

2023 CSB Rebates: Fleet Planning and Route Analysis w/ Joint Office of Energy and Transportation (JOET) November 2, 2023 @ 1 PM ET

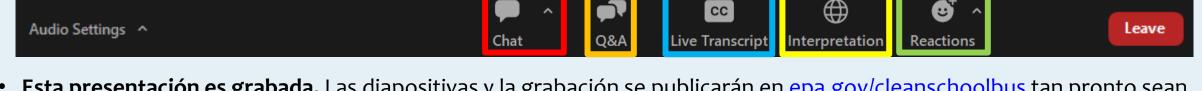
Office of Transportation and Air Quality U.S. Environmental Protection Agency

Zoom Webinar Logistics

• This presentation is being recorded. The slides and recording will be posted to <u>epa.gov/cleanschoolbus</u> as soon as they are processed for posting.

- All attendees are in listen-only mode. Audio is available through your computer speakers or by phone. The presenter will ask you to come off mute if applicable.
- **Live transcription:** Live captioning is available by clicking the "Live Transcript" icon.
- **Live interpretation:** Live Spanish interpretation is available by clicking the "Interpretation" icon and selecting Spanish. Click "Mute Original Audio" to mute English audio when listening in Spanish.

Interpretation


Leave

CC

Live Transcript

- **Questions:** Use the Q&A feature to ask questions during the presentation. We will address as many as possible after the presentation. If we are unable to answer your question at this time, we will list all questions and answers in the Q&A document available on our website. You can also submit written questions to the EPA Clean School Bus Program helpline at <u>cleanschoolbus@epa.gov</u>.
- **Chat:** Chat is disabled, but the presenters might share links through the chat feature.
- **Reactions:** Reactions are enabled for you to interact with the presenter.

Logística de seminarios web en Zoom


- Esta presentación es grabada. Las diapositivas y la grabación se publicarán en <u>epa.gov/cleanschoolbus</u> tan pronto sean procesadas para su publicación.
- Todos los asistentes se encuentran solo en modo escucha. Hay audio disponible a través de los altoparlantes de su computadora o por teléfono. El presentador le pedirá que quite el silencio si corresponde.
- Transcripción en vivo: Hay subtítulos disponibles haciendo clic en el icono "Live Transcript" [Transcripción en vivo].
- Interpretación en vivo: Hay interpretación en español disponible haciendo clic en el icono "Interpreting"
 [Interpretación] y seleccionando el español. Haga clic en "Mute Original Audio" [Silenciar audio original] para silenciar el
 audio en inglés al escuchar en español.
- Preguntas: Use la función Q&A [preguntas y respuestas] para hacer preguntas durante la presentación. Abordaremos todas las que sea posible después de la presentación. Si no podemos contestar su pregunta en este momento, anotaremos todas las preguntas y respuestas en el documento Q&A correspondiente disponible en nuestro sitio web. Puede también enviar preguntas por escrito a la línea directa de ayuda del Programa de Autobuses Escolares Limpios de la EPA en cleanschoolbus@epa.gov.
- Chat: Se encuentra inhabilitado el chat, pero los presentadores podrían compartir enlaces a través de la función de chat.
- **Reacciones:** Las reacciones están habilitadas para que usted interactúe con el presentador.

Live Transcription / Live Spanish Interpretation Transcripción simultánea / Interpretación simultánea

Live transcript is available

/ Off

English Span

Mute Original Audio

AGENDA

Overview of the Clean School Bus (CSB) Program

2023 CSB Rebate Program Overview

Fleet Planning & Route Analysis w/ JOET

Q&A

Next Steps and Resources

Overview of the Clean School Bus Program

Bipartisan Infrastructure Law

 Under Title XI: Clean School Buses and Ferries, the Bipartisan Infrastructure Law (BIL) provides \$5 billion over five years (FY22-26) for the replacement of existing school buses with zero-emission and clean school buses.

CSB Funding Opportunities


- EPA has offered rebates and grants in past funding opportunities.
- EPA is offering another round of rebate funding.
- The 2023 Rebates is the third CSB funding opportunity.

Why Clean School Buses?

Reduced Greenhouse Gas Emissions CSBs emit zero or low tailpipe emissions.

Cleaner Air

CSBs result in cleaner air on the bus, in bus loading areas, and in the communities in which they operate.

