High Throughput Toxicokinetics (httk) Modeling Virtual Training

Marina V Evans and Celia Schacht

- New Approach Methodologies (NAMs) Training Program is a deliverable in the Agency's Work Plan, first released in 2019 and updated in 2021.
- Previous trainings include ECOTOX, CompTox Chemicals Dashboard, and GenRA.
- Goal: Develop, implement and maintain an engaging training program.
- Interactive case studies to encourage active learning
- Train the trainer
- Obtain feedback
- The EPA NAMs training website includes existing training
 resources, including recordings and guidance documents.

- Welcome and Introductions
- Background of httk
-Why use generic models?
- Introduction to PBPK
- Why do different routes matter?
- Introduction to httk package and Rstudio
- Which constants and parameters are needed?
- httk specific R functions for chemical descriptors
- Summary followed by Q\&A session

乏EPA
 Conflict of Interest Statement

- No conflicts of interest to declare.
- Disclaimer:

The views expressed herein are those of the presenter and do not necessarily reflect the views or policies of the U.S. EPA

High Throughput Toxicokinetics
 (httk) Modeling Virtual Training

Marina V Evans and Celia Schacht

Facilitators

Dr. Marina V Evans* Dr. Celia Schacht*
Christopher R Eklund* Dr. Caroline Ring*
httk Development Team
Dr. John Wambaugh* Dr. Caroline Ring*
Dr. Barbara Wetmore* Robert G Pierce
Dr. R Woodrow Setzer
Many others

How is toxicity studied and how is risk characterized?

Tools to Estimate Risk: Toxicokinetics

- Toxicokinetics (TK) describes Absorption, Distribution, Metabolism, and Excretion (ADME) of a chemical by the body.
- TK helps prediction of tissue concentrations resulting from chemical exposures \rightarrow inform dose-response relationship
- Physiological Based Toxicokinetic (PBTK) Models are Used to simulate kinetics of ADME
- Constructed with a series of ODEs
- Parameterized by anatomical and physiological variables
- Estimate human exposure levels from internal doses
- But TK models require chemical-specific parameters commonly found in vivo.

- Very little in vivo data!

乏EPA
 United States Environmenta
 What is httk?

- R package
- Created with systems of ODEs developed in MCSim, solved using compiled C code
- Goal: provide human dose information for bioactive in vitro concentrations from HTS (i.e. IVIVE)
- Generic models can be rapidly customized for thousands of chemicals chemicals/numerous species.

Why generic PBTK modeling?

- Generic vs. customized PBTK models.
- Model types are available within R package "httk", which is open source.
- PBTK Model parameterization
- Physiologic parameters - different species are included.
- Chemical-specific parameters
- httk functions use information from the Dashboard for multiple chemicals.
- The core model equations can be checked once and re-used for multiple chemicals.
- Estimates are needed for PBTK parameters -
- Partition coefficients for blood and tissues
- Clearance values
- Experimental values for PBTK parameters are not available.
- Can be predicted using basic physico-chemical descriptors
- Partition coefficients are based on logKow
- Fraction unbound - only free chemical moves into tissue
- Clearance estimation makes use of fraction unbound.

high throughput toxicokinetics = In vitro toxicokinetic data + generic toxicokinetic model

- Each of the models provided by the R package "httk" is a generic model
- Each model is designed to used standardized chemical-specific in vitro measurements (fraction unbound in plasma, intrinsic hepatic clearance)
- Standardized physiology is assumed, regardless of chemical:
- The same parameters such as volumes, flows, and rates are used
- The same processes are included (hepatic metabolism, glomerular filtration) or omitted
- The generic model is a hypothesis
- If we have evaluation data then we can check if we need to elaborate the model - CvTdb
- We can estimate the accuracy of a generic model for a new chemical using performance across multiple chemicals where data happen to exist

Inhalation and iv are similar in that same amount is distributed by arterial blood in parallel to each tissue by each organ's blood flow.

Oral dosing is different in that the full dose is seen by the liver first, then a fraction is cleared by the liver. The remaining amount returns to the body via venous blood.

This concept is known as first pass effect due to clearance by the liver.

Difference between R and RStudio

R is a programming language. https://www.r-project.org/
Rstudio is an Integrated Development Environment (IDE) designed for R.
https://rstudio-education.github.io/hopr/starting.html
Instructions included for MAC, Windows and UNIX

This course will make use of Rstudio for all examples.
If you do not have Rstudio installed, you can use:
https://web.pdx.edu/~gerbing/R/RStudioCloud.pdf
Note that you will need to create a free account before using.

