PROCESS POLLUTANT DETERMINATION FOR COMPLIANCE EMISSION TESTING

BANBURY MIXER NO. 5 TEST DATE OCTOBER 23 AND 24, 2018

Prepared For:

THE GOODYEAR TIRE AND RUBBER COMPANY 1901 GOODYEAR BOULEVARD DANVILLE, VIRGINIA 24541

Prepared By:

CIVIL & ENVIRONMENTAL CONSULTANTS, INC. CHARLOTTE, NORTH CAROLINA

CEC Project 182-545

November 27, 2018

Civil & Environmental Consultants, Inc.

Charlotte

1900 Center Park Drive, Suite A | Charlotte, NC 28217 | p: 980-237-0373 f: 980-237-0372 | www.cecinc.com

REPORT CERTIFICATION

This report, testing details, and approach have been developed under the supervision (including review) of the persons named below. Results contained in this report relate only to the sources tested and the parameters included in the test program.

Civil & Environmental Consultants, Inc. (CEC) operates as an accredited air emission testing body (AETB) under a quality management system in conformance with ASTM D7036-04 (Reapproved 2011) "Standard Practice for Competence of Air Emission Testing Bodies". CEC has been issued accreditation certificate number 3913.01, expiration November 30, 2017, by the joint American Association for Laboratory Accreditation (A2LA) and the Stack Testing Accreditation Council (STAC).

Date 11/27/18

Signature

W. Quentin Best, QSTI Senior Project Manager Civil & Environmental Consultants, Inc.

and fr

Date 11/27/18

Signature

Paul R. Jenkins, QSTI Senior Project Manager Civil & Environmental Consultants, Inc.

TABLE OF CONTENTS

1.0	INTRO	DUCTION	.1
2.0	SUMMA	ARY OF TEST RESULTS	.3
	2.1 S	SAMPLING RESULTS	3
	2.2 P	Production Rates	4
3.0	PROCE	SS DESCRIPTION	.5
4.0	SUMMA	ARY OF THE REFERENCE TEST METHODS	.7
	4.1 S	SAMPLING STRATEGY	7
	4.2 S	SAMPLING AND ANALYTICAL PROCEDURES	7
	4	2.1 US EPA Method 1-Sampling Point Determination	.7
		.2.2 US EPA Method 2 Velocity and Volumetric Flow Rate	
		Determination1	0
	4	.2.3 US EPA Method 3 Molecular Weight Rate Determination	1
		.2.4 US EPA Method 4 Moisture Determination	
	4	.2.5 US EPA Method 5 and 202 Total Particulate Matter Sampling	
		and Analysis1	2
5.0	QUALI	TY ASSURANCE / QUALITY CONTROL RESULTS1	4
6.0	APPEN	DICES1	6

FIGURES

Figure 1 - Process Air Flow Schematic	6
Figure 2 - Location of Sampling Ports and Points	
Figure 3 - S-Type Pitot Velocity Measurements System	11

TABLES

Table 1 – List of Project Participants	. 2
Table 2 – Total Particulate Matter	
Table 3 – Sampling Dates and Times	. 4
Table 4 – Stack Diameter and Upstream/Downstream Measurements	
Table 5 - Quality Assurance and Quality Control Methods 5/202	

APPENDICES

- Appendix A Summary of Results and Example Calculations
- Appendix B Field Data Sheets
- Appendix C Laboratory Data
- Appendix D Equipment Calibrations
- Appendix E A2LA and QSTI Certifications

Appendix F – Production Data during the Compliance Test

-i-

1.0 INTRODUCTION

Civil & Environmental Consultants, Inc. (CEC) of Charlotte, North Carolina was contracted by The Goodyear Tire and Rubber Company (Goodyear) to conduct a compliance test on Banbury Mixer No. 5 (ID. No. EU-005) located in Danville, Virginia. The results of the total particulate matter (PM) provided in this report will be used to determine compliance with Title V Permit No. BRRO-30106 issued by the Commonwealth of Virginia Department of Environmental Quality (VDEQ).

The emission testing on the fabric filter exhaust of Banbury Mixer No. 5 was performed on October 23 and 24, 2018. Three 2-hour sampling runs were conducted for total particulate matter and PM10. United States Environmental Protection Agency (US EPA) Methods 1 through 5 and 202 were used for the determination of total particulate matter concentrations and emission rates. The test runs were conducted concurrently during normal plant operations. The sampling and analytical procedures used in this test program were those established by the US EPA and VDEQ in standard reference test methods and appropriate sampling and analytical procedures.

Table 1 – List of Project Participants The Goodyear Tire & Rubber Company Danville, Virginia Facility									
Participant	ParticipantTitleAffiliationContact								
W. Quentin Best	Senior Professional	CEC, Inc.	Telephone: 980.237.0373 Facsimile: 980.237.0372 qbest@cecinc.com						
Bryan L. Starnes	Project Manager	CEC, Inc.							
Matt Caton	Environmental Manager	The Goodyear Tire & Rubber Company	Telephone: 413.791.9170 matthew_caton@goodyear.com						

Mr. Matt Caton of Goodyear was responsible for coordinating the referenced process and for the collection of process operations data. This data is presented in Appendix F.

This report contains the results of the emission tests conducted during the test program. Copies of reference method field data sheets, sample analysis data, example calculations and equipment calibration records are included as appendices to this report.

2.0 SUMMARY OF TEST RESULTS

This section presents a summary of the particulate matter sampling. Detailed sampling results and example calculations for the test program can be found in Appendix A. Field data sheets and sample recovery documentation are presented in Appendix B. Appendix C contains the laboratory report. Appendix D presents copies of the current reference method equipment calibration records. Appendix E contains copies of the Qualified Stack Test Individual (QSTI) certifications for CEC testing personnel. Appendix F contains documentation of the production during the compliance test.

2.1 SAMPLING RESULTS

The summary of the results for the tests performed at the Banbury Mixer No. 5 is presented in Table 2 below. The emission rates presented in the following tables were calculated based upon emission stream conditions measured during the test period. The calculations were conducted in accordance with the appropriate test methods.

Table 2 – Total Particulate Matter								
	Fabric Filter Exhaust from Banbury Mixer No. 5							
Total Particulate	Average Emission Rate							
Matter	Run 1	Run 2	Run 3	Average	Limit			
gr/dscf*	0.00034	0.00030	0.00032	0.00032	0.01			
lb/hr**	0.25	0.23	0.24	0.24				

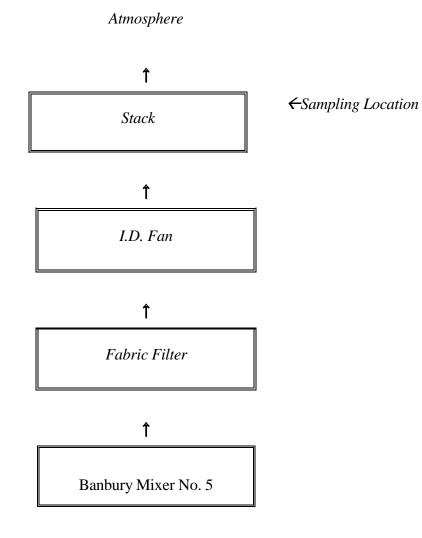
* gr/dscf = grains per dry standard cubic foot

** lb/hr = pound per hour

Goodyear has been issued Title V Permit No. BRRO-30106 by VDEQ. The applicable emission limit for particulate matter at the Banbury Mixer is 0.01 grains per dry standard cubic foot (gr/dscf). The results of the Banbury Mixer No. 5 test program demonstrate that the tested unit was in compliance with the applicable air emission limit for total particulate matter.

2.2 PRODUCTION RATES

Table 3 presents the production rates for the process tested at the Goodyear, Danville, Virginia facility.


Table 3 – Production Rates The Goodyear Tire & Rubber Company Danville, Virginia Facility								
Sample LocationRun 1Run 2Run 3								
	10/23/18	10/23/18	10/24/18					
	1318-1537	1616-1842	0803-1048					
Banbury Mixer No. 5	39 Batches	41 Batches	43 Batches					
	38,490 lbs.	39,574 lbs.	41,949 lbs.					

3.0 PROCESS DESCRIPTION

The Goodyear facility operates nine Banbury mixers. Banbury No. 5 was chosen as a representative of the nine Banbury mixers.

Figure 1 details the airflow schematic for the referenced system. Production data and control device parameters during the sampling were recorded by Goodyear personnel and are presented in Appendix F. The sampling was performed during material processing.

Banbury Mixer No. 5

Figure 1 - Process Air Flow Schematic

Civil & Environmental Consultants, Inc.

4.0 SUMMARY OF THE REFERENCE TEST METHODS

This section describes the sampling strategy, sampling and analytical methods, and quality assurance/quality control procedures implemented during this project.

4.1 SAMPLING STRATEGY

The US EPA methods that were utilized in this sampling program were:

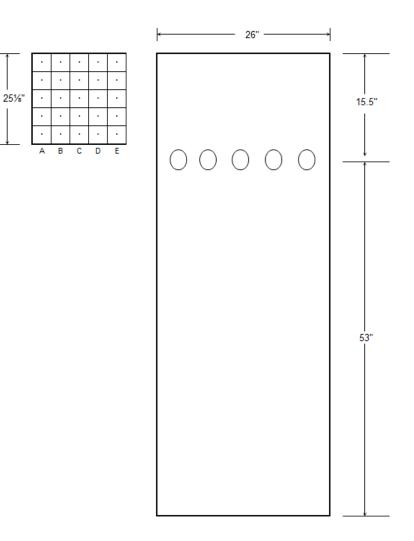
- Method 1 for the location of sampling ports and points, and determination of cyclonic flow;
- Method 2 for velocity / volumetric flow rate determination, and assignment of dry molecular weight of the stack gas;
- Method 4 for the determination of moisture in the stack gas;
- Method 5 for the determination of particulate matter; and
- Method 202 for the determination of condensable particulate matter.

These test methods are available in the Code of Federal Regulations Volume 40, Part 60, US EPA's web site <u>www.epa.gov/ttn/emc/</u>, and/or by request from CEC.

4.2 SAMPLING AND ANALYTICAL PROCEDURES

A sampling and analysis synopsis for these methods is discussed briefly in the following subsections.

4.2.1 US EPA Method 1-Sampling Point Determination


For this test program, the US EPA Method 1 was used to determine the appropriateness of the existing ports as the sampling location at the Banbury Mixer No. 5 stack. The duct diameters upstream and downstream from the sampling ports were determined prior to sampling. The number of traverse points was chosen with respect to sampling port location. For particulate traverses, Method 1 specifies a minimum of 8 traverse points for sampling ports located >8/>2 downstream/upstream stack diameters from flow disturbances and a maximum of 24 traverse points in circular ducts and 25 points in rectangular stacks when located >2/>0.5 downstream/ upstream stack diameters from flow disturbances.

The dimensions of the stack and the location of the sampling ports and points are detailed in Figure 2. Method 1 sampling criteria was maintained. The Banbury Mixer No. 5 Exhaust Stack was a rectangular duct divided into 25 equal traverse areas (five by five square matrix) with ports labeled A, B, C, D and E (five sample points per port). During the Method 5/202 sampling runs, the individual points were sampled for a period of five minutes, which yielded a total test of 125 minutes.

The Banbury Mixer No. 5 sampling location was determined to be less than 20° and in compliance with US EPA Method 1, Section 11.4.2 for cyclonic flow. A copy of this data can be found in Appendix B.

Table 4 – Stack Diameter and Upstream/Downstream Measurements Banbury Mixer No.5 Exhaust Stack - The Goodyear Tire & Rubber Company Danville, Virginia Facility- Method 1						
System	Stack Equivalent Diameter (*De) (inches)	Upstream (inches)	Downstream (inches)	Total number of sampling points per run		
Banbury Mixer No. 5 Stack Rectangular 25 ¹ / ₈ by 26 inches	25.56	15.5	53	25		

De = 2(length x width)/(length + width)

Not to Scale

Civil & Environmental Consultants, Inc.

4.2.2 US EPA Method 2 Velocity and Volumetric Flow Rate Determination

Method 2 was used for determining the average gas velocity from measurements of gas density and the average velocity head with a Type S (Stausscheibe or reverse type) pitot tube (0.84 coefficient). This method is applicable for quantifying gas flows for stacks that are 12 inches and over in diameter which meet the criteria of Method 1.

During this project, the sampling locations met the criteria detailed in Method 1. Gas stream density was assigned a value per Method 2 Section 8.6. Moisture determination was performed by Method 4. The velocity traverses were performed using Method 2 where the principal components of the gas velocity measurement system were sequentially:

- A calibrated stainless steel Type S pitot tube and Type K thermocouple;
- Leak-free interface tubing between pitot tube and differential pressure gauge;
- A 0 to 10 inch inclined manometer; and
- An NIST traceable pyrometer.

The apparatus was set-up according to manufacturer and reference method recommendations. Pretest and post-test leak checks were conducted using procedures outlined in Method 2, Section 8.0. Velocity head and temperature measurements were performed during each sampling run at the traverse points specified by Method 1. The effluent gas temperature was measured with chromelalumel thermocouples equipped with a digital temperature indicator. The atmospheric and static pressure of each stack was also determined during each sample run. The volumetric flow rate calculations used were those specified in Method 2, Section 12. Figure No. 3 show a typical S-type Pitot tube velocity measurement system.

CEC conducted measurements of the face opening alignments, external tubing diameter, and baseto-opening plane distances of the pitot tubes. These measurements meet the design criteria in US EPA Method 2 for a Type "S" pitot tube, and therefore a baseline coefficient value of 0.84 inches was assigned to the Pitot tube. Verification of these measurements were recorded onto a Pitot tube calibration worksheet and presented in Appendix D of the final report.

Civil & Environmental Consultants, Inc.

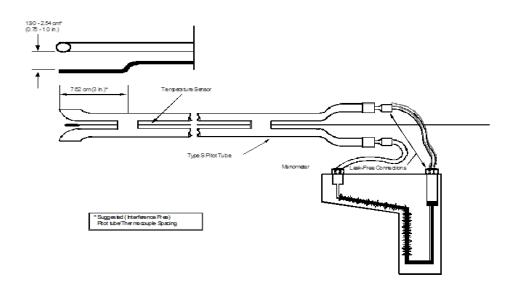


Figure 3 - S-Type Pitot Velocity Measurements System

4.2.3 US EPA Method 3 Molecular Weight Rate Determination

Method 3 is applicable for determining carbon dioxide and oxygen concentrations and dry molecular weight of a sample from a gas stream of a fossil-fuel combustion process. This method may also be applicable to other processes where it has been determined that compounds other than carbon dioxide, oxygen, carbon monoxide, and nitrogen are not present in concentrations sufficient to affect the results. However, US EPA Method 2, Section 8.6 states, "For processes emitting essentially air, an analysis needs not be conducted; use a dry molecular weight of 29.0." The Banbury mixer was emitting essentially air, therefore the emission rate calculations were based on a dry molecular weight of 29.0.

4.2.4 US EPA Method 4 Moisture Determination

Method 4 involves the determination of stack gas moisture. The moisture content is used to correct the emission concentration or mass emission rate to a dry basis. EPA Method 4 and *Field Procedure* 4 of the QA Handbook were used to measure stack gas moisture content. *Field Procedure 4* provides detailed information on the application of Method 4.

Preliminary flue gas moisture content (for purposes of setting the isokinetic flow rate) was determined using wet bulb/dry bulb thermometers and partial pressure, vapor and saturated vapor pressure equations. This technique is described in Method 4 and is summarized below:

- Moisten the wet bulb thermometer wick with deionized water;
- Insert both thermometers into the flue gas stream and monitor the wet bulb temperature;
- When the wet bulb temperature has stabilized, record both the wet bulb and dry bulb thermometer temperatures; and
- Calculate the flue gas moisture content (PMV) using the appropriate equations.

The moisture content for emission rate calculations was determined in conjunction with the Method 5 isokinetic sampling train. The reference method involves the withdrawal of gaseous and particulate pollutants from the emission source at an isokinetic rate using a Method 5 sampling system. The sampling and analytical procedure for reference Method 4 will be discussed in detail in Section 4.2.5 with the isokinetic sampling procedures.

4.2.5 US EPA Method 5 and 202 Total Particulate Matter Sampling and Analysis

Testing for total particulate matter was performed according to US EPA Methods 5 and 202. Gaseous and particulate pollutants were withdrawn isokinetically from the emission source and collected in a multi-component sampling train. In principle, filterable particulate matter includes any material that was condensed at or above the filtration temperature of approximately 250 degrees Fahrenheit and was collected on a tared glass fiber filter. The condensable particulate matter (CPM) is collected in the dry impinger system after the filterable particulate matter has been collected on the filter. The CPM is collected in the condenser system/ water drop out impinger and CPM filter. The gaseous components are bubbled through a measured volume of chilled deionized water to determine the moisture content of the emission source. The principal components of the sampling system were sequentially:

- A stainless steel sample nozzle and borosilicate probe liner;
- A heated $(248^{\circ}F \pm 25^{\circ}F)$ probe and filter assembly with tared glass fiber filter;

- An impinger train consisting of a dry and wet impinger system. The dry impinger system consisted of a condenser and a dropout impinger; followed by an empty modified Greenburg Smith impinger and a CPM filter. Following the CPM filter, the wet impinger system consisted of two impingers. The first containing 100 ml of deionized water followed by a final impinger containing 200 grams of silica gel; and
- A metering system capable of maintaining an isokinetic sampling rate and accurately determining the sample volume according to specifications in APTD-0581.

After the test run, the impingers were weighed to determine moisture. The collected condensate measurements were recorded on the Method 4 moisture determination data analysis form. An impinger stem was added to the dropout impinger so that the stem extended below the water level. Nitrogen purged deionized water was added to the impinger to ensure the water level was over the stem for the duration of the purge. The sampling train was reassembled and connected to an ultrahigh purity nitrogen gas cylinder for a one-hour purge with nitrogen at 14 liters per minute.

The tared filter, which collected the filterable particulate matter sample, was carefully removed from the glass filter support and sealed in a Petri dish. The nozzle, probe liner, and front filter-half of the filter assembly were brushed and rinsed with acetone into a glass storage container, which was sealed, and the liquid level was marked.

After the purge, liquid in the dropout impinger and backup impinger was collected into a clean sampling container (CPM container No. 1). The back filter-half, condenser, dropout impinger, backup impinger, the front half of the CPM filter assembly and connecting glassware were twice rinsed with deionized water into CPM container No.1. Following the water rinses, the glassware was rinsed once with acetone and rinsed twice with hexane and was recovered into CPM Container No.2. The CPM filter was removed from the filter holder and sealed in a labeled Petri dish. The sample containers were transported to Enthalpy Analytical, Inc. in Durham, North Carolina for gravimetrical analysis. Documentation of the laboratory analysis and chain-of-custody can be found in Appendix C. The condensable fractions of the sample runs were train blank corrected.

5.0 QUALITY ASSURANCE / QUALITY CONTROL RESULTS

CEC has established quality assurance and quality control (QA/QC) guidelines for providing quality sampling and analytical data from source tests. These QA/QC procedures were implemented to ensure the acceptability and reliability of the data generated.

In summary, an appropriate degree of data quality was maintained throughout this project. Leak checks and isokinetic QA criteria were met for the full sampling run. The sampling trains were leak checked prior to and immediately after sampling. Leak rates for the isokinetic sampling trains were less than the maximum criterion of 0.02 cubic feet per minute. The sampling rates were also within the 100% $\pm 10\%$ criterion established for isokinetic sampling. Quality control procedures for the particulate matter determinations have included the analysis of acetone rinse blanks. The result of the method blank is reported in Appendix C with the laboratory data. Table 5 presents the quality controls for isokinetic sampling.

