For help accessing this document, email <u>NEI_Help@epa.gov</u>.

Flint Hills Ecoregion Fire Emissions Jayson Prentice, Section Chief | Sep. 27, 2023

What are the Flint Hills?

Photo Source: KDHE

- Covering 6.2 million acres which has largely remained native tallgrass prairie
- Undulating hills with limestone, chert (Flint) and shale outcroppings and shallow soils
- Primarily rangeland with extensive cattle grazing
- Largest remaining intact tallgrass prairie in the world (25th largest intact grassland in the world)¹

Why are Flint Hills important ecologically?

- Only ~4% of the original tallgrass prairie remains²
- Home to diverse grasses and forbs, and home to several unique animal species
- Under intense pressure North America's most endangered ecosystem³
 - Invasive species
 - Woody species
 - Agricultural practices
 - Land fragmentation

Image courtesy Flint Hills Discovery Center

Tracking the Acres Burned

- MODIS Satellite analysis
 - Surface reflectance layers
- Method originally developed by Kansas State University and adopted or continued by KDHE⁴
- Research shows it is improved over default MODIS Burned Area Product and other methods⁵

Tracking the Acres Burned

Tracking the Acres Burned

Why are the fire emissions relevant?

 Flint Hills account for 22% (~2.6 of 12.1 million acres) of prescribed fire acres in 2020 National Emissions Inventory (NEI)⁶

Pollutant	Emission Tons (Flint Hills)	Percentage of Prescribed Fire Emissions Nationally
PM2.5	53,898	7%
PM10	56,092	6%
Carbon Monoxide	273,724	3%
Nitrogen Oxides	15,002	10%
Ammonia	3,881	3%
Sulphur Dioxide	5,358	7%
Volatile Organic Compounds	92,018	4%

Determining Relevant Emission Factors

- KDHE and Kansas State University research effort⁷
- Measuring smoke emissions in Flint Hills using unmanned aircraft systems
 - Used data from 42 flights across four separate prescribed fires
 - Carbon mass balance method

Pollutant	KDHE/KSU Study Emission Factor (g/kg)	SERA Rx Grassland ⁸ Emission Factor (g/kg)
PM2.5	11.3 ±10.8	15.8 ±9.8
Carbon Dioxide	1569 ±28	1618 ±176
Nitrogen Oxide	1.4 ±0.9	3.5 ±0.33
Volatile Organic Compounds	4.5 ±3.5	10.3 ±6.8
Methane	6.8 ±4.3	2.5 ±1.4

Determining Relevant Emission Factors

Photo Source: KDHE

Photo Source: KDHE

Determining Relevant Emission Factors

- Compared headfire vs backfire emission factors
 - Headfires resulted in higher EF for PM2.5
 - Backfires had higher EF for NOx and VOC
- Moisture content in Vegetation
 - Highest PM2.5 EF in highest vegetation
 moisture content
- Compared meteorological conditions and ozone generation
 - Higher ambient air temperature and absolute humidity resulted in higher ozone generation

Photo Source: KDHE

Determining Relevant Emission Factors

- U.S. EPA Research using 1-hectare plots at Konza Prairie Biological Station (KPBS)⁹
 - Unmanned aerial system, aerostat, and ground-based research
 - Seasonality of burns and impact on emission factors
- U.S. EPA Research of Volatile Organic Compound (VOC) emissions¹⁰

Pollutant	EPA KPBS Research Emission Factor (g/kg)	EPA VOC Research Emission Factor (g/kg)
PM2.5	17.1 ±12.9	
Carbon Dioxide	1692 ±59	1612
Nitrogen Oxide	2.1 ±1.3	
VOC		5.6 ±0.9

Determining Relevant Emission Factors

Photo Source: KDHE

Photo Source: KDHE

Summary of Flint Hills Fires

- Emission factors and emissions vital for this single area with ~20% of prescribed fire acres and up to 10% of pollutant emissions for the entire country
- Understanding methods and thresholds that could reduce emissions
- Specific emission factors showing uniqueness of vegetation (Flint Hills vs general grassland)
 - Especially important with increased call for more prescribed fire
 - And potential lowering of National Ambient Air Quality Standards (NAAQS)

Future Work

- Expansion of satellite monitoring
 - Fall season (Aug-Oct) being completed
 - Larger expanse of the state
- More analysis on Emission Factors and conditions
 - Meteorological (e.g., temperature, humidity)
 - Vegetation (i.e., moisture content)
- Further refinement of emission factors
 - Smoldering fuels (i.e., cow patties)
 - Firing techniques

Photo Source: KDHE

References

¹ Scholtz, R., & Twidwell, D. (2022). The last continuous grasslands on Earth: Identification and conservation importance. Conservation Science and Practice, 4(3), e626.

² Flint Hills Initiative. (n.d.). Flint Hills Initiative. https://www.nature.org/en-us/get-involved/how-to-help/places-we-protect/flint-hills-initiative/

³ Samson, F. B., & Knopf, F. L. (Eds.). (1996). Prairie conservation: preserving North America's most endangered ecosystem. Island Press.

⁴ Mohler, R. L., & Goodin, D. G. (2012). Mapping burned areas in the Flint Hills of Kansas and Oklahoma, 2000—2010. Great Plains Research, 15-25.

⁵ Scholtz, R., Prentice, J., Tang, Y., & Twidwell, D. (2020). Improving on MODIS MCD64A1 burned area estimates in grassland systems: a case study in Kansas Flint Hills Tall Grass Prairie. Remote Sensing, 12(13), 2168.

References

 ⁶ US EPA, O. (2023, January 13). 2020 National Emissions Inventory (NEI) Data. https://www.epa.gov/air-emissions-inventories/2020-national-emissions-inventory-nei-data
 ⁷ Liu, Z., Baldwin, C., Watson, D., Prentice, J., Balthazor, T., & Haque, M. A. (2023). Measuring smoke emissions from prescribed rangeland burning in the Flint Hills region using unmanned aircraft systems. Journal of the ASABE, *In Publication*.

⁸ Prichard, S. J., O'Neill, S. M., Eagle, P., Andreu, A. G., Drye, B., Dubowy, J., ... & Strand, T. M. (2020). Wildland fire emission factors in North America: synthesis of existing data, measurement needs and management applications. International Journal of Wildland Fire, 29(2), 132-147.

⁹ Aurell, J., Gullett, B., Grier, G., Holder, A., & George, I. (2023). Seasonal emission factors from rangeland prescribed burns in the Kansas Flint Hills grasslands. Atmospheric Environment, 304, 119769.

¹⁰ Whitehill, A. R., George, I., Long, R., Baker, K. R., & Landis, M. (2019). Volatile organic compound emissions from prescribed burning in tallgrass prairie ecosystems. Atmosphere, 10(8), 464.

Thank you/Questions

Jayson Prentice

Data & Sustainability Section Chief Jayson.Prentice@ks.gov 785-291-3782