Live Demonstration

R Studio

This portion of the training will be presented live. The following slides are meant to be a guide, but may not be the exact content presented during the training.

To clear previous calculations shown in the environment panel use rm command shown

File Edit Code View Plots Session Build Debug Profile Tools Help

Console Terminal $\times \longrightarrow$ ®
R version 4.1 .0 (2021-05-18) -- "Camp Pontanezen"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-1ine help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R .
[Workspace loaded from ~/.RData]
$>$ rm(1ist=1s())
R • Global Environment .

Environment is empty

B RStudio
File Edit Code View Plots Session Build Debug Profile Tools Help

Console Terminal
R R 4.1.0.~/
R version 4.1 .0 (2021-05-18) -- "Camp Pontanezen"
Copyright (C) 2021 The R Foundation for Statistical Computing
platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distrihution detailc
R is a collaborative project with Install Packages
Install from:
Type 'contributors()' for more infi
'citation()' on how to cite R or R
Type 'demo()' for some demos, 'hel
'help.start()' for an HTML browser
Type 'q()' to quit R.
[Workspace loaded from ~/.RData]
$>$ rm(list=1s())
Repository (CRAN)
Packages (separate multiple with space or comma):
httk
httk | to Library:
C:/Program Files/R/R-4. 1.0/library [Defaut] \quad v
\checkmark Install dependencies
$>$
Install Cancel

R • Global Environment a

Environment is empty

Files	Plots	Packages	Help	Viewer	Presentation		- \square
$\underset{\substack{\text { (i) Install } \\ \text { Name }}}{\text { (O) Update }}$						Q	
				Description		Version	
System Library							
\square abind			Combine Multidimensional Arrays			1.4-5	- \otimes
\square al	alabama		Constrained Nonlinear Optimization			2022.4-1	- ${ }^{\circ}$
\square as	askpass		Safe Password Entry for R, Git, and SSH			1.1	© *
\square ass	assertthat		Easy Pre and Post Assertions			0.2.1	- \otimes
$\square \mathrm{b}$	backport		Reimplementations of Functions Introduced Since R-3.0.0			1.4.1	- *
\checkmark b	base		The R Base Package			4.1.0	
$\square \mathrm{b}$	base64en		Tools for base64 encoding			0.1-3	- ${ }^{(1)}$
$\square \mathrm{B}$			Boost $\mathrm{C}++$ Header Files			1.78.0-0	- *
$\square \mathrm{B}$	BiocGene		S4 generic functions used in Bioconductor			0.40 .0	© ${ }^{(1)}$
$\square \mathrm{B}$	BiocMan		Access the Bioconductor Project Package Repository			1.30 .16	- *
$\square \mathrm{B}$	BiocVersi		Set the appropriate version of Bioconductor packages			3.14.0	**
$\square \mathrm{bit}$			Classes and Methods for Fast Memory-Efficient Boolean Selections			4.0.4	+ *
$\square \mathrm{bi}$	bit64		A S3 Class for Vectors of 64bit Integers			4.0 .5	© *
\square bi	bitops		Bitwise Operations			1.0-7	+ ${ }^{*}$
\square bl			A Simple S3 Class for Representing Vectors of Binary Data ('BLOBS')			1.2.2	© *
$\square \mathrm{b}$	boot		Bootstrap Functions (Originally by Angelo Canty for S)			$1.3-28$107	$\stackrel{\text { ® }}{\square}$

United States
Environmental Protection

Packages are listed alphabetically inside package tab. Look for httk and check the box

