Number: P-22-0057

TSCA Section 5(a)(3) Determination: The chemical substance is not likely to present an unreasonable risk (5(a)(3)(C))

Chemical Name:

Generic: Polysaccharide, polymer with 2-propenoic acid, sodium salt

Conditions of Use (intended, known, or reasonably foreseen)¹:

- Intended conditions of use (generic): Manufacture and process for use as and use as an additive in home care products, consistent with the manufacturing, processing, use, distribution, and disposal information described in the PMN.
- Known conditions of use: Applying such factors as described in footnote 1, EPA evaluated whether there are known conditions of use and identified none.
- Reasonably foreseen conditions of use: Applying such factors as described in footnote 1, EPA evaluated whether there are reasonably foreseen conditions of use and identified use as an additive for other applications and products based on analogues.

Summary: The chemical substance is not likely to present an unreasonable risk of injury to health or the environment, without consideration of costs or other nonrisk factors, including an unreasonable risk to a potentially exposed or susceptible subpopulation identified as relevant by the Administrator under the conditions of use, based on the risk assessment presented below. EPA estimated that the anion could have limited persistence and low potential for bioaccumulation, such that repeated exposures are not expected to cause food-chain effects via accumulation in exposed organisms. Estimations of physical/chemical and fate properties are not applicable for the cation (sodium), which is an element and is unlikely to impact the overall persistence and bioaccumulation of the new chemical substance. Based on test data on the new chemical substance has moderate environmental hazard. EPA did not identify any potential human health hazards. EPA concludes that the new chemical substance is not likely to present an unreasonable risk under the conditions of use.

¹ Under TSCA § 3(4), the term "conditions of use" means "the circumstances, as determined by the Administrator, under which a chemical substance is intended, known, or reasonably foreseen to be manufactured, processed, distributed in commerce, used, or disposed of." In general, EPA considers the intended conditions of use of a new chemical substance to be those identified in the section 5(a) notification. Known conditions of use include activities within the United States that result from manufacture that is exempt from PMN submission requirements. Reasonably foreseen conditions of use are future circumstances, distinct from known or intended conditions of use, under which the chemical substance may be manufactured, processed, distributed, used, or disposed of. EPA expects that the identification of "reasonably foreseen" conditions of use will be made on a fact-specific, case-by-case basis. EPA will apply its professional judgment and experience when considering factors such as evidence of current use of the new chemical substance outside the United States, information about known or intended uses of chemical substances that are structurally analogous to the new chemical substance, and conditions of use identified in an initial PMN submission that the submitter omits in a revised PMN. The sources EPA uses to identify reasonably foreseen conditions of use include searches of internal confidential EPA PMN databases (containing use information on analogue chemicals), other U.S. government public sources, the National Library of Medicine's Hazardous Substances Data Bank (HSDB), the Chemical Abstract Service STN Platform, REACH Dossiers, technical encyclopedias (e.g., Kirk-Othmer and Ullmann), and Internet searches.

Fate: Environmental fate is the determination of which environmental compartment(s) a chemical moves to, the expected residence time in the environmental compartment(s) and removal and degradation processes. Environmental fate is an important factor in determining exposure and thus in determining whether a chemical may present an unreasonable risk. EPA estimated physical/chemical and fate properties of the anion using data for analogue(s), data submitted for the new chemical substance, and EPI (Estimation Program Interface) Suite™ (http://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface). The cation (sodium) is not expected to drive the human health and eco hazard assessments. The cation (sodium) is also not expected to be a concern for food chain effects and was not evaluated for persistence and bioaccumulation. In wastewater treatment, the anion is expected to be removed with an efficiency of 90% due to biodegradation. Removal of the anion by biodegradation is high. Sorption of the anion to sludge, soil, and sediment is expected to be low. Migration of the anion to groundwater is expected to be negligible due to biodegradation. Due to low estimated vapor pressure and Henry's law constant, the anion is expected to undergo negligible volatilization to air. Overall, these estimates indicate that the anion has low potential to volatilize to air or migrate to groundwater.

Persistence²: Persistence is relevant to whether a new chemical substance is likely to present an unreasonable risk because chemicals that are not degraded in the environment at rates that prevent substantial buildup in the environment, and thus increase potential for exposure, may present a risk if the substance presents a hazard to human health or the environment. EPA estimated degradation half-lives of the anion using data for analogue(s), data submitted for the new chemical substance, and EPI SuiteTM. EPA estimated that the anion's aerobic and anaerobic biodegradation half-lives are < 2 months. These estimates indicate that the anion may have limited persistence in aerobic environments (e.g., surface water) and anaerobic environments (e.g., sediment).

