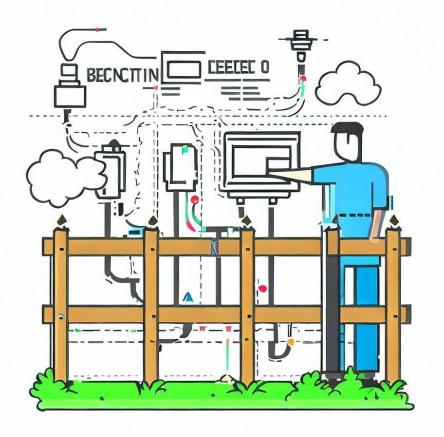
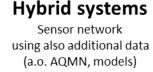


Quality Assurance for sensor based fenceline and near source monitoring


Rod Robinson, Nick Martin, David Butterfield, Neil Howes National Physical Laboratory

Outline

- Intro where are we going?
- Sensor QA stages of quality
 - Sensor performance
 - Network performance/ configuration
 - Operational QA
 - Output quality
- European and UK update
- Fenceline monitoring
- Are we there yet?


An AI generated illustration of "a sensor based fenceline pollution monitoring system". Perhaps the robots haven't taken over just yet.

Sensors -> networks

- For the purposes of this presentation
- Sensor
 - lower-cost continuous concentration measuring device
 - Generally an integrated system adding data collection, sampling power
 - Time resolution active / passive sampling

Integrated systems Sensor unit, database and dataportal, calibration factors visualisation

Sensors Different types Measuring unit

DIY building blocks sensor, Arduino, dataportal

Cloud

Purpose of fenceline monitoring

- Level and approach for QA will depend on the purpose of the fenceline network
- Safety alert long history
- Receptor monitoring (concentration)
- Emission detection location of source
 - Activate / focus leak detection
- Long term average emission reporting
- Time series mass emission
 - Time series -relate to

Elements of a sensor based fenceline system **NPL**

- Fenceline monitoring systems will include
 - Sensing elements
 - Concentration and additional (meteorological) measurements
 - Sampling configuration
 - Data collection
 - Analysis, modelling
 - QA STEP
 - Data output, visualisation
- Purpose
 - Event detection
 - Leak identification
 - Reporting

- Not only 'sensor' networks
- Fenceline systems can include
 - Sensor based networks
 - Distributed sampling
 - Open path optical systems
 - Camera based
 - Automated drone
 - Hybrid systems

Elements and aspects of quality

assurance/control for fenceline systems

- Defined performance requirements
 - DQOs
- Equipment qualification
 - Sensors
 - System performance assessment
 - Analysis / data product generation (emission rate, leak location)
- Site specific quality plan
 - Operating procedures
- In operandi performance evaluation (internal)
 - Configuration and installation checks
 - Calibration
 - Ongoing data checks
 - Data assessment
 - Ratification / expert judgement
- External QA/QC
 - Audits
 - Reference measurements
 - Validation of outputs (leak/emissions source confirmation)
 - Assessment of external data processing steps (cloud based)

Sensor performance validation

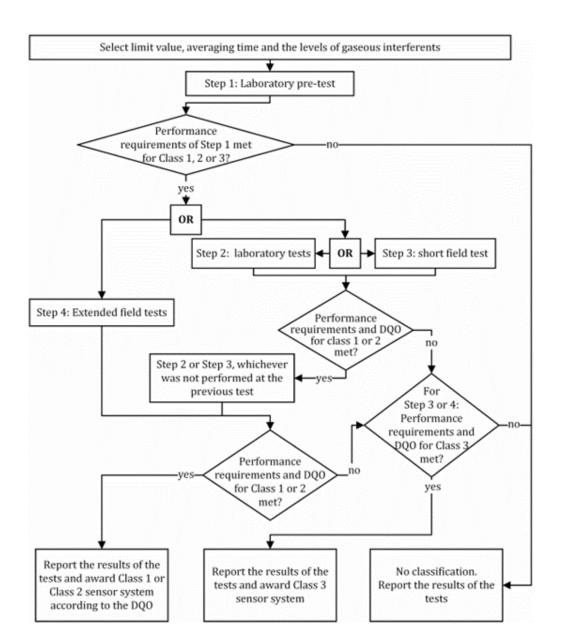
- The elements of a fenceline monitoring system can be evaluated
 - traditionally this has been the approach used
- This will provide information on the individual sensor ability to measure concentration
- The challenge is to extend this to the performance of the network