Cost Savings

Replacing older diesel school buses with CSBs often reduces maintenance and fuel costs.

Resiliency

. . .

Vehicle-to-Grid (V2G) capable CSBs can provide power to the grid or buildings during power shutdowns.

Improved Student Attendance & Achievement

ရှိ

The transport of students with CSBs has been linked to student attendance and academic achievement improvements. 2023 CSB Rebate Program Overview

EPA is offering at least **\$500 million** for clean school buses and ZE school buses. EPA may modify this amount based on the applicant pool and other pertinent factors. Funds are subject to availability and total awards may be higher or lower than the anticipated funds offered update if changed.

Eligible activities include the **replacement of existing internalcombustion engine (ICE) school buses with electric, propane, or compressed natural gas (CNG) school buses**, as well as the purchase and installation of **electric vehicle supply equipment (EVSE) infrastructure**.

EPA is prioritizing applications that will replace buses serving **highneed local education agencies, Tribal school districts funded by the Bureau of Indian Affairs or those receiving basic support payments for students living on Tribal land, and rural areas**. EPA is committed to ensuring the CSB Program delivers on the Justice40 Initiative.

Application packages must be submitted to EPA no later than 1/31/24 at 4:00 p.m. ET.

For more information, please visit <u>www.epa.gov/cleanschoolbus</u>.

CSB Funding per Replacement Bus

		01	•				Applicants can request up
School District	Replacement B	us Fuel Type and	d Size				to an additional \$20k to
Prioritization Status	ZE – Class 7+*	ZE – Class 3- 6*	CNG– Class 7+	CNG – Class 3-6	Propane – Class 7+	Propane – Class 3-6	purchase ADA-compliant clean school buses of any fuel type equipped with wheelchair lifts.
Buses serving	Up to	Up to	Up to	Up to	Up to	Up to	High Shipping Costs
school districts that meet one or more prioritization criteria	\$345,000 (Bus + Charging Infrastructure)	\$265,000 (Bus + Charging Infrastructure)	\$45,000	\$30,000	\$35,000	\$30,000	High Shipping Costs: Applicants in non- contiguous U.S. states and territories will receive up to an additional \$20k per bus to cover high bus shipping costs.
Buses serving	Up to	Up to	Up to	Up to	Up to	Up to	
school districts that are not prioritized	\$200,000 (Bus + Charging Infrastructure)	\$145,000 (Bus + Charging Infrastructure)	\$30,000	\$20,000	\$25,000	\$20,000	Tax Credits: % Selectees may be eligible for IRA tax credits applicable to their bus and
*Funding levels includ	le combined bus and E	V charging infrastruc		ts have flexibili	ity to determir	ne the split	infrastructure purchase(s) not reflected in the funding

