1.54	1.89	2.30	3.07	3.84	4.66
Eqn. (7) Exit Loss at Liquid Discharge, H, (ft w.c.):	0.02	0.04	0.06	0.08	0.15	0.23	0.34
Eqn. (8) Total Dynamic Head, TDH (ft w.c.):	17.86	18.37	18.99	19.81	21.70	24.02	26.93
 Design System TDH with 5.0% Factor of Safety, (ft w.c.):	18.75	19.29	19.94	20.80	22.79	25.22	28.28

References:

1. Crane Co., Technical Paper No. 410: Flow of Fluids Through Valves, Fittings, and Pipe, 1988.

2. Cameron Hydraulic Data, 18th Edition, 2nd Printing, 1995.

3. Piping Handbook, 7th edition, Mohinder L. Nayyar, McGraw-Hill, New York, NY, 2000.

4. Lamont, Peter A. (1981, May). Common Pipe Flow Formulas Compared with the Theory of Roughness, Journal of the American Water Works Association, Denver, CO.

5. Hydraulic Institute, Engineering Data Book, 2nd Edition.

6. Plastic Pipe Institute's Handbook of Polyethylene Pipe, 2nd. Edition.

Equations:

Eqn. (5): $H_P = H \cdot L_{eq}$

Eqn. (6): $NSPH_{a} = 2.31 \cdot (P_{sys1} - P_{pap}) - H_{p(suction)} \pm H_{st1}$

Eqn. (7): $H_{\nu} = \frac{\nu^2}{2 \cdot g} = \frac{\nu^2}{2 \cdot (32.174)}$ Eqn. (8):

Suction Lift:

 $TDH = 2.31 \cdot (P_{sys2} - P_{sys1}) + H_{sr2} + Inline Equipment Headloss + H_p(discharge) + H_p + H_p(succion) + H_{sr1} + H_{sr2} + H$ Flooded Suction: $TDH = 2.31 \cdot \left(P_{sys2} - P_{sys1}\right) + H_{sr2} + Inline Equipment Headloss + H_p(discharge) + H_p + H_p(sustion) - H_{sr1} + H_p(sustion) + H_{sr2} + H_p(sustion) + H_{sr2} + H_p(sustion) + H_{sr2} + H_{s$

Appendix C

Preliminary Cost Estimate and Bill of Materials

Appendix C - Cost Estimate and Bill of Materials Table 1. Valves Basis of Design Report (Preliminary 30% Design) Perimeter Barrier Remedy BASF North Works Site, Wyandotte, Michigan

Item Q	Quantity	Reference Drawings	Description	Manufacturer/Model (or approved equal)
--------	----------	-----------------------	-------------	---

Notes:

1. Valves will be provided with 95% design submittal.

Item Quantity D		Reference Drawings	Description
1	12	I-103	Flow Meter Type: Magnetic Flow Meter Lining: PTFE Size: 2 inch Flow Transmitter (Integral Mount) Power: 240 V Signal: 4-20 mA Range: 0-25 GPM
2	1	I-105	Flow Meter Type: Magnetic Flow Meter Lining: PTFE Size: 3 inch Flow Transmitter (Integral Mount) Power: 240 V Signal: 4-20 mA Range: 0-150 GPM
3	48	I-103	Level Switch Media Type: Groundwater Wetted Material: Polypropylene/Stainless Steel Length: 20 feet
4	25	I-104, I-107	Level Switch Media Type: Process Water, Chemical Wetted Material: Polypropylene Type: Ultrasonic
5	12	I-103	Level Transducer Type: Submersible Rating: 10 PSI Material: Polyurethane/Stainless Steel
6	8	P-005	Level Transmitter Type: Radar
7	16	I-103, I-107	Pressure Indicator Type: Bourdon Tube Range: 0-25 PSI
8	6	I-105, I-106, I- 108	Pressure Indicator Type: Bourdon Tube Range: 0-100 PSI
9	6	I-105, I-106	Pressure Transmitter Rating: 0-100 PSI

Appendix C - Cost Estimate and Bill of Materials Table 3. Equipment Basis of Design Report (Preliminary 30% Design) Perimeter Barrier Remedy BASF North Works Site, Wyandotte, Michigan

ltem	Quantity	Tag	Reference Drawings	Connection (Inches)	Description	Manufacturer/Model (or approved equal)
1	8	P-001, P-002, P-003, P-004, P-005, P-006, P-017, P-018	I-103	1.25	Extraction Well Pumps Type: Submersible 3.5 gpm @ 88 ft head 6 gpm @ 80 ft head Size: 3 inch Material: Polyethylene/Stainless steel Power: 2 HP	Grundfos 10 SQE-100NE
2	16	P-007, P-008, P-009, P-010, P-011, P-012, P-013, P-014, P-015, P-016, P-019, P-020, P-021, P-022, P-023, P-024	I-103	1.5	Extraction Well Pumps Type: Submersible 14.6 gpm @ 85 ft head 17.2 gpm @ 106 ft head 12.8 gpm @ 122 ft head Size: 3 inch Material: Polyethylene/Stainless steel Power: 1 HP	Grundfos 22 SQE-110NE
3	2	P-100, P-101	I-104	1.5	Transfer Pumps 50 gpm @ 8.5 ft head 100 gpm @ 11 ft head HP: 3 Phase/Volt: 3/480 RPM: 3500	Goulds
4	2	P-200, P-201	I-105	2x3	Transfer Pumps 50 gpm @ 155 ft head 100 gpm @ 195 ft head HP: 10 Phase/Volt: 3/480 RPM: 3500	Goulds e-SH series or 3657/3757 series
5	1	P-400	I-107	1.25	Dosing Pump Range: 0.5-2 gpm Signal: 4-20 mA Amps/Volts: 70A/240V	Grundfos DME series
6	5	P-401, P-402, P-403, P-405, P-406	I-107	0.5	Dosing Pump	Grundfos DDA series
7	1	P-404	I-107	0.75	Dosing Pump Range: 0.15-0.6 gpm Signal: 4-20 mA Amps/Volts: 70A/240V	Grundfos DDA series
8	5	P-500, P-501, P-502, P-503, P-504	I-108	0.75, 0.25	Sludge Wasting Pumps 15 gpm @ 15 ft head	All-Flo

Appendix C - Cost Estimate and Bill of Materials Table 3. Equipment Basis of Design Report (Preliminary 30% Design) Perimeter Barrier Remedy BASF North Works Site, Wyandotte, Michigan

Item	Quantity	Tag	Reference Drawings	Connection (Inches)	Description	Manufacturer/Model (or approved equal)
9	1	P-505	I-108	1.5	Sump Pump 30 gpm @ 22 ft head HP: 0.5 Phase/Volt: 1/115	Goulds
10	2	BF-200, BF- 201	I-105	2	Bag Filter Housing Assume Bag Trade Size 2, 2x filters Height: 48", Diameter: 8"	PRM
11	2	T-300, T-301	I-106	2	GAC Vessels: 4x vessels lead/lag EBCT: 14 min each BV: 196 ft3 GAC Fill: 5,000 lb 72" diameter, 9'11" height	Calgon
12	2	T-302, T-303	I-106	2	IX Resin Housing Diameter: 2.7' Height: 5' BV: 27 ft3 PFA 694	Calgon
13	1	F-500	I-108	2	Filter Press. Capacity: 19 cu. ft. 11.5' L x 5' W x 63" H	Sperry
14	1	AC-500	I-108	0.5	Air Compressor Single Stage Max Pressure: 120 PSI HP: 3.5	Quincy
15	1	CF-500	I-108	0.5	Coalescing Filter Flow: 20 CFM	Trident
16	1	AF-500	I-108	0.5	Air Filter Flow: 20 CFM	Trident
17	1	DD-500	I-108	0.5	Dessicate Dryer Flow: 20 CFM Phase/Volts: 1/240	Trident
18	1	-		212	Stairs to platform Platform Height 9'. Width: 3'	FS Industries

Appendix C - Cost Estimate and Bill of Materials Table 4. Tanks Basis of Design Report (Preliminary 30% Design) Perimeter Barrier Remedy BASF North Works Site, Wyandotte, Michigan

Item	Quantity	Tag	Reference Drawings	Description	Manufacturer/Model (or approved equal)
Ĩ	1	T-100	I-104	Equalization Tank Type: Fiberglass, Cone Bottom Volume: 20,000 GAL Diameter: 15' Height: 16'	Belding
2	1	T-101	I-104	Neutralization Tank Type: Polyethylene, Flat Bottom Volume: 2,000 GAL Diameter: 90" Height: 83"	Plastic-Mart
3	1	T-102, T-103, T-104	I-104	Mix Tank/Clarifier Inclined Parallel Plate Clarifier Length: 11.25' Width: 6.4' Height: 12.25'	MW-Watermark
4	1	T-200	I-105	Pumpout Tank Type: Polyethylene, Flat Bottom Volume: 2,000 GAL Diameter: 90" Height: 83"	Plastic-Mart
5	1	T-400	I-107	Chemical Stock Tank Type: Polyethylene, Flat Bottom Volume: 7,000 GAL Diameter: 142" Height: 125"	Plastic-Mart
6	5	T-401, T-402, T-403, T-405, T-406	I-107	Chemical Stock Tank Type: Polyethylene, Flat Bottom Volume: 55 GAL Diameter: 23" Height: 38"	Plastic-Mart
7	1	T-404	I-107	Chemical Stock Tank Type: Polyethylene, Flat Bottom Volume: 550 GAL Diameter: 52" Height: 66"	Plastic-Mart

Appendix C - Cost Estimate and Bill of Materials Table 4. Tanks Basis of Design Report (Preliminary 30% Design) Perimeter Barrier Remedy BASF North Works Site, Wyandotte, Michigan

Item	Item Quantity Tag Reference Description		Quantity Tag Reference Description		intity Tag Reference Description		ntity Tag Reference Description		Manufacturer/Model (or approved equal)
8	1	T-500	I-108	Sludge Holding Tank Type: Polyethylene, Cone Bottom Volume: 2,000 GAL Diameter: 90" Height: 102"	Plastic-Mart				
9	1	T-501	I-108	Solids Holding Tank Type: Frac Tank Volume: 10 CU YD	US Ecology, Inc.				

