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Motivation

e Environmental health risks are a critical concern for regulators and drive the design of
regulation.

* One of the key challenges in measuring the costs of environmental health risk is that the
location choices of firms and households are endogenous.

e These choices lie behind the well-established observation that economically
disadvantaged households are disproportionately more exposed to environmental harms

e Companies may intentionally select socioeconomically disadvantaged areas to establish
new sites, which implies pre-existing socio-economic disparities

* Households may also choose to live in areas with lower environmental quality, for
instance, driven by financial constraints, which widens environmental inequality among
households (Kermani and Wong, 2021).
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This paper

e We estimate the environmental costs through changes in house prices in a short-time
window around the first time that plants report emitting carcinogenic chemicals.

— Adopt a “donut” approach: Compare property values for those that are within a 3-mile ring of
the plant (“treated”) to those properties that are in a ring between three and five miles from the
same plant (“control”).

— Environmental health risks are higher closer to the plant, but the economic benefits accrue to
all households within the five miles area.

— Repeated sales approach: Focus on properties with multiple transactions before and after the
reporting event. It allows us to control for unobserved time-invariant property characteristics.

— Control further for local economic conditions using fixed effects.

— Focus on plants already operating and exploit the timing of when they exceed the minimum
reporting thresholds (event).

e Evidence on the economic effects of the plant through employment and sales.

e Evidence on housing transactions by minorities.
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Preview of results

1.

On average, houses close to plants that newly report emitting carcinogens transact at
prices 6% — 12% lower than before the event, and relative to properties that are further
away.
But using a repeated sales approach that allows us to control for unobserved property
characteristics, we estimate significantly smaller changes, ranging between —1.4% and
—1.7%.

a. We do not find a commensurate change in listing prices (discounts) and the time these

properties are on the market, implying that asking prices are reduced in response to the event.

. Heterogeneity: The drop in house price is entirely driven by properties in the above

median group experiencing a decline of around —3% after the event relative to those in
the below median group.

Economic benefits: Newly reporting plants experience a 2 percent increase in
employment.

Document granular changes in neighbourhood composition with a greater fraction of
minority buyers and sellers transacting in the close proximity of these plants (but larger

fraction of buyers than sellers).
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Related Literature

e Literature that uses changes in house prices to estimate the willingness-to-pay for
households and benefits from local environmental quality improvements (Rosen 1974,
Chay and Greenstone 2005, Greenstone and Gallagher 2008, Bayer, Keohane, and
Timmins 2009, Currie et al. 2015, Ito and Zhang 2020).

e Literature on agglomeration argues for spillovers and their propagation through firm
networks to the local economy in the form of input sharing, labor market pooling, and
knowledge externalities (Giroud et al. 2021, Bloom et al. 2019, Neumark and Simpson
2015, Enrico 2011, Greenstone, Hornbeck, and Moretti 2010).

e Our contributions: identification, pre-existing plants that report carcinogenic emissions
for the first time, heterogeneity and mechanisms of adjustment.
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INSTITUTIONAL BACKGROUND AND DATA



Event

e Firms that satisfy several criteria must report their emissions to the EPA under the Toxics
Release Inventory (TRI) Program.
— the number of employees (at least 10);
— the industry sector where the facility operates (some NAICS codes are covered);
— the manufacture, production, or use of TRI-listed chemicals;

— the plant exceeds at least one of the thresholds for a chemical or a chemical category.

e |dentify treated plants as those with new flags for the emission of harmful pollutants
classified as such under the Clean Air Act and as a carcinogen by the Occupational
Safety and Health Administration (OSHA).

e Plants that already satisfied these criteria in the year of 2000 (the starting year of the
data) are excluded.

— We do not know whether this is the first year in which they did so.
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Data |

e Corelogic Deed and Tax Records: Covers the near-universe of US residential housing
transactions between 2000 and 2020. Focus on single-family residence, condominiums,
duplexes, and apartments.

e Toxics Release Inventory: Plants report emissions of several chemicals to the EPA
through the TRI program. We identify the first year a carcinogenic chemical is reported to
the EPA from the TRI data. Additionally, we use the reported latitude and longitude of
each plant to merge with the property transactions data and calculate the distance
between each residential property and plant using Vincenty 1975's formula.