(8) RStudio

File Edit Code View Plots Session Build Debug Profile Tools Help

Console Terminal \times
(R R4.10 ~/
Thery connexions Tutorial

R version 4.1.0 (2021-05-18) -- "Camp Pontanezen" Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-1ine help, or 'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
[Workspace loaded from ~/.RData]
> rm(list-ls())
> library (httk.)
package 'httk' was built under R version 4.1.3

	fles Plots Packages	Help	Viewer	Presentation		-ロ
이Intall \bigcirc U Undite					a	
Name				Description	Version	
graphics				The R Graphics Package	4.10	,
	groevices			The R Graphics Devices and Support for Colours and Fonts	4.10	
\square	grid			The Grid Graphics Package	1.0	
\square	gridextra			Miscellaneous functions for "Grid" Graphics	2.3	- ${ }^{\circ}$
$\stackrel{\square}{\square}$	gsi			Wrapper for the Gnu Scientific Libray	2.1-8	- 0
\square	gtable			Arrange 'Grobs' in Tables	0.3 .0	-0
\square	hardhat			Construct Modeling Packages	11.10	- 0
\square	haven			Import and Export' 'SPSS'; 'Stata' and ' 'AAS' Files	2.4 .3	- ${ }^{\circ}$
\square	highr			Syntax Highlighting for R Source Code	0.9	- ${ }^{\circ}$
\square	hms			Pretty Time of Day	1.1 .1	-0
\square	htmitools			Tools for HTML	0.5 .2	- 0
\square	htmlwidgets			HTML Widgets for R	1.5 .4	- ${ }^{\circ}$
\checkmark	httk			High-Throughput Toxicokinetics	2.2 .2	- ${ }^{\circ}$
\square	httpuv			HTTP and Websocket Sereer Libray	1.6 .6	-0
\square	httr			Tools for Working with URLs and HTTP	1.4 .2	- 0
\square	huxtable			Easily Create and Style Tables for LaTeX, HTML and Other Formats	5.5.0	- 0
\square	ids			Generate Random Identifiers	1.0 .1	\bullet -
\square	infer			Tidy Statisitical Inference	1.0.2	-6
\square	ini			Read and Write 'ini' Files	0.3 .1	- 0
	installr			Using R to Instal Stuff on Windows OS (Such As: R, 'Rtools, 'RStudio', 'Git', and Morel)	0.23.4	- 0
0	ipred			Improved Predictors	0.9-13	- ${ }^{\circ}$
$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	isoband			Generate Isolines and lsobands from Regularly Spaced Elevation Grids	0.2 .5	-0
0	iterators			Provides Iterator Construct	10.13	- 0
\square	itettools			Iterator Tools	0.1.-3	- 0
	iouerrib			Obtain 'iOuerv' as an HTML Devendencr Obiect	0.14	- 1

Help feature inside httk package

B RStudio
File Edit Code View Plots Session Build Debug Profile Tools Help

\section*{| Source | |
| :--- | :--- |
| Console | Terminal \times |
 © R4．1．0 $\sim /$}

R version 4.1 .0 （2021－05－18）－－＂Camp Pontanezen＂
Copyright（C） 2021 The R Foundation for Statistical Computing Platform：x86＿64－w64－mingw32／x64（64－bit）
R is free software and comes with ABSOLUTELY NO WARRANTY． You are welcome to redistribute it under certain conditions Type＇license（）＇or＇licence（）＇for distribution details．
R is a collaborative project with many contributors．
R is a collaborative project with many contribu
Type＇contributors（）＇for more information and
＇citation（）＇on how to cite R or R packages in publications．
Type＇demo（）＇for some demos，＇help（）＇for on－line help，or ＇help．start（）＇for an HTML browser interface to help．
Type＇q（）＇to quit R ．
［Workspace loaded from～／．RData］
$>\mathrm{rm}(\mathrm{list}=1 \mathrm{~s}())$
＞library（httk）
Warning message：
package＇httk＇was built under R version 4．1．3
＞ 1


```
Files Plots Packages Help riewer Presentation (a)
                                    R Documentation
httk-package {httk}
```