		Estimated					
Item No	b. Description	Quantity	Unit	Unit Cost	Estima	ated Cost	
Drain In	stallation						
1	Mobilization / Demobilization	1	LS	\$150,000.00	s	150.000	
2	Site Preparation/Erosion Control Installation	10	DY	\$5,500.00	\$	55,000	Minor access improvements, installation or temporary fencing.
3	Geophysical Survey/Utility Locate	1	LS	\$100,000.00	\$	100,000	Geophysical subsurface investigation usin proposed conveyance trenching.
4	Pre-Excavation	30	DY	\$8,500.00	\$	255,000	infrastructure and backfill with sand/general attachments.
5	One-Pass Trench Excavation/Backfill	4,700	LF	\$250.00	\$	1,175,000	Assumes backfill installation to happen in
6	Utility Relocations	4	EA	\$8,500.00	\$	34,000	Utility relocations cost assumes that water reconnected during trenching. Cost assum can be installed underneath shallow electr
7	Pipe Installation	4,700	LF	\$15.00	\$	70,500	Pipe Installation cost includes labor, equip bottom of the collection trench excavated
8	Backfill - Material	4,178	CY	\$45.00	\$	188,000	Backfill material cost assumes none of the general fill to supplement excavated spoils
9	Collection Sumps - Material	12	EA	\$25,000.00	\$	300,000	4'x4'x12' deep concrete vault.
10	Collection Sumps - Installation	24	DY	\$10,500.00	\$	252,000	Includes excavation, use of a crane to lift a
11	Soil Waste	5,222	Ton	\$285.00	s	1,488,333	Soil Waste cost assumes 100% of excava concentration <1 PPM permitting disposal
12	Waste Management/Loadout	20	DY	\$8,500.00	\$	170,000	Waste Management and Loadout of Truck
13	Soil Stabilizer	3,481	CY	\$20.00	\$	69,630	Soil Stabilizer cost assumes use of BASF transportation.
14	Site Restoration	1	LS	\$75,000.00	\$	75,000	Site restoration cost includes seed and str
			Drain In	stallation Subtotal	\$	4,382,463	
Ground	Iwater Conveyance Installation						
15	Soft Digging	20	DY	\$5,500.00	\$	110,000	Assumes soft digging 3-feet around utilitie
16	Trenching	47	DY	\$8,500.00	\$	402,333	Assumes use of conventional trenching m
17	Pipe Installation	7,100	LF	\$12.00	\$	85,200	2-inch SDR-11 HDPE installation, includin
18	Backfill - Material	1,420	CY	\$45.00	\$	63,900	Assumes 2' wide, 4.5' deep trench. Assum
19	Soil Waste	1,775	Ton	\$285.00	\$	505,875	Assumes 2' wide, 4.5' deep trench. Assum concentration <1 PPM permitting disposal
20	Soil Stabilizer	1 183	CY	\$20.00	s	23 667	Soil Stabilizer cost assumes use of BASF transportation
21	Sump Pumps	12	EA	\$3,500.00	\$	42,000	Grundfos SQE Submersible Pump
22	Yard Electrical	4	15	\$200.000.00	s	200.000	Includes conduit wire and disconnects to
23	Site Restoration	1	15	\$50,000,00	\$	50,000	Site restoration cost includes seed and str
20		Groundwater Co	onveyance In	stallation Subtotal	S	1,482,975	

Comments

temporary erosion and sedimentation controls, and installation of

g GPR/EM and other locating tools along the entire length of the

avators with breaker attachments to remove existing subsurface al fill. Assumes concrete can be broken with hydraulic breaker

imately 200 LF per day excavation with one-pass trencher and bucket. parallel.

Ines and stormwater lines will need to be temporarily disconnected and nes that electrical utilities can be crossed without disconnection and lines rical conduits.

ment and materials to install a 4-inch perforated HDPE pipe in the above.

excavated spoils can be re-used. Assumes imported pea gravel and . Cost includes 20% fluff factor for compaction.

and set the vault and backfill. Assumes 2 days per vault.

ted spoils to be sent offsite as waste. Assumes average PFOA at Wayne Disposal, MI.

ks. Assumes 12 trucks per day.

TRO-C stabilizer to be mixed with excavated spoils to permit offsite

aw installation for the trench.

s to permit mechanical excavation.

ethods. Assumes 150 LF per day.

g labor.

nes 50% of spoils can be re-used. Includes 20% for compaction

nes 50% of spoils can be re-used. Assumes average PFOA at Wayne Disposal, MI.

TRO-C stabilizer to be mixed with excavated spoils to permit offsite

well field. Assumes they are ran in same trench as water piping. aw installation for the trench.

11002 110		Estimated	11-15	Unit Cost	E-March 1 Court	
Treatme	nt System Installation	Quantity	Unit	Unit Cost	Estimated Cost	E:
24	Mobilization / Demobilization	1	LS	\$50,000.00	\$ 50.000	
25	Site Preparation/Erosion Control Installation	10	DY	\$5,500.00	\$ 55,000	
26	Building Over excavation for Foundation	10	DY	\$8,500.00	\$ 85,000	Assumes over excavation to 4-feet below
27	Foundation Installation	222	CY	\$1,000.00	\$ 222,222	Assumes a 6" slab with turn down footers
28	PEMB Erection	6.000	SF	\$150.00	\$ 900,000	Includes an 80'x75' pre-engineered metal overhead lights.
29	Sludge Wasting Pumps	5	EA	\$3,000.00	\$ 15,000	All-Flo 15 GPM @ 15' TDH
30	Transfer Pumps	2	EA	\$2,500.00	\$ 5,000	Goulds e-SH series (50 GPM @ 155' TDH
31	Sump Pump	1 I	EA	\$1,500.00	\$ 1,500	Goulds 30 GPM @ 22' TDH
32	Dosing Pumps	7	EA	\$1,500.00	\$ 10,500	
33	LPGAC Skid	1	LS	\$200,000.00	\$ 200,000	Calgon 10,000 lb, 2 vessel skid (Lead/Lag
34	IX Resin Skid	1	LS	\$75,000.00	\$ 75,000	Calgon
35	Bag Filter Skid	1	LS	\$10,000.00	\$ 10,000	PRM Two Filter Skid
36	Filter Press	1	EA	\$105,000.00	\$ 105,000	Sperry 19 cu ft Unit
37	Air Compressor Skid	1	EA	\$35,000.00	\$ 35,000	Quincy Single Stage
38	EQ Tank	1	EA	\$5,000.00	\$ 5,000	Cone Bottom, 2000 Gal Tank
39	Neutralization Tank	1	EA	\$3,000.00	\$ 3,000	Float Bottom, 2000 Gal Tank
40	Inclined Plate Clarifier	1	EA	\$125,000.00	\$ 125,000	MW Watermark Clarifier with mix tank and
41	Pumpout Tank	1	EA	\$5,000.00	\$ 5,000	Cone Bottom, 2000 Gal Tank
42	Sludge Holding Tank	1	EA	\$5,000.00	\$ 5,000	Cone Bottom, 2000 Gal Tank
43	Large Chemical Stock Tank	1	EA	\$12,000.00	\$ 12,000	Flat Bottom, 7000 Gal Tank
44	Small Chemical Stock Tank	Ĩ	EA	\$1,500.00	\$ 1,500	Flat Bottom, 550 Gal Tank
45	Instrumentation	1	LS	\$100,000.00	\$ 100,000	Includes flow meters, pressure transducer
46	Pipe, Fittings, Supports and Valves	1	LS	\$100,000.00	\$ 100,000	
47	Conduit, Wire and Fittings	1	LS	\$75,000.00	\$ 75,000	
48	MCP/MCC	1	LS	\$150,000.00	\$ 150,000	
49	Stairs/Platforms/Misc. Metals	1	LS	\$100,000.00	\$ 100,000	
50	HVAC Installation	1	LS	\$65,000.00	\$ 65,000	
51	Electrical Installation	40	DY	\$4,500.00	\$ 180,000	
52	Mechanical Installation	60	DY	\$6,500.00	\$ 390,000	
53	Start-Up	1 Treatme	LS nt System In:	\$150,000.00 stallation Subtotal	\$ 300,000 \$ 3,385,722	

Comments	
	_
grade surface. Assumes no imported structural fill required.	
for each corner. building with 20' eave height purchase and installation. Include	s
	_
1, 100 GPM @ 195' IDH)	
	-
g) with manifold	
	_
d parallel plate clarifier	_
rs, level transducers, etc.	
	_
	_

		Entimated				
Item No	Description	Quantity	Unit	Unit Cost	Estimated Cost	
Bulkhea	d Sheetpile Wall Installation					
54	Mobilization/Demobilization	1	%	7.5%	\$1,891,050	
55	Contractor Work Plans	1	%	2.5%	\$630,350	
56	Site Preparation	1	LS	\$200,000	\$200,000	
57	Demolition & Obstruction Removal Allowance	1	LS	\$700,000	\$700,000	Includes debris removal along river botton
58	Headwall Steel Procurement (Coated Steel)	6,741,231	LBS	\$1.25	\$8,427,000	Assumes 1725 LF of W44x230 / AZ19 Co foot-long main wall plus 75-foot-long retur
59	Headwall Installation	117,300	SF	\$35	\$4,106,000	
60	Interlock Sealant - Material and Installation	37,080	LF	\$8	\$297,000	Based on recent sheetpile job in Brooklyn
61	Shear Pin - Material & Fabrication	275	EA	\$1,000	\$275,000	Assumes 8 ft long pins, 66 ft long casing,
62	Shear Pin - Installation	275	EA	\$5,500	\$1,513,000	
63	Concrete Cap	1,725	LF	\$350	\$604,000	Assumes 4' x 4' reinforced concrete cap, i
64	Anchor Wall Steel Procurement (Coated Steel)	2,744,940	LBS	\$1.25	\$3,432,000	Assumes 40-ft deep AZ42-700N sheet pile
65	Pre-trenching	1	LS	\$250,000	\$250,000	Pretrenching along anchor wall alignment
66	Anchor Wall Installation	66,000	SF	\$20	\$1,320,000	
67	Waler Steel Procurement (Coated Steel)	82,500	LBS	\$1.25	\$103,000	
68	Waler Installation	1,650	LF	\$125	\$207,000	Waler at anchor wall only (kingpiles will be
69	Tierod Steel Procurement (Coated Steel)	225,431	LBS	\$1.50	\$339,000	Assumes 105' long 1-3/8" diam. 150ksi tie
70	Miscellaneous Hardware for Anchoring (Materials and Installation)	1	LS	\$275,000	\$275,000	
71	Concrete Demolition	248	EA	\$1,100	\$273,000	Demolition of existing concrete seawall for
72	Excavation, Backfilling & Compaction	17,547	CY	\$29	\$509,000	Excavation for concrete cap and tiedrods.
73	Tierod Installation	248	EA	\$1,200	\$298,000	
74	Backfill Material Procurement (Aggregate)	14,850	CY	\$65	\$966,000	normal weight fill beneath the existing doc
75	Access Points for Backfill Placement	60	EA	\$5,000	\$300,000	Excavation of soil and demo of concrete s 25 ft along wall.
76	Backfill Placement	14,850	CY	\$35	\$520,000	
77	Miscellaneous Improvements	1 Bulkhead She	LS etpile Wall In:	\$300,000 stallation Subtotal \$	\$300,000 27,735,400	

