

ANNEX 7 Uncertainty – TO BE UPDATED FOR FINAL REPORT

The annual U.S. *Inventory* presents the best effort to produce emission estimates for greenhouse gas source and sink categories in the United States. These estimates were generated according to the UNFCCC reporting guidelines, following the recommendations set forth in the *2006 IPCC Guidelines for National Greenhouse Gas Inventories* (IPCC 2006) and *2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories* (IPCC 2019). This Annex provides an overview of the overall uncertainty analysis conducted to support the U.S. *Inventory*, including the sources of uncertainty characterized throughout the *Inventory* associated with various source categories (including emissions and sinks), and the methods used to collect, quantify, and present this uncertainty information. An Addendum to Annex 7 is also prepared separately and includes additional information related to the uncertainty characteristics of input variables used in the development of the overall uncertainty estimates reported in Section 1.7 of the *Inventory* report.

7.1. Overview

The uncertainty analysis conducted in support of the *Inventory* (1) determines the quantitative uncertainty associated with the emission source and sink estimates presented in the main body of this report, (2) evaluates the relative contribution of the input parameters to the uncertainty associated with each source or sink category estimate and in the overall inventory and (3) estimates the uncertainty in the overall emissions for the latest year, the base year and in the emissions trend. Note, overall uncertainty estimates in the *Inventory* capture quantifiable uncertainties in the input activity and emission factors data, but do not account for the potential of additional sources of uncertainty such as modeling uncertainties, measurement errors, and misreporting or misclassification. Thus, the U.S. *Inventory* uncertainty analysis helps inform and prioritize improvements for source and sink categories estimation process which are discussed in the “Planned Improvements” sections of each source or sink category’s discussion within the main body of the report. For each source or sink category, the uncertainty analysis highlights opportunities for changes to data measurement, data collection, and calculation methodologies to reduce uncertainties.

For some category estimates, such as CO₂ emissions from energy-related combustion activities, the impact of uncertainties on overall emission estimates is relatively small. For some other limited categories of emissions, uncertainties could have a larger impact on the estimates presented (i.e., storage factors of non-energy uses of fossil fuels). In all source and sink category chapters, the inventory emission estimates include “Uncertainty and Time-Series Consistency” sections that consider both quantitative and qualitative assessments of uncertainty, considering factors consistent with good practices noted in Volume 1, Chapter 3 of the *2006 IPCC Guidelines* (e.g., completeness of data, representativeness of data and models, sampling errors, measurement errors). The two major types of uncertainty associated with these emission estimates are (1) model uncertainty, which arises when the emission and/or removal estimation models used in developing the *Inventory* estimates do not fully and accurately characterize the respective emission and/or removal processes (due to a lack of technical details or other resources), and (2) parameter uncertainty, which arises due to potential bias or a lack of accurate, complete, representative, or precise input data such as emission factors and activity data and inherent variability.

The uncertainty associated with emission (or removal) estimation models can be partially analyzed by comparing the model emission (or removal) results with those of other models developed to characterize the same emission (or removal) process, after taking into account differences in their conceptual framework, capabilities, data, and underlying assumptions. However, in many cases it would be very difficult—if not impossible—to use this approach to quantify the model uncertainty associated with the emission estimates in this report, primarily because most categories only have a single model that has been developed to estimate emissions. Therefore, model uncertainty was not quantified in this report. Nonetheless, it has been discussed qualitatively, where appropriate, along with the individual source or sink category description and inventory estimation methodology.

Parameter uncertainty encompasses several causes such as lack of completeness, lack of data or representative data, sampling error, random or systematic measurement error, or misreporting or misclassification. Uncertainties associated with input emission parameters have been quantified for all of the emission sources and sinks included in the U.S. *Inventory* totals.

1 7.2. Methodology and Results

2 The United States has developed both a quality assurance and quality control (QA/QC) and uncertainty management
3 plan (EPA 2002). Like the QA/QC plan, the uncertainty management plan is part of a continually evolving process. The
4 uncertainty management plan provides for a quantitative assessment of the *Inventory* analysis itself, thereby
5 contributing to continuing efforts to understand both what causes uncertainty and how to improve *Inventory* and
6 accuracy. Although the plan provides both general and specific guidelines for implementing a quantitative uncertainty
7 analysis, its components are intended to evolve over time, consistent with the inventory estimation process. The U.S.
8 plan includes procedures and guidelines, and forms and templates, for developing quantitative assessments of
9 uncertainty in the national Inventory estimates (EPA 2002). For the 1990 through 2021 *Inventory*, EPA has used the
10 uncertainty management plan as well as the methodology presented in the *2006 IPCC Guidelines* and *2019 Refinement*.

11 The *2006 IPCC Guidelines* and *2019 Refinement* recommend two methods—Approach 1 and Approach 2—for developing
12 quantitative estimates of uncertainty associated with individual categories and the overall *Inventory* estimates. The
13 United States is continuing efforts to develop quantitative estimates of uncertainty for all source categories using
14 Approach 2. In following the UNFCCC requirement under Article 4.1, emissions from International Bunker Fuels, Wood
15 Biomass and Biofuel Consumption, and Indirect Greenhouse Gas Emissions are not included in the total emissions
16 estimated for the U.S. *Inventory*; therefore, no quantitative uncertainty estimates have been developed for these
17 categories.¹⁴⁶ CO₂ Emissions from Biomass and Biofuel Consumption are accounted for implicitly in the Land Use, Land-
18 Use Change and Forestry (LULUCF) chapter through the calculation of changes in carbon stocks. The Energy sector
19 provides an estimate of CO₂ emissions from Biomass and Biofuel Consumption as a memo item for informational
20 purposes, consistent with the UNFCCC reporting requirements.

21 Approach 1 and Approach 2 Methods

22 The Approach 1 method for estimating uncertainty is based on the propagation of errors, as shown in Eq. 3.1 and Eq. 3.2
23 of the *2006 IPCC Guidelines* and *2019 Refinement*. These equations combine the random component of uncertainty
24 associated with the activity data and the emission (or the other) factors. Inherent in employing the Approach 1 method
25 are the assumptions that, for each source and sink category, (i) both the uncertainties in the activity data and the
26 emission factor values are approximately normally distributed, (ii) the coefficient of variation (i.e., the ratio of the
27 standard deviation to the mean) associated with each input variable is less than 30 percent, and (iii) the input variables
28 within and across sub- source categories are not correlated (i.e., value of each variable is independent of the values of
29 other variables).