Both qualitative and quantitative factors contribute to field measurement uncertainty and should be taken into consideration when interpreting the results presented in this test report. There are several factors that can affect qualitative and quantitative measurements.

Qualitative uncertainty factors include, but are not limited to, unknown chemical interferences, sample matrix interactions, environmental conditions, sample handling and instrument operation and maintenance. To reduce the impact of these qualitative uncertainty factors, CEC has developed a set of Standard Operating Procedures (SOPs) in accordance with our corporate quality assurance guidelines and ASTM D 7036-04.

Quantitative uncertainty factors known to directly affect uncertainty include the accuracy of calibration standards as well as the precision and accuracy of instrument measurements and the test methods utilized. To reduce the impact of these quantitative uncertainty factors, CEC utilizes testing and analytical methodology that has been approved by EPA or the American Society for Testing and Materials (ASTM) where applicable. In addition, CEC personnel perform routine

instrument and equipment calibrations according to manufacturer's guidelines and/or test method specifications.

The limitations of the various methods, instruments, equipment, and materials utilized during this project have been reasonably considered to be in accordance with the project data quality objective, but the ultimate impact of the cumulative uncertainty of this project is not fully identified within the results of this test report.

Table 5 – Quality Assurance and Quality Control Data – Method 5/202							
Banbury M	Run 1	Run 2		Run 3	Criteria		
Leak Checks	Method 5	0.002	0.001		0.003	< 0.020 cu. ft.	
Isokinetics	inteniou o	99.2	99.9		99.9	100 <u>+</u> 10%	
Post Meter Calil	0.976 ± 0.05						

Field data and final laboratory results were entered into CEC's air quality data system by a staff professional, and reviewed by a project manager for verification of data. After QC review by the project manager, a senior professional verified the final report for completeness and reasonableness of data. The report was returned to the staff professional for review and preparation of the final draft. The report requires the signature of the staff professional and a project manager before release to the client. Data and final reports are archived in a secured area for a minimum period of seven years. CEC's field and laboratory test equipment has been maintained and calibrated in accordance with quality assurance procedures established by the US EPA in the QA handbook. Equipment calibrations including pre-test and post-test calibration data are presented in Appendix D

6.0 APPENDICES

This section contains detailed supportive documentation that encompasses the relevant aspects of the emission test program. Its contents serve as the foundation for the test report. The emission test report presents a summary of the information gathered during the sampling activities. The information contained in the appendices is necessary to facilitate the review of the emission test report and determine whether proper procedures were used to accomplish the test plan objectives.

Defensible data and the subsequent pollutant concentrations and emission rates are the primary objectives of the emission test program. To this end, the test results, example calculations, field data sheets, sample recovery, laboratory results, chain-of-custody documentation, and equipment calibrations have been provided to support these objectives.

APPENDIX A SUMMARY OF RESULTS AND EXAMPLE CALCULATIONS

EC Project No. 182-545				Banbury Mixer
	SUMMARY OF EPA METHOD			
Determination of Total			and Emission Ra	tes
un Number	1	2	3	Average
Sample Identification	182545-01	182545-02	182545-03	
Date:	10/23/2018	10/23/2018	10/24/2018	
Net Time of Test, minutes	125.0	125.0	125.0	
Sample Time, 24-hour clock	1318-1537	1616-1842	0803-1048	
Barometric Pressure, in. Hg	29.55	29.55	29.62	29.57
Static Pressure, in. H_2O	0.48	0.48	0.63	0.53
Stack Pressure, Absolute, in. Hg	29.59	29.59	29.67	29.61
Actual Meter Volume Sampled, cu. ft.	80.100	84.293	82.714	82.369
Avg. Delta H, in. H ₂ 0	1.28	1.40	1.41	1.37
Avg. Gas Meter Temp., Deg. F	78.8	76.9	61.5	72.4
STD Volume Sampled at Stand. Cond., cu. ft.	75.874	80.154	81.163	79.064
Volume of Water Collected, ml	0.0	2.9	-0.1	0.9
(sta) Volume of Water Vapor at Std. Cond.,SCF	0.00	0.14	0.00	0.04
Volume of Water Collected in Silica Gel, g	15.1	17.2	16.6	16.3
sg(std Vol. of Water Vapor in Silica Gel at Std. Cond., SCF	0.71	0.81	0.78	0.77
s1 Moisture Content of Gas Stream	0.009	0.012	0.009	0.010
Calculated Percent Moisture in Stack	0.9	1.2	0.9	1.0
vis Saturated Percent Moisture in Stack	5.2	5.5	3.5	4.7
VIR Reported Percent Moisture in Stack	0.9	1.2	0.9	1.0
DI Mole Fraction of Dry Gas	0.991	0.988	0.991	0.990
Mole. Wt. Stack Gas, Dry Basis, lb/lb mole	29.0	29.0	29.0	29.0
Mole. Wt. Stack Gas, Wet Basis, lb/lb mole	28.90	28.87	28.90	28.89
Pitot Tube Coefficient	0.84	0.84	0.84	0.84
s Avg. Sqrt. Delta P, in. H20	0.591	0.603	0.600	0.598
Avg. Stack Temp., Deg. F	92.3	94.6	80.3	89.1
Avg. Stack Velocity, ft/sec	34.1	34.9	34.2	34.4
Area Stack, ft ²	4.54	4.54	4.54	4.54

Banbury Mixer No. 5

SUMMARY OF RESULTS EPA METHOD 5 and 202 Determination of Total Particulate Matter Concentrations and Emission Rates

Run	Number	1	2	3	Average
Q _{SD}	Gas Volume Flow, Dry Std. Cond. CFM	8,691	8,829	8 ,933	8,818
Q _A	Actual Gas Volume Flow, CFM	9,280	9,490	9,308	9,359
Q _{sw}	Gas Volume Flow, Wet Std. Cond., CFM	8,772	8,934	9,019	8,908
Dn	Sample Nozzle Diameter, inches	0.242	0.246	0.246	0.245
$\Lambda_{\rm n}$	Area of Nozzle, ft ²	0.00032	0.00033	0.00033	0.00033
1	Percent Isokinetic	99.2	99.9	99.9	99.7
Mb #	Meter Box Number	300.045	300.045	300.045	
DH@	DH@ of Meter Box @ 0.75 SCFM	1.732	1.732	1.732	
$\mathbf{Y}_{\mathbf{q}\mathbf{a}}$	Alt. Mthd 5 Posttest Calibration (ALT-009)	1.023	1.014	1.021	1.019
Y	Meter Calibration Factor	0.976	0.976	0.976	

The Goodyear Tire And Rubber Company Danville, Virginia Banbury Mixer No. 5

	Summary of Results EPA Methods 5 and 202								
	Determination of Total Particulate Matter Concentrations and Emission Rates								
Run N	umber	1	2	3	Average				
	Sample Identification	182545-01	182545-02	182545-03					
Filter	able Particulate Matter (PM) Concentra	tion and Emission Ra	tes						
Di _n	Particulate Catch, mg	13.0	12.7	14.6	13.4				
Cs	PM Concentration, gr/dscf	0.0027	0.0024	0.0028	0.0026				
C_{sm}	PM Concentration, mg/dscm	6.07	5.57	6.33	5.99				
C_{AW}	PM Emission Rate, lbs/hr	0.20	0.18	0.21	0.20				
Cond	ensable Particulate Matter (CPM) Cone	entration and Emissio	n Rates						
m _{com}	CPM Catch, mg	3.6	3.1	2.1	2.9				
C_{sc}	CPM Concentration, gr/dscf	0.00073	0.00060	0.00040	0.00058				
Csm	CPM Concentration, mg/dscm	1,68	1.37	0.91	1.32				
CAWe	CPM Emission Rate, lbs/hr	0.055	0.045	0.031	0.043				
Total	Total Particulate Matter (TPM) Concentration and Emission Rates								
CsT	TPM Concentration, gr/dscf	0.0034	0.0030	0.0032	0.0032				
C _{sm}	TPM Concentration, mg/dscm	7.75	6.94	7.24	7.31				
C _{AWT}	TPM Emission Rate, lbs/hr	0.25	0.23	0.24	0.24				

CEC Project No. 182-545

CEC Project No. 182-545

Summary of Results	
EPA Methods 5 and 202 Determination of Total Particulate Matter Concentrations and Emission Rater	les
Example Calculations Run 1	
Stack Pressure, Absolute, in. Hg $P_S = P_{bar} + (P_g / 13.6) =$	29.585
Volume Sampled at Stand. Cond., cu. ft. Vm(std) = $(Vm * Y *(Pbar + \Delta H / 13.6) * Tstd) / (Pstd * (Tm + 460) =$	75.874
Method 4 Calculations: Volume of Water Vapor at Std. Cond., SCF $V_{WC(std)} = 0.04706 * V_C =$	0.00
Vol. of Water Vapor in Silica Gel at Std. Cond., SCF $V_{wsg(std)} = 0.04715 * W_{C} =$	0.71
Moisture Content of Gas Stream $B_{WS1} = (V_{WC(std)} + V_{wsg(std)}) / (V_{m(std)} + V_{WC(std)} + V_{wsg(std)}) =$	0.009
Percent Moisture in Stack $P_{MVI} = 100 * (V_{WC(std)} + V_{wsg(std)}) / (V_{m(std)} + V_{WC(std)} + V_{wsg(std)}) =$	0.9
Saturated Stack Moisture using Stack Temperature (°F): Note if $%S_{VP} > 100\% = 100\%$ $P_{MV1S} = \%S_{VP} = (100/Ps) * 10^{(6.6921-(3144/(T+390.86)))}$	5.2
Reported Stack Moisture according to Method 4 Section 12.1.7 In saturated or moisture laden gas streams, the lower Bws (PMV1 or PMV1S) is considered correct	0.9
Mole Fraction of Dry Gas $M_{FD1} = (100 - P_{MV}) / 100 =$	0.991
Mole. Wt. Stack Gas, Dry Basis, lb/lb mole Md is assigned a value per EPA Method 2, Section 8.6 =	29.0
Mole. Wt. Stack Gas, Wet Basis, lb/lb mole $M_S = M_d * (1 - B_{ws}) + 18.0 * B_{ws} =$	28.898
Avg. Stack Velocity, ft/sec Vs = Kp * Cp * (ΔPavg)1/2 * ((Ts +460)/(Ps * Ms))1/2	34.10
Gas Volume Flow, Dry Std. Cond. CFM Q_{SD} = (60 sec/min * (1-B _{ws}) * V _s * A * ((T _{std} * P _s) / (T _{s(abs)} * P _{std}))	8,691
Actual Gas Volume Flow, CFM $Q_A = V_S * A * 60 \text{ sec/min} =$	9,280
Gas Volume Flow, Wet Std. Cond., CFM $Q_{SW} = Q_{SD} * [1/(1-B_{WS})] =$	8,772

Area of Nozzle, ft²

Civil & Environmental Consultants, Inc.

The Goodyear Tire And Rubber Company Danville, Virginia Banbury Mixer No. 5

Summary of Results	
EPA Methods 5 and 202	
Determination of Total Particulate Matter Concentrations and Emission Rat	tes
Example Calculations Run 1 $A_n = ((D_n / 2)^2 * 3.14159)/144 =$	0.00032
Percent Isokinetic I = (0.0945 * (TS + 460) * Vm (STD)) / (θ * VS * PS * (1 - Bws) * An) =	99.2
Alternative Method 5 Posttest Calibration (ALT-009) Criteria: $(Y \pm 0.05)$ Yqa = $(\theta/Vm) * ((0.319*T_m)/(\Delta H_{@}*(Pb+(\Delta H_{avg}/13.6)))*(29/M_d))^{1/2} * (\Delta H_{avg})^{1/2} =$	1.023
Filterable Particulate Matter (PM) Concentration and Emission Rates	
Filterable Particulate Concentration, gr/dscf (At Standard Conditions) $C_s = 0.015432358$ grain/ I mg * m _n / V _{STD} =	0.0027
Filterable Particulate Matter Concentration, mg/dscm Csm = mass (mg) / (Vmstd (dscf) * 0.028316847)	6.07
Filterable Particulate Emission Rate, lbs/hr (At Standard Conditions) $C_{AW} = 60 \text{ min/hr} / 7000 \text{ grain/lb} * C_s * Q_{Sd} =$	0.20
Condensable Particulate Matter (CPM) Concentration and Emission Rates	
CPM Concentration, gr/dscf $C_s = 0.015432358$ grain/ I mg * m _n / V _{STD} =	0.00073
CPM Concentration, mg/dscm Csm = mass (mg) / (Vmstd (dscf) * 0.028316847)	1.68
CPM Emission Rate, lbs/hr C _{AW} == 60 min/hr / 7000 grain/lb * C _s * Q _{Sd} =	0.055
Standard Conditions 68 Deg. F, 29.92 in. Hg Pstd = 29.92 in. Hg Tstd = 528 °R	

CEC Project No. 182-545

Civil & Environmental Consultants, Inc.

APPENDIX B FIELD DATA SHEETS

EPA Method 1 Determination of Sampling Ports and Points

Client The Goodyear Tire & Rubber Co	City/State Danville, VA
Sampling Location Dust Collector BBC5	Date 0 / 22/18
Sampling Location Dimensions, in inches:	
From Far Wall to Outside of Port 25%	
Nipple Length	DISTURBANCE
Depth of Duct	
Width (Rectangular Duct) 26.0"	15.5"
Equivalent Diameter Calculation (DE):	SAMPLING LOCATION
DE = = = = =	555
Length + Width $(25\frac{1}{8} + 26.0)$	K K By Bly
	Wash WID
Distance to Ports From Nearest Flow Disturbance:	1 52" with
Upstream - A Downstream - B	- // Be Stack
Dimensions in Inches $15.5''$ B_{11} $44.0''$	53" Stack extension
Duct Diameters 0.61 By 60 2	2.07 DISTURBANCE
Stack Area, in Square Feet 4.596	ndded
Calculations By	

Schematic of Sampling Location

	Location o	f Traverse	Points in C	ircular Sta	cks
	4	6	8	10	12
1	6.7	4,4	3.2	2.6	2.1
2	25.0	14.6	10.5	8.2	6.7
3	75.0	29.6	19.4	14.6	11.8
4	93.3	70.4	32.3	22.6	17.7
5	1 allel	85.4	67.7	34.2	25.0
6	1 19	95.6	80.6	65.8	35.6
7			89.5	77.4	64.4
8		1	96.8	85.4	75.0
9				91.8	82.3
10				97.4	88.2
11		1000			93.3
12				(97.9

	Locati	on of Tra	verse Poi	ints in Re	ctangula	r Stacks	
-	2	3	4	5	6	7	8
1	25.0	16.7	12.5	10.0	8.3	7.1	6.3
2	75.0	50.0	37.5	30.0	25.0	21.4	18.8
3	10 11 7	83.3	62.5	50.0	41.7	35.7	31.3
4			87.5	70.0	58.3	50.0	43.8
5				90.0	75.0	64.3	56.3
6	1.000	C	1	1	91.7	78.6	68.8
7	1.2.				T I	92.9	81.3
8			1			100	93.8
9	T						
10							
11		1.4.1	1				
12		0	1.1	1.1	-11		

Audited by:

Audited by:

Point	% of Stack ID	Stack ID, in.	Distance From Inside Wall, in.	Nipple Length, in.	Distance From Outside of Port, in.
1	10.0	25%	2.51	0.0	2.51
2	30.0	J.C.	7.54		7.54
3	50.0		7.54		12.56
Y	70.0	1	17.59	+	17.59
5	90.0		22.61		22.61
					61 62
			1 at		
				15	
	4		a	5-1	5
				The second	
1	1	9		100	1
8		1			VE
			1		

 $\label{eq:stack-distance} \begin{array}{l} \mbox{Stack-Diameter} = 12 \mbox{-} 24 \mbox{ inches-Relocate to } 0.50 \mbox{ inches-from stack-wall} \\ \mbox{Stack-Diameter} > 24 \mbox{ inches-Relocate to } 1.00 \mbox{ inches-from stack-wall} \end{array}$

(Personnel) Date: 10 124/15 Completeness Legibility Accuracy (Team Leader) Date: <u>4 / 8 / 8</u> Specifications Reasonableness

8 of 74

EPA Method 2

Determination of Stack Gas Velocity, Volumetric Flow Rate and Cyclonic Flow

Client The Goodyear Tire & Rubber Co.	
Sampling Location Dust Collector BBC5	
Run Date 0 / 22 /18	
Barometric Pressure, in. Hg 29.45	
Static Pressure, in. H2O 🗲 🙆, 🎸 🤌	
Pitot Tube Coefficient 0.84	1

City, State Danville, VA	,
Operators BLS, EWC	
Time 17-25	
Pitot Tube I.D. No. 200,708	
Data California 9/8/10	1
Leak Check, in. $H_2O < 0.1 @ +0.13 -0.40 Mym hc$	16 - Cyclon ik How
60/75	

Traverse Point Number	Velocity Head H ₂ (ack rature °F	Cyclonic Flow Determination						
	А	В	A	В	Δp, at 0° l	Reference	Angle Which	Yields a Null ∆p			
A1	0.84	*	87		0.08		3				
2	0.86		88	×	. 18	-	5	/			
3	0.83	e	88	A	. 16		6				
4	0.84		58		,044	wes	3	· · · · ·			
5	0,86		58		106		7				
B1	0,76	1	850		,12	7	10				
2	0,75				,14		H				
3	Orlace		- A		- 14		13				
4	0,67				,12		8	and the second			
5	0,75				,10		8	A CARLENS			
C1	0.62		88	11	,22		12				
2	0.41				.16	1. A. M. M.	9				
3	0,36				.12	8,0 0	H				
4	0,36			1	08		12				
5	0,50	15	V		,10	Pan-	30				
D1	0,34		68		0,14	le cara en el	1				
2	0,25	÷ 1		14 12	0.10	Sall -	10				
3	0.12		100		0.04	ALC: NO	9				
4	0,11	- 10 - 1		ang ang	0.04		19	1			
5	0,14	4,11	V		0.08		20	1.7			
E1	0.11	1	87		0.0		0	1			
2	0.10	1-1-		1	0.0		0				
3	0.04		No.		0.02		16				
4	0.02	1		4	0,01		5	1			
5	0.01	-	1	1	0.00		0				
Averages	0.4532	1	\$7,76			1 della series	8	.64° V			

Field Data

Stack Temperature, Dry, °F (A) _____ Difference (A - B) _____ Stack Temperature, Wet °F (B)

Preliminary Percent Moisture

2-3% imblent

Accuracy

Comments

Date: 11/8/18 Completeness Legibility Date: 11/8/18 Specifications Reasonableness

Civil & Environmental Consultants, Inc. Isokinetic Field Data Sheet - EPA Method _____5/202

10 of 74

Client	The Good	year	Tire &	Kubber	CO.