Comments n prior to headwall installation ombination wall, 68-foot-long king piles and intermediate sheet piles; 1650n wall n. 2 joints sealed and 1 joint welded shop fabricated. includes formwork, excludes earthwork. e (total wall length = 1650 feet) connection point at headwall) erods at each king pile r tierod installation Assumes no off haul of material k ab below dock for backfill access points. Assumes access point every

item No.	Description	Estimated	Unit	Unit Cost	Estimated Cost	
Subsurfa	ace Barrier Wall Installation					
78	Mobilization / Demobilization	1	LS	\$540,000.00	\$ 540,000	Based on 10% construction costs, exclud
79	Temporary Construction Facilities and Controls	5	Month	\$50,000.00	\$ 250,000	Based on recent remediation construction
80	Contractor's Health and Safety Program	5	Month	\$50,000.00	\$ 250,000	Based on recent remediation construction
81	Construction Layout and Surveying	1	LS	\$50,000.00	\$ 50,000	
82	Double Silt Fence	3,000	LF	\$5.00	\$ 15,000	Based on engineering experience, assum of slurry wall to protect from impacts to su
83	Working Platform - Geotextile	5,550	SY	\$2.00	\$ 11,100	Assumes platform width of 25 ft for length
84	Working Platform Furnishing and Placing Soil	4,930	Tons	\$20.00	\$ 98,600	Based on engineering experience of cost wide at top, 2' high, and with side slopes
85	Site Access Road Installation	2,500	SY	\$18.00	\$ 45,000	Crushed 3/4" stone base, compacted, 12
86	Site Access Road - Geotextile	2,500	SY	\$2.00	\$ 5,000	Based on engineering experience for geo road
87	Bermed/Lined Soil Conditioning Pad	1	LS	\$40,000.00	\$ 40,000	Based on engineering experience for soil 100' x 100' in size with fencing
88	Bermed/Lined Mixing Pad	1	LS	\$30,000.00	\$ 30,000	Based on engineering experience for slur
89	Excavation of Near Surface Fill Soils/Obstructions (Pre-trenching)	715	CY	\$15.00	\$ 10,725	Assuming a pre-trenching depth of 6' dee survey findings).
90	Backfill Pre-trench Excavation	1,220	Tons	\$20.00	\$ 24,400	
91	Slurry Trench Excavation and Backfilling of Trench (Soil-cement Wall)	44,550	VSF	\$20.00	\$ 891,000	Excavation under slurry, backfill with treat
92	Purchase Reagents for Soil-Cement Wall	435	Tons	\$210.00	\$ 91,350	Based on recent Aurora, IN project bids.
93	Furnishing Borrow Soil for Soil-Cement Wall	7 260	Tons	\$15.00	\$ 108.900	Assumes a material loss of 10%
94	Mixing of Materials Prior to Installation for Soil-Cement Wall	1	LS	\$50,000.00	\$ 50,000	
95	Steel Sheet Piling - Materials	955,900	Lbs	\$1.25	\$ 1,194,875	Assumes NZ-22 pile section for drivability
96	Steel Sheet Piling - Installation	43 450	VSF	\$40.00	\$ 1,738,000	Based on recent project experience and
97	Localized Jet Grouting, Work Around Utilities and Structures	1	LS	\$250,000.00	\$ 250,000	
98	Transfer of Excavated Soils for Dewatering or Slurry Mixing	4,840	CY	\$6.00	\$ 29,040	Based on engineering experience for load excavation on trucks and transporting to a
						Including material and delivery only, assu
99	Portland Cement	155	Tons	\$210.00	\$ 32,550	trenching activities and slurry wall trench
100	Mixing/Loadout of Excavated Soils conditioned with Portland Cement	4,940	CY	\$6.00	\$ 29,640	Based on engineering experience for mix
101	Transportation and Disposal of Excavated Soils	8,400	Tons	\$180.00	\$ 1,512,000	Updated for soil disposal at US Ecology for
102	Utility Reinstallations	1	LS	\$50,000.00	\$ 50,000	
103	Geotextile	1,600	SY	\$2.00	\$ 3,200	Installed, assuming an area of 3200' x 4.5
104	General Fill	1,815	Tons	\$20.00	\$ 36,300	Including delivery, placement, and compa
105	Asphalt	1,280 Subsurface B	SY arrier Wall Ins	\$50.00 tallation Subtotal	\$ 64,000 \$ 7,450,680	Assumes 5 ft wide strip for north and soul
	Construction Management/Design during Constru	ction Services/Proje	CONSTRUC ct Manageme	TION SUBTOTAL nt Services (10%)	\$ 44,437,240 \$ 4,443,724 \$ 4,443,724	

CONSTRUCTION LOW ESTIMATE (-30%) \$

34,216,675

73,321,446

CONSTRUCTION HIGH ESTIMATE (+50%) \$

Comments

ing T&D contracts.

contracts.

ing fence with wire backing, assuming installed along downgradient sides rface water.

of barrier wall.

per CY to furnish/install soil for slurry wall platform, working platform 25' of 2:1

deep. For an assumed length of 1,500 ft.

textile material, installed, assuming the surface area of the site access

conditioning/dewatering pad, assuming 6-in-thick concrete pad roughly

ry mixing pit or batch plant type operation.

p and 4' wide along 25% of the wall length (to be based on geophysical

ed borrow soils.

through fill layer and embedment into clay.

stimates.

ling, includes loading excavated soils from pre-trenching and slurry soil conditioning pad for dewatering.

ming Portland cement equal to 2% weight of soils excavated from prefor dewatering.

ng excavated soils with Portland cement for dewatering.

or PFAS > 1 ppm. Assumes 1.7 conversion from CY to tons.

to be covered.

ction, assuming a volume of 3200' x 4.5' x 2' required h barrier walls.

Notes:

- 1. Cost estimates are based on Arcadis' past experience and vendor estimates. Arcadis prepared these estimates using current and generally accepted cost estimation methods. These estimates are based on assumptions concerning future events, and actual costs may be affected by known and unknown risks, including, but not limited to, changes in general economic and business conditions, site conditions which were unknown to Arcadis at the time the estimates were prepared, future changes in site conditions, regulatory or enforcement policy changes, and delays in performance. Actual costs may vary from these estimates, and such variations may be material. Arcadis is not licensed as accountants or securities attorneys, and therefore make no representations that these cost estimates form an appropriate basis for complying with financial reporting requirements for such costs.
- 2. In providing opinions of probable construction costs, the Client understands that Arcadis has no control over costs; the price of labor, equipment, or materials; or the construction contractor's methods of pricing. The opinions of probable construction costs provided herein are to be made on the basis of Arcadis qualifications and experience. Arcadis makes no warranty, expressed or implied, as to the accuracy of such opinions as compared to bid or actual costs. Utilization of this cost estimate information beyond the stated purpose is not recommended.