e National Establishment Time Series: Captures economic activity of plants and includes
information on employment and sales.
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Data

e Air Quality Monitoring: The AQS data are collected by a network of over 10,000
monitoring stations located throughout the United States and measuring various
pollutants, including ozone, particulate matter, carbon monoxide, nitrogen oxides, sulfur
dioxide, and lead. We focus on hazardous air pollutants (HAP) and extract readings from
all air monitoring stations that are within a five-mile radius of the plant.

e RSEI Geographic Microdata: A summary score capturing the relative size of chemical
releases taking into account its toxicity and how it affects the population that are
potentially exposed. Highly granular (810m x 810m grid cells) with disaggregated air and
water results and linked source-receptor information.

e Multiple Listing Services (MLS): Comes from Corelogic which records a snapshot of
homes listed for sale on multiple listing services (MLS) from several publicly available
web sites and records the address, MLS identifier, and list price.
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EMPIRICAL STRATEGY



Empirical strategy

1. "Donut” approach: Compare property values for those that are within a 3-mile ring of the
plant (“treated”) to those properties that are in a ring between three and five miles from
the same plant (“control”).

— Need to define the ring size

2. Differences in unobserved property characteristics
— Focus on repeated sales of the same property

3. Further controlling for effects on property values arising from local economic activity
— Fixed effects:
(i) Sale-year x county fixed effects, Or
(i) Plant x sale-year fixed effects.
4. Location decisions of firms and households are endogenous
— Focus on plants that operated prior to the announcement
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Defining the donut size

1. Cancer risk measured using the RSEI cancer score
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https://www.epa.gov/rsei/tri-and-rsei-communities

Defining the donut size

1. Cancer risk measured using the RSEI cancer score
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Defining the donut size

1. Cancer risk measured using the RSEI cancer score
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RESULTS



Changes in house prices around first year of reporting

Empirical specification, all transactions

Distance;j <Xmiles

log(Sale amount)ije: = o+ x Post;; 4+ x Posti X 1 %5 tYet tE€ijets

Post;;, is an indicator variable taking a value of one if property 7 is sold in the year ¢ after

the event year and zero otherwise.

. ]1?}8tanceij<Xm“eS to take a value of one if property i is within X miles from a plant j, with

X =3,2,1.5,1.25,1 in the regressions, and zero for properties between 3 and 5 miles of
the same plant.

~; controls for time-invariant plant characteristics and

~et controls for the time-varying macroeconomic conditions in the county where the
property is located.
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Changes in house prices around first year of reporting

All transactions

Dependent variable:

Log(sale amount)

Treatment (Distance in miles) 3 2 1.5 1.25 1
Q) @ ©) “4) ©®
Post 0.022%** 0.079*** 0.0715%** 0.077%** 0.008**
(0.004) (0.004) (0.004) (0.004) (0.004)
Post x 1 Pistance<Xmiles -0.063*** -0.085%** -0.107%** -0 -0.124%**
(0.005) (0.007) (0.008) (0.008) (0.009)
Plant fixed effects Yes Yes Yes Yes Yes
Year x county fixed effects Yes Yes Yes Yes Yes
R2 0.43 0.43 0.43 0.43 0.43
Observations 7,542,012 5,744,154 4,998,638 4,688,460 4,424,724

Coefficients by State

Coefficients by Event year
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Changes in house prices around first year of reporting

Empirical specification, repeated transactions

Distance;j; <Xmiles

log(Sale amount)jer = a+ x Post;: + x Postiy x 1;;

+ i+ Vet +€ijet,

e Post,, is an indicator variable taking a value of one if property 4 is sold in the year ¢ after

the event year and zero otherwise.

]1?}8tanoeij<Xm“eS to take a value of one if property i is within X miles from a plant j, with

X = 3inthe baseline regressions, and zero for properties between 3 and 5 miles of the
same plant.

e ~; controls for time-invariant property characteristics and

* . controls for the time-varying macroeconomic conditions in the county where the
property is located.
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Changes in house prices around first year of reporting

Properties with repeated transactions

Dependent variable:

Log(sale amount)

Treatment (Distance in miles) 3 2 1.5 1.25 1
Q) @ ©) “4) ©®

Post 0.009 0.007 0.009 0.009 0.007

(0.009) (0.009) (0.009) (0.010) (0.009)
Post x 1 Pistance<Xmiles -0.014%** -0.015%* -0.016** -0.017* -0.016*

(0.005) (0.006) (0.008) (0.009) (0.010)
Property fixed effects Yes Yes Yes Yes Yes
Year x county fixed effects Yes Yes Yes Yes Yes
R2 0.86 0.86 0.86 0.86 0.86
Observations 1,085,693 829,738 724,260 680,180 642,095