City/State Danville, VA

40

San

Sampling Location <u>Dust Collector BBC5</u>

11

Operators BLS, EWC

Run Number Date 10 / 23 /18

S M S F F S	Static Press., Meter Box No Sample Box M Probe/Pitot N Probe Temp.	n. Hg 29.55 In. HzO 40.4 o. 300. 045 1 No. $M - Trans.$ Io. 200. 064 Setting 250 o. 182545-01 O- 242	8 ΔH @ <u> Meter</u>	sture 3	Avg. Δ Ref. Δ Desired Nozzle Nozzle	P_0.45	3 248 .240 0.242),242	Post-Test Pre-Test F Post-Test 0,242 Observer	0,002 Pitot <0.1 @ Pitot <0.1 @ 0,242	<u>a 6.0</u> +5.6/-6 +7.5/-6	(n. Hg. ☆) n. H₂O Y. 9 n. H₂O	
mple	Clock Time	Dry Gas Meter Cubic Feet	Pitot Reading Δ P	Orifice Setting ΔH Inches H2O	Dry Gas Meter Temp.	Pump Vacuum Inches	Stack Temp °F	Probe Temp °F	Filter Box °F	CPM Filter Exhaust	Imp, Temp °F	

	Point	Time	Cubic Feet	ΔP In. H ₂ O	Ideal	es H ₂ O Actual	Temp. °F	Inches Hg	°F	°F	°F	Exhaust °F	°F
50	7 A1	0,	593,500	0.65	2.17	2.15	73	3.0	90	238	254	71	63
9%	2	5	597.74	0.62	2.07	2.05	73	3.0	90	257	256	69	54 :
No.	3	10	601.92	0.67	2.24	2.25	74	3.0	91	255	249	66	53
	- 4	15	606,33	0.69	2.30	2.30	75	3,5	91	256	253	65	56
2	5	20	610.75	0.68	2.27	2.25	75	3.0	91	256	254	65	57
01	a B1	25	615,132	0,62	2.07	2.05	77	3.0	91	259	251	67	60
9%	2	30	619.30	0.55	1.835	1.85	77	3.0	91	259	247	66	56
	3	35	623,30	0.50	1.67	1.65	78	25	91	258	252	67	55
1	4	40 -	627.03	0. 49	1.64	1.65	79	2.5	92	257	254	68	55
	5	45	620:81	0.61	2.04	2.05	79	3.0	92	260	253	69	55
	C1	50 .	634.997	0.50	1.67	1.65	80	2,5	92	259	254	71	58
~	72	55	638.77	0.40	1.34	1.35	80.	2.5	92	258	249	70	53
2%	3	60	642.25	0.32	1.07	1.05	81	2.0	92	261	253	70	52
3	4	65	645.36	0.30	1.00	1.00	81	2.0	92	259	249	70.	53
	5	70	648.36	0.39	1.30	1,30	81	2.5	93	257	250	71	55
1000	7 D1	75	651.728	0.36	1.20	1.20	81	2.5	93	261	248	71	58
%	2	80	654.97	0.26	0.87	0.87	81	2.0	92	260	254	71	52
23	3	'85	657.79	0.17	0.57	0.57	80	1.5	92	258	259	71	53
. 1	4	90	660.12	0.15	0.50	0,50	80	1.5	93	259	255	72	54
	5	95	662,27	0.20	0.67	0.67	. 80	1.5	94	260	251	72	54
	El	100	664.748	0.18	0.60	0.60	81	1.5	94	259	253	74	61
	2	105	667.09	0.14	0.47	0.47	81	1.0	94	257	257	72	56
	3`	110	669.22	0.08	0.27	0.27	81	1.0	95	255	254	73	57
	4	115	670.85	0.05	0.17	0.17	8)	1.0	95	260	256	73	58
	5	120	672.19	0.06	0.20	0.20	81	1.0	95	261	254	73	60
-	1.00	125	673.600	1 1	e e	1		Wind Link	1			1 A	1 X.
1	Ins. South	1 and 1	80,100	0.386		1.285	78.88		92.32			and down	

Comments:

Isokinetic Check: Audited by:

Audited by: My (Team Leader)

Specifications Reasonableness

Date: 10/24/ 15 Completeness ____ Legibility ____ Accuracy_

Date: 11 18/18

Civil & Environmental Consultants, Inc.

	Client	e Goodyear Tire &	Rubber Co.						Run Num	ber 2	ŧ	
	City/State	Danville, VA					1		Dáte 10	/ 23 /18	:"7"	0
	Sampling L	ocation <u>Dust Co</u>	ollector BBC:	5 0					Operators	BLS, EW	/C	
		In. Hg 29.55					K Factor 3				CHECKS	
(r		., In. H ₂ O + 0.48			Y = 0.93		P_0.35	/			@ 15.0	
		No. 300. 045 /		Temp.	78		P	-0			@ 7.0	
		No. M-TmA		Temp	- a.		I Nozzle 0.3				a +5.9/- a +6.3/	
		No. 200. 063		Coeff	<u>0.84</u> 3		No. <u>300.7</u> Calibration					In.ºH ₂ O
		No. <u>182545-</u>		tor	-		Diameter 0	· · · · · · · · · · · · · · · · · · ·	Observer			
8 -	Filter No.				1616		me_1842			VADEQ		
		1	1756	1		, ,			Probe		СРМ	Imm
Sample Point	e Clock Time	Dry Gas Meter Cubic Feet	Pitot Reading ∆ P In. H ₂ O	Sett	rifice ing ∆H ies H₂O Actual	Dry Gas Meter Temp. °F	Pump Vacuum Inches Hg	Stack Temp °F	Temp °F	Filter Box °F	Filter Exhaust °F	Imp. Temp °F
7 A1	0	673.850	0.59	2.07	2,05	79	3.0	96	261	251	85	66
2	5	678.05	0.36	1.26	1,25	79	2.5	96	257	252	74	60
3	10	681.40	0.62	2.17	2.15	79	3.0	96	257	253	70	58
4	15	685,75	0.70	2.45	2,45	79	3.5	96	257	250	68	59
5	20	690.38	0.69	2.42	2.40	79	3.5	96	256	254	69	59
A B1	25	694.858	0.65	2.28	2.30	78	3.5	96	261	252	71	63
2 -	30	699.32	0.60	2.10	2.10	79	35	96	255	251	70	58
3	35	703.56	0.56	1.96	1.95	78	3.0	95	256	251	71	59
4	40	707.65	0.54	1.89	1.90	78 -	3.0	96	255	253	72	59
5 4	45	711.72	0.68	2.46	2.45	78	3.5	.95	258	251	73	60
C1	50	716.257	0.55	1.99	2.00	78	3.0	95	262	252	73	63 6
72	55	720.36	0.46	1.67	1.65	78	3.0	95	257	251	74	61
- 3	60	724.21	0.34	1.23	1.25	77	2.5	.95	258	250	72	58
4	65	727.48	0.32	1.16	1,15	77	2.5	95	259	250	70	55
5	A 70	730.68	0.42	1.52	1.50	77	3.0	94	258	25/	69	54-
9 DI	75	734.318	0.32	1.16	1.15	76	2.5	95	260	254	68	57
· 2	80	737.49	0.27	0.98	0.98	76	2.0	95	257	249	68	49
3	85	740.47	0.18	0.65	0.65	76	1.5	94	258	25/	67	78
4	90	742.90	0.17	0.62	0.62	75	1,5	94	260	252	67	50
• 5	95	745.29	0.21	0.76	0.76	76	2.0	94	259	252	66	5/
7 El	100	747.922	0.19	0.69	0.69	75	20	93	262	253	66	56
2	105	750.43	0,18	0.65	0,65	75	1.5	93	258	251	66	52
3	110	7.52.85	0.11	0.40	0.40	74	1,5	92	259	250	66	50
4	115	754.81	0.09	0.33	0.33	74	1.5 By	92	258	250	65	51
5	120	756.57	0.07	0.25	0.25	72	10 1.5	91	261	252	65	52
-	125	758.143.		100	V	J V		ALLA	1		CO PAGE	1-
		\$4.293	0.395		1.401	76.88	1	94.60		1 march		1. 19. 5

Date: 10123114 Completeness Legibility Accuracy

Audited by: 1065 (Team Leader)

Date: 10124115

Specifications _____ Reasonableness

Civil & Environmental Consultants, Inc.

resund DELEL

881		ClientThe	Goodyear Tire &	Rubber Co.		12-12-12-1				Run Num	ber <u>3</u>	1	
A.	1. N. Y.	City/State	Danville, VA		Statung and			··· · ···	9-9-5-1		124 /18		<u>entra di</u>
の意思		Sampling Lo	cation <u>Dust Co</u>	ollector BBC:	5 January	internet and	ille and	ant dig		Operators	BLS, EW	/C	
		Static Press. Meter Box N Sample Box Probe/Pitot I Probe Temp. Sample ID N	n. Hg <u>29.67</u> Jn. H ₂ O <u>40.6</u> 10. <u>300.045</u> No. <u>M-Train</u> No. <u>200.064</u> Setting <u>250</u> 10. <u>182545-03</u>	3 ДН @	1.732 Temp: 69 Temp: 07 Coeff	Y = 0.97 S7 55 90 85 0.84	δ Avg. Δ Ref. Δ Desired Nozzle Nozzle	P	10 260 90 0, 246 (1, 246	Post-Test Pre-Test Post-Test 2.246 Observer	0.003 Pitot <0.1 (Pitot <0.1 (0.246	@ 14.0	In. Hg. 6,3 In. H2O
le.	1	Filter No.	0-244	Start T	lime <u>0</u>	805	End/Ti	me <u>1048</u>		Agency_	VADEQ		
10 10 10 10 10 10 10 10 10 10 10 10 10 1	Sample Point	Clock Time	Dry Gas Meter Cubic Feet	√Pitot Reading ΔP In. H₂O	Sett Inch	rifice ing ΔH ics H2O Actual	Dry Gas Meter, Temp, °F	Pump Vacuum Inches Hg	Stack, Temp '°F	Probe Temp °F	Filter Box °F	CPM Filter Exhaust °F	Imp. Temp °F
of the	A A1	0	758.400	0.68	2.39	2.40	41	3.0	76	258	248	65	51
%	-2_	.5	762.81	0.67	2.35	2.35	47	3.0	76	255	248	65	50
-	3 . 1	10	767.16	0.71	2.49	2.50	47	3.0	76	257	249	65	So
1	74	15 .	771,69	0.75	2.64	2.45	49	3.5	77	256	248	66	S2B
%	s. 5.	20	776.40	0.77	2.71	2.70	50	3.5	77	256	249	66	505
	B1 /	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	781.083	0.65	228	7.30	52	3.0	77	259	250	66	55
1	7 2 .	-30	785.46	0.58	2.04	2.05	56	3.0	78	256	246	65	47
6	3	35 '	789.61	0.54	1.90	1.90	57	2,5	79	256	252	65	46
The second	4	40.	793.64	0,50	1.96.	1.75	59	2.5	79	258	256	66	48
1	5	45.	797.47	0.64	2.25	TABOR DOLLAR STORE OF COMPANY	60	3.0	8D	255	248	67	50
1	7 C1	50	2. 1 Mar 65 1	0.45	-1.58	1.60	62	2.5	AND THE PARTY OF STREET, STORE STORE STORE	Paul And State	253	66	54
,	2	55	805.50	0.41	1.94	1.45	63	2.5	81	256	25/	68	53
1	3	60	809.08	0.32	1.12	I.JD	64	2.0	81	257	250	69	52
100	4	65	812.21	0.29	1.02	1.00	65	2.0	81	258	253	70	\$3
1	15	70	815,19	0.42	1.48	1.50	.66	2.5	8	256	248	72	53
	- D1	75	818.76	0,31	1.09	1.10	68	2.0	82	258	249	71	57
14000	2	10. 194	821.84	0.2.8	1.00	1.00	68	2.0	82	257	250	73	55
1000	3	85 90	824.81	0.16	0,57	Provide State of the second	69	1.5	<u>83</u> 83	257	25/	73	SS
1	, 4 5		827.09	0.15	0.54	0.54	70	1,5	83	258	257	73	56
216	5 E1	95 . 	821.34	0.21	0.75	20 - 1 - 1	70	1,5		257	254	74	157
	2 2	100	A	0.18	0.64	0.64	70	1.5	83	259	252	76	60
A Part of	3	Transferrate and	A LEVIS PAR AND	0.15	0.54	0,54	70	1.5	83	260	253	76	59
	4	110	836.57	0.08	0.29	0.29	70	1.0	\$3	258	252	77	60
	5	113	838.26	0.06	0.21	0.2	70	1.0	83	259	252	78	1 - 1 - 1 - 1
		125	841.114	0.05	0.10	0.18	TO	1.0	0)	258	248	80	61
100	11/2/2.15	123	871.119	0.400		1,413	61.52		80,28	an an an ang ang ang ang ang ang ang ang		No.	

Isokinetic Check: Audited by: ______ (Personnel) Date: (1/8/18 Completeness Legibility Accuracy

Date: ____ Audited by: _____ (Team Leader)

Specifications Reasonableness

<u>ILLEIS</u> Civil & Environmental Consultants, Inc.

Methods 5 & 202 and Sample Recovery – Data Analysis

Client Name_The Goodyear Tire & Water Co. City/State_Danville, VA Sampling Location_Dust Collector BBC5 Clean-Up Box Number_1 Chain of Custody: Date Received 10 123-24 /18

Project Number	182-545	
Sample Date 10	128-24 /18	
Samples Recove	ered 10 \$3-24/18	was
Recovery Date /	U R3- 118	101
Received By	Locked?	

	Equipn	nent Documentation		6
Run Number	1	2	3	
Sample ID Number	182545-01	182545-02	182545-03	
Sample Box Number	A	B	C .	
Probe Number	200. 064	200.063	200. 064	
Norrle Number	300. 240 Sample I	300. 290 Recovery – Fraction	300, Z90 1	
Filter Container #	182545-01	182545-02	182545-03	
Particulate Description	black	6/ack	black	
Filter Container Sealed?	V	~	V	

Sample Recovery – Fraction 2

	terrest produces and			
Probe Rinse Container #	182545-01	182545-02	182545-03	
Rinsing Solution	Acetone	Acetone	Acetone	Acetone
Sample Container Sealed?	111		~	
Liquid Level Marked?	V		1	

Analysis of Moisture and Sample Recovery - Fraction 3

Reagent Recovery Container	182545-01	182545-02	182545-03	
Imp. Absorbing Solution	DI H ₂ O			
Description of Reagent	Char NA	clear NA	NA	1 - P
Reagent Level Marked?	V	Nov i	V	ñ
Final Volume, ml	- See	page 2 -	>	1
Initial Volume, ml	- "			
Net Condensed Volume, ml	0	2.9	(-0,1)	
N ₂ Purge	~		V	4
Rinse twice with DI H ₂ O	V	V.	V	
Rinse twice with Acetone	V		V	
Rinse twice with hexane	V		V	

Analysis of Moisture and Sample Recovery - Silica Gel

Silica Gel Recovery Container #	-01	-02	-03
Percent Silica Gel Spent	10%	15%	15%
Final Weight, g	- See 1	nuge 2	2
Initial Weight, g	- 11	1	~
Net Absorbed Water, g	15,1	17.2	16-56405
Total Moisture Collected, g	15,1	20.1	16.5

Reagent Blanks							
Absorbing Reagent Blank (500mL)	DI H ₂ O	Absorbing Blank ID#	182545-04				
Rinsing Reagent Blank (200 mL)	Acetone	Rinsing Blank ID #	182545-04				
Rinsing Reagent Blank (200 mL)	Hexane	Rinsing Blank ID #	182545-04				
Analyst Initials		Reviewer Initials					

Balance ID	Wt.(200 mg)	Wt. (500 mg)	Wt. (1,000 mg)	
600.057	200.0	500,0	1000,0	
6.00,057	Digo D	\$700.0	1000.0	

Audited by: PN (Personnel)

Date: 11 / 8/1 Comple

Date:

(Team Leader)

Completeness _____ Legibility _____ Accuracy _____ Specifications _____ Reasonableness _____

Civil & Environmental Consultants, Inc.

Audited by:

Method 5 & 202 – Moisture Determina	ation and Sample Recovery
Client Name The Godyour The and helber Lo.	Project Number: 182-545
City/State Doa v://c	Sample Date: 10/23-24/18
Sampling Location	Samples Recovered by: #V86
Samphing Location <u>Jack PR+ 7 12 - 2 </u>	Recovery Date $10/23 - 241/8$

Moisture Recovery by weight									
Run No.:1	ginns	gmms							
Impinger Bottle Weight	Initial wt. (mg) ou	Final Wt (mg) Bl/	Difference (gain) wt.						
1 st Imp. Bottle	H79.9	4799	0.0						
2 nd Imp. Bottle	594.5	596.5	0.0						
3 rd Imp. Bottle	213,4	713.4	0.0						
4th Imp. Bottle 10 /0	9/4/1	928, 2	15.1 V	70°F purge					
5 th Imp. Bottle	•	·		/					
6 th Imp. Bottle			TC = 15.1	aimmis					
				·					

Run No.:2	grams	gmm	-	
Impinger Bottle Weight	Initial wt. (mg)	Final Wt (mg) By	Difference (gain) wt.	
1 st Imp. Bottle	4816	481.+	0.1	BI
2 nd Imp. Bottle	6047	6045	-0.2	69957
3 rd Imp. Bottle	708.0	711:0	3.0	
4 th Imp. Bottle 15%	879.2	8961	17.2	<u> </u>
5 th Imp. Bottle				
6 th Imp. Bottle			$T_{c} = 20.1$	grami
t	· · · · · · · · · · · · · · · · · · ·			<u> </u>

Run No.:3	BU Johns	BU gimm		
Impinger Bottle Weight	Initial wt. (mg)	Final Wt (mg)	Difference (gain) wt.	. <u></u>
1 st Imp. Bottle	484.2	487.3	<u></u>	· · · · · · · · · · · · · · · · · · ·
2 nd Imp. Bottle	636.5	£ 36 6 5 was		:::
3 rd Imp. Bottle	6581	(97, & 7 10Q	<u>s (0,2)</u>	
4th Imp. Bottle 15%	907.7	G24.3	16.6	
5 th Imp. Bottle			·	
6 th Imp. Bottle				
· ·		•		

Run No.:	BU grams	BU gener		· · · · · · · · · · · · · · · · · · ·
Impinger Bottle Weight	Initial wt. (mg)	Final Wt (mg)	Difference (gain) wt.	The states
1 st Imp. Bottle	· · ·		-	trad black
2 nd Imp. Bottle		· · · · · · · · · · · · · · · · · · ·		- A mark and
3 rd Imp. Bottle				690F Jan
4 th Imp. Bottle				,. V
5 th Imp. Bottle				
6 th Imp. Bottle				
······				

. . -Audited by: _____(Personnel) Date: 11/9/19 Accuracy Legibility_ Completeness <u>v</u> la l Civil & Environmental Consultants, Inc. Specifications Reasonableness Audited by: Date: (Team Leader) 87

Page 2 of 2

APPENDIX C LABORATORY DATA

The Goodyear Tire And Rubber Company, Danville, Virginia Banbury Mixer No. 5

EPA Method 5 - Particulate Determination - Data Analysis

Client: The Goodyear Tire And Rubber Compar City/State: Danville, Virginia Sampling Location: Banbury Mixer No. 5 Parameter: EPA Method 5 Chain of Custody: Date Received: 10/24/2018 Analytical Balance ID: Sartorius Serial No. 39120051 Project No.:182-545Samples Collected On:10/23/18Samples Recovered By:WQBSample Recovery Date:10/23/18Received By:WQBLocked?:YesClass S Weight Set ID:Troemner 4563

Analysis of Particulate Recovery

Run Number	1	2	3			
Sample ID Number	182545-01	182545-02	182545-03			
Filter Number	Q-242	Q-243	Q-244		 	
Final Weight, g	0.3512	0.3639	0.3574			
Reweigh 2, Final, g	0.3508	0.3635	0.3571			
Reweigh 3, Final, g						
Initial Weight, g	0.3466	0.3559	0.3475			
Reweigh, Initial, g	0.3466	0.3560	0.3478			
Average Final, g	0.3510	0.3637	0.3573			
Average Initial, g	0.3466	0.3560	0.3477			
Net Filter Catch, g	0.0044	0.0078	0.0096			
				1	 	
Beaker Number	142	143	144			
Acetone Level Marked	Yes	Yes	Yes			
Acetone Wash Volume	150	150	150			
Final Weight, g	112.9392	115.4857	110.8888			
Reweigh 2, Final, g	112.9395	115.4860	110.8892			
Reweigh 3, Final, g						
Initial Weight, g	112.9303	115.4808	110.8838			
Reweigh, Initial, g	112.9303	115.4803	110.8835			
Average Final, g	112.9394	115.4859	110.8890			
Average Initial, g	112.9303	115.4806				
Acetone Blank, g	0.0004	0.0004	0.0004			
Net Front Rinse, g	0.0086	0.0049	0.0050			
Total Particulate, g	0.0130	0.0127	0.0146			
rotai rarticulate, y	0.0130	0.0127	0.0140			