Appendix D

Preliminary Construction Schedule

10		04	Denting	C1-1	Planta L
1	Notice to Proceed	% 100%	0 days	Thu 1/23/20	Thu 1/23/20
2	Kickoff Meeting with USEPA	100%	0 days	Fri 2/28/20	Fri 2/28/20
3	COVID-19 Impact: All non-business-essential personnel/contractors	100%	32 days	Fri 3/13/20	Mon 4/27/20
	restricted from site access				
4	USEPA Check-In Meetings	23%	1384 days	Thu 6/25/20	Thu 10/30/25
70	Hydraulic Pre-Design Investigation (PDI) Activities	100%	306 days	Wed 5/20/20	Mon 8/2/21
84	Submittal of PDI Findings - Hydraulic Testing	100%	29 days	Tue 7/20/21	Fri 8/27/21
85	Geotechnical PDI Activities	100%	121 days	Thu 5/28/20	Fri 11/13/20
94	Submittal of PDI Findings - Geotechnical/Barrier Alignment	100%	96 days	Mon 11/16/20	Fri 4/2/21
95	Treatability Testing Activities	100%	303 days	Tue 5/11/21	Tue 7/19/22
96	Bench-scale testing of slurry wall mixes	100%	98 days	Tue 5/11/21	Wed 9/29/21
97	Long-term testing of slurry wall mixes	100%	60 days	Wed 11/10/21	Mon 2/7/22
08	Report Proparation and Submittal of Treatability Study Eindings - Slurpy V	100%	40 days	Tue 2/8/22	Mon 4/4/22
00	About and a tractment tractability test refinement	100%	24 days	Map 7/12/21	Thu 9/12/21
100		100%	24 uays	Thu 11/4/21	Wed 5 (25 (22
100	Treatability testing of above grade treatment technologies	100%	141 days	Thu 11/4/21	wed 5/25/22
101	Report Preparation and Submittal of Treatability Study Findings - Above Grade Treatment	100%	38 days	Fri 5/27/22	Tue 7/19/22
102	Preliminary Design (30%)	0%	305 days	Mon 1/3/22	Fri 3/3/23
103	Submittal of Preliminary Design Package	0%	1 day	Tue 9/6/22	Tue 9/6/22
104	EPA Review/Comment	0%	129 days	Wed 9/7/22	Mon 3/6/23
105	Address Data Gaps (if necessary)	0%	433 days	Wed 9/7/22	Fri 5/3/24
106	Pre-Final Design (95%)	0%	304 days	Mon 3/6/23	Thu 5/2/24
107	Development of Performance Standards	0%	196 days	Mon 3/6/23	Mon 12/4/23
100	Persian Well(a) Design	0%	106 days	Man 2/6/22	Mon 12/4/23
100	barrier wali(s) Design	0%	196 days	WON 5/0/25	WION 12/4/23
109	Groundwater Extraction System Design	0%	196 days	Mon 3/6/23	Mon 12/4/23
110	Above Grade Treatment System Design	0%	196 days	Mon 3/6/23	Mon 12/4/23
111	Supporting Documents (QAPP, HASP, O&M Plan, CQAP)	0%	196 days	Mon 3/6/23	Mon 12/4/23
112	Target Submittal of Pre-Final Design Package	0%	1 day	Mon 12/4/23	Mon 12/4/23
113	EPA Review/Comment	0%	108 days	Tue 12/5/23	Thu 5/2/24
114	Final Design (100%)	0%	1 day	Fri 5/3/24	Fri 5/3/24
115	Bid Package Development	0%	45 days	Mon 5/6/24	Fri 7/5/24
116	Joint Permit Application	0%	89 days	Mon 5/6/24	Thu 9/5/24
117	Pre-Application Meeting with Agencies	0%	1 day	Wed 5/15/24	Wed 5/15/24
118	Prepare Application	0%	17 days	Mon 5/6/24	Tue 5/28/24
119	BASF Review	0%	5 days	Wed 5/29/24	Tue 6/4/24
120	Address Comments, Agency Review and Public Hearing (if needed)	0%	67 days	Wed 6/5/24	Thu 9/5/24
121	POTW Permit	0%	26 days	Mon 5/6/24	Mon 6/10/24
122	Prepare Application	0%	17 days	Mon 5/6/24	Tue 5/28/24
123	BASF Review	0%	5 days	Wed 5/29/24	Tue 6/4/24
124	Address Comments and Submit Application	0%	4 days	Wed 6/5/24	Mon 6/10/24
125	USCG Notice to Mariners	0%	26 days	Mon 5/6/24	Mon 6/10/24
126	Prepare Draft Notice	0%	17 days	Mon 5/6/24	Tue 5/28/24
127	BASE Beview	0%	5 days	Wed 5/29/24	Tue 6/4/24
120	Address Comment and Submit Notice	0%	4 dave	Wed 6/5/24	Mon 6/10/24
120	Contractor Did Dises	0%	e days	Man 7/9/24	F=: 10/4/24
129	Culturate Di Uni Filase	0%	20 days	Man 7/0/24	Fri 9/16/24
130	Submit Request for Blas	0%	30 days	wion 7/8/24	FTI 8/16/24
131	Dia walk	0%	1 day	wion //22/24	won 7/22/24
132	Contractor Selection and Contracting	0%	35 days	Mon 8/19/24	Fri 10/4/24
133	Construction	0%	625 days	Mon 10/7/24	Fri 2/26/27
134	Material/Long lead Equipment Procurement	0%	130 days	Mon 10/7/24	Fri 4/4/25
135	Mobilization to Site	0%	2 wks	Mon 11/4/24	Fri 11/15/24
136	Site Preparation	0%	4 wks	Mon 11/4/24	Fri 11/29/24
137	Barrier Remedy Construction	0%	155 days	Fri 11/29/24	Fri 7/4/25
138	Southern Sheet Pile Wall Construction	0%	30 days	Mon 12/2/24	Fri 1/10/25
139	Northern Sheet Pile Wall Construction	0%	30 days	Mon 1/13/25	Fri 2/21/25
140	Soil-Cement Barrier Construction	0%	30 days	Mon 2/24/25	Fri 4/4/25
141	Steel Bulkhead Construction	0%	11 mons	Mon 12/2/24	Fri 10/3/25
142	Groundwater Extraction System Construction	0%	6 mons	Mon 12/2/24	Fri 5/16/25
143	Above Grade Treatment System Construction	0%	9 mons	Mon 1/6/25	Fri 9/12/25
144	System Startup and Optimization	0%	18 mons	Mon 9/15/25	Fri 1/29/27
145	Site Restoration	0%	45 days	Mon 9/15/25	Fri 11/14/25
146	Demobilization	0%	20 days	Mon 2/1/27	Fri 2/26/27

Appendix E

Subsurface Barrier Options Summary Table

Appendix E - Subsurface Barrier Options Summary Table Basis of Design Report (Preliminary 30% Design) Perimeter Barrier Remedy BASF North Works Site, Wyandotte, Michigan

