EPA National Environmental Justice Community Engagement Call

SEPTEMBER 19, 2023

Expanding the Conversation

environmental justice

Please join by phone or computer, not both

You are on mute, please enter questions and comments into the Q&A pod

Ļ

If selected to speak during dialogue, please limit comment to 1 minute

Housekeeping

Recording and transcript will be available online in the near future

En Español

Tenemos interpretación en español disponible para aquellos que prefieren escuchar en español.

- Cómo cambiar el canal de audio en español
- Las personas pueden agregar preguntas en español al módulo de preguntas y respuestas
- Los materiales de la reunión estarán disponibles en español.

Spanish-language interpretation is available for those who prefer to listen in Spanish.

- How to switch to Spanish language audio channel
- Individuals can add questions in Spanish to the Q&A Pod
- Meeting materials will be made available in Spanish.

MAKING THE RIGHT CHOICES FOR YOUR UTILITY

How EPA's Water Infrastructure Planning Tool Can Help Utilities Engage Community & Make Cost-Effective Multi-Benefit Investments

Today's Speakers

Leslie Corcelli Physical Scientist US EPA

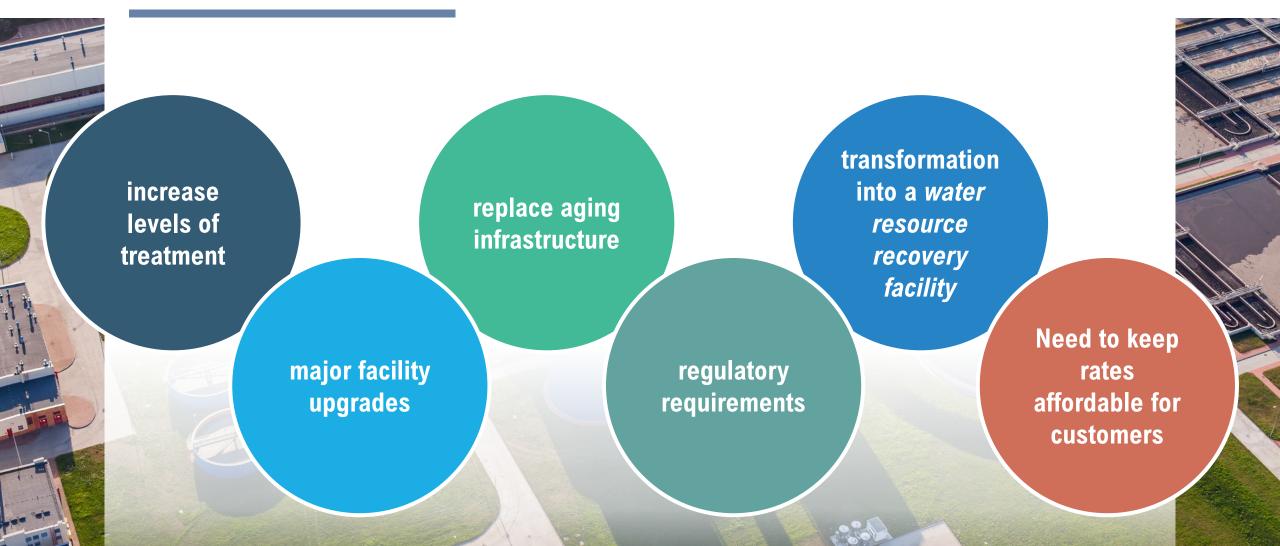
Andy Kricun former Executive Director Camden County Municipal Utility Authority

Sarah Shadid Senior Associate Ross Strategic

Water Utilities are Anchor Institutions

Every day in America, water and wastewater utilities are on the front lines...

