

The SARA-ICE Model for Predicting Skin Sensitizer Potency

Joe Reynolds¹ and Emily N. Reinke² ¹Unilever; ²Inotiv;

30th January 2024, Fragrance Technical Expert Meeting, Washington DC

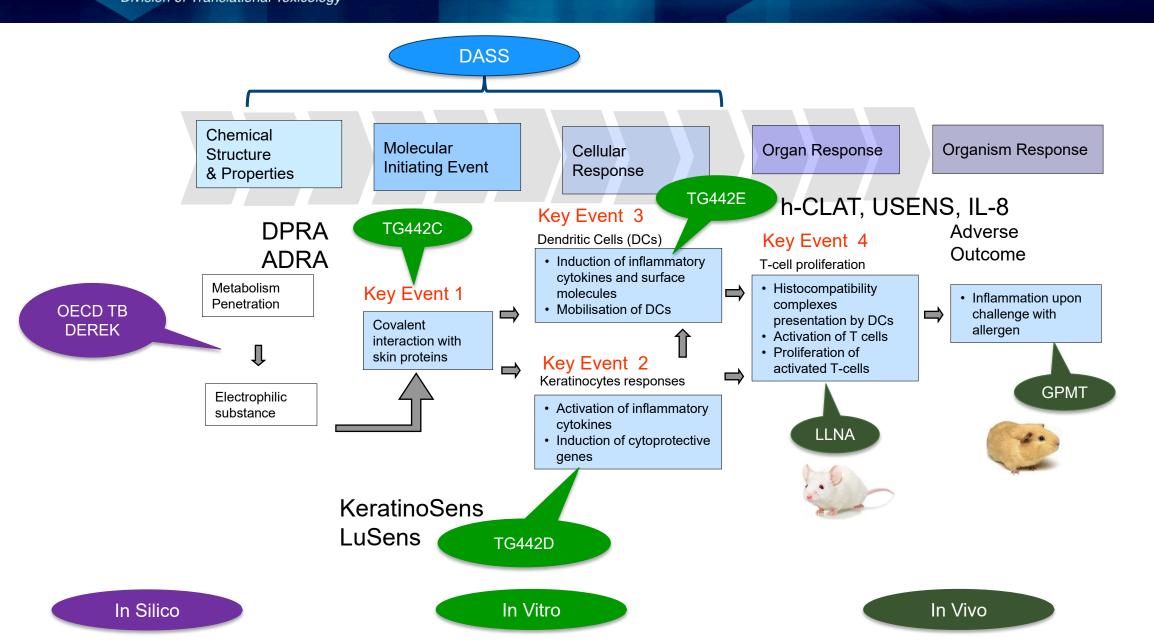
National Institutes of Health • U.S. Department of Health and Human Services

Outline

- Emily Context of use developing Defined Approaches for estimating points of departure for skin sensitization
 - Mapping key events to an adverse outcome pathway
 - Available DAs
 - Development of SARA-ICE
- Joe The SARA-ICE model
 - Modelling assumptions and development history
- Emily Case Studies using SARA-ICE
 - ITs
 - Geraniol

NIH National Institute of Environmental Health Sciences Division of Translational Toxicology

Test Methods Mapped to AOP



OECD Defined Approaches for Skin Sensitization Guideline Project

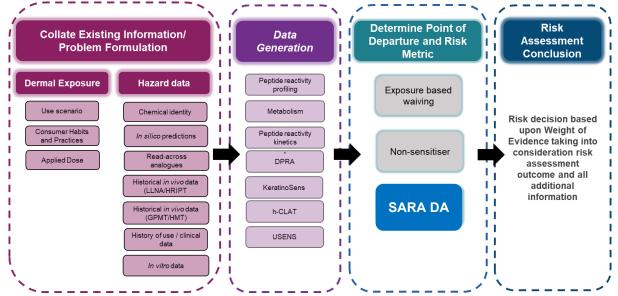
- Extensive curation efforts undertaken to build LLNA (168 substances) and human (66 substances) reference databases
- Applicability domain and DA confidence were defined
- The resulting Guideline 497 was adopted in 2021
- It meets regulatory requirements of:
 - DAs that discriminate between sensitizers and non-sensitizers
 - DAs that discriminate strong from weak/moderate sensitizers (i.e., GHS potency categories)
- Future work will cover DAs that address regulatory needs of quantitative risk assessment
 - US and UK leading a project under OECD for evaluating a defined approach that can provide a point of departure for quantitative risk assessment

