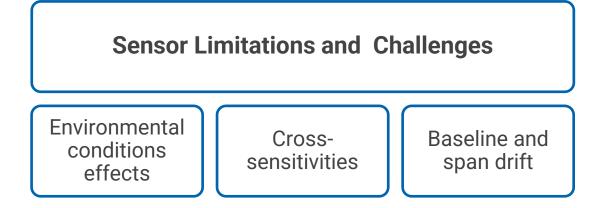


Considerations when deploying an air quality network


Edurne Ibarrola Chief Scientific Officer – Kunak Technologies

27th July 2023

www.kunakair.com

Take into account:

- 1. What is the performance of the sensor system?
- 2. What are the general features of the Air Quality Sensor System?
- 3. Which is the maintenance I need to carry out once they are deployed in field?

Lewis, A., Peltier, W. R., & von Schneidemesser, E. (2018). Low-cost sensors for the measurement of atmospheric composition: overview of topic and future applications.

Separation United States Environmental Protection Agency

Target Pollutant

Measurement Range

Detection Limit

Sensor Accuracy

Response Time

Calibration and data correction

Clements, A., R. Duvall, D. Greene, AND T. Dye. The Enhanced Air Sensor Guidebook. U.S. Environmental Protection Agency, Washington, DC, 2022.

Making the invisible visible:

A guide for mapping hyperlocal air pollution to drive clean air action

SELECTING MONITORING EQUIPMENT

The monitor sensors you choose to add to your network will depend on:

EDF

- the pollutant(s) you want to measure
- the data quality
- the budget you can devote to purchase and maintain the equipment.

1. Performance of the Air Quality Sensor Systems

Target Pollutant	llutant Sources		Typical Concentration
	СО	Fuel combustion in cars or trucks, small engines, stoves,	0 to 0.3 ppm
Measurement Range	CO ₂	Deforestation and the burning of fossil fuels	350 to 600 ppm
	NO	Automotive engines and the burning of coal, oil, diesel fuel, and natural gas	0 to 60 ppb
Detection Limit	NO ₂	Combustion of fossil fuels	0 to 50 ppb
	03	The result of the atmospheric reaction of a number of precursor pollutants	0 to 125 ppb
Response Time	H ₂ S	Natural origin by the organic matter decomposition. Anthropically, in industrial activities (pulp manufacturing, oil refining, WWTP, and textile industry)	0 to 20 ppm
Clements, A., R. Duvall, D. Greene, AND T. Dye. The Enhanced Air Sensor Guidebook. U.S. Environmental Protection Agency, Washington, DC, 2022.	SO ₂	Combustion of coal or fossil fuels, in metallurgy and volcanic eruptions	0 to 100 ppb
	NH ₃	Agriculture, livestock, and, waste and water management (slurries, composting and landfills).	0 to 3 ppm
	VOCs	Fuel combustion (wood, coal, gasoline etc.)	0 to 5 ppm
https://www.kunakair.com/doc/External/ Kunak_Smart_Environment_EN_low.pdf	PM	Road transport and industrial combustion plants and processes, commercial and residential combustion and power plants.	0 to 100 µg/m3 5

1. Performance of the Air Quality Sensor Systems

Sensor Accuracy

USES CASES - Belgium

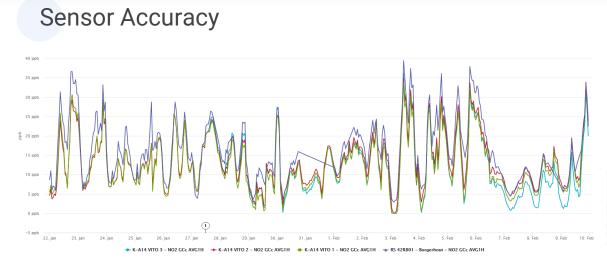
Devices: 3 Kunak AIR stations

Measurement parameters:

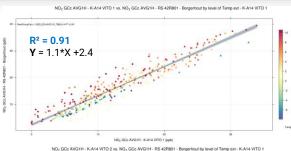
- NO₂, NO, O₃, CO and particles (PM1, PM2.5 and PM10)
- Temperature, relative humidity and atmospheric pressure.

