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COMPILATION OF AIR POLLUTANT EMISSION FACTORS

VOLUME I:
STATIONARY POINT AND AREA SQURCES

Introduction

What is an emission factor?

An emission factor is an average value which relates the quantity of a
pollutant released to the atmosphere with the activity associated with the
release of that pollutant. It is usually expressed as the weight of pollutant
divided by a unit weight, volume, distance or duration of the activity that
emits the pollutant (e. g., kilograms of particulate emitted per megagram of
coal combusted). Using such factors permits the estimation of emissions from
various sources of 2ir pollution. In most cases, these factors are simply
averages of all available data of acceptable quality, generally without consid-
eration for the influence of various process parameters such as temperature,
reactant concentrations, etc., For a few cases, however, such as in the estima~
tion of volatile organic emissions from petroleum storage tanks, this document
contains empirical formulae which can relate emissions to such variables as
tank diameter, liquid temperature and wind velocity. Emission factors corre-
lated with such variables tend to yield more precise estimates than would
factors derived from broader statistical averages.

Recommended uses of emission facrors

Emission factors are very useful tools for estimating emissions of air pol-
lutants. However, because such factors are averages obtained from data of wide
range and varying degrees of accuracy, emissions calculdted this way for a given
facility are likely to differ from that facility's actual emissions. Because
they are averages, factors will indicate higher emission estimates than are ac-
tual for some sources, and lower for others. Only specific source measurement
can determine the actual pollutant contribution from a source, under conditions
existing at the time of the test., For the most accurate emissions estimate, it
is recommended that source specific data be obtained whenever possible, Emis-
sion factors are more appropriately used to estimate the collective emissions
of a number of sources, such as is donme in emissions inventory efforts for a
particular geographic area.

If factors are used to predict emissions from new Oor proposed sources, users
should review the latest literature and techoology to determine if such sources
would likely exhibit emissions characteristics different from those of typical
existing sources.

In a few AP-42 Sections, emission factors are presented for facilities
having air pollution control equipment in place. These factors are not intend-
ed to be used as regulatory standards. They do not represent best available
control technology (BACT), such as may be reflected in New Source Performance
Standards (NSPS), or reasonably available control technology (RACT) for exist-
ing sources . Rather, they relate to the average level of controls found on
existing facilities for which data are available. The usefulness of this
information should be considered carefully, in light of changes in air pollution
control techmology. In using this information with respect to any specific
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source, the user should consider the age, level of maintenance and other aspects
which may influence equipment efficacy.

Examples of various factor applications

Calculating carbon monoxide (CO) emissions from distillate o0il combustion
serves as an exXample of the simplest use of emission factors. Consider an
industrial boiler which burms 90,000 liters of distillate oil per day. 1In
Section 1.3 of AP-42, the CO emission factor for industrial boilers burning
distillate oil is 0.6 kg CO per 103 liters of oil buyrned,

Then CO emissions o
' = CO emission factor x distillate oil burned/day

= 0.6 x 9
= 54 kg/day

In a somewhat more complex case, suppose a sulfuric acid (HpS04) plant
produces 200 Mg of 100% H»80, per day by converting sulfur dioxide (502) into -
sulfur trioxide (S03) at 97.5% efficiency. 1In Section 5.17, the $09 emission
factors are listed according to 504 to 504 conversion efficiencies, in whole
numbers. The reader is directed to Footnote b, an interpolation formula which
may be used to obtain the emission factor for 97.5% 807 to 504 conversion.

Emission factor for kg $0y/Mg 1002 HyS0,
682 - [(6.82)(Z 80, to S04 conversion))
682 ~ [(6.82)(97.5)]
682 ~ 665
17

———

Hnw

For production of 200 Mg of 100Z HySQ4 per day, S0y emissions are calculated as
: 50, emissions : .
= 17 kg S0, emissions/Mg 100% H3804 x 200 Mg 100% H9804/day
= 3400 kg/day

Emission Factor Ratiggs :

a rating (A through E, with A being the best) which reflects the quality and
the amount of data on which the factors are based. 1In general, factors based
Oon many observations or on mare widely accepted test Procedures are assigned
higher rankings. For instance, an emission factor based on ten or more source
tests on different plants would likely get an A rating, if all tests were
conducted using a single valid reference measurement method or equivalent
technigues. Conversely, a factor based on a single observation of questionable
quality, or ome extrapolated from another factor for a similar process, would
probably be labeled D or E. Several subjective schemes have been used in the
Past to assign these ratings, depending upon data availability, source charac-
teristics, ete. Because these ratings are subjective and take no account of
the ipherent scatter among the data used to calculate factors, they should be
used only as approximations, to infer error bounds or confidence intervals
about each emission factor, At most, a rating should be considered an indi-
cator of the accuracy and Precision of a given factor used to estimate emig-
sions from a large number of sources, This indicator wi]l largely reflect the
professional judgment of the authors and reviewers of AP-42 Sections concerning
the reliability of any estimates derived with these factors,
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1. EXTERNAL COMBUSTION SOURCES

External combustion sources include steam/electric generating plants,
industrial boilers, and commercial and domestic combustion units. Coal,
fuel o0il and natural gas are the major fossil fuels used by these sources.
Other fuels, used in relatively small quantities, are liquefied petroleum
gas, wood, coke, refinery gas, blast furnace gas and other waste or byproduct
fuels. Coal, o0il and natural gas currently supply about 95 percent of the
total thermal energy consumed in the United States. 1980 saw nationwide
consumption! of over 530 x 10° megagrams (585 million tons) of bituminous
coal, nearly 3.6 x 10° megagrams (4 million tons) of anthracite coal,
91 x 102 liters (24 billion galloms) of distillate oil, 114 x 10° liters
(37 billion gallons) of residual oil, and 57 x 10!2 cubic meters (20 trillion
cubic feet) of natural gas.

Power generation, process heating and space heating are some of the
largest fuel combustion sources of sulfur oxides, nitrogen oxides and
particulate emissions. The following Sections present emission factor data
on the major fossil fuels ~ coal, fuel o0il and natural gas - and for other
fuels as well.

11980 National Emissions Data System (NEDS) Fuel Use Report, EPA-450/4-82-011,
U. S. Envirommental Protection Agency, Research Triangle Park, NC,
August 1982.
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1.1 BITUMINOUS AND SUBBITUMINOUS COAL COMBUSTION

1.1.1 General

Coal is a complex combination of organic matter and inorganic ash formed over eons from
successive layers of fallen vegetation. Coal types are broadly classified as anthracite, bituminous,
subbituminous, or lignite. These classifications are based on coal heating value together with relative
amounts of fixed carbon, volatile matter, ash, sulfur, and moisture. Formulae and tables for classifying
coals are given in Reference 1. See AP-42 Sections 1.2 and 1.7 for discussions of anthracite and

lignite combustion, respectively.

‘There are three major coal combustion techniques: suspension firing, grate firing, and
fluidized bed combustion. Suspension firing is the primary combustion mechanism in pulverized coal
and cyclone systems. Grate firing is the primary mechanism in underfeed and overfeed stokers. Both
mechanisms are employed in spreader stokers. Fluidized bed combustion, while not constituting a
significant percentage of the total boiler population, has nonetheless gained popularity in the last
decade and today generates steam for industries, cogenerators, independent power producers, and
utilities.

Pulverized coal furnaces are used primarily in utility and large industrial boilers. In these
systems, the coal is pulverized in a mill to the consistency of talcum powder (i.e., at least 70 percent
of the particles will pass through a 200 mesh sieve). The pulverized coal is generally entrained in
primary air before being fed through burners to the furnace, where it is fired in suspension. Pulverized
coal furnaces are classified as either dry or wet bottom, depending on the ash removal technique. Dry
bottom furnaces fire coals with high ash fusion temperatures and use dry ash removal techniques. In
wet bottom (or slag tap) furnaces, coals with low ash fusion temperatures are combusted and molten
ash is drained from the bottom of the fumace. Pulverized coal fumaces are further classified by the
firing position of the burners, i.c., single (front or rear) wall, horizontally opposed, vertical, tangential
(or comer-fired). Wall-fired boilers can be either single wall-fired (with bumers on only one wall of
the furnace firing horizontally) or opposed wall-fired (with bumers mounted on two opposing walls).
Tangentially-fired boilers have burners mounted in the comers of the furnace. The fuel and air are
injectedtowardthecemerofthefumacetocreateavortexthatenhanoesairandfuelmixing.

Cyclone furnaces bumn low ash fusion temperature coal which has been crushed to below 4
mesh particle size. The coal is fed tangentially in a stream of primary air to a horizontal Cylindrical
furnace. Within the fumace, small coal particles are burned in suspension while larger particles are
forced against the outer wall. Because of the high temperatures developed in the relatively small
furnace volume, and because of the low fusion temperature of the coal ash, much of the ash forms a
liquid slag on the furnace walls. The slag drains from,the walls to the bottom of the fumace where it
is removed through a slag tap opening. Cyclone furnaces are used mostly in utility and large
industrial applications.

