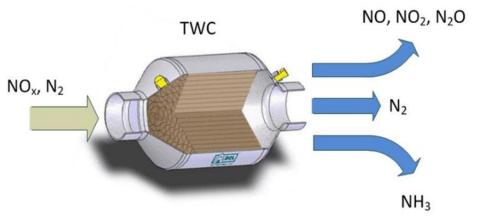


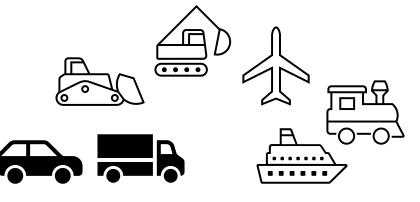
For help accessing this document, email <u>NEI Help@epa.gov</u>.


Update to onroad ammonia rates in MOVES4 and the impact on urban inventories

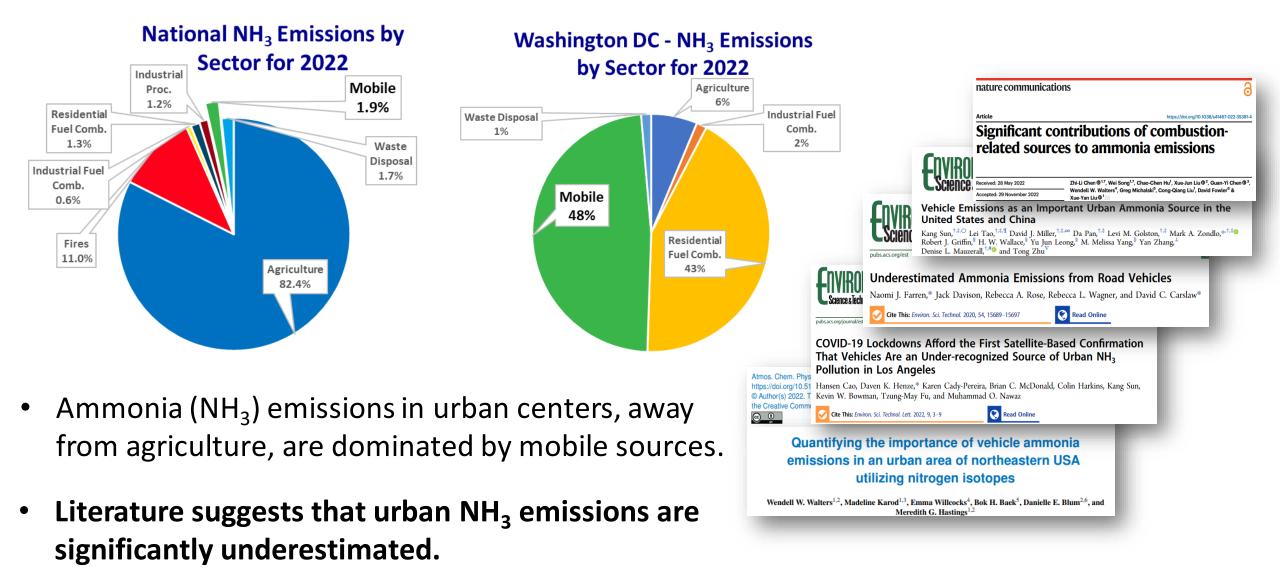
Claudia Toro US EPA Office of Transportation and Air Quality

2023 International Emissions Inventory Conference September 26-29, 2023 Seattle, WA

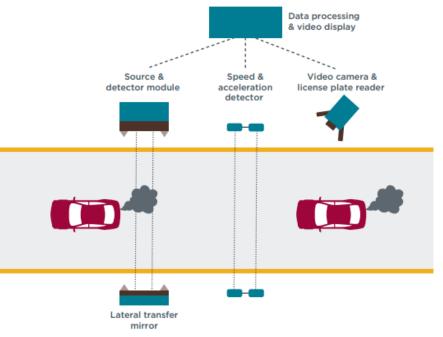
Ammonia Emissions from Vehicles


- NH₃ is not a direct combustion product.
 - In gasoline vehicles: byproduct of NO reduction over the three-way catalyst under fuel rich conditions
 - <u>In diesel vehicles</u>: byproduct from excess use of urea in Selective Catalytic Reduction (SCR) systems
- NH₃ is primarily emitted when the vehicle is running (not during the start process, not when idling)

*Figure from Woodburn, J., Merkisz, J., and Bielaczyc, P., "The Formation of Ammonia in Three-Way Catalysts Fitted to Spark Ignition Engines - Mechanisms and Magnitudes," SAE Technical Paper 2022-01-1026, 2022, doi:10.4271/2022-01-1026.


