AN OVERVIEW OF RENEWABLE NATURAL GAS FROM BIOGAS

January 2024
This paper was revised and republished in January 2021 to make the following changes and updates:

- Updated text, content of Table 2, and references in Section 4.4, subsection Average CI Comparison for Vehicle Fuels
- Corrected Figure reference in Section 8.1, subsection Cost of Pipeline Interconnection
- Removed Big Run Landfill project example in Sections 8.7 and 9.0
- Added U.S. EPA’s Biogas Toolkit to table in Section 10.0
- Corrected URLs in various locations in document, including Appendix A
- Added footnote for Main Sources of Data at end of Appendix A

This paper was revised and republished in January 2024 to make the following updates:

- Updated content in Section 7.0, mainly related to nitrogen removal, including the addition of a new Figure 9 (renumbered existing Figure 9 in Section 8.0 to be Figure 10)
Table of Contents

1.0 INTRODUCTION .. 1

2.0 WHAT IS RNG? ... 1
 2.1 Sources of RNG ... 1

3.0 OPTIONS FOR RNG DELIVERY AND USE .. 5
 3.1 Pipeline Injection ... 6
 3.2 Local Use .. 7

4.0 BENEFITS OF RNG .. 8
 4.1 Fuel Diversity and Availability .. 8
 4.2 Local Economic Impacts ... 8
 4.3 Local Air Quality .. 9
 4.4 GHG Emission Reductions ... 11
 4.5 Other Benefits of Natural Gas Vehicles ... 14

5.0 OPERATIONAL RNG PROJECTS ... 14

6.0 CONSIDERATIONS FOR PROJECT FEASIBILITY AND POTENTIAL FOR GROWTH 16

7.0 PURIFICATION PROCESSES AND GENERAL TECHNOLOGIES ... 20
 7.1 CO2 Removal Technologies ... 21
 7.2 VOC/Siloxane Removal Technologies ... 24
 7.3 N2 Removal Technologies ... 25
 7.4 O2 Removal Technologies ... 27
 7.5 The Future of RNG Processing Technologies .. 27
 7.6 Reliable Power Sources for Advanced Treatment ... 28
 7.7 Compressing RNG ... 28

8.0 BARRIERS, POLICY DRIVERS AND INCENTIVES RELATED TO RNG PROJECT DEVELOPMENT 28
 8.1 Economic Barriers .. 29
 8.2 Technical Barriers .. 30
 8.3 Perception of RNG Quality ... 31
 8.4 Policies and Incentives Related to Pipeline Injection .. 31
 8.5 Policies and Incentives Related to Use of RNG as Transportation Fuel 34
 8.6 State Regulatory Policies and Incentives Related to Electricity .. 35
 8.7 Policies and Incentives Related to Sustainability and Environmental Goals 36

9.0 EXAMPLES .. 39
 9.1 RNG Projects with Feedstock, Delivery Method and End Use ... 39
List of Tables

Table 1. AFLEET Tool Emission Results for Replacement of Washington, D.C.-Based Older Model Year Gasoline Pickups or Diesel Refuse Trucks with New (Model Year 2019) Dedicated CNG Pickups or Refuse Trucks ... 10
Table 2. CI Ranges of Fossil and Renewable Vehicle Fuels from CARB LCFS-Certified Pathways 12
Table 3. Breakdown of LFG-to-RNG Project Types and Sizes in the United States from the LMOP Landfill and LFG Energy Project Database ... 15
Table 4. WRRF Digester Gas-to-RNG Projects Operating in the United States in 2019 15
Table 5. Number of Biogas Utilization Projects for Varying WRRF Capacities ... 18
Table 6. Typical Flow Rates for Advanced CO₂ Removal Technologies ... 24

List of Figures

Figure 1. Organic Waste Types Used to Make RNG .. 2
Figure 2. LFG Treatment Stages and Biogas End Uses .. 3
Figure 3. AD Products, Biogas Treatment and End Uses .. 4
Figure 4. RNG Delivery Options and Typical RNG End Uses ... 5
Figure 5. Components of a Pipeline Interconnection .. 6
Figure 6. Example CIs from LFG-RNG-CNG Life Cycle (g CO₂e/MJ) .. 13
Figure 7. CO₂ Removal Technologies for U.S. LFG-to-RNG Projects in 2018 ... 22
Figure 8. CO₂ Removal Technologies for U.S. Manure-Based Biogas-to-RNG Projects in 2018 22
Figure 9. Example Cryogenic Distillation Process Diagram .. 26
Figure 10. Breakdown of RNG Processing and Interconnection Costs .. 32
1.0 INTRODUCTION

EPA encourages the recovery and beneficial use of biogas as a renewable energy resource, including the production of renewable natural gas (RNG) when feasible, as a means of reducing emissions and providing other environmental benefits. RNG is a term used to describe biogas that has been upgraded to use in place of fossil natural gas, either locally or remotely. EPA’s partnership programs for the reduction of methane (CH₄) emissions—the Landfill Methane Outreach Program (LMOP), AgSTAR and Natural Gas STAR—offer data on potential sources of RNG feedstocks as well as technical and outreach resources and tools to support RNG project development.

EPA developed this document to provide biogas stakeholders and other interested parties with a resource to promote and potentially assist in the development of RNG projects. This document summarizes existing RNG operational projects in the United States and the potential for growth from the main sources of biogas feedstock. This document provides technical information on how raw biogas is upgraded into RNG and ultimately delivered and used by consumers. The document also addresses barriers, policies and incentives related to RNG project development.

2.0 WHAT IS RNG?

RNG is a term used to describe anaerobically-generated biogas that has been upgraded (or refined) for use in place of fossil natural gas. Raw biogas typically has a CH₄ content between 45 and 65 percent, depending on the source of the biogas, and must go through a series of steps to be converted into RNG. Treatment includes removing moisture, carbon dioxide (CO₂) and trace-level contaminants (including siloxanes, volatile organic compounds [VOCs] and hydrogen sulfide [H₂S]), as well as reducing the nitrogen (N₂) and oxygen (O₂) content. Once purified, the RNG has a CH₄ content of 90 percent or greater. RNG injected into a natural gas pipeline commonly has a CH₄ content between 96 and 98 percent.

As a substitute for fossil natural gas, RNG has many potential uses. RNG can be used as vehicle fuel, to generate electricity, in thermal applications, or as a bio-product feedstock. RNG can be injected into natural gas transmission or distribution pipelines, or it can be used locally (i.e., at or near the site where the gas is created). In this document, the term RNG does not encompass synthesis gas (syngas) produced through gasification of biomass or any other feedstocks.

2.1 Sources of RNG

Currently, there are four main sources of biogas used to produce RNG in the United States: municipal solid waste (MSW) landfills, anaerobic digestion (AD) at municipal water resource recovery facilities (WRRFs), AD at livestock farms and AD at stand-alone organic waste management operations. At each of these types of operations, biogas is produced as the organic materials are broken down by microorganisms in the absence of O₂ (i.e., anaerobic conditions). Figure 1 shows the main organic waste feedstocks that are placed into an MSW landfill or an AD facility. “Organic” in this context means the wastes come from, or were made of, plants or animals.
MSW Landfills

Landfill gas (LFG) is generated in MSW landfills\(^1\) as the organic wastes decompose anaerobically. Instead of escaping into the air, LFG can be captured, converted and used as an energy resource. Applicable federal and state regulations require certain landfills to capture and destroy the LFG generated; for these sites an LFG collection infrastructure is already in place and potentially ready for an energy project. The diagram in Figure 2 provides an overview of the levels of treatment that LFG can undergo to be used as an energy resource.

Figure 2. LFG Treatment Stages and Biogas End Uses

Municipal WRRFs

Many municipal WRRFs (also known as wastewater treatment facilities or publicly owned treatment works) use AD to treat sewage sludge on site, while some facilities send the sludge to other facilities for AD treatment. Biogas is one of the byproducts of sludge treatment through AD. WRRFs typically generate biogas with a high CH4 content and extremely low N2 and O2 contents, which make them attractive candidates for RNG projects.

Approximately 133 to 177 WRRFs with AD were “co-digesting” other waste streams, such as source-separated food wastes, in 2017. Co-digestion of food waste with WRRF sludge allows facilities to use existing assets and infrastructure to meet the growing interest in food waste management. With co-digestion, facilities can more efficiently use process equipment when they process multiple waste streams together. Facilities can also use co-digestion to adjust the proportions of solids being digested to improve digestion and increase biogas production.

Livestock Farms

Livestock farms can use AD to convert livestock (e.g., dairy, beef, swine, poultry) manure into biogas and digestate. Some manure-based digesters co-digest other waste materials with the manure, including upstream (pre-consumer) food wastes such as beverage and distillery waste; fats, oils and greases;

3 Digestate is the nutrient-rich material left over after AD.
industrial food byproducts; or processing wastes from a dairy or slaughterhouse. Various sources estimate approximately 100 manure-based AD projects are co-digesting other organic waste materials. The diagram in Figure 3 presents the biogas and typical digestate products from manure-based AD projects and the levels of treatment that AD biogas can undergo to be used as an energy resource.

Figure 3. AD Products, Biogas Treatment and End Uses

Stand-Alone Organic Waste Management Operations

Stand-alone digesters are the newest source of RNG in the United States. These AD projects break down source separated organic material—including food waste—to generate biogas, which can be converted to RNG.Digesters that primarily process food waste can also co-digest other organic materials including yard waste. A 2018 EPA survey of U.S. AD facility operators showed that a total of 9.2 million tons of food waste was processed at 44 stand-alone digesters during 2016. The survey report indicates there were 62 stand-alone digesters operating in 2016, which suggests the actual amount of food waste processed in

4 Goldstein, N. October 2017. The State of Organics Recycling in the U.S. BioCycle 58(9): 22. https://www.biocycle.net/2017/10/04/state-organics-recycling-u-s/. Accessed March 4, 2020. The article estimates that 94 manure-based AD projects were co-digesting. April 2017 research conducted using the AgSTAR database, case studies, articles and profiles showed 111 manure-based projects were co-digesting other materials. In March 2020, the AgSTAR database indicated 104 manure AD projects that co-digest other organic materials.

this manner was higher. In addition, 20 of the stand-alone digesters surveyed processed more than 31 million gallons of liquid non-food waste and nearly 83,000 tons of solid non-food waste in 2016.6

3.0 OPTIONS FOR RNG DELIVERY AND USE

As shown in Figure 4, the two main methods for delivering RNG to end users are injection into a pipeline (fossil natural gas pipeline or dedicated RNG pipeline) or onsite/local applications (e.g., onsite vehicle fueling station, transport by truck). RNG is so chemically similar to fossil natural gas that it is a “drop-in” substitute, making it versatile. The methane in RNG is identical to methane in fossil natural gas, but the two gasses have constituents in very low concentrations that the other does not have. In addition to being used as vehicle fuel or for generating electricity, RNG can also be used to meet thermal energy demands (heat, steam, hot water, cooling or other processes) in the industrial, commercial, institutional or residential sectors.

Figure 4. RNG Delivery Options and Typical RNG End Uses

Over time, market drivers have shaped how RNG is used. In 2011, nearly all the RNG projects operating in the United States were providing RNG to generate electricity off site, as an effect of state-level Renewable Portfolio Standard (RPS) programs.7 As the market for renewable transportation fuels emerged through federal and state rules and incentives, the overall number of RNG projects grew rapidly and the end use

of the RNG shifted dramatically. In 2017, 76 percent of RNG projects were converting RNG into transportation fuels, while 24 percent generated electricity off site.\(^8\)

3.1 Pipeline Injection

Many RNG projects inject the product into a fossil natural gas pipeline. Appendix A lists known natural gas utilities who have received or plan to receive RNG into their networks. The RNG must meet the specification requirements of the receiving gas utility. This delivery method can be expensive due to extensive planning, land purchases, permitting, construction, and interconnection fees and equipment. However, pipeline injection can convey the RNG across a vast distribution network and provide flexibility on how and where the RNG is ultimately used.

Interconnection consists of two primary components, a “point of receipt” and a “pipeline extension,” as shown in Figure 5. The point of receipt monitors the quality of the RNG to ensure that it meets specifications and includes equipment to prevent non-compliant gas from entering the pipeline. The point of receipt also meters and may odorize the RNG prior to injection. RNG can be delivered to the point of receipt from the production facility through piping built specifically for this purpose or by truck.

The pipeline extension is a dedicated pipeline to transfer the RNG from the point of receipt to the nearest fossil natural gas pipeline that has capacity to accept it. All projects have a pipeline extension to allow space for odorization, gas quality monitoring, and a shut off valve. Some distribution-level pipelines do not have the capacity to receive RNG injections (which are constant), due either to the cyclical nature of the pipeline users or to the size and volume of fossil natural gas flow. When the pipeline nearest to an RNG processing plant cannot accept the RNG, a longer pipeline extension is needed to reach a fossil natural gas pipeline with adequate capacity.\(^9\)

![Figure 5. Components of a Pipeline Interconnection\(^{10}\)](image)

Alternatively, RNG can be injected into a dedicated pipeline instead of into a natural gas pipeline network.

Vehicle Fuel

RNG can be used as fuel, as compressed natural gas [CNG] or liquefied natural gas [LNG], in a variety of vehicle types. According to the U.S. Department of Energy's (DOE's) Alternative Fuels Data Center, in March 2019 there were 914 public and 678 private CNG stations and 66 public and 55 private LNG stations in the country.\(^\text{11}\)

As of March 2020, the majority (91 percent) of LFG-sourced RNG pipeline injection projects were providing at least a portion of the RNG to a vehicle fuel market down the pipeline.\(^\text{12}\) In these cases, fueling stations far removed from the biogas source were receiving the RNG at the other end of a pipeline network.