o infr


Sustaining critical infrastructure investments

Providing clean and safe water for hundreds of millions

Protecting and enhancing the environment

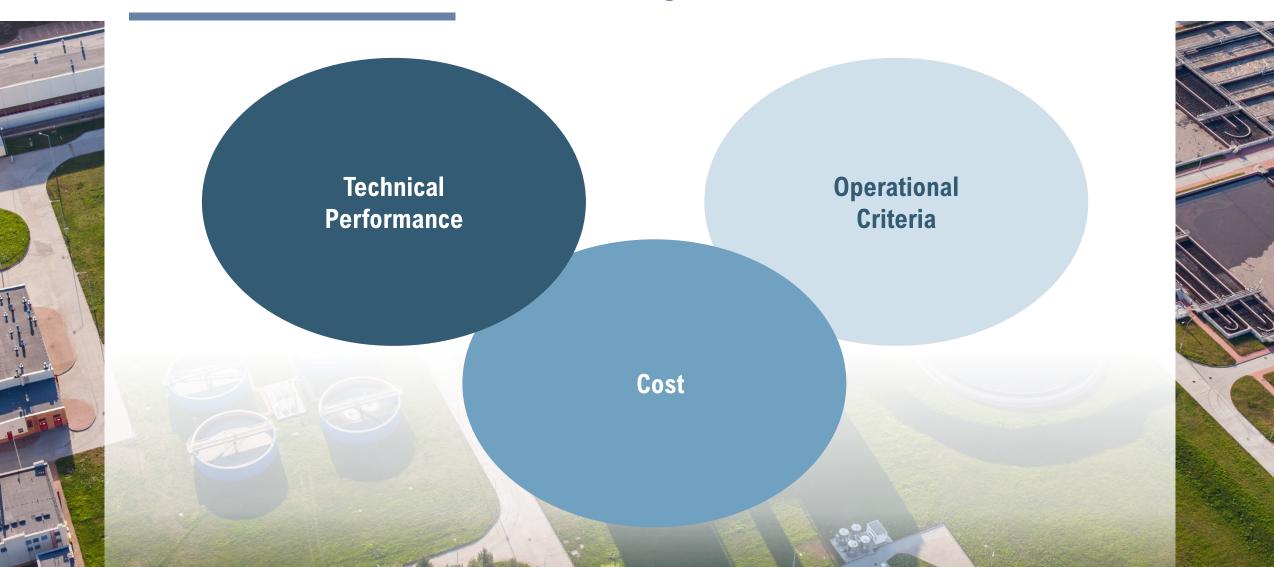
Water Utilities & Large Capitol Investments

Investments last for decades

Costly, Long Term Financial Commitment

Customer Funded

Service lives 50+ Years


Today's capital project decisions are the foundation for decades of commitment to funding both the operating and capital costs over decades of service.

Investments last for decades – and it's more than cost

Investments can provide economic, environmental, and social benefits to the community

Conventional alternatives analysis

Conventional alternatives analysis *may fall short:*

EPA's capital project decision-making method, Augmented Alternatives Analysis (AAA), was developed to address these challenges in modern-day project decision-making.

Augmented Alternatives Analysis (AAA)

Adds to the core tenets of conventional alternatives analysis benefitting your utility in a few key ways:

Begins with goals, not cost

Drills down from goals to metrics

Creates common scale for metrics (-5 to +5)

Considers cost as final step (cost-benefit ratio)

Pilot Tested Method, Real World Results

City of Saco Water Resource Recovery Department

- Small Town
- Water Resource Recovery Utility

High Line Canal Conservancy

- Non-profit
- Works with 11 jurisdictions and water districts

Camden County Municipal Utilities Authority

- Large City
- Water Resource Recovery Utility

Camden County Municipal Utilities Authority (2016)

 Public wastewater utility serving
 City of Camden, City of Gloucester, and Camden County

Revenues: ~\$100 million/annually

Residents served Lines Plant capacity 510,0000 125 mi. 58 mgd

Receiving water: Delaware River

LTCP required to be in place by 2020 (Camden Goal: 2018)

Average number of Combined Sewer Overflows annually: 70

Camden County Municipal Utilities Authority (2016)

AAA Provided:

- An organizing framework for **meaningful** community input
- Systematic process to identify optimal project from a triple bottom line standpoint

Outcomes:

- Significantly more greenspace created for community benefit
- Fewer overflows and less flooding for environmental and public health benefit
- Only slightly greater cost, mitigated by SRF funding

AAA Process

A step-by-step walkthrough

How does AAA add to a conventional analysis?

	Conventi	onal Alternatives Analysis 📫 Augmented Steps of AAA
•	1	Understand Community Priorities
	2	Determine Project Goals
	3	Define Objectives
•	4	Rank the Importance of Goals
	5	Establish Criteria
	6	Choose Metrics for Your Criteria
+	7	Create Performance Ranges
1	8	Evaluate Performance of Each Alternative
T	9	Compare Across Alternatives
	10	Incorporate Cost Considerations

Step 1: Understand Community Priorities

Attending Community Meetings

Step 1: Understand Community Priorities

Step 1: Understand Community Priorities

Step 2: Determine Goals

Goal are **broad**, **high-level statements** that provide a snapshot of the **desired final results** that you hope to achieve (both within the utility and broader community).