Ammonia Emissions Inventory - Mobile Sources

- Mobile sources: marine, aircraft, locomotive, **onroad**, nonroad.
- US inventory of onroad NH₃ emissions is estimated using EPA's MOtor Vehicle Emission Simulator (MOVES)
 - Regulatory model to estimate emissions from onroad vehicles and nonroad equipment for criteria pollutants and GHGs.
 - In MOVES3 and earlier versions, ammonia data based on small study of vehicles carried out in 2001.



National vs Urban Ammonia Inventory

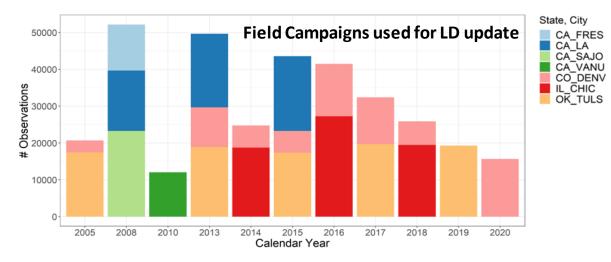
Data Sources – Roadside Remote Sensing

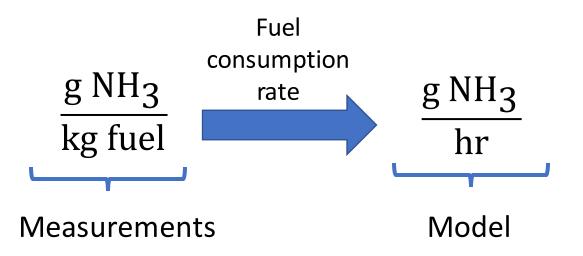
- Measurements based on spectroscopy (UV for NH₃).
- Provide a snapshot of emissions under specific real-world conditions for thousands of vehicles, one at a time.
- Adjacent sensors provide information on speed and acceleration (i.e. engine load).
- License plate reader allows retrieval of vehicle information.
- Measures NH₃:CO₂ ratios, reported as gNH₃/kg fuel

*Figure from Borken-Kleefled and Dallman, Remote Sensing of Motor Vehicle Exhaust Emissions, ICCT, 2018

Data Sources – MOVES4 Update

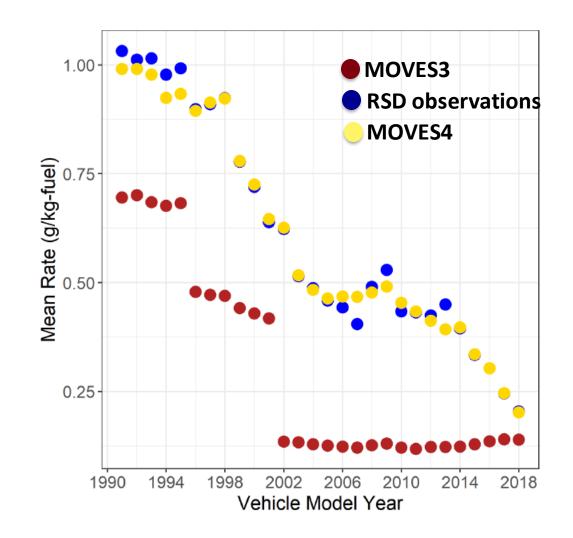
 Light-duty (LD) gasoline: over 335,000 NH₃ observations from passenger cars and passenger trucks gathered by University of Denver




Figure from Bishop G., "On-Road Remote Sensing of Automobile Emissions in the Denver, CO Area: Winter 2020"

 <u>Heavy-duty (HD) diesel</u>: measurements of NH₃ from over 900 diesel trucks characterized by model year (MY) and aftertreatment system measured in Caldecott Tunnel, Oakland, CA

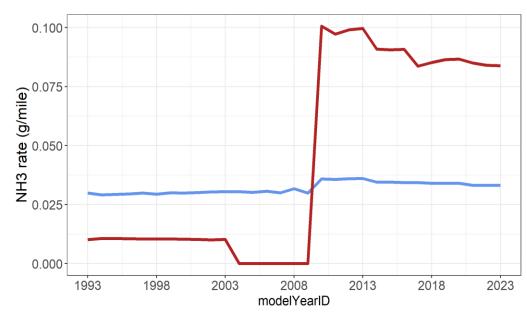
General Methodology


 Grouped fuel-based measurements by model year and vehicle type (e.g. passenger car, truck, etc.), and convert to time-based emission rates needed for MOVES using appropriate fuel consumption rates.