Gravimetric Documentation

	Initial	Reweigh	Final	Reweigh 2	Reweigh 3	Reweigh 4
Date of Analysis	09/05/18	09/06/18	10/26/18	10/26/18		
Time of Analysis	1030	0745	0740	1550		
Analyst	EWC	EWC	WQB	EWC		
Desic. Rel. Humidity, %	12	16	15	18		
Lab. Temperature, °F	75	74	71	72		
Bar. Press., In. Hg	29.53	29.52	29.25	29.01		
Lab. Rel. Humidity, %	43	39	42	44		

	Bla	ink Acetone Analysis		
Sample ID Number	182545-06	Final Weight, g	115.7631	
Blank Beaker Number	145	Reweigh, Final, g	115.7634	
Beaker Volume, ml	150	Initial Weight, g	115.7629	
Acetone Conc., mg/g *	0.00338	Reweigh, Initial, g	115.7628	i
Maximum Residue, g	0.0012	Average Final, g	115.7633	
Analyst Initials	EWC	Average Initial, g	115.7629	
Auditor Initials	WQB	Acetone Residue, g	0,0004	

Blank Acetone Analysis

* Blank values < 0.01 mg/g of the weight of acetone (< maximum residue, mg) were subtracted from sample weight.

h	R
	÷,
Ē	4

VHAIN OF CUSTONV

	11
	000
	ling
	040
j	the last
5	NIN
P	lotto
IN	tod O
5	V
CIVIL & ENVIRONMENTAL CONSULTATION, INC.	1000 Contor Book Daile Suite A Charlotte Month Caroline 28217
ē	-
	i c
E	-lac
5	D = 0
8	the t
IN	100
)	101

Toll-Free: 855-859-9932 Direct: 980-237-0373	Sampling Methods	5		Sample Disposition and Remarks										Special Instructions:			
Toll-Free: 8	Number of Containers	7		Sample Disp	Acetone Rinse, Quartz filter	Acetone Rinse, Quartz filter	Acetone Rinse, Quartz filter	one						Date/Time 10/24/18 1630	/ pate/Time	unds:	
		45)rder: <u>NA</u>	Date	-	-	10/24/2018 Acetc	10/23/2018 Acetone						Jul Received By:	Received By:	Analyze for the following Compounds:	Condensible Particulate
28217	Laboratory: CEC	Project No.: 182-545	Purchase Order: NA	Sample ID	182545-01	182545-02	182545-03	k 182545-06						STime 0	Date/Time	Date/Time Analy	Cond
harlotte, North Carolina	e & Rubber Co.			ption	Run 1	Run 2	Run 3	Reagent Blank						16/24/15	Dati		
1900 Center Park Drive, Suite A, Charlotte, North Carolina 28217	Company: The Goodyear Tire & Rubber Co.	City, State: Danville, VA	Contact: Bryan Starnes		Dust Collector BBC5									W Relinquished By:	Relinquished By:	Received for Laboratory By:	

Civil & Environmental Consultants, Inc. – Charlotte

1900 Center Park Drive, Suite A Charlotte, NC 28217

The Goodyear Tire & Rubber Co. Danville, VA Project # 182-545

Analytical Report (1018-174)

EPA Method 202

Condensable Particulate Matter

Enthalpy Analytical, LLC

Phone: (919) 850 - 4392 / Fax: (919) 850 - 9012 / www.enthalpy.com 800-1 Capitola Drive Durham, NC 27713-4385 I certify that to the best of my knowledge all analytical data presented in this report:

- Have been checked for completeness
- Are accurate, error-free, and legible
- Have been conducted in accordance with approved protocol, and that all deviations and analytical problems are summarized in the appropriate narrative(s)

This analytical report was prepared in Portable Document Format (.PDF) and contains 14 pages.

til of Jones

QA Review Performed by - Quentisha L. Forrester

Report Issued: 11/12/2018

Summary of Results

EA# 1018-174 Page 3 of 14

Enthalpy Analytical

Company: Civil & Environmental Consultants - Charlotte Job No.: 1018-174 EPA Method 202 Analysis Project No.: 182-545 The Goodyear Tire & Rubber Co.- Danville, VA

Summary Report

	Run 1	Run 2	Run 3	Field Blank
Net Organic Catch (mg)	3.20	2.89	2.49	1.74
Corrected Inorganic (mg)	2.39	2.24	1.65	1.24
CPM (mg)	5.6	5.1	4.1	3.0
TB Corrected CPM (mg)	3.6	3.1	2.1	

EA# 1018-174 Page 4 of 14

Results

EA# 1018-174 Page 5 of 14

Enthalpy Analytical

Company: Civil & Environmental Consultants - Charlotte Job No.: 1018-174 EPA Method 202 Analysis Project No.: 182-545 The Goodyear Tire & Rubber Co.- Danville, VA

Results

	Run 1		Run 2		Run 3		Field Blank	
Beaker Number	17486		17487		17488		17489	
Initial Solvent Volume (mL)	300		310		285		166	
Org Final Weight 1 (g)	2,521575	11/07/18 6:34	2.531275	11/07/18 6:34	2.519530	11/07/18 6:35	2.530967	11/07/18 6:35
Org Final Weight 2 (g)	2.521638	11/08/18 7:23	2.531249	11/08/18 7:24	2.519491	11/08/18 7:24	2.530931	11/08/18 7:24
Tare (g)	2,518439	10/25/18 10:02	2.528364	10/25/18 10:03	2.516998	10/25/18 10:03	2.529191	10/25/18 10:04
Organic Catch (mg)	3.20		2,89		2.49		1.74	
Inorganic								
Beaker Number	17480		17481		17482		17483	
Weight 1 (g)	2.545280	11/07/18 6:27	2.509400	11/07/18 6:28	2.528445	11/07/18 6:28	2.522086	11/07/18 6:29
Weight 2 (g)	2.545270	11/08/18 7:19	2.509396	11/08/18 7:20	2.528443	11/08/18 7:21	2.522077	11/08/18 7:21
Tare (g)	2.542881	10/25/18 10:00	2.507153	10/25/18 10:00	2.526792	10/25/18 10:01	2.520841	10/25/18 10:0
Initial Water Vol (mL)	350		275		245		260	
Water Added by Lab (mL)	75		75		75		75	
Resuspend Vol (mL)	100		100		100		100	
Net Inorganic Catch (mg)	2.39		2.24		1.65		1.24	
Titrant Normality	0.10		0.10		0.10		0.10	
Titrant Vol (mL)	0.05		0.05		0.08		0.03	
Titrant Blank Vol (mL)	0.05		0.05		0.05		0.05	
Ammonium Corr (mg)	0.0		0.0		0.0		0.0	
Corrected Inorganic (mg)	2.39		2.24		1.65		1.24	
Condensible Particulate (mg)	5.59		5.13		4.14		2,98	
TB Corrected CPM (mg)	3.59		3.13		2.14			

EA# 1018-174 Page 6 of 14

Enthalpy Analytical

Company: Civil & Environmental Consultants - Charlotte Job No.: 1018-174 EPA Method 202 Analysis Project No.: 182-545 The Goodyear Tire & Rubber Co.- Danville, VA

Reagent Blanks

		V	/ater	Ac	etone	Н	exane
	Beaker	17485		17492		17493	
	Weight 1 (g)	2.535784	11/07/18 6:33	2.518250	11/07/18 6:42	2.508971	11/07/18 6:43
	Weight 2 (g)	2.535902	11/08/18 7:22	2.518112	11/08/18 7:41	2.509076	11/08/18 7:45
In House	Tare (g)	2.535757	10/25/18 10:02	2.518036	10/25/18 10:06	2.508920	10/25/18 10:06
	Residue (g)	0.00015		0.00008		0.00016	
	Vol (mL)	250		200		225	
	Max Residue (g)	0.0003		0.0002		0.0001	
		V	/ater	Ac	etone	Н	exane
	Beaker	17484		17490		17491	
	Weight 1 (g)	2.519670	11/07/18 6:31	2.535562	11/07/18 6:40	2.539401	11/07/18 6:41
Client's	Weight 2 (g)	2.519715	11/08/18 7:22	2.535582	11/08/18 7:30	2.539474	11/08/18 7:39
Reagent Blank	Tare (g)	2.519552	10/25/18 10:02	2.535345	10/25/18 10:04	2.539190	10/25/18 10:05
	Residue (g)	0.00016		0.00024		0.00028	
	Vol (mL)	204		202		204	
	Max Residue (g)	0.0002		0.0002		0.0001	

EA# 1018-174 Page 7 of 14

Narrative Summary

Company:	Civil & Environmental Consultants, Inc. – Charlotte	
Client No.:	182-545	
Job No.:	1018-174	
Parameters	EPA Method 202	

Enthalpy Analytical Narrative Summary

Custody

David Myers received the samples on 10/29/18 after being relinquished by Civil & Environmental Consultants, Inc. – Charlotte. The samples were received at ambient temperature and in good condition.

Prior to, during, and after analysis, the samples were kept under lock with access only to authorized personnel by Enthalpy Analytical, LLC.

Analysis

The samples were analyzed for Condensable Particulate Matter using the analytical procedures in EPA Method 202, Determination of Condensible Particulate Emissions from Stationary Sources (40 CFR Part 51, Appendix M).

All samples were weighed on Balance 8 (Sartorius Model ME5-OCE, Serial # 23104965), certified by Mettler Toledo through July 31, 2019.

QC Notes

A field train blank was received with these samples. The method specifies that blank corrections are accomplished by subtracting the particulate mass determined for the 'Field Train Blank' or 2 mg (whichever is less) from the sample weight.

Acetone, hexane, and water reagent blanks (RBs) were received with these samples and analyzed.

Laboratory reagent blanks (acetone, water, and hexane) were analyzed with the samples and are included in the report, though their results are not used to adjust any of the sample results.

The inorganic results for the samples were corrected for the ammonium ions used to precipitate the sulfate, per the formula in the Method (Section 12.2.1).

Reporting Notes

These gravimetric analyses are considered to be accurate to ± 0.5 mg.

The results presented in this report are representative of the samples as provided to the laboratory.

These analyses met the requirements of the TNI Standard. Any deviations from the requirements of the reference method or TNI Standard have been stated above.

General Reporting Notes

The following are general reporting notes that are applicable to all Enthalpy Analytical, LLC data reports, unless specifically noted otherwise.

- Any analysis which refers to the method as *"Type"* represents a planned deviation from the reference method. For instance a Hydrogen Sulfide assay from a Tedlar bag would be labeled as "EPA Method 16-Type" because Tedlar bags are not mentioned as one of the collection options in EPA Method 16.
- The acronym *MDL* represents the Minimum Detection Limit. Below this value the laboratory cannot determine the presence of the analyte of interest reliably.
- The acronym *LOQ* represents the Limit of Quantification. Below this value the laboratory cannot quantitate the analyte of interest within the criteria of the method.
- The acronym *ND* following a value indicates a non-detect or analytical result below the MDL.
- The letter J in the Qualifier or Flag column in the results indicates that the value is between the MDL and the LOQ. The laboratory can positively identify the analyte of interest as present, but the value should be considered an estimate.
- The letter E in the Qualifier or Flag column indicates an analytical result exceeding 100% of the highest calibration point. The associated value should be considered as an estimate.
- Sample results are presented 'as measured' for single injection methodologies, or an average value if multiple injections are made. If all injections are below the MDL, the sample is considered non-detect and the ND value is presented. If one, but not all, are below the MDL, the MDL value is used for any injections that are below the MDL. For example, if the MDL is 0.500 and LOQ is 1.00, and the instrument measures 0.355, 0.620, and 0.442 the result reported is the average of 0.500, 0.620, and 0.500 - i.e. 0.540 with a J flag.
- When a spike recovery (Bag Spike, Collocated Spike Train, or liquid matrix spike) is being calculated, the native (unspiked) sample result is used in the calculations, as long as the value is above the MDL. If a sample is ND, then 0 is used as the native amount (not the MDL value).
- The acronym **DF** represents Dilution Factor. This number represents dilution of the sample during the preparation and/or analysis process. The analytical result taken from a laboratory instrument is multiplied by the DF to determine the final undiluted sample results.
- The addition of *MS* to the Sample ID represents a Matrix Spike. An aliquot of an actual sample is spiked with a known amount of analyte so that a percent recovery value can be determined. The MS analysis indicates what effect the sample matrix may have on the target analyte, i.e. whether or not anything in the sample matrix interferes with the analysis of the analyte(s).

General Reporting Notes (continued)

- The addition of *MSD* to the Sample ID represents a Matrix Spike Duplicate. Prepared in the same manner as a MS, the use of duplicate matrix spikes allows further confirmation of laboratory quality by showing the consistency of results gained by performing the same steps multiple times.
- The addition of *LD* to the Sample ID represents a Laboratory Duplicate. The analyst prepares an additional aliquot of sample for testing and the results of the duplicate analysis are compared to the initial result. The result should have a difference value of within 10% of the initial result (if the results of the original analysis are greater than the LOQ).
- The addition of *AD* to the Sample ID represents an Alternate Dilution. The analyst prepares an additional aliquot at a different dilution factor (usually double the initial factor). This analysis helps confirm that no additional compound is present and coeluting or sharing absorbance with the analyte of interest, as they would have a different response/absorbance than the analyte of interest.
- The Sample ID *LCS* represents a Laboratory Control Sample. Clean matrix, similar to the client sample matrix, prepared and analyzed by the laboratory using the same reagents, spiking standards and procedures used for the client samples. The LCS is used to assess the control of the laboratory's analytical system. Whenever spikes are prepared for our client projects, two spikes are retained as LCSs. The LCSs are labeled with the associated project number and kept in-house at the appropriate temperature conditions. When the project samples are received for analysis, the LCSs are analyzed to confirm that the analyte could be recovered from the media, separate from the samples which were used on the project and which may have been affected by source matrix, sample collection, and/or sample transport.
- Significant Figures: Where the reported value is much greater than unity (1.00) in the units expressed, the number is rounded to a whole number of units, rather than to 3 significant figures. For example, a value of 10,456.45 ug catch is rounded to 10,456 ug. There are five significant digits displayed, but no confidence should be placed on more than two significant digits. In the case of small numbers, generally 3 significant figures are presented, but still only 2 should be used with confidence. Many neat materials are only certified to 3 digits, and as the mathematically correct final result is always 1 digit less than all its pre-cursors 2 significant figures are what are most defensible.
- Manual Integration: The data systems used for processing will flag manually integrated peaks with an "M". There are several reasons a peak may be manually integrated. These reasons will be identified by the following two letter designations on sample chromatograms, if provided in the report. The peak was *not integrated* by the software "NI", the peak was *integrated incorrectly* by the software "II" or the *wrong peak* was integrated by the software "WP". These codes will accompany the analyst's manual integration stamp placed next to the compound name on the chromatogram.

Sample Custody

Company:	Park Drive, Suite A, Charlotte The Goodycar Tire & Ru			: Enthalpy			Number of Containers	-9932 Direct: 980-237-0373 Sampling Methods				
City, State:	Danville, VA	DDer Co.	Project No.				15	202				
Contact:	Bryan Starnes		A DESCRIPTION OF A DESC	chase Order:								
	Sample Description		Sam	ple ID	Date		Sample Disposition	and Remarks				
ust Collecto	or BBC5	Run 1	Contraction of the local division of the loc	545-01	10/23/2018		p. Contents with DI H2O Rinse, Acctone and Hexane R					
		Run 2		545-02	10/23/2018		with DI H2O Rinse, Acetone and					
		Run 3	1825	545-03	10/24/2018	Imp. Contents	with DI H2O Rinse, Acetone and	Hexane Rinse, and CPM Filter				
		Reagent Blank	1825	545-04	10/23/2018	200ml each of	ml each of Acetone, Hexane, and DI H2O					
		Field Blank	1825	545-05	10/23/2018	Imp. Contents	with DI H2O Rinse, Acetone and	Hexane Rinse, and CPM Filter				
	Relinquished By:	Date/1 16/26/18 Date/1		H M	Received By		U/24 /14 /19 Date/Time	Special Instructions:				
Recei	ived for Laboratory By:	Date/1	Date/Time		he following C	ompounds:						
				Condensible	Particulate							

Ambient Temp.

EA# 1018-174 Page 13 of 14

This Is The Last Page Of This Report.

APPENDIX D 2018 EQUIPMENT CALIBRATIONS

QUALITY ASSURANCE AND EQUIPMENT CALIBRATION PROCEDURES

General. Field or laboratory test equipment purchased or fabricated by Civil and Environmental Consultants, Inc. (CEC) is assigned a unique, permanent identification number. New items for which calibration is required are calibrated before initial field use. Equipment whose calibration status may change with use or with time is inspected in the field before testing begins, and again upon return from field use. When an item of equipment is found to be out of calibration, it is adjusted and recalibrated or retired from service. CEC's equipment is periodically recalibrated, regardless of the outcome of these regular inspections.

Calibrations are conducted in accordance with United States Environmental Protection Agency (US EPA) specifications. CEC follows the calibration procedures outlined in EPA Reference Methods found in the Code of Federal Regulations (Volume 40, Part 60) and those recommended in the Quality Assurance Handbook for Air Pollution Measurement Systems: Volume III (EPA/600/R-94/038c). When the Reference Methods do not detail procedures, CEC uses methods such as those prescribed by the American Society for Testing and Materials (ASTM).

Data obtained during calibrations are recorded on standardized forms, which are verified for completeness and accuracy by the Quality Assurance Manager. Data reduction and subsequent calculations are performed using CEC's Air Quality Data System. Calibration calculations are performed by an environmental scientist, independently audited by the Project Manager, and reviewed by the Quality Assurance Manger for verification of data. Copies of calibration data are included in the test or project report.

Inspection and Maintenance. An effective preventative program is necessary to ensure equipment performance quality prior to, during, and following the source test. Equipment returning from the field is inspected before it is returned to storage. During the course of these inspections, items are cleaned, repaired, reconditioned, and recalibrated when necessary.

Equipment that is transported to the field for a test project is inspected again prior to being packed. CEC performs these quality assurance checks prior to departure for the project site to detect equipment problems, which may occur during periods of storage. CEC transports adequate back-up equipment to the project site so as to minimize delays in the test schedule.

<u>Calibration</u>. Source sampling equipment that requires calibration includes nozzles, pitot tubes, thermometers, flow meters, dry gas meters, and barometers. The following sections briefly describe the calibration procedures followed by CEC.

Nozzles. Probe nozzles are uniquely and permanently identified at the time of purchase or fabrication; with the exception for glass nozzles. (Glass nozzles are not uniquely identified due to their fragile status.) Nozzles are calibrated before initial field use and prior to the source test. The inside diameter of the nozzle is measured to the nearest 0.001 inch precision micrometer. Three measurements are made using different

diameters. If the difference between the high and the low measurements do not exceed 0.004 inch, the average of the three measurements is used. If the difference exceeds this amount, or when the nozzle becomes nicked, dented, or corroded, the nozzle is reshaped, sharpened, and recalibrated. Regardless of usage, nozzles are inspected on a yearly basis.