High－Throughput Toxicokinetics
Description

Pre－made models that can be rapidly tailored to various chemicals and species using chemical－specific in vitro data and physiological information．These tools allow incorporation of chemical toxicokinetics（＂TK＂）and in vitro－in vivo extrapolation（＂IVIVE＂）into bioinformatics，as described by Pearce et al（ 2017 ）（＜doi： $10.18637 /$／jss．v079．i04＞）．Chemical－specific in vitro data characterizing toxicokinetics have been obtained from relatively high－throughout experiments．The chemical－independent（＂generic＂）physiologically－based（＂PBTK＂）and empirical obtained from relatively high－throughput experiments．The chemical－independent（＂generic＂）physiologically－based（＂PBTK＂）and empirical（for example，one compartment）＂IK＂models included here can be parameterized with in vitro data or in silico predictions which are provided for thousands of chemicals，multiple exposure routes，and various species．High throughput toxicokinetics（＂HTTK＂）is the combination of in vitro data and generic models．We establish the expected accuracy of HTTK for chemicals without in vivo data through statistical evaluation of HTTK predictions for chemicals where in vivo data do exist The models are systems of ordinary differential equations that are developed in MCSim and solved using compiled（C－based）code for speed．A Monte Carlo sampler is included for simulating human biological variability （Ring et al． 2017 ＜doi：10．1016／j．envint．2017．06．004＞）and propagating parameter uncertainty（Wambaugh et al． 2019 （Ring et al．， 2017 ＜doi： $10.1016 / \mathrm{j}$ jenvint． 2017.06 .004 ）and propagating parameter uncertainty（Wambaugh et al．， 2019 ＜distribution（Parcilikz distribution（Pearce et al．， 2017 ＜doi：10．1007／s10928－017－9548－7＞）．These functions and data provide a set of tools for using IVIVE to convert concentrations from high－throughput screening experiments（for example，Tox21，ToxCast）to real－world exposures via reverse dosimetry（also known as＂RTK＂）（Wetmore et al．， 2015 ＜doi：10．1093／toxscikfv171＞）．
Author（s）
John Wambaugh，Robert Pearce，Caroline Ring，Gregory Honda，Nisha Sipes，Jimena Davis，Barbara Wetmore，Woodrow Setzer，Mark Sfeir See Also
PowerPoint Presentation：High－Throughput Toxicokinetics（HTTK）R R package
10．1080／17425255．2021．19358678reen et al．（2021）：High－throughput PBTK models for in vitro to in vivo extrapolation

Starting a session and choosing a folder

How to synchronize your files with your R path

```
*) rstuato
File Edit Code View Plots Session Build Debug Profile Tools Help
```



```
Console Terminal *
R R4.1.0 C:/\sers/mevans02/Training/
R version 4.1.0 (2021-05-18) -- "Camp Pontanezen' Copyright (C) 2021 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 (64-bit)
\(R\) is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors. Type 'contributors()' for more information and citation() on how to cite \(R\) or \(R\) packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help.
Type 'q()' to quit \(R\).
[Workspace loaded from ~/.RData]
> setwd("C:/Users/mevans02/Training")
E. Environment History Connections Tutorial

\(R\) - Global Environment.
Data
Ochloroform 25 obs. of 8 variables
ODTXSID1020306_ch... 25 obs. of 8 variables
Values
logp
logP "1.97 (2)"


\section*{Reading an .xlsx file using readxl package}
```

B RStudio
File Edit Code View Plots Session Build Debug Profile Tools Help

```

```

Console Terminal
R R4.10 . C./Vsers/meranso2/Training/D
R version 4.1.0 (2021-05-18) -- "Camp Pontanezen" Copyright (C) 2021 The R Foundation for Statistical computing Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help.
Type ' $q($) to quit R .
[Workspace loaded from ~/.RData]
setwd("C:/Users/mevans02/Training")
$>$ rm(list=1s())
$>$ |
@ 且 Import Dataset v 111 MB . \&
R.AGlobal Eviromment.

```
            |mport Dataset.
```



```
```

