

TRI: Identifying Potential Health Impacts

USING RISK-SCREENING ENVIRONMENTAL INDICATORS (RSEI) DATA TO UNDERSTAND ASSOCIATIONS BETWEEN AIRBORNE LEAD EXPOSURE AND CHILDHOOD COGNITION

Lisa Gatzke-Kopp; Penn State

David C. Folch; Northern Arizona University

ACKNOWLEDGEMENTS

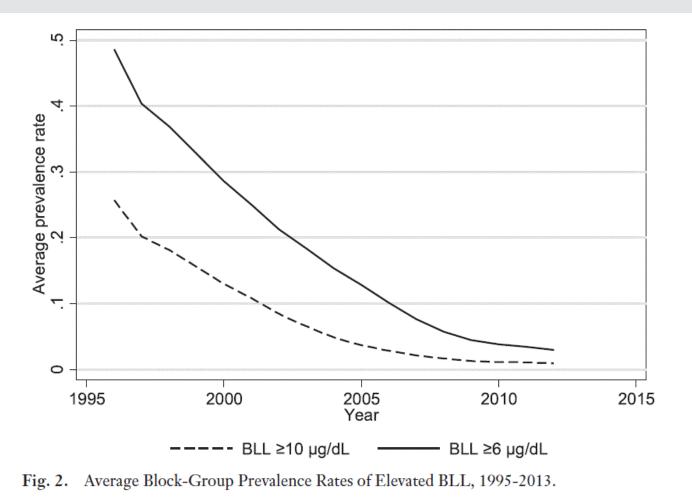
Collaborators

- Michael Willoughby, RTI International
- Siri Warkentian, RTI International
- Amii Kress, Johns Hopkins University
- Kristen McAthur, Johns Hopkins University
- Cara Wychgram, Johns Hopkins University
- Christopher Fowler, Penn State
- Margaret Swingler, University of North Carolina, Chapel Hill
- Nissa Towe-Goodman, University of North Carolina, Chapel Hill
- Clancy Blair, New York University

Funding

- NICHD/NIDA P01HD039667
- NICHD R01HD051502
- NIH Office of the Director UG3OD023332

POLICY AND PRACTICE


1887 Recognition of childhood lead poisoning 1904 Lead poisoning linked to paint

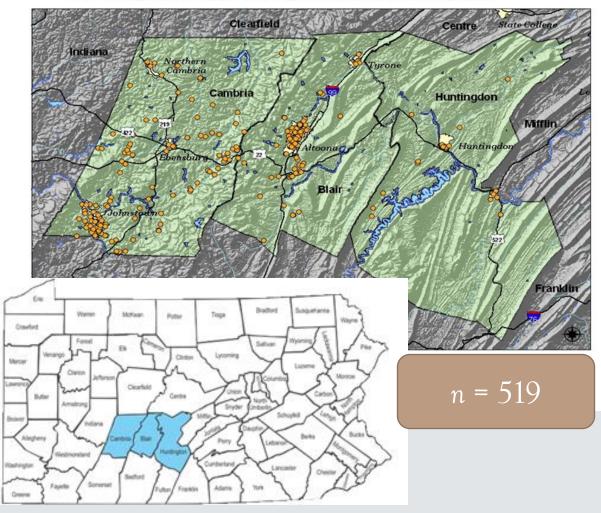
1909 France, Belgium, Austria ban lead interior paint 1951 Baltimore bans the use of lead paint in housing