Control Contro	Crane and Anna						
		General Site Lithology (Ref. Arcadis, Draft Geotechnical Data Report, f Fill material extending from ground surface to 12 to 32 feet below groun interbedded with crushed concrete, crushed stone, gravel, sand, and cl organics, rubber, coal, glass and brick fragments. Beneath the fill layer, a very soft silt (alluvium) layer is found mostly in 1 thicknesses between 7 and 15 feet. A loose to dense sand layer follow feet. A soft to medium stiff clay layer follows at depths between approx feet and is underlain by glacial till. Groundwater flows toward the Detroit River. Depth to groundwater ran To mitigate potential off-site migration of impacted groundwater, a barri collection trench, along a portion of the eastern Site boundary. The ba boundaries for groundwater control. Barrier wall to extend into clay lay Anticipated total length of barrier wall is approximately 3,200 linear feet Obstructions from former site structures and buried debris may be enco	February 2021): Ind surface (ft bgs). The fill consists of distilled blow off (DBO) lay and is mixed with various debris that includes wood, the northern portion, and noted as discontinuous, with rs the alluvium or fill layer, ranging in thickness from 5 to 17 kimately 25 and 44 ft bgs. It's thickness ranges from 21 to 27 uges from 3 to 6 ft bgs. ier system will be installed, in combination with a groundwater rimer wall is also planned along the northern and southern Site er minimum of 3 ft for an effective vertical seal at depth. t, buntered on site during barrier wall installation.	Varying thicknesses of different soils. Fluctuation in depths to clay (Termination boundary). Variability in Fill/Native Soils. Debris/Concrete/Waste. Groundwater - Depth, Quality, COCs, and pH. Utilities, Building Structures, Bulkhead Infrastructure. End Use of Property (Barrier Wall Alignment)			
Barrier Wall Alternatives	Diagram	Alternative Description	Geology Considerations	Issues of Installation/Feasibility	Effectiveness	Constructability	Approximate Relative Cost Range
Option 1 - Ex-situ Mixed Site Soil-Cement Barrier via Excavator		 Slurry wall trench is excavated utilizing conventional and specialized long slick excavators. Excavation/Trenching performed under an engineered fluid (bentonite slurry) for trench support. Separate on-site blending and backfliling operations, pending barrier wall design (soli/bentonite/cement). The peat and DBO site solis/materials from trench excavation are separated and transported for off-site disposal. Remaining suitable site solis are blended on-site per wall design and placed into the trench. 	Obstructions can often easily be removed when encountered using hydraulic excavator. Excavator can easily manage changes in excavation depth to the termination layer. Verifiable continuity of the key in material (ow permeability soil). Proper key into native cala yayer is visually verified. DBO and peat materials present a challenge for consistent and controllable finished wall properties. Both materials will require separation from other excavated soils.	 Common and established technology; multiple contractors qualified to construct; equipment readily available. Requires a wide bench/platform for wall construction and working area properly prepared to allow effectively separating the DBO and peat from the appropriate soils for mixing is questionable. If not properly separated greater potential for wall inconsistencies. Also, uncertainty with how much suitable material will be available and how much for importing. Removing of materials > 3 inches in diameter also critical to meeting permeability. Messy operation and proper containment of slurry and backfill along the working trench is required to ensure a relatively clean site. 	Results of treatability testing program indicate that a blend of cement, slag and site soils produces a barrier wall that meets the performance criteria for strength and hydraulic conductivity. Because of the poor quality site soils (general heterogeneity, DBO, peal, obstructions) and potential issues with adequate separation of these materials during mixing, the effectiveness of this well option if implemented is questionable. There is the potential for zones of higher permeability or of low wall strength as a result and both will impact the walls overall performance as a groundwater barrier. Allows for confirmation of key into clay for bottom of seal.	 Requires area for mixing/blending of soils/cement in a central location. Typical area of 100 ft x 100 ft, with a hard surface or former building slab. Batch plant area for slurry mixing and pumping to working wall alignment. Working wall platform width of 25 ft. Truck traffic on existing plant roads, off-site public roads, and new access roads, where necessary, travelling from blending area to working wall construction and vice versa, and for transporting excavated soils for off-site disposal. Due to the time for proper mixing/blending of site soils, the duration of this option is expected to be 5 months. 	\$5.9M to \$10.4M
Option 2 - Ex-situ Mixed Imported Soll- Cement Barrier via Excavator		 Slurry wall trench is excavated utilizing conventional and specialized long stick excavators. Excavation/Trenching performed under an engineered fluid (bentonite slurry) for trench support. Separate on-site biending and backfilling operations, pending barrier wall design (soli/bentonite/coment). Solls/materials from trench excavation are transported for off-site disposal. Trench backfilled with borrow sourced soils blended on-site with cement/bentonite per wall design. 	Obstructions can often easily be removed when encountered using hydraulic excavator. Excavator can easily manage changes in excavation depth to the termination layer. Verifiable continuity of the key in material (low permeability soil). Proper key into native clay layer is visually verified.	 Common and established technology; multiple contractors qualified to construct, equipment readily available. Requires a wide bench/platform for wall construction and working area properly prepared to allow effective mixing and preparation of the backfill. Use of borrow sourced soil for wall mix allows for consistent material type and an end product meeting performance criteria. Messy operation and proper containment of slurry and backfill along the working trench is required to ensure a relatively clean site. 	 Results of treatability testing program indicate that a blend of cement, slag and borrow sourced sand produces a barrier wall that meets the performance criteria for strength and hydraulic conductivity. Use of imported borrow soils mitigates the concerns of the poor quality site soils. With the consistency of the mix with the borrow site soils during implementation, the performance of the wall as a groundwater barrier is maintained. A higher-quality, more consistent wall than Option 1. Allows for confirmation of key into clay for bottom seal. 	 Requires area for mixing/blending of solis/cement in a central location. Expect mixing accomplished with pug mill type mixer, which will produce a uniform mix and allow for faster production rates. Truck traffic on existing plant roads, off-site public roads, and new access roads, where necessary, travelling from blending area to working wall construction and vice versa, and for transporting excavated soils for off-site disposal. Batch plant area for slurry mixing and pumping to working wall alignment. Working wall platform width of 25 ft. Expected wall construction duration of 4 months. 	\$5.8M to \$10.3M
Option 3 - Steel Sheet Piles		 Excavation of fill for removal of debris along the wall alignment and backfilling the trench with borrow soil as necessary. Installation/Driving of sheet piles to impermeable layer. Joint sealant or welding required for watertight wall system at all pile interlocks. Protective Cap or cover placed over top of the sheet pile. May be above ground or below the ground surface. 	 Accurate profile of clay surface needed in order to ensure that seepage below the sheeting does not occur. Cannot visually verify that the sheet pile has been embedded into the low permeability layer, and variation in clay surface at NW adds to concerns with developing that bottom seal. Debris, utilities, and other structures must be removed from the entire alignment prior to installation. 	Common and established technology; multiple contractors qualified to construct; equipment readily available. Sheet pile installation can cause vibrations which may damage sensitive structures. Large obstructions and debris if not effectively removed prior to installation can potentially cause refusal of the sheet piling. Accurate clay surface profile required for effective bottom sealing of piles. Greater potential for seals between sheets to become damaged which may result in leakage.	Potential for damaged seals between sheets could decrease effectiveness of this wall type. Potential for piles to not create wall seal at bottom. Refusal on remaining debris at depth also potential for impeding bottom wall seal. In areas adjacent to collection trench, sheet piles could be designed to provide lateral support of excavation.	 Vibrations and noise during pile installation when working near sensitive features or receptors. Relatively short piles could allow for temporary staging areas in close proximity to working wall alignment. Brought from a main staging area once daily to minimize traffic through the facility or on adjacent public roadways, and for transporting excavated soils for off-site disposal. No working platform required for this wall option. Expected wall construction duration of 6 months. 	\$7.5M to \$13.3M
Option 4 - Cement Bentonite Barrier (Self- Hardening Slurry)		 Cement bentonite, water and other admixtures if needed are mixed and then pumped into the trench as excavation proceeds. Once the excavation is to full depth, the bottom is scraped cleaned of loose soil and cement bentonite silury is allowed to harden. This process continues until a continuous barrier wall is formed. 	Obstructions can often easily be removed when encountered using hydraulic excavator. Excavator can easily manage changes in excavation depth to the termination layer. Verifiable continuity of the key in material (low permeability soil). Proper key into native cally alyer is visually verified. Sudden slurry loss to the formation is possible if a high permeability zone is encountered.	Requires a specialty contractor with experience installing/sequencing this wall type and working with self-hardening slurry. Requires a wide bench/platform for wall construction. No soll (imported or existing) is required. Messy operation and proper containment of slurry and backfill along the working trench is required to ensure a relatively clean site. Bleads or excessive water separation can occur requiring the continuous topping off of the slurry until hardening has occurred which can increase cost. Slow set time of slurry.	Controlled mixing of slurry and consistency of slurry materials allows for an effective groundwater barrier wall, Allows for confirmation of key into clay for bottom seal. Proper sequencing and overlap of wall panels required to ensure consistent wall properties and minimize loss of slurry. Requires frequent cleaning of trench bottom to ensure no buildup of cobbles or larger stones that sink to base.	 Blending area not required for this wall type. Area for soil conditioning prior to off-site disposal should be included to address any excavated soils that do not meet facility acceptance criteria. Truck traffic on existing plant roads, off-site public roads, and new access roads, where necessary, transporting excavated soils for off-site disposal. Batch plant area for slury mixing and pumping to working wall alignment. Working wall platform width of 25 ft. Expected wall construction duration of 5 months. 	\$6.1M to \$10.8M
Option 5 - Soil-Cement Barrier via Trencher		 Advance trencher from ground surface to bottom of fill layer for removal of unsuitable site soils. As trencher progresses along wall alignment, trench is backfill with imported sand. Supporting excavator positioned along alignment for removal of obstructions where trencher is limited. Complete a second pass with the trencher for insitu mixing of the sand backfill, native soils and cement/bentonite. Soils/materials from first trencher pass are transported for off-site disposal. 	 Obstructions in the fill layer will present challenges to thorough mixing. DBO and peat materials also present a challenge for consistent and controllable finished wall properties. Both require removal with a first pass of the trencher (and excavator support where needed) through the fill and peat layers. 	 Requires retainage of specialty contractors that have one-pass trenching capability and equipment. The boom for the trencher has limitations in adjustment during installation. Variable clay surface along the alignment requires adjustment of booms during mixing. 	 Results of treatability testing program indicate that a blend of cement, slag and site soils produces a barrier wall that meets the performance criteria for strength and hydraulic conductivity. Use of imported borrow soils mitigates the concerns of the poor quality site soils. With the consistency of the mix with the borrow site soils during implementation, the performance of the wall as a groundwater barrier is maintained. Confirmation of key into clay for bottom seal difficult with this wall type due to variable clay surface. 	 A blending area not required for this wall type. Area for soil conditioning prior to off-site disposal should be included to address any excavated soils that do not meet facility acceptance criteria. Truck traffic on existing plant roads, off-site public roads, and new access roads, where necessary, transporting excavated soils for off-site disposal. Batch plant area for reagent storage. Working wall platform width of 25 ft. Expected wall construction duration of 5 months. 	\$7.5M to \$13.2M

Appendix E - Subsurface Barrier Options Summary Table Basis of Design Report (Preliminary 30% Design) Perimeter Barrier Remedy BASF North Works Site, Wyandotte, Michigan

Site Understanding Subsurface Conditions/Impacts			Implementation	Considerations			
		General Site Lithology (Ref. Arcadis, Draft Geotechnical Data Report, f Fill material extending from ground surface to 12 to 32 feet below grouu interbedded with crushed concrete, crushed stone, gravel, sand, and cl organics, rubber, coal, glass and brick fragments. Beneath the fill layer, a very soft sit (alluvium) layer is found mostly in 1 thicknesses between 7 and 15 feet. A loose to dense sand layer follow feet. A soft to medium stiff clay layer follows at depths between approv feet and is underlain by glacial till. Groundwater flows toward the Detroit River. Depth to groundwater ran To mitigate potential off-site migration of impacted groundwater, a barri collection trench, along a portion of the eastern Site boundary. The ba boundaries for groundwater control. Barrier wall to extend into clay lay Anticipated total length of barrier wall is approximately 3,200 linear feet Obstructions from former site structures and buried debris may be enco	February 2021): nd surface (ft bgs). The fill consists of distilled blow off (DBO) lay and is mixed with various debris that includes wood, the northern portion, and noted as discontinuous, with vs the alluvium or fill layer, ranging in thickness from 5 to 17 kimately 25 and 44 ft bgs. It's thickness ranges from 21 to 27 inges from 3 to 6 ft bgs. ier system will be installed, in combination with a groundwater rrier wall is also planned along the northern and southern Site er minimum of 3 ft for an effective vertical seal at depth. t. ountered on site during barrier wall installation.	Varying thicknesses of different soils. Fluctuation in depths to clay (Termination boundary). Variability in Fill/Native Soils. Debris/Concrete/Waste. Groundwater - Depth, Quality, COCs, and pH, Utilities, Building Structures, Buikhead Infrastructure. End Use of Property (Barrier Wall Alignment)			
Barrier Wall Alternatives	Diagram	Alternative Description	Geology Considerations	Issues of Installation/Feasibility	Effectiveness	Constructability	Approximate Relative Cost Range
Option 6 - Combination Soil-Cement Barrier and Steel Sheet Piles		 Combines imported soil-cement slurry wall (Option 2) for southeastern wall alignment and sheet pile wall for northern and southern segments (Option 3). North sheet pile alignment (approx. 950 feet) in Perry Place street limits. South sheet pile alignment (approx. 900 feet) mostly along facility side of Desana James Drive. Slurry wall portion is approximately 1,350 feet and offsets the impoundment embankment and shoreline sufficient distance for working platform and equipment operation. 	 Accurate profile of clay surface needed in order to ensure that seepage below the sheeting does not occur. Visual verification of embedment into clay layer possible with slurry wall portion but not for sheet pile segments. Debris, utilities, and other structures must be removed from the sheet pile alignment prior to installation. Slurry wall construction can more easily address obstructions during wall installation. 	Common and established technology; multiple contractors qualified to construct; equipment readily available. Vibrations from sheet pile installation when in close proximity to sensitive structures/utilities. Large obstructions and debris potentially cause refusal of sheet piling above clay surface. Option considers this with slury wall section through deeper fill area (along shoreline) and sheeting where fill layer thickness decreases and lower potential for encountering deeper obstructions. Potential for odors during pre-trenching. Wide bench/platform for slurry wall construction and messy operations mostly limited to BASF property.	Overall both wall types meet performance criteria; sheet pile wall more at risk to leaks from potential issues when installed. Potential for damaged seals between sheets could decrease effectiveness of sheet pile segments. More opportunities for leaks given interlocks at each pile. Potential for piles to not create wall seal at bottom. Refusal on remaining debris at depth also potential for impeding bottom wall seal. Surry wall allows for confirmation of key into clay for bottom seal. Consistency of slurry wall properties with borrow soil mix during implementation.	Vibrations and noise during sheet pile installation when working near sensitive features or receptors. Relatively short piles could allow for temporary staging areas in close proximity to working wall alignment. Working platform for surry wall imited to BASF facility and not in public roadways, reduces disturbance of public roads and time working outside of facility. Central area for mixing/blending of soils/cement in proximity to slurry wall alignment. Expected wall construction duration of 5 months .	\$7.1M to \$12.5M

Legend: Indicates Preferable Aspect Indicates Reasonably Acceptable Aspect Indicates Unsatisfactory Aspect

Notes: If : linear feet

CY: cubic yards Costs should be considered feasibility level with an accuracy within -15% to +50%

Disclaimer: Arcadis prepared these estimates using current and generally accepted engineering cost estimation methods. These estimates are based on assumptions concerning future events, and actual costs may be affected by known and unknown risks, including, but not limited to changes in general economic and business conditions, site conditions, regulatory or enforcement policy changes, and delays in performance. Actual costs may vary from these estimates form an appropriate basis for complying with financial reporting requirements for such costs.

