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Per- and polyfluoro-alkyl substances (PFAS) 

 Per- and polyfluoro-alkyl substances (PFAS) are a 
large and diverse class of organic chemicals in which 
all (per-) or some (poly-) carbon–hydrogen bonds 
have been replaced with carbon–fluorine bonds 
(DeWitt, 2015)

 Since carbon–fluorine bonds are stronger, they help 
make PFAS resistant to metabolism and degradation 
(Buck et al., 2012)

 PFAS are commonly found in human tissues 
(DeWitt, 2015)

Perfluorooctanoic
Acid

Octanoic
Acid

Schwidetzky, et al. (2021)
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Toxicokinetic Half-Life (t½)  for PFAS

 PFAS are commonly found in human tissues (DeWitt, 2015)

 Toxicokinetic (TK) half-life (t½) is the amount of time needed for 50% of the chemical 
to be eliminated from the body.

 t½ is used to extrapolate from toxicological effects observed in animal species 
(Wambaugh et al., 2013) and to understand human exposure 
(Egeghy et al., 2011; Chiu et al., 2022)

 Some PFAS have been noted as having long t½ (several years in humans)
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Issues with PFAS TK Half-Lives

 Typical extrapolation methods for TK parameters of PFAS are unreliable between species and chemicals 
(Wambaugh et al., 2013; Pizzurro et al., 2019)

 PFAS have both hydrophobic and lipophobic properties (Rao et al., 1994)
 For non-PFAS many TK properties are scaled by octanol:water ratio – may not work here
 Only a dozen PFAS with human measured half-life

 The t½ of perfluorohexanoic acid (PFHxA), for example, appears to scale allometrically (proportional to 
species weight) across mice, rats, monkeys, and humans (Russell et al., 2013)

 In contrast, the t½ of the perfluorooctanoic acid (PFOA) spans:
a few hours in female rats
days in male rats
30–130 days in mice and monkeys
2–4 years in humans

 This large variation for PFOA occurs despite its structural similarity to PFHxA.

PFHxA PFOA
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Half-Lives and Exposure

Dose-Response
(Toxicokinetics)

 Knowledge of chemical-specific t½ is necessary for relating environmental concentrations of PFAS with 
concentrations in the body tissues

 Using t½ and an estimate of how the chemical distributes within the body can:
1) Predict blood PFAS levels from known external exposures, or
2) Estimate external exposures from known blood PFAS levels
(This is an empirical one compartment TK model)

 Widespread PFAS exposure from the environment and long half-lives result in the potential for 
bioaccumulation, as rates of uptake may exceed rates of excretion (Arnot et al., 2006)

 Given the failure of typical approaches for the inter-species or inter-chemical extrapolation of 
PFAS t½, and the importance of this parameter for understanding the impact of these chemicals in the 
environment, a new approach is needed.



6 of 46 Office of Research and Development

Machine Learning:  
A Subset of Artificial Intelligence

“…machine 
learning can be 
thought of as 
inferring plausible 
models to explain 
observed data.”

At the EPA we are applying publicly available machine learning algorithms to 
bridge data gaps and draw inferences from complex data sets.
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 Machine learning may be more easy to use for categorical predictions

Machine Learning Overview

Machine learning image generator prompted for:
“young people at party”
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 Machine learning may be more easy to use for categorical predictions

Machine Learning Overview

How many fingers do these 
generated people have?