In spreader stokers, a flipping mechanism throws the coal into the fumace and onto a moving
fuel bed. Combustion occurs partly in suspension and parily on the grate. Because of significant
carbon content in the particulate, fly ash reinjection from mechanical collectors is commonly employed
to improve boiler efficiency. Ash residue from the fuel bed is deposited in a receiving pit at the end
of the grate. :

In overfeed stokers, coal is fed onto a traveling or vibrating grate and bums on the fuel bed as
it progresses through the fumace. Ash particles fall into an ash pit at the rear of the stoker. The term
"overfeed" applies because the coal is fed onto the moving grate under an adjustable gate. Conversely,
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in "underfeed” stokers, coal is fed into the firing zone from below by mechanical rams or screw
conveyors. The coal moves in a channel, known as a retort, from which it is forced upward, spilling
over the top of each side to form and to feed the fuel bed. Combustion is completed by the time the
bed reaches the side dump grates, from which the ash is discharged into shallow pits. Underfeed
stokers include single retort units and multiple retort units, the latter having several retorts side by
side. _

Small hand-fired boilers and furnaces are sometimes found in small industrial, commercial,
institutional, or residential applications. In most hand-fired units, the fuel is primarily bumned in layers
on the bottom of the furnace or on a grate. From an emissions standpoint, hand-fired units generally
have higher carbon monoxide (CO) and volatile organic compounds (VOC) emissions than larger
boilers because of their lower combustion efficiencies.

In a fluidized bed combustor (FBC), the coal is introduced to a bed of either sorbent
(limestone or dolomite) or inert material (usvally sand) which is fluidized by an upward flow of air,
Most of the combustion occurs within the bed, but some smaller particles burn above the bed in the
“freeboard" space. The two principal types of atmospheric FBC boilers are bubbling bed and
circulating bed. The fundamental distinguishing feature between these types is the fluidization
velocity. In the bubbling bed design, the fluidization velocity is relatively low, ranging between 1.5
and 4 m/sec (5 and 12 fi/sec), in order to minimize solids carryover or elutriation from the combustor.
Circulating FBCs, however, employ fluidization velocities as high as 9 m/sec (30 ft/sec) to promote
the carryover or circulation of solids. High temperature cyclones are used in circulating FBCs and in
some bubbling FBCs to capture the solid fuel and bed material for retum to the primary combustion
chamber. The circulating FBC maintains a continuous, high-volume recycle rate which increases the
fuel residence time compared to the bubbling bed design. Because of this feature, circulating FBCs
often achieve higher combustion efficiency and better sorbent utilization than bubbling bed units.?

1.1.2 Emissions and Controls

The major pollutants of concern from biturninous and subbituminous coal combustion are
particulate matter (PM), sulfur oxides (SO,), and nitrogen oxides (NO,). Emissions from coal
combustion depend on the rank and composition of the fuel, the type and size of the boiler, firing
conditions, load, type of control technologies, and the level of equipment maintenance. Some unbumt
combustibles, including numerous organic compounds and CO, are generally emitted even under
proper boiler operating conditions. Emission factors for major and minor pollutants are given in
Tables 1.1-1 through 1.1-14. '

Particulate Matter* - Particulate matter composition and emission levels are a complex
function of firing configuration, boiler operation, and coal properties. In pulverized coal systems,
combustion is almost complete, and thus emitted particulate is largely comprised of inorganic ash
residues. In wet bottom pulverized coal units and cyclones, the quantity of ash leaving the boiler is
lower than in dry bottom units, because some of the ash liquifies, collects on the furnace walls, and
drains from the furnace bottom as molten slag. Particulate emission limits specified in applicable New
Source Performance Standards (NSPS) are summarized in Table 1.1-15. :

Because a mixture of fine and coarse coal particles is fired in spreader stokers, significant
unbumt carbon can be present in the particulate. To improve boiler efficiency, fly ash from collection
devices (typically multiple cyclones) is sometimes reinjected into spreader stoker furnaces. This
practice can dramatically increase the particulate loading at the boiler outlet and, to a lesser extent, at
the mechanical collector outlet. Fly ash can also be reinjected from the boiler, air heater, and
economizer dust hoppers. Fly ash reinjection from these hoppers increases particulate loadings less
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than from multiple cyclones.

Uncontrolled overfeed and underfeed stokers emit considerably less particulate than do
pulverized coal wits and spreader stokers, since combustion takes place in a relatively quiescent fuel
bed. Fly ash reinjection is not practiced in these kinds of stokers.

Variables other than firing configuration and fly ash reinjection can affect PM emissions from
stokers. Particulate loadings will often increase as load increases (especially as full load is
approached) and with sudden load changes. Similarly, particulate can increase as the coal ash and
"fines" contents increase. Fines, in this context, are coal particles smaller than about 1.6 millimeters
(1/16 inch) in diameter. Conversely, particulate can be reduced significantly when overfire air
pressures are increased.

FBCs may tax conventional particulate control systems. The particulate mass concentration
exiting FBCs is typically 2 to 4 times higher than that from pulverized coal boilers”®. Fluidized bed
combustor particles are also, on average, smaller in size, irregularly shaped, and have higher surface
area and porosity relative to pulverized coal ashes. Fluidized bed combustion ash is more difficult to
collect in electrostatic precipitators (ESPs) than pulverized coal ash because FBC ash has a higher
electrical resistivity. In addition, the use of multiclones for fly ash recycling, inherent with FBC
processes, tends to reduce flue gas stream particulate size®.

The primary kinds of PM control devices used for coal combustion include multiple cyclones,
ESPs, fabric filters (or baghouses), and scrubbers. Some measure of control will even resuilt from fly
ash settling in boiler/air heater/economizer dust hoppers, large breeching, and chimney bases. The
effects of such settling are reflected in cumrent emission factors.

ESPs are the most common high-efficiency PM control device used on pulverized coal and
cyclone units; they are also being used increasingly on stokers. Generally, ESP collection efficiencies
are a function of collection plate area per unit volumetric flow rate of fluc gas through the device.
Particulate control efficiencies of 99.9 percent or above are obtainable with ESPs. Electrostatic
precipitators located downstream of air preheaters (i.e., cold side precipitators) operate at significantly
reduced efficiencies when low sulfur coal is fired. Fabric filters have recently seen increased use in
both wility and industrial applications, generally achieving at least 99.8 percent efficiency. An
advantage of fabric filters is that they are unaffected by the high fly ash resistivities associated with
low sulfur coals. Scrubbers are also used to control particulate, although their primary use is to
control sulfur oxides. One drawback of scrubbers is the high energy usage required to achieve control
efficiencies comparable to those for ESPs and baghouses?.

Mechanical collectors, generally multiple cyclones, are the primary means of PM control on
many stokers. They are sometimes installed upstream of high-efficiency control devices in order to
reduce the ash collection burden on these devices. Cyclones are also an integral part of most FBC
designs. Depending on application and design, multiple cyclone efficiencies can vary widely. Where
cyclone design flow rates are not attained (which is common with underfeed and overfeed stokers),
these devices may be only marginally effective and may prove litfle better in reducing particulate than
a large breeching. Conversely, well-designed multiple cyclones, operating at the required flow rates,
can achieve collection efficiencies on spreader stokers and overfeed stokers of 90 to 95 percent. Even
higher collection efficiencies are obtainable on spreader stokers with reinjected fly ash because of the
larger particle sizes and increased particulate loading reaching the controls™®,

Sulfur Oxides™ - Gaseous sulfur oxides (SO,) from coal combustion are primarily sulfur
dioxide (SO,), with a much lower quantity of sulfur trioxide (SO,) and gaseous sulfates. These
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compounds form as the organic and pyritic sulfur in the coal is oxidized during the combustion

process. On average, about 95 percent of the sulfur present in bituminous coal will be emitted as

gaseous SO,, whereas somewhat less will be emitted when subbituminous coal is fired. The more .
alkaline nature of the ash in some subbituminous coals causes some of the sulfur to react in the

furnace to form various sulfate salts that are retained in the boiler or in the flyash. In general, boiler

size, firing configuration and boiler operations have little effect on the percent conversion of fuel

sulfur to SO,. Sulfur dioxide emission limits specified in applicable NSPS are summarized in Table

1.1-15.

- Several techniques are used to reduce SO, emissions from coal combustion. One way is to
switch to lower sulfur coals, since SO, emissions are proportional to the sulfur content of the coal..
This alternative may not be possible where lower sulfur coal is not readily available or where a
different grade of coal cannot be satisfactorily fired. In some cases, various coal cleaning processes
may be employed to reduce the fuel sulfur content. Physical coal cleaning removes mineral sulfur
such as pyrite but is not effective in removing organic sulfur. Chemical cleaning and solvent refining
processes are being developed to remove organic sulfur.

Many flue gas desulfurization (FGD) techniques can remove SO, formed during combustion.
Flue gases can be treated using wet, dry, or semi-dry desulfurization processes of either the throwaway
type (in which all waste streams are discarded) or the recovery/regenerable type (in which the SO,
absorbent is regenerated and reused). To date, wet systems are the most commonly applied. Wet
systems generally use alkali slurries as the SO, absorbent medium and can be designed to remove
greater than 90 percent of the incoming SO,. Particulate reduction of up to 99 percent is also possible
with wet scrubbers, but fly ash is often collected by upstream ESPs or baghouses, to avoid erosion of
the desulfurization equipment and possible interference with FGD process reactions’. Also, the
volume of scrubber sludge is reduced with separate fly ash removal and contamination of the reagents
and byproducts is prevented. Lime/limestone scrubbers, sodium scrubbers, and dual alkali scrubbing
are among the commercially proven wet FGD systems. The effectiveness of these devices depends not
only on control device design but also operating variables, A summary table of commercial post-
combustion SO, controls is provided in Table 1.1-16.

A number of dry and wet sorbent injection technologies are under development to capture SO,
in the furnace, the heat transfer sections, or ductwork downstream of the boiler. These technologies
are generally designed for retrofit applications and are well-suited for coal combustion sources
requiring moderate SO, reduction and which have a short remaining life.