30 The Approach 2 method is preferred if (i) the uncertainty associated with the input variables is large (i.e., >30 percent),
31 (ii) the distributions of uncertainties in the underlying the input variables are not normal (e.g., triangular or uniformly
32 distributed), (iii) the estimates of uncertainty associated with the input variables are correlated, and/or if (iv) a complex
33 estimation methodology and/or several input variables are used to characterize the emission (or removal) process. Due
34 to the input parameters and estimation methodologies used in the *Inventory*, the uncertainties are assessed using the
35 Approach 2 method for all categories where sufficient and reliable data are available to characterize the uncertainty of
36 the input variables.

37 The Approach 2 method employs the Monte Carlo Stochastic Simulation technique (also referred to as the Monte Carlo
38 method). Under this method, emission (or removal) estimates for a particular source (or sink) category are estimated by
39 randomly selecting values of emission factors, activity data, and other estimation parameters according to their
40 individual Probability Density Functions (PDFs). This process is repeated many times using computer software, in order to
41 build up the probability density function, which is then used to estimate the final uncertainty values of the overall
42 emission (or removal) estimates for that source (or sink). For most categories, the Monte Carlo approach is implemented
43 using commercially available simulation software such as Palisade's @RISK Microsoft Excel add-in.

¹⁴⁶ However, because the input variables that determine the emissions from the Fossil Fuel Combustion and the International Bunker Fuels source categories are correlated, uncertainty associated with the activity variables in the International Bunker Fuels was taken into account in estimating the uncertainty associated with the Fossil Fuel Combustion.

1 **Characterization of Uncertainty in Input Variables**

2 Both Approach 1 and Approach 2 uncertainty analyses require that all the input variables have defined PDFs. In the
 3 absence of sufficient data measurements, data samples, or expert judgments that determined otherwise, the PDFs
 4 incorporated in the current source or sink category uncertainty analyses were limited to normal, lognormal, uniform,
 5 triangular, pert, and beta distributions. The choice among these six PDFs depended largely on the observed or measured
 6 data and expert judgment. If no additional uncertainty information is available then the previous year's *Inventory*
 7 uncertainty data is used. Input variables with asymmetrical PDFs shift the overall output which can lead to asymmetrical
 8 bounds for a source (or sink) category and in turn, for the overall *Inventory* uncertainty analysis.

9 **Individual Source and Sink Category Inventory Uncertainty Estimates**

10 The main report provides an overview of the input parameters and sources of uncertainty for each source and sink
 11 category within the Uncertainty section of each category. Table A-251 summarizes results based on assessments of
 12 source and sink category-level uncertainty. The table presents base year (1990) and current year (2021) emissions for
 13 each source and sink category. The combined uncertainty (at the 95 percent confidence interval) for each source and
 14 category is expressed as the percentage above and below the total 2021 emissions estimated for each source and sink
 15 category. Uncertainty in the trend of each source and sink category is described subsequently in this Appendix.

16 **Table A-251: Summary Results of Source and Sink Category Uncertainty Analyses**

Source or Sink Category	Base Year		2021 Emissions ^b		2021 Uncertainty ^b	
	Emissions ^a	MMT CO ₂ Eq.	MMT CO ₂ Eq.	Lower Bound	Upper Bound	
CO₂		5,121.0	5,032.2	-3%	3%	
Fossil Fuel Combustion	4,728.2	4,639.1	-2%	4%		
Non-Energy Use of Fuels	112.4	140.2	-42%	46%		
Iron and Steel Production & Metallurgical Coke	104.7	41.7	-19%	19%		
Cement Production	33.5	41.3	-4%	4%		
Natural Gas Systems	32.2	36.2	-13%	15%		
Petrochemical Production	21.6	33.2	-5%	6%		
Petroleum Systems	9.5	24.7	-13%	19%		
Incineration of Waste	12.9	12.5	-17%	20%		
Ammonia Production	14.4	12.2	-4%	4%		
Lime Production	11.7	11.9	-2%	2%		
Other Process Uses of Carbonates	6.2	8.0	-11%	15%		
Urea Fertilization	2.4	5.2	-43%	3%		
Carbon Dioxide Consumption	1.5	5.0	-5%	5%		
Urea Consumption for Non-Agricultural Purposes	3.8	5.0	-5%	4%		
Liming	4.7	3.0	-85%	94%		
Coal Mining	4.6	2.5	-68%	76%		
Glass Production	1.9	2.0	-3%	3%		
Soda Ash Production	1.4	1.7	-9%	8%		
Ferroalloy Production	2.2	1.6	-13%	13%		
Aluminum Production	6.8	1.5	-2%	3%		
Titanium Dioxide Production	1.2	1.5	-13%	13%		
Zinc Production	0.6	1.0	-19%	21%		
Phosphoric Acid Production	1.5	0.9	-18%	20%		
Lead Production	0.5	0.4	-15%	15%		
Carbide Production and Consumption	0.2	0.2	-10%	10%		
Abandoned Oil and Gas Wells	+	+	-70%	442%		
Substitution of Ozone Depleting Substances	+	+	-4%	15%		
Magnesium Production and Processing	0.1	+	-6%	6%		
Ceramics Production	+	+	0%	0%		
<i>Wood Biomass, Ethanol, and Biodiesel Consumption^c</i>	237.9	315.4	NE	NE		
<i>International Bunker Fuels^d</i>	103.6	80.2	NE	NE		
CH₄	868.7	727.4	-8%	12%		
Enteric Fermentation	183.1	194.9	-11%	18%		