 & Name
    ```
```

 & Name
 WT answersRM_MVE_INT.docx
    ```
```

 WT answersRM_MVE_INT.docx
    ```
```



```
```

 0.RDatam,
    ```
```

 0.RDatam,
 (8) shistoy
 (8) shistoy
 ** NAMSTriain___slides_httk_ll.pptx
 ** NAMSTriain___slides_httk_ll.pptx
 WV Publictions.docx
 WV Publictions.docx
 - Preliminary information.doc
 - Preliminary information.doc
 ccl4_Rat_1000ppmxsls
 ccl4_Rat_1000ppmxsls
 7) chloryrophos po.50mgeerkh\times\s
 7) chloryrophos po.50mgeerkh\times\s
 # DTXC10803733.png
 # DTXC10803733.png
 valproic_acid_oral_200mgperkg x\sx
 valproic_acid_oral_200mgperkg x\sx
 } diclofenc__oralxsx
 } diclofenc__oralxsx
 |) diclofnac__oral.\sx
 |) diclofnac__oral.\sx
 Valproic_acid_Iv_10mgperkg.v\sx
 Valproic_acid_Iv_10mgperkg.v\sx
 alprazlam_oral12 mgperkgxsx
 alprazlam_oral12 mgperkgxsx
 lalpraclum_Oral/mgperkgx\s
    ```
        lalpraclum_Oral/mgperkgx\s
```

Environment is empty

Import Dataset.

Import Dataset> From Excel
The readxl package must be installed before importing or you will get an error

© RStudio File Edit

Prie Edit Code View Plots Session Build Debug Profile Tools Help

United States
Environmental Protection

Data frame will be shown in the upper left corner - script window

- We are going to use provided time course data published as supplementary information using excel file.
- All data is specific to rat, route is either iv or oral.
- There are three chemical identifiers used in httk:
- Chemical name
- CAS number
- DTXSID number (US EPA generated these identifiers)

In httk,
Chemical name chem.name=""
CAS number chem.cas=""
DTXSID number dtxsid=""

Please note: R is case sensitive.

Agency

Live Demonstration

Introduction to R Commands

今EPA
 United States Environmental Protectio
 Agency
 Basic R commands

- Variables names are called symbols in R and are stored in the environment window.
- Names are case sensitive, must not contain reserved words and can have unlimited length.
- Variable names cannot start with an _ (underscore).
- You can assign a value to a variable using <- operator.
- Example: $\log P<-2.2$ and $\log P<-2.2$ are different variables

How to index a column/matrix of numbers in R

- First, let's create a column of numbers:
even<-c(2,4,6,8,10)
- The column is indexed from 1 thru 5 in sequential order. R always starts with a number one index.
- To obtain the number 6, we need to refer to the third index. In the Rstudio console type:
>even[3]
[1] 6
- Matrices have both rows and columns. Inside the brackets, always start with [row,column]

$$
>\text { numbers<-matrix(1:10, nrow=2,ncol=5) }
$$


```
> numbers[2,4]
[1] 8
```

乏EPA
We can set y as a vector of numbers and find its range and its length

$$
\begin{aligned}
& >y=c(0,1.1,2.4,3,3.6,3.4,3,2.2) \\
& >y \\
& \text { [1] } 0.01 .12 .43 .03 .63 .43 .02 .2 \\
& >\min (y) ; \max (y) \\
& {[1] 0} \\
& {[1] 3.6} \\
& >\text { range }(y) \\
& \text { [1] } 0.03 .6 \\
& >\text { tail }(y, 1) \\
& {[1] 2.2} \\
& >\text { length }(y) \\
& \text { [1] } 8 \\
& >y[7 \text { ength }(y)] \\
& {[1] 2.2}
\end{aligned}
$$

A vector can also contain characters

```
> variables = c("time", "concentration")
> variables
[1] "time" "concentration"
```

Set a sequence of numbers: seq (from, to, step)

| $\begin{aligned} & \begin{array}{l} >x= \\ >x \\ >x \\ {[1]} \\ {[1]} \end{array} 12 \\ & \hline \end{aligned}$ |
| :---: |

Combine columns with cbind (or rbind to join by row)

Or create a data frame (use the \$ operator to call columns)

```
> df = data.frame(x = x,y = y); colnames(df) = variables
df$concentration
[1] 0.0}1.1.1 2.4 3.0 3.6 3.4 3.0 2.2
```


Load and analyze data from an excel file

```
# Instal1 "readx1" if not already installed and load it with "library"
instal1.packages("readx\")
1ibrary(readx1)
```

Remember to have the .xlsx file loaded in your same working directory!

- Read in ToxSci data and convert it to a data frame