Electricity Production

While many biogas projects generate electricity from partially conditioned biogas, there are a number of projects (primarily landfill-based) where RNG is injected into a pipeline and used to generate electricity.

Thermal Applications

Numerous biogas energy projects use nearly raw biogas in direct thermal applications such as boilers, greenhouses and kilns. RNG projects for direct thermal applications are less common, as the bulk of incentives are for transportation and electricity end uses. However, as discussed in Section 8.7, some state policies have created a new interest in RNG for direct thermal uses.

3.2 Local Use

The predominant use of RNG on site or locally is for vehicle fuel.

Onsite Vehicle Fuel

Onsite RNG vehicle fuel projects avoid the need to meet natural gas pipeline specifications, and typically the vehicle fuel specifications are less stringent than the requirements from a pipeline operator. In addition, these projects avoid the costs to interconnect and transport the gas via pipeline. However, there must be an adequate and consistent demand for the RNG vehicle fuel. Matching the fleet demand to the RNG resource can be problematic in some rural areas with a source of biogas, as larger fleets are generally located in urban centers.

Often, the owner of the biogas source also has a vehicle fleet, for example a public works department that has a landfill and/or WRRF as well as a CNG-compatible fleet inventory. Some onsite fueling stations also allow corporate fleets operating in the area to use their stations. In either case, these types of projects, wherein the vehicles delivering a feedstock (e.g., garbage or food waste) are fueled by RNG from biogas produced by that feedstock, are considered “closed loop” or circular projects.

Generally, local-use vehicle fuel projects are smaller scale than pipeline injection vehicle fuel projects. Taking LFG-based RNG as an example, the average flow rate of local-use CNG projects is 145 cubic feet

per minute (cfm) of biogas inlet, while the average for pipeline injection projects with a vehicle fuel component is 2,940 cfm of biogas inlet, twenty times larger.13

Virtual Pipeline

If an RNG processing plant is not close to potential end users or an existing pipeline, a “virtual pipeline” can move compressed RNG from the point of generation to the point of injection or use. In a virtual pipeline scenario, the RNG is compressed to up to 4,000 pounds per square inch for injection into a natural gas tube trailer, and then transported off site by truck. Once it reaches the destination, the RNG is decompressed back down to the pressure required by the receiving facility. The decompression site must include a “decant” facility that heats the RNG as it decompresses to minimize the freezing of valves and regulators due to decompression. A virtual pipeline allows remote landfills, farms or other biogas sources to market their RNG in populated areas. Leasing companies that will contract for loading, transporting and off-loading the RNG are also available. The costs to transport RNG in a virtual pipeline are in addition to the costs associated with RNG processing equipment and infrastructure needed to compress and decompress the gas.

Some projects may employ more than one delivery mechanism to match the RNG supply with demand. For example, a project may have an onsite vehicle fueling station for a portion of the fuel and transport the remainder to an offsite fueling station via a virtual pipeline.

4.0 BENEFITS OF RNG

Developing RNG resources is one way to diversify fuel supplies and increase fuel security, provide economic benefits to communities and end users, improve local air quality and reduce greenhouse gas (GHG) emissions.

4.1 Fuel Diversity and Availability

Biogas feedstocks for RNG are generated continuously from a variety of sources (offering high availability rates), and the use of RNG increases and diversifies domestic energy production. For example, Atlantic City, New Jersey used CNG-fueled buses to provide critical services in 2012 after Hurricane Sandy when gasoline supplies were limited, showing the value of alternative fuel vehicles during natural disasters.14

4.2 Local Economic Impacts

Developing RNG projects can benefit local economies through the construction of infrastructure and sale of vehicles that can use this fuel source. Adding a renewable source of vehicle fuel to an area has the potential to draw outside vehicle fleets to a community, as the CNG produced from biogas can potentially be sold at a lower cost than fossil fuel-based vehicle fuel (due to incentives such as EPA’s Renewable Fuel Standard [RFS]) or corporations may be looking for ways to green their fleets or increase corporate sustainability.

A 2017 study conducted for the California Natural Gas Vehicle Coalition analyzed the economic impacts of converting heavy-duty diesel-fueled trucks in California to RNG fuel, including the benefits of building

13 See details and ranges of project sizes in Table 3 in Section 5.0 of this document. Data source is U.S. EPA. March 2020. Landfill and Landfill Gas Energy Project Database. https://www.epa.gov/lmop/landfill-gas-energy-project-data.

RNG processing and fueling station infrastructure and the impact of purchasing CNG vehicles. The study found that California RNG production facilities (based on a mix of landfill, WRRF and dairy feedstocks) would generate about 8.5 to 11.2 jobs per million diesel gallon equivalent of transportation fuel. By contrast, the petroleum refinery industry yields about 1.6 jobs per million diesel gallon equivalent of transportation fuel. Additionally, for every job created through investment in low nitrogen oxide (NOx)-emitting natural gas trucks, natural gas fueling infrastructure and RNG production facilities, about 2.0 jobs are created in supporting industries (indirect) and via spending by employees that are directly or indirectly supported by these industries (induced).

For projects where there is common ownership between the RNG source and the fleet using RNG, vehicle fuel from RNG can also provide price stability (e.g., compared to diesel fuel purchases) through mid-term to long-term RNG supply contracts or through creating fuel for internal consumption.

4.3 Local Air Quality

Replacing traditional diesel or gasoline with RNG vehicle fuel can reduce pollutant emissions, resulting in local air quality benefits.

RNG combusts similarly to fossil natural gas, so pipeline operators make no distinctions between the two once the RNG meets the required specification and is injected into the pipeline network. Fossil natural gas typically contains several non-methane hydrocarbons, including ethane, propane, butane and pentane, as well as some trace organics, all in small concentrations. RNG does not generally contain non-methane hydrocarbons but does share some other low-concentration constituents with fossil natural gas, such as CO₂, N₂, O₂, H₂S and total sulfur. Fossil natural gas and RNG both contain trace organics (e.g., aromatic hydrocarbons, aldehydes and ketones), but samples of RNG show these in much lower concentrations than in fossil natural gas.

Since 2017, most newly built vehicles are required to meet the same emission standards (including NOx, particulate matter [PM] and carbon monoxide [CO]) regardless of fuel type, so new natural gas vehicle emissions are comparable to those of new gasoline and diesel vehicles. However, when older model gasoline or diesel vehicle fleets are replaced with new natural gas vehicles, certain local air pollutant emissions are often reduced on an as-driven basis.

For example, replacement or aftermarket conversion of older gasoline vehicles with natural gas models can provide reductions across pollutants. The Argonne National Laboratory’s Alternative Fuel Life-Cycle Environmental and Economic Transportation (AFLEET) tool can be used to estimate emission reductions

for fleet replacement on an as-driven basis. A fleet location of Washington, D.C., was used for illustrative purposes along with the AFLEET tool’s default input parameters, including annual mileage and fuel economy. Similar patterns in emission reduction percentages were derived for other fleet locations.

The AFLEET tool was used to analyze the emissions from gasoline pickups and refuse trucks in three older model years, with model year 2010 representing a median life age for the national pickup population and model year 2012 representing a median life age for the national refuse truck population.

The results in Table 1 indicate substantial percentage reductions in NOX, VOC, PM10, PM2.5, CO and sulfur dioxide (SOx) emissions for each of the older gasoline pickup models, as compared with a new (model year 2019) CNG pickup, with the most significant reductions achieved for the oldest model year. For refuse trucks, substantial emission reductions were shown for NOX, exhaust VOC, PM10, PM2.5 and SOx, again with the largest reductions from the oldest vehicle replacements.

Table 1. AFLEET Tool Emission Results for Replacement of Washington, D.C.-Based Older Model Year Gasoline Pickups or Diesel Refuse Trucks with New (Model Year 2019) Dedicated CNG Pickups or Refuse Trucks

<table>
<thead>
<tr>
<th>Fuel/Vehicle Type</th>
<th>Model Year</th>
<th>Percentage Emission Reductions if Replaced by 2019 Model Year CNG Vehicle</th>
<th>NOX</th>
<th>VOC (Exhaust)</th>
<th>VOC (Evaporative)</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO</th>
<th>SOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasoline Pickup</td>
<td>2005</td>
<td>87.4% 86.0% 87.5% 73.0% 68.9% 84.3% 38.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>80.2% 78.8% 85.4% 73.0% 65.0% 81.9% 38.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>66.7% 69.1% 75.6% 66.3% 60.0% 74.6% 38.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel Refuse Truck</td>
<td>2006</td>
<td>99.4% 93.9% 7.14% 97.0% 96.9% -571% 43.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>99.2% 43.8% 7.14% 42.2% 41.5% -2,180% 43.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>96.8% 16.9% 7.14% 38.1% 38.5% -3,025% 43.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

However, CO emissions increased significantly for the CNG refuse trucks relative to the diesel baseline. This increase is due to the newest CNG refuse trucks being powered by spark-ignited cycle engines with three-way catalysts. Compared to the diesel refuse trucks, which are powered by compression ignition cycle engines, the CNG spark-ignited engines operate at tightly controlled stoichiometric fuel–air ratios that allow for three-way catalyst control20 of NOX, VOC and CO emissions but produce inherently higher CO emissions. However, new CNG refuse trucks do still comply with existing heavy-duty engine emission standards even with the higher CO emissions. When replacing older heavy-duty diesel vehicles with new dedicated CNG vehicles, local communities should consider this trade-off of lower NOX and PM emissions.

20 Three-way catalysts are exhaust emission control devices for achieving simultaneous control of tailpipe NOX, VOC and CO emissions. Three-way catalysts typically are deployed in conjunction with closed loop, stoichiometric fuel–air ratio fuel delivery to the engine for achieving the highest efficiency in catalytic reduction of NOX, and oxidation of VOCs and CO in the engine exhaust emissions stream.
but higher CO emissions with respect to existing local air quality conditions and compliance with national standards.

Apart from combustion emissions, gasoline and diesel vehicles produce hydrocarbon emissions from the evaporation of fuel in onboard fuel tanks, but natural gas vehicle fuel systems emit minimal evaporative hydrocarbon emissions because they are sealed to the atmosphere.

4.4 GHG Emission Reductions

When fossil natural gas is replaced by RNG, the resulting GHG emission reductions provide a climate benefit. One way to characterize the climate benefit of a fuel is to determine its “carbon intensity” (CI) or “carbon footprint” based on a complete life cycle assessment that estimates the GHG emissions associated with producing and consuming the fuel. Argonne National Laboratory’s AFLEET tool estimates that natural gas vehicles operating on fuel derived from RNG can yield GHG emission reductions of up to 75 percent, compared to gasoline or diesel vehicles. The California Air Resources Board (CARB) uses similar life cycle assessment tools to estimate the GHG emissions associated with vehicle fuels for implementation of the state’s Low Carbon Fuel Standard (LCFS).

Natural gas in any form (fossil or RNG) is less carbon-intensive than the other fossil fuels it typically replaces, including conventional transportation fuels (e.g., gasoline, diesel) in most cases and coal or petroleum for generating electricity. RNG provides an additional benefit over fossil natural gas because it generally has a lower total carbon footprint, after accounting for emissions from fuel production, transport and use. RNG’s carbon footprint is even lower if a project can also take into account directly reducing CH4 emissions from the organic waste used to produce the fuel.

Fuels from some RNG feedstocks can achieve negative carbon footprints by reducing CH4 emissions through avoiding “business-as-usual” disposal pathways, such as projects that involve AD of manure and organic wastes. In contrast, projects in which RNG is sourced from a landfill or WRRF where business-as-usual practices collect and destroy CH4 cannot account for any climate benefit from that CH4 destruction. These projects can account for the emissions avoided through recovering energy that would

otherwise be flared and wasted (as energy recovery is not required), however they have a positive carbon footprint overall.

Average CI Comparison for Vehicle Fuels

Using data from pathways that CARB has certified under the LCFS for 2021, Table 2 provides a comparison of average CIs for several renewable vehicle fuels to fossil-based fuels.

<table>
<thead>
<tr>
<th>Fuel Category a</th>
<th>Feedstock</th>
<th>Average CI (g CO$_2$e/MJ) b</th>
<th>Range (g CO$_2$e/MJ)</th>
<th>Number of Pathways</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>Fossil Crude</td>
<td>100</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>CNG, Fossil</td>
<td>Fossil Natural Gas</td>
<td>79</td>
<td>79</td>
<td>1</td>
</tr>
<tr>
<td>LNG, Fossil</td>
<td>Fossil Natural Gas</td>
<td>No data</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>CNG, Renewable</td>
<td>LFG</td>
<td>53</td>
<td>30 to 83</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Manure</td>
<td>-313</td>
<td>-533 to -151</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Wastewater</td>
<td>47</td>
<td>37 to 58</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Food and Green Waste</td>
<td>No data</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>LNG, Renewable</td>
<td>LFG</td>
<td>61</td>
<td>43 to 80</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Manure</td>
<td>-336</td>
<td>-360 to -312</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Wastewater</td>
<td>48</td>
<td>42 to 55</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Food and Green Waste</td>
<td>No data</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

a CARB accounts for relative energy efficiencies of different drive technologies relative to the baseline gasoline or diesel technologies by using energy economy ratios (EERs). EERs account for differences in fuel efficiency for a given vehicle type and alternative transportation fuel and compares it to a benchmark, conventional vehicle. Vehicle type- and fuel-specific EERs should be applied to average fuel CIs to facilitate comparison across fuel types. The average CI values provided in this table do not yet have EERs applied to them. 30

b The exact CI of diesel is 100.45 grams of CO$_2$ equivalent per megajoule (g CO$_2$e/MJ), per CARB documentation.