Machine learning image generator prompted for:
“young people at party”
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 Machine learning may be more easy to use for categorical predictions

Machine Learning Overview

Advertisements that show up browsing web 
after searching for 

“brown plaid dress jacket”

Machine learning image generator prompted for:
“young people at party”
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 There are many different machine learning technologies, most require some 
sort of training set

 In supervised machine learning, there is labeled training data:  examples 
annotated with descriptors

Machine Learning Overview

Shirts

Pants

Training Set
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 Let’s focus on supervised machine learning, where there is labeled training data
 labeled examples are annotated with descriptors

Shirts

Pants

Training Set

Examples are labeled

Example Class

1 Shirt

2 Shirt

3 Shirt

4 Shirt

5 Pants

6 Pants

7 Pants

8 Pants

Overview of Supervised Machine Learning
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 Let’s focus on supervised machine learning, where there is labeled training data
 labeled examples are annotated with descriptors

Shirts

Pants

Training Set

Examples are labeled

Example Class

1 Shirt

2 Shirt

3 Shirt

4 Shirt

5 Pants

6 Pants

7 Pants

8 Pants

Overview of Supervised Machine Learning
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Shirts

Pants

Training Set

Descriptors

Example Class Color Buttons Stripes

1 Shirt Blue 1 0

2 Shirt Red 8 0

3 Shirt Blue 8 1

4 Shirt Green 0 0

5 Pants Khaki 1 0

6 Pants Blue 1 0

7 Pants Black 1 0

8 Pants Blue 4 0

 Let’s focus on supervised machine learning, where there is labeled training data
 labeled examples are annotated with descriptors

Overview of Supervised Machine Learning



14 of 46 Office of Research and Development

 To train a machine learning model we make choices about what descriptors to include
 Sometimes the descriptors we want are unavailable
 Further, it is possible that some (or all!) of the available descriptors are not relevant

Shirts

Pants

Training Set

Example Class Color Buttons Stripes

1 Shirt Blue 1 0

2 Shirt Red 8 0

3 Shirt Blue 8 1

4 Shirt Green 0 0

5 Pants Khaki 1 0

6 Pants Blue 1 0

7 Pants Black 1 0

8 Pants Blue 4 0

Descriptors

Overview of Supervised Machine Learning
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Shirts

Pants

Training Set

Example Class Color Buttons Stripes Holes Pockets

1 Shirt Blue 1 0 4 0

2 Shirt Red 8 0 4 0

3 Shirt Blue 8 1 4 0

4 Shirt Green 0 0 4 0

5 Pants Khaki 1 0 3 2

6 Pants Blue 1 0 3 2

7 Pants Black 1 0 3 2

8 Pants Blue 4 0 3 2

Descriptors

 It is possible that some (or all!) of the available descriptors are not relevant
 Machine learning methods identify the descriptors and values that help make the best predictions

Overview of Supervised Machine Learning
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 It is possible that some (or all!) of the available descriptors are not relevant
 Machine learning methods identify the descriptors and values that help make the best predictions

These descriptors both 
distinguish pants from shirts

Shirts

Pants

Training Set

Example Class Color Buttons Stripes Holes Pockets

1 Shirt Blue 1 0 4 0

2 Shirt Red 8 0 4 0

3 Shirt Blue 8 1 4 0

4 Shirt Green 0 0 4 0

5 Pants Khaki 1 0 3 2

6 Pants Blue 1 0 3 2

7 Pants Black 1 0 3 2

8 Pants Blue 4 0 3 2

Descriptors

Overview of Supervised Machine Learning
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Shirts

Pants

Training Set

Example Class Color Buttons Stripes Holes Pockets

1 Shirt Blue 1 0 4 0

2 Shirt Red 8 0 4 0

3 Shirt Blue 8 1 4 0

4 Shirt Green 0 0 4 0

5 Pants Khaki 1 0 3 2

6 Pants Blue 1 0 3 2

7 Pants Black 1 0 3 2

8 Pants Blue 4 0 3 2

Descriptors

 Machine learning methods identify the descriptors and values that help make the best predictions
 However, models may be overfit to their training set – so it’s important to check with external data

Overview of Supervised Machine Learning
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Shirts

Pants

Training Set

Example Class Color Buttons Stripes Holes Pockets

1 Shirt Blue 1 0 4 0

2 Shirt Red 8 0 4 0

3 Shirt Blue 8 1 4 0

4 Shirt Green 0 0 4 0

5 Pants Khaki 1 0 3 2

Descriptors

 Finally, sometimes (often), we do not have enough examples of one category or another to build a 
training set