Natural Gas Systems	215.1	181.4	-17%	17%
Landfills	197.8	122.6	-19%	26%
Manure Management	39.0	66.0	-18%	20%
Petroleum Systems	51.3	50.2	-10%	15%
Coal Mining	108.1	44.7	-10%	21%
Wastewater Treatment	22.7	21.1	-29%	32%
Rice Cultivation	17.9	16.8	-75%	75%
Stationary Combustion	9.6	8.9	-34%	127%
Abandoned Oil and Gas Wells	7.7	8.2	-84%	180%
Abandoned Underground Coal Mines	8.1	6.4	-22%	21%
Mobile Combustion	7.2	2.6	-4%	29%
Composting	0.4	2.6	-58%	58%
Field Burning of Agricultural Residues	0.4	0.5	-16%	16%
Petrochemical Production	0.2	0.4	-58%	48%
Anaerobic Digestion at Biogas Facilities	+	0.2	-54%	54%
Ferroalloy Production	+	+	-13%	13%
Carbide Production and Consumption	+	+	-10%	11%
Iron and Steel Production & Metallurgical Coke	+	+	-20%	21%
<i>International Bunker Fuels^d</i>	0.2	0.1	NE	NE
N₂O	406.3	393.3	-19%	30%
Agricultural Soil Management	288.0	294.0	-37%	78%
Stationary Combustion	22.3	22.1	-26%	51%
Manure Management	14.8	20.9	-34%	193%
Mobile Combustion	12.4	17.4	-16%	24%
Wastewater Treatment	38.4	16.7	-8%	19%
Nitric Acid Production	10.8	7.9	-5%	5%
Adipic Acid Production	13.5	6.6	-5%	5%
N ₂ O from Product Uses	3.8	3.8	-24%	24%
Composting	0.3	1.8	-58%	58%
Caprolactam, Glyoxal, and Glyoxylic Acid Production	1.5	1.2	-32%	32%
Incineration of Waste	0.4	0.4	-54%	163%
Electronics Industry	+	0.3	-10%	10%
Field Burning of Agricultural Residues	0.1	0.2	-19%	19%
Petroleum Systems	+	+	-13%	19%
Natural Gas Systems	+	+	-13%	15%
<i>International Bunker Fuels^d</i>	0.8	0.6	NE	NE
HFCs, PFCs, SF₆ and NF₃	91.4	187.3	-3%	13%
Substitution of Ozone Depleting Substances	0.3	172.5	-4%	15%
Electrical Transmission and Distribution	24.7	6.0	-23%	24%
Electronics Industry	3.3	4.5	-6%	6%
HCFC-22 Production	38.6	2.2	-7%	10%
Magnesium Production and Processing	5.4	1.2	-7%	7%
Aluminum Production	19.3	0.9	-8%	8%
Total Gross Emissions^e	6,487.3	6,340.2	-2%	5%
LULUCF Emissions ^f	57.9	77.8	-8%	10%
LULUCF Carbon Stock Change Flux ^g	(938.9)	(832.0)	32%	-21%
LULUCF Sector Net Total^h	(881.0)	(754.2)	34%	-22%
Net Emissions (Sources and Sinks)^e	5,606.4	5,586.0	-5%	6%

1 Notes: Totals may not sum due to independent rounding. Parentheses indicate net sequestration. Total emissions (excluding
 2 emissions for which uncertainty was not quantified) are presented without LULUCF. Net emissions are presented with
 3 LULUCF.

4 + Does not exceed 0.05 MMT CO₂ Eq. or 0.5 percent.

5 NE (Not Estimated)

6 ^a Base Year is 1990 for all sources.

7 ^b The uncertainty estimates correspond to a 95 percent confidence interval, with the lower bound corresponding to 2.5th
 8 percentile and the upper bound corresponding to 97.5th percentile.

9 ^c Emissions from Wood Biomass and Biofuel Consumption are not included in the energy sector totals.

10 ^d Emissions from International Bunker Fuels are not included in the totals.

11 ^e Totals exclude emissions for which uncertainty was not quantified.

¹ ^f LULUCF emissions include the CH₄ and N₂O emissions reported for peatlands remaining peatlands, forest fires, drained
2 organic soils, grassland fires, and coastal wetlands remaining coastal wetlands; CH₄ emissions from land converted to coastal
3 wetlands, land converted to flooded land, and flooded land remaining flooded land; and N₂O emissions from forest soils and
4 settlement soils.

⁵ ^g LULUCF carbon stock change is the net C stock change from the following categories: forest land remaining forest land, land
6 converted to forest land, cropland remaining cropland, land converted to cropland, grassland remaining grassland, land
7 converted to grassland, wetlands remaining wetlands, land converted to wetlands, settlements remaining settlements, and
8 land converted to settlements. Since the resulting flux is negative the signs of the resulting lower and upper bounds are
9 reversed.

¹⁰ ^h The LULUCF sector net total is the net sum of all CH₄ and N₂O emissions to the atmosphere plus net carbon stock changes.

11 **Overall (Aggregate) Inventory Level Uncertainty Estimates**

12 The overall level uncertainty estimate for the U.S. *Inventory* was developed using the IPCC Approach 2 uncertainty
13 estimation methodology for 1990 and 2021. The overall *Inventory* uncertainty estimates were estimated by combining
14 the Monte Carlo simulation output data for each emission source or sink category (as described above) into a
15 comprehensive overall uncertainty model. This overall uncertainty model combines uncertainties and produces
16 uncertainty results at the gas level. If such detailed output data were not available for a particular source or sink
17 category, individual PDFs were assigned based on the most detailed data available from the category-specific
18 quantitative uncertainty analysis. The overall *Inventory* uncertainty was then derived through the resulting PDF of the
19 combined emissions data.

20 For select categories such as composting, several LULUCF source categories, and parts of Agricultural Soil Management
21 source categories, Approach 1 uncertainty results were used in the overall uncertainty analysis. However, for all other
22 emission sources, Approach 2 uncertainty results were used in the overall uncertainty estimation.

23 The overall uncertainty model results indicate that the 1990 U.S. greenhouse gas emissions are estimated to be within
24 the range of approximately 6,352.9 to 6,833.1 MMT CO₂ Eq., reflecting a relative 95 percent confidence interval
25 uncertainty range of -2 percent to 5 percent with respect to the total U.S. greenhouse gas emission estimate of
26 approximately 6,487.3 MMT CO₂ Eq. The uncertainty interval associated with total CO₂ emissions, ranges from -2 percent
27 to 5 percent of total CO₂ emissions estimated. The results indicate that the uncertainty associated with the inventory
28 estimate of the total CH₄ emissions ranges from -10 percent to 8 percent, uncertainty associated with the total inventory
29 N₂O emission estimate ranges from -18 percent to 52 percent, and uncertainty associated with fluorinated greenhouse
30 gas (F-GHG) emissions ranges from -11 percent to 11 percent. When the LULUCF sector is included in the analysis, the
31 uncertainty is estimated to be -5 to 6 percent of Net Emissions (sources and sinks) in 1990. The uncertainties presented
32 are quantifiable uncertainties in the input activity and emission factors data, not uncertainties in the models, data
33 representativeness, measurement errors, or misreporting or misclassification of data.

