

For help accessing this document, email <u>NEI Help@epa.gov</u>.

Updates to Fertilizer and Biogenic NH₃ emissions for the National Emissions Inventory

Jesse O. Bash¹, John T. Walker¹, Venkatesh Rao², Zhiyong Wu³, Colleen Baublitz², Ian Rumsey¹

> ¹U.S. EPA ORD/CEMM ²U.S. EPA OAR/OAQPS ³RTI International

2023 IEIC September 26th-29th, Seattle, WA

Office of Research and Development Center for Environmental Measurement & Modeling

Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA.

Outline

- 2020 NEI fertilizer NH₃ emissions methodology
 - Overview of the emissions model
 - Revisions to non-agricultural/biogenic NH₃ emissions
 - Based on recent measurements
- Fertilizer and biogenic NH₃ emission
 - Change in emissions from 2017 NEI
- Evaluation against network observations
- Summary and next steps

What is STAGE?

- Surface Tiled Aerosol and Gaseous Exchange (STAGE) model
- Land use specific gaseous and aerosol deposition
 - Fluxes area weighted to grid cell
 - Allows the output of land use specific emissions and deposition
- Models fluxes as gradient based processes
 - Using Kirchhoff's current law
- Estimates in-canopy fluxes and concentrations
- Bidirectional and unidirectional schemes use the same resistance model
 - Easy to add bidirectional exchange for modeled species

NH_3 Land Use Emissions Potential (Γ)

• Ratio of leaf or soil surface NH_4^+ and H^+

ital Protection

- Governs the emissions of NH₃ from aqueous media following Henry's Law
- Has been measured as a function of nitrogen deposition/application and leaf nitrogen content (Massad et al. 2010)
- Few measurements exist for plant functional types
- CMAQ v5.3 and 2017 NEI used a mean nitrogen deposition estimate from Massad et al. 2010
- CMAQ v5.4 and 2020 NEI based on measurements of NH_4^+ and H^+ at AMoN sites and available in the TRY global plant database (Kattge et al. 2020)

Developing Non-agricultural NH₃ Emission Potentials

- "A universal spectrum of leaf economics consisting of key chemical, structural and physiological properties", Wright et al 2004.
- Biological strategies in plant carbon and nitrogen allocation
 - largely independent of plant functional type, growth form or biome
- Shown to be important in modeling nutrient fluxes
- Leaf N show a clear differences by plant functional type

Developing Non-agricultural NH₃ Emission Potentials

- Leaf N decreases with leaf mass per area (LMA)
- Leaf NH₄⁺ concentration closely follows total leaf N concentration
- Leaf pH decreases with increasing LMA
 - Both pH and NH₄⁺ govern NH₃ emissions
- NH₃ emission potentials show a similar relationship with LMA
- LMA is related to the plant functional type

Developing Non-agricultural NH₃ Emission Potentials

- CMAQ v5.3 NH₃ emission potentials (red dots) were nearly constant across plant function types (PFT)
- Observations (green) show differences between PFT
 - Measurements are difficult and there is considerable scatter
- The model (box plots) captures the observations well (r = 0.584; p < 0.001)
 - CMAQ v5.4 uses the median values from the model for each PFT

2020 Fertilizer and Biogenic NH₃ Emissions

2020 Draft Fertilizer Emissions

2020 Final Fertilizer Emissions

Tons NH_3

Evaluation at AMoN Sites 2016

Evaluation at AMoN Sites 2019

Summary

- Fertilizer emissions methodology was updated based on AMoN site survey and global observations of soil and vegetation NH₄⁺ and pH
 - Resulted in approximately a 22% increase in the sum of fertilizer and biogenic NH₃ emissions
- Model updates decrease warm season NH₃ biases at AMoN sites
- Biogenic NH₃ emissions in Western US increased substantially
 - High temperature, high pH and low soil moisture
 - Currently conducting measurements for evaluation purposes *in situ* and in controlled laboratory settings
- Fertilizer and biogenic emissions for 2020 were substantially higher than 2017
 - About 30% higher when accounting for updated methodology
 - Likely meteorologically driven

Next Steps

- Separate fertilizer and biogenic NH₃ emissions
- Constrain NH₃ emissions processes with measurements
 - Field and laboratory experiments for alkali soils with low soil moisture
 - Targeting soils in the Western U.S. where the model estimates high emission factors/rates
- Explore how seasonality may impact biogenic NH₃ emission factors
 - How do vegetation emission factors vary from leaf out to senescence?
- Evaluation of model updates against recent satellite observations
 - Satellite observations from 2008 to 2020 show an increase in atmospheric $\rm NH_3$
 - What are the driving factors of this trend?

References

- Massad, R-S., Nemitz, E., Sutton, M.A., Review and parameterization of bi-directional ammonia exchange between vegetation and the atmosphere, Atmos. Chem. Phys., 10, 10359-10386, 2010
- Rumsey, I.C., Walker, J.T.: Application of an online ion-chromatography-based instrument for gradient flux measurements of speciated nitrogen and sulfur, Atmos. Meas. Tech. 9, 2581-2592, doi:10.5194/amt-9-2581-2016, 2016
- Nemitz, E., Milford, C., and Sutton, M. A.: A two-layer canopy compensation point model for describing bidirectional biosphere-atmosphere exchange of ammonia, Q. J. Roy. Meteor. Soc., 127, 815–833, 2001.
- Walker, J.T., Jones, M.R., Bash, J.O., Myles, L., Meyers, T., Schwede, D., Herrick, J., Nemitz, E., Robarge, W., Processes of ammonia air-surface exchange in a fertilized Zea mays canopy. Biogeosciences, 10, 981-998., 2013
- Wright, I.J., et al., The worldwide leaf economics spectrum, Nature, 428, 821-827, 2004