

Missouri University of Science and Technology

The impact of toxic chemical releases and their management on financial performance

Mahelet G. Fikru, Ph.D.

2023 TRI Conference TRI: Promoting Pollution Prevention October 25, 2023

Preferred Citation

Authors & Article Details

Eng, L. L., Fikru, M. G., & Vichitsarawong, T. (2021). The impact of toxic chemical releases and their management on financial performance. *Advances in Accounting*, 53, 100529.

Advances in Accounting Volume 53, June 2021, 100529

ACCONTRA

The impact of toxic chemical releases and their management on financial performance

Li Li Eng a 🔉 🖂 , Mahelet G. Fikru b 🖂 , Thanyaluk Vichitsarawong c 🖂

Show more 🥆

+ Add to Mendeley 😪 Share 🍠 Cite

https://doi.org/10.1016/j.adiac.2021.100529 🄊

Get rights and content 🛪

Abstract

This paper examines the extent to which environmental performance affects firm profitability, where environmental performance is measured by toxic chemical releases per sales dollar and toxic chemical management (treat, recycle, or recovery) per sales dollar. Conclusions are drawn based on a sample of U.S.-based publicly-traded companies that reported to the Environmental Protection Agency's Toxics Release Inventory (TRI) program between 2001 and 2017. The results show that publicly-traded companies that reduce emissions see an increase in their Tobin's q. In addition, the effects of reducing emissions, treating toxic chemicals to minimize their environmental impact, or combusting toxic chemicals for energy, are more significant for companies that consistently fall under the mandatory reporting requirements of the TRI program. However, recycling toxic chemicals is associated with negative financial consequences for these companies.

Outline of Presentation

Research Questions

Transforming Data into Action

- Can *good* environmental performance *improve* the financial performance of businesses?
- What is the extent of the correlation between environmental performance and firm profitability? Market valuation?
- How can we use TRI data to develop environmental performance indicators?

Channels for Connection

Economic principles provide insight

How does environmental performance affect financial performance? **Why** does it affect financial performance?

Summary of Previous Studies

Relating environmental to financial performance

- Using non-TRI data such as GHG emissions, previous studies show that good performance pays off.
 - Cooper et al. (2018), Delmas et al. (2015)
- Using TRI data, studies find a negative correlation between *releases* and:
 - Stock returns (Hamilton, 1995; Khanna et al., 1998),
 - ROA (Morris, 1997; King and Lenox, 2001; Clarkson et al., 2011),
 - Market values (Konar and Cohen, 2001)

MISSOURI

Contribution of this study

Use multiple metrics

- Toxic release is just one piece of information
- What about the actions or operations of managing toxic chemical-containing wastes?
- Reveal investment efforts

Costs and Benefits of Waste Management

Net impacts affect financial performance

- Incineration facilities are costly
- Additional cost for cleanup and treatment
- Re-useable commodities from recycling
- Energy/heat offset from energy recovery
- Avoid penalty costs by managing wastes
- Avoid permit/disposal costs

MISSOURI

Impact of TRI-based performance

- **Hypothesis 1**: Firms that increase toxic chemical recycling, energy recovery, or treatment can improve their financial performance.
 - "It pays to be green"
- **Hypothesis 2**: Core TRI reporters experience a larger improvement in financial performance compared to non-core reporters.

Research Approaches

Selection of appropriate metrics

Environmental performance metrics

- Toxic chemical releases per sales
- Toxic chemical management per sales
 - Recycling
 - Energy Recovery
 - Treatment

Financial performance metric

- Profitability of assets: Return on asset (ROA)
- Market value of assets: Tobin's q

Sample Selection

Our sample has 316 TRI parent companies

- 3,156 publicly traded companies with financial data from relevant sectors(*Compustat*). 2,840 not in the TRI database (non-TRI reporters).
- *Compustat* sample merged with TRI parent data (2001-2017)
- Found 316 matches as our sample
 - We followed TRI reporters over the years
 - Define core-TRI reporters (16 years of data), around 59% of the sample
 - 3,509 firm-year observations

Core Reporters

Reported data for 16 or more years

Statistical Approaches

Difference model versus fixed effects model

 $\Delta FIN_PERF_{i,t+1} = \beta_0 + \beta_1 \Delta RELEASE_{i,t} + \beta_2 \Delta RECYCLE_{i,t} + \beta_3 \Delta TREAT_{i,t} + \beta_4 \Delta RECOVER_{i,t} + \beta_5 \Delta RDIN_{i,t} + \beta_6 \Delta CAPIN_{i,t} + \beta_7 \Delta NEW_{i,t} + \beta_8 \Delta lnTA_{i,t} + \beta_9 RECESSION_{i,t} + \beta_{10} \Delta FINPERF_{i,t} + e_{i,t}$

$$\begin{split} FIN_PERF_{i,t+1} &= \alpha_{0,i} + \alpha_1 RELEASE_{i,t} + \alpha_2 RECYCLE_{i,t} + \alpha_3 TREAT_{i,t} + \\ \alpha_4 RECOVER_{i,t} + \alpha_5 RDIN_{i,t} + \alpha_6 CAPIN_{i,t} + \alpha_7 NEW_{i,t} + \alpha_8 lnTA_{i,t} + \\ \alpha_9 RECESSION_{i,t} + \alpha_{10} FINPERF_{i,t} + \epsilon_{i,t} \end{split}$$

MISSOURI SET

Regression Results Impact on ROA

Table 4

Effect of environmental performance on ΔROA_{t+1}

Panel A: Linear regressions - Effect of environmental performance on ΔROA_{t+1} .