Bioaccumulation³: Bioaccumulation is relevant to whether a new chemical substance is likely to present an unreasonable risk because substances that bioaccumulate in aquatic and/or terrestrial species pose the potential for elevated exposures to humans and other organisms via food chains. EPA estimated the potential for the anion to bioaccumulate using data submitted for the new chemical substance. EPA estimated that the anion has low bioaccumulation potential based on high water solubility, which increases elimination. EPA estimated that the anion could have limited persistence and low potential for bioaccumulation, such that repeated exposures are not expected to cause food-chain effects via accumulation in exposed organisms.

² Persistence: A chemical substance is considered to have limited persistence if it has a half-life in water, soil or sediment of less than 2 months or if there are equivalent or analogous data. A chemical substance is considered to be persistent if it has a half-life in water, soil or sediments of greater than 2 months but less than or equal to 6 months or if there are equivalent or analogous data. A chemical substance is considered to be very persistent if it has a half-life in water, soil or sediments or if there are equivalent or analogous data. A chemical substance is considered to be very persistent if it has a half-life in water, soil or sediments of greater than 6 months or if there are equivalent or analogous data. (64 FR 60194; November 4, 1999)

³ Bioaccumulation: A chemical substance is considered to have a low potential for bioaccumulation if there are bioconcentration factors (BCF) or bioaccumulation factors (BAF) of less than 1,000 or if there are equivalent or analogous data. A chemical substance is considered to be bioaccumulative if there are BCFs or BAFs of 1,000 or greater and less than or equal to 5,000 or there are equivalent or analogous data. A chemical substance is considered to be very bioaccumulative if there are BCFs or BAFs of 5,000 or greater or if there are equivalent or analogous data. (64 FR 60194; November 4 1999)

Human Health Hazard⁴: Human health hazard is relevant to whether a new chemical substance is likely to present an unreasonable risk because the significance of the risk is dependent upon both the hazard (or toxicity) of the chemical substance and the extent of exposure to the substance. EPA estimated the human health hazard of this chemical substance based on its estimated physical/chemical properties and by comparing it to structurally analogous chemical substances for which there is information on human health hazard. Absorption of the new chemical substance and its low molecular weight (LMW) fraction ([claimed CBI]% < 500 Da, [claimed CBI] % < 1000 Da) is expected to be poor through the skin, good through the lungs, and good through the gastrointestinal (GI) tract based on physical/chemical properties and analogue data. For the new chemical substance, EPA did not identify any hazards. No test data were submitted on the new chemical substance.

Environmental Hazard⁵: Environmental hazard is relevant to whether a new chemical substance is likely to present unreasonable risk because the significance of the risk is dependent upon both the hazard (or toxicity) of the chemical substance and the extent of exposure to the substance. EPA determined the environmental hazard for this new chemical substance based on toxicity data submitted for the new chemical substance and the Ecological Structure Activity Relationships (ECOSAR) Predictive Model (<u>https://www.epa.gov/tsca-screening-tools/ecological-structure-activity-relationships-ecosar-predictive-model</u>); specifically QSARs for Neutral Organics. This substance falls within the TSCA New Chemicals Category

⁴ A chemical substance is considered to have low human health hazard if effects are observed in animal studies with a No Observed Adverse Effect Level (NOAEL) equal to or greater than 1,000 mg/kg/day or if there are equivalent data on analogous chemical substances; a chemical substance is considered to have moderate human health hazard if effects are observed in animal studies with a NOAEL less than 1,000 mg/kg/day or if there are equivalent data on analogous chemical substances; a chemical substance is considered to have high human health hazard if there is evidence of adverse effects in humans or conclusive evidence of severe effects in animal studies with a NOAEL of less than or equal to 10 mg/kg/day or if there are equivalent data on analogous chemical substances. EPA may also use Benchmark Dose Levels (BMDL) derived from benchmark dose (BMD) modeling as points of departure for toxic effects. See https://www.epa.gov/bmds/what-benchmark-dose-software-bmds. Using this approach, a BMDL is associated with a benchmark response, for example a 5 or 10 % incidence of effect. The aforementioned characterizations of hazard (low, medium, high) would also apply to BMDLs. In the absence of animal data on a chemical or analogous chemical substance, EPA may use other data or information such as from in vitro assays, chemical categories (e.g., Organization for Economic Co-operation and Development, 2014 Guidance on Grouping of Chemicals, Second Edition. ENV/JM/MONO(2014)4. Series on Testing & Assessment No. 194. Environment Directorate, Organization for Economic Co-operation and Development, Paris, France. (http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/im/mono(2014)4&doclanguage=en)), structure-activity relationships, and/or structural alerts to support characterizing human health hazards. ⁵ A chemical substance is considered to have low ecotoxicity hazard if the Fish, Daphnid and Algae LC50 values are greater than 100 mg/L, or if the Fish and Daphnid chronic values (ChVs) are greater than 10.0 mg/L, or there are not effects at saturation (occurs when water solubility of a chemical substance is lower than an effect concentration), or the log Kow value exceeds QSAR cut-offs. A chemical substance is considered to have moderate ecotoxicity hazard if the lowest of the Fish, Daphnid or Algae LC50s is greater than 1 mg/L and less than 100 mg/L, or where the Fish or Daphnid ChVs are greater than 0.1 mg/L and less than 10.0 mg/L. A chemical substance is considered to have high ecotoxicity hazard, or if either the Fish, Daphnid or Algae LC50s are less than 1 mg/L, or any Fish or Daphnid ChVs is less than 0.1 mg/L (Sustainable Futures https://www.epa.gov/sustainable-futures/sustainable-futures-p2-

framework-manual).

