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Abstract

We demonstrate the use of a two-stage random-effects meta-analysis estimator for synthesiz-

ing published estimates of the value per statistical life (VSL). The meta-estimation approach

accommodates unbalanced panels with one or multiple observations from each independent

group of primary estimates, and distinguishes between sampling and non-sampling sources

of error, both within and between groups. We use a series of Monte Carlo simulation

experiments to examine the performance of the meta-estimator on constructed datasets.

Simulation results indicate that, when applied to datasets of modest size, the approach

performs best when the within-group non-sampling error variances are constrained to be

equal across groups. This allows for two levels of non-sampling errors while preserving de-

grees of freedom and therefore increasing statistical efficiency. Simulation results also show

that the performance of the estimator compares favorably to several other commonly used

meta-analysis estimators, including other two-stage estimators. We illustrate the approach

by applying it to a preliminary meta-dataset comprising 88 VSL estimates assembled from 9

hedonic wage and 9 stated preference studies conducted in the U.S. and published between

1999 and 2013.
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1 Introduction

Analysts often use quantitative predictive models to aid in the design and evaluation of

public policy interventions, and generally one or more key parameters of such models are not

known with certainty. In some domains, many studies have reported one or more competing

estimates of an important parameter using more-or-less credible research methods. In these

cases, some means of synthesizing the available estimates—into a single best point estimate,

or a credible range, or a probability distribution—is needed for use in quantitative policy

evaluations.

Meta-analysis is a statistical approach for estimating the central tendency and examining

the factors that influence the variation among multiple estimates of an unknown quantity

of interest from different studies (Borenstein, Hedges, Higgins, & Rothstein, 2009; J. Nelson

& Kennedy, 2009). Meta-analysis has been used to synthesize quantitative results from

empirical studies in a wide variety of public policy domains, including job search and training

programs (Card, Kluve, & Weber, 2010), the impacts of ethanol regulations on corn prices

(Condon, Klemick, & Wolverton, 2015), the efficacy of nudges for improving public health

(Arno & Thomas, 2016), the influence of education on intelligence (Ritchie & Tucker-Drob,

2018), COVID-19 infection fatality rates (Levin et al., 2020), and many more.

The “value per statistical life” (VSL) is among the most important estimates used in

benefit-cost analyses of public policies related to health, safety, and the environment as

reduced mortality often comprises the largest category of benefits for these actions (Arrow

et al., 1996; Cropper, Hammitt, & Robinson, 2011). In the recently signed Reconsidera-

tion of the National Ambient Air Quality Standards Revision for Particulate Matter, for

instance, over 98 percent of the monetized benefits were attributed to avoided statisti-

cal deaths (USEPA 2024). The VSL, used to monetize reduced mortality risk, refers to
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the marginal rate of substitution between income and mortality risks, i.e., an individual’s

marginal willingness-to-pay to reduce their risk of death (Kniesner & Viscusi, 2019). The

VSL corresponds to the total dollar value associated with small changes in the risk of dying

that, when aggregated over a large population, yield one statistical life. For example, if

100,000 individuals are each willing to pay, on average, $100 for a reduction in their risk

of death in the coming year of 1/100,000, then the value of reducing the expected number

of deaths in the group—i.e., saving one “statistical life”—equals 100,000 × $100, or $10

million (USEPA, 2014, p XV).

A comprehensive review of the theory and methods used to derive and estimate the VSL

is beyond the scope of this paper. Banzhaf (2014) describes the historical origins of the VSL

concept, and Cropper et al. (2011) provides a broad overview of estimation approaches and

applications of the VSL in benefit-cost analysis. Other useful reviews, including discussions

of open research questions, can be found in Ashenfelter (2006), Cropper et al. (2011),

Viscusi (2012), Sunstein (2013), Robinson and Hammitt (2016), and Robinson, Hammitt,

and O’Keeffe (2019).

Hundreds of VSL estimates have been reported in the peer-reviewed literature, and more

than a dozen previous meta-analyses have been conducted to synthesize multiple estimates

and examine the factors that influence their magnitudes. However, the focus and scope

of previous meta-analyses have often been limited. Analyses have typically focused on a

sub-set of the literature, either hedonic wage or stated preference studies, both of which

can provide VSL estimates. 1 Many studies also select a single estimate per study or

independent data sample, and even when multiple estimates per study are available, these

1. Kochi, Hubbell, and Kramer (2006) includes both types of studies and concludes that there are systematic
differences in the VSL estimates. There are theoretic reasons why the values might differ. As noted by EPA’
Science Advisory Board, hedonic wage studies may be interpreted as Marshallian willingness-to-accept values
while most stated preference estimates may be interpreted as Hicksian willingness-to-pay USEPA (2017).
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are frequently averaged to produce a single central study estimate before being combined

with estimates from other studies. Instead, to preserve as much information as possible

from the underlying studies, we use a two-stage random-effects meta-analysis estimator.

This approach accommodates unbalanced panels with one or multiple observations from

each independent group of primary estimates, and distinguishes between sampling and non-

sampling sources of error, both within and between groups. In demonstrating this approach,

we use VSL estimates from both the hedonic wage and stated preference literatures and we

include tests for publication bias.

In the remainder of this introduction, we review several previous VSL meta-analyses. In

subsequent sections, we describe our estimation approach in detail, examine its performance

using Monte Carlo simulations, and demonstrate its application to a preliminary meta-

dataset of VSL estimates assembled in an earlier U.S. EPA report (USEPA, 2016).

1.1 Previous VSL meta-analyses

In this section we briefly summarize the key features and results from previous VSL meta-

analyses published in peer-reviewed journals. While there are several excellent reviews and

summaries of the VSL literature (e.g., Keller, Newman, Ortmann, Jorm, & Chambers, 2021;

Robinson & Hammitt, 2016), here we focus on statistical meta-analyses. In the discussion

section below, we compare and contrast our estimation methods and results to some of

the studies reviewed here. See Table 1 for key summary statistics from the VSL meta-

analyses summarized below: the number of primary studies from which VSL estimates were

drawn (I), the total number of observations in the meta-dataset (N), whether the included

observations were estimated using a hedonic wage (HW) or stated preference (SP) approach,

and the summary ranges of the VSL and the income elasticity estimates reported in each
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meta-analysis study.

Most previous VSL meta-analyses have focused on synthesizing hedonic wage-based es-

timates of the VSL. Mrozek and Taylor (2002) performed a meta-regression of 203 estimates

from 33 hedonic wage studies. Weighted least squares was used for estimation, with weights

equal to the inverse of the number of estimates from the parent study, giving each study

equal weight. Precision weights were not possible because standard errors were often not

reported. Viscusi and Aldy (2003) used single estimates from each of 44 to 46 studies in

six meta-regression model specifications without precision weighting. Bellavance, Dionne,

and Lebeau (2009) used a mixed-effects regression model to combine 39 estimates drawn

from 37 hedonic wage studies. Estimates were chosen from each independent data sample

(in most cases selecting a single estimate per study) based on similarity of the estimat-

ing equation with other studies, the original authors’ preferred estimate, and other best-

practice considerations. J. P. Nelson (2015) used the data assembled by Bellavance et al.

(2009) plus additional hedonic wage observations from the U.S. Environmental Protection

Agency USEPA (2010) in a “tentative and exploratory” meta-analysis of VSL estimates.

After dropping outliers, single estimates from 28 primary studies were included in the final

meta-dataset for four meta-regression specifications—OLS, fixed-effect, and two versions

of random-effects models—which included use of the inverse standard errors as a test for

publication bias.

The issue of publication bias on VSL estimates has been the focus of many meta-

analyses of hedonic wage studies, first by Doucouliagos, Stanley, and Giles (2012) who

found significant bias using the Bellavance et al. (2009) data set, and later in a series of

articles by Viscusi and co-authors. Viscusi (2015) constructed a sample of 550 hedonic

wage estimates based on 17 studies that used workplace fatality risks calculated from the
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Census of Fatal Occupational Injury (CFOI) dataset, and compared VSL estimates and

publication selection bias in this set to that found in other hedonic wage datasets, including

that constructed by Bellavance et al. (2009). Estimates were weighted by inverse variance,

and fixed- and random-effects variants of meta-regression models were estimated. CFOI-

based estimates exhibited relatively little publication bias. Viscusi and Masterman (2017a)

examined publication bias in U.S. and non-U.S. VSL estimates using a larger international

dataset of 1,025 observations from 68 hedonic wage studies. The authors used weighted

least squares with inverse variances of the VSL estimates used as observation weights. A

quantile regression approach was used to examine publication bias at different levels of

VSL estimates. Little evidence of publication bias was found in CFOI-based estimates,

and there was evidence of strong bias among non-US studies, which the authors attributed

to an anchoring effect of previously published U.S. VSL estimates. Viscusi (2018) further

examined publication bias in the hedonic wage literature, comparing bias in “best-set”

samples (i.e., 1 selected estimate per study) with that found when all study estimates

are used. Weighted least squares results suggested that publication bias is statistically

significant for both samples but is larger for the best-set sample. The central bias-adjusted

VSL estimate for the all-set sample was $8.8 million (in 2020 U.S. dollars).2

Fewer meta-analyses of stated preference-based VSL estimates have been conducted.

Dekker, Brouwer, Hofkes, and Moeltner (2011) used a Bayesian estimation approach in their

meta-analysis of 77 estimates from 26 international contingent valuation studies conducted

in 15 countries, with the goal of examining the effect of risk context on VSL estimates.

Specifically, they empirically estimated correction factors to apply for “out of context”

benefit transfers using CV studies focused on air pollution, road safety, or those considered

2. In this paper, all VSL estimates are reported in 2020 US dollars.
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“context free.” Lindhjem, Navrud, Braathen, and Biausque (2011) is perhaps the most

comprehensive, global meta-analysis of stated preference VSL estimates, with 850 mean

estimates drawn from 76 studies conducted in 38 countries. The study focused on the

effects of population characteristics, risk type and context, survey format, and statistical

methodological choices on the VSL estimates. Estimates were weighted by the inverse of

the number of estimates selected from each study so that each survey received equal weight.

For a subset of the primary studies, they also reported results using alternative weighting

schemes for comparison—the inverse of the number of estimates from each study, the inverse

of the standard deviation of the mean VSL estimates, and a combination of the two—and

found that results were reasonably robust to the weights used. More recently, Masterman

and Viscusi (2020) performed a meta-analysis of global stated preference VSL estimates,

using 1148 estimates drawn from 85 studies. Using WLS weighted by inverse variance and

including article controls, the authors found large and statistically significant publication

biases with bias-adjusted VSLs never larger than $980,000.

Meta-analyses that examine both stated and revealed preference estimates are less com-

mon. Kochi et al. (2006) combined both hedonic wage and stated preference estimates.

The authors used an empirical Bayes estimation approach in a two-stage pooling model to

examine 197 estimates selected from 40 studies published in the U.S. and other high-income

countries. In a first stage, the authors created subsets of estimates by the same author or

groups of authors and calculated the mean value for the subset if it passed a statistical test

for homogeneity. In a second stage, the authors combined the estimates from the 60 homo-

geneous first-stage subsets accounting for across-group variability using the Q-statistics for

each group. A bootstrap approach was used to compare the distributions of VSL by study

type, finding that the mean VSL from hedonic wage studies was roughly three times larger
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than that from stated preference studies.

Several meta-analyses have focused on the income elasticity of the VSL (IEVSL) rather

than on the VSL estimates themselves. Doucouliagos, Stanley, and Viscusi (2014) assessed

publication bias in 101 IEVSL estimates from 14 prior meta-analyses using a variety of

estimators, including precision-effect estimate with standard error (PEESE) and with fixed-

and random-effects meta analysis estimators, finding substantial publication bias effects.

Viscusi and Masterman (2017b) estimated IEVSL for both US and non-US samples with

publication bias correction and study controls, and also conducted quantile regression to

estimate IEVSL across the national income distribution. Masterman and Viscusi (2018)

used similar methods to examine IEVSL from stated preference VSL estimates based on

the dataset from Lindhjem et al. (2011) supplemented by more recent studies and found

similar results.