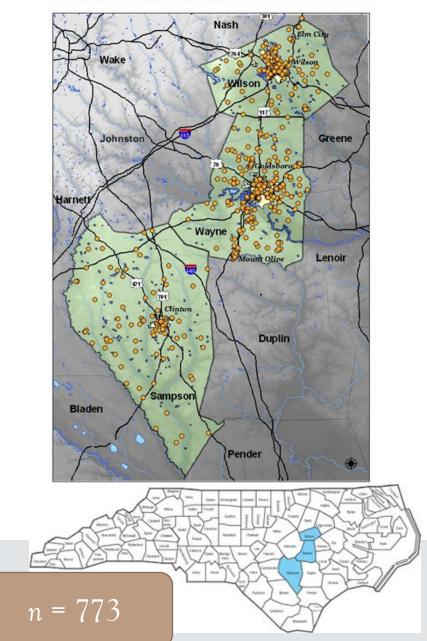
1922 League of Nations bans lead interior paint (but not the U.S.) 1978 Lead-Based Paint Banned in the US **1976 - 1996** Leaded gasoline phaseout

1986 – current Regulations regarding plumbing

EXPOSURE TRENDS OVER TIME

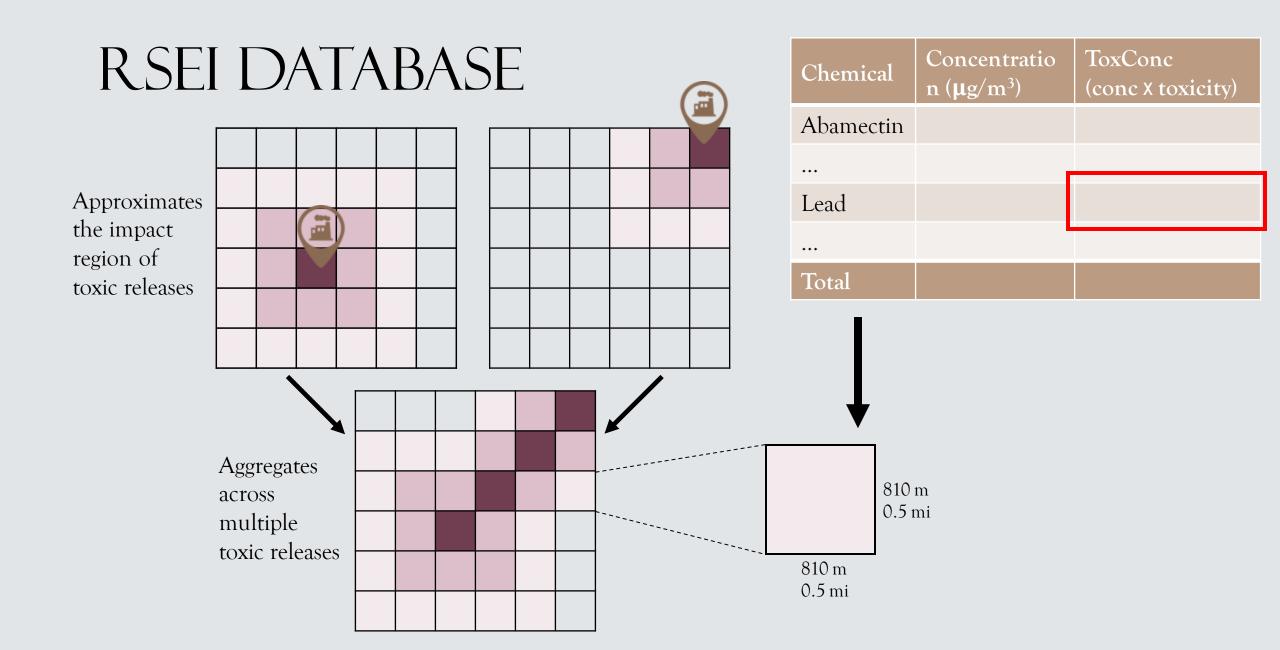
Toxic Inequality in Chicago Neighborhoods, 1995-2013 (Sampson & Winter, 2016)


LEAD AND NEUROTOXICITY


- Neurotoxic effects of lead increasingly evident
 - Cognitive impairments
 - Behavioral antisocial/impulsive
- Research contributed to revisions in CDC threshold recommendations
- Current perspective- no safe level of lead exposure