```
> toxsci.data <- data.frame(read_excel("toxsci-17-0480-File002.xlsx"))
```

- Find what information is contained in toxsci.data through the column names.
- Find the dimensions of the data frame.

| > colnames (toxsci.data) | | | |
| :---: | :---: | :---: | :---: |
| [1] "Compound" | "DSSTox_Substance_Id" | "CAS" | "Reference" |
| [5] "Species" | "Species.Weight" | "Species.Weight.Units" | "Dose" |
| [9] "Dose.Units.and. Type" | "Time" | "Time.Units" | "Media" |
| [13] "Media.Units" | "Value" | "Units" | "Route" |
| [17] "Source" | "LOQ" | "Subject" | "info" |
| > nrow(toxsci.data) ; ncol(toxsci.data) | | | |
| [1] 2454 | | | |
| [1] 20 | | | |
| > dim(toxsci.data) | | | |
| [1] 2454 | | | |

This data file has 2454 rows of data and 20 columns to describe each row.

You may notice that there are repeated values in many columns. Find the unique values of elements from a vector with repeats using unique().

Here, we find the unique names of the compounds in the data file.

| unique(toxsci.data\$Compound) | | |
| :---: | :---: | :---: |
| [1] "2,4-D" | "Alach1or" | "Alprazolam" |
| [4] "Antipyrine" | "Bensulide" | "Bisphenol A" |
| [7] "Boscalid" | "Bosentan" | "Carbary7" |
| [10] "Carbendazim" | "Chloridazon" | "Chlorpyrifos" |
| [13] "Cyclanilide" | "Cyclosporin A" | "Diazinon-o-analog" |
| [16] "Diclofenac" | "Diltiazem" | "Dimethenamid" |
| [19] "Etoxazole" | "Fenarimol" | "Flufenacet" |
| [22] "Formetanate hydrochloride" | "Hexobarbitone" | "Ibuprofen" |
| [25] "Imazali1" | "Imidacloprid" | "Imipramine" |
| [28] "Metoprolol" | "Midazolam" | "Nilvadipine" |
| [31] "Novaluron" | "Ondansetron" | "Pentadecafluorooctanoic acid" |
| [34] "Permethrin" | "Phenacetin" | "Phenytoin" |
| [37] "Propamocarb hydrochloride" | "Propyzamide" | "Pyrithiobac sodium" |
| [40] "Resmethrin" | "S-Bioallethrin" | "Simazine" |
| [43] "Tolbutamide" | "Triclosan" | "Valproic acid" |

Subset the data to contain information only for the compound " $2,4-\mathrm{D}$ "

Agency

Find the rows that contains a certain element or has a condition (iv route and body weight conditions) and view certain columns
$>$ these. rows = which(chemical_24d\$Route== "iv" \& chemical_24d\$Species.Weight < . 32)
$>$ these. rows
$\begin{array}{llllllllllll}{[1]} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11\end{array}$
> chemical_24d[these. rows, c("Time", "value")]
Time
value
10.08330 .70950000000000002
$20.1670 \quad 0.46600000000000003$
$\begin{array}{lrr}3 & 0.2500 & \text { NA } \\ 4 & 0.5000 & 0.1925\end{array}$
$51.0000 \quad 7.145 \mathrm{E}-2$
$6 \quad 2.0000 \quad 2.1999999999999999 \mathrm{E}-2$
$7 \quad 4.00001 .8450000000000001 \mathrm{E}-3$
$8 \quad 8.0000$
$9 \quad 24.0000$
NA
1048.0000

NA
1172.0000

Live Demonstration

httk-Specific Functions

Visit httk: High-Throughput Toxicokinetics (r-project.org) for a complete guide to httk

Environmental Protection
Agency
Agency
get_physchem_param \{httk\}

Get physico-chemical parameters from chem.physical_and_invitro.data table

Description
This function retrieves physico-chemical properties ("param") for the chemical specified by chem.name or chem.cas from the vLiver tables.
Usage
get_physchem_param(param, chem.name $=$ NULL, chem.cas $=$ NULL, dtxsid $=$ NULL
Arguments
param The desired parameters, a vector or single value.
chem. name The chemical names that you want parameters for, a vector or single value
chem. cas The chemical CAS numbers that you want parameters for, a vector or single value
dtxsid EPA's 'DSSTox Structure ID (https://comptox.epa.gov/dashboard) the chemical must be identified by either CAS, name, or DTXSIDs