The CIs of fuels from different RNG feedstocks and fossil natural gas are characterized by impacts occurring at distinct phases of the fuel life cycle. For example, tailpipe emissions of CO$_2$ from RNG fuels are considered carbon neutral because the carbon is biogenic, while tailpipe emissions of CO$_2$ from fossil natural gas fuels are not. As a result, CIs of fossil natural gas-based vehicle fuels are most impacted by tailpipe emissions, with lesser contributions from refining and resource extraction. As another example, RNG fuels derived from LFG receive no credits for CH$_4$ reduction under the LCFS because the baseline set by CARB for this pathway is flaring of the LFG. As a result, LFG-derived vehicle fuels have CIs that are most heavily influenced by the biogas upgrading plant and emissions during pipeline transport. 31 The exact CI

of a particular project depends on various factors and is particularly sensitive to the source of the energy used to power the gas upgrading equipment and compression in the pipeline, as well as the length of the transmission pipeline.

CIs for a Hypothetical LFG-to-CNG Project

Figure 6 illustrates example CIs associated with each major step in a hypothetical LFG-to-CNG project: LFG recovery at the landfill, treatment/processing of the raw LFG into RNG, transporting the RNG via pipeline networks to the CNG fueling stations, compression of the RNG at CNG fueling stations and emissions from the CNG vehicles. These example CIs were determined using CARB’s Tier 1 Simplified CI Calculator for Biomethane from North American Landfills with the following inputs and assumptions:

- **Input of 3,100 cfm raw LFG at 50 percent CH₄.**
- **RNG processing plant that:**
 - Is powered by grid-purchased electricity.
 - Does not require any supplemental propane or fossil natural gas to achieve the target specifications for pipeline injection of the RNG.
 - Has an energy consumption of 0.009 kilowatt-hours per standard cubic foot (scf) of LFG and a 90 percent capture efficiency of CH₄, yielding 455 British thermal units (Btu) of RNG per scf (Btu/scf) of LFG.
- **Three thousand miles of gas pipeline to transport the RNG from the landfill to the CNG fueling stations.**
- **U.S. average mix for the energy used to power the LFG recovery equipment, RNG upgrading/processing plant and transport of the LFG via pipeline.**
- **California grid mix for the energy used to compress RNG at the CNG fueling station.**

Figure 6. Example CIs from LFG-RNG-CNG Life Cycle (g CO₂e/MJ)
4.5 Other Benefits of Natural Gas Vehicles

Natural gas vehicles, including those using RNG-derived fuel, offer other benefits to the community. Members of the public often view local green programs positively, which can present great marketing and publicity opportunities for a community. According to Clean Energy Fuels, dedicated natural gas-fueled refuse trucks produce less noise than comparable diesel-fueled refuse trucks, with a difference greater than 10 decibels at idle.\(^{32}\) Reducing noise from trucks has positive and measurable health and economic benefits.\(^{33}\)

5.0 OPERATIONAL RNG PROJECTS

Across all feedstocks, 34 states have more than 100 RNG projects operating and approximately 40 under construction as of February 2020.\(^{34}\) EPA provides a national map showing the locations of projects producing RNG from either LFG or manure-based AD biogas.\(^ {35}\)

MSW Landfills

According to the EPA LMOP Landfill and LFG Energy Project Database, as of March 2020 there were 564 operational LFG energy projects, 65 of which produced RNG.\(^{36}\) Table 3 provides a summary of the 65 LFG-to-RNG projects in the United States, including the number of projects and their sizes in terms of the amount of LFG used to create the RNG. The majority of these projects are producing RNG for use as transportation fuel, whether used locally (on site or near the landfill) or transported via pipeline to a location further away. The other projects use the RNG to generate electricity in thermal applications or to offset fossil natural gas usage in another manner.\(^ {37}\)

The first LFG-to-RNG project in the United States operated from 1975 to 1985 at the Palos Verdes Landfill in Los Angeles County, California.\(^{38,39}\) The plant was designed to process 2 million standard cubic feet per day (mmscfd) of raw LFG into approximately 1 mmscfd of RNG for injection into a nearby pipeline.\(^ {40}\)

Table 3. Breakdown of LFG-to-RNG Project Types and Sizes in the United States from the LMOP Landfill and LFG Energy Project Database

<table>
<thead>
<tr>
<th>RNG Delivery Method / Project Type</th>
<th>Number of Projects</th>
<th>Project Size—LFG Flow (cfm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local / CNG</td>
<td>6</td>
<td>49 to 201 (average 145)</td>
</tr>
<tr>
<td>Local / LNG</td>
<td>1</td>
<td>2,410</td>
</tr>
<tr>
<td>Pipeline Injection / Vehicle Fuel</td>
<td>53</td>
<td>413 to 10,417 (average 2,753)</td>
</tr>
<tr>
<td>Pipeline Injection / Industrial, Electricity or Other</td>
<td>5</td>
<td>757 to 5,833 (average 2,940)</td>
</tr>
</tbody>
</table>

Municipal WRRFs

In 2013, about 48 percent of the total wastewater flow in the United States was treated through AD. According to the U.S. GHG Inventory, in 2017 approximately 18,260 million gallons per day (MGD) of wastewater effluent were sent to WRRFs with AD. In 2019, 13 WRRF biogas projects (listed in Table 4) were creating RNG.

Table 4. WRRF Digester Gas-to-RNG Projects Operating in the United States in 2019

<table>
<thead>
<tr>
<th>WRRF Project Location</th>
<th>Start Year</th>
<th>WRRF Average Flow Rate in MGD</th>
</tr>
</thead>
<tbody>
<tr>
<td>91st Avenue, Phoenix, AZ</td>
<td>2019</td>
<td>138</td>
</tr>
<tr>
<td>City of San Mateo, CA</td>
<td>2016</td>
<td>15.7</td>
</tr>
<tr>
<td>Las Gallinas Valley Sanitary District, CA</td>
<td>2017</td>
<td>2.67</td>
</tr>
<tr>
<td>Point Loma, CA</td>
<td>2012</td>
<td>175</td>
</tr>
<tr>
<td>Persigo (Grand Junction), CO</td>
<td>2015</td>
<td>8.5</td>
</tr>
<tr>
<td>South Platte Water Renewal Partners, CO</td>
<td>2019</td>
<td>~24</td>
</tr>
<tr>
<td>Honolulu, HI</td>
<td>2016</td>
<td>26.1</td>
</tr>
<tr>
<td>Dubuque, IA</td>
<td>2017</td>
<td>7</td>
</tr>
<tr>
<td>Warrior Biogas Reuse Project, KS</td>
<td>2018</td>
<td>5.5</td>
</tr>
<tr>
<td>Newark, OH</td>
<td>2011</td>
<td>8</td>
</tr>
<tr>
<td>San Antonio Water Systems, TX</td>
<td>2010</td>
<td>94.7</td>
</tr>
<tr>
<td>South Treatment Plant, WA</td>
<td>1987</td>
<td>70</td>
</tr>
<tr>
<td>Janesville, WI</td>
<td>2012</td>
<td>13</td>
</tr>
</tbody>
</table>

Livestock Farms

According to the EPA AgSTAR project database, as of March 2020 there are 255 operational digester projects that accept livestock manure. The majority (79 percent) of the manure-based digester projects

42 Working spreadsheet for 2017 U.S. GHG Inventory for Wastewater Treatment.
are at dairy farms, and 14 percent are at swine farms. The remainder process a mix of animal manure effluents, including those from poultry and beef cattle.45

The earliest U.S. manure-based digester project to create RNG began in 2004 at Whitesides Dairy in Idaho. The Whitesides project was the first biogas production facility at a large commercial dairy in the state and provided approximately 10 million cubic feet of RNG annually to Intermountain Gas until 2009, when the project ended.46

The majority (84 percent) of manure-based digester projects are generating electricity, and many of them are also recovering waste heat in combined heat and power47 (or cogeneration) projects. More than 20 manure-based digester projects are currently producing RNG from their biogas with a variety of RNG end uses including electricity, vehicle fuel and pipeline gas.48

Organic Waste Management Operations

EPA’s 2018 AD survey results show that of the 43 stand-alone facilities that reported on their biogas end use, five produce CNG for either company vehicles or for sale to other customers, while none provide RNG for pipeline injection.49

6.0 CONSIDERATIONS FOR PROJECT FEASIBILITY AND POTENTIAL FOR GROWTH

In addition to the sites discussed in Section 5.0 that are recovering biogas as a renewable energy resource, there are many other biogas-producing sites in the United States that could potentially capture their biogas for energy. Based on market conditions and incentives, several of the sites already recovering biogas for electricity generation or other applications could switch to producing RNG instead; several LFG energy projects have already made this change. In addition, more organic waste in this country could be digested for energy recovery instead of being landfilled. A subset of the sources in these categories could produce RNG.

Considerations for the feasibility of an RNG project include:

- The quantity and quality of biogas available for conversion (e.g., LFG and WRRF biogas tend to require more constituent removal than manure-based or organic waste AD projects);
- Economic considerations (e.g., financing options, available incentives);
- End user availability for the RNG (e.g., proximity to a fossil natural gas pipeline without physical connection barriers, a local distribution company’s interest in taking RNG, a local vehicle fuel demand, a natural gas-consuming business with sustainability goals); and
- A reliable power source for the compression and cleanup processes.

47 Combined heat and power or cogeneration projects recover and beneficially use the waste heat from the combustion unit that is generating electricity, thus providing a greater overall efficiency.

16
Higher flows of biogas (e.g., greater than 1,000 cfm for LFG-sourced projects) are needed for pipeline injection projects to be financially feasible, but local-use RNG-to-vehicle fuel projects are feasible at lower flows (e.g., as low as 50 cfm for LFG-sourced projects). Gas conditioning technology improvements have allowed smaller biogas volumes to be economically treated when used directly in onsite vehicle fueling stations or aggregated with output from other sites to make use of one fossil natural gas pipeline interconnect.

Prior to implementing any type of biogas energy project, an end user (or buyer of environmental attributes) must be identified and appropriate agreements must be in place. For RNG projects, if onsite vehicle fueling, direct pipeline injection or virtual pipeline transport is not feasible, an otherwise attractive project may not be viable.

MSW Landfills

There is a significant opportunity for growth in RNG from LFG. LMOP defines a “candidate” landfill as a landfill that is currently accepting waste or has been closed five years or less, has at least one million tons of waste, and does not have an operational, under-construction or planned LFG energy project. A landfill can also be designated as a candidate landfill based on actual interest for a project at the site. As of March 2020, there were approximately 480 candidate landfills with the potential to collect a combined 500 mmscfd of LFG. Out of these 480 landfills, approximately 375 have between 100 and 1,000 cfm of LFG available, and approximately 90 have greater than 1,000 cfm of LFG. There are also landfills with operational energy projects that are flaring excess LFG—approximately 85 of these landfills have 100 to 1,000 cfm of excess gas, and approximately 30 have more than 1,000 cfm of excess gas.50

Municipal WRRFs

A 2014 National Renewable Energy Laboratory report analyzed flow rate data from approximately 18,000 WRRFs to estimate their CH₄ potential. After subtracting out the biogas used for combined heat and power projects at WRRFs, the National Renewable Energy Laboratory estimated 1.9 million metric tons of CH₄ available for recovery from these facilities.51

The Water Environment Federation (WEF) maintains a “phase 1” database that lists information for approximately 1,250 WRRFs that have AD on site or send sludge to another facility to be treated by AD.52 The economic viability of a WRRF biogas project primarily depends on the amount of organic feedstock (e.g., wastewater sludge, commercial or industrial waste) that is available for AD. Typically, a larger WRRF (in terms of influent flow) has a greater opportunity for biogas capture and use. In March 2015, Argonne National Laboratory analyzed data in the WEF database, which included a summary of the counts of biogas utilization projects for varying WRRF capacities, as shown in Table 5.

Table 5. Number of Biogas Utilization Projects for Varying WRRF Capacities

<table>
<thead>
<tr>
<th>WRRF Average Flow Rate in MGD</th>
<th>Number of WRRFs with AD</th>
<th>Number Using Biogas / Number Not Using Biogas</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>96</td>
<td>55 / 41</td>
</tr>
<tr>
<td>1 to 10</td>
<td>690</td>
<td>505 / 185</td>
</tr>
<tr>
<td>10 to 100</td>
<td>276</td>
<td>238 / 38</td>
</tr>
<tr>
<td>100 to 1,000</td>
<td>29</td>
<td>26 / 3</td>
</tr>
</tbody>
</table>

The WEF database contains approximately 5,100 WRRFs in total, so it does not represent the entire list of operating WRRFs nationwide, which is between 15,000 and 18,000 WRRFs. Of the WRRFs in the WEF database, 3,200 have an average flow rate greater than 1 MGD; more than 60 percent of these facilities do not send solids to AD, and therefore do not produce biogas. There are 12,000 facilities with average flow rates less than 1 MGD, and only a small number of these facilities have AD; WRRFs of this size are not expected to support an RNG project.

The project information in Table 4 of this document shows that of the 13 WRRF biogas-to-RNG projects operating in 2019, about half are at WRRFs greater than 15 MGD in average flow rate. Table 5 notes 185 WRRFs with average flow rates between 1 and 10 MGD that have AD but are not beneficially using the biogas; these WRRFs could potentially use their biogas for a local-use RNG project if demand is present. For the 41 WRRFs with average flow rates greater than 10 MGD that have AD but are not using the biogas for energy, they likely could produce RNG from their biogas for either local or pipeline delivery if other project considerations are favorable. There is likely additional RNG generation potential at WRRFs not represented in the WEF database.