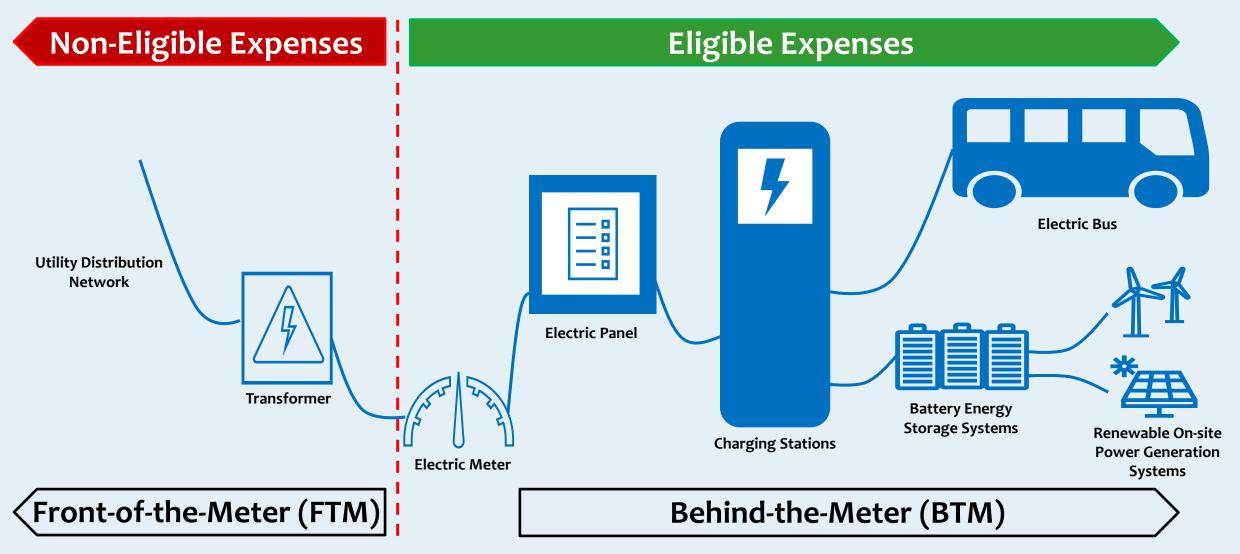

ADA-Compliant Buses:

table.

between funding for the bus itself and the supporting infrastructure.

Sepa Infrastructure Funding Restrictions

Application packages must be submitted to EPA no later than 1/31/24 at 4:00 p.m. ET.

For more information, please visit www.epa.gov/cleanschoolbus.

CSB Program Website Tools and Resources

All links can be found on: epa.gov/cleanschoolbus

Application packages must be submitted to EPA no later than 1/31/24 at 4:00 p.m. ET. For more information, please visit <u>www.epa.gov/cleanschoolbus</u>.

EPA Utility Engagement Pledge

A primary barrier school districts are facing is uncertainty around charging infrastructure deployment and how to engage with electric companies

 Installation of charging infrastructure can undergo long lead times and requires close coordination with the local utility

EPA is working with national electric utility company organizations to support school districts through a Utility Pledge that includes:

- Facilitating Communication Between Electric Providers and School Districts
- Providing Technical Support and Assistance
- Increasing Funding and Deployment

Additional information on the Utility Pledge and other technical assistance resources are available on: <u>epa.gov/cleanschoolbus technical assistance</u>

Joint Office of Energy and Transportation

EPA Clean School Bus Webinar Fleet Planning and Route Analysis

Nov. 2, 2023

driveelectric.gov

Welcome!

The National Renewable Energy Laboratory (NREL) and the Joint Office of Energy and Transportation (Joint Office) are partnering with the U.S. Environmental Protection Agency (EPA) to offer clean school bus technical assistance to school districts.

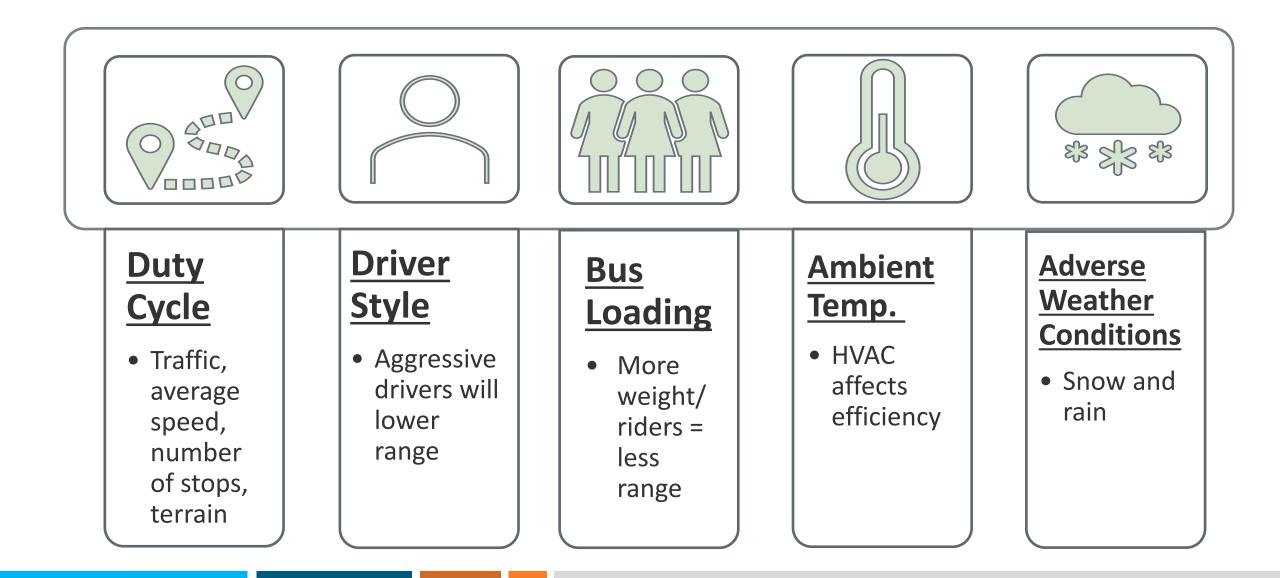
CleanSchoolBusTA@nrel.gov

 Electric School Bus (ESB) Fleet Planning

Power (kW)