Nitrogen Oxides'*!! - Nitrogen oxides (NO,) emissions from coal combustion are primarily
nitrogen oxide (NO), with only a few volume percent as nitrogen dioxide (NO,). Nitrous oxide (N,0)
is also emitted at ppm levels. Nitrogen oxides formation results from thermal fixation of atmospheric
nitrogen in the combustion flame and from oxidation of nitrogen bound in the coal. Experimental
measurements of thermal NO, formation have shown that the NO; concentration is exponentially
dependent on temperature and is proportional to N, concentration in the flame, the square root of
oxygen (O,) concentration in the flame, and the gas residence time?. Typically, only 20 to 60 percent
of the fuel nitrogen is converted to NO,. Bituminous and subbituminous coals usually contain from
0.5 to 2 weight percent nitrogen, mainly present in aromatic ring structures. Fuel nitrogen can account
for up to 80 percent of total NO, from coal combustion. Nitrogen oxide emission limits in applicable
NSPS are summarized in Table 1.1-15, : -

A number of combustion modifications have been used to reduce NO, emissions from boilers. .

A summary of currently utilized NO, control technology for stokers is given in Table 1.1-17. Low
excess air (LEA) firing is the most widespread combustion modification, because it can be practiced in
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both old and new units and in all sizes of boilers. Low excess air firing is easy to implement and has
the added advantage of increasing fuel use efficiency. Low excess air firing is generally effective only
above 20 percent excess air for pulverized coal units and above 30 percent excess air for stokers.
Below these levels, the NO, reduction from decreased O, availability is offset by increased NO,
production due to higher flame temperatures. Another NO, reduction technique is simply to switch to
a coal having a lower nitrogen content, although many boilers. may not properly fire coals with
different properties.

Off-stoichiometric (or staged) combustion is also an effective means of controlling NO,
emissions from coal-fired equipment. This can be achieved by using overfire air or low-NO, burners
designed to stage combustion in the flame zone. Other NO, reduction techniques include flue gas
recirculation, load reduction, and steam or water injection, However, these techniques are not very
effective for use on coal-fired equipment because of the fuel nitrogen effect. Ammonia ijection is a
post-combustion technique which can also be used, but it is costly relative to other methods. For
cyclone boilers, the use of natural gas reburning for NO, emission control is under investigation on a
full-scale utility boiler.® The net reduction of NO, from any of these techniques or combinations
thereof varies considerably with boiler type, coal properties, and boiler operating practices. Typical
reductions will range from 10 to 60 percent. References 10 and 27 may be consulted for detailed
discussion of each of these NO, reduction techniques. To date, flue gas treatment has not been used
commercially to reduce NO, emissions from coal-fired boilers becanse of its higher relative cost.

Carbon Monoxide - The rate of CO emissions from combustion sources depends on the fuel
oxidation efficiency of the source. By controlling the combustion process carefully, CO emissions can
be minimized. Thus, if a unit is operated improperly or not well maintained, the resulting
concentrations of CO (as well as organic compounds) may increase by several orders of magnitude.
Smaller boilers, heaters, and furnaces ten to emit more CO and organics than larger combustors. This
is because smaller units usually have less high-temperature residence time and, therefore, less time to
achieve complete combustion than larger combustors. Various combustion modification techniques
used to reduce NO, can produce increased CO emissions.

Organic Compounds - Small amounts of organic compounds are emitied from coal
combustion. As with CO emissions, the rate at which organic compounds are emitted depends on the
combustion efficiency of the boiler. Therefore, any combustion modification which reduces the
combustion efficiency will most likely increase the concentrations of organic compounds in the flue
gases.

Total organic compounds (TOC) include volatile organic compounds (VOCs), semi-volatile
organic compounds, and condensible organic compounds. Emissions of VOCs are primarily
characterized by the criteria pollutant class of unbumed vapor-phase hydrocarbons. Unbumed
hydrocarbon emissions can include essentially all vapor phase organic compounds emitted from a
combustion source. These are primarily emissions of aliphatic, oxygenated, and low molecular weight
aromatic compounds which exist in the vapor phase at flue gas temperatures. These emissions include
alkanes, alkenes, aldehydes, carboxylic acids, and substituted benzenes (e.g., benzene, toluene, xylene,
and ethyl benzene.)!",

The remaining organic emissions are composed largely of compounds emitted from
combustion sources in a condensed phase. These compounds can almost exclusively be classed into a
group known as polycyclic organic matter (POM), and a subset of compounds called polynuclear
aromatic hydrocarbons (PNA or PAH), There arc also PAH-nitrogen analogs. Polycyclic organic
matter can be especially prevalent in the emissions from coal combustion, because a large fraction of
the volatile matter in coal exits as POMY.
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Formaldehyde is formed and emitted during combustion of hydrocarbon-based fuels such as
coal. Formaldehyde is present in the vapor phase of the flue gas. Formaldehyde is subject to
oxidation and decomposition at the high temperatures encountered during combustion Thus, larger
units with efficient combustion (resulting from closely regulated air-fuel ratios, uniformly high
combustion chamber temperatures, and relatively long gas residence times) have lower formaldehyde
emission rates than do smaller, less efficient combustion units?*?, _

Trace elements - Trace elements are also emitted from the combustion of coal. For this update
of AP-41, trace metals included in the list of 189 hazardous air pollutants under Title IIT od the 1990
Clean Air Act Amendments™ were considered. The quantity of trace metals depends on combustion
temperature, fuel feed mechanism, and the composition of the fuel. The temperature determines the
degree of volatilization of specific trace elements contained in the fuel. The fuel feed mechanism
affects the partitioning of elements between bottom ash and fly ash. The quantity of any given metal
emitted, in general, depends on:

- the physical and chemical propetties of the element itself:
- its concentration in the fuel;
- the combustion conditions; and

- the type of particulate control device used, and its collection efficiency
as a function of particle size. :

It has become widely recognized that some trace metals become concentrated in certain waste
particle streams from a combustor (e.g., bottom ash, collector ash, and flue gas particulate) while
others do not”. Various classification schemes have been developed to describe this partitioning
behavior.** The classification scheme used by Baig, et al.? is as follows:

- Class 1: Elements which are approximately equally distributed between
fly ash and bottom ash, or show little or no small particle enrichment.

- Class 2: Elements which are enriched in fly ash relative to bottom ash,
or show increasing enrichment with decreasing particle size.

- Class 3: Elements which are intermediate between Class 1 and 2.
. Class 4: Elements which are emitted in the gas phase.

Fugitive Emissions - Fugitive emissions are defined as pollutants which escape from an
industrial process due to leakage, materials handling, inadequate operational control, transfer or
storage. TheﬂyashhmdﬁngopemﬁonSMmostmodemuﬁﬁtyandindusmmcombusﬁonsomces
consist of pneumatic systems or enclosed and hooded systems which are vented through small fabric -
filters or other dust control devices. The fugitive PM emissions from these systems are therefore
minimal, Fugitive particulate emissions can sometimes occur during fly ash transfer operations from
silos to trucks or rail cars. : :

Emission factors for SO,, NO,, and CO are presented in Tables 1.1-1 and 1.1-2, along with
emission factor ratings, Particulate matter and PM-10 emission factors and ratings are given in Tables
1.1-3 and 1.1-4. Cumulative particle size distribution and particulate size specific emission factors are
given in Figures 1.1-1 through 1.1-6 and Tables 1.1-5 through 1.1-10, respectively. Emission factors
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and ratings for speciated organics and N,O are given in Tables 1.1-11 and 1.1-12. Emission factors
and ratings for other non-criteria pollutants and lead are listed in Tables 1.1-13 and 1.1-14.

In general, the baseline emissions of criteria and non- criteria pollutants are those from
uncontrolled combustion sources. Uncontrolled sources are those without add-on pollution control
(APC) equipment, low-NO, burners, or other modifications designed for emission control. Baseline
emission for SO, and PM can also be obtained from measurements taken upstream of APC equipment.

Because of the inherently low NO, emission characteristics of FBCs and the potential for in-
bed SO, capture by calcium-based sorbents, uncontrolled emission factors for this source category
were not developed in the same sense as with the other source categories. For NO, emissions, the data
collected from test reports were considered to be baseline if no additional add-on NO, control sysiem
(such as ammonia injection) was operated. For SO, emissions, a correlation was developed from
reported data on FBCs to relate SO, emissions to the coal sulfur content and the calcium-to-sulfur ratio
in the bed.
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TABLE 1.1-1. (ENGLISH UNITS) EMISSION FAéTOFlS FOR SULFUR OX
OXIDES (NO,), AND CARBON MONOXIDE (CO) FROM BITUMINOUS AND

COMBUSTION®

so? - NO,° co

IDES (SO,),NITROGEN
SUBBITUMINOUS COAL

Enmissio Emissio Emissio
n Factor n Factor n Factor
Firing Configuration SCC Ivion Rating Ivion Rating Ib/ton Rating
Pulverized coal fired, dry bottom, wall  101002-02/22 88s A 21.7 A 0.5 A
fired 1020020222  (355)
103002-06/22
Pulverized coal fired, dry bottom, 101002-12/26 28s A 14.4 A 05 A
tangentially fired 102002-12/26 (358) -
103002-16/26
Puiverized coal fired, wet bottom 101002-12/21 385 D 84,0 c 05 A
_ 102002-01/21 (358)
103002-05/21
Cyclone fumace 101002-03/23 38s b 338 c 0.5 A
102002:03/23 (358)
103002-23/01
Spreader stoker 101002-04/24 388 B 137 A 5 A
102002-04/24 (358)
103002-08/24
Spreadar stoker, with multiple 101002-03/24 38s B 187 A 5 A
cyciones, and reinjection 101002-04/24 (355)
103002-09/24
Spreader stoker, with multiple 101002-04/24 388 A 137 A 5 A
cyclones, no reinjection 101002-04/24 (358)
103002-09/24
Overfoed stoker’ 101002-05/25 38S B 75 A 6 B
1020020510125  (355)
103002-07/25
Overfeed stoker, with multiple 101002-05/25 ass B 75 A 6 B
cyclones' 102002-0510/25  (355)
103-002-07/25
Underleed stoker 10200206 318 B 95 A 1 B
103002-08
Underfeed stoker, with multipie 102002-06 318 B 9.5 A 1 B
cyclone 103002-08
Hand-fed units 10300214 318 9.1 275
Fluidized bed combustor, circulating 10100217 g E 39 18
bed 10200217
103002-17
Fluiized bed combustor, bubbling 101002-17 g E 152 D 18 D
bed 102002-17
103002-17
-  —————————————— .
a. Factors represent uncontrolled emissions unless otherwise specified and should be applied to
coal feed, as fired.