Step 2: Determine Goals – Camden Example

Enhance Public Health and Environment

Produce Economic and Neighborhood Benefits

Optimize Existing Public Resources Meet or Exceed Permit Requirements

Enhance Overall System Resiliency

Increase Public Understanding and Support for CSO Solutions


Step 2: Determine Goals – Camden Example

Goal

Enhance Public Health and Environment

Step 3: Define Objectives – Camden Example

An **objective** is an outcome that contributes to the achievement of the goal.

Step 3: Define Objectives – Camden Example

Increase compatibility with regional redevelopment efforts

Reduce human contact with sewage

Improve receiving water quality

Improve livability in neighborhoods

Identify and establish an affordable CSO strategy

Reduce the amount of stormwater and groundwater entering system

Support ongoing collection system operations

Increase resilience to storm surges

Increase adaptability to changing hydrologic conditions

Meet/exceed capture targets

Meet/exceed treatment targets

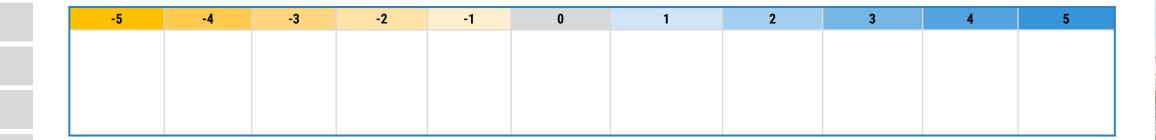
Transfer knowledge of CSO problems and value of wastewater services

Step 4: Rank the Importance of Goals – Camden Example

Ranking is the importance, prioritization, or "weight" of one goal in relation to another.

Step 4: Rank the Importance of Goals – Camden Example

Step 5: Establish Criteria – Camden Example



Criteria reveal an alternative's strengths and weaknesses. They demonstrate how an alternative will perform relative to goal and objective.

Step 6: Choose Metrics – Camden Example

Metrics measure performance of each alternative. They can be quantitative or qualitative.

-5	-4	-3	-2	-1	0	1	2	3	4	5
					Alternative					
			-		has no					
					impact on					
					impact on the flood					
1	Les Co			Acres	quantity	Carlos and			5.000	

-5	-4	-3	-2	-1	0	1	2	3	4	5
										Alternative
					Alternative					reduces
					has no					flood
					impact on					quantity
					the flood					by more
					quantity		The second second			than 40%
T			Call State		C. Select	P. Siel	K	The second	Sea -	annually

-5	-4	-3	-2	-1	0	1	2	3	4	5
					Alternative has no impact on the flood quantity					Alternative reduces flood quantity by more than 40% annually

-5	-4	-3	-2	-1	0	1	2	3	4	5
					Alternative has no impact on the flood quantity	Alternative reduces flood quantity by up to 10% annually	Alternative reduces flood quantity by 11- 20% annually	Alternative reduces flood quantity by 21- 30% annually	Alternative reduces flood quantity by 31- 40% annually	Alternative reduces flood quantity by more than 40% annually

	IV	iet	ric		flo	ood quantit	ty % reduct	ion in resid	lential area	is of conc	ern			
-5	-4	-3	-2	-1	0	1		2		3	4			5
					has no impact of the flood quantit	allantity	by up to qu	reduces flood uantity by 11-2 annually	20% quantity	es flood by 21-30% nually	reduces flo quantity by 31 annually	-40%	quan	uces flooc tity by mo 10% annua
	N	let	ric	-4	rea of recreat	ional space	e in acres	0	1	2	3		4	5

Alternative 1: All Grey

Alternative 2: Moderate Green

Alternative 3: Heavy Green

Metric

flood quantity % reduction in residential areas of concern

-5	-4	-3	-2	-1	0	1	2	3	4	5
					has no impact on the flood quantity	reduces flood quantity by up to 10% annually	reduces flood quantity by 11-20% annually	reduces flood quantity by 21-30% annually	reduces flood quantity by 31-40% annually	reduces flood quantity by more than 40% annually
								Alt. 1* 4		

Alternative 1: All Grey	0
Alternative 2: Moderate Green	3
Alternative 3: Heavy Green	3

		Unweighted Score				
	Criteria	Alternative A	Alternative B	Alternative C		
	Goal 1 - Reduction in flooding events	0	3	3		
i -						
	E					
and the second second		25200	10-12-22	the second		

