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Motivation

= NH; : Animal manure, production, and Application of fertilizers
= Short lifetime of NH; (t = 0.5-5 days or less)

= Deposited to the surfaces near its source with relatively high dry deposition.

.00
.00
.00

10
01

= Ecosystem eutrophication
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. . . (ppbv)
= NH,* : Neutralization process of acid gases (H,S0,, HNO; and HCI) by |————p#
he surf PM,, . < 2.5um 758
NH; at the surface on PM . < 2.5 g0
= NH,HSO,, [NH,],SO, [NH,];H[SO,],, NH,NO;, NH,CI,,,, 350
= Role of degradation of visibility in the local area i%é
= Longer lifetime of NH,+ approximately 5~10 days é%ﬁ
= Ecosystem acidification from ammonium oxidation in the atmosphere “‘(*;;gg
= Sensitive spatiotemporal patterns by meteorology, events, and acid gases. .
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= Top-down vs.Bottom-up NH; emissions are quite different §:§§
.00
= Swine NH; emissions from lowa and NC relatively overestimated? igé
1.2
= Beef NH; emissions from Texas, Kentucky,and Nebraska are the main NH; in 3;28'
Central US 2. 00




DeepCTM-VAE

Applications with
Observations

Objectives

Bottom-up NH; Emissions Comparison against Top-down
NH; Emissions

Understand the differences and identify the solution to
enhance the bottom-up Inventory

Deep-Learning Chemical Transport Model (Decorder)

Development of DeepCTM (forward) based on the CMAQ
CONUS 2 simulation to understand the non-linear relationship
between emissions and air quality

Variational AutoEncoder (VAE) Applications with CrlIS
Remote-sensing Observations

Development of VAE (Backward) over the US.

Data Assimilation: Surface NH; concentrations based on the Crls
remote-sensing and monitoring observations.

Development of top-down NH; emissions inventory over the U.S.
and compare them against the bottom-up emissions (USEPA NEI)



DeepCTM: Deep-Learning CTM

Slow (Xing et al., ES&T, 2020)
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Meteorology, Concentrations, and Time)
* Computationally highly efficient (<2 minutes) to execute
DeepCTM once the training of DeepCTM is complete

UNet: capture the cross-space interaction
LSTM: capture the temporal variation



Performance of VAE-decoder (forward: emis->conc)
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NH3 changes (ppb)
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The Feature Impacts on NH; Concentrations

Monthly mean (2019)
All
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modulating each feature one-by-one

T2: -2K
others: -20%

NH; concentration is contributed by NH,
emissions (Enh3) and initial NH; condition (Inh3)

Met variables will modulate the NH3
concentration sensitivity to NH3 emissions
DeepCTM exhibits high efficiency in identifying
the dominant factor to photochemical formation



Variational AutoEncoder (VAE): Top-down Emissions

Function f: Emissions — Pollutants
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Variational AutoEncoder (VAE) (Xing et al., ES&T, 2022)
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Based on emission-concentration relationship from DeepCTM,
we can accurately estimate the differences of emissions

Because of the in-depth knowledge over variousimpactors
(emissions, meteorology, initial conc.), we can proportionally
correct the emissions only.



CrlS Fast Physical Retrieval (CFPR) Algorithm for NH;

(Shepard et al., 2020)

Spatial Spatial Temporal
Satellite Resolution | Coverage Coverage Retrieved Quantity Comments
(km?)

Cross-track Twice a day Profile level volume » Limited vertical resolution
Hs Infrared 14 (diameter) Global CriIS-SNPP @ mixing ratio values * Version 1.6
Sounder (CrlIS) ~13:30 (day) ~1:30 (night) (ppbv) » Shephard et al., ACPD, 2020
(2012-2038) CrIS-NOAA20@ * CFPR CrlS SNPP : May 2012 to May 2021
~14:25 (day) 2:25 (night) * CFPR CrIS NOAA : March 2019 to present

* CrlSis most sensitive to NH; between 950 and 700 mb (~0.5 to 3 km) with minimum 0.3 ppbv detectability
* Not equally sensitive in the vertical and varies from profile-to-profile
 Surface retrieved values are driven by sensitivity in the boundary layer

°* CFPR has been validated with U.S. AMoN (Ammonia Monitoring Network) and other ground-
based FTIR (Fourier Transform Infrared) spectroscopy observations to determine the errors
— AMoN: Crls ~15% higher with a good correlation of r ~ 0.8 and a slope of 1.02
— FTIR: Crls ~30% higher (SD~40%)
* Applications to data assimilations, data fusion and model-based emissions inversions for Confined
Animal Feeding Operation (CAFO) facilities located remotely.



NH; Crls CFPR Spatiotemporal Patterns

NOAA Satellites Surface NH; Measurements

SNPP NOAA20

/ Org mean: 2.42 Org mean: 3.45 \

Combined Interpolated

Org mean: 4.28 Sat mean: 6.66
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(Shepard et al., 2020)



2017 NEI NH; Emissions from Agricultural Sector

1e+02
1e+00

1e-02

Agricultural Sector: Fertilizer + Animals (Beef, Dairy, Swine, Broiler, Layers,Sheep, Horses, and Goats)
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CMAQ simulated VAE assimilated Satellite retrieved

CMAQ-sim mean: 0.67 NM-pred mean: 1.95 SAT-obs mean: 2.39
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NH3 Emission

NH3 Emission

NH; Emissions Comparison (2019)
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Important to utilize the spatial and temporal
coverages from the Crls NH;
Relatively underestimated NH; from Beef vs
overestimated NH; from Swine

* Indicating that the significant
differences over the Great Plains
and Southwest regions
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A significant amount of surface NH; concentrations changes by location and time/dates
Requires a better spatiotemporal representation of NH; from livestock wastes

DeepCTM/VAE performed well in capturing the spatial and temporal differences of NEI
Livestock Waste NH; against the observations

|dentified the sector-level (anima-specific) NH; differences for the calibrations of
animal-specific NEI Emissions from the Farm Emissions Model used in NEI development

Swine and Beef Cattle shows the lack of spatiotemporal representations

= Swine: Overestimations of NH; over the areas in lowa and NC (most swine-dense area)

= Beef: Underestimation of NH; over the areas in TX, KY, CO, NE, SD, ND, and MT, while the
overestimation occurred over CA.

= Regional farm management practices input to the FEM need an update to address this issue.
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