34 **Table A-252: Quantitative Uncertainty Assessment of Overall National Inventory Emissions
35 for 1990 (MMT CO₂ Eq. and Percent)**

Gas	1990		Uncertainty Range Relative to Greenhouse Gas Estimate ^a				Standard	
	(MMT CO ₂ Eq.)	(MMT CO ₂ Eq.)	Estimate ^a		(%)		Mean ^b	Deviation ^b
			Lower Bound ^c	Upper Bound ^c	Lower Bound	Upper Bound		
CO ₂	5,121.0	5,008.4	5,356.5	-2%	5%	5,084.8	89.7	
CH ₄ ^d	868.7	784.7	941.9	-10%	8%	742.3	40.2	
N ₂ O ^d	406.3	333.2	616.3	-18%	52%	437.4	72.9	
PFCs, HFCs, SF ₆ , and NF ₃ ^d	91.4	81.3	101.7	-11%	11%	195.6	5.5	
Total Gross Emissions	6,487.3	6,352.9	6,833.1	-2%	5%	6,460.2	122.8	
LULUCF Emissions ^e	57.9	54.9	61.5	-5%	6%	78.2	1.7	
LULUCF Carbon Stock Change Flux ^f	(938.9)	(1,179.6)	(856.4)	26%	-9%	(901.2)	83.0	
LULUCF Sector Net Total^g	(881.0)	(1,122.0)	(798.7)	27%	-9%	(823.1)	83.0	
Net Emissions (Sources and Sinks)	5,606.4	5,338.3	5,920.4	-5%	6%	5,637.1	148.2	

1 Notes: Totals may not sum due to independent rounding. Parentheses indicate net sequestration. Total emissions (excluding
2 emissions for which uncertainty was not quantified) are presented without LULUCF. Net emissions are presented with
3 LULUCF.

4 ^a The lower and upper bounds for emission estimates correspond to a 95 percent confidence interval, with the lower bound
5 corresponding to 2.5th percentile and the upper bound corresponding to 97.5th percentile.

6 ^b Mean value indicates the arithmetic average of the simulated emission estimates; standard deviation indicates the extent of
7 deviation of the simulated values from the mean.

8 ^c The lower and upper bound emission estimates for the sub-source categories do not sum to total emissions because the low
9 and high estimates for total emissions were calculated separately through simulations.

10 ^d The overall uncertainty estimates did not take into account the uncertainty in the GWP values for CH₄, N₂O, and high GWP
11 gases used in the inventory emission calculations for 1990.

12 ^e LULUCF emissions include the CH₄ and N₂O emissions reported for peatlands remaining peatlands, forest fires, drained
13 organic soils, grassland fires, and coastal wetlands remaining coastal wetlands; CH₄ emissions from land converted to coastal
14 wetlands, land converted to flooded land, and flooded land remaining flooded land; and N₂O emissions from forest soils and
15 settlement soils.

16 ^f LULUCF carbon stock change is the net C stock change from the following categories: forest land remaining forest land, land
17 converted to forest land, cropland remaining cropland, land converted to cropland, grassland remaining grassland, land
18 converted to grassland, wetlands remaining wetlands, land converted to wetlands, settlements remaining settlements, and
19 land converted to settlements. Since the resulting flux is negative the signs of the resulting lower and upper bounds are
20 reversed.

21 ^g The LULUCF Sector Net Total is the net sum of all CH₄ and N₂O emissions to the atmosphere plus net carbon stock changes.

22
23 The overall uncertainty model results indicate that the 2021 U.S. greenhouse gas emissions are estimated to be within
24 the range of approximately 6,236.1 to 6,695.2 MMT CO₂ Eq., reflecting a relative 95 percent confidence interval
25 uncertainty range of -2 percent to 6 percent with respect to the total gross U.S. greenhouse gas emission estimate of
26 approximately 6,340.2 MMT CO₂ Eq. The uncertainty interval associated with total CO₂ emissions, which constitute about
27 79 percent of the total U.S. greenhouse gas emissions in 2021, ranges from -2 percent to 4 percent of total CO₂ emissions
28 estimated. The results indicate that the uncertainty associated with the inventory estimate of the total CH₄ emissions
29 ranges from -7 percent to 11 percent, uncertainty associated with the total inventory N₂O emission estimate ranges from
30 -20 percent to 54 percent, and uncertainty associated with fluorinated greenhouse gas (F-GHG) emissions ranges from -5
31 percent to 13 percent. When the LULUCF sector is included in the analysis, the uncertainty is estimated to be -4 to 6
32 percent of Net Emissions (sources and sinks) in 2021.

33 A summary of the overall quantitative uncertainty estimates is shown below.

34 **Table A-253: Quantitative Uncertainty Assessment of Overall National Inventory Emissions
35 for 2021 (MMT CO₂ Eq. and Percent)**

Gas	Emission Estimate (MMT CO ₂ Eq.)	2021 Uncertainty Range Relative to Greenhouse Gas Estimate ^a				Standard Mean ^b Deviation ^b	
		Lower Bound ^c	Upper Bound ^c	Lower Bound	Upper Bound		
CO ₂	5,032.2	4,916.2	5,241.7	-2%	4%	5,080	84
CH ₄ ^d	727.4	678.2	810.4	-7%	11%	743	34
N ₂ O ^d	393.3	312.7	604.9	-20%	54%	436	76
PFC, HFC, SF ₆ , and NF ₃ ^d	187.3	178.7	212.0	-5%	13%	196	8
Total Gross Emissions	6,340.2	6,236.1	6,695.2	-2%	6%	6,454	118
LULUCF Emissions ^e	77.8	73.5	83.6	-6%	7%	78	3
LULUCF Carbon Stock Change Flux ^f	(832.0)	(1,047.1)	(763.3)	26%	-8%	(903)	73
LULUCF Sector Net Total^g	(754.2)	(968.5)	(685.0)	28%	-9%	(825)	73
Net Emissions (Sources and Sinks)	5,586.0	5,365.4	5,903.0	-4%	6%	5,630	138

1 Notes: Totals may not sum due to independent rounding. Parentheses indicate net sequestration. Total emissions (excluding
2 emissions for which uncertainty was not quantified) are presented without LULUCF. Net emissions are presented with
3 LULUCF.