Oritorio	Unweighted Score				
Criteria	Alt A	Alt B	Alt C		
Goal 1 - Reduction in flooding events	0	3	3		
Goal 1 - Reduction in CSO discharge volume					
Goal 2 - Annual system-wide CSO volume capture					
Goal 3 - Flexibility in siting project					
Goal 4 - Flexibility in timing of implementation of project					
Goal 4 - Flexibility in phasing implementation of alternatives					
Goal 4 - Green space					
Goal 4 - Reduction in heat island effect					
Goal 5 - Cost effectiveness		S. S. S.			
Goal 6 - Visibility to citizens					

Oritoria	Unweighted Score				
Criteria	Alt A	Alt B	Alt C		
Goal 1 - Reduction in flooding events	0	3	3		
Goal 1 - Reduction in CSO discharge volume	4	4	4		
Goal 2 - Annual system-wide CSO volume capture					
Goal 3 - Flexibility in siting project					
Goal 4 - Flexibility in timing of implementation of project					
Goal 4 - Flexibility in phasing implementation of alternatives					
Goal 4 - Green space					
Goal 4 - Reduction in heat island effect					
Goal 5 - Cost effectiveness					
Goal 6 - Visibility to citizens					

Oritorio	Un	Unweighted Score				
Criteria	Alt A	Alt B	Alt C			
Goal 1 - Reduction in flooding events	0	3	3			
Goal 1 - Reduction in CSO discharge volume	4	4	4			
Goal 2 - Annual system-wide CSO volume capture	5	5	5			
Goal 3 - Flexibility in siting project	1	1	1			
Goal 4 - Flexibility in timing of implementation of project	4	3	2			
Goal 4 - Flexibility in phasing implementation of alternatives	3	3	3			
Goal 4 - Green space	0	1	1			
Goal 4 - Reduction in heat island effect	0	1	1			
Goal 5 - Cost effectiveness	2	-1	-3			
Goal 6 - Visibility to citizens		5	5			

	Unweighted Score				
Criteria	Alt A	Alt B	Alt C		
Goal 1 - Reduction in flooding events	0	3	3		
Goal 1 - Reduction in CSO discharge volume	4	4	4		
Goal 2 - Annual system-wide CSO volume capture	5	5	5		
Goal 3 - Flexibility in siting project	1	1	1		
Goal 4 - Flexibility in timing of implementation of project	4	3	2		
Goal 4 - Flexibility in phasing implementation of alternatives	3	3	3		
Goal 4 - Green space	0	1	1		
Goal 4 - Reduction in heat island effect	0	1	1		
Goal 5 - Cost effectiveness	2	-1	-3		
Goal 6 - Visibility to citizens	1	5	5		
TOTAL	20	25	22		

	Criteria					Unweighted Score			
		Criteria		Alt A	Alt B	Alt C			
Goal 1 - Reduction	n in floo	ding events		0	3	3			
Goal 1 - Reductio		Enhance Public Health and Environment	10		4	4	4		
Goal 2 - Annual s	\wedge	Meet or Exceed Permit Requirements	9		5	5	5		
Goal 3 - Flexibility		Meet of Exoced Fernit Requirements	9		1	1	1		
Goal 4 - Flexibility	1-1-	Enhance Overall System Resiliency	8		4	3	2		
Goal 4 - Flexibility		Produce Economic & Neighborhood Benefits	8		3	3	3		
Goal 4 - Green sp	\$	Optimize Existing Public Resources	7		0	1	1		
Goal 4 - Reductio					0	1	1		
Goal 5 - Cost effe		Increase Public Understanding & Support for CSO Solutions	6		2	-1	-3		
Goal 6 - Visibility t	o citize	ns	Sec.		1	5	5		
				TOTAL	20	25	22		

	Criteria						
		Gitteria		Weight	Alt A	Alt B	Alt C
Goal 1 - Reduction		0	3	3			
Goal 1 - Reductio		Enhance Public Health and Environment	10		4	4	4
Goal 2 - Annual s	\wedge	Meet or Exceed Permit Requirements	9		5	5	5
Goal 3 - Flexibility					1	1	1
Goal 4 - Flexibility		Enhance Overall System Resiliency	8		4	3	2
Goal 4 - Flexibility	5/0	Produce Economic & Neighborhood Benefits	8		3	3	3
Goal 4 - Green sp		Optimize Existing Public Resources	7		0	1	1
Goal 4 - Reductio		Increase Public Understanding &	6		0	1	1
Goal 5 - Cost effe		Support for CSO Solutions	6		2	-1	-3
Goal 6 - Visibility t	o citize	ns	0		- 1	5	5
			TOTAL		20	25	22