Appendix F

Draft Final Perimeter Barrier Remedy Design Drawing List

Appendix F - Draft Final Interim Barrier Remedy Design Drawing List Basis of Design Report (Preliminary 30% Design) Perimeter Barrier Remedy BASF North Works Site, Wyandotte, Michigan

Discipline	Drawing	Title
General	0154-WYN-G-001	Cover Sheet
	0154-WYN-G-002	Drawing Index
	0154-WYN-G-003	General Notes
Civil	0154-WYN-SITE-C-101	Overall Site Plan
	0154-WYN-B30-C-102	Area A - Proposed Northern Perimeter Sheet Pile Barrier and Collection Drain Alignment
	0154-WYN-E6N-C-103	Area B - Proposed Collection Drain Alignment
	0154-WYN-D15N-C-104	Area C - Proposed Collection Drain Alignment Proposed Bulkhead and Collection Trench Alignment
	0154-WYN-E5N-C-105	Area D - Proposed Bulkhead and Collection Drain Alignment
	0154-WYN-D15S-C-106	Area E - Proposed Bulkhead, Soil-Cement Barrier and Collection Drain Alignment
	0154-WYN-C15S-C-107	Area F - Proposed Southern Perimeter Barrier and Collection Drain Alignment
	0154-WYN-SITE-C108	Traffic Control Plan
	0154-WYN-E5N-C-109	Treatment Building Site Preparations Plan
	0154-WYN-B30-C-110	Area A Site Preparations Plan
	0154-WYN-E6N-C-111	Area B Site Preparations Plan
	0154-WYN-D15N-C-112	Area C Site Preparations Plan
	0154-WYN-E5N-C-113	Area D Site Preparations Plan
	0154-WYN-D15S-C-114	Area E Site Preparations Plan
	0154-WYN-C15S-C-115	Area F Site Preparations Plan
	0154-WYN-E5N-C-116	Treatment Building Site Restoration Plan
	0154-WYN-B30-C-117	Area A Site Restoration Plan
	0154-WYN-E6N-C-118	Area B Site Restoration Plan
	0154-WYN-D15N-C-119	Area C Site Restoration Plan
	0154-WYN-E5N-C-120	Area D Site Restoration Plan
	0154-WYN-D15S-C-121	Area E Site Restoration Plan
	0154-WYN-C15S-C-122	Area F Site Restoration Plan
	0154-WYN-B30-C-201	Area A Plan/Profile - Proposed Northern Upland Barrier Wall and Collection Drain
	0154-WYN-E6N-C-202	Area B Plan/Profile - Proposed Collection Drain
	0154-WYN-D15N-C-203	Area C Plan/Profile - Proposed Collection Drain
	0154-WYN-E5N-C-204	Area D Plan/Profile - Proposed Bulkhead and Collection Drain
	0154-WYN-D15S-C-205	Area E Plan/Profile - Proposed Bulkhead, Eastern Upland Barrier Wall and Collection Trench
	0154-WYN-C15S-C-206	Area F Plan/Profile - Proposed Southern Upland Barrier Wall and Collection Drain
	0154-WYN-E5N-C-207	Potable Water Plan/Profile
	0154-WYN-SITE-C-301	Subsurface Barrier Wall Details - Soil-Cement and Sheet Pile
	0154-WYN-SITE-C-302	Bulkhead Cross Section 1 of 2
	0154-WYN-SITE-C-303	Bulkhead Cross Section 2 of 2
	0154-WYN-SITE-C-500	Upland Barrier Wall Details
	0154-WYN-SITE-C-501	Bulkhead Details 1 of 2
	0154-WYN-SITE-C-502	Bulkhead Details 2 of 2
	0154-WYN-SITE-C-503	Sump and Collection Drain Details
	0154-WYN-SITE-C-504	Civil Details
	0154-WYN-SITE-C-505	Soil Erosion and Sedimentation Control Details 1 of 3
	0154-WYN-SITE-C-506	Soil Erosion and Sedimentation Control Details 2 of 3
	0154-WYN-SITE-C-507	Soil Erosion and Sedimentation Control Details 3 of 3
	0154-WYN-SITE-C-508	Extraction Well Details
	0154-WYN-SITE-C-509	Site Restoration Details
	0154-WYN-Site-C-600	Piping Schedules

Appendix F - Draft Final Interim Barrier Remedy Design Drawing List Basis of Design Report (Preliminary 30% Design) Perimeter Barrier Remedy BASF North Works Site, Wyandotte, Michigan

Discipline	Drawing	Title
Structural	0154-WYN-E5N-S-001	Structural Notes and Abbreviations
	0154-WYN-E5N-S-002	Building Specification Sheet (1 of 2)
	0154-WYN-E5N-S-003	Building Specification Sheet (2 of 2)
	0154-WYN-E5N-S-004	Statement of Special Inspections
	0154-WYN-E5N-S-101	Treatment Building Foundation Plan
	0154-WYN-E5N-S-102	Treatment Building Slab Plan
	0154-WYN-E5N-S-103	Treatment Building Boof Framing Plan
	0154-WYN-SITE-S-104	Sumo Control/Power Panel Foundation Plan
	0154-WYN-E5N-S-300	Treatment Building Section
	0154-WYN-E5N-S-500	Treatment Building Foundation Details (Sheet 1 of 2)
	0154-WYN-E5N-S-501	Treatment Building Foundation Details (Sheet 2 of 2)
	0154-WYN-SITE-S-502	Sump Control/Power Panel Foundation Details
	0154-WYN-E5N-S-503	Pine Sunport Details
	0154-WYN-E5N-S-504	Structural Details (Sheet 1 of 2)
	0154-WYN-E5N-S-505	Structural Details (Sheet 2 of 2)
Architectural	0154 WYN-E5N-A-001	General Notes and Code Information
	0154-W/XN-E5N-A-002	Treatment Building Life Safety Plan
	0154 W/VN E5N A 100	Treatment Building Elect Plan
	0154 W/VN E5N A 101	Treatment Building Pool Plans
	0154 W/VN E5N A 300	Treatment Building Roor Flans
	0154 W/VN EEN A 301	Treatment Building Exterior Elevations
	0154-WTN-E5N-A-301	Treatment Building Well Sections
	0154-WTN-E5N-A-302	Deer Schedule and Datails
	0154-WTN-E5N-A-500	Door Schedule
Process	0154 W/VN EEN L001	Presses Flaw Discrem Lessed Cumbola and Abbraviations Chest 1
1100633	0154 W/VN E5N L002	Process Flow Diagram Legend, Symbols and Abbreviations Sheet 1
	0154-WTN-E5N-1-002	Process Flow Diagram Legend, Symbols and Abbreviations Sheet 2
	0154-WTN-E5N-I-100	Process Flow Diagram
	0154-WTN-E5N-I-101	Process Flow Diagram - Mass Balance
	0154 W/VN E5N L 103	Piping & Instrumentation Diagram - Sump Pumping Flow Headers
	0154-WTN-E5N-1-103	Piping & Instrumentation Diagram - Chemical Injection and Clarification
	0154-WTN-E5N-1-104	Piping & Instrumentation Diagram - Filtration Feed and Bag Filters
	0154-WTN-E5N-1-105	Piping & Instrumentation Diagram - GAC Vessels and System Discharge
	0154-WTIN-EDIN-I-100	Piping & Instrumentation Diagram - Chemical Feed
Machanical	0154-WTIN-EDN-I-107	Piping & Instrumentation Diagram - Solids Removal
Wechanica	0154-WYIN-ESN-M-001	Mechanical Legend and Abbreviations
	0154-WYN-E5N-M-100	Treatment Building General Arrangement Plan
	0154-WYN-E5N-M-101	Equalization Tank, Neutralization Tank, and Sludge Holding Tank Layout Plan
	0154-WYN-E5N-M-102	Chemical Storage Layout Plan
	0154-WYN-E5N-M-103	LGAC and Resin Layout Plan
	0154-WYN-E5N-M-104	Bag Filtration and Pump Out Tank Layout Plan
	0154-WYN-E5N-M-105	Sump Layout Plan
	0154-WYN-E5N-M-300	Equalization Tank, Neutralization Tank, and Sludge Holding Tank Layout Sections
	0154-WYN-E5N-M-301	LGAC and Resin Sections
	0154-WYN-E5N-M-302	Bag Filtration and Pump Out Tank Sections
	0154-WYN-E5N-M-303	Sump Section
	0154-WYN-E5N-M-500	Metals Treatment Details
	0154-WYN-E5N-M-501	LGAC and Resin Details
	0154-WYN-E5N-M-600	Tank Nozzle Schedules
	0154-WYN-E5N-M-601	
	0154-WYN-E5N-M-602	
	0154-WYN-E5N-M-603	
	0154-WYN-E5N-M-604	
	0154-WYN-E5N-M-605	
	0154-WYN-E5N-M-900	Mechanical Isometric 1
	0154-WYN-E5N-M-901	Mechanical Isometric 2

Appendix F - Draft Final Interim Barrier Remedy Design Drawing List Basis of Design Report (Preliminary 30% Design) Perimeter Barrier Remedy BASF North Works Site, Wyandotte, Michigan