 Hard to tell a helpful descriptor from an irrelevant descriptor

Overview of Supervised Machine Learning
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Shirts

Pants

Training Set

Example Class Color Buttons Stripes Holes Pockets

1 Shirt Blue 1 0 4 0

2 Shirt Red 8 0 4 0

3 Shirt Blue 8 1 4 0

4 Shirt Green 0 0 4 0

5 Pants Khaki 1 0 3 2

Overview of Supervised Machine Learning

Descriptors

 Might end up with a model that always picks dominant category 
(everything is a shirt would be 80% accurate)*

*The “no information rate” is an effective “null hypothesis” – it is the accuracy 
for a model that predicts all chemicals to be in the most common bin.
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5-fold cross validation 

Y-randomization

 QSAR/Machine learning best-practices include an 
emphasis on model validation and the need to 
define model applicability domain (AD) in the 
chemistry space (Tropsha and Golbraikh, 2007)

 Evaluation approaches:
 5-fold cross validation (build the model 5 

times withholding a different subset of the 
data each time for testing) 

 Y-randomization (build the model using 
randomized target assignment to descriptors -
does the true model outperform the 
randomized version?)

 Evaluation with true external training sets

Figure from Katherine Phillips

Model Evaluation and Applicability Domain
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Bounding Box

Convex Polygon

Distance Method

Training Set
External Set – Inside AD
External Set – Outside AD

 Knowledge of the applicability domain (AD) is 
required for assessing confidence in predictions 
for a new chemicals and quantifying the utility of 
additional data

 We estimate AD of the model using the 
methodology of Roy et al. (2015)

 Chemical space is defined by the values of the 
descriptors included in the model – the closer the 
values of the descriptors for a new chemical are to 
the training set, the more likely it is to be in 
domain

Methods for Assessing AD in 
Chemical Space

As in Sahigara et al., Molecules (2012)

Model Evaluation and Applicability Domain

Figure from Katherine Phillips



22 of 46 Office of Research and Development

Dawson et al. (2023)

Citation: Dawson, D.E.; Lau, C.; Pradeep, 
P.; Sayre, R.R.; Judson, R.S.; Tornero-
Velez, R.; Wambaugh, J.F. A Machine 
Learning Model to Estimate 
Toxicokinetic Half-Lives of Per- and 
Polyfluoro-Alkyl Substances (PFAS) in 
Multiple Species. Toxics 2023, 11, 98. 
https://doi.org/10.3390/toxics11020098

1000’s of PFAS

Structural 
similarity to:

Hexanoic acid

Similarity to 
Endogenous Ligands for
“Transporter Affinity”

Proximal Tubule 
Geometry

Physiological
Parameters for

“Transporter Expression”

Machine Learning for PFAS 
Toxicokinetic Half-Life

De
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https://doi.org/10.3390/toxics11020098
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Humans
(Homo sapiens)

Chemical Sex Value Unit Ref.
PFBS (C4)
375-73-5

DTXSID5030030

F 35 Days {Olsen, 2009; Xu, 2020}
M 36

PFHxS (C6)
355-46-4

DTXSID7040150

F 13 Yrs {Zhang, 2013; Worley, 2017; 
Li, 2018; Xu, 2020}M 14

PFOS (C8)
1763-23-1

DTXSID3031864

F 3.4
Yrs

{Zhang, 2013; Xu, 2020; 
Worley, 2017; Olsen, 2007; Li, 

2018}M 3.7
PFBA (C4)
375-22-4

DTXSID4059916

F
3 Days {Chang, 2008}M

PFHxA (C6)
307-24-4

DTXSID3031862

F
32 Days {Russell, 2013}M

PFHpA (C7)
375-85-9

DTXSID1037303

F 140 Days {Zhang, 2013; Xu, 2020}
M 130

PFOA (C8)
335-67-1

DTXSID8031865

F
3.5 Yrs {Zhang, 2013; Xu, 2020; 