	Weight						
		Criteria		weight	Alt A	Alt B	Alt C
Goal 1 - Reduction	n in floo	ding events	-	*	0	3	3
Goal 1 - Reductio		Enhance Public Health and Environment	10	•	4	4	4
Goal 2 - Annual s	\wedge	Meet or Exceed Permit Requirements	9	+	5	5	5
Goal 3 - Flexibility				*	1	1	1
Goal 4 - Flexibility		Enhance Overall System Resiliency	8	X	4	3	2
Goal 4 - Flexibility	000	Produce Economic & Neighborhood Benefits	8	→	3	3	3
Goal 4 - Green sp		Optimize Existing Public Resources	7	*	0	1	1
Goal 4 - Reductio		Increase Public Understanding &			0	1	1
Goal 5 - Cost effe		Support for CSO Solutions	6		2	-1	-3
Goal 6 - Visibility t	o citize	ns			- 1	5	5
			TOTAL		20	25	22

		Criteria		Weight			
		Unterna		Weight	Alt A	Alt B	Alt C
Goal 1 - Reduction	n in floo	ding events		10	0	3	3
Goal 1 - Reductio		Enhance Public Health and Environment	10	• 10	4	4	4
Goal 2 - Annual s	\wedge	Meet or Exceed Permit Requirements	9	• 9	5	5	5
Goal 3 - Flexibility				- 8	1	1	1
Goal 4 - Flexibility		Enhance Overall System Resiliency	8	8	4	3	2
Goal 4 - Flexibility	000	Produce Economic & Neighborhood Benefits	8	8	3	3	3
Goal 4 - Green sp		Optimize Existing Public Resources	7	8	0	1	1
Goal 4 - Reductio		Increase Public Understanding &	6	8	0	1	1
Goal 5 - Cost effe		Support for CSO Solutions	6	7	2	-1	-3
Goal 6 - Visibility t	o citize	ns		6	1	5	5
			TOTAL		20	25	22

Criteria	Woight			
Criteria	Weight	Alt A	Alt B	Alt C
Goal 1 - Reduction in flooding events	10	0	3	3
Goal 1 - Reduction in CSO discharge volume	10	4	4	4
Goal 2 - Annual system-wide CSO volume capture	9	5	5	5
Goal 3 - Flexibility in siting project	8	1	1	1
Goal 4 - Flexibility in timing of implementation of project	8	4	3	2
Goal 4 - Flexibility in phasing implementation of alternatives	8	3	3	3
Goal 4 - Green space	8	0	1	1
Goal 4 - Reduction in heat island effect	8	0	1	1
Goal 5 - Cost effectiveness	7	2	-1	-3
Goal 6 - Visibility to citizens	6	1	5	5
TOTAL				

Criteria	Weight	Alt A	Alt B	Alt C
Goal 1 - Reduction in flooding events	10	0	10	30
Goal 1 - Reduction in CSO discharge volume	10	40	40	40
Goal 2 - Annual system-wide CSO volume capture	9	45	45	45
Goal 3 - Flexibility in siting project	8	8	8	8
Goal 4 - Flexibility in timing of implementation of project	8	32	24	16
Goal 4 - Flexibility in phasing implementation of alternatives	8	24	24	24
Goal 4 - Green space	8	0	8	8
Goal 4 - Reduction in heat island effect	8	0	8	8
Goal 5 - Cost effectiveness	7	6	18	30
Goal 6 - Visibility to citizens	6	0	10	30
TOTAL				

Criteria	Weight	Alt A	Alt B	Alt C
Goal 1 - Reduction in flooding events	10	0	10	30
Goal 1 - Reduction in CSO discharge volume	10	40	40	40
Goal 2 - Annual system-wide CSO volume capture	9	45	45	45
Goal 3 - Flexibility in siting project	8	8	8	8
Goal 4 - Flexibility in timing of implementation of project	8	32	24	16
Goal 4 - Flexibility in phasing implementation of alternatives	8	24	24	24
Goal 4 - Green space	8	0	8	8
Goal 4 - Reduction in heat island effect	8	0	8	8
Goal 5 - Cost effectiveness	7	6	18	30
Goal 6 - Visibility to citizens	6	0	10	30
TOTAL		<u>155</u>	<u>185</u>	209

Criteria	Weight	Alt A	Alt B	Alt C
Goal 1 - Reduction in flooding events	10	0	10	30
Goal 1 - Reduction in CSO discharge volume	10	40	40	40
Goal 2 - Annual system-wide CSO volume capture	9	45	45	45
Goal 3 - Flexibility in siting project	8	8	8	8
Goal 4 - Flexibility in timing of implementation of project	8	32	24	16
Goal 4 - Flexibility in phasing implementation of alternatives	8	24	24	24
Goal 4 - Green space	8	0	8	8
Goal 4 - Reduction in heat island effect	8	0	8	8
Goal 5 - Cost effectiveness	7	6	18	30
Goal 6 - Visibility to citizens	6	0	10	30
TOTAL		<u>155</u>	<u>185</u>	<u>209</u>