The Family Life Project: Participant locations in North Carolina

THE FAMILY LIFE PROJECT


The Family Life Project: Participant locations in Pennsylvania

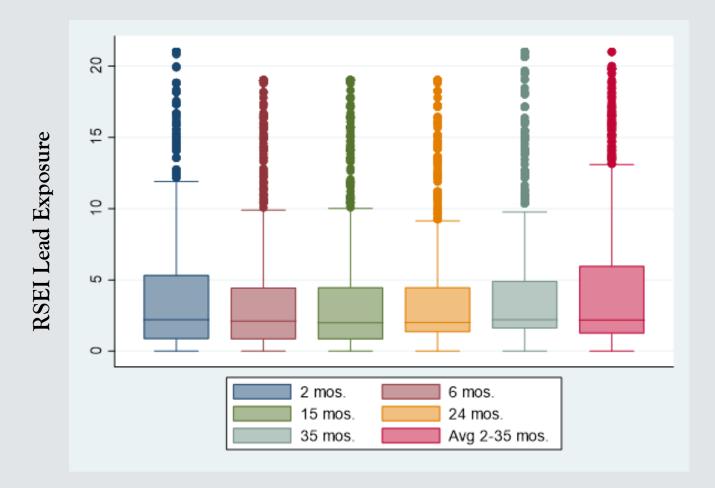
THE FAMILY LIFE PROJECT	Outcome Variables
TABLE 6	
Schedule of Data Collection	IQ (WPPSI)
Birth 2 months 6 months 9, 12 months 15 months	@ 3yrs
Hospital Home Visit 2 Home Visits Phone Calls 2 Home Visits	Executive Function
	@ 3yrs
Child Care Child Care	@ 4yrs
Visit Visit	@ 5yrs
18, 21 months24 months27, 30, 33 months36 monthsPhone Calls2 Home VisitsPhone Calls2 Home VisitsChild Care VisitChild Care VisitChild Care Visit	

-

ALIGNING HOME LOCATIONS WITH RSEI

- RSEI data is massive
 - Millions of RSEI cells needed to cover the US
 - Each with hundreds of attributes every year
- Cannot distribute child locations
 - Need to match child's location to RSEI on the local machine
 - Thousands of point locations across the US, multiple years
- Developed a flexible R script
 - Takes a list of latitude/longitude coordinates
 - Appends the RSEI data for the requested year(s)

rseilution @


R tools for deriving air toxicity for geographic coordinates

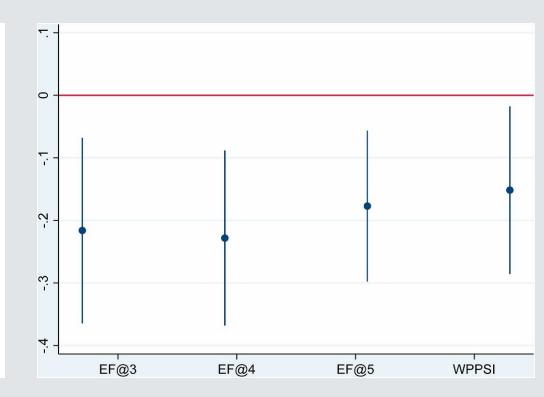
This code will append annual air toxicity data to any point location within the United States. The toxicity data come from the US Environmental Protection Agency's (EPA) <u>Risk-Screening</u> <u>Environmental Indicators (RSEI)</u> model, which is based on data collected for the <u>Toxic Release</u> <u>Inventory (TRI)</u>.

The code offers many options. The following example is for points with a unique ID (in column ner id / in a ci rle tare (De/ ware / e) fr r a ngle ye 15 to will a itude/or ture

