

Data fusion applications in the Air Quality Modeling Group

Joey Huang, Barron Henderson, Janica Gordon, Heather Simon, Tyler Fox EPA/OAQPS/AQAD/AQMG <u>Huang.Jiaoyan@epa.gov</u> <u>Henderson.Barron@epa.gov</u> USEPA Air Sensor QA Workshop July 2023, Durham, NC

Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

Outline

- Why is data fusion important?
- How does the Air Quality Modeling Group use data fusion?
 - NAAQS Review Components
 - Retrospective Analysis
 - Future Year Projections
- Fusing Models and Observations for AirNow
 - Residual Kriging
 - EPA Traditional Approaches and Possibilities
- Summary

Why data fusion?

- Monitors tell us what is, but are limited in space, time, and composition.
- Models can provide complete coverage, but are limited by our ability to replicate processes in the atmosphere.

NAAQS Review Components and Data Fusion

Voronoi Neighbor Averaging: VNA Enhanced Voronoi Averaging: eVNA

ISA: Integrated Science Assessment	REA: Health and Welfare Risk and Exposure Assessments	PA: Policy Assessment	RIA: Regulatory Impact Assessment
 Assesses the most policy relevant scientific evidence from health studies and draws weight-of-evidence conclusions for causality determinations As part of the review of the overall body of scientific evidence, the ISA identifies at-risk populations and draws conclusions based on strength of evidence for health effects for the entire population, including at-risk groups. 	 current estimates of air quality throughout the U.S. Health REA assesses population exposures and health risks associated with recent ambient concentrations and with concentrations adjusted to simulate just meeting the current standard and potential alternative standards Welfare REA assesses vegetation and ecosystem exposures and risks associated with recent ambient concentrations adjusted to simulate just meeting the current standard and potential alternative standards. 	 PA presents and assesses the range of policy options that could be supported by the available scientific evidence and exposure/risk information. The PA brings together the available scientific evidence, as assessed in the ISA, and exposure/risk information from the REA 	 Future model projections that account for projected air quality changes throughout the US Assesses the costs and benefits of attaining proposed alternative standard levels. Benefits derived from epi-based health improvements.
• Data fusion included in assessed literature	 VNA used for urban scale hourly fused surfaces for health assessments Downscaler used for national seasonal fused surfaces for health assessment VNA used for national seasonal fused surfaces for welfare assessment 		 eVNA used for national seasonal fused surfaces

Retrospective Analysis: CDC Phase Project

- For over a decade, EPA has developed an annual platform to characterize national surfaces of O₃ and PM_{2.5} in collaboration with the CDC
 - CMAQ model output and measurement data are combined to create a fused surface that has better spatial coverage than monitors alone and less uncertainty than model data alone
 - Data are intended to help explore the association between environmental exposures and health impacts
 - Ozone and PM2.5 fused fields and associated documentation are currently available for 2002-2019 at <u>https://www.epa.gov/hesc/rsig-related-downloadable-data-files#faqsd</u>

Community Multiscale Air Quality Modeling: CMAQ Air Quality System: AQS Centers for Disease Control: CDC

Future Year Projections: Exposure Disparities for PM2.5 for 2011 and 2028

<u>Kelly et al. (2021)</u> Environmental Research (https://doi.org/10.1016/j.envres.2020.110432)

*Exposure gap is defined here as the difference in populationweighted concentration between the most and least exposed group (but could be defined differently, e.g., gap between low-income non-white and high-income white)

Exposure Gap^{*} by State Decreases from 2011

Data Fusion for AirNow

- AirNow provides a map using inverse distance weighting* of mostly regulatory grade monitors.
- PurpleAir sensors have dramatically increased in prevalence
 - Widely increased the spatial coverage of monitored particulate matter.
 - Provides a measure where regulatory monitors are not.
- South Coast Air Quality Management District demonstrated that integrating PurpleAir improved their air quality estimates compared to inverse distance weighting.

*10 nearest neighbors and weight ~ d^{-5}

"South Coast" better than interpolation

- Schulte et al showed Residual Kriging had better performance than inverse distance interpolation or surrogate monitor.
- Residual Kriging is a way of interpolating model bias and then removing that bias from model.
 - Model: NOAA Air Quality Forecasts Capabilities
 - CMAQ initialized twice daily informed by EPA inventories
 - Twice a day hourly ozone and PM25 predictions
 - Bias_n = Model_n Observation_n
 - Federal Equivalent Method hourly Ozone and PM25
 - PurpleAir averaged to hourly outputs
 - Corrected to FEM and Averaged to 5km grids
 - Aggregate is a "pseudo-station"
 - Y = Model Krig(Bias_n)
 - Simple Kriging requires a semi-variogram
 - Variogram corrected for PurpleAir error correlation.