4 ^a The lower and upper bounds for emission estimates correspond to a 95 percent confidence interval, with the lower bound
5 corresponding to 2.5th percentile and the upper bound corresponding to 97.5th percentile.

6 ^b Mean value indicates the arithmetic average of the simulated emission estimates; standard deviation indicates the extent of
7 deviation of the simulated values from the mean.

8 ^c The lower and upper bound emission estimates for the sub-source categories do not sum to total emissions because the low
9 and high estimates for total emissions were calculated separately through simulations.

10 ^d The overall uncertainty estimates did not take into account the uncertainty in the GWP values for CH₄, N₂O, and high GWP
11 gases used in the inventory emission calculations for 2021.

12 ^e LULUCF emissions include the CH₄ and N₂O emissions reported for peatlands remaining peatlands, forest fires, drained
13 organic soils, grassland fires, and coastal wetlands remaining coastal wetlands; CH₄ emissions from land converted to coastal
14 wetlands, land converted to flooded land, and flooded land remaining flooded land; and N₂O emissions from forest soils and
15 settlement soils.

16 ^f LULUCF carbon stock change is the net C stock change from the following categories: forest land remaining forest land, land
17 converted to forest land, cropland remaining cropland, land converted to cropland, grassland remaining grassland, land
18 converted to grassland, wetlands remaining wetlands, land converted to wetlands, settlements remaining settlements, and
19 land converted to settlements. Since the resulting flux is negative the signs of the resulting lower and upper bounds are
20 reversed.

21 ^g The LULUCF Sector Net Total is the net sum of all CH₄ and N₂O emissions to the atmosphere plus net carbon stock changes.

23 As summarized, uncertainty in 2021 is similar to overall uncertainty in 1990, and this is due to offsetting impacts from
24 changes in uncertainty from methodological improvements over the time series. As indicated in section 3.1.7
25 (Implications of Methodological Choice) in Volume 3, *2006 IPCC Guidelines*, while in some cases methodological
26 refinements have reduced uncertainty (as noted below), in some cases, in particular for key categories, they can also
27 increase uncertainty with improved representation of the “complexity of the system” (IPCC 2006). For example, this is
28 true of uncertainty associated with inputs to estimating N₂O emissions from Agricultural Soil Management.

29 **Trend Uncertainty**

30 In addition to the estimates of uncertainty associated with the current and base year emission estimates, this Annex also
31 presents the estimates of trend uncertainty. The *2006 IPCC Guidelines* define trend as the difference in emissions
32 between the base year (i.e., 1990) and the current year (i.e., 2021) *Inventory* estimates. However, for purposes of
33 understanding the concept of trend uncertainty, the emission trend is defined in this *Inventory* as the percentage change
34 in the emissions (or removal) estimated for the current year, relative to the emission (or removal) estimated for the base
35 year. The uncertainty associated with this emission trend is referred to as trend uncertainty.

36 Under the Approach 1 method, there are two types of uncertainty to consider when estimating the trend uncertainty in
37 an individual source or sink category. As described in the *2006 IPCC Guidelines*, correlated (Type A) uncertainties are
38 estimated by comparing the change in emissions trend given a 1 percent change in both base (i.e., 1990) and current
39 emissions (i.e., 2021), while uncorrelated or random errors in the emissions trend (Type B) are estimated by comparing
40 the change in emissions trend given a 1 percent change in only the current year emissions. When combined, both types
41 of uncertainty capture the sensitivity in trend emission estimates to sources of uncertainty that are correlated between
42 the base and current year (Type A), as well as the random component of uncertainty in the emission estimates (Type B).

43 Under the Approach 2 method, the trend uncertainty is estimated using the Monte Carlo Stochastic Simulation
44 technique. As described in the *2006 IPCC Guidelines*, this Approach follows four steps. First, the PDFs for emission
45 factors, activity data, and other input estimation parameters are determined for both the current and base year. For
46 purposes of this *Inventory*, due to data limitations, for some categories where uncertainty assessments for 1990 are
47 undergoing updates for future reports but were not ready to incorporate for this submission, a simple approach has
48 been adopted, under which the base year source or sink category emissions are assumed to exhibit the same uncertainty
49 characteristics as the current year emissions (or removals). Source and sink category-specific PDFs for base year
50 estimates were developed using current year (i.e., 2021) uncertainty output data. These were adjusted to account for
51 differences in magnitude between the two years’ inventory estimates. The second and third steps follow the Monte
52 Carlo approach described previously to calculate repeated emission estimates for each source and sink category in the
53 base and current years according to the input data PDFs. The overall *Inventory* trend uncertainty estimate was developed

1 by combining all source and sink category-specific trend uncertainty estimates. These trend uncertainty estimates
 2 represent the 95 percent confidence interval of the estimated percent change in emissions between 1990 and 2021 and
 3 are shown in Table A-254.