https://github.com/dfolch/rseilution

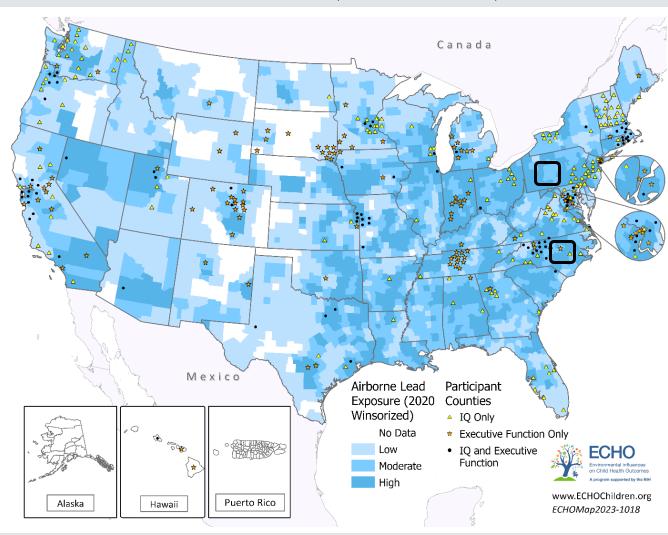
EXPOSURE DISTRIBUTIONS

2003 - 2007

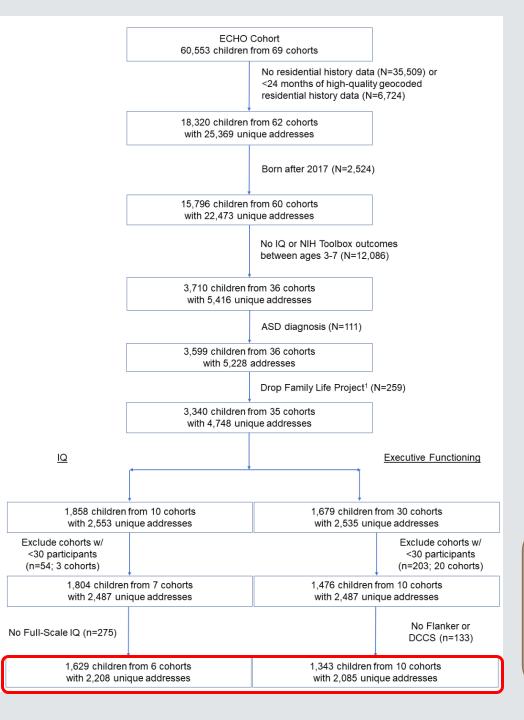

INSTRUMENTAL VARIABLE APPROACH

- A valid instrument is identified that
 - Is correlated with children's exposure
 - Does not share common causes with children's cognitive outcomes
 - Has no effect on child outcomes except through the potential effect on exposure
- Census tract manufacturing density
 - Is correlated with airborne lead exposure
 - Is not related to children's cognitive outcome except through lead exposure
 - Include additional confounds
 - Child sex, child race, income/needs, caregiver education, biological father presence, caregiver IQ, caregiver hostility, caregiver depression, child low birth weight, regional poverty, child second-hand smoke exposure

RESULTS


	Lead exposure, (fitted value)	
	Coefficient	SE
Dutcomes		
xecutive Function (3 years)	-0.213**	0.008
xecutive Function (4 years)	-0.227**	0.007
xecutive Function (5 years)	-0.178**	0.006
/PSSI (3 years)	-0.152*	0.212

NOTE: Coefficients are standardized beta coefficients. Standard errors are clustered at the tract level.



Gatzke-Kopp et al., 2021. https://doi.org/10.1016/j.healthplace/2021.102517

ENVIRONMENTAL CHILDHOOD HEALTH OUTCOMES (ECHO)

Region	IQ sample	EF sample
Midwest	141 (8.7%)	208 (15.5%)
Northeast	1,164 (71.5%)	167 (12.4%)
South	35 (2.2%)	196 (14.6%)
West	289 (17.7%)	772 (57.5%)
	1,629	1,343

1,343 children 10 cohorts 2,085 addresses

1,629 children 6 cohorts 2,208 addresses

RESULTS

		Executive Function		
	Full-Scale IQ b (95% CI)	Inhibitory Control (Flanker) b (95% Cl)	Cognitive Flexibility (DCCS) b (95% CI)	
Total sample	1,629	1,241	1,298	
per unit Δ airborne lead	-0.31 (-0.41, -0.20)	-0.67 (-1.25, -0.08)	-0.09 (-0.55, 0.37)	
per IQR Δ airborne lead	-0.74 (-1.00, -0.48)	-1.13 (-2.13, -0.14)	-0.15 (-0.93, 0.62)	