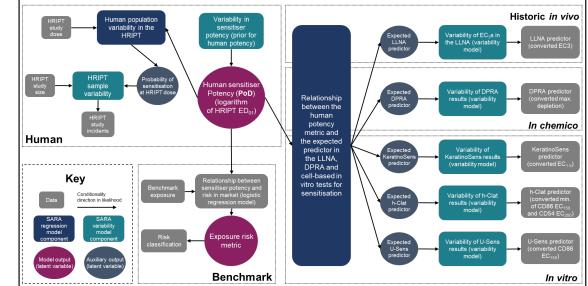
Models For Conducting Risk Assessment

	Model type	Input	Output	Species	Conversion to dose/unit area?	Open source	Source
ITSv1/ITSv2	DA	DPRA, h-CLAT, KeratinoSens, DEREK/OECD Toolbox	Potency Sub- category (GHS)	Human	N/A	Yes	(OECD, 2021)
STS	DA	h-CLAT, DPRA	Potency Sub- category (GHS)	Human	N/A	Yes	(EPA, 2018; Takenouchi et al., 2015)
BN-ITS3	DA	DPRA, h-CLAT, KeratinoSens, TIMES-SS, bioavailability (solubility at pH 7, Log D at pH 7, plasma protein binding, fraction ionized)	pEC3 (Point of Departure)	Mouse	Yes	No	(Jaworska et al., 2015)
Shiseido ANN	DA	DPRA, h-CLAT, KeratinoSens/LuSens	EC3 (Point of Departure)	Mouse	Yes	Yes (Kleinstreuer et al., 2018)	(Hirota et al., 2015)
2of3 Regression	DA	Combination of: DPRA, kDPRA, h-CLAT, KeratinoSens/LuSens, Vapor Pressure	pEC3 (Point of Departure)	Mouse	Yes	Yes	(Natsch and Gerberick, 2022)
SARA-ICE	DA	Any combination of: HRIPT, LLNA, DPRA, kinetic DPRA, KeratinoSens, h-CLAT, U-SENS	ED01 (Point of Departure)	Human	Yes	Yes (in the future)	(Reynolds et al., 2022, 2019)
QRA2	WOE	Any combination of available data: in vivo (e.g. LLNA, HRIPT), in vitro (e.g. DPRA, KeratinoSens, h-CLAT)	NESIL (Point of Departure)/ AEL (after application of safety factors)	Human	Yes	Yes	(Api et al., 2020)

National Institute of Environmental Health Sciences Division of Translational Toxicology

Skin Allergy Risk Assessment Defined Approach (SARA DA) was developed for application as part of a tiered, WoE NGRA framework





 Unilever NGRA framework for Skin Allergy was designed to use a WoE based upon all available information, accommodate range of consumer product exposure scenarios and provide a quantitative point of departure and risk metric → SARA DA

The use-case of the SARA DA is to estimate:

- 1. ED₀₁, for all chemicals in the SARA database (which may include data for some chemical of interest)
- 2. probability that a consumer exposure to some chemical is 'low risk', conditional on the available data and the model

Reynolds et al 2022 https://pubmed.ncbi.nlm.nih.gov/35835397/

National Institute of Environmental Health Sciences Division of Translational Toxicology

Unilever Team

Georgia Reynolds Nicola Gilmour Joe Reynolds Gavin Maxwell National Toxicology Program U.S. Department of Health and Human Services

NICEATM News - 2021 Issue 25: May 27

In this Newsletter:

NICEATM to Collaborate with Unilever on Development of Predictive Model for Skin Sensitization

NICEATM to Collaborate with Unilever on Development of Predictive Model for Skin Sensitization

NICEATM has entered into an agreement with consumer products company Unilever to collaboratively test and further develop their Skin Allergy Risk Assessment (SARA) predictive model. SARA is a computational model that uses a variety of input data to estimate a probability that a chemical will cause an allergic skin reaction in humans. NICEATM will test the SARA model using a variety of chemical data sets, including chemicals of interest to U.S. and international regulatory agencies. NICEATM and Unilever will also work together to expand the SARA model to include data generated by NICEATM. The intent is to make the SARA model openly available for public use along with other NICEATM predictive models. Availability of the SARA model will help further reduce animal use for the endpoint of skin sensitization, and will improve upon existing efforts by providing points of departure for quantitative human risk assessment.

<u>Information about other NICEATM projects</u> to evaluate alternatives to animal use for skin sensitization is available at <u>https://ntp.niehs.nih.gov/go/ACDtest</u>.

Reference: <u>Reynolds et al.</u> Probabilistic prediction of human skin sensitizer potency for use in next generation risk assessment. Comput Toxiol 9:36-49. <u>https://doi.org/10.1016/j.comtox.2018.10.004</u>

NICEATM Team

Nicole Kleinstreuer Emily Reinke Dori Germolec Dave Allen Tripp LaPratt Michaela Blaylock (Judy Strickland) (Jim Truax)

Modification of SARA DA to create SARA-ICE

Database

Aim to expand the core dataset underpinning the model using data in the ICE database (relaxing the constraint that chemicals be limited to cosmetic ingredients).

ICE: Integrated Chemical Environment (nih.gov)

Risk benchmarking

Drop the risk benchmarking component of the model – the current set of benchmarks are limited to use of consumer goods. Use the model for human potency estimation for quantitative risk assessment.

GHS classification

Add functionality to predict GHS classification (estimated as a class probability) to communicate uncertainty in classification.

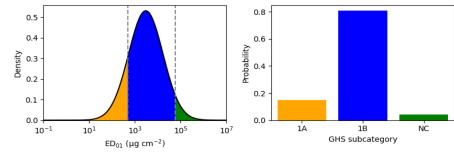
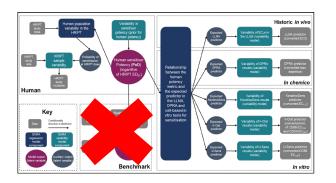
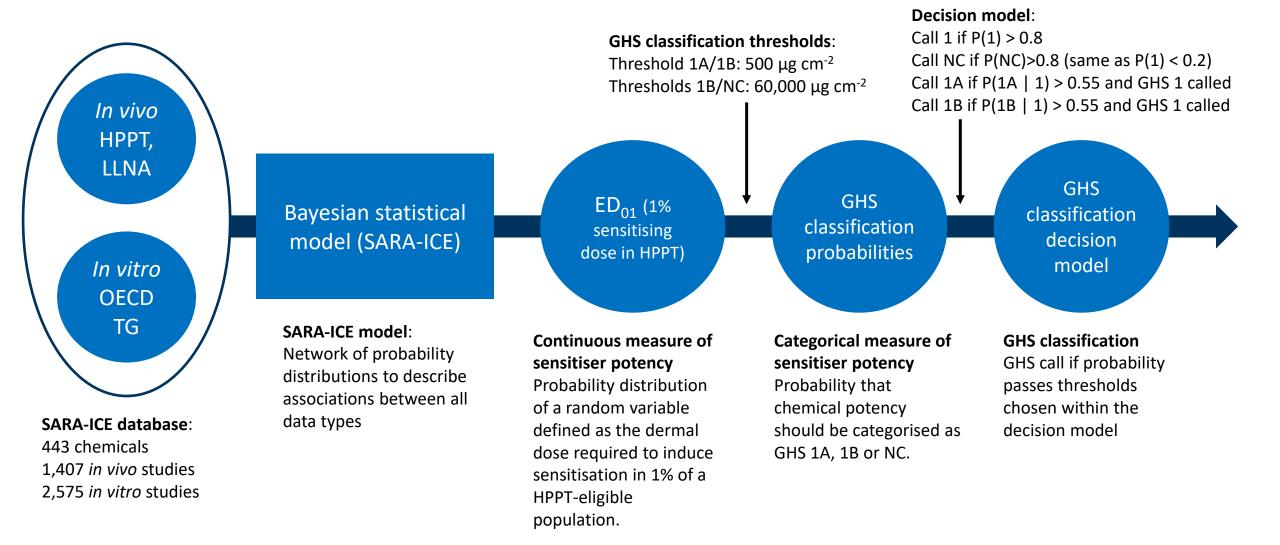