Worley, 2017; Bartell, 2010}M
PFNA (C9)
375-95-1

DTXSID8031863

F 1.7 Yrs
{Zhang, 2013}

M 3.2
PFDA (C10)

335-76-2
DTXSID3031860

F 4 Yrs {Zhang, 2013}
M 7.1

F-53B
756426-58-1

DTXSID80892506

F
18 Yrs {Shi, 2016}M

GenX
13252-13-6

DTXSID70880215

F
3.4 Days {ECHA, 2021}M

 Human half-lives for PFAS range from 
days to years

 Only slight sex differences observed

 11 chemicals -- not enough data to build a 
machine learning model

 What if we include data for other 
species?

PFAS Half-Life Training Set
Data compiled by Lau et al. (2007, 2012, 2015, 2021) and updated for Dawson et al. (2023)
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Rat Mouse Monkey Humans

(Rattus rattus) (Mus musculus) (Macaca fascicularis) (Homo sapiens)

Chemical Sex Value Unit Ref. Value Unit Ref. Value Unit Ref. Value Unit Ref.
PFBS (C4)
375-73-5

DTXSID5030030

F 1.5-7.4
Hrs {Olsen, 2009; Chengelis, 

2009; Huang, 2019}

4.5
Hrs {Lau, 2020}

1.1
Days {Olsen, 2009; Chengelis, 

2009}

35
Days {Olsen, 2009; Xu, 2020}

M 3.6-5.0 5.8 1.6 36

PFHxS (C6)
355-46-4

DTXSID7040150

F 1.3-1.4
Days {Sundstrom, 2012; Kim, 

2016; Huang, 2019}

27
Days {Sundstrom, 2012}

87
Days {Sundstrom, 2012}

13
Yrs {Zhang, 2013; Worley, 

2017; Li, 2018; Xu, 2020}M 26-27 28 140 14

PFOS (C8)
1763-23-1

DTXSID3031864

F 28-43
Days {Kim, 2016; Huang, 2019; 

Chang, 2012}

38
Days {Chang, 2012}

110
Days {Chang, 2012}

3.4
Yrs

{Zhang, 2013; Xu, 2020; 
Worley, 2017; Olsen, 

2007; Li, 2018}M 34-36 43 130 3.7

PFBA (C4)
375-22-4

DTXSID4059916

F 1.8
Hrs {Chang, 2008}

6.2
Hrs {Chang, 2008} 1.7 Days {Chang, 2008} 3 Days {Chang, 2008}

M 9.2 12

PFHxA (C6)
307-24-4

DTXSID3031862

F 0.5-7.3
Hrs

{kabadi, 2018; 
Dzierlenga, 2020; 

Gannon, 2011; Chengelis, 
2009}

2.4
Hours {Chengelis, 2009} 32 Days {Russell, 2013}

M 1.3-11 5.3

PFHpA (C7)
375-85-9

DTXSID1037303

F 1.2-2.1
Hrs {Ohmori, 2003; Kabadi, 

2018}

140
Days {Zhang, 2013; Xu, 2020}

M 1.5-.24 130

PFOA (C8)
335-67-1

DTXSID8031865

F 1.7-4.8 Hrs {Vanden Heuvel, 1991; 
Ohmori, 2003; Kim, 2016; 

Dzierlenga, 2020} 

16
Days {Lou, 2009}

33
Days {Butenhoff, 2004} 3.5 Yrs

{Zhang, 2013; Xu, 2020; 
Worley, 2017; Bartell, 

2010}M 8.1-8.5 Days 22 20-21

PFNA (C9)
375-95-1

DTXSID8031863

F 6.4
Days {Kim, 2019; Tatum, 2011; 