Pitot Tubes. CEC Type S Pitot tubes have been constructed and calibrated using those recommendations in accordance with EPA Reference Method 2, Section 10.1. CEC Type S Pitot tubes C_p coefficients have been determined according to Method 2, Section 10.1. CEC standard Pitot tubes have been assigned a C_p coefficient of 0.99 according to Calibration Procedure 2. Pitot tubes are visually inspected prior to field use. If the inspection indicates damage, the calibration is rechecked. Regardless of usage, CEC Pitot tubes are inspected and recalibrated on a yearly basis.

Dry Gas Meter and Orifice. Console metering systems receive a full calibration at the time of purchase and annually, thereafter. Post-test calibrations are performed after the source test. Approved Alternative Method 5 Post-Test Calibration (ALT-009) may be used to determine a post-test calibration on the console metering systems instead of reference post-test method. If the calibration factor, γ (gamma), deviates by more than five percent per the reference post-test method, the meter is recalibrated and the meter coefficient (initial or recalibrated) that yields the lowest sample volume for the test runs is used. Standard practice at CEC is to recalibrate the dry gas meter when the γ is found to be outside the range of $\gamma \pm 3\%$.

Barometer. Field barometers are compared to a reference mercury barometer and are deemed acceptable when they agree to within \pm 0.1 inches Hg. This barometric pressure is corrected for pressure and temperature. Prior to and following the sampling program, the field barometer is verified against the referenced barometer.

<u>Thermometers</u>. New thermometers, pyrometers and thermocouples purchased or fabricated by CEC are calibrated using the procedures described by US EPA Test Protocol. Calibration tolerance limits are as follow:

Impinger Temperature Gauge	± 1°C or 2°F
Dry Gas Meter Temperature Gauge	± 3°C or 5.4°F
Stack Thermocouples	± 1.5% of absolute temperature

Thermometers and thermocouples are inspected and calibrated prior to and following the field test. Regardless of usage, CEC thermometers and thermocouples are inspected and recalibrated on a yearly basis.

<u>Laboratory Equipment</u>. CEC, Inc. has a written quality assurance document that covers calibration and maintenance of laboratory equipment. This includes calibration of the analytical balance against Class S weights. Calibration of thermometers, barometers, and wet test meters are traceable to NIST. A copy of our quality assurance document may be obtained by written request.

PRE-TEST / POST-TEST CALIBRATION DATA FORM

Goodyear Tires Client Pre-test Date 10/16-19/18 Calibrator_ Bus Reference Thermometer Lollipop SN 170 55 3260 City/State______ Post-test Date______ Reference Barometer___

35 of 74

100.044

	Calibrator	BL
ľ	0111	-

10			-test			t-test
÷	Temp., ° F	Ref. Temp., °F	Inspection	Ţemp., °F	Ref. Temp., ° F	Inspection
Omega DBWB # 100,042	73.9	73.0	Will have the same	62.1	61,3	L. L. M.
Omega DB/WB# 100.044	79.5	79.1		63.0	61.3	and the first of the
Omega DB/WB # 100.045	71.7	73.0		62.5	61.3	The location
Omega DB/WB# 100.059	72.1	73.0	100.061 62.8	62.8	61.3	and the second states of
DB 100.060 WB 100.061	73,3/71.5	73.0	Positive Leak Check	62.84	61,3	Poistive Leak Check
Dry Gas Meter #300.392 [A]	/		🗆 Yes 🗆 No @			🗆 Yes 🗆 No @
Dry Gas Meter #300.321 [B]		1	🗆 Yes 🗆 No @			🗆 Yes 🗆 No @
Dry Gas Meter #300.035 [C]	1000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1	1	□ Yes □ No.@			🗆 Yes 🗆 No @
Dry Gas Meter #300.388 [D]			🗆 Yes 🗆 No @			🗆 Yes 🗆 No @
Dry Gas Meter #300.310 [E]			□Yes □No@			□ Yes □ No @
Dry Gas Meter #300.045 [F]	72	74.0	Yes I No @ 6.7	61	61.1	Wes INO @ 6,U
Dry Gas Meter #300-390 [G]	10		□Yes □No @			□ Yes □ No @
Dry Gas Meter #300.241 [H]	73	74.0	Yes D No @ 5.7	62	61.1	Yes INO @ 5.4
Dry Gas Meter #300.214 [I]	12	1.110	□ Yes □ No @	1.1	P 1 4	□Yes □No @
Dry Gas Meter #300.067 [J]			□ Yes □ No @			□ Yes □ No @
Dry Gas Meter #300.200 [K]			□ Yes □ No @			□ Yes □ No @
	12				-	
Umbilical Adaptor # 🗶 #300.	73,5	73,2		62.6	61.2	-
Umbilical Adaptor # // #300.	73.1	73.2		62.7	61.2	
Umbilical Adaptor # #300.	72.1	12.2		our	VIIL	
Umbilical Adaptor # #300.	-					
Umbilical Adaptor # #300.	-				1.1	
	-					
Umbilical Adaptor # #300.			Visual Inspection			Visual Inspection
Decks #000 0/2	65.0	65.6	Yes D No @	70.0	69.8	XYes I No @ Jab
Probe #200. 063		65.6	Yes D No @	70.1	69.8	Yes DNo @ Inb
Probe #200. 064	65.2		Yes D No @	62.6	61.3	Yes I No @
Probe #200. 076		65.6	Yes D No @	62.8	61.4	X Yes D No @
Probe #200. 077	64.8	65.6	Yes D No @	62.4	61.2	XYes DNo @
Probe #200. 300	65.1	65.6	Yes D No @	62.5	61.2	Yes DNo @
Probe #200. 30/	64.9	65.6			61,2	XYes DNo @
Probe #200. 105	64.8	65.6	Yes D No @	62.4		Provide second s
Probe #200. 2	65.1	65.6	Yes D No @	70.2	69.8	P 1 - 100
Pitot #200.			Yes D No @	Last	112	□ Yes □ No @
Pitot #200. 711	65.4	65.6	Yes D No @	62.4	61.2	XYes □ No @ Yes □ No @
Pitot #200. 708	65.6	65.7	Yes 🗆 No @	62.7	61.2	A res 110 @
Hotboxes	777	717		12 5	61.3	
<u> + </u>	73.7	73,7		62.5		
Hz BV	73.9	73.7		Not	61.3	
HHT H13	73.1	73.7		62.8	CITO	
CPM Exit thermocomples	1110	11111	200	60	100	146
100.104	64.8	64.4	70.5	69.	69.8	
100.119	6418	64.4		70.4	69.7	1.6
100.120	64.9	64.4		70.5	69.7	lab
	Field B	aro., in. Ha	Ref. Baro.,in Hg	Field B	aro., in. Ha	Ref. Baro., in. Hg
Barometer # 600.042		.62	29.64		9.09	29,13
Barometer #				0	<u> </u>	

Were safety checks performed during the pre-site reviews? Were post-test calibrations withi the EPA Quality Assurance criteria?

es 🗆 No Yes 🗆 No

<u>/ Civil & Environmental</u> Consultants, Inc.

METHOD 5 GRITICAL ORIFICE CALIBRATION

CRITICAL ORRICE'SET SINE 1374

胶 ENVIRONMENTAL SHEPLY RAMPONY ٠

		(. (
.		AVĞ VOLUME FLOWLATE.	29.80	24:21	22.AE	16,23	10,68	-4 Tame
VINHANUS		ang volume Flowfate (Ft ^y hin).	T. T.	2.4 ¹ 8	1,7;9	ដំរូ ឆ្លូឆ្ល ភូមិ	-19 19 19 19 19 19 19 19 19 19 19 19 19 1	$K_{5} V_{m} Y (\mathbb{R}_{bbr} X \Delta H \pi 3 G) \sqrt{T_{amb}}$
AUPPEN L		K: FAGTOR. VARIATION (36)	4.13 	6.1a 0.00,0	0.10° -0.413 -0.412-	-0140 0.21 40.11	-75°0 1010 -1010	
ULER LAL		K FACTOR	0.8153 -0.8126 -0.8134 	0,670. 0,670. 0,6697. 1,6697.		.= 0.6069	9.2881 0.2882 0.2882	र्मार्थसार भिन्द
AND HUNDER AT LANCE THE PRODUCT OF MANY		рем АН (In H_o).	8.71 3.71 3.71 4V3 K' FACTOR=	2.48 2.48 2.48 AVGTV:FACTTIFIC	216 216	AVG K EACTUR	0.42 0.42 0.42 0.42 AVG_K-FAGTOR=	* Critteal Critice Coefficient = Kre
		ELAPSED TUÁE (MIN) . 6°	5,00 5,00 5,00	7.0fr 7.0a	2,20 8,00 8,50	10.00 10.00 10.00	12.08	δ *
-	LEAK CHECK Fassed	TLET FINAL	688.0 689.0	103.2 83.7 70.50 103.7 70.2 71.50 70.7 70.7 72.3	<u>760.7 - 7712</u> 72.50 71.2 71.5 73.20 71.6 72.1 73.65	68.3 68.3 68.3	60°02 (12) - 3°68 13°63 (13) - 7°68 19°63 (13) - 7°68	ព័គ៌ ឧព្វបង់ដែលនិ-៣.US
	· ·	I DĜMJN	69.2 70.4	52.1 (14.4 - 23.1 62.1 72.1 74.5 53.1 . 73.1 74.5	69.4 75.7 75.7 59.4 72.5 59.4 76.5	<u>ពិស័រក</u> ភ្លំដំ ភ្លំ ភូមិ ភូមិ ភូមិ ភូមិ ភូមិ ភូមិ ភូមិ ភូមិ	83,9 70,0 70,5	KipM Seluciation isolar, Y, using orlige sett.
	REFERENCE DRY GAS METER SERIAL NUMBER	DIGIÁ READINGS (ST ⁻) INTIAL FINAL AIET (N.,) SEGSÁRA GESS, PRÍS-	568.105. 568.105. 612.421. 578.562	584.687 390.914	590,214, 581,114, 6,260 552,537, 503,537, 5,368 - 503,537, 5,368	602/297 <u>615,457</u> <u>5,560</u> , 81 <u>6,457</u> <u>822,1356</u> 5,573 621,1336 822,1356 5,575 821,1336 823,1222 5,575 1226,802 831,126- 4,575		ere programmed on the spreadshoot houlded with each
	Baromistic	perodifica Ave.(Paul)	23.79	5252	29.75	287.82 ·	29,83 FICES AS CALIER	, intere squalion
	7/22/200 5-200 58/11/574	VACUUNI, -VACUUNI,	14 14 14 14 14 14 13 14 13 14 13 14 14 14 14 14 14 14 14 14 14 14 14 14	- 14 (18.5 - 14 18.5 - 14 18.5	┼┼┤╎	4 21 21 21 21 21 21 21 21 21 21 21 21 21	18 22 16 22 USING THE CRUTICAL ORI USING THE CRUTICAL ORI FOLDING THE CRUTICAL ORI	יין איזערע איזערע איזערע איזערע איזערעערערערערערערערערערערערערערערערערערע
	GAS METER PNG	ORIFICER [®] RUN &			21' 07 0 		8	•

36 of 74

C6-1374.XLS

⁵R (English), ⁵K (marit) ^{T₁₆ = 33s20105 DSM avg. tumperature, ^oR (English), ^oK (Mearic)}

ö

Ń Dàtë

ĩ

.

 $T_{aub} = A h solute a muleat temperature,$

Ki = "47.64" kR/n.Hz (English) Nishtran 24. minuta (Sasta) = .X

. was calibrated in geconitainee with the Gods of Federal Regulaticits, Title 40, Part 60, Appendix A, Metholi 5, Section 772

Ú,

Signalure

а • • • •

Ø

1374

Syltical Ordice Set number

-
S
m
1
0
LL.
2
LL.
0
-
-1
7
4
0
-
-
-
œ
11
-
(1)
0
z
-
S
-
-
-
~
0
\simeq
1
4
RC 1
m
ш.
-
<
()
~
R'
100
ш
-
in
-
2
S
1
2
C
1
>
N
-
P
5
-
0
\simeq
Ť
TH
HL
ETH
METH
METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES

- Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range.
 Record barometric pressure before and after calibration procedure.
 Run at tested vacuum (from Orifice Calibration Report), for a period of time
- 4) Record readings in outlined boxes below, other columns are automatically calculated. necessary to achieve a minimum total volume of 5 cubic feet.

Civil & Environmental Consultants, Inc.

	METER PART #: 300.045 F	7/24/2018 00.045 F		- METER SERIAL #: CRITICAL ORIFICE SET SERIAL #:	METER SERIAL #: ICE SET SERIAL #:	12454596 1374	BA	BAROMETRIC PRESSURE (in Hg):	C PRESS	sure (in)	Hg): 29.27	27	29.25	29.26		ORIFICE	SHOULD BE	IF Y VARIATION EXCEEDS 2.00%, ORIFICE SHOULD BE RECALIBRATED	
	-	ĸ	TESTED					TEN	TEMPERATURES °F	JRES °F			ELAPSED					•	
		FACTOR	VACUUM	DGM READ	DGM READINGS (FT ³)	ŋ	AMBIENT	DGM INLET		DGM OUTLET	LET DGM		TIME (MIN)	DGM AH	(E)	(2)	(2)	٨	
ORIFICE # R	RUN#	(AVG)	(in Hg)	INITIAL	FINAL	NET (V _m)		INITIAL FINAL INITIAL FINAL	INAL IN	ILLIAL FI		AVG	θ	(in H ₂ O)	V _m (STD)	V _{er} (STD)	٢	VARIATION (%)	AH®
# 48	<u>ب</u>	0.8138	16.0	177.463	188,535	11.072	84	88	06	88	06	89.0	10.00	3.60	10.5095	10.2121	0.9717		1.8431
SS	8	0.8138	16.0	188.535	199.590	11.055	86	90	92	90	92 91	91.0	10.00	3.60	10.45528	10.1934	0.9750		1.8432
1	~	0.8138	16.0	199.590	210.656	11.066	86	92	93	52	93 92	92.5	10.00	3.60	10.43725	10.1934 AVG =	0.9766 0.9744	-0.12	1.8382
# 51	 	0.6704	16.0	150.166	159.225	9.059	85	88	06	88	90 89	89.0	10.00	2.03	8.5652	8.4049	0.9813		1.5283
SS	8	0.6704	16.0	159.225	168.334	9.109	84	90	16	06	91 90	90.5	10.00	2.30	8.5948	8.4126	0.9788		1.7248
	5	0.6704	16.0	168.334	177.463	9.129	85	16	92	16	92 91	91.5	10.00	2.30	8.5980	8.4049	0.9775		1.7249
	1							Ī			ſ					AVG =	0.9792	0.37	
# 52	+	0.6069	17.0	125.493	133.707	8.214	83	82	85	82	85 83	83.5	10.00	1.90	7.8423	7.6228	0.9720		1.7560
SS	4	0.6069	17.0	133.707	141.930	8.223	84	85	87	85	87 86	86.0	10.00	1.90	7.8149	7.6158	0.9745		1.7512
	m	0.6069	17.0	141.930	150.166	8.236	84	87	88	87	89 88	88.0	10.00	1.90	7.7987	7.6158	0.9765		1.7448
	L								ŀ	-	Γ	L				AVG =	0.9744	-0.13	
# 54	+	0.4269	19.0	108.284	114.018	5.734	81	79	81	62	81 80	80.0	10.00	0.91	5.4964	5.3719	0.9773		1.7003
SS	2	0.4269	19.0	114.018	119.752	5.734	82	80	81	80	81 80	80.5	10.00	16.0	5.4913	5.3669	0.9773		1.7019
	•	0.4269	19.0	119.752	125.493	5.741	82	81	83	81	83 82	82.0	10.00	16.0	5,4828	5.3669	0.9789		1.6972
								Ī		1	٢	1	[[AVG =	0.9779	0.23	
# 26	T	0.2882	20.0	210.656	214.598	3.942	98	96	90	90	90 90	0.06	10.00	0.42	3.7054	3.6099	0.9742		1.7041
SS	2	0.2882	20.0	214.598	218.568	3.970	87	96	90	90	90 90	0.02	10.00	0.42	3.7317	3.6066	0.9665		1.7072
	5	0.2882	20.0	218.568	222.496	3.928	87	90	89	90	89 89	89.5	10.00	0.42	3.6956	3.6066	0,9759		1.7088
ĥ																AVG =	0.9722	-0.35	

P_{bar} + (AH/13.6) E

K, Vm

V_m (std) =

Ð

P_{bar} 0 amp

2

¥

Ver (std) =

(2)

USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS: The following equations are used to calculate the standard volumes of air passed through the DGM, V_m (std), and the critical volitice, V_{α} (std), and the DGM calibration factor, Y. These equations are automatically calculated in the spreadsheet above.