Figure (a) Example estimate of ED_{01} distribution with overlay of GHS subcategories 1A, 1B and NC defined thresholds, (b) probability of each GHS subcategory from ED_{01} distribution



SARA-ICE DA: Skin Allergy Risk Assessment - Integrated Chemical Environment Defined Approach



National Institute of Environmental Health Sciences Division of Translational Toxicology

The SARA-ICE model

The SARA-ICE database

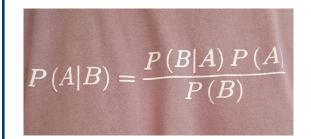
Study type	НРРТ	LLNA	DPRA	kDPRA	KeratinoSens	h-CLAT	U-Sens
Inputs into SARA- ICE	Dermal dose, number tested, number sensitised	EC ₃ or maximum concentration tested if no response observed	% depletion of cysteine and lysine peptides	Log Kmax	EC _{1.5} or maximum concentration tested IC50 or maximum concentration tested	$\begin{array}{c} \text{CD86 EC}_{150},\\ \text{CD50 EC}_{200} \text{ or}\\ \text{maximum}\\ \text{concentration}\\ \text{tested}\\ \text{CV}_{75} \text{ or}\\ \text{maximum}\\ \text{concentration}\\ \text{tested}\\ \end{array}$	CD86 EC ₁₅₀ or maximum concentration tested CV ₇₅ or maximum concentration tested
Number of studies in database	871	536	650	361	972	428	164
Number of unique CASRN with this study type	276	195	251	185	258	211	90

434 distinct CASRN

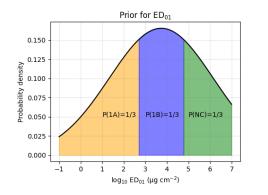
The SARA-ICE model

The SARA-ICE model is a high dimensional probability distribution built from a set of assumptions around conditional probability relationships.

HPPT data ED₀₁ H-CLAT Mean DPRA H-CLAT data DPRA data Parameters of the model are "learnt" using Bayesian updating.

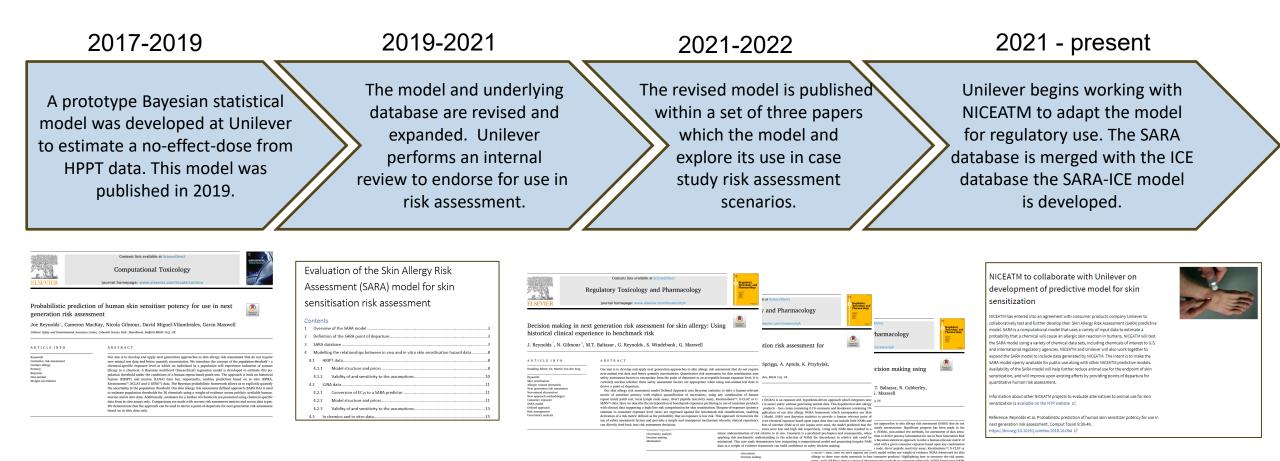


Bayes theorem is applied to calculate the conditional probability distribution of each parameter given the available data. The primary variable of interest includes the ED₀₁, defined as the HPPT dermal dose at which there is a 1% sensitisation rate.



The ED₀₁ is converted to GHS classification probabilities for classification and labelling.