Livestock Farms

Candidate sites are generally considered to be dairies with at least 500 cows or swine facilities with at least 2,000 sows or feeder pigs. This is a rough estimate that accounts for the general manure production rates and composition of these animals and should only be used for general screening, since smaller operations have been successfully developed into beneficial use applications. According to estimates from

53 U.S. DOE. July 2016. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy. https://www.energy.gov/sites/prod/files/2016/12/f34/2016_billion_ton_report_12.2.16_0.pdf, Citing Shen, Y., J.L. Linville, M. Urgun-Demirtas, M.M. Mintz, and S.W. Snyder. 2015. An Overview of Biogas Production and Utilization at Full-Scale Wastewater Treatment Plants (WWTPs) in the United States: Challenges and Opportunities Towards Energy-Neutral WWTPs. Renewable & Sustainable Energy Reviews 50: 346–62. The WRRF counts in Table 5 sum to fewer than the count of 1,250 WRRFs noted in the text; the remaining ~150 WRRFs in the WEF database that were not noted in the 2015 Argonne study are presumed to have not had sufficient average flow rate data to be categorized by size.

DOE, nearly 1.5 billion cubic feet of digester gas from farms that could be recovered for energy are flared each year.56

AgSTAR estimates that more than 8,000 large swine or dairy farms could create RNG from manure-based digesters, including nearly 800 dairies in California alone (the largest dairy-producing state).57 As of March 2020, there were approximately 10 dairy digester projects under construction in California and another 31 under development.58 If all 8,000 of the candidate farms produced and captured biogas to produce RNG, AgSTAR estimates they could create the equivalent of 1.3 billion diesel gallons, enough to fuel nearly 150,000 refuse trucks.59

\textbf{Organic Waste Management Operations}

EPA reports that about 94 percent of the food that is thrown away in this country is either landfilled or combusted for energy. Of the 40.7 million tons of food waste generated in 2017, 30.6 million tons were landfilled and 7.5 million tons were combusted with energy recovery. The remaining approximately 2.6 million tons were composted.60 In 2015, EPA and the U.S. Department of Agriculture created the U.S. 2030 Food Loss and Waste Reduction Goal, which includes a goal to reduce food waste going to landfills or combustion with energy recovery by 50 percent over a 2010 baseline.61

AD facilities can process food waste that would otherwise be landfilled or combusted. In 2015, it was estimated that the number of stand-alone AD facilities could double in the next five to ten years, while processing capacity could quadruple in the next five years.62 It is also estimated that AD of 100 tons of organic waste per day can generate enough biogas to create between 900 and 1,400 gasoline gallon equivalents (GGE) of CNG per day, depending on the type of organic waste, AD technology used and CH\textsubscript{4} capture efficiency of the RNG technology used.63,64,65

62 EREF. August 2015. Anaerobic Digestion of Municipal Solid Waste: Report on the State of Practice.
7.0 PURIFICATION PROCESSES AND GENERAL TECHNOLOGIES

Raw biogas, which is typically between 45 and 65 percent CH₄ depending on the feedstock, must go through a series of steps to be converted into RNG (at 90 percent CH₄ or greater, depending on the specification for the pipeline or other end use). Constituents of RNG that most often have specifications or limits to meet are CO₂, O₂, inert gases (including N₂), total sulfur, H₂S, siloxanes and VOCs. Other properties that are prescribed by pipelines or end users include heating value, temperature, pressure and moisture content.

Typical steps to convert raw biogas to RNG are reviewed below. As shown in Figure 2 and Figure 3, the treatment can be divided into:

- Primary: basic moisture and particulate removal.
- Secondary: additional moisture removal, contaminant removal and compression.
- Advanced: CO₂, O₂, N₂ and VOC removal and further compression.

The primary and secondary treatment stages produce a medium-Btu gas, which means the heating value of this treated biogas is less than that of fossil natural gas (typically about half). The advanced treatment stage produces RNG, with a heating value similar to fossil natural gas.

As part of advanced treatment, some CH₄ is stripped out along with the CO₂ and other residual constituents—especially H₂S—and routed to a flare or thermal oxidizer for destruction. The amount of CH₄ stripped out as this “tail gas” depends on the technology used to upgrade the biogas, the CH₄ specification for the RNG and the cost–benefit ratio of additional CH₄ capture versus the additional capital expense to achieve it.

Primary Treatment

Primary treatment consists of basic moisture and particulate removal from the raw biogas. The raw biogas passes through a knockout pot, filter and blower to remove moisture. This treatment is all that is required for destroying the LFG in a combustion flare; in addition, some LFG energy projects have used only primary treatment when combusting LFG in medium-Btu applications such as leachate evaporators, boilers and kilns.

Secondary Treatment

Secondary treatment consists of additional moisture removal, contaminant removal and compression. The process first uses an after cooler to condense and remove additional moisture, then removes contaminants such as siloxanes and sulfur. The type of contaminants removed depends on the end use and which constituents are present in the biogas and at what levels. The treated gas can also be compressed further as needed. These secondary treatments are used to produce medium-Btu gas for direct thermal applications such as boilers or for electricity generation applications such as engines and turbines.

Advanced Treatment

Advanced treatment is critical to transform biogas into RNG. Advanced treatment must remove CO₂, O₂, N₂, VOCs and siloxanes (as needed), although some projects may remove these types of contaminants in an earlier stage. The selection of the advanced treatment technology type is site-specific and project-
specific, and there are advantages and disadvantages to each type. Sections 7.1 through 7.4 describe advanced treatment technologies in detail, along with their benefits and drawbacks.

Fuel Specifications

For pipeline injection projects, regardless of the eventual end use at the other end of a pipeline network, there is typically a higher CH₄ content specification to meet than for onsite vehicle fuel projects. As a result, these projects usually recover a higher fraction of the CH₄, typically in the 96 to 98 percent range. Pipeline specifications also put low limits on the levels of O₂ and inert gases that are allowed in the RNG.⁶⁶ Tail gas from these projects must be destroyed in a flare or thermal oxidizer, using supplemental fuel since tail gas does not have a sufficient heating value to sustain combustion.

In the United States, CNG vehicle fuel project developers generally design projects to meet the technical requirements set by the Society of Automotive Engineers *Surface Vehicle Recommended Practice J1616™ for Compressed Natural Gas Vehicle Fuel* (SAE J1616). SAE J1616 sets minimum requirements for CNG fuel composition and properties to ensure vehicle, engine and component durability, safety and performance. It provides technical requirements for several fuel properties and potential constituents including CH₄, sulfur compounds, O₂ and particulate material. SAE J1616 references CARB's CNG commercial fuel composition for several specifications, including 88 percent CH₄ (minimum) and 1 percent O₂ (maximum).⁶⁷

7.1 CO₂ Removal Technologies

There are four common ways to remove CO₂ during the advanced treatment stage: membranes, pressure swing adsorption (PSA), solvent scrubbing and water scrubbing. Each technology has strengths and weaknesses that are evaluated and balanced on a case-by-case basis for each potential RNG facility to select the technology best suited for that particular site. Each technology can achieve RNG quality standards necessary for pipeline injection or onsite vehicle use, but it is often a matter of upfront capital expense versus ongoing operating expense.

Based on 2018 data in Argonne National Laboratory’s [database of RNG projects](https://www.anl.gov/es/reference/renewable-natural-gas-database), the CO₂ removal technology distribution for RNG projects at landfills in the United States was 27 percent using solvent scrubbing, 24 percent using membrane systems, 10 percent using PSA and 8 percent using both membranes and PSA, with the balance using water scrubbing or an unknown technology. For manure-based AD biogas-to-RNG projects in the United States in 2018, 64 percent were using membrane systems, 12 percent were using PSA and 6 percent were using water scrubbing, with the balance using another technology.⁶⁸ Figure 7 and Figure 8 show these breakdowns in chart form.

By comparison, Europe had more than 80 RNG projects in 2014, with approximately 65 percent of the projects using water or solvent scrubbing, 23 percent using PSA and 11 percent using membranes.⁶⁹

⁶⁹ U.S. EPA. September 2016. Evaluating the Air Quality, Climate & Economic Impacts of Biogas Management Technologies. EPA/600/R-16/099. [https://nepis.epa.gov/Exe/ZyPDF.cgi/P100QCXZ.PDF?Dockey=P100QCXZ.PDF].
Membrane Systems

A membrane is a type of filter that has a specific pore size rating and operates similarly to a screen or sieve, retaining particles larger than the membrane’s pore size. The material that the membrane is constructed from and the method by which the large particles are captured is technology specific. Membranes are often used to remove CO2 and other unwanted constituents when upgrading raw biogas to RNG.

Single-Pass Membrane System

Onsite CNG vehicle fuel use typically does not require a heating value as high as that required by pipeline injection projects, and it also allows some minor levels of O2 and inert gases. Therefore, onsite vehicle fuel applications with lower biogas volumes often use a single-pass membrane system that captures approximately 65 to 80 percent of the CH4. These systems either send the remaining 20 to 35 percent of the CH4 out as tail gas for economical destruction in an onsite flare or blend it with the remaining biogas for use in turbine or reciprocating engine electrical generating equipment. More efficient gas conditioning technology that would produce a product gas with a higher heating value is available for lower biogas flows, but historically it has not been economically feasible due to the added capital expense.

Multiple-Pass Membrane System

Larger-scale onsite vehicle fuel applications can use membrane technology similar to that of smaller-scale applications, but with more efficient processes that capture additional CH4 via multiple passes through the membranes. Many of these sites use gas conditioning technology that captures approximately 96 to 99 percent of the CH4. Tail gas from these projects must be destroyed in a flare or thermal oxidizer using supplemental fuel, since the tail gas does not have a sufficient heating value to sustain combustion. The increased volume of RNG produced from conditioning larger biogas volumes can typically justify the added capital and operational expenses and the addition of a thermal oxidizer.

PSA

In PSA systems, adsorbent media are pressurized with the incoming biogas. A difference in molecular size allows CH4 to pass through into the product gas, while the media capture CO2 and, to a lesser extent, N2. Once the media have been saturated, they are depressurized, and the CO2 and N2 are released into the tail gas stream. A typical PSA system employs multiple vessels operating in different stages of pressurization, depressurization and regeneration. PSA can capture between 95 and 98 percent of the CH4; the exact percentage will vary depending on the design of the PSA, which is optimized to balance system performance and system economics.

Solvent Scrubbing

Solvent scrubbing processes use a chemical solvent such as amine or a physical solvent like Selexol to strip CO2 and H2S from the biogas stream. CO2 is adsorbed into the solvent, allowing CH4 to pass through into the RNG product stream. In an amine system, the solution is heated in a separate vessel to release the CO2 into the tail gas stream; in a Selexol process, the solvent is depressurized, which releases the CO2. CH4 capture efficiency varies between 97 and 99 percent for physical solvents but is often greater than 99 percent for amine solvents given that amine solutions are particularly selective for CO2.

70 U.S. EPA. September 2016. Evaluating the Air Quality, Climate & Economic Impacts of Biogas Management Technologies. EPA/600/R-16/099. p. 29. https://nepis.epa.gov/Exe/ZyPDF.cgi/P100QCXZ.PDF?Dockey=P100QCXZ.PDF
Water Scrubbing

Water scrubbing (sometimes called water wash) is a simple process in which the biogas is pressurized into water. CO₂ is adsorbed into the water while the CH₄ passes through into the RNG product stream. The water is then depressurized, and the CO₂ is allowed to pass through in the tail gas. CH₄ capture efficiency of water scrubbing systems is typically greater than 99 percent.

Biogas Flow Rates for CO₂ Removal Technologies

Each CO₂ removal technology allows for a different range of biogas flow rates. Typical flow rates for the four main technologies are summarized in Table 6. Process flow diagrams of the four main types of advanced CO₂ removal technologies (membrane, solvent, PSA, water scrubbing) were presented in a webinar by LMOP Industry Partner DTE Biomass Energy.⁷¹

Table 6. Typical Flow Rates for Advanced CO₂ Removal Technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Inlet Biogas Flow Range (standard cfm [scfm])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Pass Membrane</td>
<td>50 to 400</td>
</tr>
<tr>
<td>Multiple-Pass Membrane</td>
<td>200 to 10,000+</td>
</tr>
<tr>
<td>PSA</td>
<td>50 to 5,000+</td>
</tr>
<tr>
<td>Solvent Scrubbing</td>
<td>1,000 to 10,000+</td>
</tr>
<tr>
<td>Water Scrubbing</td>
<td>50 to 3,000</td>
</tr>
</tbody>
</table>

Additional discussion of primary, secondary and advanced treatment is available in Chapter 3 of the LMOP LFG Energy Project Development Handbook.⁷²

7.2 VOC/Siloxane Removal Technologies

For any vehicle fuel or pipeline injection project, a critical part of the LFG conditioning process is the removal of VOCs and siloxanes. Even trace amounts of siloxanes can damage engines, turbines and compressors and so must be removed. VOCs are an environmental pollutant that would be sufficiently destroyed in an engine or turbine, but they are similar in molecular structure to siloxanes. This means any medium that is designed to remove siloxanes will also capture VOCs—usually one cannot be removed without capturing the other.

The concentration of siloxanes within biogas can vary widely by source type and the specific site. A 2017 report prepared by the California Biogas Collaborative noted the following ranges by source type for siloxane concentrations in raw biogas: 0 to 400 milligrams per cubic meter (mg/m³) for WRRFs, 0 to 50 mg/m³ for landfills and 0 to 0.2 mg/m³ for livestock farms (no results available for stand-alone MSW digesters).⁷³ These results indicate that siloxane contamination is a potential issue mainly with WRRF biogas and LFG, primarily because siloxanes are found in many cosmetic, health and beauty products.