Table 1 lists key summary statistics from the VSL meta-analyses summarized above:

the number of primary studies from which VSL estimates were drawn (I), the total number

of observations in the meta-dataset (N), whether the included observations were estimated

using a hedonic wage (HW) or stated preference (SP) approach, and the summary ranges

of the VSL estimates reported in each meta-analysis study. Of the VSL meta-analyses

reviewed here, only one examined both HW and SP estimates (Kochi et al., 2006) and none

applied a multi-level random-effects estimator.

As a crude synthesis of the results from prior meta-analyses studies, we note that the

average low, midpoint, and high ends of the ranges reported in the final column of Table 1

are 5.2, 7.4, and 9.5 million 2020 US$. In the Discussion section we will compare our results

to those summarized here.

[ Insert Table 1 around here. ]
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With so many VSL meta-analyses now available in the published literature, Banzhaf

(2022) observed that “...the old problem of selecting a single best study has just been

pushed back to the problem of selecting a single best meta-analysis.” To consolidate this

literature, Banzhaf synthesized 11 meta-estimates of the VSL from 6 prior meta-analysis

studies: USEPA (1997), Mrozek and Taylor (2002) (2 estimates), Viscusi and Aldy (2003),

Kochi et al. (2006) (2 estimates), Robinson and Hammitt (2016), and Viscusi (2018) (4

estimates). In his alternative model, which includes all source studies, Banzhaf specified

weights for each estimate such that each study received equal weight. He then produced

a mixture distribution by taking repeated random draws from the distributions defined by

the means and standard errors of the constituent meta-estimates, with the pre-specified

weights applied to each estimate.3 The resulting VSL mixture distribution has a mean of

$7.6 million and 90% confidence interval from $2.0 to $13.1 million. We note that Banzhaf’s

consolidated central estimate is very close to the average of the midpoints in Table 1, and

Banzhaf’s range safely encompasses the range of average low and high estimates in Table

1.

Our crude summary of previous meta-analyses above and the quantitative synthesis

by Banzhaf (2022) point to the same ballpark of central estimates for the VSL. These

preliminaries provide the context for our main contribution in the present study, which

is to describe and illustrate the use of a multi-level random-effects estimator that is more

general and—at least under some circumstances, elaborated below—more precise than those

3. There is an important distinction between the conventional meta-analysis approach we use in the present
study and the mixture distribution approach used by Banzhaf (2022). If we meta-analyze two independent
estimates each with the same mean, µ, and variance, σ2, the meta-estimate would be equal to µ and the
variance of the meta-estimate would be equal to σ2/2. If we mix two distributions with the same mean, µ,
and variance, σ2, the mean of the mixture distribution would be equal to µ, but the variance of the mixture
distribution would be equal to σ2. It is more appropriate to mix the meta-estimates, as Banzhaf did, rather
than meta-analyze them if the constituent meta-analysis studies themselves used many of the same primary
VSL estimates, and so the meta-estimates being synthesized cannot safely be treated as independent.
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used in many previous VSL meta-analysis studies.

2 Methods

In this study, we demonstrate the use of a two-stage random-effects (2SRE) estimator for

synthesizing and analyzing published estimates of the VSL.4 Our estimation approach is

closely related to other multi-level meta-analysis methods, including the three-level meta-

analysis approach described by Konstantopoulos (2011) and the hierarchical dependence

model described by L. V. Hedges, Tipton, and Johnson (2010) and Tipton (2015). Our main

contributions include: 1) tailoring a multi-level random-effects estimator to conditions we

expect to characterize VSL meta-datasets, 2) conducting a series of Monte Carlo simulation

experiments to examine the performance of the estimator in comparison to several other

commonly used meta-analysis estimators in our data environment, and 3) and applying the

estimator to a preliminary meta-dataset of VSL estimates from hedonic wage and stated

preference studies conducted in the United States between 1999 and 2013.

2.1 A two-stage random-effects meta-analysis estimator

In this sub-section we describe the 2SRE estimator that we propose to use for synthesizing

published VSL estimates. A complete derivation is provided in the Appendix.

To begin, we decompose each observation into the sum of the true effect size and three

error components,

yij = y + ηi + µij + εij , (1)

where yij is an observed VSL estimate j from group i, y is the average VSL among the

4. A Github repository containing a set of R scripts sufficient to replicate all results reported in this paper
can be found at: https://github.com/scnewbold/2SRE.
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U.S. adult general population (our target of estimation), ηi is a group-level non-sampling

error, µij is an observation-level non-sampling error, and εij is an observation-level sampling

error.5 To clarify the distinction between sampling and non-sampling errors in our setting,

note that our target of estimation, or estimand, is the average VSL among the adult U.S.

population. To form our meta-dataset, we will draw from the literature primary estimates

based on data samples and model specifications originally designed to identify the aver-

age VSL among the entire U.S. adult general population or a large sub-set of the general

population—e.g., working adults between the ages of 18 and 65, as in many hedonic wage

studies. The estimands in those primary studies with non-representative samples will differ

from our estimand by an amount that depends on the degree of non-representativeness of

their samples along the relevant dimensions and the association between those sample char-

acteristics and people’s marginal willingness-to-pay for mortality risk reductions. In these

cases, the primary estimates would be a biased estimate of our estimand even if it were an

unbiased estimate of the average VSL among the subset of the population from which the

original sample was drawn. All deviations in the primary VSL estimates stemming from

differences in the sampling frames, estimation approaches, functional forms of estimating

equations, selection of exogenous control variables, handling of outliers, and any other id-

iosyncratic data cleaning and modeling choices among the primary studies—i.e., all sources

of variability in the primary VSL estimates that do not arise from sampling variation per

se—are subsumed in our composite “non-sampling error” terms, ηi + µij .

5. A note on terminology is in order. We use “non-sampling errors” to refer to what is commonly called
“heterogeneity” in the meta-analysis literature. For example, L. Hedges, Shymansky, and Woodworth (1989)
discussed this distinction as follows: “Sampling standard error measures the sampling variation of the esti-
mated effect size but does not reflect non-sampling variations which would occur if the study had used a
different population of students or different teachers...,” and “The variation among studies is, of course, due
in part to random sampling fluctuations as reflected in the sampling standard errors. However, in some cases
differences between individual studies exceed several standard errors, presumably reflecting differences in
the characteristics of those studies... To study this ‘non-sampling’ variation we use heterogeneity analysis.”
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Returning now to our model set-up, we decompose the composite errors such that ηi

varies between but not within groups, while µij and εij can vary both between and within

groups. The standard errors reported for each observation represent the sampling variability

of the published estimates conditional on the designs of the original studies. The variances of

the sampling error components, σ2ε,i, are assumed known and equal to the squared standard

errors of the VSL estimates as reported in the original studies, se2ij .
6 The variances of the

between- and within-group non-sampling error components, σ2η and σ2µ,i, are unknown and

will be estimated from the data.

For our meta-analysis estimator to be unbiased, all error components must have means of

zero. This is a common assumption but its plausibility will depend in part on the selection

criteria used to draw primary estimates from the published literature. In particular, at

least two constituent assumptions must hold to make E[ηi]=0 and E[µi,j ]=0: (1) the non-

sampling errors stemming from non-representative sampling frames and differences in study

designs are idiosyncratic, and so just as likely to lead to positive as negative biases with

respect to our estimand, and (2) publication bias is negligible, and so the estimates that

appear in the published literature are not selected on their magnitudes. We will maintain

the first assumption throughout, but we will demonstrate how to test the second assumption

in a side-analysis using two conventional publication bias estimators.7

Conditional on the zero-mean-errors assumption, any convex combination of the obser-

vations will provide a consistent estimate of the average VSL. Our aim is to find the set of

weights that gives the most efficient consistent estimator possible. The estimator can be

6. This is a simplification that is shared by all meta-analysis estimators that we are aware of. A more
general approach would also account for uncertainty in the reported standard errors.
7. The findings of Viscusi and Masterman (2017a) suggest that studies using CFOI mortality risk data are
the least subject to publication bias among all subsets of VSL estimates from previous hedonic wage studies
that they examined. Masterman and Viscusi (2020) find that stated preference studies are subject to large
publication bias.
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written as a weighted average,

ŷ =
I∑
i=1

Ji∑
j=1

wijyij , (2)

where
∑I

i=1

∑Ji
j=1wij = 1. We derived formulas for the weights, wij , as follows. First,

we found conditional observation-level weights, gij , to calculate group-level estimates ŷi =∑Ji
j=1 gijyij , where

∑Ji
j=1 gij = 1. Second, we found group-level weights ŷ =

∑I
i=1 hiŷi,

where
∑I

i=1 hi = 1. Third, we calculated the unconditional observation-level weights as

wij = higij . Constraining the weights to sum to 1 at each level ensures that the group-level

estimates are consistent and that the overall estimate is consistent.8

We derived the gij ’s to minimize the variance of the group-level estimates, which re-

quires estimates of σµ,i for each group, and we derived the hi’s to minimize the variance of

the overall weighted mean, which depends on the conditional variances of the group level

estimates and requires an estimate of ση. We used a method-of-moments approach to derive

estimates of σµ,i and ση, so no assumptions about the shapes of the error distributions were

used.

Some groups in the preliminary meta-dataset have only a single observation, which

means σµ,i cannot be estimated for those groups. To proxy the within-group non-sampling

error variance for singleton groups, we used the average of the σ̂µ,i’s for the non-singleton

groups. The alternative of assuming σµ,i = 0 for singleton groups would have the unintended

effect of penalizing primary studies that reported more than one VSL estimate. By assigning

the mean non-sampling error variance to the singleton groups, non-singleton groups with

8. We could generalize further and consider an inconsistent estimator that may achieve a lower mean-
squared error by shrinking the estimate towards zero (Efron & Morris, 1977; Rasmusen, 2015; Samworth,
2012). However, it appears there is little to be gained from such an approach in the present context. For
example, consider perhaps the simplest possible shrinkage estimator ỹ = αŷ, where ŷ is our most efficient
consistent 2SRE estimator. The optimal shrinkage factor is α? = ŷ2/(ŷ2 + se[ŷ]2). Looking ahead to our
results in Table 7, we find ŷ ≈ 8 and se[ŷ] ≈ 1, which gives α? ≈ 0.985. Considering that the shrinkage
factor must be estimated from the data and so would itself add noise, this slim potential gain suggests that
very little if any shrinkage would be optimal in practice in this setting.
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observations that have lower than average non-sampling error variances will receive more

weight than the singleton groups, and those with higher than average non-sampling error

variances will receive less weight, all else equal. This gives more leverage to studies whose

estimates are more robust to variations in functional form assumptions and other sensitivity

tests designed to examine uncertainties unrelated to sampling variability.

The estimator also allows for correlation among sampling errors, ρ, but does not estimate

this value. The analyst must specify ρ and can examine the influence of this assumption

through sensitivity analysis. We investigated the effect of mis-specifying this correlation in

our Monte Carlo experiments described below.

The foregoing description of the estimation approach has focused on the calculation

of precision weights for the observations in a meta-analysis context, with no moderator

variables included. For applications to meta-regression models, which include one or more

moderator variables intended to help explain some of the systematic heterogeneity among

the quantities estimated in each primary study, the same approach to calculating the optimal

precision weights applies except the mean of each observation, y, is replaced with f(xij , β)—

e.g., xijβ in a linear meta-regression model—in equations (1) and (2) above. All equations

necessary to compute the 2SRE estimator are shown in Table 2, and the Appendix provides

a full derivation.

[ Insert Table 2 around here. ]

In our illustrative application, we used iterated weighted least squares to estimate linear

meta-regression models. This involves initializing β̂ by regressing y on x with either no

weighting (ordinary least squares) or precision weights based on the reported standard

errors only (a fixed-effect size meta-regression model). Then β̂ is used to estimate the error

component variances, and the estimated error component variances are used to re-calculate
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β̂ using weighted least squares. The process is repeated until the joint set of estimates

converge to stable values.9 If x only includes a constant, then the estimator collapses to the

simple meta-analysis model with no moderator variables described above, in which case no

iteration is required.

2.2 Performance comparison using Monte Carlo experiments

To examine the performance of the 2SRE estimator, we conducted a series of Monte Carlo

simulation experiments using constructed data. For each experiment, we specified the

number of groups, I, the number of observations for each group, Ji, the true VSL, y, the

error component variances, σ2η and σ2µ,i, and the within-group sampling error correlation, ρ.