Discipline	Drawing	Title
HVAC	0154-WYN-E5N-H-001	HVAC Notes and Abbreviations
	0154-WYN-E5N-H-002	HVAC Specifications
	0154-WYN-E5N-H-100	HVAC Floor Plan
	0154-WYN-E5N-H-500	HVAC Details
	0154-WYN-E5N-H-600	HVAC Schedules, Sequence of Operations, and Air Flow Diagram
Plumbing	0154-WYN-E5N-PL-001	Plumbing Notes and Legend
	0154-WYN-E5N-PL-100	Overall Building Plan
	0154-WYN-E5N-PL-101	Enlarged Plans
Electrical	0154-WYN-E5N-E-001	Symbols and Legend
	0154-WYN-E5N-E-101	Treatment Building Power Plan
	0154-WYN-E5N-E-102	Treatment Building Instrumentation Plan
	0154-WYN-E5N-E-103	Treatment Building Grounding Plan
	0154-WYN-E5N-E-104	Area A/B Sump Power Plans
	0154-WYN-E5N-E-105	Area C/D Sump Power Plans
	0154-WYN-E5N-E-106	Area E/F Sump Power Plans
	0154-WYN-E5N-E-300	Sump Power Elevation View
	0154-WYN-E5N-E-600	Treatment Building One-Line Diagram
	0154-WYN-E5N-E-601	Sump One-Line Diagram
	0154-WYN-E5N-E-602	Treatment Building Control Panel Wiring Diagram
	0154-WYN-E5N-E-603	Sump Control Panel Wiring Diagram
	0154-WYN-E5N-E-604	Treatment Building Conduit and Cable Schedule
	0154-WYN-E5N-E-605	Sump Conduit and Cable Schedule
	0154-WYN-E5N-E-606	Load Schedules
	E-10	
Controls	0154-WYN-E5N-I-200	MCP Main Control Panel Enclosure
Element of Letters	0154-WYN-E5N-I-201	Main Control Panel Layout and BOM
	0154-WYN-SITE-I-202	Sump Control Panel Enclosure
	0154-WYN-SITE-I-203	Sump Control Panel Layout and BOM
	0154-WYN-SITE-I-204	Communication Network Diagram
	0154-WYN-SITE-I-205	MCE 380 VAC Power Distribution
	0154-WYN-SITE-I-206	MCP Power Distribution

Appendix G

Perimeter Barrier Treatment System Specifications

DIVISION 01:	GEN	ERAL REQUIREMENTS	BARRIER	SYSTEM	CONVEYANCE
Section 01	400	Quality Control	\boxtimes		
Section 01	650	Checkout and Startup Procedures			
Section 01	730	Operation and Maintenance Data			
DIVISION 02:	SITE	CONSTRUCTION	BARRIER	SYSTEM	CONVEYANCE
Section 02	100	Surveying	\boxtimes	\boxtimes	\boxtimes
Section 02	120	Geotechnical Monitoring Instrumentation	\boxtimes		\boxtimes
Section 02	110	Clearing, Grubbing, and Stripping	\boxtimes	\boxtimes	\boxtimes
Section 02	200	Earthwork	\boxtimes		\boxtimes
Section 02	225	Compacted Clay Liner	\boxtimes		
Section 02	230	Aggregate Base	\boxtimes		\boxtimes
Section 02	235	Asphalt Concrete		\boxtimes	
Section 02	240	Soil-Cement Barrier Wall	\mathbf{X}		
Section 02	270	Surface Water Management and Erosion Control			
Section 02	271	Resuspension Control	\boxtimes		
Section 02	321	Trench Excavation and Backfill	\boxtimes		\boxtimes
Section 02	325	Dredging	\boxtimes		
Section 02	360	Steel Sheet Piling	\mathbf{X}		
Section 02	427	Bank Protection	\boxtimes		
Section 02	630	Drainage Structures and Piping			
0000011 02					
Section 02	760	Pavement Markings			
Section 02 DIVISION 03:	760	Pavement Markings			
Section 02 DIVISION 03: Section 03	760 CON 100	Pavement Markings CRETE Concrete Formwork	□ BARRIER ⊠	SYSTEM	
Section 02 DIVISION 03: Section 03 Section 03	760 CON 100 200	Pavement Markings CRETE Concrete Formwork Concrete Reinforcement	□ BARRIER ⊠ ⊠	SYSTEM	
Section 02 DIVISION 03: Section 03 Section 03	760 CON 100 200 300	Pavement Markings CRETE Concrete Formwork Concrete Reinforcement Cast-in-Place Concrete	□ BARRIER ⊠ ⊠	SYSTEM SYSTEM S	
Section 02 DIVISION 03: Section 03 Section 03 Section 03 Section 03	760 CON 100 200 300 346	Pavement Markings CRETE Concrete Formwork Concrete Reinforcement Cast-in-Place Concrete Concrete Slab Finishing	BARRIER M M M M M M	SYSTEM SUSTEM	
Section 02 DIVISION 03: Section 03 Section 03 Section 03 Section 03 Section 03	760 CON 100 200 300 346 370	Pavement Markings CRETE Concrete Formwork Concrete Reinforcement Cast-in-Place Concrete Concrete Slab Finishing Concrete Curing	BARRIER M M M M M M M M M M	SYSTEM SYSTEM S S S S S S S S	CONVEYANCE
Section 02 DIVISION 03: Section 03 Section 03 Section 03 Section 03 Section 03 Section 03	760 CON 100 200 300 346 370 500	Pavement Markings CRETE Concrete Formwork Concrete Reinforcement Cast-in-Place Concrete Concrete Slab Finishing Concrete Curing Precast Concrete	BARRIER	SYSTEM SYSTEM S S S S S S S S S S S S S S S S S S S	CONVEYANCE
Section 02 DIVISION 03: Section 03 Section 03 Section 03 Section 03 Section 03 Section 03 Section 03	760 CON 100 200 300 346 370 500 NOT	Pavement Markings CRETE Concrete Formwork Concrete Reinforcement Cast-in-Place Concrete Concrete Slab Finishing Concrete Curing Precast Concrete USED	BARRIER M M M M M M M M M M M M M	SYSTEM SYSTEM S S S S S S S S S S S S S S S S S S S	CONVEYANCE
Section 02 DIVISION 03: Section 03 Section 03 Section 03 Section 03 Section 03 Section 03 DIVISION 04: DIVISION 05:	760 CON 100 200 300 346 370 500 NOT MET	Pavement Markings CRETE Concrete Formwork Concrete Reinforcement Cast-in-Place Concrete Concrete Slab Finishing Concrete Curing Precast Concrete USED ALS	BARRIER	SYSTEM	
Section 02 DIVISION 03: Section 03 Section 03 Section 03 Section 03 Section 03 Section 03 DIVISION 04: DIVISION 05: Section 05	760 CON 100 200 300 346 370 500 NOT MET 120	Pavement Markings CRETE Concrete Formwork Concrete Reinforcement Cast-in-Place Concrete Concrete Slab Finishing Concrete Curing Precast Concrete USED ALS Structural Steel	BARRIER	SYSTEM SYSTEM SYSTEM	
DIVISION 03: Section 03 Section 03 Section 03 Section 03 Section 03 Section 03 DIVISION 04: DIVISION 05: Section 05	760 CON 100 200 300 346 370 500 NOT MET 120 410	Pavement Markings CRETE Concrete Formwork Concrete Reinforcement Cast-in-Place Concrete Concrete Slab Finishing Concrete Curing Precast Concrete USED ALS Structural Steel Cold Formed Metal Framing	BARRIER	SYSTEM	CONVEYANCE
Section 02 DIVISION 03: Section 03 Section 03 Section 03 Section 03 Section 03 Section 03 DIVISION 04: DIVISION 05: Section 05 Section 05	760 CON 100 200 300 346 370 500 NOT MET 120 410 500	Pavement Markings CRETE Concrete Formwork Concrete Reinforcement Cast-in-Place Concrete Concrete Slab Finishing Concrete Curing Precast Concrete USED ALS Structural Steel Cold Formed Metal Framing Metal Fabrication	BARRIER	SYSTEM SYSTEM SYSTEM SYSTEM SYSTEM S	CONVEYANCE
DIVISION 03: Section 03 Section 03 Section 03 Section 03 Section 03 Section 03 Section 03 DIVISION 04: DIVISION 05: Section 05 Section 05 Section 05 Section 05	760 CON 100 200 300 346 370 500 NOT MET 120 410 500 501	Pavement Markings CRETE Concrete Formwork Concrete Reinforcement Cast-in-Place Concrete Concrete Slab Finishing Concrete Curing Precast Concrete USED ALS Structural Steel Cold Formed Metal Framing Metal Fabrication Anchor Bolts and Anchors	BARRIER	SYSTEM	CONVEYANCE
DIVISION 03: Section 03 Section 03 Section 03 Section 03 Section 03 Section 03 Section 03 DIVISION 04: DIVISION 05: Section 05 Section 05 Section 05 Section 05 Section 05	760 CON 100 200 300 346 370 500 NOT MET 120 410 500 501 510	Pavement Markings CRETE Concrete Formwork Concrete Reinforcement Cast-in-Place Concrete Concrete Slab Finishing Concrete Curing Precast Concrete USED ALS Structural Steel Cold Formed Metal Framing Metal Fabrication Anchor Bolts and Anchors Metal Stairs	BARRIER	SYSTEM	CONVEYANCE
Section 02 DIVISION 03: Section 03 Section 03 Section 03 Section 03 Section 03 Section 03 DIVISION 04: DIVISION 05: Section 05 Section 05 Section 05 Section 05 Section 05 Section 05	760 CON 100 200 300 346 370 500 NOT MET 120 410 500 501 510	Pavement Markings CRETE Concrete Formwork Concrete Reinforcement Cast-in-Place Concrete Concrete Slab Finishing Concrete Curing Precast Concrete USED ALS Structural Steel Cold Formed Metal Framing Metal Fabrication Anchor Bolts and Anchors Metal Stairs Aluminum Stairs	BARRIER	SYSTEM SYSTEM SYSTEM SYSTEM SYSTEM SYSTEM SYSTEM SYSTEM SYSTEM	CONVEYANCE
DIVISION 03: Section 03 Section 03 Section 03 Section 03 Section 03 Section 03 Section 03 DIVISION 04: DIVISION 05: Section 05 Section 05 Section 05 Section 05 Section 05 Section 05 Section 05 Section 05 Section 05	760 100 200 300 346 370 500 NOT MET. 120 410 500 501 511 520	Pavement Markings CRETE Concrete Formwork Concrete Reinforcement Cast-in-Place Concrete Concrete Slab Finishing Concrete Curing Precast Concrete USED ALS Structural Steel Cold Formed Metal Framing Metal Fabrication Anchor Bolts and Anchors Metal Stairs Aluminum Stairs Handrails and Railings	BARRIER	SYSTEM	CONVEYANCE
DIVISION 03: Section 03 Section 03 Section 03 Section 03 Section 03 Section 03 Section 03 DIVISION 04: DIVISION 05: Section 05 Section 05 Section 05 Section 05 Section 05 Section 05 Section 05 Section 05 Section 05 Section 05	760 CON 100 200 300 346 370 500 NOT MET 120 410 500 501 511 520 531	Pavement Markings CRETE Concrete Formwork Concrete Reinforcement Cast-in-Place Concrete Concrete Slab Finishing Concrete Slab Finishing Precast Concrete USED ALS Structural Steel Cold Formed Metal Framing Metal Fabrication Anchor Bolts and Anchors Metal Stairs Aluminum Stairs Handrails and Railings Gratings and Floor Plates	BARRIER	SYSTEM SYSTEM SYSTEM SYSTEM SYSTEM SYSTEM SYSTEM SYSTEM SYSTEM	CONVEYANCE