- Kilowatts (kW)
- Charging station ratings

Energy

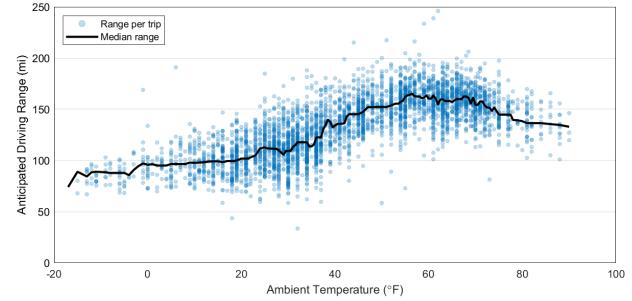

- Kilowatt hours (kWh)
- Battery size
 - Route energy usage
 - Charge needed

Battery Size (kWh)

- ESB battery sizes range from under 100 kWh to over 300 kWh
- Larger batteries = longer range
- Some ESB models offer multiple battery sizes

Real World Cold Weather Examples: ESB and Battery Electric Bus (BEB) Fleets

Duluth Transit Authority – Duluth, MN


 2019-2021 study saw a range decrease of approximately 33% for a temperature decrease of 30°F.

(https://www.nrel.gov/docs/fy22osti/83038.pdf)

- BEBs are approximately 3x as energy efficient as the diesel fleet.
- BEBs utilize auxiliary cabin heaters in colder weather.

Tok Transportation – Tok, AK

- Has operated one Type C ESB since 2020 with only electric heat.
- Successfully completing routes under -35° F.
- Experiences an efficiency decrease of 20%-25% for every temperature decrease of 30°F, which maxes out around 55% efficiency decrease at negative 10-20°F.
- Bus is stored and charged inside.

ESB Range Impacts

- Best Case
 - 60-70°F day
 - Little/no HVAC usage
 - Perform pre-trip while charging
 - Efficient regenerative braking capture (20%-30%)
 - These days you can experience at or within 10%-15% of OEM rated efficiency

- Worst Case
 - Extreme cold/heat
 - Forget to precondition while charging
 - Traffic/long stops
 - Poor regenerative braking/aggressive driving
 - These days MAY cause range to be reduced by 50%-60%

How to Maximize Range in ESBs

Train you on good		Pre-condi bus prior route v plugge	to each while	stora	er indoor ige and arging		cabin heat udents exit
	Monitor te to ider inefficie	ntify		ze door g times	heaters	r auxiliary in extreme old	

Bus Efficiency (kWh/mile)

- Efficiency = battery size ÷ range
- More efficient bus = lower efficiency number

OEM Rated Efficiencies

Туре	Make/Model	Battery Size	Range	Efficiency
А	Bluebird Microbird G5	88	100	0.88
А	BYD Type A	141	105	1.34
А	Collins Type A	125	130	0.96
	Greenpower Nano			
А	Beast	118	140	0.84
А	LionA (80 kWh)	80	75	1.07
А	LionA (160 kWh)	160	150	1.07
С	Bluebird Vision Electric	155	120	1.29
С	IC Bus Electric CE	315	200	1.58
С	LionC (126 kWh)	126	100	1.26
С	LionC (168 kWh)	168	125	1.34
С	LionC (210 kWh)	210	155	1.35
С	Thomas C2 Jouley	226	138	1.64

Range/Efficiency Impacts

- Battery Size: 150 kWh
- OEM Rated Range: 100 miles
- OEM Rated Efficiency:
 - 150 kWh/100 miles = 1.5 kWh/mile
- 20% Less Range:
 - 150 kWh/80 miles = 1.875 kWh/mile
- 50% Less Range:
 - 150 kWh/50 miles = 3.0 kWh/mile

Route Analysis Step 1:

 Understand your bus efficiency (kWh/mile) in worst case scenario

ESB Resources

- AFDC <u>Vehicle Search</u> Tool
- <u>School Transportation</u>
 <u>News Buyer's Guide</u>
- CALSTART <u>ZETI Tool</u>

- 1. Consult with your OEM/dealer.
- 2. Consult with local ESB fleets.
- 3. Reach out to <u>cleanschoolbusTA@nrel.gov</u>.