37 of 74

 $\Delta H_{ab} = \left(\frac{0.75 \, \theta}{V_{es}(std)} \right)^2 \Delta H \left(\frac{V_m(std)}{V_m} \right)$

0.9756

AVERAGE DRY GAS METER CALIBRATION FACTOR, Y =

AVERAGE AH = 1.732

= Net volume of gas sample passed through DGM, corrected to standard conditions $K_{\rm s}=17.64$ "R/m. Hg (English), 0.3858 "/kmm Hg (Metric)

T_m = Absolute DGM avg. temperature (°R - English, °K - Metric)

= Volume of gas sample passed through the critical orifice, corrected to standard conditions

T_{amb} = Absolute ambient temperature (°R - English, °K - Metric)

K = Average K' factor from Critical Orifice Calibration

= DGM calibration factor

V_{er} (std) V_m (std)

1

(2)

2018 F 300.045 F .xisx

DGM Out	% Error	0.43%	0.00%	-0.19%	-0.18%	0.30%					
DGM In	% Епог	0.43%	0.00%	0.00%	-0.18%	0.30%					
Aux	% Error	0.00%	-0.20%	-0.19%	-0.18%	0.30%	0.21%				
Exit	% Ептог	0.00%	-0.20%	-0.19%	0.00%						
Filter	% Ептог	0.00%	-0.20%	-0.19%	0.00%	0.45%	0.21%				
Probe	% Епог	0.00%	-0.20%	-0.19%	0.00%	0.30%	0.21%				+Ts)
Stack	% Епог	0.00%	-0.20%	-0.19%	0.00%	0.30%	0.21%	0.82%	0.61%	0.38%	Criteria ± 1.5 °R (460+Ts
1	DGM Out	2	50	74	66	202					
	DGM In	2	50	75	66	202					
ure 29.41	Aux	0	49	74	66	202	502				
Barometric Press	Exit	0	49	74	100						
Baroi	Filter	0	49	74	100	203	502				
300.045 F- 08/23/2018	Probe	0	49	74	100	202	502				
300.045 F-	Stack	0	49	74	100	202	502	1012	1512	6061	
	Temperature	0	50	75	100	200	500	1000	1500	0061	

Negative Leak Check @ 25 inches vacuum 0.000 cubic feet/min Positve Leak Check @ 6.4 inches water No movement- good

38 of 74

	ý G	Г	a) ∆H@	1.7815	1.7750	1.7783	1.7247	1.7231	1.7216	3978 1	1.8303	1.8236	•	1.7928	1.7945	1.7911	1.7690	1.7706	1.7690						2018 H 300.241 H .xls
ionsultants, I	CCEEDS 2.00% ECALIBRATE	→	Y VARIATION (%)			0.09			070	0110-			-0.41			-0.36			0.78			_			2018 H
amenail C	IF Y VARIATION EXCEEDS 2.00%, ORIFICE SHOULD BE RECALIBRATED		€ ≻	1.0025	1.0021	1.0020 1.0022	0.9968	1.0011	1.0030	2700 D	0.9947	0.9992	0.9972	0.9938	0.9977	1.0016 0.9977	1.0029	1.0116	1.0091	1.0013	1.778	$\Delta H \left(\frac{V_m(std)}{V_m} \right)$			
Civil & Environmental Consultants, Inc.	IF Y V ORIFICE S		(2) V _{er} (STD)	10.2684	17,4725	18.4661 AVG =	11.8426	8.4590	8.4590 41/2 =	- 974	10.7209	7.6649	= 9VG	5,3916	5.3865	5.3916 AVG =	4.0001	5.8134	5.8134 AVG =	AVERAGE DRY GAS METER CALIBRATION FACTOR, Y =	AVERAGE ∆H _@ =	$\left(\frac{0.75\theta}{V_{er}(std)}\right)^2$			
v			(1) V _m (STD)	10.2427	17.4356	18.4237	11.8810	8.4497	8.4334	2692 6	10.7782	7.6710		5.4251	5.3991	5.3829	3.9886	5.7518	5.7447	ALIBRATION	AV	= ⊕H&			
	AVG (P _{bar}) 29.34		DGM ∆H (in H _z O)	3.50	3.50	3.50	2.30	2.30	2.30	00 6	2.00	2.00		0.97	0.97	0.97	0.44	0.44	0.44	NS METER C					
	FINAL 29.34	ELAPSED	TIME (MIN) 9	10.00	17.00	18.00	14,00	10.00	10.00	10.00	14.00	10.00		10.00	10.00	10,00	11.00	16.00	16.00	RAGE DRY GA	volume of gas sample passed through DGM, corrected to standard conditions x. = 17.54 Rqm. Ha (Enatish), 0.3856 %/mm Hn (Malrich)		onditions		
	INITIAL		L DGM	87.5	88.5	[3.68	86.0	86.5	87.0		85.5 1	36.5	1 1	83.5	34.0	84.0	83.5	38.0	88.5	AVE	cted to stand vielnic)	, "K - Metric)	o standard co		
lge.	SURE (in Hg)	rures °F	DGM OUTLET INITIAL FINAL	87 88	87 90	68 06	86 86	86 87	87 87	-	85 85			83 84	84 84	84 84	89 88	88 88	88 89		n DGM, corre 68 *Xmm Ha (e (°R - Englist	e, corrected t < - Metric)	u	
l operating rai	BAROMÉTRIC PRESSURE (in Hg):	TEMPERATURES *F	DGM INLET INITIAL FINAL	87 88	87 90	90 89	86 86	86 87	87 87	\vdash	85 85 85	-		83 84	84 84	84 84	89 88	88 88	88		assed through Endish), 0.38	vg, temperatur	e critical orific (°R - English, °l	Orifice Calibrat	
ich bracket the expected operating range. seture. period of time t. automatically calculated.	BAROI		AMBIENT I	81	80	82	8	81	81		\$ 2	80		8	8	8	81	8	81), and the critical adsheet above.	gas sample p: 7.64 °R/m. Ho (T _m = Absolute DGM avg. temperature ("R - English, "K - Metric)	ed through the it temperature (ar from Critical (
which bracke: procedure. or a period of feet. are automatic	7811505 1374		9 NET (V _m)	10.735	18,307	19.385	12,455	8.866	8.857	0 045	0.050 11.297	8.055		5.680	5.658	5.641	4.220	6.080	6.078	the DGM, V _m (std ulated in the spre	= Net volume of x = 1	4 = = = + + + + + + + + + + + + +	= Volume of gas sample passed through the critical orifice, corrected to standard conditions $T_{\rm arb}$ = Absolute ambient temperature (R - English, "K - Metric)	K = Average K factor from Critical Onfice Calibration	
dry gas meter (er calibration ; titon Report), f me of 5 cubic other colurnns	Meter Serial #		INGS (FT ³) FINAL	625.594	643,901	663.286	597.136	606.002	614.859	046 202	576.626	584.681		545.985	551.643	557.284	667,506	673.586	679.664	passed through automatically calo	u		Volume of gar T _{emb} = /	K'= /	
Select three critical orfices to calibrate the dry gas meter which bracket the Record barometric pressue before and after calibration procedure. Run at tested vacuum (from Orfice Calibration Report), for a period of time necessary to achieve a minimum total volume of 5 cubic feet. Record readings in outlined boxes below, other columns are automatically or Record readings in outlined boxes below, other columns are automatically or Record readings in outlined boxes below.			DGM READINGS (FT ³) INITIAL FINAL	614.8590	625.594	643.901	584,681	597,136	606.002	YOU 433	565.329	576.626		540.305	545,985	551.643	663,286	667.506	673,586	USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS: The following equations are used to calculate the standard volumes of air passed through the DGM, V _m (skd), and the oritical oritice, V _m (skd), and the DGM calibration factor, Y. These equations are automatically calculated in the spreadsheet above.	P _{bar} + (ΔH/13.6) T	€ 00	1 4	= DGM calibration factor	
crítical ortífices metric pressur d vacuum (fron i achieve a min ings in outlineo	CRITIC	TESTED	VACUUM (in Hg)	17.5	17.5	17.5	19.0	19.0	19.0	0.00	20.0	20.0		21.5	21.5	21.5	23.0	23.0	23.0	S CALIBRATION calculate the stant tion factor, Y. The	K, V _m P _b	P	K, $\overline{\tau_{amb}}$		
Select three Record baro Run at tester necessary to Record read	7/30/2018 300.241 H	ż	FACTOR (AVG)	0.8138	0.8138	0.8138	0.6704	0.6704	0.6704	0 2000	0.6069	0.6069		0.4269	0.4259	0.4269	0.2882	0.2882	0.2882	AL ORIFICES / ns are used to (he DGM calibra	=		=	V _{or} (std)	-) E.A
4 3 6 4	DATE: 7/30/201 METER PART #: 300.241 H		=# RUN#	-	ы	~ ~	~	ю		, ,	- 2	6] [Ţ	и		- -	7	m	THE CRITIC/ owing equatio V _{er} (std), and I	V _m (std)		V _{cr} (std) =	н Х	
	METE		ORIFICE #	# 84	SS		# 51	SS		3	70 # SS			# 54	SS		# 56	SS		USING The foll onlice,	(£)		(2)	(3)	

METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES

2018 H 300.241 H .xlsx

	-11 147-00	0107/47/00 -11 147.00 -01 700.74/ 11- 00/74/7010		ometric Pro	Barometric Pressure 29.50	0
Temperature	Stack	Probe	Filter	Exit	Aux	DGM outlet
0	1	1	1	1		1
50	50	50	50	50	50	50
75	75	75	75	74	75	75
100	100	100	100	66	100	100
200	203	203	202		202	202
500	503	503	503		503	
1000	1010					
1500	1510					
1900	1908					

Negative Leak Check @ 23 inches vacuum 0.000 cubic feet/min Positve Leak Check @ 5.9 inches water No movement- good

Aux DGM Out			0.00% 0.00%								
Exit	% Error	0.22%	0.00%	-0.19%	-0.18%						
Filter	% Error	0.22%	0.00%	0.00%	0.00%	0.30%	0.31%				
Probe	% Error	0.22%	0.00%	0.00%	0.00%	0.45%	0.31%				
Stack	% Епоr	0.22%	0.00%	0.00%	0.00%	0.45%	0.31%	0.68%	0.51%	0.34%	

Criteria ± 1.5 °R (460+Ts) 40 of 74

.

			TYPI	I "S" E	TTOTT	TYPE "S" PITOT TUBE CALIBRATION FORM	LIBRA	TION	NORM					
Dates: 09/04-05/2018 and			Specifi	Specifications:										
larger probes 8'+ 01/30/18.			A.) Pit	ot tube as	sembly mu	A.) Pitot tube assembly must be level.					BP-29.45	2	09/04/18	
Calibrator:	BLS		B.) If p	nitot tube	is damage(B.) If pitot tube is damaged explain under comments section.	nder com	ments sect	ion.		BP-29.52	2	09/05/18	
			C.) Z =	- A Sin g	C.) $Z = A \operatorname{Sin} g (<0.125)$ and $W =$	M = M pu	A Sin q (<0.03125)	03125)			BP-29.55	2	01/30/18	
			D.) a <	D.) a <10° and b <5°) <5°									
Pitot Tubes Attached to Probes	53													
I.D. Length	alo	a2°	Ъl°	b2°	y°	°0	A, in.	Z, ìn.	W, in.	PA, in.	PB, in.	Dt, in.	Pass/Fail	Cal. Date
200.021 2'	1.0	1.0	1.0	1.0	1.0	1.0	0.949	0.017	0.01656	0.475	0.475	0.379	Pass	09/04/18
200.063 2'	-1.0	0.0	-1.0	-1.0	1.0	-1.0	0.924	0.016	-0.01613	0.462	0.462	0.382	Pass	09/04/18
200.064 21	0.0	1.0	-1.0	0.0	1.0	1.0	0.933	0.016	0.01628	0.467	0.467	0.381	Pass	09/04/18
	-1.0	1.0	1.0	0.0	1.0	1.0	0.931	0.016	0.01625	0.466	0.466	0.392	Pass	09/04/18
200.077 3'	0.0	1.0	1.0	1.0	1.0	1.0	0.925	0.016	0.01614	0.463	0.463	0.379	Pass	09/04/18
	0.0	1.0	-1.0	1.0	1.0	1.0	0.979	0.017	0.01709	0.490	0.490	0.374	Pass	09/04/18
	-1.0	1.0	-1.0	0.0	0.0	1.0	0.936	0.000	0.01634	0.468	0.468	0.379	Pass	09/04/18
	0.0	1.0	-1.0	0.0	0.0	1.0	0.903	0.000	0.01576	0.452	0.452	0.382	Pass	09/04/18
	-1.0	0.0	-1.0	1.0	0.0	1.0	0.946	0.000	0.01651	0.473	0.473	0.380	Pass	09/04/18
	0.0	1.0	0.0	2.0	1.0	1.0	0.873	0.015	0.01524	0.437	0.437	0.379	Pass	09/04/18
	-1.0	-1.0	0.0	1.0	-1.0	0.0	0.933	-0.016	0.00000	0.467	0.467	0.383	Pass	09/05/18
	-1.0	-1.0	1.0	1.0	-1.0	1.0	0.947	-0.017	0.01653	0.474	0.474	0.379	Pass	09/05/18
	0.0	-1.0	0.0	1.0	-1.0	-1.0	1.005	-0.018	-0.01754	0.503	0.503	0.378	Pass	09/05/18
200.120 5'	0.0	1.0	1.0	2.0	-1.0	0.0	0.935	-0.016	0.00000	0.468	0.468	0.395	Pass	81/20/60
51	-1.0	0.0	0.0	2.0	1.0	1.0	0.934	0.016	0.01630	0.467	0.467	0.374	Pass	09/05/18
T13 7	-1.0	-2.0	0.0	-1.0	-1.0	0.0	1.012	-0.018	0.00000	0.506	0.506	0.377	Pass	01/30/18
200.093 7	-1.0	-1.0	-1.0	1.0	0.0	1.0	0.932	0.000	0.01627	0.466	0.466	0.386	Pass	09/05/18
200.094 7	0.0	0.0	-1.0	0.0	0.0	1.0	0.933	0.000	0.01628	0.467	0.467	0.386	Pass	09/05/18
	-1.0	0.0	0.0	0.0	0.0	1.0	0.940	0.000	0.01641	0.470	0.470	0.389	Pass	09/05/18
	-1.0	0.0	-1.0	0.0	1.0	-1.0	0.920	0.016	-0.01606	0.460	0.460	0.383	Pass	09/05/18
200.045 8'	0.0	0.0	-1.0	2.0	0.0	1.0	1.006	0.000	0.01756	0.503	0.503	0.375	Pass	09/05/18
	0.0	0.0		-1.0	0.0	0.0	1.005	0.000	0.00000	0.503	0.503	0.373	Pass	01/30/18
200.109 8'	1.0	0.0		-1.0	0.0	-1.0	0.927	0.000	-0.01618	0.464	0.464	0.379	Pass	01/30/18
200.705 8'	1.0	-1-0	0.0	-1.0	-1.0	0.0	0.868	-0.015	0.00000	0.434	0.434	0.381	Pass	01/30/18
200.709 8'	1.0	0.0	-1.0	-1.0	1.0	-2.0	0.963	0.017	-0.03361	0.482	0.482	0.377	Pass	01/30/18
200.014 10'	1.0	1.0	1.0	0.0	-1.0	-1.0	0.934	-0.016	-0.01630	0.467	0.467	0.384	Pass	01/30/18
200.050 11'	1.0	1.0	-2.0	-3.0	-1.0	1.0	0.928	-0.016	0.01620	0.464	0.464	0.382	Pass	01/30/18
200.051 11'	1.0	0.1	0.1-	0.0	-1.0	-2.0	0.941	-0.016	-0.03284	0.471	0.471	0.381	Pass	01/30/18
200.052 11'	2.0	2.0	- 1.0	-2.0	0.0	-1.0	0.941	0.000	-0.01642	0.471	0.471	0.383	Pass	01/30/18
200.053 11'	0.0	1.0	1.0	-2.0	1.0	-1.0	0.962	0.017	-0.01679	0.481	0.481	0.376	Pass	01/30/18
Comments: Pitot Tubes Required On	equired (Only N	finor N	laintena	nce & Re	ly Minor Maintenance & Reconditioning	ng							

	170553260	17000169	Passed		Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Yes Yes Yes Yes Yes Yes Yes
·		rial No.:	Percent Difference		-0.2% 0.2% 0.2% -0.1% 1.0% 0.4% 0.4% 0.4% 0.4% 0.4% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.4%	0.3% 0.5% 0.1% 0.1% 0.1% 0.2% 0.8%
	Reference Thermometer.	Omega NIST Calibrator Serial No.	Reference Temp. Three		382.6 382.6 382.6 382.6 385.8 385.6 382.6 382.6 382.6 382.6 382.6 382.6 382.6 382.6 382.6 382.7 <th< td=""><td>386.3 381.9 385.1 375.5 375.5 380.4 380.6 382.6 383.9 383.9 383.9</td></th<>	386.3 381.9 385.1 375.5 375.5 380.4 380.6 382.6 383.9 383.9 383.9
	Reference	Omega NIS	Temp. Three		384 384 385 385 385 385 377 377 377 377 377 377 377 376 377 376 376	384 376 376 377 377 377 377 377 377 377
Dlack &	170553260	17000169	Passed		Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Yes Yes Yes Yes Yes Yes Yes
		rial No.:	Percent Difference		0.1% -0.1% -0.1% 0.0% 0.0% 0.1% 0.1% 0.0% 0.0% 0.0%	-0.2% 0.3% 0.2% 0.2% -0.2% 0.5%
	Reference Thermometer:	Omega NIST Calibrator Serial No.:	Reference Temp. Two.		184.6 184.4 185.3 185.3 185.3 185.3 185.3 185.3 185.3 184.6 185.3 184.5 185.3 184.6 185.3 185.3 185.3 185.3 185.3 185.3 185.3 185.3 185.3 185.3 185.3 185.3 185.3 185.3 185.3 185.3 185.3 185.3 185.3 185.3 185.3 185.3 185.3 187.3 185.3 187.3 185.3 187.3 185.3 187.3 185.3 187.3 185.3 187.3 185.3 187.3 185.4 187.3 185.3 187.4 185.4 187.4 187.4 187.4	187.5 187.3 187.3 187.3 187.3 191.4 191.6 191.6 191.6 191.6
	Reference 1	Omega NIS	Temp. Two		185.7 185.7 185.7 184.6 185.6 185.6 185.7 185.6 185.6 185.5 185.7 185.5 185.6 185.5 185.7 185.5 185.6 185.5 185.6 185.5 185.6 185.5 185.6 185.5 185.6 185.6 185.6 185.6 185.6 185.6 185.6 185.6 185.6 185.6 185.6 185.6 185.6 185.6 185.6 185.6 185.6 185.6 185.6 185.6 185.6 185.6 185.6 186.6 185.6 186.6 185.6 186.6 185.6 186.6	188.5 185.6 185.6 189.3 190.3 192.6 188.3 188.3
	170553260	17000169	Passed		Yes	Yes Yes Yes Yes Yes Yes
		rial No.:	Percent Difference		$\begin{array}{c} \begin{array}{c} 0.0\%\\ $	0.0% 0.0% 0.1% 0.1% 0.0% 0.0%
	Reference Thermometer:	T Calibrator Se	Reference Temp. One.		80.0 79.5 79.7 79.7 79.7 79.7 79.7 79.7 79.7	81.3 81.5 81.5 81.5 81.5 81.5 81.5 81.5 81.5
-	Reference 7	Omega NIS	Temp. One		79.9 79.8 80.0 80.0 79.6 79.6 79.6 79.6 79.7 79.6 79.6 80.0 80.7 79.8 79.6 80.8 80.8 80.8 80.7 80.8 80.7 80.8 80.7 80.7 80.7 80.7 80.8 80.8 80.9 80.7 80.9 80.7 80.8 80.8 80.9 80.7 80.8 80.7 80.7 80.7 80.8 80.7 80.8 80.7 80.8 80.7 80.8 80.7 80.7 80.7 80.8 80.7 80.8 80.7 80.8 80.7 80.8 80.7 80.8 80.7 80.8 80.7 80.7 80.7 80.8 <td>BLS 81.4 BLS 81.4 BLS 81.2 BLS 81.2 BLS 81.3 BLS 81.7 BLS 81.7</td>	BLS 81.4 BLS 81.4 BLS 81.2 BLS 81.2 BLS 81.3 BLS 81.7 BLS 81.7
	08/30/18	Barometric Pressure, In. Hg: 29.43	By .		2 BIS 2 BIS 3 BIS	NNN222222
	Date:	Barometric F In. Hg:	Asset Number	PROBES	200.063 200.064 200.075 200.077 200.077 200.077 200.0105 200.301 200.119 200.119 200.112 200.112 200.1127 200.1127 200.1127 200.1127 200.1127 200.1127 200.1127 200.304 200.305 200.30	200.704 CUT17.1 200.769 s/np 200.269 s/np 200.265 s/np 200.701 201.71.10.3 201.701 200.997 200.997

1				==									
	60 169	P		<u> </u>					<u> </u>	<u> </u>			
	170553260 17000169	Passed		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	srial No.:	Percent Difference		-0.3%	0.2%	0.2%	0.5%	1.3%	0.8%	0.5%	0.6%	0.7%	0.3%
	Reference Thermometer: Omega NIST Calibrator Serial No.:	Reference Temp. Three		388.7	383.1	389.6	391.1	371.4	386.0	385.3	. 388.5	388.0	388.5
	Reference Omega Nis	Temp. Three		391	381	388	387	361	379	381	383	382	386
∠Black &	170553260 17000169	Passed		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	erial No.:	Percent Difference		0.0%	-0.1%	-0.2%	0.1%	1.0%	-0.4%	-0.4%	-0.2%	-0.3%	-0.5%
	Reference Thermometer: Ornega NIST Calibrator Serial No.:	Reference Temp.		165.1	159.6	173.8	180.3	182.8	186.8	185.3	186.6	188.4	187.1
	Reference Ornega NIS	Temp. Two		165.2	160.2	175.2	179.6	176.5	189.6	187.8	188.0	190.3	190.2
	170553260	Passed		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
	rial No.:	Percent Difference		-0.3%	-0.4%	-0.3%	-0.3%	-0.3%	-0.2%	-0.2%	-0.2%	-0.2%	-0.2%
	Reference Thermometer: Ornega NIST Calibrator Serial No.:	Reference Temp. One		54.6	61.4	61.4	61.4	61.4	61.5	61.5	61.5	61.5	61.5
	Reference Omega NIS	Temp. One		56.4	63.3	62.9	63.0	63.1	62.5	62.7	62.5	62.5	62.4
	01/29/18 Pressure, 29.30	By .		278 L	8 <i>BLS</i>	8 <i>BLS</i>	8 <i>BLS</i>	8 <i>BLS</i>	10 BLS	11 BLS	11 BLS	11 BLS	11 BLS
	Date: 01/29/ Barometric Pressure, In. Hg: 29	Asset Number	PROBES	T13 7 ⁱ	200.108 8'	200.109 8'	200.705 8'	200.709 8'	200.014 10'	200.050 11'	200.051.11	200.052 11'	200.053 11' 11

Ref. Temp. Deg. F + 460

44 of 74

		
	"Г	
	29.47	Passed Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
	essure,In. Hg.	Percent Difference -0.1% 0.1% 0.3% 0.3% 0.1% 0.1% 0.1% 0.1% 0.0%
at	Barometric Pressure, In. Hg.	Reference Heat Bath 179.7 179.7 179.7 183.3 183.3 183.3 183.3 182.8 182.6 182.3 182.6 182.3 182.6 179.0 179.0 179.0
Eliack & white	17000169 Model CL3512A	Heat Bath 180.1 179.1 179.1 182.0 182.0 182.0 182.0 182.0 179.2 182.0 179.2 182.0 179.2 182.0
tion		Passed Yes Yes Yes Yes Yes Yes Yes Yes Yes
Umbilical Adaptors Temperature Calibration	Omega NIST Calibrator Serial No.:	Percent Difference -0.3% -0.4% -0.4% -0.3% -0.3% -0.3% -0.3% -0.3% -0.3% -0.4%
emperatu		Reference Lee Bath 39.9 39.5 39.5 39.5 39.5 39.5 39.5 39.5
daptors T	170553260	Ice Bath 41.7 39.7 42.4 40.4 40.4 40.7 40.7 40.7 40.2 40.7 40.2 40.4 40.2 40.4 40.7 40.2 40.4 40.7 40.4 40.7 40.4 40.7 40.7 40.4 40.7 40.7
mbilical A	ometer:	Passed Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
D	Reference Thermometer.	Percent Difference -0.1% -0.1% -0.1% -0.1% -0.1% -0.1% 0.0% 0.1% 0.0%
	08/24/18	Reference Amblient 80.6 80.6 80.6 80.6 80.6 80.6 80.6 80.6
	Date:	Ambient 80.9 80.9 80.9 81.0 81.0 81.0 81.0 81.0 80.4 81.0 81.0 81.0
	BLS	
	Calibrated By:	Asset Number 300.030 300.318 300.319 300.317 300.317 300.317 300.317 300.317 300.317 300.317 300.316 300.326 300.326 300.326

.