For 16 combinations of the experimental design parameters, we applied several alternative

meta-analysis estimators, including the 2SRE estimator, to each of 2,000 simulated meta-

datasets. The estimators we compared are listed and described in Table 3.

[ Insert Table 3 around here. ]

The first two estimators, the simple mean and group means, make no use of the reported

standard errors for each observation nor do they attempt to estimate any unobserved error

components for precision weighting. The next three estimators—metafor, robumeta, and

MAd—are commonly used meta-analysis packages developed for R. The final estimator is the

the two-stage random-effects estimator tested in this study for the purpose of synthesizing

published VSL estimates. We apply three versions of the 2SRE estimator. The first version

(2SRE-true) uses the true error component variances to compute precision weights. This

is impossible using real data, but is useful here to provide a lower bound estimate of the

9. Our stopping criteria was when the largest change among the coefficient estimates became smaller than
0.001%, which is safely below the sampling variability of these estimators.
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standard errors for all feasible estimators that can take the form of an unbiased weighted

mean as in equation (2). The second version (2SRE-free) allows for heterogeneous within-

group non-sampling error variances. This version is the most general and should be the

most efficient feasible estimator with sufficiently many groups and observations per group.

The third version (2SRE-equal) is constrained by imposing a common within-group non-

sampling error variance. This version may outperform the second version of the 2SRE

estimator if the number of observations per group is small.

The precision of each estimator is indicated by the standard deviation of the resulting

VSL weighted mean estimates among all 2,000 Monte Carlo trials. For comparison to

our simulation-based estimates of standard errors, we calculated robust standard errors

following L. V. Hedges et al. (2010).10

2.3 Detecting and correcting publication bias

A common concern in meta-analysis studies is the possibility of publication bias (Ioannidis

& Doucouliagos, 2013). Though our main focus in this study is on the statistical efficiency

of alternative meta-analysis estimators when applied to VSL meta-datasets, we also used

two conventional methods to address publication bias: the trim-and-fill and PET-PEESE

estimators.

The trim-and-fill estimator (Duval & Tweedie, 2000) is a non-parametric method based

on the observation that a plot of precision estimates (1/se2) versus corresponding effect size

estimates—often called a “funnel plot”—should be vertically symmetric. If all estimates

are equally likely to be published, then the funnel plot should be wide at the bottom (low

10. In a side analysis not reported here, we also calculated bootstrapped standard errors by re-sampling
independent groups with replacement (Ren et al., 2010). This allowed us to compare the performance of
robust and bootstrapped standard error estimates under a common set of experimental design settings. We
found a close correspondence between the bootstrapped standard errors and the robust standard errors, so
here we report only the more easily calculated robust standard errors.
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precision studies) and narrow at the top (high precision studies) with roughly the same

number of estimates on the left and right sides of their center of mass. On the other hand,

if estimates with low t-statistics are less likely to be published, then the funnel plot will have

a conspicuously lower density of estimates in the bottom-left region of the plot (assuming

positive effect size estimates). The trim-and-fill estimator works by iteratively “trimming”

estimates on the far right side of the plot until the trimmed funnel is no longer asymmetric,

then re-calculating the mean of the remaining estimates, then “filling” the trimmed and

missing estimates on both sides of the plot around the corrected mean to compute the

variance of the estimator.

The PET-PEESE estimator (Stanley & Doucouliagos, 2014) uses a two-stage regression

approach to detect and correct for publication bias. The first stage (the PET or “precision

effect test”) involves regressing the effect size estimates on a constant and the standard

errors. If the coefficient on the standard errors is significantly different from zero, this

is taken as evidence of publication bias. In these cases, a second stage (the PEESE or

“precision-effect estimate with SE”) is applied, which involves regressing the effect size

estimates on a constant and the squared standard errors. The estimated constant in this

regression is taken as a corrected mean effect size. Intuitively, the se2 term controls for the

influence of study precision on the reported effect size estimates, and the estimated constant

extrapolates the relationship to an (hypothetical) infinitely precise study with se2 = 0.

2.4 Application to a preliminary VSL meta-dataset

To demonstrate the 2SRE estimation approach using realistic data, we applied it to a

preliminary meta-dataset assembled by the U.S. Environmental Protection Agency as part

of a review of proposed meta-analysis methods by the Agency’s Science Advisory Board
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(USEPA, 2016).

The dataset contains VSL estimates (hereafter “observations”) from both stated prefer-

ence and hedonic wage studies. Multiple observations were drawn from studies meeting our

screening criteria. Where available, this includes both mean and median VSL estimates,

and their respective standard errors. The dataset includes 46 observations from 9 hedonic

wage studies and 42 observations from 9 stated preference studies. Detailed information

about the dataset, including the full list of studies and the screening criteria, is provided

by USEPA (2016).

The EPA Science Advisory Board made a number of recommendations for altering both

the dataset and methods proposed in the 2015 EPA report (EEAC, 2017). An important

motivation for the present study was the board’s recommendations to refine and improve the

estimation approach. Updates and modifications to the dataset itself will be completed as

a separate task. Therefore, our analysis of the preliminary meta-dataset is presented here

for the purpose of demonstrating the proposed estimation approach using realistic data.

Given the limitations of the dataset, our results should be viewed as illustrative and do not

represent an official summary measure of the VSL for use in benefit-cost analysis.

3 Results

3.1 Monte Carlo experiments

Results from our Monte Carlo experiments are shown in Tables 4–7. We compared the

candidate estimators under four combinations of true and assumed correlations among non-

sampling errors within studies, ρ and ρ̂. In all four tables, each row corresponds to a unique

combination of the number of groups, I (20 or 60), the minimum and maximum number of
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observations in each group, J (drawn randomly from the range 1–5 or 1–15), the group-level

(between groups) non-sampling error variability, ση (1.0 or 3.0), and the observation-level

(within groups) non-sampling error variability, σµ (drawn randomly from the range 0.5–

1.0 or 0.5–3.0). In all cases the true VSL was 10 and the sampling error variability, se,

was drawn from the range 0.5–5.0. The following 8 columns in each table contain standard

deviations of 2,000 Monte Carlo applications of each estimator to constructed datasets based

on the experimental design settings in the first 4 columns.

The alternative estimators appear from left to right in the columns of Tables 4–7 in the

order the estimators are listed in Table 3. In all cases, the data were constructed with σµi

heterogeneous across groups, so the constrained 2SRE-equal estimator, with σ̂µi = σ̂µ for

all i, imposes a binding restriction on the estimating equation. This restriction will not bias

the estimator but will make it less efficient than the unconstrained 2SRE-free estimator in

sufficiently large samples, or more efficient in sufficiently small samples, where the large-

versus-small sample size threshold will depend on all parameters of the data generating

process. We have attempted to vary the experimental design settings to cover ranges that are

typical for VSL meta-analyses, so the Monte Carlo comparisons among all of the estimators,

including the unconstrained and constrained versions of the 2SRE estimator, should be

informative for realistic VSL meta-analysis applications.

Before considering the results in detail, we note that in all four tables the standard errors

are less than 1.0 for nearly all estimators under nearly all experimental design settings. This

is relatively high precision considering that the true VSL was set at 10 for these numerical

experiments. Therefore, using a VSL meta-dataset with characteristics within the range of

sample sizes and error component variances considered here, a variety of reasonable meta-

analysis estimators should produce a 95% confidence interval with a half-width less than
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20% of the central estimate itself. Nevertheless, we can clearly discern systematic differences

in performance among the competing estimators by considering each of the four tables of

Monte Carlo simulation results in turn.

[ Insert Table 4 around here. ]

The results in Table 4 are based on cases with no correlation among non-sampling errors

within groups, ρ = 0, and where the analyst has correctly set ρ̂ = 0. Here the 2SRE-equal

estimator is more efficient than the other estimators in 13 out of 16 cases.

[ Insert Table 5 around here. ]

The results in Table 5 are based on cases with a positive correlation among non-sampling

errors within groups, ρ = 0.5, and where the analyst has incorrectly set ρ̂ = 0. Here the

2SRE-equal estimator is more efficient than all other estimators in 12 of 16 cases, the 2SRE-

free estimator performs best in one case, and the metafor estimator performs best in the

three remaining cases.

[ Insert Table 6 around here. ]

The results in Table 6 are based on cases with a positive correlation among non-sampling

errors within groups, ρ = 0.5, and where the analyst has correctly set ρ̂ = 0.5. Here again

the 2SRE-equal estimator is more efficient than all other estimators in all 16 cases.

[ Insert Table 7 around here. ]

The results in Table 7 are based on cases with no correlation among non-sampling errors

within groups, ρ = 0, and where the analyst has incorrectly set ρ̂ = 0.5. Here the 2SRE-

equal estimator is as or more efficient than the other estimators in 12 out of 16 cases. Under
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this (ρ, ρ̂) configuration, the robumeta-HIER estimator is most efficient in the remaining 4

cases.

The final columns in Tables 4–7 show that the average robust standard errors, ŝe

(L. V. Hedges et al., 2010), which were computed for the 2SRE-equal estimator, closely

match the standard deviations of their corresponding simulated estimates, as they should.

The R2 values between the two quantities is greater than 0.99 in all four tables, and we see

no apparent bias of the robust standard errors even in Tables 5 and 7 where ρ̂ 6= ρ, so it

does not appear that mis-specification of ρ̂ will substantially compromise standard errors.

[ Insert Figure 1 around here. ]

A visual depiction of the relative performance of all tested estimators is shown in Figure

1. The four charts in the figure contain the same information as the four tables of Monte

Carlo simulation results, Tables 4-7, but presented as means and ranges of the standard

errors of each estimator normalized by their theoretical minimum possible standard errors

(based on the “2SRE-true” estimator, which uses the true error component variances to

compute standard errors). For example, a bar with height 0.2 indicates that the standard

error of the estimator is 20% larger than the minimum possible standard error. The error

bars indicate the minimum and maximum normalized standard errors for each estimator

across all 16 cases examined in our Monte Carlo experiments. These charts show more

clearly that the 2SRE-equal estimator performs at least as well as the others on average in

all four (ρ, ρ̂) configurations. The charts also show that the 2SRE-free estimator performs

poorly relative to to the constrained version, especially when ρ= 0. The simple mean and

group mean estimators show their best performance when ρ=0. The efficiency advantages

of the more sophisticated meta-analysis estimators are more clearly evident when ρ> 0, a

condition we expect to hold in most realistic meta-datasets that include multiple estimates
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from the same study or the same underlying primary datasets.11

3.2 Demonstration using realistic data

Meta-analysis results

A variety of meta-analysis estimates using several subsets of the preliminary EPA metadata

are shown in Table 8. Results for seven estimators are presented: simple mean, group

means, 2SRE-free, 2SRE-equal, and three modified versions of the 2SRE estimator with

corrections for publication bias using on the trim-and-fill (T&F) and the PET-PEESE (P-

P) methods. Each estimator is applied to data only from hedonic wage (HW) studies, only

from stated preference (SP) studies, and from both HW and SP studies (pooled). The final

column shows the simple average of the independent HW and SP estimates (balanced),

which places equal weight on the two types of primary estimation methods regardless of the

number of studies and observations of each type.

[ Insert Table 8 around here. ]

Comparing primary estimation approaches, HW estimates are larger than SP estimates

in 12 of 14 cases, but the differences are smaller when using only mean VSL observations

from the SP studies. The pooled and balanced estimates are very close to each other for all

estimators that do not involve publication bias corrections. The largest difference between

the pooled and balanced estimates is produced by the 2SRE-free T&F estimator using only

mean VSL observations, for which the balanced estimate is nearly $1.5 million larger than

the pooled estimate.

All primary studies using the hedonic wage approach reported only mean VSL obser-

11. Recall that ρ is the correlation among sampling errors within groups. Non-sampling errors within groups
are correlated in all cases because each observation includes a group-specific error term, ηi. Therefore, ρ = 0
does not mean that observations within groups are completely independent.
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vations, so the “mm” and “m” entries are the same for each estimator in the HW column.

Primary studies using stated preference approaches reported mean or median or both types

of VSL observations, so the “mm” and “m” entries are different for each estimator in the

SP column. In all cases, median observations were lower than mean observations, so the

“mm” estimates are lower than the “m” estimates.

