

Planned Updates to Ammonia (NH₃) and Nitrous Oxide (N₂O) in MOVES4

MOVES4 Data & Analysis Webinar July 20, 2023

AMMONIA

Background

- Nationally, ammonia (NH₃) emissions are dominated by agricultural activities. In urban areas, onroad emissions are a much larger source.
- Vehicles emit NH₃ as an unintended byproduct from catalytic systems.
 - In heavy-duty (HD) vehicles, via overdosing of urea in Selective Catalytic Reduction systems ("ammonia slip")
 - In light-duty (LD) vehicles, via reduction of NO to NH₃ in threeway catalytic converters under fuel rich conditions.
- NH_3 is an important contributor to secondary $PM_{2.5}$.

Motivation

- Literature suggests that combustion-related sources of NH₃ are underestimated globally⁽¹⁾.
- In the US, several studies using different methodologies argue that mobile-source NH_3 inventories in urban areas are underestimated by $2x-3x^{(2,3,4)}$.
- MOVES3 (and earlier versions) include NH₃ rates based on a 2001 study on a small number of vehicles.

Data Sources

Remote Sensing Measurements

- <u>LD gasoline update</u>: over 335,000 light-duty gasoline NH₃ observations gathered by University of Denver⁽⁵⁾
- <u>HD diesel update</u>: measurements of NH₃ from over 900 diesel trucks characterized by model year (MY) and aftertreatment system measured in Caldecott Tunnel, Oakland, CA⁽⁶⁾
- For alternative-fueled vehicles (e.g., HD compressed natural gas (CNG), LD Ethanol (E85)), we made assumptions based on available data.

Overall Methodology

Example NH₃ Emission Rates for HD vehicles

- For both LD and HD updates based on RSD observations:
 - 1. We averaged observed fuel-based NH_3 rates by model year (MY) groups and regulatory class (\overline{FER}).
 - 2. We converted these averages to time-based rates (g/hour) using appropriate fuel consumption rates grouped by operating mode, MY and regulatory class.
 - 3. Age effects were applied only for LD NH_3 since the depth of the dataset allowed it.

 $\overline{ER}_{reg,MY,age,op} = Fuel Rates_{reg,MY,op} \times \overline{FER}_{reg,MY,age}$

Results – LD NH₃

- The new emission rates capture the observed magnitude and trend
 - MOVES3 rates are significantly lower across all MY.
- This dataset provided information to update NH₃ emission rates for MY1990-2018 light-duty vehicles.
 - In MOVES4, future MY rates are kept at 2018 levels.

Results – HD NH₃ (1 of 2)

 Preble et al⁽⁶⁾ presents tunnel measurements of NH₃ from HD trucks grouped by engine model year and emissions aftertreatment.

	Engine	NH ₃ (g/kg) fuel-	Number	Model year
Aftertreatment	Model	based emission	of	ranges used
	Year	rate	vehicles	in MOVES
No DPF	1965-2003	0.02 ± 0.02	62	1960-2003
No DPF	2004-2006	0.00 <u>+</u> 0.01	24	2004-2006
DPF	2007-2009	0.00 <u>+</u> 0.01	181	2007-2009
DPF + SCR	2010-2018	0.18 ± 0.07	547	2010-2060
Retrofit DPF	1994-2006	0.01 <u>+</u> 0.01	114	Not used

 We assigned to MY ranges used in MOVES and, using the same approach as for LD, converted to g/hour operating mode rates.

Results – HD NH₃ (2 of 2)

- The new MOVES4 HD rates are lower than MOVES3 rates for <MY2010.
- For MY2010+, the new MOVES4 rates are considerably higher.
- MY2010-2018 rates applied for MY2019 and later.