.

,

Temperature Difference Calculation: (Ref. Temp. Deg. F + 460) - (Test Temp. Deg. F + 460) Ref. Temp. Deg. F + 460 Ref. Temp. Deg. F + 460 Page 1 of 1

45 of 74

,

,

	<u> </u>																	. <u></u>											
170553260 17000169	Passed		Yes	Yes	Yes	Yes	<u>3</u>	Yes	Yes	Yes	Yes	Yes	3	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Kes Yes	Yes	Yes	Yes	Yes	Yes	
	Percent Difference		-0.2%	0.2%	-0.1%	0.2%	8/1 - 2	-0.1%	-0.1%	-0.3%	-0.2%	-0.1%	/07.0	0.3%	-0.2%	-0.4%	-0.1%		-0.1%	-0.2%	-0.2%	-0.1%	-0.2%	-0.2%	-0.1%	-0.1%	0.2%	0.1%	
Reference Thermometer: Omega NIST Calibrator Serial No.:	Reference Temp. Three		198.6	195.2	195.0 191.6	193.1	2 1	187.3	187.1	185.5	187.1	186.8	101	186.6	186.8	186.0	187.3		193.1	193.2	191.6	191.6	193.4	195.4	195.9	191.4	191.8	192.3	
Reference Thermometer: Omega NIST Calibrator S	Temp. Three		200.0	194.0	193.6 192.0	192.1	0.461	187.9	187.5	187.5	188.4	187.7	100.0	184.5	188.4	188.3	187.9		193.5	194.2	192.9	192.1 200.0	195.0	196.4	196.5	192.0	191.4	191.5	
170553260 17000169	Passed		Yes	Yes	Yes	Yes	<u>3</u>	Yes	Yes	Yes	Yes	Yes	200	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
	Percent Difference		0.0%	-0.1%	0.2%	0.2%	a/ 1-0-	-0.3%	-0.2%	-0.2%	-0.2%	-0.2%	N 70-	-0.3%	-0.3%	-0.1%	-0.3%		0.0%	0.0%	-0.2%	0.1%	0.1%	-0.2%	0.0%	0.1%	-0.2%	-0.2%	
Reference Thermometer: Omega NIST Calibrator Serial No.:	Reference Temp. Two		73.5	70.8	70.3	70.3	t	70.3	71.6	71.7	71.9	71.9	1.2.1	72.5	69.2	69.2	70.7		73.5	70.8	70.5	71.0	73.0	71.2	73.5	-11.0	73.5	72.8	
Reference Thermometer: Omega NIST Calibrator S	Temp. Two		73.3	71.2	69.2 72.0	69.1 74.7	1 - 1	72.1	72.9	72.6	72.7	72.8	E771	73.9	70.9	69.7	72.2		73.6	70.8	71.3	72.6	72.3	72.2	73.5	70.7	73.5	73.7	
170553260 17000169	Passed		Yes	Yes	Yes	Yes	3	Yes	Yes	Yes	Yes	Yes	ß S	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
	Percent Difference	-	-0.1%	0.0%	-0.1%	-0.2%	% ^^	-0.1%	-0.3%	-0.1%	-0.1%	0.0%	/07-0-	-0.5%	-0.1%	-0.3%	-0.5%		-0.3%	-0.4%	-0.3%	-0.5%	-0.4%	-0.3%	-0.3%	-0.4%	-0.2%	-0.4%	
Reference Thermometer. Omega NIST Calibrator Serial No.:	Reference Temp. One		38.4	39.9	39.5 38.4	39.0	p.1 t	40.2	38.6	39.2	38.3	39.2	40.4	40.0	40.1	39.7	40.5		39.4	38.4	37.2	37.9	38.1	38.3	39.5	38.1	39.2 39.2	40.8	
Reference Thermometer. Omega NIST Calibrator S	Temp. One	-	38.9	39.7	40.0	40.2		40.6	40.2	39.5	39.0	39.4	0.44	41.0	40.8	41.0	42.8		40.7	40.4	38.5	30 5	40.0	39.6	41.0	40.1	39.2	42.8	
08/24/18 essure, 29.50	Cal. By		S S S S S S S S S S S S S S S S S S S	BLS	S S B	BIS		BLS	BLS	BLS	BLS	v v B B		BLS	BLS	BLS	BLS		BLS	BLS	BLS SIG	N B B	BLS	BLS	BLS	200	BLS	BLS	
Date: 08/24/ Barometric Pressure, in. Hg: 29	Asset Number	Wands	CPM Exit 100.108	100.110	100.112	100.120		100.089	6	G2	5 5	99 99	36	G13	G14	G15	G18	M5 Fxit SS	So1	S02	S03	S05	SOB	S07	S08	500	S11	100.066	

.

170553260 17000169	Passed		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			Yes	3
	Percent Difference		0.1%	0.0%	-0.2%	0.2%	-0.2%	1.2%	0.8%	-0.3%	0.2%	-0.1%	%0-0	-0.2%	-0.1%	-0.1%	-0.1%	0.0%	-0.1%	0.0%	0.0%	_	101 0	%1-n	~ 1.0
Reference Thermometer: Omega NIST Calibrator Serial No.	Reference Temp. Three		185.5	191.6	186.3	185.0	186.0	384.8	391.6	186.2	189.3	191.9	191.6	192.2	189.8	191.4	192.0	192.5	191.6	192.0	185.5			0.701	10.201
Reference Thermometer: Omega NIST Calibrator S	Тетр. Three		184.7	191.3	187.8	183.4	187.5	375.0	385.0	188.0	188.2	192.5	191.6	193.2	190.7	192.0	192.6	192.5	192.3	191.9	185.3			7.261	102.0
170053260	Passed		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		,	2 J J	5
	Percent Difference		-0.2%	-0.1%	0.1%	-0.2%	0.2%	-0.2%	0.0%	0.1%	%0.0	-0.2%	-0.2%	-0.3%	-0.2%	-0.1%	-0.3%	-0.1%	-0.2%	-0.2%	-0.3%		/00/0	0.20/	%C-2-
Reference Thermometer: Omega NIST Calibrator Serial No.	Reference Temp. Two		73.0	73.5	73.4	73.3	73.3	189.8	189.8	73.3	73.3	72.5	72.5	72.7	73.4	72.6	72.8	72.5	72.8	72.8	78.6			2 7 1 7	111
Reference T Omega NIS	Temp. Two		74.3	74.3	72.9	74.5	72.5	191.0	190.0	72.6	73.2	73.4	73.8	74.3	74.6	73.3	74.3	73.2	73.7	74.1	80.0		P 62	73 5	0.01
170553260 17000169	Passed		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		Vac	Yec	3
	Percent Difference		0.1%	-0.2%	-0.3%	-0.2%	0.1%	0.0%	-0.2%	-0.2%	-0.1%	-0.3%	-0.2%	-0.1%	0.1%	-0.2%	%0.0	-0.2%	-0.1%	0.0%	-0.2%		70C U	0.1%	
Reference Thermometer: Omega NIST Calibrator Serial No.	Reference Temp. One		41.1	37.2	39.2	38.8	40.0	77.3	<u>977</u>	38.8	39.2	38.9	37.5	39.7	39.9	39.9	40.4	38.5	39.3	40.2	39.3		74.0	6 177	J
Reference Omega NIS	Temp. One		40.8	38.0	40.8	40.0	39.3	77.4	78.5	39.8	39.5	40.5	38.5	40.0	39.5	40.9	40.2	39.5	39.7	40.0	40.4		A N N	44.7	
08/24/18 sure, 29.50	Cal. By Vands		BLS	BLS		S B B	BLS				BLS	BLS	BLS	BLS	BLS	BLS	SIB	BLS	BLS	BLS	BLS		u N	BIS	
Date: 08/2 Barometric Pressure, In. Hg: 2	Asset Number Thermocouple Wands	Wb/Db	100.001	100.002	100.042	wb100.044	100.045	100.046	100,001	100.001	WD100.061	100.071	100.072	100.073	wb 100.059	100.075	100.076	100.077	100.079	100.080	100.074	1 Alliance	150739815	150655937	

,

170553260 17000169 Passed Yes Yes Percent Difference -0.2% 0.0% Reference Thermometer: Omega NIST Calibrator Serial No.: Reference Temp. Three 177.6 179.9 182.3 I... Temp. Three 178.9 179.6 183.0 170553260 17000169 Passed Yes Yes Yes Percent Difference -0.2% -0.2% -0.1% Reference Thermometer: Ornega NIST Calibrator Serial No.: Reference Temp. Two 72.8 72.8 72.8 Temp. Two 73.5 73.6 73.5 170553260 17000169 Passed Yes Yes Yes Percent Difference -0.1% -0.1% -0.2% Reference Thermometer. Omega NIST Calibrator Serial No.: Reference Temp. One 42.8 40.5 43.1 Ref. Temp. Deg. F + 460 Temp. One 43.2 40.8 43.9 Asset Number Thermocouple Wands CPM Exit 100.106 100.106 100.124 Date: 08/24/18 Barometric Pressure, In. Hg: 29.50

.

٠

48 of 74

		08/23/2018	08/23/2018 BP- 29.47	
Handheld Omega Readers	HH91	100.040	T-148841	T-269912
	-0.4	1	2	
50	49.4	50	50	49
75	74.5	75	75	74
100	9.66	100	100	66
200	199.5	202	200	201
500	499.3	502	495	500

Criteria ± 1.5 °R (460+Ts)	
% Error	-0.13%
0.22%	0.15%
-0.20%	0.00%
% Error	0.00%
0.43%	0.00%
0.00%	-0.52%
% Error 0.22% 0.00%	0.00% 0.00% 0.30% 0.21%
% Error	-0.07%
-0.09%	-0.08%
-0.12%	-0.07%

ī,

۱

Passed Yes Yes Yes Barometric Pressure, In. Hg: # 29.45 Percent Difference 0.8% -0.2% Reference Temp. 351.6 354.0 360.7 17000169 CL3512A HIGH Temp. 354 352 355 355 Omega NIST Calibrator Serial No.: Model Number Passed Yes Yes Yes Percent Difference -0.2% -0.6% -0.6% Reference Temp. 201.7 206.7 204.8 200.3 IST 170553260 Traceable Lollipop NIST Passed Yes X Reference Thermometer: Percent Difference -0.1% -0.2% -0.2% 01/24/18 Reference Ambient 68.0 68.0 68.0 Ambient Date: 68.7 68.6 68.9 68.9 BLS CLT.H.1 CLT.H.4 CLT.H.5 CLT.H.5 Id Letter Calibrated By: Asset Number Hotbox Hotbox Hotbox

Black & white

Hotbox Thermocouple Temperature Calibration

Temperature Difference Calculation: (Ref. Temp. Deg. F + 460) - (Test Temp. Deg. F + 460) X 100 = <1.5%

Ref. Temp. Deg. F + 460

Page 1 of 1

1 27 00		Passed Yes Yes	
seure in Har #	1 -914 . HT 6 - TH 6-	Percent Difference -0.2% 0.6%	
Barometric Pre		Reference Temp. 383.4 383.0 383.0	
17000169	CL3512A	HIGH Tento. 385 373 378	1
rator Serial No.:	Model Number	Passed Yes Yes	
mega NIST Calib		Percent Difference -0.1% 0.1%	
<u>[</u> 5	15	Reference Temp. 186.0 177.2 186.0	
ST 170553260	Traceable Lollip	MID. Tenn. 186.6 176.8 185.5	
mometer: N		Passed Yes Yes	
Reference Then		Percent Difference -0.1% -0.1%	
08/29/18		Reference Ambient 82.4 80.9 82.4	
Date:		Ambient 82.8 81.2 83.2	
: BLS		Id Letter CLTH2 CLTH3 CLTH10	
Calibrated By.		Asset Number Hotbox Hotbox	

🗌 Black & white

Hotbox Thermocouple Temperature Calibration

Temperature Difference Calculation: (Ref. Temp. Deg. F + 460) - (Test Temp. Deg. F + 460) X 100 = <1.5%

Ref. Temp. Deg. F + 460

Page 1 of 1

	# 29.47 Passed Yes Yes
,	essure, in. Hg: Percent Difference 0.6% -0.3%
in a state of the	Baromenic Pr Reference 336.0 337.8 328.4
🗌 Black &	17000169 CL3512A HIGH Temp 331 335 331
	rator Serial No: Model Number Passed Yes Yes
Thermocouple Temperature Calibration	Omega NIST Calibrator Serial No. Percent Percent Difference -0.3% Yes Yes
Temperatu	00 Reference 7emp. 211 193.2 201.1
nocouple J	NIST 170553260 Traceable Lollipop MID. Temp 214 195 203
tbox Ther	mometer: N Passed Yes Yes
Hoi	Reference Ther Percent Different -0.2% -0.4%
and the second	01/05/18 Reference Ambient 68.4 68.4
	Date: Ambient 69.3 70.3
	BLS Id Letter CLTH11 CLTH12 CLTH13
	Calibrated By: Asset Number Hotbox Hotbox

~

.

Temperature Difference Calculation: (Ref. Temp. Deg. F + 460) - (Test Temp. Deg. F + 460) X 100 = <1.5%

Ref. Temp. Deg. F + 460

Page 1 of 1

170553260 I No.: 17000169 Percent Passed Difference Passed 0.3% Yes 0.3% Yes 0.3% Yes 0.3% Yes 0.3% Yes 0.2% Yes 0.1% Yes 0.1% Yes 0.1% Yes 0.1% Yes 0.1% Yes]
::	
Reference Thermometer. Temp. Temp. 112 113.9 113 113.9 113 113.9 113 113.9 113 113.9 113 113.0 113 113.1 113 113.0 113 113.1 113 113.1 113 113.1 113 113.1 113 113.1 113 113.1 113 113.1 113 113.1 113 115.0 115.0 0.1 115.0 0.1	
Reference Omega NIS Omega NIS 1 1 112 1 112 1 113 1 113 1 113 1 113 1 113 1 113 1 113 1 113 1 113 1 113	
17000169 17000169 Passed Yes Yes Yes Yes Yes	
ial No.: Percent Difference 0.2% 0.1% 0.1% 0.1% 0.1%	
Reference Thermometer: Ömega NIST Calibrator Serial No.: Temp. Reference Temp. Temp. Tab. Temp. Tab. Differ Tab. Differ Tab. 0.02 Tab. 0.1	
Reference T Omega NIS Omega NIS Temp. Temp. 73.0 77.0 77.0 77.0 77.0 73.0 73.0 73.0 73.0 75.0 75.0	
170553260 17000169 Passed Yes	
Reference Thermometer: Omega NIST Calibrator Serial No.: Temp. Temp. Reference Temp. Temp. One 46.0 48.0 48.0 48.0 48.0 44.0 44.0 45.0 45.1 45.1 45.1 45.1 45.1 45.1 45.1 45.1 45.1 45.1 45.1 45.1 45.1	
Reference Thermonmeter: Omega NIST Calibrator S Temp. Reference Temp. Reference One. 46.0 48.0 48.0 48.0 48.0 44.0 44.0 44.0 45.1 45.1 45.1 45.1 45.1 45.1 45.0 45.1 45.1 45.0 45.1 45.0 45.1	Ref. Temp. Deg. F + 460
B21-24/18 B221-24/18 Urre, Urre, B24 B24 B24 B24 B25 B24 B25 B24 B25 B25 B25 B25 B25 B25 B25 B25	f. Temp,
08/21-24/18 See each of See each of See each of By By By By By By By By By By By By By	Re
Date: 08/21- bin. Hg: Barometric Pressure, in. Hg: 5ee to See to Asset Number Asset Number 5ee to See to Asset Number Asset Number 300.37 DGM Thermocouples 300.371 B average 300.355 C Inlet 300.351 B E P. 23.24 300.3310 E Outlet E 300.311 B E Outlet 300.335 C Outlet E 300.316 B P 23.24 300.3318 B P 23.24 20.03510 B Outlet 300.3118 E Outlet E 300.316 B P 23.24 300.316 B Outlet E 300.317 B D Outlet 300.318 B P 23.24 230.310 E Outlet 300.317 B Outlet E 300.316 B D Coutlet 300.318 B P 23.24 230.310 E Outlet 300.317 B D Outlet E 300.317 B D Coutlet 300.318 B P 23.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Date: Date: Barometric Pre Barometric Pre In. Hg: In. Hg: Asset Number Asset Number DGM Thermoc Meter Box Col 08/21/18 BP 2 300.035 C Intel 300.035 C Intel 300.035 C Outl 300.035 C Outl BP 2 300.045 F Outl BP 2 300.045 F Outl BP 2 300.045 F Outl 008/24/18 BP 2 300.045 F Outl 0002 300.045 F Outl 000 300.045 F Outl 000 300.041 B D 2 000	

53 of 74

Calibration complies with ISO/IEC 17025, ANSI/NCSL Z540-1, and 9001

Cert. No.: 6530-8662395

Traceable® Certificate of Calibration for Digital Barometer

Manufactured for and distributed by: Cole-Parmer Instrument Company, 625 East Bunker Court, Vernon Hills, IL 60061 U.S.A. Instrument Identification:

CEC # 602.044 m Lab

Model: 68000-	-49	S/N: 1704	487238	Manufa	cturer: Cont	rol Comp	any			
Standards/Eq	quipment									
	Descr	iption		Seria	l Number	Due D	ate	NIST Tracea	ble Refere	nce
	Digital B	arometer		D4	1540001	9/27/			398691	
С	Chilled Mirro	r Hygrometer			54/2H3737	9/27/			394	
	Digital The	ermometer			0156092	7/19/	17	4000-7	7810155	
	Climate	Chamber		We	513.0046					
Certificate Inf	formation	1:								
					Dal Datas Gl	10/47		Due Date:	6/12/10	
Technician: 57	7	Procedure:	CAL-31	(Cal Date: 6/	12/17		Due Dale.	0/12/10	
		Procedure: °C 67.0		014 mBar		12/17		Due Dale.	0/12/13	
Test Conditions	s: 24.0)°C 67.0	%RH 1							
Test Conditions	s: 24.0)°C 67.0	%RH 1					Due Dale.		
Test Conditions	s: 24.0)°C 67.0	%RH 1		As Left		Min	Max	±U	TUR
Test Conditions	s: 24.0 Jata: (New)°C 67.0 v Instrumen	%RH 1	014 mBar			Min 803			TUR >4:1
Test Conditions Calibration Date Unit(s)	s: 24.0 Jata: (New)°C 67.0 v Instrumen As Found	%RH 1	014 mBar Nominal	As Left	in Tol		Max	±U	
Test Conditions Calibration Di Unit(s) mb/hPa	s: 24.0 Jata: (New	0°C 67.0 v Instrument As Found N.A.	%RH 1	014 mBar Nominal 806.60	As Left 806	In Tol	803	Max 811	±U 0.70	>4:1
mb/hPa mb/hPa	s: 24.0 Jata: (New	0°C 67.0 v Instrument As Found N.A. N.A.	%RH 1	014 mBar Nominal 806.60 908.83	As Left 806 908	In Tol Y Y	803 905	Max 811 913	±U 0.70 0.70	>4:1 >4:1

This Instrument was calibrated using Instruments Traceable to National Institute of Standards and Technology.