Dependent variable Measurement error Time horizon Control for local conditions
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Other margins of adjustment

Discounts in listing price

Dependent variable:

Discount in percentage points

Treatment (Distance in miles) 3 2 1.5 1.25 1
Q) @ © “4) ©®

Post -0.000 -0.000 -0.000 0.001 0.000

(0.002) (0.002) (0.002) (0.001) (0.007)
Post x 1Distance<Xmiles -0.002 -0.000 -0.001 0.001 -0.002

(0.001) (0.003) (0.003) (0.002) (0.003)
Property fixed effects Yes Yes Yes Yes Yes
Year x county fixed effects Yes Yes Yes Yes Yes
R2 0.75 0.76 0.76 0.76 0.76
Observations 465,375 332,638 287,976 271,773 258,744
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Other margins of adjustment

Time on the market

Dependent variable:

Time on the market in days

Treatment (Distance in miles) 3 2 1.5 1.25 1
Q) @ ©) “4) ©®

Post -0.669 -1.249 -0.971 -0.993 -1.035

(0.747) (0.805) (0.771) (0.801) (0.753)
Post x 1Distance<Xmiles -1153 -2.244% -2.681 -2.531 -3.202

(0.889) (1.360) (2.349) (2.090) (2.637)
Property fixed effects Yes Yes Yes Yes Yes
Year x county fixed effects Yes Yes Yes Yes Yes
R2 0.62 0.64 0.65 0.66 0.66
Observations 465,249 332,533 287,885 271,692 258,679
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HETEROGENEITY BY HOUSE PRICE



Heterogeneity in treatment effects by sale amount

Repeated transactions, properties values split by above median based on house price distribution prior to the event

Treatment (Distance in miles) 3 2 1.5 1.25 1

Below median

Control 0.0105*** 0.0114** 0.0123***  0.0125**  0.0123**
(0.0039) (0.0044) (0.0047) (0.0048) (0.0049)

Treated 0.0044 0.0036 0.0061 0.0092 0.0097

(0.0058) (0.0078) (0.0096) (0.0097) (0.0107)
Above median

Control -0.0289***  -0.0282***  -0.0277*** -0.0279*** -0.0282***
(0.0044) (0.0047) (0.0048) (0.005) (0.0057)
Treated -0.0356***  -0.0361***  -0.0396*** -0.0447***  -0.0518***
(0.0059) (0.0082) (0.0098) (0.0097) (0.0113)
Property fixed effects Yes Yes Yes Yes Yes
Year x county fixed effects Yes Yes Yes Yes Yes

Observations 530,099 403,715 350,721 329,143 310,633
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Heterogeneity in treatment effects by sale amount

Repeated transactions, properties values split by above median based on house price distribution prior to the event

Treatment (Distance in miles) 3 2 1.5 1.25 1

Difference: Treated minus Control

Below median -0.0062 -0.0078 -0.0062 -0.0033  -0.0026
(0.0058) (0.0073) (0.0091)  (0.0091)  (0.0093)

Above median -0.0067 -0.0079  -0.0119 -0.0162** -0.0237**
(0.0057) (0.0076) (0.0092)  (0.008) (0.0102)

Property fixed effects Yes Yes Yes Yes Yes

Year x county fixed effects Yes Yes Yes Yes Yes

Observations 530,099 403,715 350,721 329,143 310,633
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Economic activity

Plant-level employment and sales

Dependent variable: Log (employment) Log (sales)
Q) )

Post 0.019** 0.014
(0.009) (0.010)

Plant fixed effects Yes Yes

Year fixed effects Yes Yes

R2 0.97 0.97

Observations 30,162 29,633
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HOUSING TRANSACTIONS BY MINORITIES



|dentifying minorities

e Use first and last names of buyers and sellers from the deeds data

e Prediction algorithm proposed by Laohaprapanon, Sood, and Naji 2022:
— Exploits the US census data, the Florida voting registration data, and the Wikipedia data.
— Predicts ethnicity based on first and last name or just the last name.