Publication bias corrections have variable effects on the meta-analysis estimates. The

trim-and-fill (T&F) correction reduces the 2SRE HW estimates by $0.36 and $0.57 million,

and it substantially reduces most of the 2SRE SP estimates, by $2 million or more, the only

exception being the 2SRE-free “m” estimate which increases slightly. The PET-PEESE (P-

P) HW estimate is $1.4 and $0.83 million lower than the uncorrected 2SRE estimates, and

the P-P SP estimates are $0.56 lower and $0.92 higher than the corresponding uncorrected

2SRE-equal mm and m estimates.

A broad-brush summary of the results in Table 8 is that the average of all of estimates is

$8.14 million, and 38 of 49 estimates (not counting the repeated HW estimates) are between

$6 and $10 million, including the four estimates with the lowest RMSE’s highlighted in bold

font.

Meta-regression results

In addition to the meta-analyses reported in Table 8, we also estimated a variety of meta-

regression specifications with control variables for SP observations, median observations,

the year of data collection, and the average U.S. income in the year of data collection. We

estimated a benchmark model with no control variables plus six specifications including two

or more control variables or their interactions. Beginning with Table 9, we show results for

the following seven specifications:
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S0. No controls

S1. SP, median

S2. SP, median, year

S3. SP, median, income

S4. SP, median, year, income

S5. SP, median, year, SP×year

S6. SP, median, income, SP×income

Table 10 shows results from seven parallel specifications where each also includes the stan-

dard error of the primary VSL observations, se, as an additional control variable, which

implements the PET stage of the PET-PEESE publication bias estimator. Table 11 shows

results for the same specifications where each also includes the squared standard error, se2,

which implements the PEESE stage of the PET-PEESE estimator. In Tables 9-11, the

2SRE-equal meta-regression estimation approach was used. Tables 12-14 show all of the

same specifications as the preceding three tables but now using the 2SRE-free estimation

approach.

[ Insert Table 9 around here. ]

In Table 9, the estimate of the constant in specification S0 matches the 2SRE-equal

pooled “mm” estimate in Table 8. This occurs because the meta-regression estimator with

no control variables is equivalent to the meta-analysis estimator. The standard errors

are slightly different because in Table 8 we report bootstrapped standard errors while in

Table 9 we report robust standard errors. All estimates of σµ and ση in Table 9 are

between 2 and 3, which is within the ranges of values used in our Monte Carlo simulation

experiments. Coefficient estimates for the SP dummy variables are always negative, but
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their magnitudes vary widely across specifications (from -0.4 to -3.4). The SP coefficient

estimate is statistically significant only in specification S5. Coefficient estimates for the

median dummy variable are always negative and between -1 and -3, but never statistically

significant. The year time trend is between 0.4 and 0.6, and is statistically significant in all

three specifications in which it appears. The income coefficient is negative in specifications

S3 and S4 but not statistically significant; it is positive and statistically significant in

specification S6. The corresponding value of the IEVSL at the means of the control variables

in specification S6 is 0.333. Based on the R2
CV values reported in the final row of Table

9—which were computed using leave-one-out cross-validation residuals (Hastie, Tibshirani,

Friedman, & Friedman, 2009, Ch 7)—the best fitting specification is S2, and the best fitting

specification that excludes the time trend variable is S6.12

[ Insert Table 10 around here. ]

In Table 10, the se coefficient is close to the conventional threshold for statistical signif-

icance (somewhat above or below 2) in all specifications. We view this as modest evidence

for publication bias according to the PET test.

[ Insert Table 11 around here. ]

In Table 11, the PEESE-corrected estimates of the constant—which correspond to HW-

based VSL observations at the average of the ‘datayear’ variable—in all specifications are

lower than their counterparts in the benchmark specifications reported in Table 9, where

the differences are between $0.7 and $1.8 million. However, the results in Tables 10 and

11 should be viewed in light of the relatively noisy PET-PEESE meta-analysis estimates

12. The EPA Science Advisory Board concluded that without a clear rationale for giving different weights
to estimates from different years, a time trend should not be included in the specification. Instead, they
recommended that the influence of the timing of the studies be explored through sensitivity analysis (EEAC,
2017).
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reported in Table 8 above, as well as the apparently reduced power of the PET-PEESE

estimator in random effects panel data environments reported in some simulation studies

(Alinaghi & Reed, 2018; Hong, 2019; Reed, 2019).

Estimates of the constant in Table 12 are between $0.3 and $0.7 million lower than their

counterparts in Table 9. Estimates of the coefficient on se in Table 13 are slightly higher

than their counterparts in Table 10 and now are statistically significant in all specifications,

which suggests a stronger signal of publication bias. Estimates of the constant in Table 14,

which include the PEESE publication bias correction, are between $0.5 and $1 million lower

than their uncorrected counterparts in Table 11. Estimation results shown in Tables 12–14

from the 2SRE-free model, with unconstrained group-level non-sampling error variances,

σ2µ,i, generally have lower R2
CV values than their constrained counterparts in Tables 9–11.

This is consistent with our simulation results, which indicate that the 2SRE-equal estimator

performs better than the 2SRE-free variant in data environments similar to the preliminary

EPA meta-dataset used in this demonstration application.

4 Discussion

In this study we described and demonstrated a 2-stage random effects (2SRE) meta-analysis

estimation approach that accommodates unbalanced panels with single or multiple obser-

vations per group, accounts for sampling and non-sampling sources of error, and allows

for correlations among non-sampling and sampling errors within groups. Our estimation

approach is similar to the three-level meta-analysis approach described by Konstantopou-

los (2011) and to the robust variance estimation approach described by L. V. Hedges et

al. (2010) and Tipton (2015), which is operationalized in the robumeta R package Fisher

and Tipton (2015). The primary contributions of the present study include our extensive
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simulation experiments and our application of the estimation approach to a realistic, albeit

preliminary, VSL meta-dataset, which together provide a robust indication of the strong

performance of the estimator in relevant data environments.

We examined the performance of the estimator on constructed datasets in a series of

Monte Carlo simulation experiments designed to bracket the range of data features that

we expect to characterize VSL meta-analyses focused on estimates from the U.S. We found

that the estimator performs well in this setting compared to alternatives including three

meta-analysis estimators that have been developed into commonly-used R packages. The

strong performance of the 2SRE estimator included cases involving within-group corre-

lations among sampling errors that the analyst may or may not correctly specify. The

constrained 2SRE-equal estimator, which assumes a common non-sampling error variance

among groups, outperformed the 2SRE-free variant in all of the simulation experiments

we conducted. The latter is the most general version of the estimator, which in principle

should perform best in large samples. This suggests that our simulated meta-datasets were

too small for its potential performance advantages to emerge. The 2SRE-equal variant

of the estimator performed best overall in all four cases we examined. In particular, the

2SRE-equal estimator outperformed all others when ρ=0.5 and ρ̂ = 0.5. We believe ρ=0.5

is more realistic than ρ = 0, so we would recommend ρ̂ = 0.5 as a default setting. Our

simulation results also suggest that robust standard errors are (nearly) unbiased even when

the analyst incorrectly specifies the correlation among non-sampling errors within groups.

We applied several variations of the 2SRE estimator to a preliminary meta-dataset

of VSL estimates assembled by the U.S. EPA. Variations of the estimation approach, in-

cluding un-weighted and weighted meta-analyses and meta-regressions with and without

adjustments for publication bias, were applied to the full dataset and various subsets of the
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data and produced central estimates of the VSL between $6 and $12 million.

How might an analyst curate the many competing estimates of the VSL that appear

in Tables 8–14 to select a central value or range of values for use in policy evaluations?

This will require a number of judgment calls by the end-user that we cannot anticipate,

but here is one possible approach that we believe would be defensible: First, consider the

pooled and balanced meta-analysis estimates that do not correct for publication bias in

Table 8 and the meta-regression estimates in Tables 9 and 11 because these use all of the

available evidence from both hedonic wage and stated preference studies. Among these

estimates in Table 8, focus on those with the lowest root mean squared errors, which in our

demonstration include the group means “mm” balanced case (ŷ = 9.59, RMSE = 0.82),

the 2SRE-free “mm” pooled case (ŷ = 7.59, RMSE = 0.82), and the 2SRE–free “mm”

balanced case (ŷ = 7.54, RMSE = 0.79). Next, consider the corresponding 2SRE estimates

that adjust for publication bias. The T&F estimator has substantially lower variance than

the PET-PEESE estimator, and the respective T&F-adjusted VSL estimates are $6.14 and

$6.66 million. This large difference suggests that publication bias may be important, so we

would include these estimates within the range of values to be used for policy analysis. As

noted earlier, 38 of the 49 estimates in Table 8 are between $6.0 and $10 million. Among

the meta-regression estimates reported in Tables 9 and 11, the best fitting models are

those with the ‘datayear’ variable included. However, the EPA’s Science Advisory Board

recommended not controlling for the year of data collection in VSL meta-regressions citing

a lack of a clear rationale for including them (EEAC, 2017). The specifications in Table

9 that exclude ‘datayear,’ produce produce balanced VSL estimates between $8 and $10

million.These estimates fall safely within the central range of estimates from Table 8, so we

would not expand that range based on the meta-regression specifications that do not control
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for publication bias or a time trend in Table 9. The best-fitting specifications among those

that do control for publication bias using the PEESE estimator in Tables 11 and 14 also

produce central VSL estimates within this range. Based on all of these considerations, our

overall synthesis of these preliminary results is that a central estimate around $8 million

and a range for sensitivity analysis between $6 and $10 million would be reasonable.

We also used a model averaging approach to combine the results from our various

meta-regressions (Steel, 2020). Specifically, we applied jackknife model averaging (JMA)—

which computes a weighted average of model outputs where the weights are chosen to

minimize the sum of squared residuals of the resulting weighted average (Hansen & Racine,

2012)—to 28 meta-estimates of the VSL in Tables 9-14 (seven specifications × constrained

or unconstrained σµ,i’s × without and with correction for publication bias). The JMA

weighted average of the estimated balanced VSL’s (regression constants plus one half of the

SP dummy coefficient) at the means of all control variables was $8.28 million.

Because the metadata used in this application are preliminary, the results from this

application also are preliminary. We offer it as a demonstration of the general estimation

approach on realistic data; it should not be construed as an official update of VSL values for

use in EPA economic analyses. The natural next step would be to develop a more definitive

meta-dataset of VSL estimates to which a multi-level meta-analysis estimator like the 2SRE

estimation approach developed here could be applied in a follow-up study.
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Figure 1: Estimator performance comparisons. Bar heights are average and error bars are
min and max (ŝe− semin) /semin—so lower heights indicate better performance—over the
16 experimental configurations examined in the Monte Carlo experiments listed in Tables
3–6.
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Table 1: Summary statistics from 13 previous VSL meta-analysis studies. I is the number
of groups, N is the number of observations, HW and SP indicate whether hedonic wage or
stated preference estimates were included, and VSL range indicates the smallest and largest
VSL estimates reported in the original article converted to 2020 US$.

Authors (year) I N HW SP VSL range

Mrozek and Taylor (2002) 33 203 1 0 2.4 – 4.0
Viscusi and Aldy (2003) 49 49 1 0 7.5 – 9.3
Kochi et al. (2006) 40 197 1 1 4.2 – 14.4
Bellavance et al. (2009) 37 39 1 0 7.5 – 12.6
Lindhjem et al. (2011) 95 856 0 1 2.0 – 9.8
Dekker et al. (2011) 26 77 0 1 3.3 – 10.7
Doucouliagos et al. (2012) 37 39 1 0 1.3 – 2.8
Nelson (2015) 28 28 1 0 6.0 – 13.9
Viscusi (2015) 17 550 1 0 10.6 – 12.2
Masterman and Viscusi (2017) 68 1025 1 0 9.5 – 11.5
Viscusi (2018) 68 1025 1 0 8.8 – 12.4
Masterman and Viscusi (2020) 85 1148 0 1 0.2 – 1.0
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Table 2: All equations necessary to compute the two-stage random-effects (2SRE) estimator
listed in a feasible sequence. See the Appendix for a complete derivation.
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Note: When conducting a meta-regression with moderator variables, xi,j , the first term on
the right-hand side of equation (2.1), should be replaced with

1
Ji−1

∑Ji
j=1

[(
yi,j −

∑Ji
j=1 yi,j

)2− (xi,j β̂j −∑Ji
j=1 xi,j β̂j

)2]
. The resulting ŵi,j ’s can be used

as weights in a weighted-least-squares estimation of β. Start at β̂ = 0, iterate the entire
sequence of computations updating β̂ each iteration, and repeat until convergence.
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Table 3: Alternative meta-analysis estimators compared in Monte Carlo simulation experi-
ments.