ENERGY Renewable Energy Search the AFDC Alternative Fuels Data Center SEARCH FUELS & CONSERVE LOCATE LAWS & Maps & Data Case Studies Publications Tool About Home VEHICLES FUEL **STATIONS** INCENTIVES EERE » AFDC » Tools » Vehicle Search Printable Version Alternative Fuel and Advanced Vehicle Search Find and compare alternative fuel vehicles, engines, and hybrid/conversion systems. Some of the light-duty vehicles may Light-Duty Vehicles K count toward vehicle-acquisition requirements for federal fleets or state and alternative fuel provider fleets regulated by the Energy Policy Act. For downloads of past model years, see the publications search All Vehicles 🕡 New Search | Download | Search Results - 1 - 8 of 17 vehicles Refine Your Search Filter by: Model Year: 2023 Fuel/Technology: Electric | Class/Type: School Bus | Manufacturer: All View: BBB = Model Year Blue Bird All American RE Electric Blue Bird Micro Bird G5 Electric 2023 Electric Electric 2022 2021 driveelectric.gov | 23

Bus Efficiency Example

- OEM has seen buses in region with your specs up to 2.1 kWh/mile.
- 2. Local ESB fleet has seen a max of 30% range/efficiency reduction in their similar buses.
 - 150kWh ÷ 70 miles = 2.14 kWh/mile
- 3. NREL/Joint Office calculates 2.3 kWh/mile.

Route Analysis Step 2:

 Determine your Route Energy Usage (kWh) Route Energy Usage (kWh) = Bus Efficiency (kWh/mile) x Route Distance (miles)

- Bus Efficiency 2.3 kWh/Mile
- 25-mile morning route/25-mile afternoon route
 - Mid-Day Charging
 - 2.3 kWh/mile x 25 miles = 57.5 kWh
 - No Mid-Day Charging
 - 2.3 kWh/mile x 50 miles = 115 kWh
- Why Mid-Day Charging?
 - Can reduce battery size needed
 - Can reduce charger size needed
 - Can enable longer routes
- Why Not?
 - If you are subject to prohibitive time-of-use rates or demand charges

Route Analysis Step 3:

• Determine if your bus battery size meets your requirements

- Consider battery degradation
 - All batteries will lose capacity over time
 - Most batteries are now warrantied to 80% for 8-12 years
- Consider minimum State-of-Charge (SOC)
 - Give drivers extra confidence on range
 - Build in a buffer

Battery Size (kWh) x (Degradation % - Minimum SOC %) = Usable Battery Capacity

150 kWh x (.8 - .1) = <mark>105 kWh</mark>

Mid-Day Charging = 57.5 kWh route energy

No Mid-Day Charging = 115 kWh route energy

Route Analysis Step 4:

Determine your
 Power (kW) Needs

Charger Power Needed (kW) = Route Energy Usage (kWh) ÷ Charging Time (hours)

- Example Charge Times
 - Mid-Day: 9 a.m. return/1 p.m. depart = 4 hours
 - Evening: 4 p.m. return/6 a.m. depart = 14 hours
 - Charge battery to 100% during mid-day:
 57.5 kWh ÷ 4 hours = 14.4 kW
 - Charge battery to 100% during evening:
 57.5 kWh ÷ 14 hours = 4.1 kW
 - Additional Considerations:
 - Not all ESBs are compatible with Level 2 AC charging.
 - BTMS will use charger power to maintain battery temperature on cold days (≈5-10kW), consult OEM.