DIVISION 06: WOO	DD AND PLASTICS	BARRIER	SYSTEM	CONVEYANCE
Section 06100	Rough Carpentry		\boxtimes	
Section 06410	Plastic Laminate and Clad Wood Cabinets			
DIVISION 07: THE	RMAL AND MOISTURE PROTECTION	BARRIER	SYSTEM	CONVEYANCE
Section 07210	Building Insulation		\boxtimes	
Section 07920	Joint Sealants			
DIVISION 08: DOC	RS AND WINDOWS	BARRIER	SYSTEM	CONVEYANCE
Section 08110	Standard Interior Steel Doors and Frames		\boxtimes	
DIVISION 09: FINIS	SHES	BARRIER	SYSTEM	CONVEYANCE
Section 09260	Gypsum Board		\boxtimes	
Section 09510	Acoustical Panel Ceilings			
Section 09655	Fluid-Applied Flooring		\boxtimes	
Section 09900	Painting		\boxtimes	
DIVISION 10: SPE	CIALTIES	BARRIER	SYSTEM	CONVEYANCE
Section 10155	Metal Toilet Compartments			
Section 10500	Lockers			
Section 10522	Portable Fire Protection Specialties		X	
Section 10800	Toilet and Bath Accessories			
DIVISION 11: EQU	IPMENT	BARRIER	SYSTEM	CONVEYANCE
Section 11180	Multimedia Filter System			
Section 11250	Filters and Strainers		\boxtimes	
Section 11310	Pumps, Metering Pumps, and		1571	
	Appurtenances		×	×
Section 11316	Appurtenances Submersible Mixing Equipment			
Section 11316 Section 11351	Appurtenances Submersible Mixing Equipment Clarifiers			
Section 11316 Section 11351 Section 11377	Appurtenances Submersible Mixing Equipment Clarifiers Air Compressors			
Section 11316 Section 11351 Section 11377 Section 11414	Appurtenances Submersible Mixing Equipment Clarifiers Air Compressors Hydrated Lime Feed System			
Section 11316 Section 11351 Section 11377 Section 11414 Section 11522	Appurtenances Submersible Mixing Equipment Clarifiers Air Compressors Hydrated Lime Feed System Plate and Frame Filter Press			
Section 11316 Section 11351 Section 11377 Section 11414 Section 11522 Section 11610	Appurtenances Submersible Mixing Equipment Clarifiers Air Compressors Hydrated Lime Feed System Plate and Frame Filter Press Blowers			
Section 11316 Section 11351 Section 11377 Section 11414 Section 11522 Section 11610 Section 11631	Appurtenances Submersible Mixing Equipment Clarifiers Air Compressors Hydrated Lime Feed System Plate and Frame Filter Press Blowers Aeration Diffusers			
Section 11316 Section 11351 Section 11377 Section 11414 Section 11522 Section 11610 Section 11631 Section 11720	Appurtenances Submersible Mixing Equipment Clarifiers Air Compressors Hydrated Lime Feed System Plate and Frame Filter Press Blowers Aeration Diffusers Granulated-Activated Carbon System			
Section 11316 Section 11351 Section 11377 Section 11414 Section 11522 Section 11610 Section 11631 Section 11720 Section 11730	Appurtenances Submersible Mixing Equipment Clarifiers Air Compressors Hydrated Lime Feed System Plate and Frame Filter Press Blowers Aeration Diffusers Granulated-Activated Carbon System Vapor Phase Granular-Activated Carbon System			
Section 11316 Section 11351 Section 11377 Section 11414 Section 11522 Section 11610 Section 11631 Section 11720 Section 11730	Appurtenances Submersible Mixing Equipment Clarifiers Air Compressors Hydrated Lime Feed System Plate and Frame Filter Press Blowers Aeration Diffusers Granulated-Activated Carbon System Vapor Phase Granular-Activated Carbon System Ion Exchange Equipment			
Section 11316 Section 11351 Section 11377 Section 11414 Section 11522 Section 11610 Section 11631 Section 11720 Section 11730 Section 11776	Appurtenances Submersible Mixing Equipment Clarifiers Air Compressors Hydrated Lime Feed System Plate and Frame Filter Press Blowers Aeration Diffusers Granulated-Activated Carbon System Vapor Phase Granular-Activated Carbon System Ion Exchange Equipment		⊠ ⊠ □ □ □ □ □ □ □ □ □ □ □ □ □	
Section 11316 Section 11351 Section 11377 Section 11414 Section 11522 Section 11610 Section 11631 Section 11720 Section 11730 Section 11776	Appurtenances Submersible Mixing Equipment Clarifiers Air Compressors Hydrated Lime Feed System Plate and Frame Filter Press Blowers Aeration Diffusers Granulated-Activated Carbon System Vapor Phase Granular-Activated Carbon System Ion Exchange Equipment		⊠ ⊠ □ □ □ □ SYSTEM □	■ □ □ □ □ □ □ □ CONVEYANCE □

DIVISION 13: SPE	CIAL CONSTRUCTION	BARRIER	SYSTEM	CONVEYANCE
Section 13122	Metal Building Systems		\boxtimes	
Section 13123	Equipment Container			
Section 13124	Pre-Fabricated Metal Building			
Section 13201	Fiberglass Reinforced Plastic Tanks			
Section 13202	Steel Storage Tanks			
Section 13203	Polyethylene Storage Tanks		\boxtimes	
Section 13700	Fabric Enclosure			
DIVISION 14: CON	VEYANCE SYSTEMS	BARRIER	SYSTEM	CONVEYANCE
Section 14630	Bridge Cranes			
DIVISION 15: MEC	CHANICAL	BARRIER	SYSTEM	CONVEYANCE
Section 15050	Process Piping and Appurtenances		\boxtimes	\boxtimes
Section 15083	Heat Tracing System for Process Piping and Equipment			
Section 15100	Valves, Flow Controls and Appurtenances		\boxtimes	\boxtimes
Section 15135	Gauges and Meters		\boxtimes	\boxtimes
Section 15190	Mechanical Identification		\boxtimes	\boxtimes
Section 15260	Piping Insulation			
Section 15290	Ductwork Insulation		\boxtimes	
Section 15330	Wet-Pipe Sprinkler System		\boxtimes	
Section 15410	Plumbing Piping		\boxtimes	
Section 15430	Plumbing Specialties		\boxtimes	
Section 15440	Plumbing Fixtures		\boxtimes	
Section 15450	Plumbing Equipment		\boxtimes	
Section 15650	Split System Fan Coil Units		\boxtimes	
Section 15836	Electric Space Heating		\boxtimes	
Section 15870	Power Ventilators		\boxtimes	
Section 15890	Ductwork		\boxtimes	
Section 15910	Ductwork Accessories		\boxtimes	
Section 15911	Duct Heating System - Electric		\boxtimes	
Section 15940	Air Outlets and Inlets		\boxtimes	
Section 15941	Louvers		\boxtimes	
Section 15981	Electrical Instruments and Control Elements			
Section 15985	Sequence of Operation		\boxtimes	
Section 15990	Testing, Adjusting and Balancing			

DIVISION 16: ELE	BARRIER	SYSTEM	CONVEYANCE	
Section 16050	General Provisions for Electrical Systems		\boxtimes	\boxtimes
Section 16070	Hangers and Supports for Electrical Systems			
Section 16075	Identification for Electrical Systems		\boxtimes	\boxtimes
Section 16121	Instrumentation Cable			
Section 16122	Low-Voltage Electrical Power Conductors and Cable		\boxtimes	
Section 16130	Outlets, Junctions, and Pull Boxes		\boxtimes	\boxtimes
Section 16131	Rigid and Flexible Conduit		\boxtimes	\boxtimes
Section 16139	Cable Trays		\boxtimes	
Section 16143	Disconnect Switches		\boxtimes	
Section 16161	Grounding Systems, Lightning Protection System and Surge Protection Devices			
Section 16271	Dry Type Transformers		\boxtimes	
Section 16423	Motor Control Centers		\boxtimes	
Section 16425	Low-Voltage Variable Frequency Drives		\boxtimes	\boxtimes
Section 16440	Panelboards		\boxtimes	
Section 16445	Instrumentation and Controls for Process Systems			
Section 16447	Fiber Optic Cabling			
Section 16501	Lighting		\boxtimes	

Note:

Where specification applies to multiple components of the remedy, a single specification will be provided

Arcadis of Michigan, LLC 28550 Cabot Drive, Suite 500 Novi Michigan 48377 Phone: 248 994 2240

www.arcadis.com