Ohmori, 2003}

42
Days {Tatum, 2011}

1.7 Yrs
{Zhang, 2013}

M 3.3-5.5 87 3.2

PFDA (C10)
335-76-2

DTXSID3031860

F 45-59
Days {Ohmori, 2003; Kim, 

2019; Dzierlenga, 2020}

4
Yrs {Zhang, 2013}

M 55-83 7.1

F-53B
756426-58-1

DTXSID80892506

F
18 Yrs {Shi, 2016}

M

GenX
13252-13-6

DTXSID70880215

F 0.9-2.8
Days {Gannon, 2016}

1.0
Days {Gannon, 2016}

3.3
Days {Gannon, 2016} 3.4 Days {ECHA, 2021}

M 3.0-3.7 1.5 2.7

PFAS Half-Life Training Set
Data compiled by Lau et al. (2007, 2012, 2015, 2021) and updated for Dawson et al. (2023)
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Shirts

Pants

Training Set

Example Class Color Buttons Stripes Holes Pockets

1 Shirt Blue 1 0 4 0

2 Shirt Red 8 0 4 0

3 Shirt Blue 8 1 4 0

4 Shirt Green 0 0 4 0

5 Pants Khaki 1 0 3 2

6 Pants Blue 1 0 3 2

7 Pants Black 1 0 3 2

8 Pants Blue 4 0 3 2

Descriptors

 Machine learning methods identify the descriptors that make the best predictions

Supervised Machine Learning Model
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Example PFAS Species Half-Life
Chemical 
Structure Physiology Categorical

1 PFHxA Human Slow # # #

2 PFOA Human Very 
Slow

# # #

Descriptors

We only have half-life measurements for ~dozen PFAS

 Machine learning methods identify the descriptors that make the best predictions

Supervised Machine Learning Model
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Example PFAS Species Half-Life
Chemical 
Structure Physiology Categorical

1 PFHxA Human Slow # # #

2 PFOA Human Very 
Slow

# # #

3 PFBS Mouse Very Fast # # #

4 PFOS Mouse Slow # # #

5 PFHxA Rat Very Fast # # #

6 PFOA Rat Fast # # #

7 PFBS Monkey Fast # # #

8 PFOS Monkey Very 
Slow

# # #

Descriptors

Supervised Machine Learning Model

Let’s use huge interspecies variability to our advantage

 Machine learning methods identify the descriptors that make the best predictions
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Descriptors
A - Chemical Structure Descriptors

Parameter Type Descriptor Chemical 
Coverage (%)

Training Set 
Median*

Training Set 
Min

Training Set 
Max

Protein binding Albumin binding affinity 
constant (Mol-1) 45.45 2.84E+05 2800 1.10E+06

Physico-chemical

Average Mass (g/mol)

100

400.1 214 532
Log Vapor Pressure 

(mmHg) -2.07 -8.09 1.53

Log Octanol:Air 4.16 3.46 6.33
Log Octanol:Water 3.11 1.43 5.61

Log Water Solubility (Mol/L 
at 25°C) -2.68 -4.9 -0.5

Ether bond present 0.13* 0 1

Endogenous Ligand 
Similarity

CAS 142-62-1
100

0.18*
0 1CAS 107-92-6 0.088*

CAS 111-16-0 0.066*
B - Physiological Descriptors

Species Proximal tubule diameter (mm) Body Weight 
(kg)

Kidney Weight 
/ Body Weight 

(g/kg)

Glomerular          
Surface Area

/ Proximal 
Tubule 
Volume

Glomerular          
Surface Area

/ Kidney 
Weight

Human 0.072 70 2.23 3.16 1.65
Monkey 0.062 5 2.5 2.13 2.04
Mouse 0.054 0.02 8 2.05 2.28

Rat 0.058 0.24 2.92 2.31 3.26
C - Categorical Descriptors

Sex Female / Male
Dosing intravenous, oral, other (epidemiological, via metabolite extrapolation)

 We assembled a set of 119 chemical 
and physiological (species) descriptors 
as potential predictors of t½ in ML 
models