A Test Uncertainty Ratio of at least 4:1 is maintained unless otherwise stated and is calculated using the expanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is calculated in accordance with the ISO "Guide to the Expression of Uncertainty in Measurement" (GUM). The uncertainty represents an expanded uncertainty using a coverage factor k=2 to approximate a 95% confidence level. In tolerance conditions are based on test results falling within specified limits with no reduction by the uncertainty of the measurement. The results contained herein relate only to the item calibrated. This certificate shall not be reproduced except in full, without written approval of Control Company.

Nominal=Standard's Reading; As Left=Instrument's Reading; In Tol=In Tolerance; Min/Max=Acceptance Range; ±U=Expanded Measurament Uncertainty; TUR=Test Uncertainty Ratio; Accuracy=±(Max-Min)/2; Min = As Left Nominal(Rounded) - Tolerance; Max = As Left Nominal(Rounded) + Tolerance; Date=MM/DD/YY

Wind Rodriguez Nicol Rodriguez, Quality Manager

Jan Aaron Judice, Technical Manager

Maintaining Accuracy:

In our opinion once calibrated your Digital Barometer should maintain its accuracy. There is no exact way to determine how long calibration will be maintained. Digital Barometers change little, if any at all, but can be affected by aging, temperature, shock, and contamination.

Recalibration:

For factory calibration and re-certification traceable to National Institute of Standards and Technology contact Control Company.

CONTROL COMPANY 12554 Galveston RD Suite B230 Webster TX USA 77598 Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Control Company is an ISO 17025:2005 Calibration Laboratory Accredited by (A2LA) American Association for Laboratory Accreditation, Certificate No. 1750.01. Control Company is ISO 9001:2008 Quality Certified by (DNV) Det Norske Veritas, Certificate No. CERT-01805-2006-AQ-HOU-RvA. International Laboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangement (MRA).

Calibration complies with ISO/IEC 17025, ANSI/NCSL Z540-1, and 9001

Cert. No.: 4378-8727331

Traceable® Certificate of Calibration for Lollipop Thermometer

Manufactured for and distributed by: Thomas Scientific, Box 99, 99 High Hill Road, Swedeboro, NJ 08085-0099 U.S.A. Instrument Identification:

Model: 1235D30	S/I	N: 170553260	Manu	facturer: Cont	rol Company	
Standards/Equip	ment:					
	Description		<u>Se</u>	rial Number	Due Date	NIST Traceable Reference
Temperatur	e Calibration	Bath TC-191		A42238		
Tř	nermistor Mod	ule		A27129	12/01/17	1000401760
Те	mperature Pr	obe		5202	12/19/17	B6B30058-1
Temperatur	e Calibration	Bath TC-218		A73332		
. T	hermistor Pro	be		5356	1/10/18	B7104024
Readou	t, Digital Thei	mometer		B5C344	3/12/18	B7314035
Certificate Inform	nation:					
Technician: 104	Pro	cedure: CAL-0	3	Cal Date: 7/3	31/ 17	Due Date: 7/31/19
Test Conditions:	23.2°C	56.0 %RH	1015 mBar			

Unit(s)	Nominal	As Found	In Tol	Nominal	As Left	In Tol	Min	Мах	±U	TUR
°C		N.A.		0.000	-0.3	Y	-0,4	0.4	0.059	>4:1
°C		N.A.		100.000	99.6	Y	99.6	100.4	0.059	>4:1

This Instrument was calibrated using Instruments Traceable to National Institute of Standards and Technology.

A Test Uncertainty Ratio of at least 4:1 is maintained unless otherwise stated and is calculated using the axpanded measurement uncertainty. Uncertainty evaluation includes the instrument under test and is calculated in accordance with the ISO "Guide to the Expression of Uncertainty in Measurement" (GUM). The uncertainty represents an expanded uncertainty using a coverage factor k=2 to approximate a 95% confidence level. In tolerance conditions are based on test results falling within specified limits within or eduction by the uncertainty of the measurement. The results contained herein relate only to the item calibrated. This certificate shall not be raproduced except in full, without written approval of Control Company.

Nominal=Standard's Reading; As Left=Instrument's Reading; In Tol=In Tolerence; Min/Max=Acceptance Range; ±U=Expanded Measurament Uncertainty; TUR=Test Uncertainty Ratio; Accuracy=±(Max-Min)/2; Min = As Left Nominal(Rounded) - Tolerance; Max = As Left Nominal(Rounded) + Tolerance; Date=MM/DD/YY

Nicol Kodricyuzz Nicol Rodriguez, Quality Manager

laca-Aaron Judice, Technical Manager

Maintaining Accuracy:

In our opinion once calibrated your Lollipop Tharmometer should maintain its accuracy. There is no exact way to determine how long calibration will be maintained. Lollipop Thermomaters change little, if any at all, but can be affected by aging, temperature, shock, end contamination.

Recalibration:

For factory calibration and re-certification traceable to National Institute of Standards and Technology contact Control Company.

CONTROL COMPANY 12554 Galveston RD Suite B230 Webster TX USA 77598 Phone 281 482-1714 Fax 281 482-9448 service@control3.com www.control3.com

Centrol Company is an ISO 17025:2005 Calibration Laboratory Accredited by (A2LA) American Association for Laboratory Accreditation, Certificate No. 1750.01. Control Company is ISO 9001:2008 Quality Certified by (DNV) Det Norske Veritas, Certificate No. CERT-01805-2006-AQ-HOU-RvA. International Laboratory Accreditation Cooperation (ILAC) - Multilateral Recognition Arrangement (MRA).

SUPERIOR SCALE, INC. 2118 CAROLINA PLACE DRIVE FORT MILL, SC 29708 Phone: 803-548-3320 Fax: 803-548-2910 Email: info@superiorscales.com

WEIGHT SET VERIFICATION CERTIFICATE

CLIENT: CIVIL & ENVIRONMENTAL

DEPARTMENT: LAB

DESCRIPTION: STAINLESS STEEL

WEIGHT ID#: 22931

	VERIFICATION DATA					
Serial Number	Nominal Value	Reading on Balance				
22931	200g	200.0g				
	300g	300.0g				
	500g	500.0g				
· · · · · · · · · · · · · · · · · · ·						
	······································					
	· · · · · · · · · · · · · · · · · · ·	······································				

VERIFICATION DATE: JANUARY 9, 2018

VERIFICATION DUE DATE: JANUARY 2019

TEST STANDARD(S) INFORMATION:

۰.

Standard(s) Used	ID	Expiration Date
CLASS 1 KIT	SSCL1-1	5/2018
		·

COMMENTS:

READINGS OF WEIGHT(S) TAKEN ON BALANCE(S) LISTED AFTER BALANCE(S) WITH NIST TRACEABLE WEIGHT SET(S) NOTED.

TECHNICIAN: CUSTOMER: Bar Var

SUPERIOR SCALE, INC. 2118 CAROLINA PLACE DRIVE FORT MILL, SC 29708 Phone: 803-548-3320 Fax: 803-548-2910 Email: <u>info@superiorscales.com</u>

WEIGHT SET VERIFICATION CERTIFICATE

CLIENT: CIVIL & ENVIRONMENTAL

DEPARTMENT: LAB

DESCRIPTION: STAINLESS STEEL

WEIGHT ID#: 22934

VERIFICATION DATA

Serial Number	Nominal Value	Reading on Balance
22934	200g	200.0g
	300g	300.0g
	500g	500.0g
	1000g	1000.0g

VERIFICATION DATE: JANUARY 9, 2018

VERIFICATION DUE DATE: JANUARY 2019

TEST STANDARD(S) INFORMATION:

Standard(s) Used	ID	Expiration Date
CLASS 1 KIT	SSCL1-1	5/2018

COMMENTS:

ł

ia t

READINGS OF WEIGHT(S) TAKEN ON BALANCE(S) LISTED AFTER BALANCE(S) WITH NIST TRACEABLE WEIGHT SET(S) NOTED.

TECHNICIAN:	CUSTOMER:	
Balle		

SUPERIOR SCALE, INC. 2118 CAROLINA PLACE DRIVE FORT MILL, SC 29708 Phone: 803-548-3320 Fax: 803-548-2910 Email: info@superiorscales.com

WEIGHT SET VERIFICATION CERTIFICATE

CLIENT: CIVIL & ENVIRONMENTAL

DEPARTMENT: LAB

DESCRIPTION: STAINLESS STEEL

WEIGHT ID#: 4563

	VERIFICATION DATA				
Serial Number	Nominal Value	Reading on Balance			
4563	100g	100.0000g			
•	50g	50.0002g			
	20g	30.0002g			
·	20g	20.0001g			
	10g	10.0000g			
	5g	5.0000g			
	2g	2.0000g			
	2g	1.9999g			
	1g	1.0000g			
•	.5g	.5002g			
	.1g	.1001g			

VERIFICATION DATE: JANUARY 9, 2018

VERIFICATION DUE DATE: JANUARY 2019

TEST STANDARD(S) INFORMATION:

Standard(s) Used	ID	Expiration Date
CLASS 1 KIT	SSCL1-1	5/2018
· · · · · · · · · · · · · · · · · · ·		

COMMENTS:

READINGS OF WEIGHT(S) TAKEN ON BALANCE(S) LISTED AFTER BALANCE(S) WITH NIST TRACEABLE WEIGHT SET(S) NOTED.

TECHNICIAN:

Ba Var

CUSTOMER:

SUPERIOR SCALE, INC. 2118 CAROLINA PLACE DRIVE FORT MILL, SC 29708 Phone: 803-548-3320 Fax: 803-548-2910 Email: info@superiorscales.com

WEIGHT SET VERIFICATION CERTIFICATE

CLIENT: CIVIL & ENVIRONMENTAL

DEPARTMENT: LAB

DESCRIPTION: STAINLESS STEEL

WEIGHT ID#: CA6640

	VERIFICATION DATA				
Serial Number	Nominal Value	Reading on Balance			
CA6640	100g	100.0000g			
	50g	50.0001g			
	20g	30.0002g			
	20g	20.0002g			
	10g	10.0001g			
	5g	5.0002g			
	Зд	3.0000g			
	2g	1.9999g			
	1g	1.0000g			
	.5g	.4999g			
	.2g	.2002g			
	.2g	.2001g			
	.1g	.0999g			

VERIFICATION DATE: JANUARY 9, 2018

VERIFICATION DUE DATE: JANUARY 2019

TEST STANDARD(S) INFORMATION:

Standard(s) Used	ID	Expiration Date
CLASS 1 KIT	SSCL1-1	5/2018

COMMENTS:

READINGS OF WEIGHT(S) TAKEN ON BALANCE(S) LISTED AFTER BALANCE(S) WITH NIST TRACEABLE WEIGHT SET(S) NOTED.

TECHNICIAN:	USTOMER:
Br Vm	

SUPERIOR SCALE, INC. **CERTIFICATION OF SCALE CALIBRATION** Issue/Revision: 10/08/10 Rev. 3

Customer Name: <u>Civil + Environmental</u> Consultate Customer Address: <u>1960 A Center Purk Dr</u> City: <u>Charlotte</u> State: <u>N'C</u>	r	Page 1 of R Today's Date: <u>1 - 9 - 2018</u> Next Due Date: <u>1 - 2014</u>
Test Location: (V)Onsite () Superior Scale, Inc.		
Mfg: <u>Sarterius</u> Model: <u>Quintix 224-15</u>	Service Technician: Customer ID#:	B; Vess

Serial Number: 0031650012

New Equipment: 🛛 **Repair/Recalibration:** Routine Calibration:

Model: QUINTEX 224-15

Capacity: 220 x (3.000)

Instructions: Report all readings before and after corrections are made. Readings are to be taken at low, middle and high portions of the working range of the scale. Record + or - deviation and adjusted reading below.

Standards used are traceable to NIST. Equipment tolerances are Handbook 44 Table 6, unless otherwise noted.

WEIGHT APPLIED	AS FOUND (Before Adjustment)	DEVIATION (+ OR -)	AS LEFT (After Adjustment)
5	5,0002	£ 0,0002	5,0000
20	20.0004	F 0.0004	20.0000
50	50.0006	+ 0.0006	50.000
100	100.0068	+ 0.000 8	100.0000
200	200.000	F 0.0005	200.000

Comments:

 NIST Traceability #'s/Serial Number
 • \$\$
 \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 • \$\$
 \$\$
 • \$\$
 • \$\$</td

Report reproduction except in full requires written consent from Superior Scale, Inc.

2118 Carolina Place Dr. • Fort Mill, SC 29708 • Phone (803) 548-3320 • Fax (803) 548-2910

SUPERIOR SCALE, INC. CERTIFICATION OF SCALE CALIBRATION Issue/Revision: 10/08/10 Rev. 3

Customer Name: <u>Civil & Environtal Consultants</u> Customer Address: <u>1900A Center Park</u> City: <u>Charlotte</u> State: <u>NC</u>	Zip:	Page <u>2</u> of <u>3</u> Today's Date: <u>1-9-2005</u> Next Due Date: <u>1-2019</u>	
Test Location: () Onsite () Superior Scale, Inc.			
Mfg: <u>Satonius</u> Model: <u>Ayison</u> Capacity: <u>(swo × 0,1 g</u>	Service Technician: B. Uss Customer ID#: Serial Number: 2715-4460		
Routine Calibration: Cr New Equipment	: 🗆 R	epair/Recalibration: 🗆	

Instructions: Report all readings before and after corrections are made. Readings are to be taken at low, middle and high portions of the working range of the scale. Record + or - deviation and adjusted reading below.

Standards used are traceable to NIST. Equipment tolerances are Handbook 44 Table 6, unless otherwise noted.

WEIGHT APPLIED	AS FOUND (Before Adjustment)	DEVIATION (+ OR -)	AS LEFT (After Adjustment)
200	200.0	0	200.0
500	5.00.0	6	5-00.0
1000	1000.0	6	1000.0
1500	1500.0	Ø	1500.0

Comments: _____

NIST Traceability #'s/Serial Number <u>SSKG3</u> Technician Signature: <u>B</u> Um <u>License #: 1766</u>

Report reproduction except in full requires written consent from Superior Scale, Inc.

2118 Carolina Place Dr. • Fort Mill, SC 29708 • Phone (803) 548-3320 • Fax (803) 548-2910

SUPERIOR SCALE, INC. CERTIFICATION OF SCALE CALIBRATION Issue/Revision: 10/08/10 Rev. 3

Customer Name: <u>Civil + Environnal Consullats</u> Customer Address: <u>1900A Center Park Dr</u> City: <u>Charloth</u> State: <u>NL</u>	5 Zip:	Page <u>3</u> of 3 Today's Date: <u>$1-9-2015$</u> Next Due Date: <u>$1-2019$</u>
Test Location: (4) Ónsite () Superior Scale, Inc.		
Mfg: Aws Model: SCR/CGA Capacity: $2000 \times O.16$	Service Technician Customer ID#: Serial Number:	n: B. Vess 01-24438

 Routine Calibration:
 Image: New Equipment:
 Repair/Recalibration:

 Instructions:
 Report all readings before and after corrections are made.
 Readings are to be taken at low, middle

Instructions: Report all readings before and after corrections are made. Readings are to be taken at low, middle and high portions of the working range of the scale. Record + or - deviation and adjusted reading below.

Standards used are traceable to NIST. Equipment tolerances are Handbook 44 Table 6, unless otherwise noted.

WEIGHT APPLIED	AS FOUND (Before Adjustment)	DEVIATION (+ OR -)	AS LEFT (After Adjustment)	
2 60	200.0	20 6.0	200.0	
500	500.1	+ 0,1	500.1	
1000	1000.2	+0.2	1000.2	
2000	2000.0	0,0	2000.0	

Comments: _____

NIST Traceability #'s/Serial Number <u>S5/<6-3</u> Technician Signature: <u>B. Vc. 55</u> License #: <u>17talc</u>

Report reproduction except in full requires written consent from Superior Scale, Inc.

2118 Carolina Place Dr. • Fort Mill, SC 29708 • Phone (803) 548-3320 • Fax (803) 548-2910

APPENDIX E A2LA AND QSTI CERTIFICATIONS

American Association for Laboratory Accreditation

Accredited Air Emission Testing Body

A2LA has accredited

CIVIL AND ENVIRONMENTAL CONSULTANTS, INC. (CEC)

In recognition of the successful completion of the joint A2LA and Stack Testing Accreditation Council (STAC) evaluation process. this laboratory is accredited to perform testing activities in compliance with ASTM D7036:2004 - Standard Practice for Competence of Air Emission Testing Bodies.

Presented this 20th day of December 2017.

President and CEO

For the Accreditation Council Valid to November 30, 2019 Certificate Number 3913.01

This accreditation program is not included under the A2LA ILAC Mutual Recognition Arrangement.

ī

APPENDIX F PRODUCTION DATA DURING THE COMPLIANCE TEST

From: Matt Caton Sent: Wednesday, October 31, 2018 6:53 AM To: brian 1 smith@goodyear.com Subject: Banbury 5 Stack Test Importance: High

Brian,

Can you please send me the amount of material processed on Banbury 5 during our stack test for these 3 times.

Run 1 10/23/18 1:18 pm to 3:37 pm

39 batches - 38,490

Run 2 10/23/18 4:16 pm to 6:42 pm

41 batches - 39,574

Run 3 10/24/18 8:03 am to 10:48 am

43 batches - 41,949

Thanks,

Matt Caton Environmental Manager Goodyear-Danville VA 1901 Goodyear Boulevard Danville, VA 24541-6664 434-791-9170 GTN 564-9170