Estimator Description

simple mean Unweighted mean of all observations

group means Unweighted mean of group means

metafor R package for estimating meta-regression models (Viechtbauer, 2010, 2015).

Uses restricted maximum likelihood to estimate ση assuming normally

distributed errors. Accounts for ρ̂ in the rma.mv function via user-specified

variance-covariance matrix of sampling errors. Does not estimate

within-group non-sampling error variances, σµ,i.

robumeta R package for meta-regression with robust (Huber-White) standard errors

for non-independent observations (Fisher & Tipton, 2015). We estimated

two versions: 1) The correlated effects model (CORR) computes

approximate inverse variance weights assuming constant error variances

within groups and a user-specified common within-group correlation, ρ. 2)

The hierarchical effects model (HIER) corresponds to our 2SRE estimator

with σµ,i = σµ ∀i and ρ = 0, but appears to use different estimators for the

error component variances.

MAd R package that provides a wrapper for metafor (Del Re, 2015; Del Re &

Hoyt, 2014). Includes a procedure to aggregate dependent observations

with a user-specified within-group correlation.

2SRE Two-stage random-effects meta-analysis estimator, as described in the

main text and Appendix. We estimate three versions: 1) “2SRE-true”

using inverse variance weights computed with the true error component

variances, 2) “2SRE-free” using estimated error component variances with

σµ,i estimated freely for each group, and 3) “2SRE-equal” using estimated

error component variances with σµ,i constrained to be equal for all groups.
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Table 4: Monte Carlo simulation experiment results (ρ = 0, ρ̂ = 0)

I J ση σµ simple

mean

group

means

meta-

for

robum

CORR

robum

HIER

MAd 2SRE

true

2SRE

free

2SRE

equal

s̄e

20 1, 5 1.0 0.5,1.0 0.479 0.480 0.405 0.478 0.378 0.423 0.366 0.492 0.383 0.392

20 1, 5 1.0 0.5,3.0 0.518 0.534 0.575 0.532 0.463 0.499 0.436 0.623 0.465 0.477

20 1, 5 3.0 0.5,1.0 0.834 0.839 0.976 0.824 0.813 0.809 0.771 1.104 0.774 0.792

20 1, 5 3.0 0.5,3.0 0.898 0.907 1.176 0.864 0.881 0.842 0.813 0.856 0.825 0.859

20 1,15 1.0 0.5,1.0 0.350 0.398 0.319 0.376 0.299 0.338 0.282 0.369 0.291 0.304

20 1,15 1.0 0.5,3.0 0.396 0.483 0.438 0.448 0.367 0.387 0.350 0.389 0.361 0.371

20 1,15 3.0 0.5,1.0 0.811 0.740 0.837 0.740 0.799 0.727 0.710 0.721 0.711 0.740

20 1,15 3.0 0.5,3.0 0.862 0.831 0.940 0.828 0.854 0.804 0.781 0.814 0.789 0.772

60 1, 5 1.0 0.5,1.0 0.274 0.298 0.248 0.270 0.217 0.252 0.212 0.236 0.220 0.223

60 1, 5 1.0 0.5,3.0 0.300 0.334 0.375 0.316 0.269 0.288 0.253 0.431 0.267 0.268

60 1, 5 3.0 0.5,1.0 0.504 0.498 0.596 0.497 0.493 0.485 0.468 0.478 0.469 0.442

60 1, 5 3.0 0.5,3.0 0.501 0.505 0.616 0.493 0.489 0.480 0.464 0.482 0.467 0.478

60 1,15 1.0 0.5,1.0 0.208 0.248 0.191 0.229 0.177 0.202 0.171 0.182 0.174 0.173

60 1,15 1.0 0.5,3.0 0.219 0.245 0.242 0.249 0.204 0.212 0.193 0.245 0.197 0.199

60 1,15 3.0 0.5,1.0 0.463 0.431 0.524 0.432 0.462 0.426 0.412 0.418 0.413 0.411

60 1,15 3.0 0.5,3.0 0.465 0.446 0.523 0.455 0.467 0.440 0.432 0.455 0.433 0.424
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Table 5: Monte Carlo simulation experiment results (ρ = 0.5, ρ̂ = 0)

I J ση σµ simple

mean

group

means

meta-

for

robum

CORR

robum

HIER

MAd 2SRE

true

2SRE

free

2SRE

equal

ŝe

20 1, 5 1.0 0.5,1.0 0.629 0.625 0.464 0.569 0.481 0.563 0.422 0.473 0.468 0.483

20 1, 5 1.0 0.5,3.0 0.622 0.639 0.530 0.558 0.503 0.571 0.445 0.535 0.494 0.496

20 1, 5 3.0 0.5,1.0 0.977 0.893 0.972 0.852 0.894 0.856 0.779 0.807 0.798 0.800

20 1, 5 3.0 0.5,3.0 1.015 0.965 1.304 0.957 0.968 0.929 0.879 0.914 0.893 0.918

20 1,15 1.0 0.5,1.0 0.642 0.594 0.402 0.578 0.470 0.552 0.360 0.425 0.419 0.415

20 1,15 1.0 0.5,3.0 0.535 0.551 0.458 0.523 0.456 0.519 0.385 0.429 0.430 0.440

20 1,15 3.0 0.5,1.0 0.894 0.824 0.836 0.832 0.853 0.824 0.732 0.751 0.743 0.742

20 1,15 3.0 0.5,3.0 0.909 0.822 0.910 0.815 0.865 0.819 0.745 0.759 0.757 0.788

60 1, 5 1.0 0.5,1.0 0.361 0.360 0.270 0.335 0.279 0.332 0.240 0.274 0.270 0.270

60 1, 5 1.0 0.5,3.0 0.374 0.394 0.369 0.345 0.313 0.338 0.281 0.321 0.311 0.320

60 1, 5 3.0 0.5,1.0 0.521 0.489 0.593 0.475 0.505 0.473 0.444 0.456 0.449 0.462

60 1, 5 3.0 0.5,3.0 0.547 0.515 0.616 0.515 0.528 0.503 0.479 0.492 0.484 0.491

60 1,15 1.0 0.5,1.0 0.333 0.288 0.224 0.283 0.243 0.284 0.191 0.215 0.210 0.220

60 1,15 1.0 0.5,3.0 0.339 0.335 0.261 0.317 0.279 0.311 0.226 0.254 0.257 0.254

60 1,15 3.0 0.5,1.0 0.537 0.483 0.533 0.484 0.511 0.482 0.430 0.440 0.436 0.430

60 1,15 3.0 0.5,3.0 0.555 0.502 0.540 0.495 0.528 0.495 0.452 0.465 0.460 0.457
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Table 6: Monte Carlo simulation experiment results (ρ = 0.5, ρ̂ = 0.5)

I J ση σµ simple

mean

group

means

meta-

for

robum

CORR

robum

HIER

MAd 2SRE

true

2SRE

free

2SRE

equal

ŝe

20 1, 5 1.0 0.5,1.0 0.629 0.625 0.500 0.577 0.493 0.560 0.436 0.476 0.454 0.448

20 1, 5 1.0 0.5,3.0 0.630 0.615 0.726 0.577 0.542 0.575 0.478 0.678 0.513 0.510

20 1, 5 3.0 0.5,1.0 0.933 0.871 1.082 0.847 0.886 0.838 0.798 0.818 0.798 0.802

20 1, 5 3.0 0.5,3.0 1.017 0.985 1.219 0.973 0.961 0.964 0.898 0.938 0.907 0.896

20 1,15 1.0 0.5,1.0 0.598 0.579 0.398 0.566 0.452 0.564 0.355 0.399 0.362 0.367

20 1,15 1.0 0.5,3.0 0.620 0.587 0.613 0.550 0.517 0.540 0.406 0.520 0.433 0.433

20 1,15 3.0 0.5,1.0 0.909 0.826 0.986 0.822 0.846 0.819 0.731 0.736 0.730 0.743

20 1,15 3.0 0.5,3.0 0.971 0.865 1.209 0.863 0.946 0.855 0.803 0.903 0.806 0.835

60 1, 5 1.0 0.5,1.0 0.373 0.365 0.300 0.325 0.282 0.319 0.252 0.281 0.259 0.257

60 1, 5 1.0 0.5,3.0 0.378 0.368 0.409 0.347 0.311 0.337 0.275 0.310 0.289 0.297

60 1, 5 3.0 0.5,1.0 0.520 0.489 0.614 0.484 0.496 0.481 0.438 0.463 0.439 0.450

60 1, 5 3.0 0.5,3.0 0.558 0.530 0.723 0.520 0.541 0.519 0.490 0.527 0.497 0.499

60 1,15 1.0 0.5,1.0 0.341 0.309 0.220 0.299 0.254 0.290 0.202 0.216 0.205 0.205

60 1,15 1.0 0.5,3.0 0.361 0.366 0.313 0.349 0.296 0.339 0.246 0.271 0.257 0.252

60 1,15 3.0 0.5,1.0 0.525 0.496 0.496 0.486 0.499 0.483 0.430 0.439 0.431 0.423

60 1,15 3.0 0.5,3.0 0.564 0.507 0.592 0.505 0.540 0.504 0.453 0.473 0.456 0.450
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Table 7: Monte Carlo simulation experiment results (ρ = 0, ρ̂ = 0.5)

I J ση σµ simple

mean

group

means

meta-

for

robum

CORR

robum

HIER

MAd 2SRE

true

2SRE

free

2SRE

equal

ŝe

20 1, 5 1.0 0.5,1.0 0.468 0.537 0.492 0.486 0.375 0.453 0.363 0.513 0.382 0.381

20 1, 5 1.0 0.5,3.0 0.503 0.513 0.726 0.498 0.421 0.477 0.398 0.669 0.417 0.430

20 1, 5 3.0 0.5,1.0 0.905 0.836 1.164 0.837 0.851 0.821 0.770 0.859 0.780 0.795

20 1, 5 3.0 0.5,3.0 0.882 0.883 1.170 0.881 0.847 0.863 0.803 1.026 0.821 0.835

20 1,15 1.0 0.5,1.0 0.333 0.341 0.367 0.350 0.287 0.328 0.274 0.371 0.281 0.292

20 1,15 1.0 0.5,3.0 0.381 0.482 0.542 0.434 0.352 0.436 0.327 0.565 0.362 0.366

20 1,15 3.0 0.5,1.0 0.820 0.745 0.990 0.758 0.803 0.750 0.720 0.960 0.727 0.726

20 1,15 3.0 0.5,3.0 0.849 0.761 1.018 0.769 0.832 0.764 0.733 0.782 0.749 0.746

60 1, 5 1.0 0.5,1.0 0.299 0.327 0.315 0.306 0.238 0.292 0.231 0.315 0.235 0.233

60 1, 5 1.0 0.5,3.0 0.314 0.341 0.479 0.337 0.276 0.323 0.257 0.439 0.279 0.284

60 1, 5 3.0 0.5,1.0 0.482 0.469 0.576 0.467 0.463 0.461 0.435 0.663 0.441 0.430

60 1, 5 3.0 0.5,3.0 0.471 0.472 0.735 0.470 0.462 0.463 0.449 0.581 0.456 0.466

60 1,15 1.0 0.5,1.0 0.199 0.222 0.216 0.222 0.175 0.214 0.166 0.236 0.171 0.170

60 1,15 1.0 0.5,3.0 0.233 0.259 0.379 0.262 0.217 0.250 0.206 0.312 0.223 0.207

60 1,15 3.0 0.5,1.0 0.461 0.428 0.539 0.432 0.457 0.430 0.412 0.428 0.414 0.411

60 1,15 3.0 0.5,3.0 0.446 0.429 0.566 0.428 0.442 0.427 0.419 0.432 0.426 0.418
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Table 8: Meta-analysis estimates of the average VSL among U.S. adults [2020$US] based on
the preliminary meta-dataset compiled by USEPA (2016). Alternative estimators are indi-
cated by the row labels. “mm” indicates that both mean and median VSL observations were
included; “m” indicates that only mean VSL observations were included. “HW” indicates
hedonic wage observations, “SP” indicates stated preference observations, “pooled” indi-
cates both HW and SP observations, and “balanced” indicates a mixture of the independent
HW and SP results with each given equal weight. Numbers in parentheses are bootstrapped
standard errors, and numbers in brackets are root mean squared errors (RMSE’s) where
the bias was estimated as the difference between the “mm” and “m” estimates. The “m”
estimates are assumed to be unbiased, in which cases root mean squared errors are equal
to standard errors. Four estimates with the lowest RMSE’s are highlighted in bold font.

