

Quality Assurance for Gas & PM Sensors Networks

2023 Air Sensors Quality Assurance Workshop Section: QA for specific gas and PM sensor applications continued

Brandon Feenstra, Ph.D. QA Manager, South Coast AQMD RTP, NC 07/27/23

QA Objective = Data Usefulness and Timeliness

- Obtain data of known quality
 - Calibrated data in real-time
 - Validated in near-real-time with appropriate QC checks
- Obtain data fit for purpose
 - Displayed data filter for QC checks.

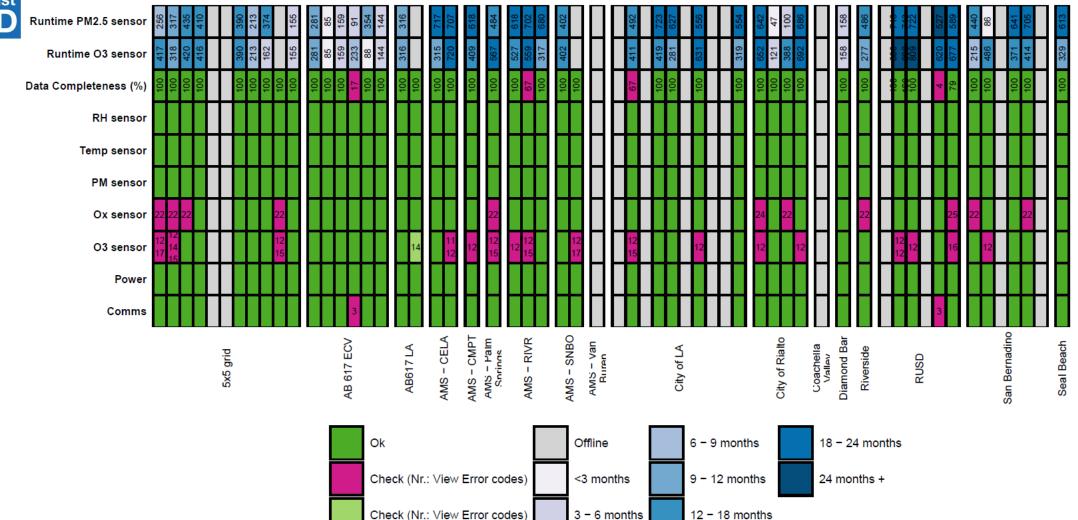
What have we been talking about so far? How to apply the QA lifecycle to sensor data

Data Collection Develop QA Documents Systems & **Corrective Action Performance Audits** Improvements

Presentation Focus

- The Do's and Check's of Sensor Networks
 - Importance of proper siting and collecting meta data
 - Importance of tracking sensor health to manage sensor maintenance
 - Importance of choosing a calibration approach
 - Importance of developing QC metrics
 - Importance of auto alerting and auto flagging of data for real-time data displays
- Upcoming sensor network QA approaches
 - Sensor network evaluations
 - QA verifications

Know your locations and obtain meta data



Recommendations:

- Locate sensors at breathing height or above and away from obstructions
- Verify sensor installations with collecting meta data and pictures via surveys
- Know your surroundings and annotate accordingly for data analysis
- Example survey: <u>www.aqmd.gov/aq-spec/special-projects/star-grant</u>