Step 10: Incorporate Cost Considerations – Camden Example

	Alt A	Alt B	Alt C
Total Score	155	185	209
Project Capital Cost (Millions)	25	27	30
Benefit-Cost Ratio			

Step 10: Incorporate Cost Considerations – Camden Example

	Alt A	Alt B	Alt C
Total Score	155	185	209
Project Capital Cost (Millions)	25	27	30
Benefit-Cost Ratio	6.2	6.7	7

The AAA Process

	Conventior	nal Alternatives Analysis 🚽 Augmented Steps of AAA
•	1	Understand Community Priorities
	2	Determine Project Goals
	3	Define Objectives
•	4	Rank the Importance of Goals
	5	Establish Criteria
	6	Choose Metrics for Your Criteria
•	7	Create Performance Ranges
n	8	Evaluate Performance of Each Alternative
1	9	Compare Across Alternatives
	10	Incorporate Cost Considerations

Camden Experience with AAA

- Identified an investment alternative with **significant community input**
- Improved community & environmental benefits (without significant cost & impact to ratepayers)
- Allowed Camden to apply unique values & weigh them systematically
- Put competing components of the project together to evaluate the full picture

The AAA process was applied – *not theoretical* – and allowed us to talk about the **where** and **how** of green infrastructure

Questions?

AAA Resources

Making the Right Choices for Your Utility: **Using Community Priorities and Sustainability** Criteria for Water Infrastructure Decision-Making

May 2022

SEPA

EPA's AAA Guide (Revised May 2022) Making the Right Choices for Your Utility - Worksheets | Page

Step 1: Engage Your Community

A central component of the AAA process is to establish a clear and transparent way for a utility to incorporate community priorities into major capital projects AAA provides an effective way to convey the decision-making process used to help ensure public support on often costly but necessary infrastructure projects

As a first step in your process, consider who in your community may have an important role in the success of your project. These individuals may include those who are regularly engaged in topics relevant to water resources and utility planning, but it may benefit your project to also engage with individuals representing groups or organizations that have historically not engaged in these topics. The list of individuals you'd like to engage may include those that live near and would be impacted by potential future projects, board or council members that may play a role in approving your project plans, local civic or non-profit organizations, or environmental justice groups. Note, examples of stakeholder type are impacted Community Member, Environmental Group, Regulators, Business, Manufacturing, Civic Organization, Environmental Justice, Public Health. The AAA process is most robust when it draws priorities and input from a wide range of diverse community voices.

Stakeholder Type & Conta

Stakeholder Type:	
Name:	
Phone:	
Small:	
Stakeholder Type:	
Name:	
Phone:	
Email:	
Stakeholder Type:	
Name:	
Phone:	
imail:	

Worksheets Fillable PDF & Excel

Webinar Recording

Executive Summary

Plant capacity

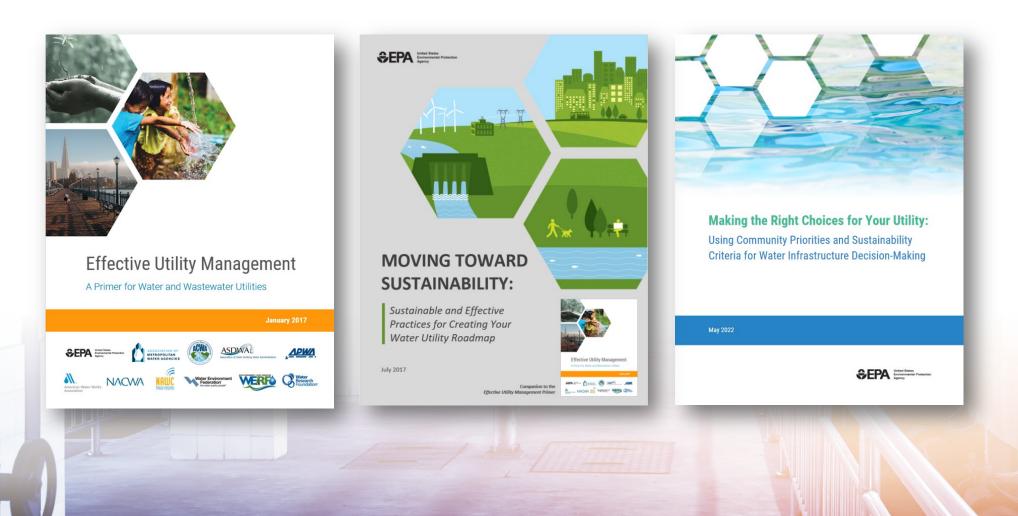
The following case example describes the ways in which the Camden County Municipal Utility Authority (CCMUA). together with the U.S. EPA Office of Wastewater Management (OWM) and representatives from the community (CowNA), Camden SMART Initiative, used an augmented infrastructure alternatives analysis approach to help CCMUA identify an optimal and cost-effective mix of green and gray infrastructure to support its Combined Sewer Long-Term Control Plan (LTCP). The method used by CCMUA is designed to engage community stakeholders in the infrastructure alternatives analysis process at a very early stage. The method allows utilities and community members to use a range of environmental, social, and economic criteria (also known as "Triple Bottom Line" criteria) and create a broad basis for comparison of infrastructure alternatives.