Charger Selection

	Level 2 AC	DC Fast Charger (DCFC)
Power Levels	3-19 kW	15-350+ kW
Facility power	Single or 3-phase	Typically requires 3-phase power
Cost	\$-\$\$	\$\$\$-\$\$\$\$
Applicability	Lower power, longer durations *should be sufficient for most bus routes	Quick top offs and longer routes that require mid-day charging
Bus compatibility	AC charging not available on certain ESB models	DCFC is compatible on all current ESB OEM offerings
CSB requirements	Energy Star Certified required	NRTL Listing recommended
Grid impact	Less infrastructure required	More infrastructure required

Determine Optimal Charging Power Level

-	Variable	Formula					
A1	Charger Power Level (kW)		6.2	6.3	6.4	6.5	6.6
A2	Battery Size (kWh)		150	150	150	150	150
A3	Range (Miles)		100	100	100	100	100
A4	Route Energy (kWh)		57.5	57.5	57.5	57.5	57.5
A5	Mid-Day Charge Time		4	4	4	4	4
A6	Evening Charge Time		14	14	14	14	14
A7	Battery After Morning Route (kWh)	A2-A4	92.5	92.5	92.5	92.5	92.5
A8	Battery Before Afternoon Route (kWh)	A1*A6+A5	117.3	117.7	118.1	118.5	118.9
A9	Battery After Afternoon Route (kWh)	A7-A4	59.8	60.2	60.6	61	61.4
A10	Battery After Evening Charge (kWh)	A1*A8+A9	146.6	148.4	150.2	152	153.8

- Additional Considerations:
 - Not all ESBs are compatible with Level 2 AC charging.
 - BTMS will use charger power to maintain battery temperature on cold days (≈5-10kW), consult OEM.

NREL/Joint Office ESB Route Analysis Tool

*See NCEI Climate at a Glance for local

Lowest Expected

The Electric School Bus (ESB) Route Analysis Tool is a spreadsheet tool designed to assist school bus fleets in determining the bus energy usage and charger power needs for their unique routes.

•	Femperature (°F):	30°+		te	emperatu	res:		glance/cou	<u>inty/time</u>	<u>-series</u>				
	Bus Info				Route I	nfo			User Se	elections		gy/Power esults	Charger	Selection
	FCD	Douto	Morning Route	Morning	Morning		Afternoon			Mid Dov	Max Energy	Estimated Minimum Charger	-	Expected
Bus	ESB			-	Return	Distance	Depart	Return	Cabin	Mid-Day		Power Level		Minimum
Туре	Make/Model	#	(miles)	Time	Time	(miles)	Time	Time	Heater	Charging	(kWh)	(kW)	(kW)	SOC (%)
	IC Bus Electric CE													
ТуреС	(315 kWh)	1	50	6:30 AM	8:30 AM	60	12:30 PM	4:30 PM	Electric	Yes	157.5	20.3	20.0	11%
ТуреС	LionC (210 kWh)	2	30	6:30 AM	8:30 AM	40	12:30 PM	4:30 PM	Electric	Yes	90.3	13.3	19.2	48%
	Bluebird Vision													
ТуреС	Electric	3	35	6:30 AM	8:30 AM	40	12:30 PM	4:30 PM	Electric	Yes	86.1	15.2	19.2	20%
ТуреС	BYD Type C	4	20	6:30 AM	8:30 AM	40	12:30 PM	4:30 PM	Electric	Yes	109.9	13.8	19.2	58%

https://www.ncei.noaa.gov/access/monitoring/climate-at-a-

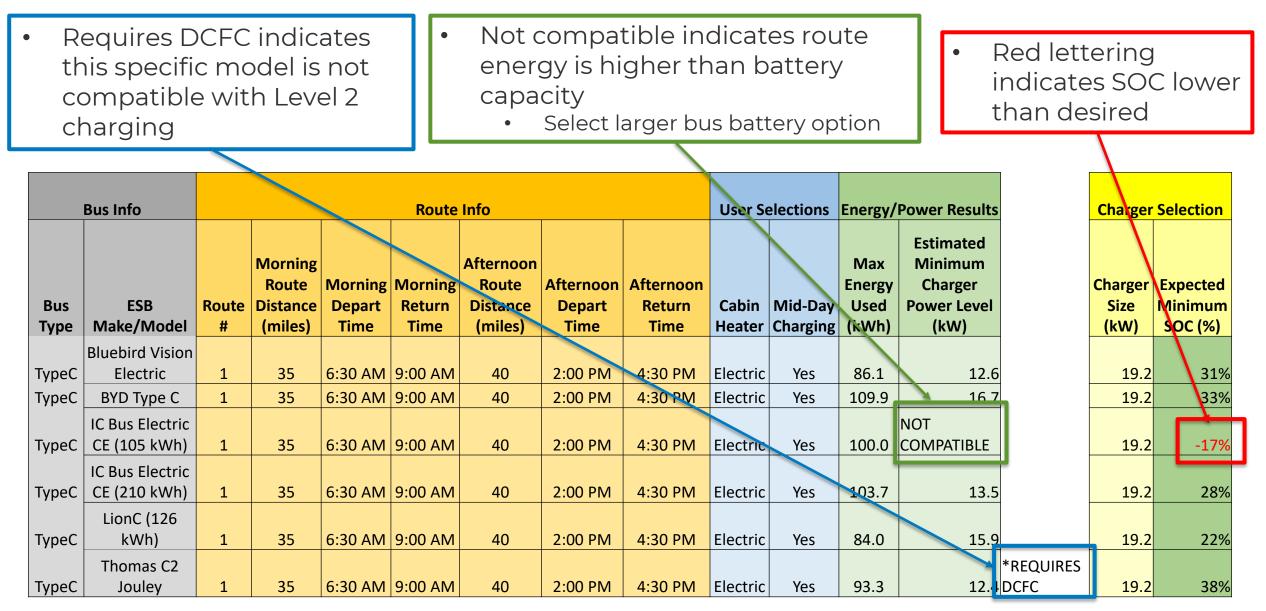
cleanschoolbusTA@nrel.gov <u>https://www.epa.gov/cleanschoolbus/clean-school-bus-technical-assistance</u>