— Categorizes names between Non-Hispanic Whites, Non-Hispanic Blacks, Asians, and
Hispanics, with their respective probabilities.

e For the classification, we use the last names of all sellers and buyers who are individuals.
In our sample, for buyers (sellers), we can predict race and ethnicity for 79% (60.2%) of all

transactions.
e We focus on Hispanics and Non-Hispanics for which the accuracy of the algorithm is

better.
— Dummy equal to one for Hispanic home buyer or home seller.
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Changes in fraction of Hispanic home buyers

All transactions

Panel A: Buyers

Dependent variable: 1 (Hispanic)
Treatment (Distance in miles) 3 2 1.5 1.25 1
Q) @ ©) “4) ©®
Post -0.005%** -0.005%** -0.004** -0.003* -0.002
(0.002) (0.002) (0.002) (0.002) (0.002)
Post x 1Distance<Xmi\es 0.072%** 0.016*** 0.0718%** 0.079%** 0.022%*
(0.002) (0.003) (0.003) (0.003) (0.004)
Plant fixed effects Yes Yes Yes Yes Yes
Yearx county fixed effects Yes Yes Yes Yes Yes
R2 0.14 0.14 0.14 0.14 0.13
Observations 6,177,760 4,701,805 4,088,040 3,832,287 3,615,276

Hispanic buyers: Alternative definition
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Changes in fraction of Hispanic home sellers

All transactions

Panel B: Sellers

Dependent variable: 1 (Hispanic)
Treatment (Distance in miles) 3 2 1.5 1.25 1
Q) @ ©) “4) ©®
Post -0.005%** -0.005%** -0.004#** -0.004%** -0.003**
(0.002) (0.002) (0.007) (0.007) (0.001)
Post x 1Distance<Xmi\es 0.070%** 0.014*** 0.016%** 0.018*** 0.0719%**
(0.002) (0.003) (0.003) (0.004) (0.005)
Plant fixed effects Yes Yes Yes Yes Yes
Year x county fixed effects Yes Yes Yes Yes Yes
R2 0.13 0.13 0.13 0.12 0.12
Observations 4,795,888 3,640,031 3,158,636 2,959,388 2,788,211

Hispanic sellers: Alternative definition
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Conclusion

e We estimate the effects of environmental health risks using granular data on housing
transactions.

e Our methodology allows us to control for local economic activity effects (donut
approach, saturate the model with fixed effects).

e We find an overall negative effect on housing values of between —1.4% and —1.7%.

e Significant heterogeneity with more expensive properties experiencing a relative decline
of around -3%. In contrast, less expensive ones benefit from an increase in value (in the
control group).

e QOur results suggest that the willingness of households to pay to avoid such plants is
offset by an increase in industrial activity with greater benefits for those who purchase
lower-priced houses in the area.
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Number of real estate transactions by county

Real estate transactions by counties
2000 - 2020
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Location of the reporting plants

Toxic plant locations
2001 - 2020
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Empirical distribution of sale prices

All transactions vs. repeated transaction

Distribution of sale prices (US $)
All vs. repeated transactions

T T T T T T
33,434 58,858 108,683 201,325 374,040 691,635

I Al [ Repeated
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Coefficients by state

All transactions with plant fixed effects

n

LT
i3

37/51



Coefficients by event year

All transactions with plant fixed effects

Log (sale amount)
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Robustness to dependent variable function form

Repeated transactions, dependent variable in levels instead of logarithm

Dependent variable: Sale amount (S)
Treatment (Distance in miles) 3 2 1.5 1.25 1
M @ ©) 4 ©)
Post 1747.970 1313.927 1583.286 1382.705 695.509
(1906.569) (2006.493) (2054.050) (2082.697) (2036.329)
Post x 1 Pistance<Xmiles -4225.660%**  -5771.382%**  -6026.167***  -7063.518%**  -7245870***
(966.320) (1272.229) (1650.037) (1808.607) (1868.643)
Property fixed effects Yes Yes Yes Yes Yes
Yearx county fixed effects Yes Yes Yes Yes Yes
R2 0.87 0.87 0.87 0.87 0.87
Observations 1,085,693 829,738 724,260 680,180 642,095
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Robustness to time measurement error

Repeated transactions, greater than 100 observations

Dependent variable:

Log(sale amount)

Treatment (Distance in miles) 3 2 1.5 1.25 1
M 2 ©) 4 ®

Post 0.010 0.006 0.009 0.009 0.005

(0.011) (0.012) (0.012) (0.013) (0.013)
Post x 1 Pistance< Xmiles -0.014%** -0.015** -0.015*% -0.015 -0.013

(0.005) (0.006) (0.008) (0.010) (0.010)
Property fixed effects Yes Yes Yes Yes Yes
Yearx county fixed effects Yes Yes Yes Yes Yes
R2 0.86 0.86 0.86 0.86 0.86
Observations 950,321 717,668 622,391 583,362 549,856
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Robustness to event window