```
> get_physchem_param(param="logP", chem.cas = "94-75-7")
[1] 2.81
```


Physico-chemical properties and in vitro measurements for toxicokinetics

Description

This data set contains the necessary information to make basic, high-throughput toxicokinetic (HTTK) predictions for compounds, including Funbound.plasma, molecular weight ($\mathrm{g} / \mathrm{mol}$), $\log \mathrm{P}, \operatorname{logMA}$ (membrane affinity), intrinsic clearance($\mathrm{uL} / \mathrm{min} / 10^{\wedge} 6$ cells), and pKa . These data have been compiled from multiple sources, and can be used to parameterize a variety of toxicokinetic models. See variable EPA.ref for information on the reference EPA.

Usage
chem.physical_and_invitro.data

Format

A data.frame containing 9411 rows and 54 columns.
$>$ subset (chem. physical_and_invitro.data, CAS == "94-75-7")

| | Compound | CAS | CAS.Checksum | DTXSID | Formula | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 94-75-7 | 2,4-d | 94-75-7 | TRUE | DTXSID0020442 | C8H6C1203 | OC ($=0$) $\operatorname{COC} 1=C$ (C | (1 |

All. Compound. Names logHenry logHenry.Reference logMA logMA.Reference logP logP. Reference
94-75-7 2,4-dlDichlorophenoxy|2,4-dichlorophenoxyacetic acid $94-75-7 \quad-8.53$ <NA> 2.81 OPERAV2.7

44-75 Human. Rblood2plasma.Reference Mouse.Funbound.plasma Mouse.Funbound.plasma.Reference Rabbit.Funbound.plasma
Rabbit.Funbound.plasma.Reference Rat.Clint Rat.Clint.pValue Rat.Clint.pValue. Reference Rat.Clint. Reference Rat. Fgutabs
94-75-7 <NA> 0 Wetmore 2013 Wetmore 2013 N
NA $>$ Re 02973
44-75-7 SMILES.desalt.Reference Chemical.Class
94-75-7 EPA

Simulating concentrations using solve_[model_name] (Example case is solve_pbtk)

solve_pbtk(
chem. name $=$ NULL, chem. cas $=$ NULL dtxsid = NULL parameters = NULL, days $=10$, days $=10$, daily.dose $=$ NULL dose $=$ NULL, doses.per. day $=$ NULL, initial.values $=$ NULL plots $=$ FALSE, suppress.messages $=$ FALSE, species = "Human v.dose $=$ FALSE, input.units = "mg/kg", output.units = NULL, method = "lsoda", rtol $=1 \mathrm{e}-08$, atol $=1 \mathrm{e}-12$,
default.to.human = FALSE, recalc.blood2plasma $=$ FALSE, recalc.clearance $=$ FALSE, dosing.matrix $=$ NULL adjusted.Funbound.plasma = TRUE, regression $=$ TRUE restrictive.clearance = TRUE, minimum. Funbound.plasma $=1 \mathrm{e}-04$ monitor.vars $=$ NULL,

- Make sure to set either chemical name, CAS, or DTXSID
- All other function inputs will default unless otherwise specified
- To set the time sequence:
- Days: number of days
- Tsteps: number of steps per hour
- Times: specified sequence of
- Dosing:
- Dose = single dose (default mg/kg)
- Daily.dose = total daily dose
- Doses.per.day
- Iv.dose = TRUE or FALSE to simulate iv or oral dosing
- Units
- Set desired units (default output.units umol or uM)

今EPA

Simulating concentrations using solve_[model_name] (Example case is solve_pbtk)

Use solve_[model_name] with your chosen inputs. Here, we are looking at a 0.203 $\mathrm{mg} / \mathrm{kg}$ iv dose for a rat over the course of 4 hours

```
> out = solve_pbtk(chem.cas = "94-75-7",
+ species = "Rat",
+ dose = 0.203,
+ input.units = "mg/kg",
+ output.units = "mg/L",
    days = 4/24,
    days = 4/24,
+ suppress.messages = TRUE)
> head(out)
            time Aven Cgut Cliver Cven Clung Cart Crest Ckidney Cplasma Atubules Ametabolized
```



```
[2,] 0.00100 0.008813 0.1793 0.6676 1.220 0.1934 1.220 0.1363 0.5580
[3,] 0.01042 0.008760 0.1783 0.6650 1.213 0.1923 1.213 0.1354 0.5547 0.5748 3.426e-04 0.0061390
[4,] 0.02083 0.008701 0.1771 0.6606 1.205 0.1910 1.205 0.1345 0.5510
```



```
[6,] 0.04167 0.008586 0.1747 0.6520 1.189 0.1885 1.189 0.1327 0.5437 0.5633 1.341e-03 0.0239 0.000
```


Parameterize Function

| parameterize_1comp | Parameters for a one compartment (empirical) toxicokinetic model |
| :--- | :--- |
| parameterize_3comp | Parameters for a three-compartment toxicokinetic model (dynamic) |
| parameterize_fetal_pbtk | Parameterize_fetal_PBTK |
| parameterize_gas_pbtk | Parameters for a generic gas inhalation physiologically-based toxicokinetic |
| model | |
| parameterize_pbtk | Parameters for a generic physiologically-based toxicokinetic model |
| parameterize_schmitt | Parameters for Schmitt's (2008) Tissue Partition Coefficient Method |
| parameterize_steadystate | Parameters for a three-compartment toxicokinetic model at steady-state |