• Details of the methodology provided in <u>MOVES technical documentation</u>.

Updated Light Duty Emission Rates in MOVES4

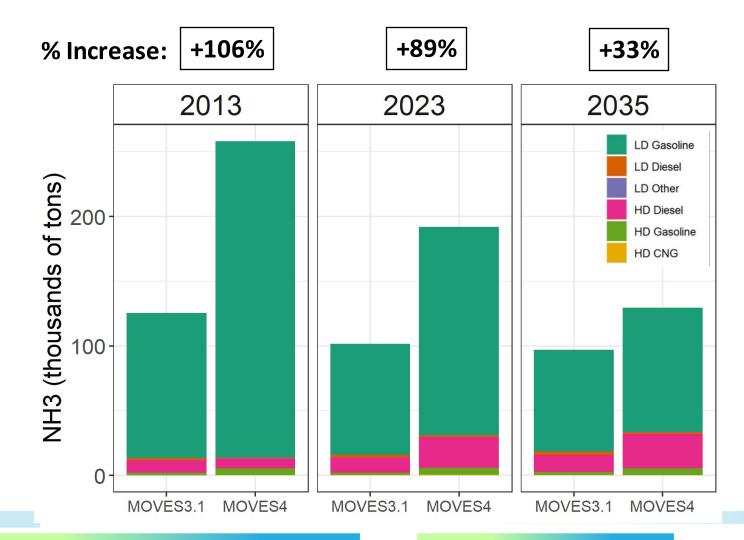
- The new emission rates capture the observed magnitude and trend.
 - MOVES3 rates are significantly lower across all MY.
- This dataset provided information to update NH₃ emission rates for MY1990-2018 light-duty vehicles.
 - Future MY rates are kept at 2018 levels.



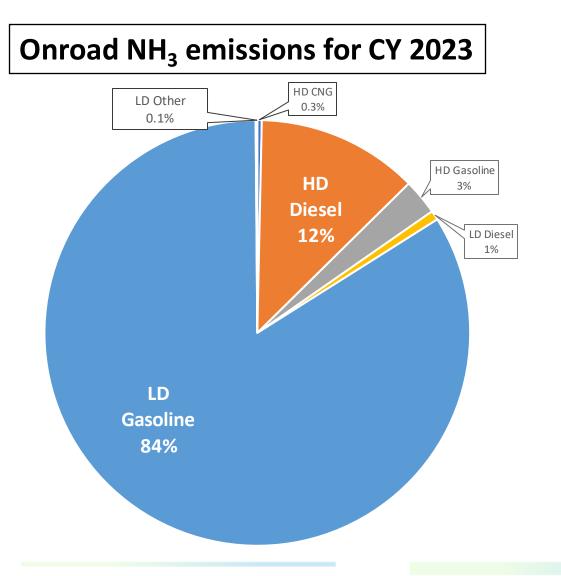
Updated Heavy Duty Emission Rates in MOVES4

- The new MOVES4 HD rates are lower than MOVES3 rates for <MY2010.
- For MY2010+, the new MOVES4 rates are considerably higher.
- MY2010-2018 rates applied for MY2019 and later.

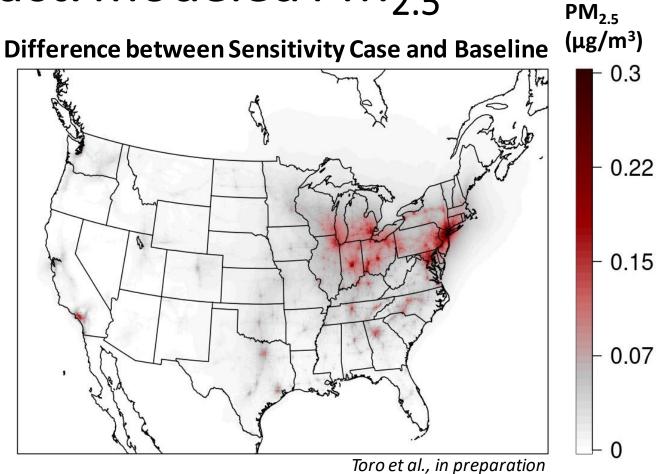
Distance-based NH₃ Emission Rates* for HD diesel vehicles


— MOVES3.1 — MOVES4

*rates shown for CY2023 for a nationally representative operating mode distribution


Impact on Onroad Emission Inventory (1/2)

- Onroad NH₃ emissions are estimated to increase roughly by a factor of 2 for historical and near-term years.
 - Consistent with low end of range suggested by literature.
- Impact is more important for past years and, as the fleet evolves, we see less impact in future years.