Development history of the SARA-ICE model



Model assumptions

HPPT

- 1. There is a dermal dose at which there is a 1% chance of inducing sensitisation in a randomly selected individual from a HPPT-eligible population.
- 2. The probability of inducing sensitisation in a HPPT increases with dose.
- 3. Each individual within a HPPT-eligible population has a personal threshold for sensitisation to any given chemical. This threshold may be greater than the maximum possible dose.
- 4. The distribution of the base-10 logarithm of personal thresholds has a Gaussian shape. The standard deviation is chemical-specific; different chemicals have different variabilities within the human population with respect to sensitivity to induction of sensitisation.
- 5. The number of individuals sensitised in a HPPT study follows a logit-normal-binomial compound distribution.

Model assumptions

Non-HPPT data

- 1. Data from the LLNA, DPRA, kDPRA, KeratinoSens, h-CLAT and U-Sens assays can be transformed to such that it is reasonable to variability in chemical-specific data in terms of a normal distribution (transformations mostly involve logarithms).
- 2. The same transformations put data on a scale in which it is reasonable to assume linear relationships between the average transformed datapoint on the base-10 logarithm of the ED₀₁.
- 3. The relationships between the average results can be described by a multivariate Gaussian distribution.
- 4. Variability in each test is chemical-specific. There is a latent variable for each test and each chemical which defines the variance of the chemical in the particular test.
- 5. Chemical-specific variance parameters can be estimated using partial pooling. The population of variances for each tested can be learnt and used to regularise chemical-specific estimates when limited data is available.

Computation

The SARA-ICE model is a mathematical model – it's assumptions and equations are expressible with pen and paper.

Learning model parameters requires numerical computation: the model is realised numerically using the programming language Stan. Python is used to process model inputs and outputs.

Computation requires many CPU cycles; however, a production version of the model has been developed to alleviate this limitation.

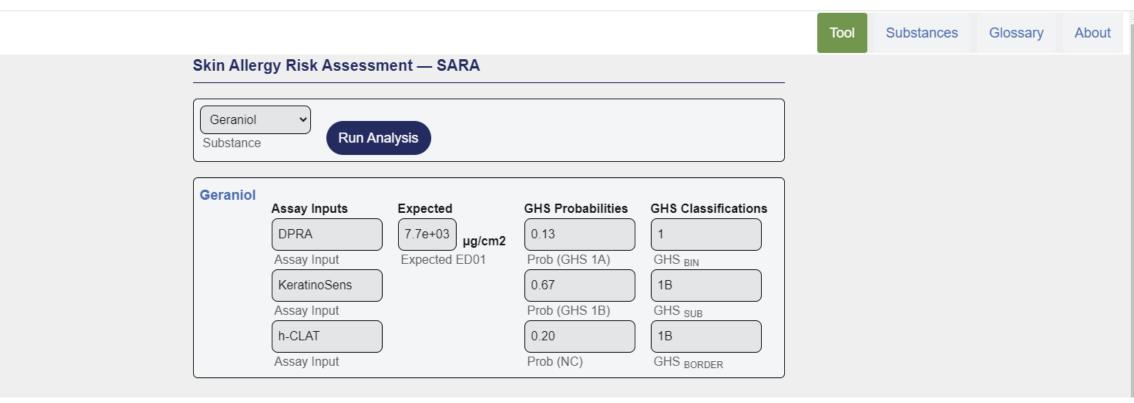
A standalone, downloadable version of the model is being created by NICEATM.

🐑 sara-io	Estan ×
(= => £	🗌 🔚 🖸 Check on Save 🛛 🔍 🎢 🗸
178	
179 🔺 }	
	nodel {
181	
182	// In vitro regression
183	L_Omega ~ lkj_corr_cholesky(2);
184 -	for (i in 1:9) {
185	residual_scale[i] ~ normal(0, 2);
186 -	}
187 -	for (i in 1:N_chem) {
188	residual_raw[i] ~ normal(0, 1);
189 -	}
190	
191	// Chemical distribution
192	theta_raw \sim normal(0, 1);
193	
194	// HPPT
195	s_raw_~ weibull(5, 1);
196	$s_scale \sim normal(0, 1);$
197	logit_prob_scale_raw ~ weibull(5, 1);
198	<pre>logit_prob_scale_scale ~ normal(0, 2);</pre>
199	logit_prob_raw ~ normal(0, 1);
200	
201	
202	(/ idealification of upper data since data managers survey as a second second
203	// Likelihood of HPPT data given dose response curve parameters
204 * 205	$v_{octor}[N \mid UDDT obs] logit prob = a((UDDT dose = theta[UDDT idx]) / s[UDDT idx] = a inv log00)$
205	<pre>vector[N_HPPT_obs] logit_prob = g((HPPT_dose - theta[HPPT_idx]) ./ s[HPPT_idx] - g_inv_log99) + logit_prob_scale_scale * logit_prob_scale_raw[HPPT_idx] .* logit_prob_raw;</pre>
206	+ TOGIL_PROD_SCATE_SCATE ^ TOGIL_PROD_SCATE_RAW[HPP1_TOX] .* TOGIL_PROD_RAW; HPPT_k ~ binomial_logit(HPPT_n, logit_prob);
207	
208 -	3

Integrated Chemical

Environment

SARA-ICE Container Output View



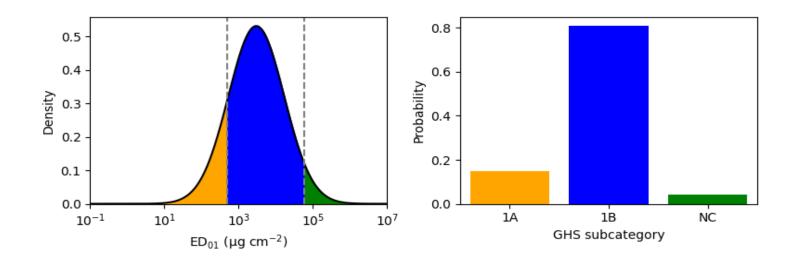
Early design for output on SARA-ICE

GHS classification

The distribution of the ED₀₁ is used to defined GHS classification probabilities:

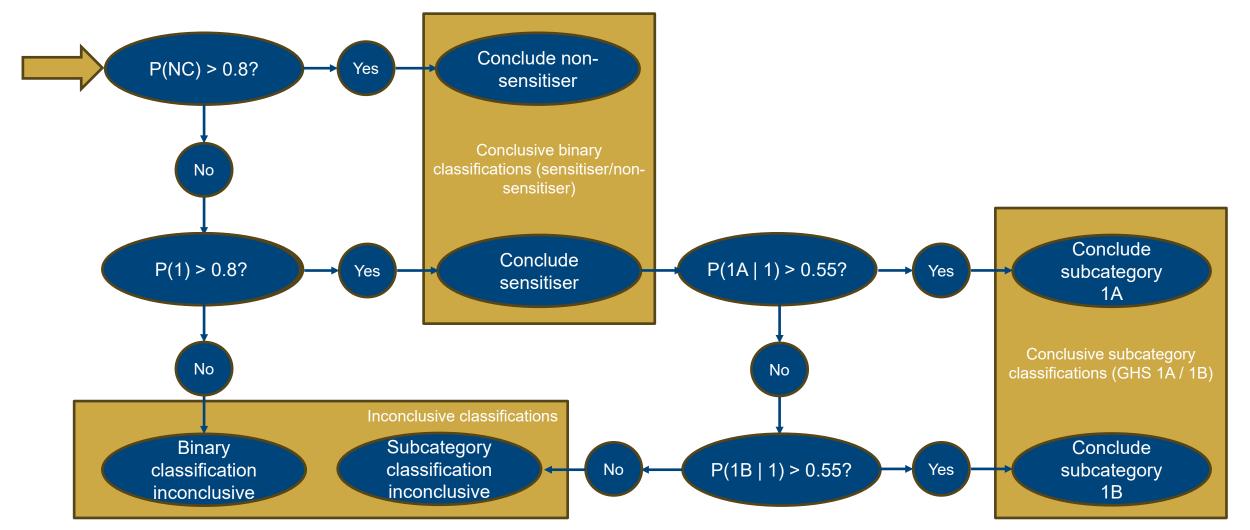
- 1. A threshold of 60,000 cm⁻² (maximum possible HPPT dose under standard volume and patch size) is used to define the boundary between binary categories 1 and NC.
- 2. A threshold of 500 μ g cm⁻² is used to define the boundary between subcategories 1A and 1B.

The area under the curve between thresholds is the probability mass attributable to that interval. This defines the probability for the GHS classification.



GHS classification decision model

Start by computing GHS classification probabilities P(1A), P(1B), P(NC) and P(1) = P(1A) + P(1B)



SARA-ICE NAM vs OECD DASS benchmarks

Binary classifications

Human, O _{bin} = 0.80	SARA 1	SARA NC	Inconclusive	Total							
OECD 1	37	4	14	55							
OECD NC	0	4	7	11							
Total	37	8	21	66							
Sensitivity: 90%											
Specificity: 100%											
Balanced accuracy: 9	95%										
LLNA, O _{bin} = 0.80	SARA 1	SARA NC	Inconclusive	Total							
OECD 1	87	6	42	135							
OECD NC	2	19	12	33							
Total	89	25	54	168							
Sensitivity: 94%											
Specificity: 90%											
Balanced accuracy: 9	2%										

The SARA-ICE decision model has been evaluated against OECD benchmark classifications.

Estimates of the ED01 use NAM data only (1xDPRA, 1xKeratinoSens, 1xh-CLAT, 1xkDPRA)

Sensitivity, specificity and acccuracy is computed for **conclusive** classifications only.

SARA-ICE NAM vs OECD DASS benchmarks

Subcategory classifications

Human, $\Theta_{\text{bin}} = 0.80$, $\Theta_{\text{sub}} = 0.55$	SARA 1A	SARA 1B	SARA NC	Inconclusive	Total						
OECD 1A	14	2	0	5	21						
OECD 1B	4	9	4	14	31						
OECD NC	0	0	4	7	11						
Total	18	11	8	26	63						
Sensitivity 1A: 88%, Specificity 1A: 81%, Balanced accuracy 1A: 84%											
Sensitivity 1B: 53%, Specificity 1	LB: 90%, Ba	lanced accu	iracy 1B: 71	%							
Sensitivity NC: 100%, Specificity	/ NC: 88%, E	Balanced ac	curacy NC: 9	94%							
Average balanced accuracy: 83	%										
LLNA, O _{bin} = 0.80, O _{sub} =0.55	SARA 1A	SARA 1B	SARA NC	Inconclusive	Total						
OECD 1A	28	4	0	6	38						
OECD 1B	16	22	5	42	85						
OECD NC	0	1	19	13	33						
Total	44	27	24	61	156						
Sensitivity 1A: 88%, Specificity 2	LA: 75%, Ba	lanced accu	iracy 1A: 81	.%							
Sensitivity 1B: 51%, Specificity 1	LB: 90%, Ba	lanced accu	iracy 1B: 71	%							
Sensitivity NC: 95%. Specificity	NC: 93%, Ba	lanced acc	uracy NC: 94	4%							
Average balanced accuracy: 82	%										

National Institute of Environmental Health Sciences Division of Translational Toxicology