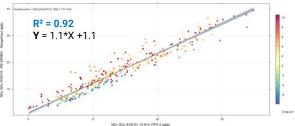
CHALLENGES

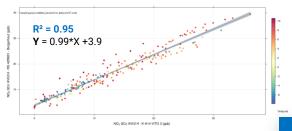
- Humidity >80%
- Electrical network not fully accessible
- Deployment for 1 year
- 3 different locations


SOLUTIONS

- Kunak temp/RH correction algorithm
- Kunak calibration (NOT Machine Learning based) – baseline adjustment from season to season.
- Autonomy through solar panel

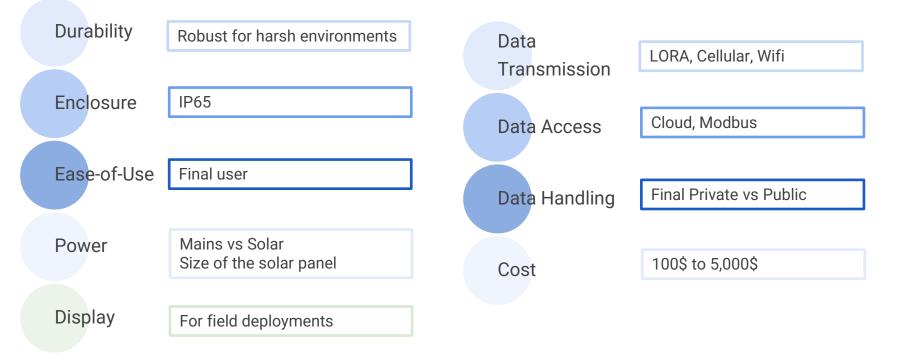

- 1. Antwerp
- 2. Kampenhout
- 3. Saint Niklaas


1. Performance of the Air Quality Sensor Systems


	R²	Mean Absolute Error (ppb)	U(exp) (<25%)
#1	0.91	3.62	17.13%
#2	0.92	2.81	5.99%
#3	0.95	3.80	9.99%

U(exp): Data Quality Objetive expressed as the Expanded Uncertainity in the Limit Value

NO2 GCc AVG1H - K-A14 VITO 3 vs. NO2 GCc AVG1H - RS 42R801 - Borgerhout by level of Temp ext - K-A14 VITO 1


Take into account:

- 1. What is the performance of the sensor system?
- 2. What are the general features of the Air Quality Sensor System?
- 3. Which is the maintenance I need to carry out once they are deployed in field?

2. General features of Air Quality Sensor Systems

Clements, A., R. Duvall, D. Greene, AND T. Dye. The Enhanced Air Sensor Guidebook. U.S. Environmental Protection Agency, Washington, DC, 2022.

Take into account:

- 1. What is the performance of the sensor system?
- 2. What are the general features of the Air Quality Sensor System?
- 3. Which is the maintenance I need to carry out once they are deployed in field?

Short reminder....

Lewis, A., Peltier, W. R., & von Schneidemesser, E. (2018). Low-cost sensors for the measurement of atmospheric composition: overview of topic and future applications.

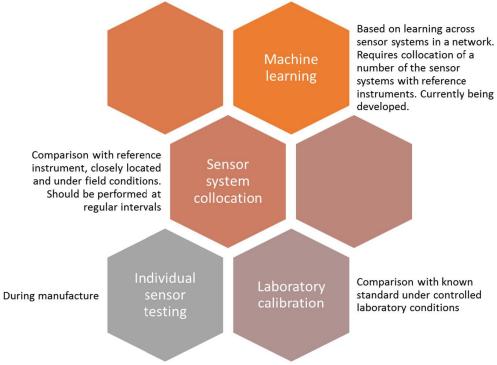
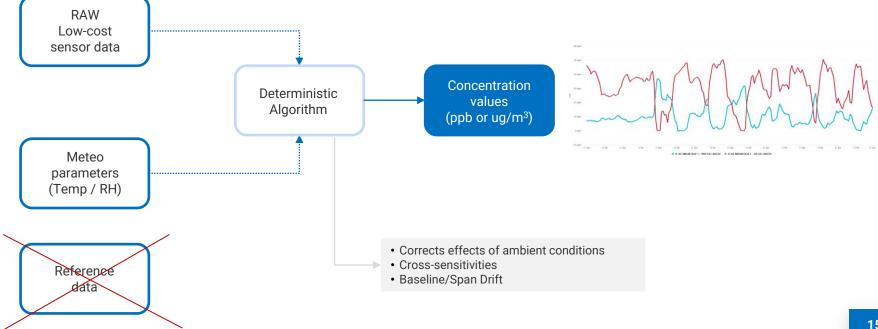
Correct installation and **maintenance** to ensure the proper performance of the devices and the quality of the data.