b. Expressed as SO, including SO,, S0,
be used to estimate gaseous SO, em
% sulfur content of coal as fired. Emissio

1.1-8
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n factor would be calculated by multiplying the weight
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percent sulfur in the coal by the numerical value preceding S. On average for bituminous coal,
95% of fuel sulfur is emitted as SO,, and only about 0.7% of fuel sulfur is emitted as SO, and
gaseous sulfate. An equally small percent of fuel sulfur is emitted as particulate sulfate
(References 9, 13). Small quantities of sulfur are also retained in bottom ash. With
subbitumninous coal, about 10% more fuel sulfur is retained in the botiom ash and particulate
because of the more alkaline nature of the coal ash. Conversion to gaseous sulfate appears
about the same as for bituminous coal. )

Expressed as NO,. Generally, 95+ volume % of nitrogen oxides present in combustion exhaust
will be in the form of NO, the rest NO, (Reference 11). To express factors as NO, multiply
factors by 0.66. All factors represent emission at baseline operation (i.e., 60 to 110% load and
no NO, control measures).

Nominal values achievable under normal operating conditions. Values are one or two orders of
magnitude higher can occur when combustion is not complete.

Emission factors for CO, emissions from coal combustion should be calculated using CO,fton
coal = 73.3C, where C is the weight percent carbon content of the coal.

Includes traveling grate, vibrating grate and chain grate stokers.

Sulfur dioxide emission factors for fluidized bed combustion are a function of fuel sulfur content
and calcium-to-sulfur ratio. For both bubbling bed and circulating bed design, use: Ib SO,fton
coal = 39.6(S)(Ca/S)'°. In this equation, S is the weight percent sulfur in the fuel and Ca/S is
the molar calcium-to-sulfur ratio in the bed. This equation may be used when the Ca/S is
between 1.5 and 7. When no calcium-based sorbents are used and the bed material is inert
with respect to sulfur capture, the emission factor for underfeed stokers should be used to
estimate the FBC SO, emissions. In this case, the emission factor ratings are E for both
bubbling and circulating units.

SCC = Source classification code.

7/93
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TABLE 1.1-2. (METRIC UNITS) EMISSION FACTORS FOR SU

LFUR OXIDES (SO,),NITROGEN

OXIDES (NO,), AND CARBON MONOXIDE (CO) FROM BITUMINOUS AND SUBBITUMINOUS COAL
COMBUSTION®
802 NO? cov
Emissio Emissio Emisalo
n n : n
Fring Configuration scC Factor - | Rating Factor Rating Factor Rating
kgMg kgMg kgMg
Pulvatized coal fired, dry bottom, wall 101002-02/22 198 A 1085 A 25 A
fired 102002-02/22 {17.58)
103002-06/22
Pulverized coal fired, dry bottom, 101002-12/26 198 A 72 A 25 A
tangentially fired 102002-12/26  (17.5S)
103002-16/26
Pulvetized coal fired, wet bottom 101002-12/21 195 D 17 c 25 A
102002-01/21 (17.55)
103002-05/21
Cydlone furmace 101002-08/23 188 D 169 c 25 A
102002-03/23 (17.58)
103002-23/01 ‘
Spreader stoker 101002-04/24 198 B 6.85 A 25 A
102002-04/24 (17.58)
103002-09/24 .
Spreader stoker, with multiplo 101002-03/24 198 B 6.85 A 25 A
cyclones, and reinjection 101002-04/24 (17.55)
103002-09/24
Spreader stoker, with multiple 101002-04/24 185 A 6.85 A 25 A
cyclonas, no reinjoction 101002-04/24 (17.55)
103002-09/24 ‘
Overfaed stoker! 101002-05/25 188 B 8.7 A ] B
102002-05M10/25  (17.58)
103002-07/25
Overfead stoker, with muttiple 101002-05/25 195 B 3.7 A 3 B
cyciones' 102002-05/10/25  (17.58)
103-002/07/25
Underfeed stoker 102002-06 1555 4.75 A 55 B
103002-08
Underfeed stoker, with multiple 102002-06 15585 4.75 A 55 B
cycione 103002-08
Hand-fed units 108002-14 1558 455 1375
Fluidized bed combustor, circulaling 101002-17 g 1.95 E 9
bed 102002-17
103002-17
Filuicized bod combustor, bubbling 101002-17 g 76 D ] D
bed 102002-17 )

——— e —

Factors represent uncontrolled emissions unless otherwise

coal feed, as fired.

108002-17

speciﬁed and should be applied to

Expressed as SO,, including SO,, SO,, and gaseous sulfates. Factors in parentheses should

be used to estimate gaseous SO, emissions for subbituminous coal. In all cases, S is weight

1.1-10
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% sulfur content of coal as fired. Emission factor would be calculated by multiplying the weight
percent sulfur in the coal by the numerical value preceding S. On average for bituminous coal,
95% of fuel sulfur is emitted as SO,, and only about 0.7% of fuel sulfur is emitted as SO, and
gaseous sulfate. An equally small percent of fuel sulfur is emitted as particulate sulfate
(References 9, 13). Small quantities of sulfur are also retained in bottom ash. With
subbituminous coal, about 10% more fuel sulfur is retained in the bottom ash and particulate
because of the more alkaline nature of the coal ash. Conversion to gaseous sulfate appears
about the same as for bituminous coal. )

Expressed as NO,. Generally, 95+ volume % of nitrogen oxides present in combustion exhaust
will be in the form of NO, the rest NO, (Reference 11). To express factors as NO, multiply
factors by 0.66. All factors represent emission at baseline operation (i.e., 60 to 110% load and
no NO, control measures).

Nominal values achievable under normal operating conditions. Values are one or two orders of
magnitude higher can occur when combustion is not complete.

Emission factors for CO, emissions from coal combustion should be calculated using CO,/Mg
coal = 36.7C, where C is the weight percent carbon content of the coal.

Includes traveling grate, vibrating grate and chain grate stokers.

Sulfur dioxide emission factors for fluidized bed combustion are a function of fuel sulfur content
and calcium-to-sulfur ratio. For both bubbling bed and circulating bed design, use: kg SO./Mg
coal = 19.8(8)(Ca/S)**. In this equation, S is the weight percent sulfur in the fuel and Ca/S is
the molar calcium-to-sulfur ratio in the bed. This equation may be used when the Ca/S is
between 1.5 and 7. When no calciurn-based sorbents are used and the bed material is inert
with respect to sulfur capture, the emission factor for underfeed stokers should be used to
estimate the FBC SO, emissions. In this case, the emission factor ratings are E for both
bubbling and circulating units.

SCC = Source classification code.

7/93
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TABLE 1.1-3. (ENGLISH UNITS) EMISSION FACTORS

FOR PARTICULATE MATTER (PM) AND PM

LESS THAN 10 MICRONS (PM-10) FROM BITUMINOUS AND SUBBITUMINOUS COAL

Firing Configuration

COMBUSTION®

scc’

PM-10

Filtorable PM®

Emission
Factor
Ib/ton

Rating

Emission
Factor
Ihton

Rating

Pulverized coal fired, dry bottom, wall fired

Pulverized coal fired, dry bottom, tangentially firod

Pulverized coal fired, wet bottom

Cyclone fumnace

Spreader stoker

Spreader stoker, with multiple cyclones, and
reinjection

Spreader stoker, with multiple cyclones, no rainjection
COverfoed stoker’

Overfaed stoker, with multiple cyciones’

Undetfeed stoker
Underfaod stoker, with multiple cyclone
Hand-fod units

Fluidized bed combustor, bubbling bed

Fluidized bed combustor, circulating bed

_——————

a.  Faclors represent uncontrolled emissions unless otherwise

coal feed, as fired.

101002-02/22

102002-02/22
103002-06/22

101002-12/28
102002-12/26
103002-16/26

101002-12/21
102002-01/21
103002-05/21

101002-03/23
102002-08/23
103002-23/01

10100204724
102002-04/24
103002-09/24

101002-03/24
101002-04/24
103002-09/24

101002-04/24
101002-04/24
103002-09/24

101002-05/25

102002-05H1 0/25

103002-07/25 -
101002-0525

102002-05/10/25

103002-07/25

102002-06
103002-08

102002-06
103002-08

103002-14

101002-17
102002-17
103002-17

10100217
102002-17
103002-17

10A

10A

[y

2A¢

17

12

167

15

1"

15
12

A

28A

2.6A

0.26A

182

124

78

6.0

5.0

6.2
62
62

132

132

specified and should be applied to

b. Based on EPA Method 5 (front half catch) as described in Refereﬁce 28. Where particulate is
expressed in terms of coal ash content, A, factor is determined by multiplying weight % ash
content of coal (as fired) by the numerical value preceding the A. For example, if coal with 8%

1.1-12
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h.

i.
e
k.

ash is fired in a pulverized coal fired, dry bottorn unit, the PM emission factor would be 10 x 8,
or 80 Ibfion. The "condensible” matter collected in back half catch of EPA Method 5 averages
<5% of front half, or "filterable”, catch for pulverized coal and cyclone fumaces; 10% for
spreader stokers; 15% for other stokers; and 50% for handfired units (References 6, 29, 30).
No data found; use assume emission factor for pulverized coal-fired dry bottom boilers.
Uncontrolled particulate emissions, when no fly ash reinjection is employed. When control
device is installed, and collected fly ash is reinjected to boiler, particulate from boiler reaching
control equipment can increase up to a factor of two. -

Accounts for fly ash settling in an economizer, air heater or breaching upstream of control
device or stack. (Particulate directly at boiler outlet typically will be twice this level.) Factor
should be applied even when fly ash is reinjected to boiler from air heater or economizer dust
hoppers.