Chemical Structure Descriptors:
 Protein Binding (4 descriptors):

serum albumin and liver fatty acid 
binding protein

 Physico-chemical descriptors
(22 descriptors)

 Transport/re-uptake analogs:
 Similarity of “Defluorinated” PFAS 

to Endogenous ligands as 
surrogates for transporter affinity 
(67 descriptors)
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Descriptors
A - Chemical Structure Descriptors

Parameter Type Descriptor Chemical 
Coverage (%)

Training Set 
Median*

Training Set 
Min

Training Set 
Max

Protein binding Albumin binding affinity 
constant (Mol-1) 45.45 2.84E+05 2800 1.10E+06

Physico-chemical

Average Mass (g/mol)

100

400.1 214 532
Log Vapor Pressure 

(mmHg) -2.07 -8.09 1.53

Log Octanol:Air 4.16 3.46 6.33
Log Octanol:Water 3.11 1.43 5.61

Log Water Solubility (Mol/L 
at 25°C) -2.68 -4.9 -0.5

Ether bond present 0.13* 0 1

Endogenous Ligand 
Similarity

CAS 142-62-1
100

0.18*
0 1CAS 107-92-6 0.088*

CAS 111-16-0 0.066*
B - Physiological Descriptors

Species Proximal tubule diameter (mm) Body Weight 
(kg)

Kidney Weight 
/ Body Weight 

(g/kg)

Glomerular          
Surface Area

/ Proximal 
Tubule 
Volume

Glomerular          
Surface Area

/ Kidney 
Weight

Human 0.072 70 2.23 3.16 1.65
Monkey 0.062 5 2.5 2.13 2.04
Mouse 0.054 0.02 8 2.05 2.28

Rat 0.058 0.24 2.92 2.31 3.26
C - Categorical Descriptors

Sex Female / Male
Dosing intravenous, oral, other (epidemiological, via metabolite extrapolation)

 We assembled a set of 119 chemical 
and physiological (species) descriptors 
as potential predictors of t½ in ML 
models

Physiological Descriptors:
 Transport/re-uptake analogs:
 Physiological descriptors 

including kidney structural 
features as surrogates for renal 
transporter expression (21 
descriptors)

 Body weight initially considered 
but eliminated for being too 
correlated with other descriptors
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Descriptors
A - Chemical Structure Descriptors

Parameter Type Descriptor Chemical 
Coverage (%)

Training Set 
Median*

Training Set 
Min

Training Set 
Max

Protein binding Albumin binding affinity 
constant (Mol-1) 45.45 2.84E+05 2800 1.10E+06

Physico-chemical

Average Mass (g/mol)

100

400.1 214 532
Log Vapor Pressure 

(mmHg) -2.07 -8.09 1.53

Log Octanol:Air 4.16 3.46 6.33
Log Octanol:Water 3.11 1.43 5.61

Log Water Solubility (Mol/L 
at 25°C) -2.68 -4.9 -0.5

Ether bond present 0.13* 0 1

Endogenous Ligand 
Similarity

CAS 142-62-1
100

0.18*
0 1CAS 107-92-6 0.088*

CAS 111-16-0 0.066*
B - Physiological Descriptors

Species Proximal tubule diameter (mm) Body Weight 
(kg)

Kidney Weight 
/ Body Weight 

(g/kg)

Glomerular          
Surface Area

/ Proximal 
Tubule 
Volume

Glomerular          
Surface Area

/ Kidney 
Weight

Human 0.072 70 2.23 3.16 1.65
Monkey 0.062 5 2.5 2.13 2.04
Mouse 0.054 0.02 8 2.05 2.28

Rat 0.058 0.24 2.92 2.31 3.26
C - Categorical Descriptors

Sex Female / Male
Dosing intravenous, oral, other (epidemiological, via metabolite extrapolation)

 We assembled a set of 119 chemical 
and physiological (species) descriptors 
as potential predictors of t½ in ML 
models

Categorical Descriptors:
 Sex and route of dose administration



31 of 46 Office of Research and Development

Kidney Physiology (Wikipedia)

 After glomerular filtration from plasma into the lumen of the 
proximal tubule, chemicals are subject to active secretion to and 
absorption from the lumen by the cells that make up the surface 
of the proximal tubule

 Ohmori et al. (2003) hypothesized that some PFAS are substrates 
for reabsorption by the kidney tubules, perhaps because of their 
similarity to nutrient rich fatty acids (PFOA for example is caprylic 
acid with hydrogens replaced by fluorines).