For projects with lower gas flows or projects with higher gas flows but relatively low concentrations of VOCs and siloxanes, a non-regenerative carbon medium is typically used to remove the contaminants. Companies that specialize in the removal of these compounds will analyze gas samples and prepare a site-specific carbon medium ‘recipe’ best suited for removing them. Under normal operation, gas quality is periodically monitored to determine when the medium is saturated and replacement is necessary. These types of media can be disposed of in a landfill, and no other special handling is required.

For higher gas flows or projects with high concentrations of VOCs or siloxanes, a regenerative process is required. As with the non-regenerative systems, a medium is used to capture the contaminants, but instead of disposing of media once saturated, the media are regenerated through a temperature swing adsorption (TSA) or PSA process. VOCs and siloxanes de-adsorb with a change in pressure or temperature and are directed to a flare or thermal oxidizer for combustion. These flares require pilot gas to fuel the flare, which can be either biogas, propane or fossil natural gas.

7.3 N₂ Removal Technologies

N₂ removal (or rejection) may be required as a part of the biogas conditioning system, depending on the biogas inlet N₂ levels and the required RNG specifications. N₂ can be difficult and expensive to remove from biogas given the similar diameters of N₂ and CH₄ molecules, which are approximately 3.6 angstroms and 3.8 angstroms, respectively.

The typical biogas conditioning process to create RNG initially removes trace-level contaminants and most CO₂ while allowing N₂ to pass through the system with the CH₄. However, some biogas conditioning systems remove N₂ concurrently with CO₂ using adsorbents that have a high kinetic selectivity toward N₂ and O₂. Either way, a secondary N₂-specific rejection system may be required at the end of the gas conditioning system to reduce N₂ to acceptable end use levels. N₂ removal processing can potentially reduce a facility’s overall CH₄ recovery rate—the impact on CH₄ recovery varies depending on the inlet N₂, outlet N₂ specifications and the technology used to remove the N₂.

Commercially available N₂ rejection systems for biogas streams include PSA, membranes and cryogenic distillation. The following sections provide a basic overview of these technologies including an estimated CH₄ capture efficiency for each, which represents the percentage of CH₄ in the N₂ removal system’s inlet stream that is captured in the outlet flow (i.e., not an overall CH₄ capture efficiency for the full advanced treatment process).

PSA

As noted in Section 7.1, PSA systems use the molecular size differences of gas particles to separate them. One type of PSA system for N₂ removal uses an activated carbon adsorbent which also captures O₂. The CH₄ capture efficiency of this type of system is about 96 percent. However, the product gas is then at low pressure and must be recompressed to pipeline requirements. Another option is a kinetic PSA system in which the pore size of the adsorbent is controlled to be 3.7 angstroms so that N₂ is adsorbed but CH₄ is not. This system’s CH₄ capture efficiency is about 90 percent and the product gas is left at high pressure so may not need recompression. In both types, the inlet N₂ feed can be relatively high (e.g., 15 percent), but the adsorption capacity can be impacted by impurities in the gas stream.

Membrane

One type of membrane used specifically for N₂ removal is made of a polyether ether ketone (PEEK) material that has been widely used in the natural gas industry given its resistance to chemicals and solvents. A multi-stage N₂ rejection system using PEEK membranes can differentiate between CH₄ and N₂
molecules easier than a conventional membrane system that is focused on CO₂ removal. The N₂ inlet to this type of system can be as high as 10 percent (in the intermediate gas stream following CO₂ removal) and the CH₄ capture efficiency is 96 percent or higher. Membranes can be added or removed as flow increases or decreases so the system is scalable, but a high inlet pressure (500 psi) is required. The product gas is at a low pressure and must be recompressed to pipeline requirements.

Cryogenic Distillation

Low-pressure cryogenic distillation separates CH₄ from air gases by lowering the temperature of the intermediate gas stream (following CO₂ removal) to a point where the CH₄ liquefies but N₂ and O₂ do not. The process uses liquid N₂ to cool the gas to such a low temperature (approximately -250 degrees Fahrenheit). This technology can accommodate projects with large air intake in the raw biogas as it can process up to 30 percent N₂ content. Its CH₄ capture efficiency is between 92 and 99 percent depending on the O₂ inlet rate and the O₂ gas grid specification. Figure 9 provides an example process diagram for a system that removes CO₂ via membranes and then N₂ by cryogenic distillation—liquid N₂ is introduced into the distillation tower in the center, cooling the intermediate gas stream and causing the liquid CH₄ (product gas) to collect at the bottom.

Figure 9. Example Cryogenic Distillation Process Diagram

Used with permission from Waga Energy.

N₂ Prevention

Because of the potential intrusion of ambient air (which contains N₂) when biogas is collected from landfills, N₂ is typically more of an issue in LFG as compared to biogas from anaerobic digesters. An
exception to this can be biogas collected from agricultural waste lagoons with membrane covers, as these systems can also allow air leaks into the raw biogas stream.

Many system designers and project developers advocate for reducing the N_2 content at the source, prior to biogas conditioning, as a more cost-effective method of achieving the outlet N_2 specification. There are hardware and software options available to help LFG system operators improve wellfield efficiencies and mitigate cleanup costs. An LMOP 2017 webinar provides information on landfill wellfield design, construction and operational considerations for RNG projects.74

LMOP’s RNG Flow Rate Tool75 can serve as a screening guide to help stakeholders quickly estimate normalized gas flows for LFG-to-RNG projects.

7.4 O2 Removal Technologies

Many natural gas utilities have strict limits on O_2 for RNG that is injected into a pipeline network. Excessive amounts of O_2 can accelerate pipeline infrastructure corrosion, resulting in many utilities setting the upper limit of allowable O_2 from 0.2 percent to as low as 2 parts per million. For RNG used directly in vehicles, SAE J1616 has no limit for O_2 due to the low water vapor content requirements. CARB’s specifications for commercial CNG chemical composition set a 1 percent O_2 upper limit. While it is usually feasible to reduce O_2 in LFG to less than 1 percent through wellfield tuning and improvements, O_2 removal systems are often required for pipeline injection projects on landfills.

Stand-alone O_2 removal systems remove O_2 through a catalytic reactor and typically are the last step in the LFG conditioning process. Biogas is heated and passed over a catalyst bed, where the O_2 reacts with some of the CH_4 to create CO_2 and water. The biogas exiting the reactor is saturated with moisture and must be dehydrated, typically by using a desiccant dryer or temperature swing adsorption process. Other processes involved in the conditioning of LFG, such as membrane separators and PSA, do remove some O_2, which must be considered when designing and sizing a project. Some PSA systems are also effective in removing nearly all O_2.

Due to the added capital and operating costs of incorporating an O_2 removal system, these systems are often found to be cost-prohibitive for projects with an LFG flow rate less than 1,000 scfm. Costs to heat the biogas and remove moisture must also be considered when developing project financials. These systems may negatively impact CH_4 capture efficiency and add CO_2 to the product gas stream as well. The CH_4 loss and CO_2 addition are small, but not negligible.

7.5 The Future of RNG Processing Technologies

There are continuing advancements in RNG processing technologies to improve CH_4 recovery rates, reduce the impacts of elevated N_2 and reduce the energy intensity of each process. Increased selectivity

in membrane and PSA systems, along with solvent technology, continue to be developed. These improvements will likely continue as long as there is a strong market for RNG.

7.6 Reliable Power Sources for Advanced Treatment

Advanced treatment to upgrade biogas into RNG requires a reliable power source. The power can be purchased from the grid or generated on site.

If the electricity market pricing is favorable and enough power service is available at the location of the project, the local electric utility can power the processing plant. Even with reliable power purchased from the grid, some RNG projects have backup emergency generators to power the processing in the case of a power outage.

Some RNG projects also generate power for the production facility on site. If the process is powered with renewable energy such as solar, wind, excess biogas not sent to the RNG processing plant or even residual tail gas from the RNG processing plant, the overall CI of the LFG-to-fuel pathway can be reduced, which could result in additional credits from RNG used for transportation fuel.

The tail gas left over from the upgrading process has a diluted CH₄ content that can typically vary from less than 1 percent to as much as 30 percent. For example, at the Cedar Hills Regional Landfill in Washington, the tail gas from the RNG processing plant is mixed with unconditioned LFG and routed to a series of 300-kilowatt Detroit Diesel engines modified for biogas operation, which generate 4 to 5 megawatts of electricity or approximately 80 percent of the electricity needed to run the plant.⁷⁶

7.7 Compressing RNG

Final compression of the RNG depends on how the gas will be used. For vehicles, final CNG storage compression is around 3,500 pound-force per square inch gauge (psig). If the gas is transported via tube/tank trailer, the compression can be as high as 4,000 psig, while for pipeline injection, the compression varies between 50 to 1,000 psig depending on the interconnect location and the pipeline.⁷⁷

8.0 BARRIERS, POLICY DRIVERS AND INCENTIVES RELATED TO RNG PROJECT DEVELOPMENT

RNG project development faces two main types of barriers: economic and technical. The economics of project development can be challenging to overcome, primarily due to the abundance and prolonged low cost of fossil natural gas. Under current market conditions, it is more expensive to produce RNG from any feedstock than it is to purchase fossil natural gas. This price disparity is often amplified by the challenges and costs associated with pipeline interconnection to move the RNG to end use customers.

On the technical side, upgrading raw biogas to RNG requires meeting numerous gas quality specifications, which can vary by state or pipeline system and can be difficult to achieve cost-effectively depending on the biogas source. Additionally, utilities may have the misconception that RNG is not as clean as, or is somehow lower in quality than, fossil natural gas. The following sections describe the nature of each barrier in detail, with solutions to overcome them.

8.1 Economic Barriers

The two main economic barriers to producing RNG are the capital and operating costs associated with capturing and cleaning biogas into RNG, relative to the current low price of fossil natural gas, and the cost of delivering RNG to customers, often by building a pipeline interconnection or investing in equipment to deliver the RNG another way. Because fossil natural gas has been less expensive to produce in recent years, it is difficult for RNG to be cost-effective on a straight economic basis. The cost disparity between RNG and conventional fossil natural gas production can be mitigated by policy or legislation that creates demand for and premium pricing for RNG. In addition, in some cases the cost to capture the biogas can be considered a “sunk” cost because the facility has already put in biogas collection infrastructure apart from the RNG (biogas upgrading) project.

Without a pipeline interconnection, it is often difficult to link an RNG supply to customer demand, which could be local or remote. However, the costs associated with gas cleanup and/or interconnection can be reduced through scale economies from partnerships and shared infrastructure, such as digester clusters that share a single upgrading skid and injection point.

Cost of Processing to RNG Quality

The 2019 average Henry Hub spot price of fossil natural gas was $2.57 per million Btu ($3.17 in 2018 and $2.99 in 2017). At this price, it is impossible for RNG to directly compete with the market price of fossil natural gas (i.e., without environmental attribute value), given the costs associated with capturing biogas and processing it into RNG. A collaborative study published in 2016 determined a cost range of $7 per million Btu (very large-scale) to $25 per million Btu (small-scale) for projects upgrading biogas to RNG for pipeline injection. While state and federal environmental attribute market incentives (i.e., credits) exist, particularly for use as an on-road transportation fuel, the pricing and stability of environmental attributes created under these programs can be volatile. For example, between March 2015 and March 2020, the price of D3 Renewable Identification Numbers (RINs) under the EPA RFS was as low as $0.48 and as high as $2.95. Given this volatility, some financial institutions may be hesitant to accept these credits, or apply a steep discount to the credit value when calculating the potential revenue these environmental attributes may provide to a project. It takes a certain type of investor with a particular risk profile to be comfortable with financing an RNG project. Additional policy mechanisms and voluntary or mandatory markets to create longer-term stability and additional value for RNG’s environmental attributes, regardless of how the RNG is ultimately used, would help encourage investment or allow for longer-term purchase agreements, similar to how RPS programs for electricity helped generate longer-term power purchase agreements (PPAs) with premium pricing for electricity projects.

Cost of Pipeline Interconnection

Pipeline interconnection can be a significant barrier to RNG project implementation, particularly when working with local distribution companies. The interconnection equipment, pipeline extensions and an often-lengthy planning process can add costs to the point of making a project uneconomical. In California,
for example, interconnection costs average between $1.5 and $3 million per site, depending on facility size and location (see Figure 9). These high costs and long lead times can be challenging for RNG project developers and make projects difficult to finance. In addition, utilities that are required to provide least-cost services to their customers are restricted from taking on these added costs without regulatory approval(s), adding to the complexity.

An impediment to many manure-based and small stand-alone and wastewater digester projects pursuing RNG pipeline injection is the high cost of natural gas utility interconnects as compared to the relatively small quantity of RNG produced per project. However, in recent years, the cost and scale at which biogas cleanup technology can work has been reduced considerably.

Moreover, multiple projects have successfully enabled development and use of a single interconnect (injection point) for aggregating biogas from more than one manure-based digester project. Under this “hub and spoke” model, partially conditioned biogas can be transported to one RNG conditioning and utility interconnect location or multiple RNG gas conditioning facilities can transport RNG fuel via a virtual pipeline with compressed gas tube trailers to a common interconnect location. Each method has been demonstrated in the past few years.

8.2 Technical Barriers

Varying Specifications for RNG Injection

In the United States, hundreds of independent gas systems make up the natural gas pipeline network, and each system has its own requirements. Some of these requirements, such as elevated heating (Btu) values, may effectively prohibit RNG interconnection. For example, a project may not be able to get financing out of concern that the RNG will not consistently meet strict specifications, leading to lost revenue. If pipeline specifications were more standardized, there would be more clarity and certainty for RNG project developers as well as equipment and technology providers.