4 **Table A-254: Quantitative Assessment of Trend Uncertainty (MMT CO₂ Eq. and Percent)**

Gas/Source	Base Year	2021	Emissions		Trend Range ^b
	Emissions ^a	Emissions	Trend	(%)	
	(MMT CO ₂ Eq.)	(%)	Lower Bound	Upper Bound	
CO₂	5,121.0	5,032.2	-2%	-6%	3%
Fossil Fuel Combustion	4,728.2	4,639.1	-2%	-7%	3%
Non-Energy Use of Fuels	112.4	140.2	25%	-32%	105%
Iron and Steel Production & Metallurgical Coke Production	104.7	41.7	-60%	-69%	-49%
Cement Production	33.5	41.3	23%	10%	40%
Natural Gas Systems	32.2	36.2	12%	-8%	37%
Petrochemical Production	21.6	33.2	53%	41%	67%
Petroleum Systems	9.5	24.7	159%	106%	224%
Incineration of Waste	12.9	12.5	-3%	-25%	25%
Ammonia Production	14.4	12.2	-15%	-19%	11%
Lime Production	11.7	11.9	1%	-1%	4%
Other Process Uses of Carbonates	6.2	8.0	28%	7%	55%
Urea Fertilization	2.4	5.2	116%	23%	282%
Carbon Dioxide Consumption	1.5	5.0	239%	197%	289%
Urea Consumption for Non-Agricultural Purposes	3.8	5.0	32%	13%	58%
Liming	4.7	3.0	-35%	-662%	619%
Coal Mining	4.6	2.5	-47%	-85%	85%
Glass Production	1.9	2.0	2%	-18%	-11%
Soda Ash Production	1.4	1.7	20%	6%	36%
Ferroalloy Production	2.2	1.6	-27%	-39%	-14%
Aluminum Production	6.8	1.5	-77%	-78%	-76%
Titanium Dioxide Production	1.2	1.5	23%	3%	48%
Zinc Production	0.6	1.0	53%	17%	101%
Phosphoric Acid Production	1.5	0.9	-41%	-56%	-19%
Lead Production	0.5	0.4	-14%	-30%	6%
Carbide Production and Consumption	0.2	0.2	-29%	-42%	-12%
Abandoned Oil and Gas Wells	+	+	10%	-1652%	1489%
Magnesium Production and Processing	0.1	+	-98%	-98%	-98%
Ceramic Production	NE	NE	NE	NE	NE
Substitution of Ozone Depleting Substances	NE	NE	NE	NE	NE
Wood Biomass and Biofuel Consumption ^c	237.95	315.4	33%	NE	NE
International Bunker Fuels ^d	103.6	80.2	-23%	NE	NE
CH₄	868.7	727.4	-16%	-24%	-2%
Enteric Fermentation	183.1	194.9	6%	-21%	44%
Natural Gas Systems	215.1	181.4	-16%	-34%	7%
Landfills	197.8	122.6	-38%	-49%	2%
Manure Management	39.0	66.0	69%	7%	165%
Petroleum Systems	51.3	50.2	-2%	-30%	1%
Coal Mining	108.1	44.7	-59%	-67%	-49%
Wastewater Treatment	22.7	21.1	-7%	-41%	40%
Rice Cultivation	17.9	16.8	-6%	-584%	857%
Stationary Combustion	9.6	8.9	-7%	-61%	193%
Abandoned Oil and Gas Wells	7.7	8.2	7%	-86%	745%
Abandoned Underground Coal Mines	8.1	6.4	-21%	-42%	6%
Mobile Combustion	7.2	2.6	-64%	-66%	-54%
Composting	0.4	2.6	502%	166%	1292%

Field Burning of Agricultural Residues	0.4	0.5	14%	-19%	61%
Petrochemical Production	0.2	0.4	65%	-27%	348%
Anaerobic Digestion at Biogas Facilities	+	0.2	952%	318%	2379%
Ferroalloy Production	+	+	-35%	-39%	-14%
Carbide Production and Consumption	+	+	-46%	-52%	-21%
Iron and Steel Production & Metallurgical Coke Production	+	+	-66%	-71%	-49%
Incineration of Waste	+	+	-13%	NE	NE
<i>International Bunker Fuels^d</i>	<i>0.2</i>	<i>0.1</i>	<i>-55%</i>	<i>NE</i>	<i>NE</i>
N₂O	406.3	393.3	-3%	-39%	52%
Agricultural Soil Management	288.0	294.0	2%	-45%	91%
Stationary Combustion	22.3	22.1	-1%	-52%	61%
Wastewater Treatment	14.8	20.9	42%	-42%	191%
Manure Management	12.4	17.4	40%	-7%	111%
Mobile Combustion	38.4	16.7	-57%	-67%	-35%
Nitric Acid Production	10.8	7.9	-27%	-40%	-30%
Adipic Acid Production	13.5	6.6	-51%	-59%	-54%
N ₂ O from Product Uses	3.8	3.8	0%	-32%	48%
Composting	0.3	1.8	502%	164%	1258%
Caprolactam, Glyoxal, and Glyoxylic Acid Production	1.5	1.2	-17%	-54%	18%
Incineration of Waste	0.4	0.4	-13%	-75%	207%
Electronics Industry	+	0.3	682%	421%	1437%
Field Burning of Agricultural Residues	0.1	0.2	16%	-18%	63%
Petroleum Systems	+	+	66%	18%	133%
Natural Gas Systems	+	+	73%	28%	134%
<i>International Bunker Fuels^d</i>	<i>0.8</i>	<i>0.6</i>	<i>-18%</i>	<i>NE</i>	<i>NE</i>
HFCs, PFCs, SF₆, and NF₃	91.4	187.3	105%	86%	147%
Substitution of Ozone Depleting Substances	0.3	172.5	68136%	24086%	708266%
Electronics Industry	24.7	6.0	-76%	-84%	-60%
Electrical Transmission and Distribution	3.3	4.5	38%	22%	56%
HCFC-22 Production	38.6	2.2	-94%	-95%	-93%
Aluminum Production	5.4	1.2	-78%	-82%	-73%
Magnesium Production and Processing	19.3	0.9	-95%	-96%	-95%
Total Gross Emissions^e	6,487.3	6,340.2	-2%	-7%	3%
LULUCF Emissions ^f	57.9	77.8	34%	19%	51%
LULUCF Carbon Stock Change Flux ^g	(938.9)	(832.0)	-11%	-30%	12%
LULUCF Sector Net Total^h	(881.0)	(754.2)	-14%	-33%	10%
Net Emissions (Sources and Sinks)^e	5,606.4	5,586.0	0%	-7%	8%

1 Notes: Totals may not sum due to independent rounding. Parentheses indicate net sequestration. Total emissions (excluding
 2 emissions for which uncertainty was not quantified) are presented without LULUCF. Net emissions are presented with LULUCF.

3 + Does not exceed 0.05 MMT CO₂ Eq. or 0.5 percent.

4 NE (Not Estimated)

5 ^aBase Year is 1990 for all sources.