Polyanionic Polymers (& Monomers).⁶ Acute toxicity values for fish, aquatic invertebrates, and algae are > 113 mg/L, > 132 mg/L, and 26.8 mg/L, respectively. Chronic toxicity values for fish, aquatic invertebrates, and algae are > 10 mg/L, > 10 mg/L, and 10.9 mg/L, respectively. These toxicity values indicate that the new chemical substance is expected to have moderate environmental hazard. Application of assessment factors of 4 and 10 to acute and chronic toxicity values, respectively, results in acute and chronic concentrations of concern of 6.700 mg/L (6700 ppb) and 1.090 mg/L (1090 ppb), respectively.

Exposure: The exposure to a new chemical substance is potentially relevant to whether a new chemical substance is likely to present unreasonable risks because the significance of the risk is dependent upon both the hazard (or toxicity) of the chemical substance and the extent of exposure to the substance.

EPA estimates occupational exposure and environmental release of the new chemical substance under the intended conditions of use described in the PMN using ChemSTEER (Chemical Screening Tool for Exposures and Environmental Releases; <u>https://www.epa.gov/tsca-screening-tools/chemsteer-chemical-screening-tool-exposures-and-environmental-releases</u>). EPA uses EFAST (the Exposure and Fate Assessment Screening Tool; <u>https://www.epa.gov/tsca-screening-tools/e-fast-exposure-and-fate-assessment-screening-tool-version-2014</u>) to estimate general population, consumer, and environmental exposures.

EPA considers workers to be a potentially exposed or susceptible subpopulation (PESS) on the basis of greater exposure potential compared to the general population. EPA also considers PESS in conducting general population drinking water exposures by evaluating risks associated with water intake rates for multiple age groups, ranging from infants to adults. EPA considers consumers of specific products to be a potentially exposed or susceptible subpopulation on the basis of greater exposure potential compared to the general population who do not use specific products.

For this new chemical assessment, EPA did not assess worker exposures via the dermal route because no human health hazards were identified. Inhalation exposures to workers are not expected. Exposures to the general population were not assessed because no human health hazards were identified. Exposures to consumers were not assessed because no human health hazards were identified. Releases to water were estimated.

Risk Characterization: EPA assesses risks to workers considering engineering controls described in the PMN but in the absence of personal protective equipment (PPE) such as gloves and respirators. If risks are preliminarily identified, EPA then considers whether the risks would be mitigated by the use of PPE (e.g., impervious gloves, respirator).

No relevant systemic hazards were identified for the new chemical substance; therefore, dermal exposures were not assessed for workers, risks were not evaluated and inhalation exposures are expected to be negligible. Based on no identified hazards, risks to workers are not expected.

⁶ TSCA New Chemicals Program (NCP) Chemical Categories. <u>https://www.epa.gov/reviewing-new-chemicals-under-toxic-substances-control-act-tsca/chemical-categories-used-review-new</u>.

No systemic hazards were identified for the new chemical substance; therefore, exposures to the general population and consumers were not assessed and risks were not calculated. Based on no identified hazards, risks to the general population or consumers are not expected.

Risks to the environment were evaluated by comparing estimated surface water concentrations (SWCs) with the acute and chronic concentrations of concern (COCs). When evaluating risks from chronic exposures, the number of the days of exceedance (SWC > chronic COC) is also considered in the risk assessment. Risks from acute exposures to the environment were not identified because the estimated 7Q10 SWC did not exceed the acute COC. Risks from chronic exposures to the environment were not identified because the estimated 7Q10 SWC did not exceed the estimated 7Q10 SWC did not exceed the chronic COC. EPA identified use as an additive for other applications and products as reasonably foreseen based on analogue uses. EPA has determined that environmental risk from these reasonably foreseen conditions of use is not likely based on the risk assessment under the intended conditions of use, the relatively high COCs, and biodegradation of the new chemical substance in the environment.

Because no unreasonable risks to workers, the general population, consumers, or the environment were identified, EPA has determined that the new chemical substance is not likely to present unreasonable risk to human health or the environment under the conditions of use.

9/18/2023

Date:

/s/

Shari Z. Barash, Acting Director New Chemicals Division Office of Pollution Prevention and Toxics U.S. Environmental Protection Agency