In California, Southern California Gas Company (SoCalGas) Rule 30 included a minimum heating value of 990 Btu/scf as one of its pipeline requirements. Given the technical and economic challenges of consistently meeting that specification (equivalent to 98 percent CH₄), very few RNG projects were built in California. In fact, more than 95 percent of the RNG earning LCFS credits in 2017 was sourced from out-of-state facilities. SoCalGas undertook extensive testing to evaluate whether any RNG with a lower heating value could be accepted into the pipeline without introducing risk to the pipeline network. Because of the tests, Rule 30 was amended in 2017 to allow the interconnection parties to request a gas quality deviation for lower heating values. However, the California Public Utilities Commission (CPUC) must approve any waiver before the RNG is injected into the pipeline, which adds time and cost to a project.

Treatment Processes

Another potential challenge in developing an RNG project is the quality of the source biogas. While it is technically possible to condition biogas of almost any quality into RNG, systems that can process large flows of biogas at extremely low CH₄ concentrations or with high levels of undesirable constituents (such

82 CPUC. June 2015. Decision Regarding the Costs of Compliance with Decision 14-01-034 and Adoption of Biomethane Promotion Policies and Program. Decision 15-06-029. http://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M152/K572/152572023.PDF.
83 Notes from attending US Biogas 2017 conference.
as H₂S, VOCs, siloxanes, N₂, or O₂) are difficult to scale down to smaller flow ranges. This can eliminate projects from consideration until the inlet biogas quality can be increased. Non-landfill sources of biogas typically generate lower biogas flows than landfills do, but the biogas is cleaner than LFG (e.g., greater than 60 percent CH₄ and less costly to purify).

For landfills, one of the largest impediments to additional RNG project development is the presence of N₂ in the LFG. N₂ is an inert gas that reduces the heating value of the RNG, and with most gas conditioning technologies it is difficult to remove. Gas conditioning technology or LFG wellfield operational changes that can address these elevated N₂ levels are discussed in Section 7.0.

8.3 Perception of RNG Quality

One common misconception about RNG is that it is of sub-par quality (e.g., has higher contaminant levels) compared to fossil natural gas. Comparisons of constituent concentrations for fossil natural gas and RNG from three types of feedstocks by the Gas Technology Institute show that RNG typically has lower or similar concentrations for pollutants such as CO₂, O₂, H₂S, total sulfur, aromatic hydrocarbons and other VOCs, while RNG typically has higher concentrations of pollutants such as metals, siloxanes and halocarbons. Education can help to inform project stakeholders and the public about RNG and its development while emphasizing the benefits that can be realized from these projects. Several groups have created outreach materials to educate different audiences and to provide technical assistance to stakeholders evaluating RNG projects. For example:

- SoCalGas developed an RNG tool kit that includes the basics of RNG, information on upgrading technologies, gas specifications, interconnection questions, incentives, and other tools and resources. Other than the broad overview materials, most of these resources are specific to California.
- The Coalition for Renewable Natural Gas provides state and federal policy tracking, data for RNG projects, a model pipeline specification and reports.
- The U.S. DOE Alternative Fuels Data Center provides data and tools related to RNG, with an emphasis on vehicle fuel applications.
- Energy Vision has profiled many RNG projects and compiled several reports and fact sheets detailing the environmental, economic and air quality benefits this strategy achieves.

8.4 Policies and Incentives Related to Pipeline Injection

A policy change that can help overcome RNG project development barriers is the establishment of interconnection incentives and flexible, transparent biogas quality guidelines for pipeline injection. Interconnection incentive programs help developers offset the upfront costs of establishing a project. Established yet flexible quality guidelines or standards make it easier for developers to design the proper biogas treatment system for the appropriate amount of upgrading to meet the specifications. Examples of incentive programs and biogas quality standards for pipeline injection are discussed below.

Example: Policies and Incentives in California

California Senate Bill (SB) 1383 directed CARB to implement regulations to reduce CH₄ emissions by 40 percent by 2030 as compared to 2013 levels. Further, given dairy farming’s prominent contribution to

CH₄ emissions in the state, SB 1383 included provisions directing gas corporations to implement at least five (combined total in the state, not per corporation) dairy-based RNG pipeline injection projects. The bill allows for “reasonable pipeline infrastructure costs” to be recoverable in the rates.⁸⁶

The California biomethane interconnection incentive program has $40 million available to offset interconnection costs through December 31, 2021. The program provides 50 percent of eligible biogas collection and interconnection costs (up to $5 million per project) for cluster (three or more) dairy projects and 50 percent of eligible interconnection costs (up to $3 million per project) for other RNG sources including landfills, WRRFs, stand-alone organic waste digesters and non-cluster (one or two) dairy projects.⁸⁷,⁸⁸

SoCalGas has estimated the life cycle costs to upgrade biogas into RNG and inject it into the pipeline and analyzed the relative cost of each component to help prospective projects evaluate the major cost drivers in their projects. The cost breakdown in Figure 10 incorporates a $3 million subsidy from the biomethane interconnection incentive program for eligible interconnection costs.⁸⁹

Figura 10. Breakdown of RNG Processing and Interconnection Costs⁹⁰

Example: Policies and Incentives in Washington

On March 22, 2018, the Governor of Washington signed House Bill 2580, “Promoting Renewable Natural Gas.”91 This established a voluntary program that encourages increased production of RNG through tax incentives and tools, including an inventory of potential RNG supply and associated costs. The legislation also directed relevant state agencies and regulatory bodies to establish voluntary gas quality standards for injection of RNG into the natural gas system, and policy recommendations to promote RNG development. The Washington State Department of Commerce and Washington State University’s Energy Program, an LMOP State Partner, jointly provided a study to the legislature in December 2018, with an inventory of RNG opportunities and information on economics and policies related to RNG project development within the state.92

Example: Gas Quality Standards at a State Level

Illinois set standards in the mid-1980s for transportation of natural gas, including CH₄ from landfills. The gas must meet the standards implemented by the Illinois Commerce Commission before it may be placed into the public utility gas system.93

Missouri has historical quality standards for natural gas that are applicable to all gases being furnished by a utility that falls under the jurisdiction of the Missouri Public Service Commission.94 This standard was established before “RNG” was a common term, but RNG is included because the standard is applicable to all gas distributed in the state.

Example: Gas Quality Standards at the Utility Level

The Coalition for Renewable Natural Gas tracks gas quality specifications for more than 40 major transmission gas pipeline operators in the United States, with links to their tariffs.95

Example: Interconnect Guide for RNG in Northeastern States

In September 2019, the Northeast Gas Association and the Gas Technology Institute published a guide to provide a technical framework for introducing RNG into the natural gas distribution pipeline network in parts of the northeastern United States. Although basic criteria had been established for alternative gases including RNG, inconsistent approaches to evaluating acceptance criteria and trace constituent composition had proven to be a barrier to wide-scale acceptance of RNG directly into distribution networks. The guide was written to maximize acceptance of this valuable energy resource, by minimizing technical uncertainty and better quantifying potential risks, without compromising public safety and

facility integrity. The guideline also addresses current challenges to RNG injection through the following objectives:

- Provide a consistent approach for assessing project viability.
- Define requirements to avoid interruption of service.
- Provide a standardized framework to reduce uncertainty and optimize design.
- Outline structure for the RNG development process.
- List roles and responsibilities for each party.

The guideline includes helpful elements such as a process flow diagram, checklists, proposed biogas constituent sampling plans, a list of technical references and a sample interconnect agreement.

8.5 Policies and Incentives Related to Use of RNG as Transportation Fuel

Federal

The federal RFS requires obligated parties to meet a Renewable Volume Obligation based on the amount of petroleum-based fuels they produce or import annually; one way to meet the Renewable Volume Obligation is by obtaining tradeable credits known as RINs, which are issued to producers of renewable fuels. To generate RINs, a fuel must meet one of the EPA-approved pathways. RNG can fall under two different RIN categories based on the biogas source:

- **D3,** the category for biogas from landfills, municipal wastewater treatment facility digesters, agricultural digesters, and separated MSW digesters; and biogas from the cellulosic components of biomass processed in other waste digesters.
- **D5,** the category for biogas from waste digesters (e.g., organic fraction of municipal solid waste or food waste).

State-Specific LCFSs

California’s LCFS was designed to encourage the use and production of cleaner low-carbon fuels in the state. The LCFS sets CI targets that transportation fuel providers in the state must meet each year. The CI targets decrease over time, which results in a higher percentage of lower CI fuels (e.g., natural gas, RNG, hydrogen, electricity) in the fuel mix. The LCFS parameters are expressed in terms of the CI of gasoline and diesel and the fuels that replace them. A fuel’s CI is the measure of GHG emissions associated with producing and consuming it and is based on a complete life cycle analysis. Fuels with CIs lower than the annual standard set by the LCFS generate credits, while fuels with higher CIs generate deficits. The LCFS includes various fuel pathways, including for RNG made from the various feedstocks of anaerobic digester biogas or LFG.

Oregon's Clean Fuels Program seeks to reduce the CI of transportation fuels in Oregon. It functions very similarly to California’s LCFS and also includes approved pathways for RNG made from AD biogas or LFG.

as the feedstock. The CFP includes standards for gasoline and its fuel substitutes and diesel and its fuel substitutes.

National Ambient Air Quality Standards

Local jurisdictions that are unable to meet EPA-established National Ambient Air Quality Standards must develop strategies to attain the standards, including a timeline to achieve compliance. In urban areas of non-attainment for ozone and PM, transportation-related emission reduction strategies must be part of the solution. Replacing heavy-duty diesel vehicles with natural gas vehicles running on RNG provides near-zero emissions of NOx and serves as a low-carbon alternative. This can be an important part of the implementation plan for these urban centers to achieve attainment.

Municipal Natural Gas Fleet Conversion

Municipal vehicle fleets—especially transit buses and refuse trucks—are often among the largest fuel consumers in a city. Many U.S. cities have committed to reducing the petroleum dependency of their fleets by replacing their existing fleets with vehicles that run on alternative fuel, including RNG. In 2016, eight major cities (Atlanta, Charlotte, Indianapolis, Orlando, Rochester, Sacramento, San Diego and West Palm Beach) formed the Energy Secure Cities Coalition, with a combined goal of replacing 50,000 petroleum-fueled vehicles with alternative-fueled vehicles by 2025.99

In addition to city-owned fleet upgrades, other municipalities have built CNG fleet requirements into their franchise agreements with third-party waste haulers that operate within their jurisdiction to achieve greener fleets. For example, in Seminole County, Florida, two waste haulers that cover approximately 65,000 homes are required to replace their diesel trucks with CNG vehicles by the end of 2020.100 The EPA Managing and Transforming Waste Streams Tool has sample franchise agreement language for requiring CNG or other alternative fuel vehicles.101

8.6 State Regulatory Policies and Incentives Related to Electricity

While power prices have been relatively low and are forecasted to remain low for the foreseeable future, some state RPS programs have renewable energy certificates (RECs) that are favorable to RNG derived from biogas.

In 2018 legislation, California adopted an updated and aggressive RPS under SB 100. The RPS now requires 60 percent renewables-sourced electricity by 2030 and 100 percent carbon-free electricity by 2045. RNG is eligible to generate RECs if certified by the California Energy Commission (CEC) but Assembly Bill 2196

in 2012 reduced reliance on non-California RNG for the purposes of RPS compliance; this provides additional incentive for potential RNG producers located in California.102

California’s SB 1122 created the Bioenergy Market Adjusting Tariff, which offers eligible small bioenergy renewable generators the opportunity to export electricity to the state’s three large investor-owned utilities through a fixed-price standard contract. Category 1 covers biogas from WRRFs, municipal organic waste diversion, food processing and co-digestion, while category 2 covers dairy and other agricultural bioenergy. This has created an opportunity for smaller biogas projects (less than 3 megawatts) to receive long-term PPAs.103

The North Carolina RPS, whose targets are not as aggressive as California’s, has an animal waste carve-out that is driving investment in manure-based RNG-to-electricity projects. As a result, these RNG projects can negotiate for long-term PPAs to help utilities achieve the mandated RPS targets. Swine waste carve-outs constituted 0.07 percent of prior year retail sales in 2017, constituted 0.14 percent of prior year retail sales in 2019 and will constitute 0.20 percent of prior year retail sales by 2022.104 See Section 9.0 for a cluster project example in Missouri that is being used to satisfy North Carolina RPS requirements.

As of April 2020, 30 states, Washington, D.C., and three territories had an RPS for electricity; seven states and one territory had a Renewable Portfolio Goal for electricity; three states had a Clean Energy Standard; and two states had a Clean Energy Goal.105,106

8.7 Policies and Incentives Related to Sustainability and Environmental Goals

Limited incentives and policy drivers are currently available to direct thermal end uses of RNG, but some state and local voluntary programs are emerging. Additionally, corporate sustainability goals create demand for RNG, including goals that involve carbon footprint reductions or other types of emission reductions.

More than 20 states are initiating economy-wide GHG targets, setting long-term goals and implementing policies to achieve GHG reductions.107 As these policies are implemented, they can affect all industries operating in the state, including local distribution companies. As a result, these companies are searching for lower-carbon feedstocks to reduce their carbon footprint.

Much like a consumer would pay to participate in a voluntary green power program at their local electric utility, consumers in Pennsylvania now have an option to purchase a credit for RNG sourced from LFG. The Energy Co-op in Pennsylvania has offered voluntary Renewable Natural Gas Credits in partnership

with PECO, the local gas utility, since 2016. Vermont Gas launched a similar program in 2017, and as of 2019, efforts were underway in California, New York and Minnesota. Similarly, FortisBC in Canada has offered a voluntary RNG program since 2011 that allows customers to pay a premium to increase the blend of RNG into their natural gas supply. There are a variety of brokers to help certify that the RNG volume sold through a voluntary utility program matches the quantity of RNG injected into its system. Customers pay a higher gas supply rate depending on their selected RNG percentage.