European standardisation of air quality sensors

D CEN/TS 17660-1:2021 BSI Standards Publication D(2) Air quality — Performance evaluation of air quality sensor systems Part 1: Gaseous pollutants in ambient air

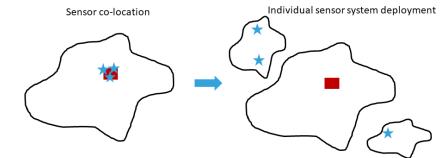
bsi.

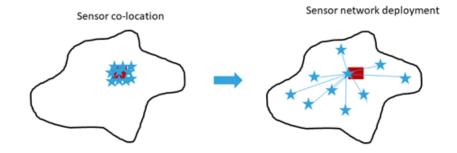
- TC264/WG42 Air quality Performance evaluation of air quality sensors
- Part 1 Gaseous pollutants in ambient air (NO2, NO, CO, SO, O3, benzene, CO2)
- TS ready and available: CEN/TS 17660-1
- Waiting validation funding
- Part 2 Particulate Matter in ambient air (PM10, PM2.5)
- In preparation
- Expected to be ready for vote June 2023
- Also a UK PAS (Publicly Available Specification) being developed
 - PAS 4023, Air quality monitors Selection, deployment, and quality control of mountable, static air quality monitors in ambient air Code of practice
 - Currently at draft stage


HAGLER, G et al. Air Quality Sensors and Data Adjustment Algorithms: When is it no longer a measurement? Environ Sci Technol 2018 52 10 pp 5530-5531 SCHNEIDER,P. et al. Toward a Unified Terminology of Processing Levels for Low Cost Air Quality Sensors Environ Sci Technol 2019.53 pp 8485-8487

WG42 sensor testing

- Sensors are classified as
 - Class 1,2,3 or unclassified
 - Depending on pre-tests
 - Performance tests are then related to the classification (DQOs)




Sensor networks

Informative Annex A – co-location, deployment and management of a network of sensor systems

- TS 176601 is applicable to 'individual sensor systems'
- Future work
 - There is a need for guidelines and a common approach of calibration methods for sensor networks and how the data can be applied/used
 - and/or techniques combining sensor data and modelled data, such as data fusion
- Annex to TS :
- Informative annex with guidance on network performance
- Intention is to prepare separate document covering this

Other European work standards

- BS EN 17628:2022
- Fugitive and diffuse emissions of common concern to industry sectors. Standard method to determine diffuse emissions of volatile organic compounds into the atmosphere
- Recent standard for VOC emissions campaign based but does include performance requirements for RDM
- Intention is to cover continuous monitoring in future standard

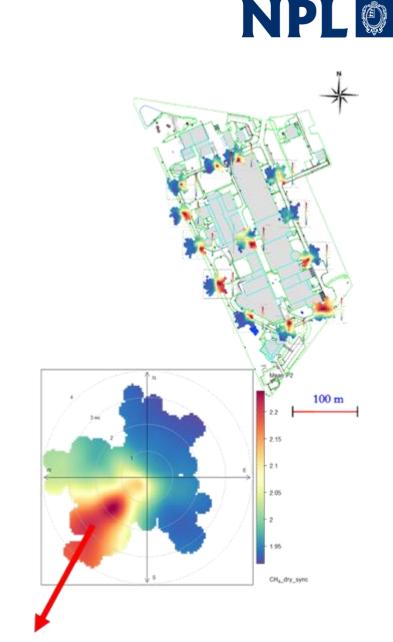
- BS EN 15445:2008 Fugitive and diffuse emissions of common concern to industry sectors. Qualification of fugitive dust sources by reverse dispersion modelling
- Older standard but does cover network
 deployment
- Reverse dispersion modelling based on EPA method