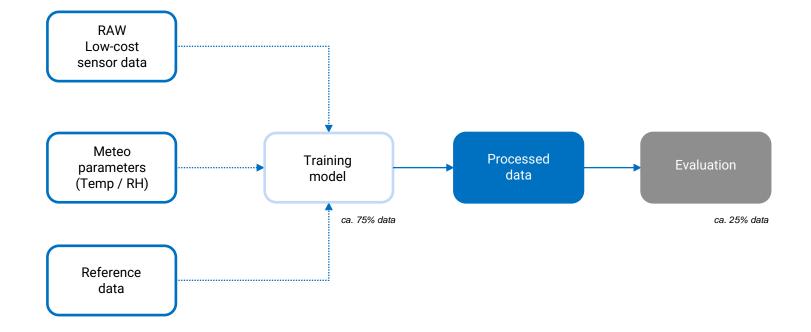
Quality Assurance (QA) - appropriate calibration ensures that data monitored are robust and accurate.

Quality Control (QC) - monitoring the long-term performance to ensure it **remains calibrated** and **help notify the user** when it needs to be corrected, removed or re-calibrated.

Snyder et al., 2013 "Data of poor of unknown quality is less useful than no data since it can lead to wrong decisions".

Calibration and Corrections


Fig. 2. Alternative methods available for calibration of low-cost sensor systems.

Ripoll, Anna, et al. "Testing the performance of sensors for ozone pollution monitoring in a citizen science approach." Science of the total environment 651 (2019): 1166-1179.

Calibration and Corrections: Deterministic Algorithms

Calibration and Corrections: Machine Learning

- Visualize the operation of the equipment and the data obtained → to monitor the health of the network and the status of the devices.
- **Detect errors and anomalies** in the devices and data **immediately**, consult them, and invalidate the data if needed.
- Detect that the gas and particle sensors need calibration and allow the calibration remotely.
- Availability of a validation tool for validating and invalidating the data remotely, to have reliable data for advanced analysis.
- Availability of raw data (non-processed data) and flags (Temporal, Valid/Invalid, Corrected) to assure traceability.
- A Computer-based Maintenance Management System → to facilitate network maintenance.
 - maintenance tasks
 - uploading of images and documents
 - access to configuration history, logbook, etc.

CONSIDERATIONS - AQ NETWORK

Devices: 10 Kunak AIR Pro stations + sound level meters + information screens

Measurement parameters:

- SO₂,NO_x, O₃,CO and particles (PM1, PM2.5 and PM10)
- Noise level.
- Temperature, relative humidity and atmospheric pressure.
- Wind speed and direction.

CHALLENGES

- AQ data diffusion to citizens
- Civil engineering work. Poles installation.
- Public electrical network spots
- Lack of concern about the O&M of the network
- Public tender fixed price

SOLUTIONS

- AQ data accessible from web portal and screens.
- National Project
- Powered by public electric bikes chargers
- Operation and Maintenance Service in remote
- Price not adaptable for improvements

CONSIDERATIONS - AQ NETWORK

Devices: 5 Kunak AIR A14 stations

Measurement parameters:

- NO₂, O₃ and particles (PM1, PM2.5 and PM10)
- Temperature, relative humidity and atmospheric pressure.
- Wind speed and direction.

CHALLENGES

- Not Official Reference
 Stations
- High temperature and humidity conditions
- Low budget

SOLUTIONS

- Factory calibration against reference standards
- Remote baseline and sensitivity correction
- Kunak temp/RH correction
 algorithm
- Automatic maintenance of the network (not technician hours)

United Nations Environment Programme When developing an air quality sensor-system, must be considered → the climatic conditions the facilities when installing the sensors

possibilities of calibration & maintenance of the sensor system.

 The air quality sensor system must have a well-known QA&QC procedure → the temperature and humidity effects, well corrected, independently of the final location. the sensor-system proper installation, maintenance and calibration to provide reliable and accurate air quality data effortless.

Air quality platform user friendly that allows a proper maintenance of the network

CONSIDERATIONS WHEN DEPLOYING AN AIR QUALITY NETWORK

Edurne Ibarrola – Chief Scientific Officer

eibarrola@kunak.es

Final