Device Management - Sensor Health Dashboard

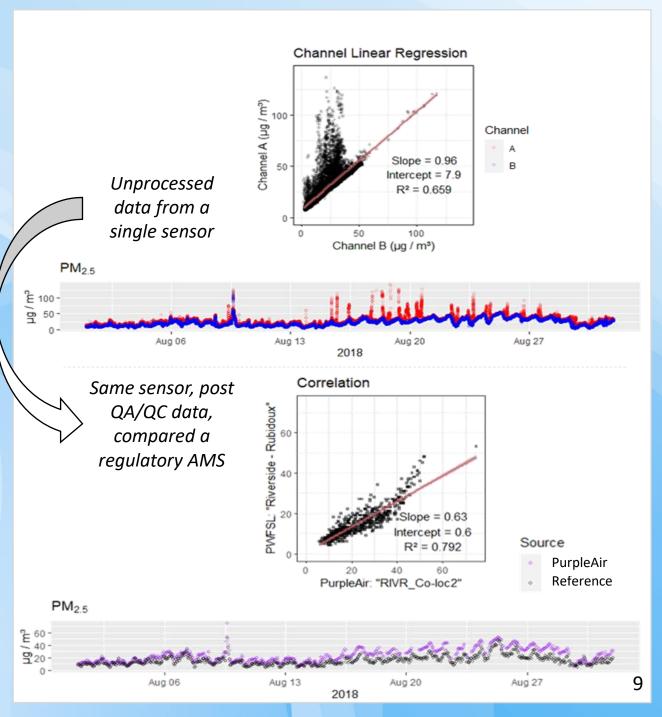
Develop Quality Control Rules for Data

Sensor-specific

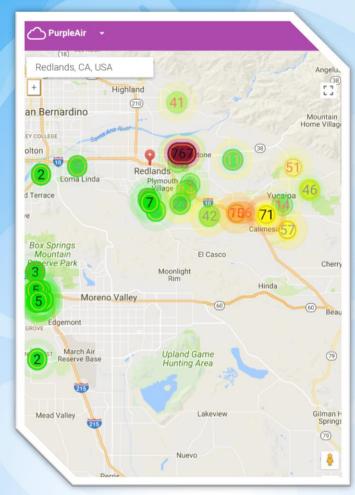
- Manufacturer-designated bounds
- Environmental operating limits (temperature and humidity)
- Unique features that can be leveraged
- Common failure modes (e.g., "sticky values" or flatlining)
- Behavior that may indicate a failure/drift or an actual air quality event, such as wildfires (e.g., extended elevated readings)

Pollutant-specific

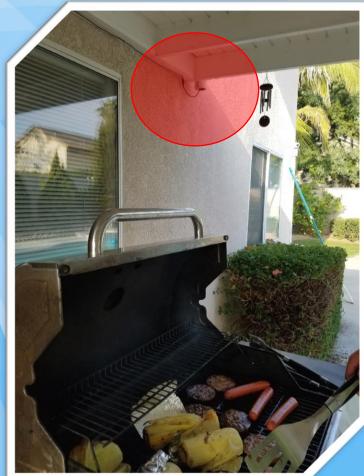
- Typical ranges
- Typical trends (e.g., diurnal trends)
- Actions
 - Invalidate –malfunctions
 - Flag data indicating failure OR an air quality event of interest
 - Requirements for criteria that must be met (e.g., for completeness)
 - Adjust value in some cases values may be adjusted/calibrated (e.g., to zero)


Develop QC Rules - Examples

QC Rule	Logic	Action
High/Low Value Check	If PM _{2.5} concentration value > 300 μ g/m ³ for > 4 hr	Flag
High/Low Value Invalid	If PM _{2.5} concentration value > 900 μ g/m ³ for > 24 hr If PM _{2.5} concentration value < 0.5 μ g/m ³ for > 24 hr	Invalidate
Out of Bounds	If value is out of range of sensor manufacture specs O ₃ > 200 ppb; NO ₂ > 500 ppb; PM _{2.5} > 1000 μg/m ³ ; Temp < -10 or > 60 °C; or RH < 0 or > 100 %	Invalidate
Flatline	If rolling Std Dev < 1 for > 12 hours	Invalidate
Temperature Exceedances	If temp <-15 or >110 ° F, concentration data flagged as "High Temp"	Flag
Negative Data Filter	If concentration value < - 5 ppb for O_3	Invalidate
Negative value replacement	If concentration value > -5 ppb and < 0 for O_3 ; set to zero	Set to zero
Offline	No data from sensor > 12 hours	Flag
Data Averaging	Require 75% valid data recovery to generate time averages	Requirement
Correlation Check	Purple Air: If R ² between A/B < 0.5 for 36 hour Community: If R ² between sensor/community < 0.5 for 36 hour	Flag