Includes traveling grate, vibrating grate and chain grate stokers.

Accounts for fly ash settling in breaching or stack base. Particulate loadings directly at boiler
outlet typically can be 50% higher.

See Reference 34 for discussion of apparently low multiple cyclone control efficiencies,
regarding uncontrolled emissions.

Accounts for fly ash settling in breaching downstream of boiler outiet.

No data found; use emission factor for underfeed stoker.

No data found; use emission factor for spreader stoker.

8CC = Source classification code.

7/93
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TABLE 1.1-4. (METRIC UNITS) EMISSION FACTORS FOR PARTICULATE MATTER (PM) AND PM
LESS THAN 10 MICRONS (PM-10) FROM BITUMINOUS AND SUBBITUMINOUS COAL
: COMBUSTION® .

Factor ; Factor
Firing Configuration scC - kgMg Rating kgMg Rating

Pulverized eoal fired, dry botiom, wall fired 101002-02/22 - 5A A 1.18A E

Pulverizad coal fired, dry bottom, tangentially fired 101002-12/26 5A B 1.15A° E
102002-12/26
103002-16/26

Pulverized coal fired, wet bottom 101002-12/21 3,5A° D 1.3A E
102002-01/21 '
103002-05/21

Cycione fumace 101002-03/23 1A° E 018A  E
102002-03/23
103002-23/01

Spreader stoker 101002-04/24 aa B 66 E
102002-04/24
103002-09/24

Spreader stoker, with multiple cyclones, and 101002-03/24 85 B 66 E
rainjection 101002-04/24

) 103002-09/24 .
Spreader stoker, with multiple cyclones, no reinjection 101002-04/24 6 A 3.9 E
101002-04/24
103002-09/24

Overfoed stoker 101002-05/25 g c 3.0 E
102002-05/10/25
103002-07/25

Overfoed stoker, with multiple cyclones! 101002-05/25 4.5 c 25 E
102002-05/10/25
103-002-07/25

Underfeed stoker 102002-06 7.8 D 3.1 E
103002-08

Underfoed stoker, with multiple cycione 102002-06 55 D 3.1 E
108002-08

Hand-fod units 103002-14 7.5 E 3.1

Fluidized bed combustor, bubbling bed 101002-17 6 E 6.6*
102002-17
103002-17

Fluidized bed combustor, circulating bed 101002-17 85 E 6.6 E
102002-17
10300217

'._"_“__—___——-—“_____—_—___——__—_____

a. Factors represent uncontrolied emissions unless otherwise specified and should be applied to
coal feed, as fired. _

b. Based on EPA Method 5 (front half catch) as described in Reference 28. Where particulate is .
expressed in terms of coal ash content, A, factor is determined by muttiplying weight % ash
content of coal (as fired) by the numerical value preceding the A. For example, if coal with 8%
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ash is fired in a pulverized coal fired, dry bottom unit, the PM emission factor would be 5 x 8, or
40 kg/Mg. The "condensible" matter collected in back half caich of EPA Method 5 averages
<5% of front half, or “fitterable®, catch for pulverized coal and cyclone fumnaces; 10% for
spreader stokers; 15% for other stokers; and 50% for handfired units (References 6, 29, 30).
No data found; use assume emission factor for pulverized coal-fired dry bottom boilers.
Uncontrolled particulate emissions, when no fly ash reinjection is employed. When control
device is installed, and collected fly ash is reinjected to boiler, particulate from boiler reaching
control equipment can increase up to a factor of two.’

Accounts for fly ash settling in an economizer, air heater or breaching upstream of control
device or stack. (Particulate directly at boiler outlet typically will be twice this level.) Factor
should be applied even when fly ash is reinjected to boiler from air heater or economizer dust
hoppers.

Includes traveling grate, vibrating grate and chain grate stokers,

Accounts for fly ash settling in breaching or stack base. Particulate loadings directly at boiler
outlet typically can be 50% higher.

See Reference 34 for discussion of apparently low multiple cyclone control efficiencies,
regarding uncontrolled emissions.

Accounts for fly ash settling in breaching downstream of boiler outiet.

No data found; use emission factor for underfeed stoker.

No data found; use emission factor for spreader stoker.

SCC = Source classification code.
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TABLE 1.1-6. CUMULATIVE PARTICLE SIZE DISTRIBUTION AND SIZE SPECIFIC EMISSION
FACTORS FOR WET BOTTOM BOILERS BURNING PULVERIZED BITUMINOUS COAL*

(Emission Factor Rating: E)

mumum%émm Cumulative Emission Factor® (kMg (Ibion) coal, as fired]
Particle Size® Controlled - Controlled®
w’ m .
Uncontrolied cyciones ESP Uncontrolled Muitipie cyciones ESP
15 . 40 89 83 1.4A (284) 0.69A (1.88A) 0.023A (0.46A)
10 a7 75 1.90A (2.64) 0.65A (1.8A) 0.021A (0.42A)
6 a3 84 63 1.16A (2.82A) 0.59A (1.18A) 0.018A (0.36A)
25 21 61 | 40 0.74A (1.48A) 0.43A (0.86A) 0.011A (0.0224)
125 -] 1 17 0.21A (0.42A) 0.22A (0.44A) 0.005A (0.01A)
1.00 4 19 8 0.14A (0.28A) 0.13A (0.26A) 0.002A (0.004A)
00625 2 e e 0.07A (0.14A) ) e
TOTAL 100 100 100 8.5A (7.0A) 0.7A (1.4A) 0.028A (0.056A)

a. Reference 32. Applicable SCCs are 101002-12/21, 102002-01/21, and 103002-05/21.
b. Expressed as aerodynamic equivalent diameter.
c. A = coal ash weight %, as fired.
d i
e

Estimated control efficiency for multiple cyclones is 94%; and for ESP, 99.2%.

3 Insufficient
ESP = Electrostatic precipitator.
SCC = Source classification code.

lol"ls

EMISSION FACTORS
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TABLE 1.1-7. CUMULATIVE SIZE DISTRIBUTION AND SIZE SPECIFIC EMISSION FACTORS FOR
CYCLONE FURNACES BURNING BITUMINOUS COAL®

(Emission Factor Rating: E)

Cumulativo Mass % < stated size Cumulative Emission Factor® fke/Mg (Ibon) coal, as fired)
Particle Size® Controlied T Controlled”
(um) Muttiple ;
Uncontrolied cyclone ESP Uncontrolled Multiple cyclonos ESP
E

15 33 95 80 0.33A (0.66A) 0.057A (0.114A) 0.0064A (0.013A)

10 13 94 68 0.13A (0.26A) 0.056A (0.112A) 00054A (0.011A)

6 8 93 56 0.08A (0.16A) 0.056A (0.112A) 0.0045A (0.009A)
25 0 a2 36 0 0.055A (0.11A) 0.0029A (0.006A)
125 ] 8s 22 0 0.051A (0.10A) 0.0018A (0.004A)
1.00 0 82 17 0 0.049A (0.10A) 0.0014A (0.003A)
0.625 0 d d 0 d d

100 100 100 1A (2A) 0.06A (0.12A)

o —

sapoow

ESP = Electrostatic precipitator.
SCC = Source classification code.

7/93

0.008A (0.016A)

External Combustion Sources

Reference 32. Applicable SCCs are 101002-03/23, 102002-03/23, and 103002-23/01.
Expressed as aerodynamic equivalent diameter,
A = coal ash weight %, as fired.

Insufficient data.
Estimated control efficiency for multiple cyclones is 94%; and for ESP, 99.2%.
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TABLE 1.1-9. CUMULATIVE PARTICLE SIZE DISTRIBUTION AND SIZE SPECIFIC EMISSION
FACTORS FOR OVERFEED STOKERS BURNING BITUMINOUS COAL?®

Curnulative Mass % < stated size Cumulative Emission Factor* {kg/Mg (Ib/ton) coal, as fired)
Particle =
SizeP Unconfrolled _ Multiple Cyelones Controliod”
(um) Multiple Cyclones _
Uncontrolled Controlled Factor Rating - Factor Rating
15 49 60 39(7.8) c 2.7 (5.4) E
10 37 55 3.0 (6.0) c 2.5 (5.0) E
6 24 49 1.9 (3.8) c 22(4.4) E
25 14 43 1.1(22) (o} 1.9 (3.9) E
1.25 13 39 1.0 (2.0) c 1.8 (3.6) E
1.00 12 39 1.0 (2.0) c 1.8 (3.6) E
0.625 c 16 ¢ ¢ 0.7 (1.4) E
TOTAL 100 100 8.0 (16.0) c 4.5 (9.0) E
a. Reference 32. Applicable SCCs are 1001002-05/25, 102002-05/10/25, and 103002-07/25.
b. Expressed as aerodynamic equivalent diameter.
c. Insufficient data.
d Estimated control efficiency for multiple cyclones is 80%.
8CC = Source classification code.
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TABLE 1.1-10. CUMULATIVE PARTICLE SIZE DISTRIBUTION AND SIZE SPECIFIC EMISSION
FACTORS FOR UNDERFEED STOKERS BURNING BITUMINOUS COAL®

Uncontrolled Cumulative Emission Factor® lkgMg (Iblton) coal, as fired] .
Particle Size®

{nm) Cumulative Mass %, < stated size Factor Rating
15 50 3.8 (7.6) - c
10 41 3.1(6.2) c
6 a2 24 (4.8) (o]
25 25 1.9 (3.8) c
125 22 1.7 (3.4) ) c
1.00 21 16 (3.2) _ c
0.625 18 1.4 (27) c
TOTAL 100 7.5 (15.0) C

a. Reference 32. Applicable SCCs are 102002-06 and 103002-08.

b. Expressed as aerodynamic equivalent diameter.