In March 2019, SoCalGas in California announced a plan to replace 5 percent of its fossil natural gas supply with RNG by 2022 and 20 percent by 2030, as part of the company’s vision to be the “cleanest natural gas utility in North America.” Toward this goal, SoCalGas filed a request with the CPUC to allow its residential and small commercial/industrial customers the option to purchase RNG. Customers who choose to participate would select from a range of dollar amounts or a percentage of total gas usage (for commercial customers), and their monthly gas bill would have a line item showing the extra cost. A settlement agreement was filed with CPUC in April 2020 which provided some updated functions of this RNG tariff program, and CPUC was expected to make a decision on the program later in 2020.

The Midwest Renewable Energy Tracking System (M-RETS) is a web-based system used by power generators, utilities, marketers and qualified reporting entities to track and retire RECs generated under RPSs and other environmental credit systems. In 2019, M-RETS began adapting its software to meet the needs of emerging voluntary programs for thermal energy credits, which were anticipated based on corporate sustainability goals and commitments. M-RETS launched its platform to track renewable thermal certificates in January 2020.

Many corporations and local governments are developing their own GHG emission inventories and incorporating the results into sustainability plans for reducing their carbon footprints and potentially even becoming carbon neutral. Carbon neutrality is when an emitter reduces its carbon footprint to zero through various measures, including emission reduction projects. One standard that corporations use

114 SoCalGas. June 12, 2020. RNG Tariff Overview. https://docs.cpuc.ca.gov/PublishedDocs/Edocs/6000/M340/K738/340738713.PDF.
to help determine their carbon footprint is *The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard*\(^{117}\) which categorizes emissions into three areas:

- **Scope 1 emissions** are direct GHG emissions from sources that are owned or controlled by the company.
- **Scope 2 emissions** are GHG emissions from the generation of purchased electricity that the company consumes.
- **Scope 3 emissions** are all other indirect GHG emissions that are a result of the company’s activities where the company neither owns nor controls the source (reduction of Scope 3 emissions is considered optional for reaching carbon neutrality).

One avenue to reduce Scope 1 emissions is a “directed biogas” wherein the end user extracts an amount of natural gas from the pipeline that is equivalent to the amount of RNG injected into the pipeline from the project. The exact RNG molecules are not necessarily delivered to the end user, but the same amount of fuel is used.\(^{118}\)

9.0 EXAMPLES

9.1 RNG Projects with Feedstock, Delivery Method and End Use

MSW Landfills

<table>
<thead>
<tr>
<th>Altamont Landfill—MSW to Vehicle Fuel (LNG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location: Alameda County, California</td>
</tr>
<tr>
<td>RNG Start Year: 2009</td>
</tr>
<tr>
<td>Description: There is only one known currently operating onsite LFG-to-LNG project in the United States, which is at the Altamont Landfill. Since the LNG plant started up in 2009, Waste Management and Linde have displaced 2.5 million gallons of diesel fuel per year by producing up to 13,000 gallons of LNG per day, enough to fuel 300 garbage trucks. The landfill also produces enough electricity from LFG to power the LNG plant and about 8,000 homes per year.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Greentree Landfill—MSW to Pipeline-Injected RNG for Electricity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location: Kersey, Pennsylvania</td>
</tr>
<tr>
<td>RNG Start Year: 2007</td>
</tr>
<tr>
<td>Description: The project developed at Greentree Landfill employs membrane, PSA and activated carbon technologies to upgrade approximately 8.4 mmscfd of LFG into RNG (plant capacity is about 15 mmscfd of raw LFG). A dedicated 7-mile pipeline delivers the RNG to the National Fuel Gas interstate pipeline network; the project is expected to produce more than 2 billion cubic feet of RNG per year. Ultimately, through a series of gas sales contracts, the RNG is being used in combined cycle equipment to generate renewable electricity and RECs.</td>
</tr>
</tbody>
</table>

Rodefeld Landfill—MSW and Manure to Pipeline-Injected RNG to Vehicle Fuel

Location: Madison, Wisconsin
RNG Start Year: 2011/2019
Description: Dane County, Wisconsin, has been creating vehicle fuel from LFG on site since 2011 (and generating electricity before that), but completed a new project in 2019 to inject RNG into ANR-TransCanada’s natural gas interstate transmission pipeline for use at regional CNG fueling stations. As part of this effort, the County built an off-loading station to allow other biogas plants (including manure-based AD facilities) in the area that convert their gas into RNG to truck their RNG to this station (for a small fee) to tap into the pipeline connection. The project is expected to displace at least 3 million gallons of fossil fuels during the first 12 months of operation.\(^\text{122}\)

St. Landry Parish Landfill—MSW to Vehicle Fuel (CNG)

Location: St. Landry Parish, Louisiana
RNG Start Year: 2012
Description: St. Landry Parish, in conjunction with BioCNG, developed a multiphase onsite LFG conditioning and CNG fueling system and an offsite virtual pipeline RNG station. The initial project phase started in 2012, processing 50 scfm of LFG to produce up to 210 GGE of CNG per day for the Parish’s use. About three years later, the Parish entered into an agreement with a private waste hauler to fuel its fleet of refuse hauling trucks and constructed a 100-cfm gas conditioning system that produced an additional 420 GGE of vehicle fuel. The Parish added a tube trailer filling system at the landfill, and constructed an offsite RNG trailer off-loading decant panel and a CNG fueling station with natural gas back-up.\(^\text{123,124}\)

\(^{122}\) Voegele, E. May 2019. Dane County, Wisconsin, celebrates the opening of RNG project.

Municipal WRRFs

Janesville WRRF—Sewage Sludge to Vehicle Fuel (CNG)

<table>
<thead>
<tr>
<th>Location:</th>
<th>Janesville, Wisconsin</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNG Start Year:</td>
<td>2012</td>
</tr>
</tbody>
</table>

Description: Janesville has the first community-scale WRRF in the country to fuel public fleet vehicles with CNG produced from biogas on site.\(^{125}\) The city has digested biosolids since 1970 and generated electricity from biogas since 1985.\(^ {126}\) In 2010, the WRRF began implementing upgrades to further treat a portion of the biogas and also start co-digesting industrial organic wastes. In June 2012, the city began fueling about 10 CNG municipal vehicles with plans to increase that number to 40 vehicles in the future.\(^ {127}\) The WRRF processes about 18 MGD of wastewater, generates 140 cfm of biogas (of which 50 cfm is used to create CNG) at 62 percent CH\(_4\), and has a maximum fuel production capacity of 275 GGE per day.\(^ {128}\)

Newtown Creek WRRF—Sewage Sludge to Pipeline-Injected RNG

<table>
<thead>
<tr>
<th>Location:</th>
<th>New York City, New York</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNG Start Year:</td>
<td>2020 (expected)</td>
</tr>
</tbody>
</table>

Description: The Newtown Creek WRRF is the largest WRRF in New York City, treating up to 310 million gallons of wastewater on an average day and producing more than 500 million cubic feet of biogas per year from eight digesters that together can hold a total of 24 million gallons of sludge.\(^ {129}\) About 40 percent of the biogas is used in boilers to provide heat for the digesters and other buildings, with the remaining 60 percent being flared. Since at least 2014, the city has been exploring the use of excess biogas to create RNG,\(^ {130}\) and as of March 2019, plans were underway to inject RNG into the National Grid pipeline distribution system for residential and commercial consumption.\(^ {131}\) The facility is anticipated to provide enough RNG to heat 2,500 homes and may co-digest an organic slurry from food waste to boost biogas production.\(^ {132}\)

Point Loma WRRF—Sewage Sludge to Pipeline-Injected RNG for Electricity

Location: San Diego, California
RNG Start Year: 2012
Description: BioFuels Energy, LLC, financed, built and operates the RNG production facility at the Point Loma Wastewater Treatment Facility. The facility can process up to 1.6 mmscfd of biogas generated from eight digesters. 133 BioFuels Energy cleans the biogas to San Diego Gas & Electric's pipeline gas specifications, and after injection into the pipeline system, the RNG is “directed” to fuel cells at two customers: University of California–San Diego (2.8 megawatts) and City of San Diego South Bay Water Reclamation Plant (1.4 megawatts). 134 This process uses existing pipelines and increases the options for biogas usage. This project was the first in California to inject RNG into a natural gas pipeline. 135

San Antonio Water System (SAWS)—Sewage Sludge to Pipeline-Injected RNG

Location: Bexar County, Texas
RNG Start Year: 2010
Description: SAWS partnered with Ameresco to produce biogas by adding a new biosolids AD process to its facility. In 2010, Ameresco began processing more than 1.5 mmscfd of biogas at 60 percent CH₄ to deliver at least 900,000 cubic feet of RNG per day to a nearby fossil natural gas pipeline for sale on the open market. In addition to offsetting the use of fossil natural gas, SAWS receives approximately $200,000 in royalties annually from the sale of the biogas, which helps keep its rates reasonable. 136,137

Livestock Farms

Hilarides Dairy—Manure to Vehicle Fuel (CNG)

<table>
<thead>
<tr>
<th>Location:</th>
<th>Tulare County, California</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNG Start Year:</td>
<td>2009</td>
</tr>
<tr>
<td>Description:</td>
<td>Hilarides Dairy is a family-run dairy that has been digesting manure from more than 9,000 cows in a covered lagoon digester since December 2004.(^{138}) Part of the 226,000 cubic feet of biogas produced per day in 2017 produced CNG to fuel two heavy-duty milk trucks and six on-farm pickup trucks, displacing 230,000 gallons of diesel annually.(^{139}) When Hilarides began cleaning and compressing its biogas for vehicle fuel in early 2009, it became the first dairy in the United States to do so. The dairy also continues to generate electricity from about two-thirds of the generated biogas.(^{140,141})</td>
</tr>
</tbody>
</table>

Roeslein Cluster Project—Manure to Pipeline-Injected RNG to Electricity and Vehicle Fuel

<table>
<thead>
<tr>
<th>Location:</th>
<th>Missouri</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNG Start Year:</td>
<td>2016</td>
</tr>
<tr>
<td>Description:</td>
<td>The North Carolina RPS includes a carve-out for renewable energy from animal waste (poultry and swine), and a utility can meet a portion of the targets through out-of-state purchases. Duke Energy opted to incorporate RNG from manure-based digesters in Missouri to meet its North Carolina RPS obligations, agreeing to purchase one-third of the RNG from a cluster project of nine farms through a 10-year PPA. Roeslein Alternative Energy’s RNG production will be built out in phases through 2020; three of the farms were producing RNG as of 2018. The Ruckman Farm began processing 1,350 cfm of biogas using a PSA system in June 2016, injecting the RNG into the American Natural Resources gas pipeline. Locust Ridge Farm and Valley View Farm use membrane systems to process about 400 scfm of biogas each and truck their RNG via a virtual pipeline to the interconnection point at Ruckman Farm. One of Duke’s combined cycle power plants in the Southeast pulls the appropriate amount of gas from the local pipeline to generate electricity. Beyond its obligations to Duke, this project also sells excess RNG into the vehicle fuel market.(^{142,143,144})</td>
</tr>
</tbody>
</table>

Stand-Alone Organic Waste Management Operations

Blue Line Biogenic CNG Facility—Organic Waste to Vehicle Fuel (CNG)

<table>
<thead>
<tr>
<th>Location</th>
<th>South San Francisco, California</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNG Start Year</td>
<td>2014</td>
</tr>
</tbody>
</table>

| Description: | South San Francisco Scavenger Company (SSFSC) and Blue Line Transfer developed this dry AD system with eight modular AD tunnels and a total processing capacity of 11,200 tons per year. The green waste and food waste feedstocks are collected from commercial and residential (approximately 20,000 households) customers. The project is producing between 380 and 500 diesel gallon equivalents of RNG per day, which fuel 34 CNG vehicles owned by SSFSC. The trucks are filled every weeknight using a slow fill system that provides a mix of CNG from RNG and fossil natural gas, but on weekends the trucks receive renewable CNG only. SSFSC is selling D5 RINs and carbon credits under California’s LCFS. 145, 146 |

CR&R AD Facility—Organic Waste to Pipeline-Injected RNG for Vehicle Fuel (CNG)

<table>
<thead>
<tr>
<th>Location</th>
<th>Perris, California</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNG Start Year</td>
<td>2016</td>
</tr>
</tbody>
</table>

| Description: | CR&R Environmental Services’ AD project uses residential and commercial green (yard) and food waste feedstocks, with an initial maximum capacity of 83,600 tons per year (three more phases will follow at a capacity of 83,600 tons each). The system was designed to also accept other types of organic waste including solid and liquid food waste. 147 At full build-out, the facility will be able to convert about 334,000 tons of waste per year into 4 million diesel gallon equivalents of RNG and 250,000 tons of fertilizer. 148 In 2017, the biogas produced was cleaned and compressed into CNG for use by 75 CR&R refuse trucks, but in 2018 CR&R began injecting all the RNG into the SoCalGas fossil natural gas system via a newly built 1.4-mile pipeline, becoming the first RNG project in California to do so. CR&R now pulls the RNG back out of the pipeline to compress it for its vehicles. 149, 150 In late 2018, the facility’s LCFS application was approved with its requested CI. 151 |

9.2 Corporate Alternative Fuel Fleets

Corporate sustainability goals are also driving a shift from diesel-based fleets to natural gas-based fleets.