ESB Route Analysis Tool – Main Inputs

 Risk Factor (Low/Medium/High) Efficiency loss from driving and othe Default – High Risk 	er factors Risk Factor: High Risk
 Battery Degradation Level (%) Expected % of original battery capace at the end-of-life Default – 80%, *Typical battery warrantie original capacity 	Battery Degradation Level (%): 80%
 Minimum State-of-Charge (%) The lowest % capacity that the batte experience on each route Default – 10% 	ry should Minimum State-of-Charge (%): 10%
 Temperature (°F) Drop down selection Select the lowest expected temperative Lowest Expected *See NCEI Climate at a Glance for local 	

ESB Route Analysis Tool – Route Specific Inputs

•	Mal • Dro	ss an	odel wn			 Route Info Route # Mileage and dwell times Unique entries 						 User Selections Heater type Mid-day Charging Options 			
	Bus Info				Route	Info			User Se	lections		rgy/Power Results		Charger	Selection
Bus Type	ESB Make/Model		Morning Route Distance (miles)	Morning	Morning	eturn Distance Depart Return Cabin Mid-Day Used Power Level Size						_	Expected Minimum SOC (%)		
ТуреС	IC Bus Electric	1	50		9:30 AM										
ТуреС	LionC (210	2	30	7:20 AM	10:02										
	Bluebird Vision Electric	3	35		8:45 AM		2:11 PM	5:25 PM	Electric	Yes	86.9	11.1		19.2	
ТуреС	BYD Type C	4	20		9:00 AM	21	2:00 PM	4:30 PM	Electric	Yes	66.6	11.3		19.2	


ESB Route Analysis Tool - Results

- Energy/Power Results
 - Maximum energy used (kWh)
 - Factors in mid-day charging selection
 - Estimated Minimum Charger Power Level (kW)
 - Guidance for minimum charger size in yellow section

- Charger Selection
 - Charger Size (kW)
 - Drop down user selection
 - Expected Minimum State-of-Charge (SOC) (%)
 - Reflects the lowest % SOC that the battery will experience during the day based on charger size selected

	Bus Info				Route	Info			User Se	lections		rgy/Power Results		Selection	
Bus	ESB	Route	Distance	Morning Depart	Morning Return	Distance	Afternoon Depart	Afternoon Return	Cabin	Mid-Day		Power Level		Size	Expected Minimum
Туре	Make/Model	#	(miles)	Time	Time	(miles)	Time	Time	Heater	Charging	(KWN)	(kW)		(kW)	SOC (%)
	IC Bus Electric														
TypeC	CE (315 kWh)	1	50	6:11 AM	9:30 AM	45	1:57 PM	4:55 PM	Electric	Yes	151.4	21.4		24.0	20%
TypeC	LionC (210 kWh)	2	30	7:20 AM	10:02 AM	50	2:22 PM	4:24 PM	Electric	Yes	130.3	16.2		19.2	16%
	,			7.207.11	7 (1 • 1	50	2.221101	7.271101	Licethe		130.5	10.2		15.2	1070
	Bluebird Vision														
TypeC	Electric	3	35	5:57 AM	8:45 AM	28	2:11 PM	5:25 PM	Electric	Yes	86.9	11.1		19.2	24%
ТуреС	BYD Type C	4	20	6:30 AM	9:00 AM	21	2:00 PM	4:30 PM	Electric	Yes	66.6	11.3		19.2	55%