¢. . May also be used for uncontrolled hand-fired units. .
8CC = Source classification code.
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TABLE 1.1-11. (ENGLISH UNITS) EMISSION FACTORS FOR METHANE (CH,), NON-METHANE

TOTAL ORGANIC COMPOUNDS (NMTOC), AND NITROUS OXIDE (N,O) FROM BITUMINOUS AND
SUBBITUMINOUS COAL COMBUSTION®

magnitude higher can occur when combustion is not complete.
Non-methane total organic compounds are expressed as C2 to C16 alkane equivalents

External Combustion Sources

CHS NMTOC> NO
Emission Emission |- Emissioh
Factor Factor : Factor
Firing Configuration scC ibton Rating Ibon Rating Ibon Rating
Pulverized coal fired, dry bottom, 101002-02/22 0.04 0.06 ] 09 D
wall fired 102002-02/22
103002-06/22
Pulverized coal fired, dry bottom, 101002-12/26 0.04 0.06 B 03 D
tangentially fired 102002-12/26
103002-16/26
Puiverized coal fired, wet bottom 101002-12/21 0.05 0.04 B 09 E
102002-01/21
103002-05/21
Cyclone fumnace 101002-03/23 0.01 0.1 B 09 E
102002-03/28
103002-23
Spreader stoker 101002-04/24 0.06 0.05 B 09 E
102002-04/24
103002-09/24
Spreader stoker, with multiple 101002-03/24 0.06 0.05 B 09 E
cyclones, and reinjection 101002-04/24
103002-09/24
Spreader stoker, with multiple 101002-04/24 0.06 0.05 B 09 E
cyclohes, no reinjection 101002-04/24
103002-09/24
Overfeed stoker' 101002-05/25 0.06 005 B o9 E
102002-068M0/25
108002-07/25
Overfoed stoker, with multiple 101002-05/25 0.06 0.05 B 02 E
cyclones' 102002-05/10/25
103002-07/25
Underfeed stoker 102002-06 08 1.3 B 09" E
103002-08
Undotfeed stoker, with multiple 102002-06 06 1.8 B 09* E
cyclone 108002-08
Hand-fed units 103002-14 5 10 09
Fluidized bed combustot, bubbling 101002-17 0.05 0.05 5.
bed 102002-17
103002-17
Fluidized bed combustor, circulating 101002-17 0.06 0.05 E 55 E
bed 102002-17
103002-17
a. Factors represent uncontrolled emissions unless otherwise specified and should be applied to
coal feed, as fired. :
b. Nominal values achievable under normal operating conditions. Values one or two orders of
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(Reference 31). Because of limited data, the effects of firing oonﬁghmtion on NMTOC emission
factors could not be distinguished. As a result, all data were averaged collectively to develop a

single average emission factor for pulverized coal units, cyclones, spreaders and overfeed .
stokers. '

d. Refer to EPA/OAQPS's SPECIATE and XATEF data bases for emission factors on speciated
VOoC. .

e. No data found; use emission factor for pulverized coal-fired dry bottom boilers.

f. Includes traveling grate, vibrating grate and chain grate stokers.

g No data found; use emission factor for circulating fluidized bed.

SCC = Source classification code.
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TABLE 1.1-12. (METRIC UNITS) EMISSION FACTdHS FOR METHANE (CH,), NON-METHANE
TOTAL ORGANIC COMPOUNDS (NMTOC), AND NITROUS OXIDE (N,O) FROM BITUMINOUS AND
SUBBITUMINOUS COAL COMBUSTION®

CHS NMTOC™ N.O
Emission Emission | Emission
Factor | Factor ’ Factor
Firing Configuration scc kgMg | Rating kgMg | Rating | kgMg | Rating
Pulverized coal fired, dry botiom, 101002-02/22 0.02 B 0.04 B 045 D
wall fired 102002-02/22
103002-06/22
Pulverized coal fired, dry bottom, 101002-12/26 0.02 B 0.04 B 015 D
tangentially fired 102002-12/26
103002-16/26
Pulverized caal fired, wet bottom 101002-12/21 0.025 B 0.02 B 045" E
. 102002-01/21
103002-05/21
Cyclone fsnace 101002-03/23 0.005 B 0.055 B .045* E
102002-03/23
103002-23
Spreader stoker 101002-04/24 0.03 B 0.025 -] 045" E
102002-04/24
103002-09/24
Spreader stoket, with multiple 101002-03/24 0.03 B 0.025 B .045* E
cyclones, and reinjection 101002-04/24
. 103002-09/24
Spreader stoker, with multiple 101002-04/24 0.03 B 0.025 B 045" E
cyclones, no reinjection 101002-04/24
103002-09/24
Overfeed stoker’ 101002-05/25 0.03 B 0.025 B .045* E
102002-0510/25
103002-07/25
Overfead stoker, with multiple 101002-065/25 0.03 B 0.025 B 045* E
cyciones’ 102002-05/10/25
103002-07/25
Underfead stoker 102002-06 04 B &5 B 045° E
103002-08
Underfeed stoker, with multiple 102002-06 04 B £5 B .045° E
cyclone 103002-08
Hand-fed units 103002-14 25 E 5 045°
Fluidized bed combustor, bubbling 101002-17 0.03 E 0.025 2.7%°
bed 102002-17
103002-17
Fluidized bed combustor, circulating 101002-17 0.03 E 0.025 E 275 E
bed 102002-17
103002-17

a. Factors represent uncontrolled emissions unless otherwise specified and should be applied to
coal feed, as fired. :
b. Nominal values achievable under normal operating conditions. Values one or two orders of
. magnitude higher can occur when combustion is not complete.
c. Non-methane total organic compounds are expressed as C2 to C16 alkane equivalents

7/93 External Combustion Sources 1.1-27




(Reference 31), Because of limited data, the effects of firing configuration on NMTOC emission
factors could not be distinguished. As a result, all data were averaged collectively to develop a
single average emission factor for pulverized coal units, cyclones, spreaders and overfeed . '
stokers.
d. Refer to EPAJOAQPS's SPECIATE and XATEF data bases for emission factors on speciated
VoC. -
e. No data found; use emission factor for puiverized coal-fired dry botiom boilers.
f. Includes traveling grate, vibrating grate and chain grate stokers.
g. No data found; use emission factor for circulating fluidized bed.
SCC = Source classification code. '
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TABLE 1.1-15. NEW SOURCE PERFORMANCE STANDARDS FOR FOSSIL

External Combustion Sources

FUEL-FIRED BOILERS
. Standard/ Fuel PM S0, NO,
Boller Types/ Boller Size or nglJ ngd nghl
Applicability MW Boller (VMMB) (b/MMBtu) (MMBtu)
Critaria (Million Btwhr) Type % raduction] B% reduction] [% raduction]
Subpart D »73 Qas 43 NA 86
{>250) (0.10) (0.20)
Industrial-
Utility - ol 43 340 129
(0.10) (0.80) (0.80)
Commence
construction after Bit/Subbit. 43 520 800
8NTI Coal (0.10) (1.20) (0.70)
Subpart Da »78 Qas 13 340 86
(>250) (0.03 (0.80) (020)
Utitity [NA] [oo* {25]
Commence Ol 18 340 180
construction after (0.03) (0.80) (0.30)
oNeTs 70} [eor (s0]
Bit/Subbit. 13 520 260210°
Coal (0.08) (1.20) (0.60/:0.50)
9] teof
Subpart Db »29 Qas NA* NA? 43
(>100) (0.10)
Industrial-
. Commercial- Distillate Ol 43 840 48
Institutional {0.10) (0.80) (0.10)
[90]
Commence
construction after Residuai Qll (Same as for (Same as for 1307
6M19/84* distiliato off) distifiate off) (0.90)
Pulverized 2 s20* 300
Bit/Subbit. {0.05) (1.20) {0.70)
Caoal [20]
Sproadet 2 sog° 260
Stoker & FBC (0.05) (1.20) (0.60)
[90]
Mass-Feod 22¢ s20° 210
Stoker (0.05) (1.20) (0.50)
[90]
Subpart De 29-29 Qas . - -
(10 - 100)
Small Industrial-
Commercial- ol 2 215 -
Institutional (0.50)
Commence Bit. & Subbit. 2N s20 -
construction aftor Coal (0.05) (120
6R/89 {o0)

Zero percent reduction when emissions are less than 86 ng/J (0.20 Ib/MMBiu).
70 percent reduction when emissions are less than 260 ng/J (0.60 lYMMBitu).
The first number applies to bituminous coal and the second to subbituminous coal.




et A

x

FBC = Fluidized bed combustion.

1.1-32

Standard applies when gas is fired in combination with coal, see 40 CFR 60, Subpart Db.
Standard is adjusted for fuel combinations and capacity factor limits, see 40 CFR 60, Subpart
Db. ' - '

For fumace heat release rates greater than 730,000 J/s-m® (70,000 Btwhr-ft°), the standard is
86 ng/J (0.20 IvMMBtu).