2020

CCMUA Goal: 2018

125 mi.

58 mgd


By using this broad range of criteria to assess infrastructure alternatives, CCMUA was able to better understand the optimal mix of green and gray infrastructure necessary to protect the health of its citizens, consistent with a set of community goals agreed to by the Camden SMART stakeholders. With this method, utilities can accomplish internal infrastructure objectives and community goals as well as enhance their standing as an integral, engaged, and dynamic part of the economic and social fabric of the community.

Just as importantly, the approach described in this case example will help CCMUA communicate with their board members and other decision makers to ensure these individuals have a clear understanding of the choices before

Case examples

EPA's Sustainable Utility Management

To view resources:

Or search online for EPA's "Planning For Sustainability" webpage

Contact us with questions and to learn more!

Leslie Corcelli

EPA Office of Wastewater Management <u>corcelli.leslie@epa.gov</u> | 202-564-3825

NSPS Kb

EJ National Community Engagement Call

September 19, 2023

Presented by the Office of Air and Radiation

Volatile Organic Compounds (VOCs)

- Chemicals that evaporate easily and react in the atmosphere to create ground-level ozone (formally defined in 40 CFR 51.100)
- Examples of VOCs: Benzene, Formaldehyde, Gasoline Vapors, n-Hexane, Toluene, Xylenes, Vinyl Chloride

Volatile Organic Liquids (VOLs)

• Organic chemicals that emit VOCs

Storage Vessel

• Tank, reservoir, or container used for storing VOLs

New Source Performance Standards (NSPS)

- EPA standards for newly constructed, modified, and reconstructed sources of emissions
- NSPS Kb is the existing standard for VOL storage vessels constructed or modified after July 23, 1984
- EPA is currently working on an updated VOL storage vessel standard, referred to as NSPS Kc

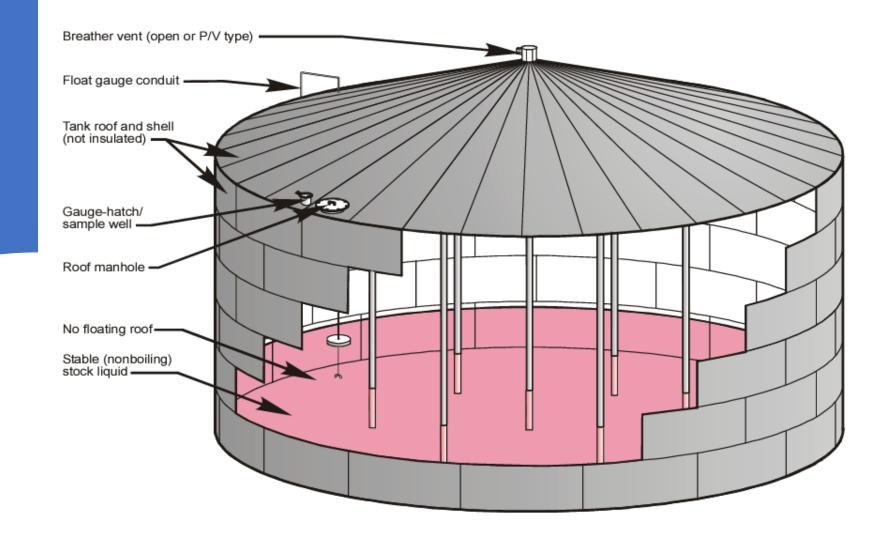
NSPS Kb Emission Controls Applicability

- Applicability for emission controls based on the size or capacity of a tank and the stored <u>maximum true vapor pressure</u> of a fluid
- Vapor Pressure:
 - NSPS Kb includes instructions for determining a fluid's <u>maximum true vapor</u> pressure which accounts for the highest calendar-month average of the fluid's storage temperature
 - Measured in units of kilopascals (kPa) or pounds per square inch absolute (psia)