EXAMPLE: QA/QC Applied

- The top plot depicts high-time resolution data from a sensor co-located at a regulatory air monitoring station
- Here there is disagreement between the duplicate channels (i.e., noise in the Channel A data, though in general trends agree)
- Filtering, applying a QA/QC Algorithm, and aggregating the data results in the processed data (bottom plot)
- The result is post-QA/QC data, for which trends agrees fairly well with the corresponding regulatory data



Correlation check: Sensor to community

rt-term AQ	21	Redlands_4 P1				
E C		- (Ha	zardous
Moderate War	ning Unhealth	y Very Ur	nhealthy		Hazardou	
I: Health alert:	everyone n	hay exper	ience m	ore seriou	s health e	ffects
		rent Wea				
	cildor ou		iulei			
annel A Runnir	5 5					
me Short-term	30 minute 241	1 hour 176	^{6 hour}	^{24 hour}	One week	
	191µg/m3 1	04µg/m3	23µg/m3	10µg/m3	6µg/m3	
Channel B Rur	ning Avera	iges				
me Short-term	30 minute	1 hour	6 hour	24 hour	One week	
6 473	266	189	152	124	102	
/m3 458µg/m3	216µg/m3 1	29µg/m3	57µg/m3	45µg/m3	36µg/m3	
lent Confidenc	e *Las	er Temp	erature	: 90°F *	Laser Hu	midity:
08%	11%					
comparing channel	electroni					re affected by the nd humidity unde
ligher is better.	estimate	d.				
me Short-term Av	erane One He	our Average	24 Hour A	verage		

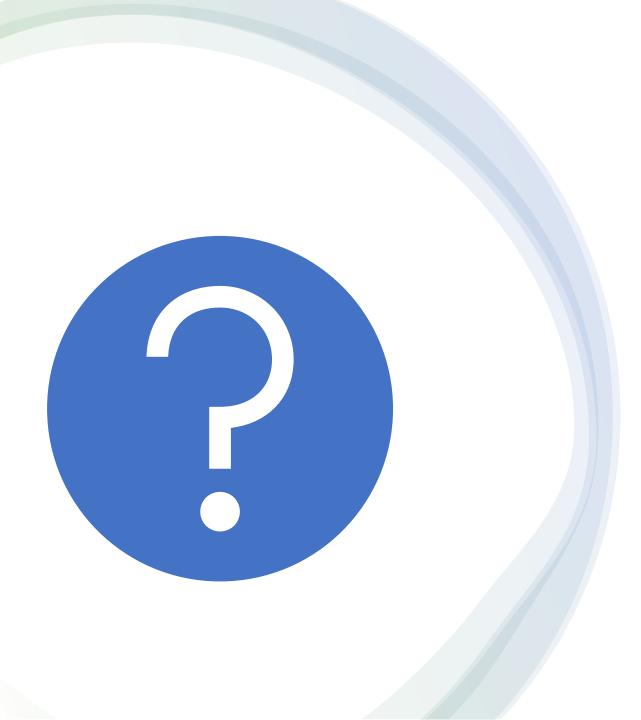
Hyper-local effects

Develop a Calibration Approach

Турез	Overview	Pros	Cons
Factory Calibration	High throughput batch calibrations, resulting in correction factors (often linear)	All sensors in a batch calibrated under the same conditions	Occurs once by manufacturer

Upcoming Approaches for QA of Sensor networks

- Sensor Network Performance Evaluations
 - How well do calibration approaches work?
 - How well do QC measures / approaches work in real-time?



- Alternative options for obtaining QC verifications
 - Park and verify with mobile monitoring platform
 - Drive-by verification with mobile monitoring platform
 - Hierarchal co-locations / buddy checks

Key Takeaways

- Collect meta data on sensor deployments and obtain pictures of install
- Develop device management dashboard to direct network maintenance scheduling and track sensor lifetime
- Develop QC metrics to flag data to be filtered from real-time visualizations if not pass QC rules
- Choose and implement a calibration approach
- Develop additional QC checks to verify performance and collect QC data

Thank you!

Contact information

Brandon Feenstra QA Manager, South Coast AQMD <u>bfeenstra@aqmd.gov</u>