Schulte, N., Li, X., Ghosh, J. K., Fine, P. M., & Epstein, S. A. (2020). https://doi.org/10.1088/1748-9326/abb62b

EPA Traditional Approaches and Possibilities

- Universal Kriging is a good option, but are there tools we use at EPA that might be better?
- AirNow: $Y = sum(O_n * w_n)$
 - n in 10 nearest neighbors; $w_n = d^{-5}$
 - Super fast and super simple.
- Downscaler
 - Hierarchical Bayesian Model (Berrocal et al. 2010, 2012) used for CDC PHASE project
 - Slower and complex too slow for this application
- eVNA: Y = M * sum(O_n / M_n * w_n)
 - Unmonitored Area Analysis and RIA
 - Interpolates Voronoi neighbors' multiplicative bias correction with weights = d⁻²
 - Medium complexity, but very fast.
- $aVNA = M + sum((O_n M_n) * w_n)$
 - Simple reformulation of eVNA to apply additive bias (more like Residual Kriging)
 - Medium complexity, but very fast

Should we apply eVNA or aVNA to pooled PurpleAir and AirNow obs?

Voronoi Diagram

Figure courtesy of: Brian Timin

Separate fusion and estimate blending

- Not pooling data because of differential quality.
 - Bi et al. (2020): PurpleAir monitors down-weighted (0.23x) in a Random Forest model to preserve model performance.
 - Pooling PurpleAir with FEMs would ignore this.
- Ensemble Blending of NOAA and both fusions ($Y_{\text{PA}}, Y_{\text{AN}})$
 - $Y = \beta(\alpha_{PA}Y_{PA} + \alpha_{AN}Y_{AN}) + (1 \beta) * Y_{NAQFC}$
 - $\alpha_{PA} = 0.25 d_{PA}^{-2} / (0.25 d_{PA}^{-2} + d_{AN}^{-2})$
 - $\alpha_{AN} = d_{AN}^{-2} / (0.25 d_{PA}^{-2} + d_{AN}^{-2})$
 - β = see right figure
- National-scale annual cross-validation results show:
 - AirNow only or PurpleAir each marginally outperforms interpolation.
 - Combining AirNow and PurpleAir
 - Overall, quite good.
 - Improves root mean square error (very good)
 - Reduces variance compared to observations. (*less good*)

Summary and next steps

- Data fusion has capability to present air quality spatial variation between real atmosphere and modeling results which is important for regulatory review.
- Monitors, satellites, and models with data fusion tool can provide detailed air quality for environmental justice analysis.
- aVNA with AirNow and PurpleAir data has the best performance
 - Continue internal review
 - Anticipate a limited access roll-out for review by AirNow partners
 - Potentially roll-out to broader community

Appendix: Photochemical Modeling in the Risk and Exposure Assessment

- The national risk assessment requires a spatial field of pollutant concentrations covering the entire country
 - Ozone: seasonal average of 8-hr max, 8-hr block and 1-hr max; W126
 - PM2.5: annual average
- Fused fields created using enhanced Voronoi neighbor averaging (eVNA)
 - VNA: interpolation technique which uses inverse-distance-weighted averaging: monitor data

$$Species_{E, baseline} = \sum_{i=1}^{n} Weight_{i} \cdot Monitor_{i}$$

- eVNA: supplements VNA with model data to adjust concentrations between monitors.
 - VNA concentrations are multiplied by the ratio of the modeled concentrations at the grid cell divided by the weighted average of the model concentration at the nearest neighbor monitor locations
 - Modeled spatial gradients are preserved
 - This ratio = 1 at the location of the monitor

$$Species_{E, baseline} = \sum_{i=1}^{n} Weight_{i} \cdot Monitor_{i} \cdot \frac{Model_{E, baseline}}{Model_{i, baseline}}$$

Figure courtesy of: Brian Timin

Appendix: Future Year Projections: Exposure Disparities for PM2.5 for 2011 and 2028

Appendix: Creating spatial surfaces in the RIA

Appendix: REA Analyses that Use CMAQ-HDDM Results

- Exposure Assessment and Clinical-based Risk Assessment
 - Ozone concentration inputs: **5 years of hourly spatial surfaces** (census tract resolution) for 15 urban areas created by interpolating monitor values

• Outputs:

APEX Mode

BenMAP

- Exposure Assessment: frequency of various populations experiencing exposures above benchmark levels of concern: 80, 70, 60 ppb
- Clinical-based Risk Assessment: number of people who experience lung function decrements > 10%, 15%, 20%
- Health outcomes most affected by exposure to "high" ozone concentrations

• Epidemiology-based Risk Assessment

- Ozone concentration inputs:
 - Urban area analysis: daily time series of 8-hr max for area-wide average concentration ("composite monitor") in each city
 - National analysis (current conditions only): 3 national spatial surfaces of seasonal mean O₃
- Outputs: ozone-related mortality, hospital admissions etc.
- Uses linear, no-threshold C-R function, so all incremental changes in ozone impact estimates of total risk identically, regardless of the starting level of ozone
- Health outcomes most affected by seasonal mean of area-wide average ozone