ESB Route Analysis Tool – Compare Bus Models

ESB Route Analysis Tool – Evaluate Bus Options

Lowest Expected		https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/county/time-
Temperature (°F):	10°	*See NCEI Climate at a Glance for local temperatures: series

	Bus Info				Route	Info			User Se	lections		rgy/Power Results	Charger	Selection
Bus	ESB	Route	Morning Route Distance	Morning Depart	Morning Return	Distance	Afternoon Depart	Afternoon Return	Cabin	Mid-Day		Power Level	Size	Expected Minimum
Туре	Make/Model	#	(miles)	Time	Time	(miles)	Time	Time	Heater	Charging	(kWh)	(kW)	(kW)	SOC (%)
ТуреС	IC Bus Electric CE (210 kWh)	1	25	6:30 AM	9:00 AM	32	2:00 PM	4:30 PM	Electric	Yes	95.7	14.2	19.2	44%
ТуреС	IC Bus Electric CE (210 kWh)	1	25	6:30 AM	9:00 AM	32	2:00 PM	4:30 PM	Auxiliary	Yes	77.8	11.9	19.2	51%
ТуреС	IC Bus Electric CE (210 kWh)	1	25	6:30 AM	9:00 AM	32	2:00 PM	4:30 PM	Electric	No		NOT COMPATIBLE	19.2	-1%
ТуреС	IC Bus Electric CE (210 kWh)	1	25	6:30 AM	9:00 AM	32	2:00 PM	4:30 PM	Auxiliary	No	138.5	11.9	19.2	14%

cleanschoolbusTA@nrel.gov https://www.epa.gov/cleanschoolbus/clean-school-bus-technical-assistance

Joint Office of Energy and Transportation

Thank You

Nov. 2, 2023

CleanSchoolBusTA@nrel.gov

driveelectric.gov

Question & Answer Session

SEPA

Upvote and comment on questions similar to your own. Type your full thought so we can follow-up with an answer. Speak slowly and clearly for the captioner/interpreter.

cleanschoolbus@epa.gov epa.gov/cleanschoolbus

Next Steps – How to Apply

Application packages must be submitted to EPA no later than 1/31/24 at 4:00 p.m. ET. For more information, please visit <u>www.epa.gov/cleanschoolbus</u>.

	Upcoming Webinars								
November 14, 2023	Panel Discussion: Transportation Directors with Q&A								
December 5, 2023	IRS/Treasury: Tax Credits Overview								
December 13, 2023	OIG: Fraud Prevention & Best Practices with Q&A								
January 10, 2024	Popular Q&A with Extended Q&A Session								
January 24, 2024	CSB Outreach: Topic TBD								
February 7, 2024	2023 Rebates Feedback and Next Steps								

*Please note: Webinar topics are subject to change. To view the most up-to-date list of CSB webinars and register, please visit: <u>www.epa.gov/cleanschoolbus/events-related-clean-school-bus-program</u>

Summary

2023 CSB Rebates

- Applications must be submitted to EPA no later than 1/31/24 at 4:00 p.m. ET.
- Dates and topics for future webinars are on our website under the 'Webinars' section.

Future Funding Opportunities

- EPA encourages school districts to consider which competition structure (grants or rebates) best suits their needs.
- EPA anticipates opening a grant program in Spring 2024.

Resources

- EPA's CSB Program website
- The Joint Office of Energy and Transportation (cleanschoolbusTA@nrel.gov)
- The CSB helpline (cleanschoolbus@epa.gov)

Stay in Touch

- Learn more about the 2023 CSB Rebates at www.epa.gov/cleanschoolbus/clean-school-busprogram-rebates
- Submit questions to <u>cleanschoolbus@epa.gov</u>
- Don't miss any updates! To sign up for the listserv, please visit <u>epa.gov/cleanschoolbus</u>.

EPA CLEAN SCHOOL BUS

cleanschoolbus@epa.gov epa.gov/cleanschoolbus