6 ^bThe trend range represents a 95 percent confidence interval for the emission trend, with the lower bound corresponding to
 7 2.5th percentile value and the upper bound corresponding to 97.5th percentile value.

8 ^cEmissions from Wood Biomass and Biofuel Consumption are not included specifically in the energy sector totals.

9 ^dEmissions from International Bunker Fuels are not included in the totals.

10 ^eTotals exclude emissions for which uncertainty was not quantified.

11 ^fLULUCF emissions include the CH₄ and N₂O emissions reported for peatlands remaining peatlands, forest fires, drained organic
 12 soils, grassland fires, and coastal wetlands remaining coastal wetlands; CH₄ emissions from land converted to coastal
 13 wetlands, land converted to flooded land, and flooded land remaining flooded land; and N₂O emissions from forest soils and
 14 settlement soils.

15 ^gLULUCF carbon stock change is the net C stock change from the following categories: forest land remaining forest land, land
 16 converted to forest land, cropland remaining cropland, land converted to cropland, grassland remaining grassland, land
 17 converted to grassland, wetlands remaining wetlands, land converted to wetlands, settlements remaining settlements, and
 18 land converted to settlements.

19 ^hThe LULUCF sector net total is the net sum of all CH₄ and N₂O emissions to the atmosphere plus net carbon stock changes.

1

2 7.3. Information on Uncertainty Analyses by Source and Sink Category

3

4 The quantitative uncertainty estimates associated with each emission and removal category are reported within sectoral
5 chapters of this *Inventory* following the discussions of inventory estimates and their estimation methodology. To better
6 understand the uncertainty analysis details, refer to the respective chapters and Uncertainty sections in the body of this
7 report. EPA provides additional documentation on uncertainty information consistent with the guidance presented in
8 Table 3.3 in Vol. 1, Chapter 3 of the *2006 IPCC Guidelines for National Greenhouse Gas Inventories* (IPCC 2006) in an
9 Uncertainty Addendum. Due to the number of detailed tables, it is not published with the *Inventory* but is available upon
10 request. EPA plans to publish this in a more easily accessible format with future reports (e.g., the 2025 *Inventory* report).
11 All uncertainty estimates are reported relative to the current *Inventory* estimates for the 95 percent confidence interval,
12 unless otherwise specified.

12

13 7.4. Reducing Uncertainty and Planned Improvements

14 The U.S. has implemented many improvements over the last several years that have reduced uncertainties across the
15 source and sink categories. These improvements largely result from new data sources that provide more accurate data
16 and/or increased data coverage, as well as methodological improvements, as described below.

17

Box A-4: Reducing Uncertainty

The *2006 IPCC Guidelines* provides the following guidance for ways to reduce *Inventory* uncertainty and improve the quality of an *Inventory* and its uncertainty estimates.

- *Improving conceptualization.* Improving the inclusiveness of the structural assumptions chosen can reduce uncertainties. An example is better treatment of seasonality effects that leads to more accurate annual estimates of emissions or removals for the Agriculture, Land Use, Land Use Change and Forestry sector.
- *Improving models.* Improving the model structure and parameterization can lead to better understanding and characterization of the systematic and random errors, as well as reductions in these causes of uncertainty.
- *Improving representativeness.* This may involve stratification or other sampling strategies. For example, continuous emissions monitoring systems (CEMS) can be used to reduce uncertainty for some sources and gases as long as the representativeness is guaranteed. CEMS produces representative data at the facilities where it is used, but in order to be representative of an entire source category, CEMS data must be available for a random sample or an entire set of individual facilities that comprise the category. When using CEMS both concentration and flow will vary, requiring simultaneous sampling of both attributes.
- *Incorporating excluded emission sources.* Quantitative estimates for some of the sources and sinks of greenhouse gas emissions, such as from some land-use activities, industrial processes, and parts of mobile sources, could not be developed at this time either because data are incomplete or because methodologies do not exist for estimating emissions from these source categories. See Annex 5 of this report for a discussion of the sources of greenhouse gas emissions and sinks excluded from this report. Consistent with IPCC good practice principles, EPA continues efforts to estimate emissions and sinks from excluded emission and removal sources occurring in U.S. and developing uncertainty estimates for all source and sink categories for which emissions and removals are estimated.
- *Collecting more measured data.* Uncertainty associated with bias and random sampling error can be reduced by increasing the sample size and filling in data gaps. This applies to both measurements and surveys.
- *Using more precise measurement methods.* Measurement error can be reduced by using more precise measurement methods, avoiding simplifying assumption, and ensuring that measurement technologies are appropriately used and calibrated.
- *Eliminating known risk of bias.* This is achieved by ensuring instrumentation is properly positioned and calibrated, models or other estimation procedures are appropriate and representative, and by applying expert

judgements in a systematic way.

- *Improving state of knowledge.* Improve the understanding of categories and processes leading to emissions and removals, which can help to discover and correct for problems in incompleteness. It is *Good Practice* to continuously improve emissions and removal estimates based on new knowledge.

1

2 The following sections describe the ongoing and planned *Inventory* and Uncertainty analysis improvements in the
3 context of these specific areas.

4 **Recent and Ongoing Improvements**

5 To collect *more measured data, improve representativeness, and use more precise measurement methods*, several source
6 categories in the *Inventory* now use the U.S. EPA's Greenhouse Gas Reporting Program (GHGRP) data, which improves
7 *Inventory* emission (or sink) estimation methods by allowing the incorporation of country-specific data rather than using
8 default IPCC estimates. EPA's GHGRP relies on facility-level data reported from large facilities emitting over 25,000
9 metric tons of CO₂ equivalent each year. The reported GHGRP data undergo a multi-step verification process, including
10 automated data checks to ensure consistency, comparison against expected ranges for similar facilities and industries,
11 and statistical analysis. See Annex 9 for more information on use of GHGRP data in the *Inventory*.