Repeated transactions, expanding the event window size

Dependent variable: Log(sale amount)
Event window: (-21) (-31)
Treatment (Distance in miles) 3 2 15 1.25 1 3 2 15 125 1
M @ ©) @ © ©) @) ®) © (10)
Post 0.074%%* 0.014%** 0.0174* 0.016*** 0.016*** 0.016*** 0.015*** 0.016*** 0.015*** 0.016***
(0.005) (0.005) (0.005) (0.006) (0.006) (0.004) (0.004) (0.005) (0.005) (0.005)
Post x 1 Distence< Xmiles -0.012%%* -0.013** -0.013** -0.014** -0.014* -0.011*** -0.011** -0.012** -0.013** -0.014*
(0.004) (0.005) (0.006) (0.007) (0.008) (0.004) (0.005) (0.006) (0.007) (0.007)
Property fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year x county fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R? 0.87 0.86 0.86 0.86 0.86 0.87 0.87 0.87 0.87 0.87
Observations 2,024,515 1,546,964 1,348,404 1,266,398 1,195,207 3,127,197 2,387,778 2,080,6551,954,800 1,846,326
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Controlling for local economic conditions

Repeated transactions

Dependent variable:

Log(sale amount)

Treatment (Distance in miles) 3 2 1.5 1.25 1
M 2 ©) 4 ®

Post x 1 Pistance<Xmiles -0.068*** -0.089*** -0.107%** -0.112%%* -0.122%**

(0.006) (0.008) (0.009) (0.010) (0.012)
Plantxyear fixed effects Yes Yes Yes Yes Yes
County fixed effects Yes Yes Yes Yes Yes
R2 0.39 0.39 0.39 0.39 0.39
Observations 1,085,203 829,243 723,758 679,667 641,571
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Robustness to number of transactions

Repeated transactions, more than 100 observations

Dependent variable: Log(sale amount)
Treatment (Distance in miles) 3 2 1.5 1.25 1
M @ ®) 4 ©®)
Post 0.005 0.003 0.006 0.006 0.004
(0.011) (0.012) (0.012) (0.013) (0.012)
Post x 1Dislance<Xmi\es 0.105%** 0.102*** 0.099*** 0.096*** 0.093***
(0.007) (0.009) (0.010) (0.017) (0.017)
Post x Above x 1 Pistance<Xmiles -0.292%x* -0.298%** -0.297%** -0.297%** -0.294%xx
(0.014) (0.017) (0.018) (0.020) (0.022)
Property fixed effects Yes Yes Yes Yes Yes
Year x county fixed effects Yes Yes Yes Yes Yes
R2 0.87 0.86 0.86 0.86 0.86
Observations 950,321 717,668 622,391 583,362 549,856
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Robustness to large price changes between consecutive transactions

Repeated transactions, drop 10% of observations by price changes — bottom 5% and top 5%

Dependent variable:

Log(sale amount)

Treatment (Distance in miles) 3 2 1.5 1.25 1
) 2 ®) 4) (5)
Post -0.001 0.001 0.002 0.003 0.003
(0.004) (0.004) (0.004) (0.004) (0.004)
Post x 1 Pistance<Xmiles 0.077%** 0.070%** 0.068*** 0.069%** 0.0771%**
(0.003) (0.004) (0.005) (0.006) (0.006)
Post x 1Pistance<Xmiles s Ahove -0.167%** -0.172%** -0.172%** -0.174%%* -0.077%%*
(0.006) (0.007) (0.008) (0.009) (0.009)
Property fixed effects Yes Yes Yes Yes Yes
Year x county fixed effects Yes Yes Yes Yes Yes
R2 0.94 0.94 0.94 0.94 0.94
Observations 977926 745,405 649,851 609,778 575,283
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Robustness to large price changes between consecutive transactions

Repeated transactions, drop 20% of observations by price changes — bottom 10% and top 10%

Dependent variable:

Log(sale amount)