Performance standard for systems

- The challenge is to evaluate the performance of a system
 - Data inputs sensor and other data sources
 - Data processing step
 - Procedures
 - Configuration
 - Site specific issues
 - Changes to system over time
 - Expert input
- Sensor specific issues
 - Inter sensor issues
 - Sensor aging
 - Sensor recovery/poisoning
- Machine Learning / AI
 - What is the 'system'
 - What is being validated

- NPL are working on a performance standard for continuous monitoring systems – not specific to sensor based systems but – it does address many of these network/configuration issues
- Functional element model of sites
 - Allows sub site monitoring
 - Characterisation of emission sources
 - Spatial and temporal characteristics
 - Tailored emission measurement to source types
- Performance characteristics generalised for different system types
- Defined operating methods
- Configuration
- Definition of outputs

In operandi QA of networks

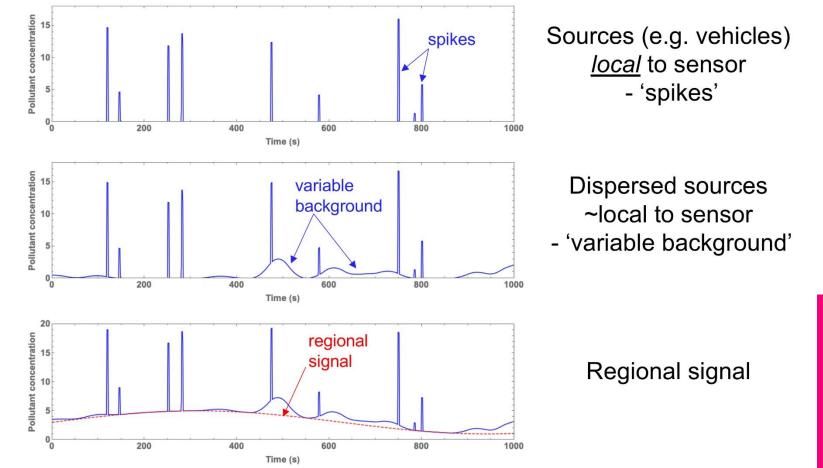

- Installation checks
- Internal audit checks
 - Reference measurements
 - Calibration
 - Data reviews / ratification
- External audits
 - Equipment audits
 - Data audits
- Reference measurements
 - Periodic assessment c.f continuous emission monitoring
- Verification of emissions
 - Source identification and emission quantification

• QA Plans

- Critical to design QA into the methods for fenceline monitoring
- Specific DQOs
- QA not a retrofit
- Cover all aspects not just sensor performance
- Data products not just concentration
- Uncertainty determined quantified result

Hybrid system

- Use of low cost sensors to enhance continuous monitoring system
 - Distributed sampling
- Co-located sensors can be periodically calibrated
 - Removes drift and effect of interferences/ambient conditions
- Increase temporal resolution
- Spatial resolution (infilling)
- Extend coverage


Red indicates elevated methane levels

- Combined response is composed of different source
 - signatures

UNIVERSITY OF CAMBRIDGE

Conclusions and next steps

- There is a recognition of the role of sensor based systems
- Commercial and research systems are being developed and deployed
- There is a need for
 - Harmonised approach to describing the performance of such systems
 Terminology, performance characteristics
 - Approaches to specify and describe network configuration, internal QA and data handling machine learning, AI, data fusion, role of experts
 - Standards/protocols for sensor network/system QA
- Challenges
 - AI based systems

National Physical Laboratory

npl.co.uk

© NPL Management Limited, 2023