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What is machine learning (ML)? Some definitions
y = f(x) C
Supervised
Target Mapping
function function Unsupervised

Parametric Non-parametric

Task-driven

Data-driven



Why are these appealing tools for gas sensor calibration?

Sensor operating principle: electrochemical or metal oxide most popular
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Both types can have varying selectivity — i.e., they might respond to more pollutants
than just the target analyte

Chemical reactions also influenced by environmental parameters like temperature and
relative humidity

Closed form models of these various effects difficult to capture — effects can be non-
linear. Good candidate for machine learning models



Before you start building a machine learning model...

Sampling: Aim to collect high quality data that represents the target sampling domain as
closely as possible (in pollutant space and meteorological parameters such as T, RH) s

Pre-process and clean your data: do some QA/QC, remove outliers, determine how you
will handle missing values etc. Many algorithms also recommend scaling your data on a 0-1
scale.
* Missing values: for small gaps, you can use tools like a Kalman filter to impute
missing values if you want to investigate time-trends. You might also omit whole
periods if a threshold of data is missing (e.g., >25%)

External validation: Set aside some data for model validation that is completely external to

model building — this is a pure testing data set. Many folks use an 80:20 split



Popular models part 1: random forest

Bootstrap data into sub-samples
« #trees (M) user specified
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Image source: https://www.kdnuggets.com/2017/10/random-forests-explained.html



Popular models part 2: neural networks

«  Slightly more complicated to explain
+ Between each node in each layer, a weight and bias [gBc

input hidden  output factor are fit to a user-specified activation function 5’@3
layer layer layer
f(x) = <ex n 1) OR f(x) = max(0,x) OR f(x) = log(1 + exp(x))

«  Weights and biases to fit x are estimated using
backpropagation from training data, essentially by
minimizing the residuals between the true data and the
output from the neural network after initializing them with
guesses

X = input X weight + bias

« Initial guess for weights is normally randomly selected
from normal distribution, initial guess for bias normally O

https://commons.wikimedia.org/w/index.php?curid=5084582



Hyper-parameters and tuning your models

A hyper-parameter is an external value that affects how the model “learns” or is built
There are different approaches for scanning range of possible hyperparameters

Choosing optimal hyperparameter could be based on a target function like root mean
square error minimization, etc.

Some hyperparameters include:

Random Forest Neural Networks

# trees in your “forest” # of hidden layers

My # nodes per hidden layer
Tree complexity Learning rate

Sampling scheme Batch size

Splitting rule Activation function
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Tools to assess importance of predictors

There are a few approaches to this, but | will share the one | think is most interpretable:
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After your models are built, you randomly shuffle (or permutate) your input variables
one at a time

If a variable is important, this process will result in less accurate predictions, since the
resulting data no longer corresponds to anything observed in the real world

The more important a variable, the more error we will see, since we are breaking a
strong relationship that our model learned during training



Example of permutation importance
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we permute the CO sensor signal — this suggests a
relatively simple model: the CO sensor is an
important input in calibrated CO measurements

% Increase in MSE if Model Variable is Permuted

In the NO, model, RH is actually the most important
variable, but not by a huge margin 0
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More holistically, if you are building a ML model, consider that they are
functions of their environment — they will likely not transfer well if the
deployment conditions are different from the calibration conditions

Let’s return to the permutation error plot for CO, as an example — this
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calibration was done near vehicle emissions — thus it leverages the
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more accurate vehicle emission sensor signals to correct CO,, — this
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model would likely not work very well indoors!
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Best practices: highlights

ML models can be powerful tools to help with gas sensor calibration — they are especially
appealing due to the operating principles of many popular gas sensors, just keep in mind:
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« Evaluate your model: hyperparameters, interpreting variable importance etc. can all tell
you something about the underlying nature of the calibration model

* Space is the place: keep in mind that your calibration models will likely not work well in new
spaces/places — especially for pollutants with more complex models (e.g., the CO vs. CO,
example). You might risk under-estimating a pollutant or mis-representing risk if applied to
the wrong context. Use common sense — do the numbers make sense?

* Routinely reassess: A calibration model isn’t static — sensors degrade or conditions

change. Consider tracking this and rebuilding when performance dips below targets
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Resources

Websites
« US EPA Air Sensor Performance Targets and Testing Protocols: uB
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https://www.epa.gov/air-sensor-toolbox/air-sensor-performance-targets-and-testing-
protocols

« StatQuest: https://statquest.org/

(their YouTube videos are some of the easiest to understand that | have encountered)

Textbooks:

* Hands-On Machine Learning with R, Bradley Boehmke & Brandon Greenwell

R for Data Science, Hadley Wickham & Garrett Grolemund
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https://www.epa.gov/air-sensor-toolbox/air-sensor-performance-targets-and-testing-protocols
https://www.epa.gov/air-sensor-toolbox/air-sensor-performance-targets-and-testing-protocols
https://statquest.org/

Thank you!

Questions for later? Email me anytime at
nzimmerman@mech.ubc.ca

This research was undertaken, in part, thanks to funding from the
Canada Research Chairs program.
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