Treatment (Distance in miles) 3 2 1.5 1.25 1
M @ ®) 4 ©®)
Post -0.004 -0.002 -0.001 -0.000 -0.000
(0.003) (0.003) (0.004) (0.004) (0.004)
Post x 1Dislance<Xmi\es 0.055%* 0.054%** 0.055%** 0.055** 0.056%**
(0.003) (0.003) (0.004) (0.004) (0.005)
Post x 1Distance<Xmiles s Ahove -0.122%%* -0.126%** -0.128%*%* -0.129%** -0.137%**
(0.004) (0.005) (0.006) (0.006) (0.007)
Property fixed effects Yes Yes Yes Yes Yes
Year x county fixed effects Yes Yes Yes Yes Yes
R2 0.96 0.96 0.96 0.96 0.96
Observations 882,582 671,732 585,016 548,666 517,483

45/ 51



Robustness to the definition of above vs. below median

Repeated transactions, above and below median defined within rings

Dependent variable:

Log(sale amount)

Treatment (Distance in miles) 3 2 1.5 1.25 1
) 2 ®) 4) (5)
Post 0.004 0.005 0.008 0.008 0.007
(0.009) (0.009) (0.009) (0.010) (0.009)
Post x 1 Pistance<Xmiles 0.175%** 0.117%%* 0.116%** 0.1712%** 0.109%**
(0.007) (0.009) (0.009) (0.010) (0.011)
Post x 1Distance<Xmiles s Ahove -0.300%** -0.307x** -0.307%** -0.303*** -0.297%**
(0.013) (0.015) (0.016) (0.017) (0.018)
Property fixed effects Yes Yes Yes Yes Yes
Year x county fixed effects Yes Yes Yes Yes Yes
R2 0.87 0.86 0.86 0.86 0.86
Observations 1,085,693 829,738 724,260 680,180 642,095
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Robustness to event window

Repeated transactions, expanding the event window size

Dependent variable: Log(sale amount)
Event window: (-21) (37
Treatment (Distance in miles) 3 2 1.5 1.25 1 3 2 1.5 1.25 1
) @ G @ ©GB © @O 6 (9 09
Post 0.012*%* 0.013** 0.016***0.015***0.016***0.015***0.015***0.015***0.014***0.015***
(0.005) (0.005) (0.005) (0.006) (0.006) (0.004) (0.004) (0.004) (0.005) (0.005)
Post x 1Distance<Xmiles 0.093**0.089**4).086***0.083**0.079**0.084***).081***0.078***).074***0.070***

(0.006) (0.007) (0.008) (0.008) (0.009) (0.005) (0.006) (0.007) (0.008) (0.008)

Post x 1Distance<Xmiles  Apove -0.248%k0.252540. 252460 25250 247Hk0) 21QHkI) 294 222K 220*+H) 216k
(0.010) (0.012) (0.012) (0.014) (0.014) (0.009) (0.010) (0.010) (0.011) (0.012)

Property fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year x county fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
R2 087 08 08 08 08 087 08/ 087 087 087
Observations 2,024,515546,96%4,348,40%266,398195,203,127,192,387,778,080,656954,800846,326
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Alternative classification of Hispanic buyers

All transactions, predicted probability greater 90%

Panel A: Buyers

Dependent variable: 1 (Hispanic)
Treatment (Distance in miles) 3 2 1.5 1.25 1
M 2 ®) 4 ®)
Post -0.007%** -0.007**+* -0.006%** -0.005%* -0.003*
(0.002) (0.002) (0.002) (0.002) (0.002)
POSt X 1D|stance<Xm|\es 0_016*** O_OZ’I*** 0_024*** 0_025*** 0_028***
(0.003) (0.003) (0.004) (0.004) (0.005)
Plant fixed effects Yes Yes Yes Yes Yes
Year x county fixed effects Yes Yes Yes Yes Yes
R2 0.17 0.17 017 0.17 0.17
Observations 6,177,760 4,701,805 4,088,040 3,832,287 3,615,276
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Alternative classification of Hispanic sellers

All transactions, predicted probability greater 90%

Panel B: Sellers

Dependent variable: 1(Hispanic)
Treatment (Distance in miles) 3 2 1.5 1.25 1
M @ ®) &) ®)
Post -0.005%** -0.005%** -0.004%** -0.0047** -0.003**
(0.002) (0.002) (0.007) (0.007) (0.001)
Post x 1 Pistance<Xmiles 0.070%** 0.014%** 0.016%** 0.018%** 0.019%**
(0.002) (0.003) (0.003) (0.004) (0.005)
Plant fixed effects Yes Yes Yes Yes Yes
Year x county fixed effects Yes Yes Yes Yes Yes
R2 0.13 0.13 0.13 0.12 0.12
Observations 4,795,888 3,640,031 3,158,636 2,959,388 2,788,211
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