 Expression of some fatty acid transporters is modulated by sex 
hormones

 Different PFAS may variously have greater affinity for different 
transporters

 Different species may have varying expression levels
 Generally do not know affinity as a function of PFAS, transporter, 

and species

Proximal
Tubule

Why Might Transporter Surrogates Work for PFAS TK?
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Why Might Transporter Surrogates Work for PFAS TK?

Kidney Physiology (Wikipedia)

 Generally do not know affinity as a function of PFAS, 
transporter, and species

 As a surrogate for transporter expression:
 We do know how the geometry (shape, surface area, volume) 

of the proximal tubules varies between species (Oliver, 1968)
 As a surrogate for transporter affinity we can also calculate how 

similar each PFAS is to endogenous (naturally present) chemicals:
 We assume that transporters are more likely to act on 

endogenous chemicals
 Compared PFAS to 894 endogenous chemicals from 

Rappaport et al. (2014)
 Replaced all fluorines on each PFAS with hydrogens and then 

calculated structural similarity with Tanimoto (1958) scores

Proximal
Tubule
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Model Building

 We used method of random forests to construct a 
machine learning model (Brieman, 2001)

 We pared the original set of descriptors down to 15 
through elimination of correlated or unchanging 
descriptors

 We used recursive feature elimination to balance 
accuracy with subsets of these descriptors

5-fold cross validation 

Figure from Katherine Phillips

 We used cross-validation to determine optimal number of half-life bins
 Cross-validated accuracies of 82.2%, 86.1%, and 75.3% for three, four or five bins
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Model Performance

 The four-bin model was selected – chemicals were grouped into half-life bins: 0–12 h, >12 h to 1 week, >1 
week to 60 days, and >60 days.

 The four-bin model has an accuracy of 86.4% compared to the no information rate of 27%.

 The non-randomized ML model accuracy (86.4%) was better than any of the models constructed with 
y-randomized data:
 A model using t½ values randomized across all species-by-PFAS combinations had low predictive value 

(accuracy of 32.2 ± 13.3%)
 The models for t½ with training data randomized within species but not chemicals (that is, the 

chemicals were correct) had an accuracy of 36.8 ± 13.4%.
 The models where training data chemical identities were randomized, but not species, had an 

accuracy of 50.2 ± 15.6%..
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Descriptors

 We found surrogates for 
active transport among the 
predictors. 

 The kidney physiology 
predictors are proxies for 
both physical differences 
and species variation in the 
expression of transporters

 PFAS similarity to 
endogenous hexanoic, 
butanoic, and heptanedioic 
acids were considered as 
surrogates for transporter 
affinity

Importance metric from 
Archer and Kimes (2008)

Importance

D
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Descriptors

 Values of t½ of the training 
data (y-axis) vs. 
classification predictions 
by the RF Classification 
model using 15 predictors

 Accuracy of 86.4% 
compared to the 
no information rate of 27% 
and y-randomization 
accuracy of 32.2 ± 13.3%
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Descriptors

 Values of t½ of the training 
data (y-axis) vs. 
classification predictions 
by the RF Classification 
model using 15 predictors. 