Impact on Onroad Emission Inventory (2/2)

- Emissions increase for both LD gasoline and HD diesel, but the split remains similar to previous inventories.
- LD gasoline vehicles dominate the NH₃ inventory.
 - Major inventory impact would be observed in urban centers.

Expected Air Quality Impact: modeled PM₂₅

- Explored sensitivity of modeled PM_{25} to increase in NH_3 emissions from onroad sources.
- Enhancements in annual PM_{2.5} values in the northeast region of up to 0.3 μ g m⁻³
 - Increase in PM_{2.5} is particularly important during winter season.

Co-authors:

Darrell Sonntag Brigham Young University

Guv Burke

US EPA Region 2

Jesse Bash, Ben Murphy

Karl Seltzer, Heather Simon US EPA Office of Research and Development US EPA Office of Air Quality Planning and Standards

Mark Shepherd **Environment and Climate Change Canada**

Karen Cady-Pereira Atmospheric and Environment Research

Summary

- MOVES4 incorporates updated emission rates for NH₃, based on roadside remote sensing measurements from thousands of lightduty gasoline vehicles and hundreds of heavy-duty diesel trucks.
- Onroad emission inventory of NH₃ is estimated to increase roughly by a factor of 2 in historical and near-term years, but less impact is expected in future years.
- Increase in NH_3 emissions results in enhancements in modeled $PM_{2.5}$ particularly in the urban areas of the northeast region during winter.

Thank you.

Disclaimer: The views expressed in this presentation are those of the author and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

> Contact Info: toro.claudia@epa.gov

Appendix

• Values from Preble et al. (2019) used for HD NH₃ emission rate update:

	Engine	NH ₃ (g/kg) fuel-	Number	Model year
Aftertreatment	Model	based emission	of	ranges used
	Year	rate	vehicles	in MOVES
No DPF	1965-2003	0.02 <u>+</u> 0.02	62	1960-2003
No DPF	2004-2006	0.00 <u>+</u> 0.01	24	2004-2006
DPF	2007-2009	0.00 <u>+</u> 0.01	181	2007-2009
DPF + SCR	2010-2018	0.18 <u>+</u> 0.07	547	2010-2060
Retrofit DPF	1994-2006	0.01 <u>+</u> 0.01	114	Not used

References

- Chen, Z.L. et al. Significant contributions of combustion-related sources to ammonia emissions. Nat Commun 13, 7710 (2022), https://doi.org/10.1038/s41467-022-35381-4
- Walters, W. W., et al: Quantifying the importance of vehicle ammonia emissions in an urban area of northeastern USA utilizing nitrogen isotopes, Atmos. Chem. Phys., 22, 13431–13448, (2022), <u>https://doi.org/10.5194/acp-22-13431-2022</u>
- Sun K. et al. Vehicle Emissions as an Important Urban Ammonia Source in the United States and China, Environmental Science & Technology 51 (4), 2472-2481, (2017), <u>https://doi.org/10.1021/acs.est.6b02805</u>
- Farren, N.J. et al. Underestimated ammonia emissions from road vehicles. Environmental Science & Technology, 54 (24), 15689–15697, (2020), <u>https://doi.org/10.1021/acs.est.0c05839</u>
- Cao H. et al., COVID-19 Lockdowns Afford the First Satellite-Based Confirmation That Vehicles Are an Under-recognized Source of Urban NH3 Pollution in Los Angeles, Environmental Science & Technology Letters (2022) 9 (1), 3-9, <u>https://doi.org/10.1021/acs.estlett.1c00730</u>
- Fuel Efficiency Automobile Test Data Repository | University of Denver Research | Digital Commons @ DU, <u>https://digitalcommons.du.edu/feat/</u>
- Preble C. et al., Control Technology-Driven Changes to In-Use Heavy-Duty Diesel Truck Emissions of Nitrogenous Species and Related Environmental Impacts, Environmental Science & Technology 2019 53 (24), 14568-14576, <u>https://doi.org/10.1021/acs.est.9b04763</u>