For fumace heat release rates greater than 730,000 J/s-m® (70,000 Btwhr-ft®), the standard is
170 ng/J (0.40 IvMMBtu). :

Standard applies when gas or oil is fired in combination with coal, see 40 CFR 60, Subpart Dc.
20 percent capacity limit applies for heat input capacities of 8.7 Mwt (30 MMBtwhr) or greater.
Standard is adjusted for fuel combinations and capacity factor limits, see 40 CFR 60, Subpart
Additional requirements apply to facilities which commenced construction, modification, or
reconstruction after 6/19/84 but on or before 6/19/86 (see 40 Code of Federal Regulations Part
60, Subpart Db).

215 ng/J (0.50 Ib/million Btu) limit (but no percent reduction requirement) applies if facilities
combust only very low sulfur oil (< 0.5 wt. % sulfur),

EMISSION FACTORS




Control Technology

TABLE 1-16. POST-COMBUSTION SO, CONTROLS FOR COAL COMBUSTION SOURGES

Process Typical Control Efficiencies Remarks
- Wet scrubber Limefimestone 80-95+% Applicable to high sulfur
fuels,
Wet sludge product
Sodium carbonate 80-98% 1-125 MW (5-430 million
Btu/hr) typical application
range,
High reagent costs
Magnesium oxide/hydroxide 80-95+% Can be regenerated
Dual alkali 90-96% Uses lime to regonerate
sodium-based scrubbing
liquor
Spray drying Calcium hydroxide sturry, 70-90% Applicablo to low and
vaporizes in spray vessel medium sulfur fuels,
Produces dry product
Fumace injection Dry calcium 25-50% Commercialized in Europe,
carbonate/hydrate injection in Several U.S. demonstration
upper fumace cavity projects underway
Duct injection Dry sorbent injection into 25-50+% Several R&D and
duct, sometimes combined demonstration projects
with water spray underway,
Not yet commercially
available in the U.S.
793 External Combustion Sources 1.1-33




TABLE 1-17. COMBUSTION MODIFICATION NO, OONTROLS FOR STOKER COAL-FIRED INDUSTRIAL BOILERS

Effectiveness of .
Control Commercial
Description of (% NO, reduction) Range of Availabllity/R&D
Control Technique  Technique Application Status Comments
Low Excess Air Reduction of air 525 Excess oxygen Available now but  Danger of
(LEA) flow under stoker limited to 5-6% need R&D on overheating grate,
bed minimum lower limit of clinker formation,
excass air corrosion, and
high CO
emissions
Staged Reduction of 525 Excass axygen Most stokers have
combustion (LEA  undergrate air limitad to 5% OFA ports as Nead research to
+ OFA) flow and increase minimum smoke control determined
of overfire air flow devices but may oplimum location
need better sir and orientation of
flow control OFA ports for NO,
devices emission control.
Overheating grate,
cofrosion, and
high CO emission
can oceur if
undergrate airflow
is reduced below
acceptable lavel
as in LEA
Reduction of coal  Varies from 49% Has been used Available Only stokers that
Load Reduction and air fead to the  docrease o 25% down to 25% load can reduce load
(LR) stoker increase in NO, without increasing
‘ (average 15% oxcess air. Nota
decrease) desirable
technigue
because of loss in
boiler efficiency
Reduction of 8 Combustion air Available now It Not a desirable
Reduced air combustion air tomperature boiler has technique
preheat (RAP) temporature reduced from combustion air because of loss in
473K to 453K heater boiler efficiency
Injoction of NH,in  40-40 (from gas- Limited by furnace  Commerdially Elaborate NH,
Ammonia injection  convective section  and oilfired boiler  geometry. offered but notyet  injection,
of boiler - experience) Feasible NH, demonstrated monitoring, and
ihjection rate control system
limited to 1.5 required.

NH/NO Possible load
restrictions on
boiler and air
preheater fouling
by ammoniumn
bisulfate
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1.2 ANTHRACITE COAL COMBUSTION
1.2.1 General'*

Anthracite coal is a high-rank coal with more fixed carbon and less volatile matter than either
bituminous coal or lignite; anthracite also has higher ignition and ash fusion temperatures. In the
United States, nearly all anthracite is mined in northeastern Pennsylvania and consumed in
Pennsylvania and its surrounding states. The largest use of anthracite is for space heating. Lesser
amounts are employed for stcam/electric production; coke manufacturing, sintering and pelletizing; and
other industrial uses. Anthracite cumently is only a small fraction of the total quantity of coal
combusted in the United States.

Another form of anthracite coal bumed in boilers is anthracite refuse, commonly known as
culm. Culm was produced as breaker reject material from the mining/sizing of anthracite coal and was
typically dumped by miners on the ground near operating mines. It is estimated that there are over 15
million Mg (16 million tons) of culm scattered in piles thronghout northeastem Pennsylvania. The
heating value of culm is typically in the 1,400 to 2,800 kcal/kg (2,500 to 5,000 Btu/Ib) range,
compared to 6,700 to 7,800 kcal/kg (12,000 to 14,000 Bt/Ib) for anthracite coal.

1.2.2 Firing Practices>’

Due to its low volatile matter content, and non-clinkering characteristics, anthracite coal is
largely used in medium-sized industrial and institutional stoker boilers equipped with stationary or
traveling grates. Anthracite coal is not used in spreader stokers because of its low volatile matter
content angd relatively high ignition temperature. This fuel may also be burned in pulverized coal-fired
(PC-fired) units, but due to ignition difficulties, this practice is limited to only a few plants in eastern
Pennsylvania. Anthracite coal has also been widely used in hand-fired fumaces. Culm has been
combusted primarily in fluidized bed combustion (FBC) boilers because of its high ash content and
low heating value,

Combustion of anthracite coal on a traveling grate is characterized by a coal bed of 8 to 13 cm
(3 to 5 inches) in depth and a high blast of underfire air at the rear or dumaping end of the grate. This
high blast of air lifts incandescent fuel particles and combustion gases from the grate and reflects the
particles against a long rear arch over the grate towands the front of the fuel bed where fresh or
"green" fuel enters. This special famace arch design is required to assist in the ignition of the green
fuel.

A second type of stoker boiler used to bum anthracite coal is the underfeed stoker, Various
types of underfeed stokers are used in industrial boiler applications but the most common for
anthracite coal firing is the single-retort side-dump stoker with stationary grates. In this unit, coal is
fed intermittently to the fuel bed by a ram. In very small units the coal is fed continmously by a
screw. Feed coal is pushed through the retort and upward towards the tuyere blocks. Air is supplied
through the tuyere blocks on each side of the retort and through openings in the side grates. Overfire
air is commonly used with underfeed stokers to provide combustion air and trbulence in the flame
zone directly above the active fuel bed.
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In PC-fired boilers, the fuel is pulverized to the consistency of powder and pneumatically
injected through burners into the fumace. Injected coal pasticles bum in suspension within the furnace
region of the boiler. Hot flue gases rise from the furnace and provide heat exchange with boiler tubes
in the walls and upper regions of the boiler. In general, PC-fired boilers operate either in a wet-
bottom or dry bottom mode; because of its high ash fusion temperature, anthracite coal is bumed in
dry-bottom furnaces.

For anthracite culm, combusuonmoonvennonalboﬂersystemsmdlfﬁcuﬂtduetothefuel’
high ash content, high moisture content, and low heating value. However, the buming of culm in a
fluidized bed system was demonstrated at a steam generation plant in Pennsylvania. A fluidized bed
consists of inert particles (¢.g., rock and ash) through which air is blown so that the bed behaves as a
fluid. Anthracite coal enters in the space above the bed and bums in the bed. Fluidized beds can
handle fuels with moisture contents up to near 70 percent (total basis) because of the large thermal
mass represented by the hot inert bed particles. Fluidized beds can also handie fuels with ash contents
as high as 75 percent. Heat released by combustion is transferred to in-bed steam-generating tubes,
Limestone may be added to the bed to capture sulfur dioxide formed by combustion of fuel sulfur.

1.2.3 Emissions And Controls*®

Particulate matter (PM) emissions from anthracite coal combustion are a fimction of furnace
firing configuration, firing practices (boiler load, quantity and location of underfire air, soot blowing,
flyash reinjection, etc.), and the ash content of the coal. Pulverized coal-fired boilers emit the highest
quantity of PM per unit of fuel because they fire the anthracite in suspension, which results in a high
percentage of ash carryover into exhaust gases. Traveling grate stokers and hand fired units produce
less PM per unit of fuel fired, and coarser particulates, because combustion takes place in a quiescent
fuel bed without significant ash carryover into the exhaust gases. In general, PM emissions from
traveling grate stokers will increase during soot blowing and flyash reinjection and with higher fuel
bed underfeed air flowrates. Smoke production during combustion is rarely a problem, because of
anthracite’s low volatile matter content.

Limited data are available on the emission of gaseous pollutants from anthracite combustion.
It is assumed, based on bituminous coal combustion data, that a large fraction of the fuel sulfur is
emitted as sulfur oxides, Also, because combustion equipment, excess air rates, combustion
temperatures, etc., are similar between anthracite and bituminous coal combustion, nitrogen oxide
emissions arc also assumed to be similar. Nitrogen oxide emissions from FBC umits buming culm are

typically lower than from other anthracite coal-buming boilers due to the lower operating temperatures
which characterize FBC beds.

Carbon monoxide and total organic compound emissions are dependent on combustion
efficiency. Generally their emission rates, defined as mass of emissions per unit of heat input,
decrease with increasing boiler size. Organic compound emissions are expected to be lower for
pulverized coal units and higher for underfeed and overfeed stokers due to relative combustion
efficiency levels.