 Note that observations 
have been jittered (that is, 
a small amount of random 
variation has been added) 
along the x-axis to increase 
readability.
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Predictions for PFAS in Model Domain
Out of 8163 PFAS on list https://comptox.epa.gov/dashboard/chemical-lists/pfasmaster

https://comptox.epa.gov/dashboard/chemical-lists/pfasmaster
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Domain of Applicability
 We calculated domain of applicability using method of Roy et al. (2015) based on descriptor 

properties
 However, the training set only included three classes: alkyl halides (9 chemicals), 

carboxylic acids and derivatives (GenX), and organic and sulfonic acids and derivatives (F-53B) 
(ClassyFire , Djoumbou Feunang et al., 2016)

alkyl halides 

GenX

F-53B
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Predictions for PFAS in Model Domain
Out of 8163 PFAS on list https://comptox.epa.gov/dashboard/chemical-lists/pfasmaster

4136 PFAS in Roy et al. (2015) Applicability Domain (Without Consideration of Chemical Class)

https://comptox.epa.gov/dashboard/chemical-lists/pfasmaster
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Predictions for PFAS Matching 
Training Set Classes

921 PFAS both in Roy et al. (2015) Applicability Domain and Also Matching Chemical Classes from Training Set
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Limitations
 Model development (the training set) included most of the data available 
 Methods were cross-validated, but new data are needed for evaluation

 The training set consisted of only four species and 11 chemicals, and was
 Training set dominated by alkyl halides

 The chemicals in need of half-life predictions were from classes that were much more 
diverse than the training set
 TK behavior of other classes of PFAS could be influenced by factors not captured by 

the predictors included in the model
 Uncertainties would be best characterized with additional data for model evaluation
 Future in vivo TK studies in rodents might investigate PFAS that are predicted to have 

differing half-lives
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PFAS in R Package “httk”
 Previously high throughput methods for TK (HTTK) have not 

been well-matched to PFAS
 Inappropriateness of logP for prediction
 Lack for transporters

 New PFAS-specific HTTK data (protein binding and 
metabolism) have been generated for ~120 PFAS
 Kreutz et al. (2023)
 Smeltz et al. (2023)
 Crizer et al. (in preparation)

 New PFAS-specific correction for membrane affinity has been 
added

 New function parameterize_1comppfas() has been added to 
retrieve pre-computed Dawson et al. (2023) predictions
 Simple one compartment model
 Includes transporter-like effects

New version of “httk” will be released 
alongside submission of Crizer et al. 

manuscript

https://CRAN.R-project.org/package=httk

https://cran.r-project.org/package=httk
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Implications
 A machine learning (ML) model for PFAS half-life allowstoxicokinetic (TK) predictions for 

~900-4000 PFAS with no other data
 We are relying on a empirical, one compartment TK model
 ML predicts the half-life bin (very slow/slow/fast/very fast) based on species and PFAS, and we then use 

the median training data in each bin as the predicted half-life
 Because an ML could not be built for volume of distribution (Vd), we choose to use the median dataset 

value of Vd = 0.201 L/kg for all PFAS and species
 Model building scripts and predictions available at: https://github.com/USEPA/CompTox-PFASHalfLife
 Upcoming version of R package “httk” will include Dawson et al. (2023) predictions

 Chemicals with longer t½ may bioaccumulate and thus may warrant closer scrutiny

 The majority (56%) of PFAS were predicted to be in the longest t½ category in humans 

https://github.com/USEPA/CompTox-PFASHalfLife
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Summary

The views expressed in this presentation are those of the author 
and do not necessarily reflect the views or policies of the U.S. EPA

 Our work is based upon expert curation of publicly available organism half-life 
information for multiple PFAS compounds, in multiple species

 We have created a robust machine learning model of PFAS half-life in humans and other 
species, projecting half-life categories (very slow/slow/fast/very fast) for 4000+ PFAS 
depending on sex, dose route, and species 

 We have incorporated an estimated applicability domain into the model  

 Inclusion of kidney biology as species descriptors provided mechanistic intuition and a 
potential framework to consider future information on transporters.

Please send any questions to: wambaugh.john@epa.gov

mailto:wambaugh.john@epa.gov
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