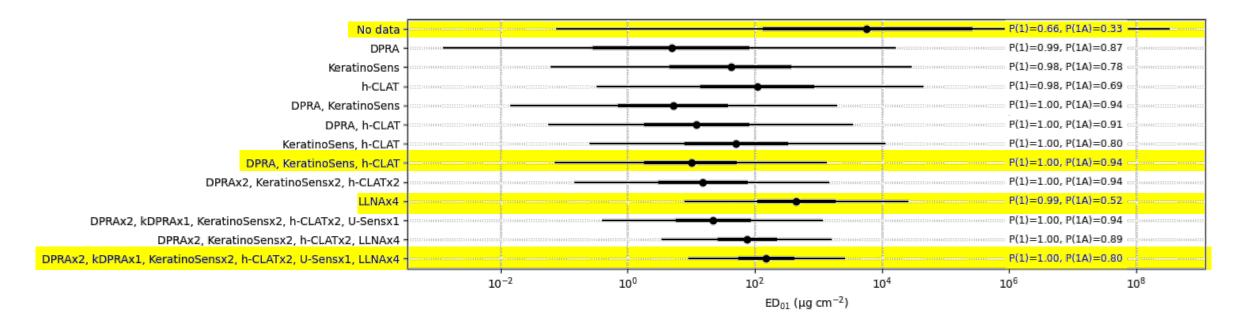
Case Studies

SARA-ICE - MIT (2-Methyl-4-isothiazolin-3-one) example – input data

Division of Translational Toxicology

Chemical	DPRA	kDPRA	KeratinoSens™	h-Clat	U-Sens™	Local Lymph Node Assay (LLNA)
MIT	Cysteine depletion: 97.9% Lysine depletion: 0% <i>Source</i> : Natsch et al., 2013	Log Kmax: -0.25 M ⁻¹ s ⁻¹ <i>Source</i> : Natsch & Gerberick, 2022	EC1.5: 11.78 μM IC50: 139 μM <i>After unit conversion</i> EC1.5: 1.4 μg ml ⁻¹ IC50: 16 μg ml ⁻¹ <i>Source</i> : Natsch et al., 2013 &	CD54 EC ²⁰⁰ : 7.89 μg ml ⁻¹ CD86 EC ¹⁵⁰ : 9.23 μg ml ⁻¹ CV75: 24.7 μg ml ⁻¹ <i>Source</i> : Urbisch et al. 2015	CD86 EC ¹⁵⁰ : 9 μg ml ⁻¹ CV75: 44.3 μg ml ⁻¹ <i>Source</i> : Piroird et al., 2015	
	Cysteine depletion: 100% Lysine depletion: 0% <i>Source</i> : Kleinstreuer et al., 2018		Urbisch et al., 2015 (lmax) $EC_{1.5}$: 9.54 µM IC_{50} : 108.25 µM After unit conversion $EC_{1.5}$: 1.1 µg ml ⁻¹ IC_{50} : 12 µg ml ⁻¹ <i>Source</i> : Kleinstreuer et al., 2018	CD54 EC ₂₀₀ : 11.6 µg ml ⁻¹ CD86 EC ₁₅₀ : 11.8 µg ml ⁻¹ CV75: 24.6 µg ml ⁻¹ <i>Source</i> : Kleinstreuer et al., 2018		EC ₃ : 2.2% EC ₃ : 0.4% EC ₃ : 0.863% EC ₃ : >4.5% <i>Source:</i> Kleinstreuer et al., 2018

SARA-ICE - MIT example – ED₀₁ **PoD estimates**



Summaries of ED₀₁ estimates for MIT conditional on different combinations of input data. Distributions are represented as centred 95% credible intervals (thin lines), centred 50% credible intervals (thick lines) and median (bullet). Predictions are ordered, from largest (top) to smallest (bottom), with respect to the uncertainty in the estimate.

ED₀₁ estimates for MIT for different SARA-ICE data inputs

Input Data	ED ₀₁		ED ₀₁	percentil	es (µg cm⁻²)	Prob(1A)	Prob(1B)	Prob(NC)	
	(µg cm⁻²)	2.5th	25th	50th	75th	97.5th			
No data	5,600	0.077	140	5700	>100,000	>100,000	0.33	0.33	0.34
DPRA	4.7	0.0013	0.29	4.9	78	16,000	0.87	0.12	0.011
KeratinoSens	42	0.063	4.8	42	360	28,000	0.78	0.2	0.015
h-CLAT	110	0.33	15	110	820	44,000	0.69	0.29	0.02
DPRA, KeratinoSens	5.1	0.014	0.73	5.2	36	1,900	0.94	0.061	0.0008
DPRA, h-CLAT	12	0.057	1.9	12	77	3,400	0.91	0.087	0.0021
KeratinoSens, h-CLAT	52	0.26	8.3	51	320	11,000	0.8	0.19	0.0049
DPRA, KeratinoSens [™] h-CLAT	9.8	0.072	1.9	9.9	49	1,300	0.94	0.058	0.0004
DPRAx2, KeratinoSensx2, h-CLATx2	15	0.15	3.2	15	73	1,500	0.94	0.064	0.0003
LLNA x4	440	8.1	110	440	1,800	26,000	0.52	0.47	0.011
DPRAx2, kDPRAx1,KeratinoSensx2, h- CLATx2,U-Sensx1	22	0.41	6	22	81	1,200	0.94	0.058	0.0001
DPRAx2, KeratinoSensx2, h-CLATx2, LLNAx4	76	3.5	28	75	210	1,600	0.89	0.11	0
DPRAx2, kDPRA KeratinoSens [™] x2, h-CLATx2, U-Sens [™] LLNAx4	150	9.4	59	150	400	2,600	0.8	0.2	0