Waste Management, Inc.—CNG and LNG

Waste Management has set a goal to reduce fleet emissions by 45 percent by 2038, as compared to a 2010 baseline, by transitioning 90 percent of its fleet from diesel to alternative fuel vehicles. At the end of 2017, Waste Management had more than 32,000 fleet vehicles overall, including more than 6,500 running on some form of natural gas and 33 percent of those natural gas vehicles fueled by an RNG source. All of the company’s fleet operating in California, Oregon and Washington runs on RNG-sourced fuel.152 Two examples of Waste Management-owned landfills that produce RNG vehicle fuel are the Altamont Landfill (California), with a renewable LNG facility that fueled 170 of the company’s waste trucks in 2017, and the Outer Loop Landfill (Kentucky), which produces enough CNG to fuel approximately 800 vehicles.153

United Parcel Service (UPS)—CNG and LNG

UPS has 51 natural gas fueling stations across the country (including six new CNG stations in 2017) and a fleet of more than 5,200 natural gas vehicles (including 450 purchased during 2017). During 2017, UPS used more than 15 million gallons of vehicle fuel from RNG in its fleet, an increase from 4.6 million gallons in 2016. In the same year, UPS signed two new agreements to purchase 1.5 million gallons of RNG per year from Fair Oaks Dairy in Indiana and 10 million gallons of RNG per year from Big Ox Energy, based in Wisconsin.154,155 In 2019, UPS announced the company will purchase a total of 170 million gallon equivalents of RNG from Clean Energy Fuels Corp. through 2026 for use at 18 of its stations in 12 states. This decision is part of UPS’ goal to have alternative fuel make up 40 percent of its total ground fuel purchases by 2025 and reduce its ground fleet’s GHG emissions by 12 percent by 2025.156

10.0 RESOURCES

<table>
<thead>
<tr>
<th>Hyperlinked Resource</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative Fuels Data Center</td>
<td>U.S. DOE</td>
</tr>
<tr>
<td>AD webpage</td>
<td>U.S. EPA</td>
</tr>
<tr>
<td>AD Facilities Processing Food Waste in the United States: Survey Results</td>
<td>U.S. EPA</td>
</tr>
<tr>
<td>Biogas Toolkit</td>
<td>U.S. EPA</td>
</tr>
<tr>
<td>Gas Quality Database (information from major transmission pipeline tariffs)</td>
<td>The Coalition for Renewable Natural Gas</td>
</tr>
<tr>
<td>Interconnect Guide for RNG in New York State</td>
<td>Northeast Gas Association; Gas Technology Institute</td>
</tr>
<tr>
<td>Landfill and LFG Energy Project Database</td>
<td>U.S. EPA LMOP</td>
</tr>
<tr>
<td>Livestock Anaerobic Digester Database</td>
<td>U.S. EPA AgSTAR</td>
</tr>
<tr>
<td>Managing and Transforming Waste Streams: A Tool for Communities</td>
<td>U.S. EPA</td>
</tr>
<tr>
<td>Renewable thermal credit tracking system</td>
<td>M-RETS</td>
</tr>
<tr>
<td>RIN Calculator</td>
<td>American Biogas Council</td>
</tr>
<tr>
<td>RNG Database</td>
<td>Argonne National Laboratory</td>
</tr>
<tr>
<td>RNG Flow Rate Estimation Tool</td>
<td>U.S. EPA LMOP</td>
</tr>
<tr>
<td>RNG Project Map</td>
<td>U.S. EPA LMOP / AgSTAR</td>
</tr>
<tr>
<td>RNG Tool Kit</td>
<td>SoCalGas</td>
</tr>
<tr>
<td>RNG webpage</td>
<td>U.S. EPA LMOP</td>
</tr>
<tr>
<td>WRRF “phase 1” database</td>
<td>Water Environment Federation</td>
</tr>
</tbody>
</table>
11.0 ABBREVIATIONS, ACRONYMS AND UNITS OF MEASURE

AD anaerobic digestion
AFLEET Alternative Fuel Life-Cycle Environmental and Economic Transportation
Btu British thermal unit
CARB California Air Resources Board
CEC California Energy Commission
cfm cubic feet per minute
CH₄ methane
CI carbon intensity
CNG compressed natural gas
CO carbon monoxide
CO₂ carbon dioxide
CPUC California Public Utilities Commission
DOE U.S. Department of Energy
g CO₂e/MJ grams of CO₂ equivalent per megajoule
GGE gasoline gallon equivalents
GHG greenhouse gas
H₂S hydrogen sulfide
LCFS Low Carbon Fuel Standard
LFG landfill gas
LMOP U.S. EPA Landfill Methane Outreach Program
LNG liquefied natural gas
M-RETS Midwest Renewable Energy Tracking System
mg/m³ milligrams per cubic meter
MGD million gallons per day
mmscfd million standard cubic feet per day
MSW municipal solid waste
N₂ nitrogen
NOₓ nitrogen oxide
O₂ oxygen
PM particulate matter
PPA power purchase agreement
PSA pressure swing adsorption
psig pound-force per square inch gauge
REC renewable energy certificate
RIN Renewable Identification Number
RFS Renewable Fuel Standard
RNG renewable natural gas
RPS Renewable Portfolio Standard
SAE J1616 Society of Automotive Engineers *Surface Vehicle Recommended Practice J1616™ for Compressed Natural Gas Vehicle Fuel*
SAWS San Antonio Water System
SB Senate bill
scf standard cubic foot
scfm standard cubic feet per minute
SoCalGas Southern California Gas Company
SOₓ sulfur dioxide
SSFSC South San Francisco Scavenger Company
UPS United Parcel Service
VOC volatile organic compound
WEF Water Environment Federation
WRRF water resource recovery facility
Appendix A: Natural Gas Companies Accepting RNG into Pipelines

<table>
<thead>
<tr>
<th>Company Name and Website</th>
<th>State(s) where RNG is Injected</th>
<th>Feedstock(s)¹</th>
<th>Company Information about RNG</th>
<th>Company’s Pipeline Interconnection Standard / Tariff / Similar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise Pipeline</td>
<td>Texas</td>
<td>LF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equitrans Midstream</td>
<td>Pennsylvania</td>
<td>LF</td>
<td></td>
<td>Equitrans, L.P. FERC Gas Tariff</td>
</tr>
<tr>
<td>Four-S Oil Company</td>
<td>Texas</td>
<td>LF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fremont Department of Utilities Gas Distribution</td>
<td>Nebraska</td>
<td>WW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Gas Pipeline, LLC</td>
<td>Tennessee</td>
<td>LF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gulf South Pipeline</td>
<td>Louisiana, Texas</td>
<td>LF</td>
<td></td>
<td>Gulf South Pipeline Company Tariff</td>
</tr>
<tr>
<td>Hawaii Gas Transmission and Distribution</td>
<td>Hawaii</td>
<td>WW</td>
<td>Hawaii Gas RNG page</td>
<td></td>
</tr>
<tr>
<td>Houston Pipe Line Company</td>
<td>Texas</td>
<td>LF</td>
<td></td>
<td>Houston Pipe Line Company Gas Quality Specifications</td>
</tr>
<tr>
<td>Kinder Morgan</td>
<td>Arizona, Mississippi,</td>
<td>LF, WW</td>
<td></td>
<td>Kinder Morgan Tariffs page</td>
</tr>
<tr>
<td>Memphis Light, Gas and Water (MLGW)</td>
<td>Tennessee</td>
<td>LF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metropolitan Utilities District of Omaha</td>
<td>Nebraska</td>
<td>LF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montana-Dakota Utilities Co.</td>
<td>Montana</td>
<td>LF</td>
<td></td>
<td>Montana-Dakota Utilities - Rates and Tariffs</td>
</tr>
<tr>
<td>Mountaineer Gas Company</td>
<td>West Virginia</td>
<td>LF</td>
<td></td>
<td>Mountaineer Gas Company - Rates and Tariffs</td>
</tr>
</tbody>
</table>

¹ Feedstock(s) refers to the types of RNG accepted by the companies.
Appendix A: Natural Gas Companies Accepting RNG into Pipelines

<table>
<thead>
<tr>
<th>Company Name and Website</th>
<th>State(s) where RNG is Injected</th>
<th>Feedstock(s)¹</th>
<th>Company Information about RNG</th>
<th>Company’s Pipeline Interconnection Standard / Tariff / Similar</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Gas & Oil Cooperative</td>
<td>Ohio</td>
<td>WW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Grid</td>
<td>New York</td>
<td>LF, WW</td>
<td>Renewable Gas - Vision for a Sustainable Gas Network</td>
<td>National Grid - Service Rates</td>
</tr>
<tr>
<td>Northern Indiana Public Service Company (NIPSCO)</td>
<td>Indiana</td>
<td>Ag</td>
<td></td>
<td>NIPSCO Rate for Gas Service Renewable Gas Balancing Service</td>
</tr>
<tr>
<td>Northern Natural Gas</td>
<td>Kansas, Nebraska, Wisconsin</td>
<td>Ag, WW</td>
<td></td>
<td>Northern Natural Gas Tariff page</td>
</tr>
<tr>
<td>NW Natural</td>
<td>Oregon</td>
<td>WW</td>
<td>NW Natural RNG page</td>
<td>NW Natural Oregon Tariff Book</td>
</tr>
<tr>
<td>Pacific Gas and Electric Company (PG&E)</td>
<td>California</td>
<td>Ag</td>
<td>PG&E Interconnecting biomethane supply page</td>
<td>PG&E Tariffs page</td>
</tr>
<tr>
<td>Panhandle Eastern Pipe Line Company</td>
<td>Kansas</td>
<td>LF</td>
<td></td>
<td>Panhandle Eastern Pipe Line Company FERC NGA Gas Tariff page</td>
</tr>
<tr>
<td>Peoples Natural Gas</td>
<td>Pennsylvania</td>
<td>LF</td>
<td>Peoples Producers, Suppliers & Gas Supply page</td>
<td>Peoples Gas Quality Quick Reference Guide</td>
</tr>
<tr>
<td>Philadelphia Gas Works</td>
<td>National</td>
<td>LF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piedmont Natural Gas Company, Inc.</td>
<td>North Carolina</td>
<td>Ag</td>
<td></td>
<td>Piedmont Natural Gas Index of Tariff & Service Regulations</td>
</tr>
<tr>
<td>Puget Sound Energy</td>
<td>Washington</td>
<td>LF, WW</td>
<td></td>
<td>Puget Sound Energy Natural gas tariffs & rules page</td>
</tr>
<tr>
<td>Southern California Gas Company (SoCalGas)</td>
<td>California</td>
<td>Ag, OW, WW</td>
<td>SoCalGas Renewable Gas page</td>
<td>SoCalGas Rule No. 30 Transportation of Customer-Owned Gas</td>
</tr>
<tr>
<td>Southern Company Gas</td>
<td>Georgia</td>
<td>LF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern Company Gas (Atlanta Gas Light Company)</td>
<td>Georgia</td>
<td>LF</td>
<td></td>
<td>Atlanta Gas Light Company Tariff</td>
</tr>
<tr>
<td>Southern Star Central Gas Pipeline</td>
<td>Kansas, Oklahoma</td>
<td>LF</td>
<td></td>
<td>FERC Gas Tariff of Southern Star Central Gas Pipeline, Inc.</td>
</tr>
</tbody>
</table>
Appendix A: Natural Gas Companies Accepting RNG into Pipelines

<table>
<thead>
<tr>
<th>Company Name and Website</th>
<th>State(s) where RNG is Injected</th>
<th>Feedstock(s)</th>
<th>Company Information about RNG</th>
<th>Company’s Pipeline Interconnection Standard / Tariff / Similar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summit Utilities, Inc.</td>
<td>Maine</td>
<td>Ag</td>
<td>Summit Announces RNG Initiative - May 2019</td>
<td></td>
</tr>
<tr>
<td>Texas Gas Transmission LLC</td>
<td>Kentucky</td>
<td>LF</td>
<td>Texas Gas Transmission, LLC Tariff</td>
<td></td>
</tr>
<tr>
<td>UGI Utilities</td>
<td>Pennsylvania</td>
<td>LF</td>
<td>UGI Tariffs</td>
<td></td>
</tr>
<tr>
<td>Utica Gas Services (subsidiary of Williams Gas Pipeline)</td>
<td>Ohio</td>
<td>LF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vectren Energy Delivery</td>
<td>Ohio</td>
<td>LF</td>
<td>Vectren Rates & tariffs page</td>
<td></td>
</tr>
<tr>
<td>Vermont Gas</td>
<td>Iowa, Quebec, Vermont</td>
<td>Ag, LF, WW</td>
<td>VGS Renewable Natural Gas page</td>
<td></td>
</tr>
<tr>
<td>Williams Gas Pipeline</td>
<td>Washington</td>
<td>LF</td>
<td>Transcontinental Gas Pipe Line Company, LLC FERC Gas Tariff</td>
<td></td>
</tr>
<tr>
<td>Wisconsin Public Service Corporation</td>
<td>Wisconsin</td>
<td>OW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xcel Energy</td>
<td>Colorado</td>
<td>WW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XTO Energy</td>
<td>Oklahoma</td>
<td>LF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Main Sources of Data for Inclusion of Utilities in this List

1. **Feedstock(s) of the RNG Injected**
 - **Ag**: biogas from agricultural digester (may co-digest organic waste)
 - **LF**: landfill gas
 - **WW**: biogas from wastewater digester (may co-digest organic waste)
 - **OW**: biogas from organic waste digester (food waste and/or other organic waste types)

- **U.S. EPA. March 2020. Landfill and LFG Energy Project Database.**
 https://www.epa.gov/fmp/landfill-gas-energy-project-data
- **U.S. EPA. March 2020. Livestock Anaerobic Digester Database.**
 https://www.epa.gov/agstar/livestock-anaerobic-digester-database