Estimator m(m) HW SP pooled balanced

simple mean mm 12.47 (1.77) 7.65 (1.16) [1.58] 10.17 (1.49) [1.73] 10.06 (0.73) [0.91]

m 12.47 (1.77) 8.72 (2.12) 11.05 (1.64) 10.60 (0.97)

group means mm 11.05 (1.33) 8.14 (1.12) [1.56] 9.59 (0.94) [1.18] 9.59 (0.61) [0.82]

m 11.05 (1.33) 9.22 (1.85) 10.32 (1.08) 10.14 (0.79)

2SRE–free mm 8.45 (1.02) 6.64 (0.69) [1.50] 7.59 (0.54) [0.82] 7.54 (0.43) [0.79]

m 8.45 (1.02) 7.97 (1.64) 8.21 (0.85) 8.21 (0.67)

–equal mm 8.68 (0.94) 7.20 (1.28) [1.94] 7.99 (0.86) [1.25] 7.94 (0.56) [0.92]

m 8.68 (0.94) 8.66 (1.82) 8.90 (1.03) 8.67 (0.69)

–free T&F mm 8.09 (0.94) 4.65 (1.08) [3.62] 6.66 (1.04) [1.04] 6.37 (0.51) [1.80]

m 8.09 (0.94) 8.11 (2.57) 6.61 (1.72) 8.10 (0.88)

–equal T&F mm 8.11 (0.94) 4.35 (1.72) [1.81] 6.14 (1.32) [1.32] 6.23 (0.66) [0.72]

m 8.11 (0.94) 4.90 (2.22) 6.04 (1.55) 6.51 (0.79)

–P-P mm 7.85 (1.11) 6.28 (3.11) [4.28] 6.34 (3.15) [4.27] 7.06 (1.06) [1.81]

m 7.85 (1.11) 9.22 (3.52) 9.22 (3.39) 8.53 (1.16)
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Table 9: EPA data meta-regression results with no correction for publication bias. Seven
specifications (S0-S6) of the two-stage random-effects meta-regression model with σµ con-
strained (2SRE-equal) and with income elasticity of VSL (IEVSL) for models including
income. Numbers in parentheses are robust standard errors.

S0 S1 S2 S3 S4 S5 S6

constant 7.986 9.275 10.923 9.027 10.840 13.665 10.027

(0.901) (0.979) (0.863) (1.373) (1.227) (0.448) (0.930)

SP -0.961 -3.394 -0.495 -3.240 -2.991 -0.378

(2.305) (1.390) (2.477) (1.789) (1.255) (2.235)

median -2.152 -1.175 -2.279 -1.218 -1.038 -2.927

(2.158) (1.337) (2.093) (1.361) (1.343) (2.004)

year 0.610 0.609 0.421

(0.143) (0.143) (0.112)

income -0.190 -0.061 0.584

(0.573) (0.540) (0.222)

SP×year 0.277

(0.216)

SP×income -1.747

(0.762)

σµ 2.335 2.327 2.251 2.320 2.248 2.252 2.275

ση 2.728 2.731 2.756 2.733 2.757 2.756 2.748

IEVSL -0.110 -0.035 0.338

(0.332) (0.312) (0.129)

R2 0.477 0.533 0.699 0.536 0.699 0.706 0.571

R2
CV 0.454 0.453 0.637 0.442 0.622 0.631 0.472
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Table 10: EPA data meta-regression results with the “precision-effect test” (PET) for pub-
lication bias. Seven specifications (S0-S6) of the two-stage random-effects meta-regression
model with σµ constrained (2SRE-equal) and with IEVSL for models including income.
Numbers in parentheses are robust standard errors.

S0 S1 S2 S3 S4 S5 S6

constant 6.418 6.871 9.112 6.585 8.991 10.476 7.612

(1.495) (1.268) (1.452) (1.590) (1.686) (1.685) (1.541)

SP 0.624 -2.145 1.157 -1.924 -1.418 0.947

(2.110) (1.373) (2.245) (1.729) (1.266) (2.137)

median -2.248 -1.285 -2.393 -1.345 -1.109 -2.769

(2.270) (1.368) (2.218) (1.381) (1.383) (2.204)

year 0.572 0.571 0.300

(0.178) (0.180) (0.128)

income -0.217 -0.087 0.256

(0.487) (0.498) (0.335)

SP×year 0.389

(0.247)

SP×income -1.062

(0.821)

se 1.005 0.938 0.667 0.939 0.668 0.752 0.776

(0.512) (0.425) (0.417) (0.432) (0.420) (0.387) (0.462)

σµ 2.169 2.159 2.105 2.145 2.095 2.103 2.134

ση 2.784 2.787 2.804 2.791 2.807 2.805 2.795

IEVSL -0.125 -0.050 0.148

(0.282) (0.288) (0.194)

R2 0.572 0.599 0.736 0.602 0.738 0.750 0.613

R2
CV 0.527 0.507 0.653 0.500 0.641 0.659 0.504
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Table 11: EPA data meta-regression results with the “precision-effect estimate with SE”
(PEESE) for publication bias. Seven specifications (S0-S6) of the two-stage random-effects
meta-regression model with σµ constrained (2SRE-equal) and with IEVSL for models in-
cluding income. Numbers in parentheses are robust standard errors.

S0 S1 S2 S3 S4 S5 S6

constant 7.382 8.225 10.025 7.948 9.916 11.892 8.923

(0.982) (0.943) (0.966) (1.321) (1.257) (0.813) (0.987)

SP -0.137 -2.659 0.382 -2.459 -2.069 0.377

(2.238) (1.339) (2.389) (1.690) (1.219) (2.213)

median -2.048 -1.127 -2.189 -1.181 -0.943 -2.755

(2.210) (1.349) (2.150) (1.373) (1.351) (2.085)

year 0.587 0.585 0.339

(0.153) (0.154) (0.111)

income -0.211 -0.079 0.453

(0.549) (0.530) (0.292)

SP×year 0.359

(0.224)

SP×income -1.490

(0.800)

se2 0.122 0.103 0.108 0.103 0.083 0.090 0.092

(0.045) (0.038) (0.045) (0.038) (0.048) (0.042) (0.038)

σµ 2.201 2.223 2.193 2.213 2.187 2.191 2.209

ση 2.773 2.766 2.775 2.769 2.777 2.776 2.770

IEVSL -0.122 -0.046 0.262

(0.318) (0.307) (0.169)

R2 0.554 0.582 0.728 0.585 0.729 0.740 0.607

R2
CV 0.513 0.488 0.641 0.478 0.627 0.646 0.498

44



RETURN
Table 12: EPA data meta-regression results with no correction for publication bias. Seven
specifications (S0-S6) of the two-stage random-effects meta-regression model with σµ uncon-
strained (2SRE-free) and with IEVSL for models including income. Numbers in parentheses
are robust standard errors.

0 1 2 3 4 5 6

constant 7.594 8.720 10.118 8.397 9.989 13.931 9.385

(0.682) (1.059) (0.809) (1.425) (1.113) (0.415) (1.061)

SP -1.625 -2.850 -1.041 -2.628 -2.950 -0.952

(1.495) (1.420) (1.974) (1.668) (1.268) (1.440)

median -0.740 -1.186 -0.968 -1.263 -1.167 -1.907

(1.394) (1.242) (1.353) (1.285) (1.253) (0.951)

year 0.451 0.447 0.481

(0.097) (0.095) (0.111)

income -0.245 -0.088 0.494

(0.520) (0.480) (0.294)

SP×year -0.049

(0.178)

SP×income -1.761

(0.538)

σµ 2.541 2.533 2.454 2.527 2.451 2.455 2.485

ση 2.183 2.187 2.195 2.190 2.196 2.194 2.209

IEVSL -0.142 -0.051 0.286

(0.301) (0.277) (0.170)

R2 0.369 0.420 0.546 0.424 0.547 0.547 0.475

R2
CV 0.352 0.355 0.493 0.341 0.477 0.485 0.397
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Table 13: EPA data meta-regression results with the “precision-effect test” (PET) for pub-
lication bias. Seven specifications (S0-S6) of the two-stage random-effects meta-regression
model with σµ unconstrained (2SRE-free) and with IEVSL for models including income.
Numbers in parentheses are robust standard errors.

0 1 2 3 4 5 6

constant 5.413 5.832 7.422 5.366 7.060 9.504 6.016

(0.758) (1.065) (1.306) (1.152) (1.392) (1.702) (1.140)

SP -0.266 -1.439 0.556 -0.862 -1.279 0.503

(1.209) (1.272) (1.484) (1.447) (1.204) (1.351)

median -0.524 -0.876 -0.832 -1.060 -0.898 -1.241

(1.144) (1.070) (1.136) (1.111) (1.084) (1.092)

year 0.335 0.323 0.291

(0.121) (0.128) (0.127)

income -0.342 -0.221 -0.034

(0.364) (0.384) (0.364)

SP×year 0.070

(0.174)

SP×income -0.742

(0.596)

se 1.329 1.257 1.018 1.267 1.033 1.030 1.157

(0.361) (0.353) (0.402) (0.360) (0.407) (0.399) (0.380)

σµ 2.368 2.360 2.308 2.344 2.297 2.306 2.337

ση 2.195 2.201 2.202 2.207 2.207 2.203 2.213

IEVSL -0.198 -0.128 -0.019

(0.211) (0.222) (0.211)

R2 0.598 0.602 0.657 0.609 0.664 0.659 0.615

R2
CV 0.572 0.549 0.601 0.547 0.595 0.593 0.552
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Table 14: EPA data meta-regression results with the “precision-effect estimate with SE”
(PEESE) for publication bias. Seven specifications (S0-S6) of the two-stage random-effects
meta-regression model with σµ unconstrained (2SRE-free) and with IEVSL for models in-
cluding income. Numbers in parentheses are robust standard errors.

0 1 2 3 4 5 6

constant 6.884 7.635 9.047 7.239 8.811 11.763 8.083

(0.646) (0.962) (0.887) (1.218) (1.067) (0.814) (0.985)

SP -0.958 -2.152 -0.241 -1.754 -2.041 -0.189

(1.290) (1.299) (1.674) (1.489) (1.185) (1.315)

median -0.485 -0.913 -0.761 -1.046 -0.930 -1.526

(1.290) (1.163) (1.243) (1.206) (1.175) (1.008)

year 0.397 0.389 0.365

(0.100) (0.102) (0.109)

income -0.302 -0.156 0.271

(0.458) (0.449) (0.345)

SP×year 0.051

(0.171)

SP×income -1.383

(0.576)

se2 0.144 0.128 0.108 0.129 0.109 0.109 0.118

(0.042) (0.040) (0.045) (0.040) (0.044) (0.043) (0.038)

σµ 2.407 2.428 2.392 2.418 2.386 2.390 2.413

ση 2.182 2.185 2.192 2.188 2.194 2.192 2.202

IEVSL -0.175 -0.090 0.157

(0.265) (0.259) (0.200)

R2 0.518 0.532 0.620 0.539 0.622 0.620 0.567

R2
CV 0.478 0.456 0.546 0.444 0.530 0.538 0.485
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Appendix

In this appendix we derive the two-stage random-effects estimator used in the main text.

The dataset comprises i = 1, 2, ..., I groups of observations, where group i comprises

j = 1, 2, ..., Ji individual observations.13 We will denote the observations as yij and their

associated standard errors as seij . The estimator will take the form of a weighted mean,

ŷ =
∑I

i=1

∑Ji
j=1wijyij , where the weights sum to one,

∑I
i=1

∑Ji
j=1wij = 1. Our task is to

find the optimal weights given the structure of our data set and our assumptions about the

nature of the data generating process.