SARA-ICE – MIT example – Probability that an exposure is less than the ED₀₁

Innut combination						Exposu	ıre (μg α	:m⁻²)				
Input combination	0.01	0.03	0.1	0.3	1	3	10	30	100	300	1000	3000
DPRA	0.93	0.89	0.82	0.75	0.65	0.55	0.43	0.32	0.23	0.16	0.096	0.058
KeratinoSens	0.99	0.99	0.97	0.94	0.88	0.79	0.67	0.54	0.39	0.27	0.16	0.092
h-CLAT	1	1	0.99	0.98	0.94	0.89	0.79	0.67	0.51	0.37	0.23	0.14
DPRA, KeratinoSens	0.98	0.96	0.91	0.83	0.71	0.57	0.41	0.27	0.15	0.084	0.038	0.018
DPRA, h-CLAT	0.99	0.99	0.96	0.92	0.82	0.7	0.53	0.37	0.22	0.12	0.057	0.027
KeratinoSens, h-CLAT	1	1	0.99	0.97	0.93	0.86	0.73	0.58	0.4	0.26	0.14	0.067
DPRA, KeratinoSens, h-CLAT	1	0.99	0.97	0.92	0.82	0.69	0.5	0.33	0.17	0.082	0.032	0.012
DPRAx2, KeratinoSensx2, h-CLATx2	1	1	0.98	0.95	0.88	0.76	0.58	0.39	0.21	0.096	0.035	0.012
LLNAx4	1	1	1	1	1	0.99	0.97	0.91	0.77	0.57	0.34	0.17
DPRAx2, kDPRAx1, KeratinoSensx2, h-CLATx2, U-Sensx1	1	1	1	0.98	0.94	0.84	0.66	0.43	0.22	0.091	0.029	0.0091
DPRAx2, KeratinoSensx2, h-CLATx2, LLNAx4	1	1	1	1	1	0.98	0.91	0.73	0.43	0.19	0.047	0.0095
DPRAx2, kDPRAx1, KeratinoSensx2, h-CLATx2, U-Sensx1, LLNAx4	1	1	1	1	1	1	0.97	0.88	0.61	0.32	0.095	0.019

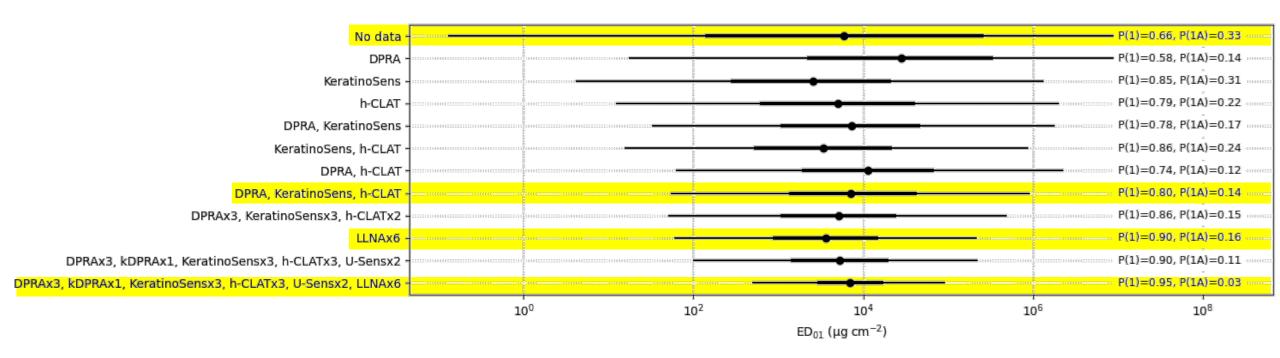
Comparison of ED01 estimates (based on different combinations of inputs) and probability that exposures are the less than the ED01. Thresholds of 0.2 (orange - \geq 80% likelihood that exposure is greater than ED₀₁) and 0.8 (blue - \geq 80% likelihood that exposure is less than ED₀₁).

SARA-ICE – Geraniol example – input data

Chemical	DPRA	kDPRA	KeratinoSens™	h-Clat	U-Sens™	Local Lymph Node Assay (LLNA)
Geraniol	Cysteine depletion: 0% Lysine depletion: 10% Source: Hoffmann et al., 2018		EC _{1.5} : 110 μM IC ₅₀ : 875 μM <i>Source: Hoffmann et al., 2018</i>	CD54 EC ₂₀₀ : >168 μg ml ⁻¹ CD86 EC ₁₅₀ : 123 μg ml ⁻¹ CV75: 140 μg ml ⁻¹ Source: Hoffmann et al., 2018	CD86 EC ₁₅₀ : 53.6 µg ml-1 CV ₇₀ : 113.9 µg ml-1 Source: Hoffmann et al., 2018	
	Cysteine depletion: 12.3% Lysine depletion: 2.6% Source: Reynolds et al., 2022		EC _{1.5} : 192.5 μM IC ₅₀ : 1275.5 μM <i>Source: Reynolds et al., 2022</i>	CD54 EC ₂₀₀ : <76.7 μ g ml ⁻¹ CD86 EC ₁₅₀ : >191 μ g ml ⁻¹ CV ₇₅ : 229 μ g ml ⁻¹ Source: Reynolds et al., 2022	CD86 EC ₁₅₀ : 74.4 µg ml ⁻¹ CV ₇₀ : >200 µg ml ⁻¹ Source: Reynolds et al., 2022	
	Cysteine depletion: -3.1% Lysine depletion: 0.6% Source: Nukada, Miyazawa, Kazutoshi, Sakaguchi, & Nishiyama, 2013					
		Log Kmax: -3.4 M ⁻¹ s ⁻¹ Source: Natsch & Gerberick, 2022				
			EC _{1.5} : 209.8 μM IC ₅₀ : 722 μM Source: ICE database (Joint Research Centre of the European Union 2014)			
						EC ₃ : 11.4% EC ₃ : 25.8% EC ₃ : 20.4% EC ₃ : 11.8% EC ₃ : 5.6% EC ₃ : >50% Source: Gilmour et al., 2022

LLNA

SARA-ICE - Geraniol example – ED₀₁ PoD estimates



Summaries of ED_{01} estimates for geraniol conditional on different combinations of input data. Distributions are represented as centred 95% credible intervals (thin lines), centred 50% credible intervals (thick lines) and median (bullet). Predictions are ordered, from largest (top) to smallest (bottom), with respect to the uncertainty in the estimate.