12 In addition to improving *Inventory* input data and methodologies, the use of EPA's GHGRP data can also reduce
13 uncertainty in select *Inventory* emission categories. For example, replacing highly uncertain emission factor estimates
14 with GHGRP data for the Coal Mining category reduced the 95 percent uncertainty bounds for methane emissions from
15 this category from -15 percent to 18 percent in the 1990 to 2011 inventory down to -10 percent to 21 percent in the
16 current (1990 to 2021) *Inventory*. Petroleum Systems included updates to basin-specific activity factors, leading to
17 increased modeling granularity and a decrease in uncertainty bounds for CH₄ ranging from -10% to 15%. This represents
18 an improvement from the previous inventory, in which uncertainty bounds ranged from -28% to 32%. Methane emission
19 estimates from MSW landfills were also revised with GHGRP data, which resulted in methodological and data quality
20 improvements that also reduced the 95 percent uncertainty bounds for this category compared to the prior use of
21 default emission factors with larger assumed uncertainties.

22 Additional ongoing improvements to the U.S. *Inventory* uncertainty analyses for select categories will help to *eliminate*
23 *known risk of bias, improve models, and advance the state of knowledge*, which may lead to further *Inventory* and
24 uncertainty analysis improvements in other areas including *improved conceptualization and data representativeness*.
25 Finally, ongoing improvements include review of documentation of source-specific input data and references, PDF
26 distributions, and Monte Carlo analysis results through the implementation of standardized source-specific uncertainty
27 reporting and documentation templates. Ongoing improvements to the overall *Inventory* Uncertainty Analysis
28 documentation will additionally ensure consistency with IPCC *Good Practice* and increase the transparency of the overall
29 analysis.

30 **Planned Improvements**

31 EPA continuously seeks new knowledge to improve the *Inventory* emissions and removal estimates. With available
32 resources, planned future improvements to the *Inventory* and Uncertainty Analysis are prioritized by focusing
33 improvements on categories identified in the Key Category Analysis (Chapter 1.5), or by quantitatively comparing the
34 relative contributions of uncertainties from various input parameters (e.g., activity data and emission factors) to the total
35 uncertainty levels within a source or sink category. Quantifying the sensitivity of the overall *Inventory* uncertainty
36 bounds to the uncertainty within each source or sink category can also prioritize future *Inventory* updates.

37 As described in Chapter 1.5, Key Categories in the current (1990 to 2021) *Inventory* include (but are not limited to)
38 categories that fall under Fossil Fuel Combustion (Chapter 3.1), Petroleum and Natural Gas Systems (Chapter 3.6 and
39 3.7), Industrial Processes and Product Use (Chapter 3), and Agriculture (Chapter 4). Planned improvements for these key
40 categories largely include the incorporation of more accurate and/or representative input parameters and making
41 corresponding updates to the uncertainty assessments. For example, as described in Chapter 3.1, planned inventory
42 improvements for emissions from fossil fuel combustion categories include efforts to assess the incorporation of more
43 measured input activity data (e.g., GHGRP data, domestic marine activity) and other input parameters (e.g., updated
44 carbon factors for petroleum fuels, emission factors for non-road equipment, etc.). Similarly, Chapters 3.6 and 3.7

1 discuss plans to continue stakeholder engagement to assess the potential for incorporating new input data (e.g., from
2 peer-reviewed publications, industry studies, etc.), updating methods for select sources (e.g., Offshore Production,
3 unassigned high-emitters), or including new sources (e.g., anomalous leak events) within the Petroleum and Natural Gas
4 System categories. Categories within the IPPU sector (Chapter 4) also discuss plans to assess the future incorporation of
5 additional facility-level GHGRP data, improve emission models (e.g., for ozone depleting substance substitutes) and the
6 methodological descriptions in the *Inventory* report. Similar to other categories, planned improvements to Agricultural
7 emissions from Manure Management and Enteric Fermentation include the incorporation of new, more accurate and
8 representative data, updates to emission models and conceptualization (including moving to Tier 2 methods for all
9 sources), as well as revised uncertainty estimates to the account for recent updates. Details describing the planned
10 improvements for these and nearly all other individual source and sink categories are included in the category-specific
11 Chapters of this report.

12 Implementation of these planned improvements will occur on an ongoing basis as new information becomes available.
13 Improvements are prioritized to make best use of available resources, including efforts to improve the accuracy of
14 emission factors, collect more detailed and representative activity data, as well as provide better estimates of input
15 parameter uncertainty. For example, further research is needed in some cases to improve the accuracy of emission
16 factors, including those currently applied to CH₄ and N₂O emissions from manure management. Lastly, for many
17 individual source categories, further research is also needed to characterize the PDFs of their input parameters more
18 accurately (e.g., emission factors and activity data). This might involve using measured or published statistics or
19 implementing a rigorous protocol to elicit expert judgment, if published or measured data are not available. Continued
20 efforts in these areas will reduce *Inventory* uncertainty and increase the completeness, accuracy, and transparency of
21 the category-specific and overall *Inventory* estimates.

22 Additional planned improvements for the overall *Inventory* uncertainty analysis include improving the presentation of
23 uncertainties in a format consistent with suggested tables in Volume 1, Chapter 3 of the *2006 IPCC Guidelines*. As
24 resources permit, in particular for key categories, improvements include reviewing and updating the existing uncertainty
25 models for the base year. This process would improve the base year and trend uncertainty analyses but may not
26 eliminate every simplifying assumption described above due to limited data availability in the base year.

27

1 **References**

2 IPCC (2019) *2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories*. Calvo Buendia, 3 E.,
3 Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize S., Osako, A., Pyrozenko, Y., Shermanau, P. and 4 Federici, S.
4 (eds). Published: IPCC, Switzerland.

5 IPCC (2006) *2006 IPCC Guidelines for National Greenhouse Gas Inventories*. The National Greenhouse Gas Inventories
6 Programme, The Intergovernmental Panel on Climate Change, H.S. Eggleston, L. Buendia, K. Miwa, T Ngara, and K.
7 Tanabe (eds.). Hayama, Kanagawa, Japan.

8 EPA (2002) Quality Assurance/Quality Control and Uncertainty Management Plan for the U.S. Greenhouse Gas 2
9 *Inventory: Procedures Manual for Quality Assurance/Quality Control and Uncertainty Analysis*, U.S. Greenhouse 3 Gas
10 Inventory Program, U.S. Environmental Protection Agency, Office of Atmospheric Programs, EPA 430-R-02- 4 007B, June
11 2002.

12

13