```
parameterize_pbtk(
    chem.cas = NULL,
    chem.name = NULL,
    dtxsid = NULL,
    species = "Human"
    default.to.human = FALSE,
    tissuelist = list(liver = c("liver"), kidney = c("kidney"), lung = c("lung"), gut =
        c("gut")),
    force.human.clint.fup = FALSE,
    clint.pvalue.threshold = 0.05,
    adjusted.Funbound.plasma = TRUE,
    adjusted.Clint = TRUE,
    regression = TRUE,
    suppress.messages = FALSE,
    restrictive.clearance = TRUE,
    minimum.Funbound.plasma = 1e-04,
    million.cells.per.gliver = 110,
    liver.density = 1.05,
    kgutabs = 2.18
)
```

- Make sure to set either chemical name, CAS, or DTXSID
- All other function inputs will default unless otherwise specified
- le: default species is human but can be set to: Rat, Human, Mouse, Rabbit
- Set default.to.human = TRUE to substitute in human values when species data is unavailable
- Parameters include tissue:plasma partition coefficients, organ volumes, and flows for the tissue lumping scheme specified by argument tissue list.

Environmental Protection
Agency
Agency

First few parameters produced from parameterize function

| ```> parameterize_pbtk(chem.cas = "94-75-7", species = "Ra $BW [1] 0.25``` |
| :---: |
| $\begin{array}{\|} \text { \$Clint } \\ {[1] \quad 0} \end{array}$ |
| \$Clint. dist
 [1] NA |
| \$C7metabolismc
 [1] 0 |
| \$Fgutabs
 [1] 1 |
| \$Fhep. assay. correction
 [1] 0.9563 |
| \$Funbound. plasma
 [1] 0.02976 |

Parameter values can be changed by the user. Notice the default value for body weight (BW) for a rat is $\mathbf{0 . 2 5}$. This parameter can be switched by

```
>> parms = parameterize_pbtk(chem.cas = "94-75-7",
> parms $BW = 0.31
> head(parms)
$BW
[1] 0.31
```

The solve_model function can then be run with only "parameters = parms"

Plotting in base \mathbf{R}

Let's plot the httk solution (for the $0.203 \mathrm{mg} / \mathrm{kg}$ iv dose) against the data

Find your experimental data points
experimental.points $=$ subset(chemica1_24d, Subject $==42736$)[,c("Time","Va7ue")] experimental.points $=$ data.frame(na.omit(sapply(experimental.points, as.numeric)))
plot(out[,"time"]*24, out[,"Cp1asma"], type=" 7 ",
x7ab = "'Time (hr)",
ylab $=$ "Concentration (mg/L)",
main $=$ "Time vs. Concentration",
7wd = 2,
$y 7 \mathrm{im}=c(0,4))$
\# plot x and y values
\# if you are plotting a line, type = " 7 "
\# set x and y axis labels
\# set main title
\# set line width
\# specify y (or x) limits
points (experimental.points\$Time, experimental.points\$value, col="red", pch $=19$, cex=1.5)

1egend("topright",
1egend $=$ c("prediction","data"),
$1 w d=c(2, N A)$,
$\mathrm{pch}=\mathrm{c}(\mathrm{NA}, 1)$, col=c ("black", "red")
\# use "points" to overlay points
\# set color
\# set point shape
\# set point size
\# set legend position
\# set text for legend elements
\# set $7 w d$ for legend (NA if corresponds to points)
\# set pch for legend (NA if corresponds to lines)
\# set color for each legend element
*To overlay another line, use lines (x, y)

Time vs. Concentration

- Introduction to PBTK modeling
- Rstudio basics
- What is httk?
- Basic R commands
- httk specific commands

Tomorrow we will work with concrete PK examples

- Different compartment models available
- How to parameterize a model
- Different routes
- Comparing data and simulations

> Please join us for tomorrow's session!

BEPA
United States
Environmental Protection
Agency Agency

Q\&A

We'll see you tomorrow!

Begins at 10:00 AM EST. Join using the link sent via email.