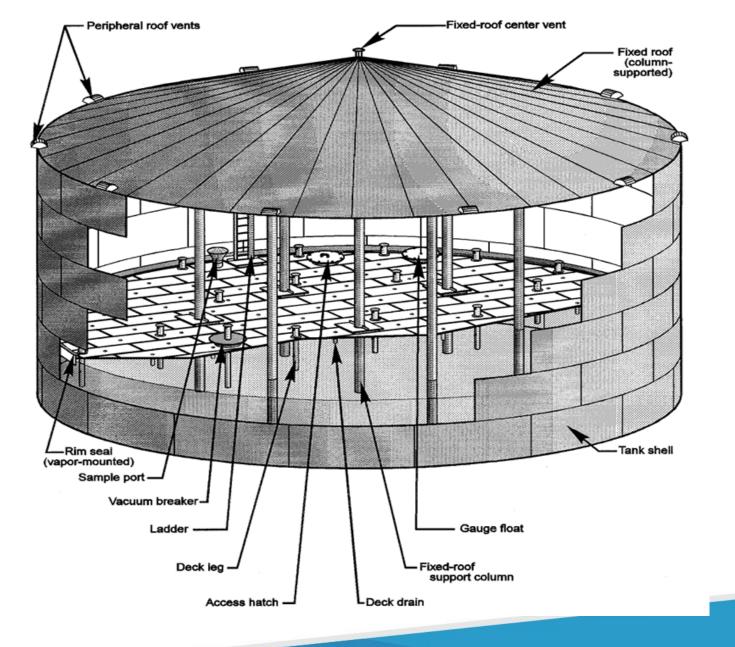
NSPS Kb Emission Controls Applicability

Required for these storage vessels that store volatile organic liquids (two groups of applicable vessels)

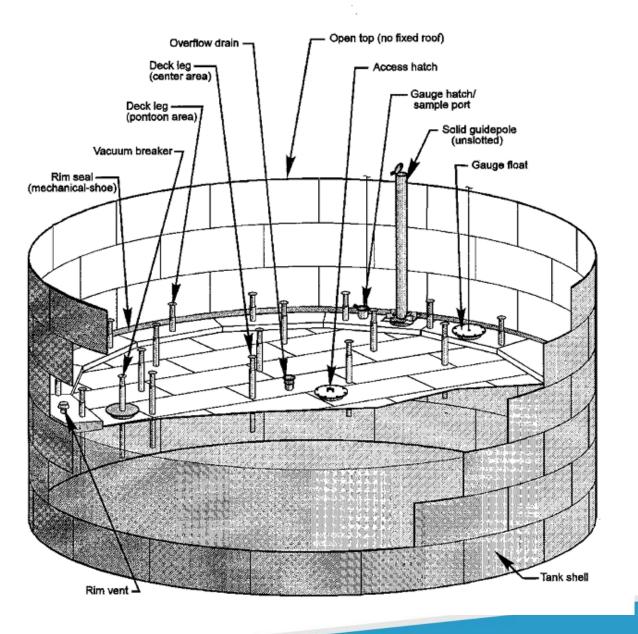
• Capacities ≥ 40k gallons


- O Maximum true vapor pressure ≥ 0.75 psia
 O Includes chemicals such as Heptane, Ethyl Alcohol, Benzene, Hexane, and Gasoline
- Capacity between 20k and 40k gallons

 Maximum true vapor pressure ≥ 4.0 psia
 Includes chemicals such as gasoline


Emission Controls include

- Floating Roofs
- Closed Vent System and Control Device (such as a flare)


Fixed Roof Tank

Internal Floating Roof Tank

External Floating Roof Tank

- 68

Closed Vent System and Control

Closed Vent System

• Collects all VOC vapors and gases discharged from the storage vessel and sends them to a control device

Control Device

- Examples include:
 - $\circ \textit{Flares}$
 - \circ Thermal oxidizers
- 95% Control Efficiency

NSPS Kc Proposal

Signature Expected Late September 2023

Publication expected October 2023

Updated Standards for VOL Storage Tanks

- Include review of current standard
- Proposal for updated standards

For more info: <u>https://www.epa.gov/stationary-sources-air-pollution/volatile-organic-liquid-storage-vessels-including-petroleum</u>