ED₀₁ estimates for Geraniol for different SARA-ICE data inputs

Input Data	ED ₀₁		ED ₀₁	percentil	es (µg cm ⁻²)	Prob(1A)	Prob(1B)	Prob(NC)	
	(µg cm⁻²)	2.5th	25th	50th	75th	97.5th			
No data	5,900	0.13	140	5,900	250,000	230,000,000	0.33	0.34	0.34
DPRA	27,000	18	2,300	28,000	320,000	36,000,000	0.14	0.44	0.42
KeratinoSens	2,400	4.2	290	2,600	20,000	1,300,000	0.31	0.54	0.15
h-CLAT	5,000	12	640	5,100	39,000	2,000,000	0.22	0.57	0.21
DPRA, KeratinoSens	7,200	33	1,100	7,400	45,000	1,700,000	0.17	0.62	0.22
KeratinoSens, h-CLAT	3,400	16	540	3,400	21,000	850,000	0.24	0.62	0.14
DPRA, h-CLAT	11,000	63	2,000	11,000	64,000	2,200,000	0.12	0.62	0.26
DPRA, KeratinoSens, h-CLAT	7,400	56	1,400	7,200	40,000	900,000	0.14	0.67	0.2
DPRAx3, KeratinoSensx3, h-CLATx2	5,200	52	1,100	5,100	24,000	480,000	0.15	0.7	0.14
LLNAx6	3,700	60	900	3,600	14,000	210,000	0.16	0.74	0.096
DPRAx3, kDPRAx1, KeratinoSensx3, h-CLATx3, U-Sensx2	5,200	100	1,500	5,300	19,000	220,000	0.11	0.79	0.1
DPRAx3, kDPRAx1, KeratinoSensx3, h-CLATx3, U-Sensx2, LLNAx6	7,000	500	3,000	7,000	16,000	89,000	0.025	0.93	0.05

SARA-ICE – Geraniol example – Probability that an exposure is less than the ED₀₁

Innut combination	Exposure (µg cm 2)											
Input combination	0.1	0.3	1	3	10	30	100	300	1,000	3,000	10,000	30,000
DPRA	1	1	1	0.99	0.98	0.97	0.94	0.89	0.82	0.73	0.61	0.49
KeratinoSens	1	1	0.99	0.98	0.96	0.92	0.84	0.75	0.61	0.48	0.33	0.21
h-CLAT	1	1	1	0.99	0.98	0.95	0.9	0.82	0.7	0.57	0.41	0.28
DPRA, KeratinoSens	1	1	1	1	0.99	0.98	0.94	0.87	0.76	0.63	0.45	0.3
KeratinoSens, h-CLAT	1	1	1	0.99	0.98	0.96	0.9	0.81	0.68	0.52	0.35	0.21
DPRA, h-CLAT	1	1	1	1	1	0.99	0.96	0.92	0.83	0.69	0.52	0.36
DPRA, KeratinoSens, h-CLAT	1	1	1	1	1	0.98	0.96	0.91	0.79	0.64	0.45	0.29
DPRAx3, KeratinoSensx3, h-CLATx2	1	1	1	1	1	0.99	0.96	0.89	0.77	0.59	0.38	0.22
LLNAx6	1	1	1	1	1	0.99	0.96	0.89	0.73	0.54	0.31	0.16
DPRAx3, kDPRAx1, KeratinoSensx3, h-CLATx3, U-Sensx2	1	1	1	1	1	0.99	0.98	0.93	0.81	0.62	0.37	0.18
DPRAx3, kDPRAx1, KeratinoSensx3, h-CLATx3, U-Sensx2, LLNAx6	1	1	1	1	1	1	1	0.99	0.93	0.75	0.39	0.13

Comparison of ED01 estimates (based on different combinations of inputs) and probability that exposures are the less than the ED01. Thresholds of 0.2 (orange - \geq 80% likelihood that exposure is greater than ED₀₁) and 0.8 (blue - \geq 80% likelihood that exposure is less than ED₀₁).

Conclusions & Next Steps

- SARA DA is being adapted for regulatory use through expanded data and functionality
- SARA ICE DA shows good concordance with sensitizer binary and GHS sub-category classifications against OECD DASS benchmark data
- Case studies demonstrated benefits of SARA-ICE DA:
 - estimates human potency (ED₀₁) with uncertainty
 - estimates with in vitro and in vivo data inputs
 - estimates with incomplete and repeat datasets
- Evaluation of the SARA-ICE DA is ongoing within the OECD DASS expert group
- SARA-ICE is being packaged for download for local implementation and will be available on the NICEATM website (<u>https://ntp.niehs.nih.gov/whatwestudy/niceatm</u>)

National Institute of Environmental Health Sciences Division of Translational Toxicology

Acknowledgments

<image>

The NICEATM Group

Subscribe to NICEATM News email list

Integrated Chemical Environment

emily.reinke@inotivco.com joe.reynolds@unilever.com