4.1 Sources of error

We decompose each observation into the sum of the true mean and three error components:

yij = y + ηi + µij + εij , (3)

where y is the true value of the average VSL among the U.S. adult general population

(our target of estimation), ηi is a group-level non-sampling error, µij is an observation-level

non-sampling error, and εij is an observation-level sampling error. ηi varies among but

not within groups, while both µij and εij vary both among and within groups. (Below

we describe how to generalize this meta-analysis model to a meta-regression model, which

basically involves replacing y with xijβ throughout.)

Before proceeding with the derivation, it might be helpful to explain our assumptions

about the nature of the error components. Sampling errors, represented by εij , arise from

sampling variability alone. This refers to the variability of a statistic if it were calculated

13. Our primary grouping strategy groups estimates based on the same underlying dataset, but other strate-
gies are possible, e.g., grouping by study or primary author. The aim is to group observations such that
correlations across groups are eliminated or minimized.
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many times repeating the same study design with the same sample size but with a different

random draw of observations from the target population each time. Non-sampling errors

include all other sources of deviation between the estimate calculated from the sample and

the true quantity that is the target of estimation, such as measurement error, missing vari-

able bias, other forms of model mis-specification, mis-matches between the sampling frame

and the population of interest, ad hoc treatment of “outliers,” and other methodological

choices that may lead to biased estimates. The practical relevance of this distinction is that

the standard errors reported in the original studies represent only the sampling variability

of the primary VSL estimates. Therefore, these quantities can serve as estimates of the

standard deviations of εij but not the other error components in the model, the variances

of which must be estimated using the meta-data itself.

We will assume that the non-sampling error components are uncorrelated with each other

and with the sampling errors, but we will allow for possible correlations among sampling

errors within groups. Also note that the composite non-sampling errors, ηi + µij , will be

correlated within groups but not across groups by the assumption that ηi is common to all

observations in group i. We will derive the minimum variance estimator and calculate the

associated standard error based on these assumptions. We also will calculate standard errors

using both a bootstrap approach and the robust standard errors proposed by L. V. Hedges

et al. (2010) to avoid the bias associated with nominal standard errors when the assumed

error structure does not correspond to the true error structure.

4.2 A two-stage random effects estimator

To find the optimal weights to place on each observation in the meta-dataset we proceed

in two stages. In the first stage we find the optimal feasible weights, ĝij , for calculating
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composite estimates for each group,14

ŷi =
∑Ji

j=1
ĝijyij . (4)

In this stage we impose the constraint that
∑Ji

j=1 ĝij = 1, which is required to make the

group-level composite estimate an unbiased estimator of the group mean, y + ηi. In the

second stage we find the optimal weights ĥi for calculating the overall composite estimate,

ŷ =
∑I

i=1
ĥiŷi. (5)

In this stage we impose the constraint that
∑I

i=1 ĥi = 1, which is required to make the

expected value of the composite estimate equal to the mean of the group-level effects, and

therefore equal to the true effect y by the assumption that the expected value of the group

level non-sampling errors ηi is zero. The composite weights for each observation are then

ŵij = ĥiĝij .

4.3 Stage one

We begin by finding the optimal infeasible weights for calculating the group-level composite

estimates, ŷi. We will denote the variance of the composite estimate for group i as vi, which

is

vi = E

[(∑Ji

j=1
gijyij

)2
]
− E

[(∑Ji

j=1
gijyij

)]2
. (6)

14. We will use “ˆ” notation to indicate quantities that can be computed from our data or other estimated
quantities. The same symbol without a “ˆ” indicates an infeasible estimator because it depends on one or
more unknown population parameters.
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Substituting yij = y + ηi + µij + εij gives

vi = E

[(∑Ji

j=1
gij (y + ηi + µij + εij)

)2
]
− E

[(∑Ji

j=1
gij (y + ηi + µij + εij)

)]2
. (7)

Using the constraint
∑Ji

j=1 gij = 1, we can factor the y and ηi out of the summation in the

first term, and we can simplify the second term to y2, which gives

vi = E

[(
y + ηi +

∑Ji

j=1
gij (µij + εij)

)2
]
− y2. (8)

By assumption, ηi is not correlated with either µij or εij , so all terms involving products

of ηi and µij or ηi and εij will equal zero in expectation. All terms involving products of y

and any error terms also will equal zero in expectation, so we can simplify equation (8) to

vi = E

[
(y + ηi)

2 +

(∑Ji

j=1
gij (µij + εij)

)2
]
− y2. (9)

Completing both squares inside the expectation operator and eliminating the y2 and −y2

terms gives

vi = E
[
η2i + 2yηi +

∑Ji

j=1

{
g2ij (µij + εij)

2 +
∑Ji

k 6=j
gijgik (µij + εij) (µik + εik)

}]
, (10)

where
∑Ji

k 6=j indicates the sum from 1 to Ji excluding element j. Note that E
[(
µ2ij + ε2ij

)]
is the variance of observation ij, and E

[(
µij + εij

)(
µik + εik

)]
is the covariance between

observation ij and ik (both conditional on ηi).

Next we evaluate the right hand side of equation (10) using the assumptions that all

error terms are mean zero and all but the sampling errors are uncorrelated, and using the

fact that the covariance between two random variables equals their correlation multiplied
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by their respective standard deviations. This gives

vi = σ2η +
∑Ji

j=1

[
g2ij
(
σ2µ,i + se2ij

)
+ ρi

∑Ji

k 6=j
gijgikseijseik

]
, (11)

where ρi is the correlation among sampling errors for observations in group i. Equation

(11) is the quantity we want to minimize by choosing weights, gij , subject to the constraint

that the weights sum to one. The Lagrangian is

Li = σ2η +
∑Ji

j=1

[
g2ij
(
σ2µ,i + se2ij

)
+ ρi

∑Ji

k 6=j
gijgikseijseik

]
− λi

(∑Ji

j=1
gij − 1

)
, (12)

and the first-order conditions for a minimum are

∂Li
∂gij

= 2gij
(
σ2µ,i + se2ij

)
+ 2ρi

∑Ji

k 6=j
gikseijseik − λi = 0, (13)

for each j in group i.15 Next, subtracting 2ρi
∑Ji

k 6=j gikseijseik − λi from both sides of the

second equality in expression (13) gives

2gij
(
σ2µ,i + se2ij

)
= λi − 2ρi

(
−gijse2ij +

∑Ji

k=1
gikseijseik

)
, (14)

and then distributing the 2ρi to the terms inside the parentheses on the right hand side of

equation (14) gives

2gij
(
σ2ij + se2ij

)
= λi + 2ρigijse

2
ij − 2ρi

∑Ji

k=1
gikseijseik. (15)

15. If it is not obvious where the 2 multiplying ρi in equation (13) comes from, note that in equation
(12) the double summation term,

∑Ji
j=1

∑Ji
k 6=j gijgikseijseik, is the sum of all off-diagonal elements of the

Ji × Ji matrix formed by cross-multiplying the vector gi � sei by itself, where � indicates element-by-
element multiplication, i.e., [gi � sei]

′[gi � sei] =
∑Ji
j=1

∑Ji
k=1 gijgikseijseik. Taking the derivative of the

sum of the off-diagonal terms with respect to any given element of the vector gi gives 2 times the sum of
all other elements of gi because each of these elements appears once below and once above the diagonal of
[gi � sei]

′[gi � sei].
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Next, we subtract 2ρigijse
2
ij from both sides of equation (15) to get

2gij
(
σ2µ,i + se2ij

)
− 2ρigijse

2
ij = λi − 2ρi

∑Jk

k=1
gikseijseik. (16)

Then we factor 2gij out of the left hand side of equation (16) to get

2gij
[(
σ2µ,i + se2ij

)
− ρise2ij

]
= λi − 2ρi

∑Ji

k=1
gikseijseik, (17)

then solve for gij by dividing both sides of equation (17) by 2
[(
σ2µ,i + se2ij

)
− ρise2ij

]
, which

gives

gij =
λi − 2ρiseij

∑Ji
k=1 seikgik

2
[
σ2µ,i + (1− ρi) se2ij

] . (18)

Next, we apply the constraint that the gij ’s must sum to 1 in each group to get

1 =

Ji∑
j=1

λi − 2ρiseij
∑Ji

k=1 seikgik

2
[
σ2µ,i + (1− ρi) se2ij

] , (19)

and then separate the term on the right hand side of equation (19) into two sums:

1 =

Ji∑
j=1

λi

2
[
σ2µ,i + (1− ρi) se2ij

] − Ji∑
j=1

2ρiseij
∑Ji

k=1 seikgik

2
[
σ2µ,i + (1− ρi) se2ij

] . (20)

Next we factor the Lagrange multiplier out of the sum in the first term and cancel the 2’s

in the second term on the right hand side of equation (20) to get

1 = λi

Ji∑
j=1

1

2
[
σ2µ,i + (1− ρi) se2ij

] − Ji∑
j=1

ρiseij
∑Ji

k=1 seikgik[
σ2µ,i + (1− ρi) se2ij

] . (21)

We solve for the Lagrange multiplier by adding the second term on the right hand side
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to both sides of equation (21) then dividing both sides by the term that multiplies the

Lagrange multiplier:

λi =
1 +

∑Ji
j=1

ρiseij
∑Ji
k=1 seikgik

[σ2
µ,i+(1−ρi)se2ij]∑Ji

j=1
1

2[σ2
µ,i+(1−ρi)se2ij]

. (22)

Next, we rearrange equation (22) by factoring ρiseij
∑Ji

k=1 seikgik out of the sum over j

in the numerator and substituting 1

[σ2
µ,i+(1−ρi)se2ij]

=
[
σ2µ,i + (1− ρi) se2ij

]−1
in both the

numerator and denominator of (22) to get

λi =
1 +

(
ρiseij

∑Ji
k=1 seikgik

)∑Ji
j=1

[
σ2µ,i + (1− ρi) se2ij

]−1
1
2

∑Ji
j=1

[
σ2µ,i + (1− ρi) se2ij

]−1 . (23)

Then we plug (23) back into the expression for gij in equation (18) and divide the numerator

and denominator by 2 to get

gij =

1+
(
ρiseij

∑Ji
k=1 seikgik

)∑Ji
j=1 [σ2

µ,i+(1−ρi)se2ij]
−1∑Ji

j=1 [σ2
µ,i+(1−ρi)se2ij]

−1 − ρiseij
∑Ji

k=1 seikgik

σ2µ,i + (1− ρi) se2ij
(24)

whih we can separate into two fractions,

gij =
1 +

(
ρiseij

∑Ji
k=1 seikgik

)∑Ji
j=1

[
σ2µ,i + (1− ρi) se2ij

]−1
[
σ2µ,i + (1− ρi) se2ij

]∑Ji
j=1

[
σ2µ,i + (1− ρi) se2ij

]−1 −
ρiseij

∑Ji
k=1 seikgik[

σ2µ,i + (1− ρi) se2ij
] , (25)

then we separate the first term on the right hand side into two fractions and rearrange

terms in the sum to get:

gij =
1∑Ji

k=1

σ2
µ,i+(1−ρi)se2ij
σ2
µ,i+(1−ρi)se2ik

+

(
ρi
∑Ji

k=1 seikgik

)∑Ji
k=1

seik
σ2
µ,i+(1−ρi)se2ik∑Ji

k=1

σ2
µ,i+(1−ρi)se2ij
σ2
µ,i+(1−ρi)se2ik

−
ρiseij

∑Ji
k=1 seikgik[

σ2µ,i + (1− ρi) se2ij
] .