Covariates: child sex, birth year, preterm status, low birthweight status, age at assessment (IQ only), maternal age at delivery, maternal prenatal smoking status, regional socioeconomic vulnerability, urbanicity, pre-1980s housing stock,

ROBUSTNESS

Full-Scale IQ				
				Mean Difference
Study				with 95% CI
Leave BAMBAM out				-0.33 [-0.43, -0.23]
Leave NHBCS out				-0.29 [-0.41, -0.18]
Leave GAPPS out				-0.27 [-0.37, -0.17]
Leave ECHO-NOVI out				-0.32 [-0.44, -0.19]
Leave ACCESS out				-0.29 [-0.45, -0.14]
Leave TIDES out				-0.28 [-0.44, -0.12]
Overall		•		-0.30 [-0.35, -0.25]
	6	3	0	.3

ROBUSTNESS

Inhibitory Control		Cognitive Flexibility	
Study	Mean Difference with 95% Cl	Study	Mean Difference with 95% Cl
Leave Healthy Start out Leave BAMBAM out Leave PASS out Leave PETALS out Leave KPRB out Leave INSPIRE out Leave ECHO-NOVI out Leave VCSIP out Leave PRISM out Leave First 1000 Days out	-0.86 [-1.55, -0.17] -0.50 [-0.98, -0.01] -0.64 [-1.24, -0.04] -0.46 [-0.99, 0.07] -0.68 [-1.33, -0.03] -0.81 [-1.38, -0.24] -0.76 [-1.51, -0.00] -0.65 [-1.24, -0.05] -0.70 [-1.29, -0.10] -0.71 [-1.40, -0.02]	Leave Healthy Start out Leave BAMBAM out Leave PASS out Leave PETALS out Leave KPRB out Leave INSPIRE out Leave ECHO-NOVI out Leave VCSIP out Leave PRISM out Leave First 1000 Days out	-0.07 [-0.69, 0.55] - 0.07 [-0.51, 0.37] - 0.05 [-0.61, 0.52] - 0.13 [-0.10, 0.37] - 0.08 [-0.61, 0.45] - 0.14 [-0.54, 0.25] - 0.27 [-0.77, 0.24] - 0.07 [-0.55, 0.40] - 0.14 [-0.56, 0.27] - 0.10 [-0.66, 0.46]
-1.5 -15 0	.5	-15 0	.5

SEX STRATIFIED MODELS

	Full-Scale IQ b (95% Cl)	Inhibitory Control (Flanker) b (95% Cl)	Cognitive Flexibility (DCCS) b (95% Cl)
Male participants	836	635	657
per unit∆ airborne lead	-0.60 (-0.81, -0.38)	-0.93 (-1.76, -0.11)	-0.12 (-0.80, 0.56)
per IQR Δ airborne lead	-1.46 (-1.99, -0.92)	-1.58 (-2.98, -0.19)	-0.20 (-1.54, 0.99)
Female participants	793	606	641
per unit∆ airborne lead	0.13 (-0.05, 0.31)	-0.42 (-0.85, 0.01)	0.08 (-0.28, 0.43)
per IQR Δ airborne lead	0.32 (-0.12, 0.76)	-0.71 (-1.43, 0.02)	0.13 (-0.47, 0.73)

SUMMARY

- Regional variation in airborne lead in the first 3-5 years of life is associated with decrements in children's cognitive functioning
- Effects may be more pronounced among male children
- In addition to the implications for these findings on environmental policies, additional research could examine individual or family-level factors mitigate this association (e.g. nutrition) that could also inform policy and practices for child health.

STRATEGIC HIRING INITIATIVE IN ENVIRONMENTAL HEALTH SCIENCES

Open Rank Faculty Positions