Distance-based NH₃ Emission Rates* for HD diesel vehicles

*rates shown for CY2023 for a nationally representative operating mode distribution

Expected Inventory Impact

- MOVES4 will increase NH₃ emissions for both LD and HD vehicles
 - We expect that the increase in NH₃ emissions will be larger for past calendar years.
 - The difference will be less important in future years
 - LD gasoline emissions will continue to dominate the onroad NH₃ inventory

National Onroad NH₃ Inventory

NITROUS OXIDE (N₂O)

Background

- N₂O is a long-lived greenhouse gas emitted during combustion and as a byproduct from catalytic systems.
- Nationally, agriculture dominates the N₂O inventory. Transportation does not constitute a significant source.
 - On a CO₂ equivalent basis, onroad GHGs are dominated by CO₂
- Study⁽⁶⁾ used for HD NH₃ updates also provided N₂O measurements.
- We followed the same methodology presented earlier for updating NH₃ emissions

Results – HD N₂O (1 of 2)

- Similar to NH₃, Preble et al⁽⁶⁾ presents N₂O measurements taken in 2015 at Port Oakland, grouped by engine model year and aftertreatment
- We use this to update N₂O running emission rates for diesel vehicles for MY2004+

Aftertreatment	Engine Model	N ₂ O (g/kg) fuel-	Number of
Altertreatment	Year	based emission rate	vehicles
No DPF	2004-2006	0.07 <u>+</u> 0.06	11
DPF	2007-2009	0.06 <u>+</u> 0.01	866
DPF + SCR	2010-2016	0.44 ± 0.11	300

Results – HD N₂O (2 of 2)

- MOVES4 rates are considerably higher for all HD regulatory classes.
- MOVES4 estimates zero start emissions for N₂O since laboratory data indicates that the start contribution to total tailpipe N₂O emissions is negligible.
 - No APU or extended idle N₂O emissions are modeled.

Distance-based N₂O Emission Rates* for HD vehicles

- MOVES3.1 - MOVES4

*rates shown by regulatory class for CY2023 for a nationally representative operating mode distribution

Expected Inventory Impact

- MOVES4 expected to increase N₂O emissions*
 - LD gasoline dominate N₂O emissions in past years.
 - HD diesel dominates N₂O emissions in current and future years.

(*) Note that on a CO_2 equivalent basis, onroad GHGs are dominated by CO_2 ; thus, changes in N_2O have a small overall impact on onroad GHGs

National Onroad N₂O Inventory

Summary

- MOVES4 incorporates updates to NH₃ running emission rates based on remote sensing measurements for thousands of lightduty gasoline vehicles and hundreds of heavy-duty trucks.
 - We expect an increase of NH₃ emissions for past years, and less impact for future years.
- MOVES4 also includes updates to N₂O running emissions based on remote sensing of heavy-duty trucks.
 - We expect a large increase in N₂O emissions from HD vehicles for future years, but not a significant impact to the overall onroad GHG contribution.

References

- 1. Chen, Z.L. et al. Significant contributions of combustion-related sources to ammonia emissions. Nat Commun 13, 7710 (2022), https://doi.org/10.1038/s41467-022-35381-4
- 2. Walters, W. W., et al: Quantifying the importance of vehicle ammonia emissions in an urban area of northeastern USA utilizing nitrogen isotopes, Atmos. Chem. Phys., 22, 13431–13448, (2022), https://doi.org/10.5194/acp-22-13431-2022
- **3.** Sun K. et al. Vehicle Emissions as an Important Urban Ammonia Source in the United States and China, Environmental Science & Technology 51 (4), 2472-2481, (2017), <u>https://doi.org/10.1021/acs.est.6b02805</u>
- 4. Cao H. et al., COVID-19 Lockdowns Afford the First Satellite-Based Confirmation That Vehicles Are an Under-recognized Source of Urban NH3 Pollution in Los Angeles, Environmental Science & Technology Letters (2022) 9 (1), 3-9, <u>https://doi.org/10.1021/acs.estlett.1c00730</u>
- 5. Fuel Efficiency Automobile Test Data Repository | University of Denver Research | Digital Commons @ DU, <u>https://digitalcommons.du.edu/feat/</u>
- 6. Preble C. et al., Control Technology-Driven Changes to In-Use Heavy-Duty Diesel Truck Emissions of Nitrogenous Species and Related Environmental Impacts, Environmental Science & Technology 2019 53 (24), 14568-14576, https://doi.org/10.1021/acs.est.9b04763