(26)

Then we move ρi
∑Ji

k=1 seikgik out of the numerator of both fractions in which it appears
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to get

gij =
1∑Ji

k=1

σ2
µ,i+(1−ρi)se2ij
σ2
µ,i+(1−ρi)se2ik

+


∑Ji

k=1
seik

σ2
µ,i+(1−ρi)se2ik∑Ji

k=1

σ2
µ,i+(1−ρi)se2ij
σ2
µ,i+(1−ρi)se2ik

 ρi
∑Ji

k=1
seikgik−

seij
σ2µ,i + (1− ρi) se2ij

ρi
∑Ji

k=1
seikgik (27)

Distribute terms into the summations in the second and third terms on the right hand side

of equation (27) to get

gij =
1∑Ji

k=1

σ2
µ,i+(1−ρi)se2ij
σ2
µ,i+(1−ρi)se2ik

+ ρi

Ji∑
k=1


∑Ji

k=1
seik

σ2
µ,i+(1−ρi)se2ik∑Ji

k=1

σ2
µ,i+(1−ρi)se2ij
σ2
µ,i+(1−ρi)se2ik

 seikgik−

ρi

Ji∑
k=1

(
seij

σ2µ,i + (1− ρi) se2ij

)
seikgik. (28)

Next, we combine the second and third terms into a single summation to get

gij =
1∑Ji

k=1

σ2
µ,i+(1−ρi)se2ij
σ2
µ,i+(1−ρi)se2ik

+ ρi

Ji∑
k=1


∑Ji

k=1
seik

σ2
µ,i+(1−ρi)se2ik∑Ji

k=1

σ2
µ,i+(1−ρi)se2ij
σ2
µ,i+(1−ρi)se2ik

− seij
σ2µ,i + (1− ρi) se2ij

 seikgik.

(29)

Equation (29) has the form of

gij = Aij +
∑Ji

k=1
Bijkgik, (30)

where

Aij =
1∑Ji

k=1

σ2
µ,i+(1−ρi)se2ij
σ2
µ,i+(1−ρi)se2ik

(31)
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and

Bijk = ρi


∑Ji

`=1
sei`

σ2
µ,i+(1−ρi)se2i`∑Ji

`=1

σ2
µ,i+(1−ρi)se2ij
σ2
µ,i+(1−ρi)se2i`

− seij
σ2µ,i + (1− ρi) se2ij

 seik. (32)

Equation (30) can be written in matrix notation as

gi = Ai + Bigi, (33)

so, finally, we can solve for gi as follows:

(Ii −Bi)gi = Ai ⇒ gi = (Ii −Bi)
−1Ai. (34)

4.4 Cross checks

To provide some indirect confirmation that the above derivation is valid, we can apply the

formula for the optimal weights to two simple cases where the weights are straightforward

to verify independently. First, consider the case when the sampling errors in a group are

uncorrelated. When ρi = 0, equation (32) implies Bi = 0 and equation (31) implies that

the elements of Ai simplify to

Aij =

(
σ2µ,i + se2ij

)−1∑Ji
k=1

(
σ2µ,i + se2ik

)−1 . (35)

Because Bi = 0, equation (30) implies that gij = Aij . The formula in equation (35)

is consistent with the weights given by Hedges and Olkin (1985 p 199) for a traditional

random effects (RE) model with one observation per group. Equation (35) also corresponds

to the maximum likelihood estimate of the mean effect size given by Raudenbush (2009 p

310 eq 16.33). This shows that our more general model, allowing for the possibility of non-
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zero correlations among sampling errors within groups, is consistent with the traditional

RE meta-analysis estimator when considering the special case where the correlations are

zero.

To examine the ingredients of the formula that include the sampling error correlations,

consider the case with two groups where one of the groups has one observation and the

other group has two observations and there are no non-sampling errors within groups, i.e.,

σµ,i = σµ,2 = 0. In this case, the overall summary estimate is

ŷ = hy1 + (1− h)ŷ2 = hy1 + (1− h) [gy2,1 + (1− g)y2,2] , (36)

where ŷ2 = gy2,1 + (1− g)y2,2 is the composite estimate for group 2. With only two groups

and three observations, there are only two weights to determine: h and g. We will begin by

determining g. The variance of the composite estimate for group 2 is

v2 = g2 var [y2,1] + (1− g)2 var [y2,2] + 2g(1− g) cov [y2,1, y2,2] . (37)

The first-order condition for an optimum is

∂v2
∂g

= 2g var [y2,1]− 2(1− g) var [y2,2] + (2− 4g) cov [y2,1, y2,2] = 0. (38)

substituting ρ and the se’s for the covariance and variances gives

2gse22,1 − 2(1− g)se22,2 + (2− 4g)ρse2,1se2,2 = 0, (39)
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which can be solved for g:

g =
se22,2 − ρse2,1se2,2

se22,1 + se22,2 − 2ρse2,1se2,2
. (40)

As a numerical cross-check, the following R script confirms that the g’s computed using

equation (40) exactly match those computed using equation (29) in the simple case of a

group with two observations and no within-group (observation-level) non-sampling errors.

y <- matrix(c(8,0,10,7),2,2,byrow=1)

se <- matrix(c(2,0,3,2),2,2,byrow=1)

rho <- matrix(c(0,0),2,1)

sig.mu <- matrix(0,2,1)

sig.eta <- 1.5

I <- length(rho)

J <- matrix(0,I,1)

for(i in 1:I){J[i] <- sum(y[i,]!=0)}

# Calculate optimal weights using matrix formula:

g <- 0 * y

A <- matrix(0,i,max(J))

B <- array(0,dim=c(max(J),max(J),I))

for(i in 1:I){

for(j in 1:J[i]){

for(k in 1:J[i]){

A[i,j] <- A[i,j] + (sig.mu[i]^2+(1-rho[i])*se[i,j]^2)/

(sig.mu[i]^2+(1-rho[i])*se[i,k]^2)

num <- 0

den <- 0

for(kk in 1:J[i]){

num <- num + se[i,kk]/(sig.mu[i]^2+(1-rho[i])*se[i,kk]^2)

den <- den + (sig.mu[i]^2+(1-rho[i])*se[i,j]^2)/

(sig.mu[i]^2+(1-rho[i])*se[i,kk]^2)

}

B[j,k,i] <- rho[i]*(num/den-se[i,j]/(sig.mu[i]^2+(1-rho[i])*se[i,j]^2))*se[i,k]

}

A[i,j] <- 1/A[i,j]

}

g[i,1:J[i]] = solve(diag(J[i])-B[1:J[i],1:J[i],i]) \%*\% as.matrix(A[i,1:J[i]])

}

g.21.check <- (se[2,2]^2 - rho[2]*se[2,1]*se[2,2])/

(se[2,1]^2 + se[2,2]^2 - 2*rho[2]*se[2,1]*se[2,2])
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print(g[2,1])

print(g.21.check)

4.5 Stage two

Next we want to find the infeasible optimal weights, hi, to place on the composite group-

level estimates, ŷi. We will choose the hi’s to minimize the variance of the overall estimate

subject to the constraint that the weights sum to one. The variance of the overall estimate

is:

var [ŷ] =
∑I

i=1
h2i vi, (41)

where vi is the variance of the composite estimate for group i and can be computed using

equation (11) after computing (feasible versions of) the gij ’s using equation (33) from stage

one and feasible estimates of the unknown quantities therein. The first-order condition for

a minimum is:
∂ var [ŷ]

∂hi
= 2hivi − λ = 0, (42)

where λ is the Lagrange multiplier on the constraint
∑I

i=1 hi = 1. Solving for hi gives

hi =
λ

2vi
. (43)

Next, we can use the constraint to write

∑I

i=1
hi =

∑I

i=1

λ

2vi
= 1, (44)

then solve for the Lagrange multiplier to get

λ =
1∑I

i=1
1
2vi

, (45)

then plug this result back into the expression for the group-level weight, equation (43), to

get

hi =

1∑I
i=1

1
2vi

2vi
, (46)

which can be simplified by cancelling the 2 and written slightly more compactly as

hi =
v−1i∑I
i=1 v

−1
i

. (47)

This formula for the second-stage group-level weights is directly analogous to that for the

within-group observations derived in the first stage—i.e., weights are proportional to the
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inverse variances of the estimates, where the variances account for contributions from all

relevant error components—and so also is consistent with the weights given by Hedges and

Olkin for the traditional RE meta analysis estimator (1985 p 199).

4.6 Estimation of error variances

To construct a feasible version of the two-stage random effects estimator derived above,

we require estimates of the unknown error variances. This section derives estimators for

the two unknown error variance components: the within-group non-sampling errors (σ2µ,i)

and between-group non-sampling errors (σ2η). At this point we will generalize to a meta-

regression framework, so now we assume

yij = xijβ + ηi + µij + εij . (48)

We will begin by ignoring the correlations among sampling errors within groups, then we

will generalize our result to allow for non-zero sampling error correlations. If the sampling

errors are uncorrelated, then observations in group i can be viewed as drawn from a mixture

distribution: with frequency 1/Ji the mean is xijβ + ηi and the variance is σ2µ,i + se2ij . The

variance of a mixture is the weighted average of the variances plus the variance of the means,

therefore the expected variance of the observations in group i is

E
[
var
[
yi
]]

=
1

Ji

Ji∑
j=1

(
σ2µ,i + se2ij

)
+ var

[
xiβ
]
, (49)

where yi denotes the vector of observations in group i,
[
yi,1 yi,2 ... yi,Ji

]
. We can rearrange

equation (49) and use sample estimates of the unknown variance terms to derive a feasible

method-of-moments estimator for the non-sampling error variance for group i,

σ̂2µ,i = var
[
yi
]
− 1

Ji

Ji∑
j=1

se2ij − var
[
xiβ̂
]
. (50)

This estimator is consistent with the estimator derived by Hedges and Olkin (1985 p 194)

for the across-group non-sampling error variance (i.e., heterogeneity of true effect sizes) in

a standard RE model with one observation per group and excluding the xi vector. This

estimator also appears to be identical to the method-of-moments estimator for the variance

of the across-group random effects using OLS regression given by Raudenbush (2009 p

311). Here we are applying the same logic to estimate the variance of the within-group

heterogeneity or non-sampling errors.

We derived the estimator in equation (50) under the assumption of uncorrelated sam-
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pling errors. With correlated sampling errors, the relevant expression is

σ̂2µ,i = var
[
yi
]
− 1

Ji

 Ji∑
j=1

se2ij − 1

Ji

Ji∑
k 6=j

ρiseijseik

− var
[
xiβ̂
]
. (51)

This is a generalization of equation (50), here accounting for the covariances among observation-

level sampling errors within the group.

It is possible for the estimator in equation (51) to return a negative σ̂2µ,i when the av-

erage of the reported standard errors is greater than the total variance of the individual

observations from group i, var [yi] . This can occur due to sampling variability alone espe-

cially when J is small. Alternatively, this might suggest a positive correlation between the

within-study non-sampling errors; however, we have not included such a correlation term

in our estimator. In practice we handle this by setting σ̂2µ,i = 0 in such cases.

Finally, we derive a feasible method-of-moments estimator of σ2η based on equation (11):

σ̂2η =
1

I − 1

I∑
i=1

(
ŷi − 1

I

I∑
i=1

ŷi

)2

− 1

I − 1

I∑
i=1

Ji∑
j=1

[
ĝ2ij
(
σ̂2µ,i + se2ij

)
+ ρi

∑Ji

k 6=j
ĝij ĝikseijseik

]
,

(52)

where the first term on the right-hand side of equation (52) is the sample analog of vi in

equation (11) and the ĝij ’s in the second term are computed by plugging in the estimated

values for all unknown quantities in equation (34).

Note that we cannot estimate both the group-level non-sampling error variance σ2µ,i and

the within-group sampling error correlation ρi simultaneously for all groups because we

have only one equation, expression (52), to identify the two unknowns for each group. To

address this limitation, we specify a common value for ρi for all groups ex ante and then

estimate the σ2µ,i’s conditional on the maintained assumption about the ρi’s.

4.7 Iterative estimation approach

When conducting a meta-regression including one or more explanatory variables, efficient

estimation of the coefficient vector β̂ requires estimates of the observation weights, which

in turn requires estimates of the error component variances. However, estimating the error

component variances requires an estimate of β, as indicated in the Note at the bottom of

Table 2. This chicken-and-egg problem can be solved using an iterative estimation approach:

Begin by setting all elements of β̂ to 0 and calculate estimates of the error component

variances and observation weights as described in this Appendix and summarized in Table

2. Use the resulting weights to perform a weighted least squares regression to produce an

updated estimate of β. Use the updated β̂ to recompute the observation weights, again
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following the sequence of computations in Table 2 but now using the adjustment indicated

in the note at the bottom of the table. Repeat this process until the estimates change by

an amount smaller than a pre-defined tolerance. The stopping criterion we used in our

demonstration was when the largest change among the coefficient estimates became smaller

than 0.001%, which is safely below the sampling variability of these estimators.
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