		All firms			Core reporters		
	Expected sign	Coefficient	Robust standard error	P-value	Coefficient	Robust standard error	P-value
ΔTCR	-	-0.009	0.000	0.238	-0.036**	0.000	0.021
ARECYCLE	+	-0.002	0.000	0.278	-0.003**	0.000	0.023
ΔTREAT	+	0.000	0.000	0.642	0.002***	0.000	0.002
ARECOVER	+	0.003	0.000	0.248	0.002	0.000	0.401
ARDIN		-0.246	0.254	0.333	-0.127	0.296	0.669
ΔCAPIN		0.076	0.105	0.466	0.015	0.142	0.913
ANEW		-0.180**	0.071	0.011	-0.157**	0.071	0.028
ΔInTA		-0.061***	0.017	0.001	-0.070***	0.019	0.000
RECESSION		-0.039***	0.005	0.000	-0.036***	0.007	0.000
ΔROA		-0.351***	0.055	0.000	-0.390***	0.052	0.000
Constant		0.006***	0.002	0.001	0.010***	0.001	0.000
Industry dummy variables		Yes			Yes		
Number of observations		2493			1676		
Number of firms		262			122		
R squared		0.1709			0.2214		

MISSOURI SET

Regression Results

Impact on Tobin's q

Table 5

Linear regressions - Effect of environmental performance on $\Delta Tobin's q_{t+1}$.

		All firms			Core reporters			
	Expected sign	Coefficient	Robust standard error	P-value	Coefficient	Robust standard error	P-value	
ΔTCR	-	-0.210***	0.000	0.002	-0.260***	0.000	0.000	
∆RECYCLE	+	0.003	0.000	0.593	-0.004	0.000	0.321	
∆TREAT	+	0.000	0.000	0.787	0.002	0.000	0.756	
∆RECOVER	+	0.013*	0.000	0.095	0.043***	0.000	0.007	
ARDIN		0.628	1.110	0.572	1.773	1.151	0.126	
ΔCAPIN		-1.572^{**}	0.637	0.014	-1.845***	0.655	0.006	
ΔNEW		0.113	0.194	0.561	0.093	0.209	0.658	
ΔInTA		-0.403***	0.063	0.000	-0.395***	0.079	0.000	
RECESSION		-0.296***	0.029	0.000	-0.326***	0.033	0.000	
$\Delta Tobin's q$		-0.195***	0.043	0.000	-0.250***	0.036	0.000	
Constant		0.054***	0.008	0.000	0.181***	0.010	0.000	
Industry dummy variables		Yes			Yes			
Number of observations		2704			1794			
Number of firms		277			122			
R squared		0.120			0.166			

MISSOURI

Summary of Findings

- TRI performance affects medium to long-term financial performance.
 - Change in *releases* is negatively associated with changes in Tobin's q
 - Change in *energy recovery* is positively associated with changes in Tobin's q
- For core reporters, TRI performance affects short-term profitability.
 - Change in *releases* is negatively associated with change in ROA
 - Change in **treatment** is positively associated with change in ROA
 - Change in *recycling* is negatively associated with ROA (*net cost*)

Conclusions

- Environmental managers should pay attention to sustainable ways of managing waste containing toxic chemicals
- Building a tangible/measurable reputation for good environmental performance can help gain market value
- TRI tools provide meaningful metrics of environmental performance

Thank You!

For questions or comments please contact:

Mahelet G. Fikru Department of Economics 500 West 13th Street, Rolla, MO 65401 USA

Email: <u>fikruma@mst.edu</u> Phone: 573-341-6495

The following are supplementary materials.

Abstract

Despite studies showing the environmental benefits of reducing toxic chemical releases, there are ۰ fewer studies that examine the impact of toxic chemical releases and their management on financial performance and firm valuation. The study examines the extent to which environmental performance affects firm profitability, where environmental performance is measured by toxic chemical releases per sales dollar and toxic chemical management (treat, recycle, or recovery) per sales dollar. Conclusions are drawn based on a sample of US based publicly traded companies that reported to the Environmental Protection Agency's Toxics Release Inventory (TRI) program between 2001 and 2017. Results suggest that publicly traded companies that reduce toxic chemical emissions see an increase in their Tobin's q. In addition, the effects of reducing emissions, treating toxic chemicals to minimize their environmental impact, or combusting toxic chemicals for energy, are more significant for companies that consistently fall under the mandatory reporting requirements of the TRI program. However, recycling toxic chemicals is associated with negative financial consequences for these companies.

Sample Characteristics

Most companies are manufacturers

Sample Characteristics

Performance varies by location and metrics

Shares of Different Waste Management Activities

Over time treatment replaced recycling

Missouri University of Science and Technology

MISSOURI

TRI Statistics for our Sample

TRI Statistics for our sample

Firms manage more than they release

The ratio of the volume of wastes managed to total releases is on average 8.

Correlation Analysis

Results from Spearman's Rank Correlation

			TRI	TRI	TRI	TRI
	ROA	Tobin's q	Recycling	Treatment	Recovery	Releases
ROA	1					
Tobin's q	0.6115*	1				
TRI Recycling	0.0149	-0.0633*	1			
TRI Treatment	0.0476*	0.0176	0.1299*	1		
TRI Recovery	0.0233	0.0297	0.0869*	0.4550*	1	
TRI Releases	-0.1010*	-0.1315*	0.3334*	0.4682*	0.3730*	1