Controls on anthracite emissions mainly have been applied to PM. The most efficient
particulate controls, fabric filters, scrubbers, and electrostatic precipitators, have been installed on large
pulverized anthracite-fired boilers. Fabric filters can achieve collection efficiencies exceeding 99
percent. Electrostatic precipitators typically are only 90 to 97 percent efficient, because of the
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characteristic high resistivity of low sulfur anthracite fly ash. It is reported that higher efficiencies can
be achieved using larger precipitators and flue gas conditioning. Mechanical collectors are frequently
employed upstream from these devices for large particle removal.

Older traveling grate stokers are often uncontrolled. Indeed, particulate control has often been
considered unnecessary, because of anthracite’s low smoking tendencies and the fact that a significant
fraction of large size flyash from stokers is readily collected in flyash hoppers as well as in the
breeching and base of the stack. Cyclone collectors have been employed on traveling grate stokers,
and limited information suggests these devices may be up to 75 percent efficient on particulate.
Flyash reinjection, frequently used in traveling grate stokers to enhance fuel use efficiency, tends to
increase PM emissions per unit of fuel combusted. High-energy venturi scrubbers can generally
“achieve PM collection efficiencies of 90 percent or greater.

Emission factors and ratings for pollutants from anthracite coal combustion and anthracite
culm combustion are given in Tables 1.2-1 through 1.2-7, Cumulative size distribution data and size
specific emission factors and ratings for particulate emissions are summarized in Table 1.2-8.
Uncontrolled and controlled size specific emission factors are presented in Figure 1.2-1. Particle size
distribution data for bituminous coal combustion may be used for uncontrolled emissions from
pulverized anthracite-fired fumaces, and data for anthracite-fired traveling grate stokers may be used
for hand fired unmits.
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Table 1.2-1. EMISSION FACTORS FOR SPECIATED METALS FROM ANTHRACITE COAL
COMBUSTION IN STOKER FIRED BOILERS? _

EMISSION FACTOR RATING: E

Pollutant Emission Factor Range Average Emission Factor
kg/Mg Ib/ton kg/Mg Ib/ton
Mercury 44E-05 - 65E05  8.7E-05 - 1.3E-04 6.5E-05 1.36-04
Arsenic BDL® - 12E-04 BDL - 2.4E-04 9.3E-05 1.9E-04
Antimony BDL BDL BDL BDL
Beryllium 1.5E-05 - 2.7E-04  3.0E-05 - 5.4E-04 1.5E-04 3.1E-04
Cadmium 2.3E-05 - 5.5E-03  4.5E-05 - 1.1E-04 3.66-05 7.1E-05
Chromium  3.0E-03 - 2.5E-02  5.9E-03 - 4.9E-02 1.4E-02 2.8E-02
Manganese  4.9E-04 - 2.7E-03  9.8E-04 - 5.3E-03 1.8E-03 3.6E-03
Nickel 3.9E-03 - 1.8E02  7.8E-03 - 3.5E-02 1.3E-02 2.6E-02
Selenium 24E-04 - L1E-03  4.7E-04 - 2.1E-03 6.3E-04 1.3E-03

"Reference 9. Units are kg of pollutant/Mg of coal bumned and 1bs. of pollutant/ton of coal burned.
Source Classification Codes are 10100102, 10200104, and 10300102.
®BDL = Below detection limit.

Table 1.2-2. EMISSION FACTORS FOR TOTAL ORGANIC COMPOUNDS (TOC) AND
METHANE (CH,) FROM ANTHRACITE COAL COMBUSTORS?®

Soum% Category TOC Emission Factor CH, Emission Factor

S

(5CO) kyMg | Ibfon | Rating | kgMg | Ibfon | Rating
Stoker fired boilers® 0.10 0.20 E ND ND -
(SCC 10100102,

10200104, 10300102)

Residential space? ND® ND - 4 8 E
heaters

(mo SCC)

*Units are kg of pollutant/Mg of coal burned and 1bs. of pollutant/ton of coal bumed.

®SCC = Source Classification Code.

“Reference 9.

dReference 14,

°ND = No data.
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Table 1.2-3 (Metric Units). EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS
FROM ANTHRACITE COAL COMBUSTORS® -

EMISSION FACTOR RATING: B

Pollutant Stoker Fired Boilers® Residential Space Heaters®
(SCC 10100102, (No SCC)
10200104, 10300102)
Emission Factor Emission Factor Emission Factor
Range
Biphenyl 1.25E-02 ND ND
Phenanthrene 3.4E-03 4.6E-02 - 2.1E-02 1.6E-01
Naphthalene 0.65E-01 4.5E-03 - 2.4E-02 1.5E-01
Acenaphthene ND¢ 7.0E-03 - 3.4E-01 3.5E-01
Acenaphthalene ND 7.0E-03 - 2.0E-02 2.5E-01
Fluorene ND 4.5E-03 - 29E-02 1.7E-02
. Anthracene ND 4.5E-03 - 2.3E-02 1.6E-02
Fluoranthrene ND 4.8E-02 - 1.7E-01 1.1E-01
Pyrene ND 2.7E-02 - 1.2E-01 7.9E-02
Benzo(a)anthracene ND 7.0E-03 - 1.0E-01 2.8E-01
Chrysene ND 1.2E-02 - 1.1E-01 5.3B-02
Benzo(k)fluoranthrene ND 7.0E-03 - 3.1E-02 2.5E-01
Benzo(e)pyrene ND 2.3E-03 - 7.3E-03 4.2E-03
Benzo(a)pyrene ND 1.9E-03 - 4.5E-03 3.5E-03
Perylene ND 3.8E-04 - 1.2E-03 8.5E-04
Indeno(123-cd) perylene ND 2.3E-03 - 7.0E-03 24E-01
Benzo(g.hi,) perylene ND 2.2E-03 - 6.0E-03 2.1E-01
Anthanthrene ND 9.5E-05 - 5.5E-04 3.5E-03
Coronene ND 5.5E-4 - 4.0E-03 1.2E-02
#Units are kg of pollutant/Mg of anthracite coal bumed. SCC = Source Classification Code.
bReference 9.

“Reference 14.
. “ND = No data.
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Table 1.2-4 (English Units). EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS
FROM ANTHRACITE COAL COMBUSTORS®

EMISSION FACTOR RATING: E

Pollutant Stoker Fired Boilers® Residential Space Heaters®
(SCC 10100102, (No SCC)
10200104,
10300102)
Emission Factor Emission Factor | Emission Factor
Range :

Biphenyl 2.5E-02 ND ND
Phenanthrene | 6.8E-03 9.1E-02 - 4.3E-02 3.2E-01
Naphthalene 1.3E-01 9.0E-03 - 4.8E-02 3.0E-01
Acenaphthene ND4  1.4B-02 - 6.7B-01 7.0E-01
Acenaphthalene ND 14E-02 - 3.0E-01 . 49E01
Fluorene ND 9.0E-03 - 5.8E-02 34E-02
Anthracene ND 9.0B-03 - 4.5E-02 3.3E-02 .
Fluoranthrene ND 9.6E-02 - 3.3E-01 2.2E-01
Pyrene ND 5.4E-02 - 2.4E-01 1.6E-01
Benzo(a)anthracene ND 1.4E-02 - 2.0E-01 5.5E-01
Chrysene ND 2.3E-02 - 2.2E-01 1.1IE-01
Benzo(k)fiuoranthrene ND 14E-02 - 6.3E-02  5.0E01
Benzo(e)pyrene ND 4.5E-03 - 1.5E-02 8.4E-03
Benzo(a)pyrene ND 3.8E-03 - 9.0E-03 7.0E-03
Perylene ND 7.6E-04 - 2.3E-03 1.7E-03
Indeno(123-cd) perylene ND 4.5E-03 - 1.4E-02 4.7E-01
Benzo(g/h.i,) perylene ND 4.3E-03 - 1.2E-02 4.2E-01
Anthanthrene ND 1.9E-04 - 1.1E-03 7.0E-03
Coronene ND 1.1E-03 - 8.0E-03 2.4E-02

*Units are Ibs. of pollutant/ton of anthracite coal bumed. SCC = Source Classification Code.
rence 9. :

"ND=Noc::1.a. | .
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Table 12-7. EMISSION FACTORS FOR CARBON MONOXIDE (CO) AND
CARBON DIOXIDE (CO,) FROM ANTHRACITE COAL COMBUSTORS?

Sourceb Category CO Emission Factor CO, Emission Factor

(SCC) . .
kg/Mg IbAon | Rating | kg/Mg Ib/ton Rating

Stoker fired boilers® 0.3 0.6 B 2840 5680 c

(SCC 10100102,

10200104, 10300102)

FBC boilers? 0.15 0.3 E ND® ND

(mo SCO)

'Unitsarekgofpollmanthgofcoalbumedandlbs.ofpollutanﬁmnofcoalbumed,
®SCC = Source Classification Code. :
“References 10, 13.

15. FBC = Fluidized bed combustion; FBC boilers buming culm feel; all other sources
burning anthracite coal.
°ND = No data.
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Table 1.2-8. CUMULATIVE PARTICLE SIZE DISTRIBUTION AND SIZE SPECIFIC EMISSION
FACTORS FOR DRY BOTTOM BOILERS BURNING PULVERIZED ANTHRACITE COAL®

EMISSION FACTOR RATING: D

Particle Cumulative Mass % < stated size Cumulative Emission Factor?
Size? kg/Mg (ib/ton) coal, as fired
0w | Uncontrolled Controlled® Uncontrolled Controlled®
Multiple | Baghouse Multiple | Baghouse
Cyclone Cyclone :
15 32 63 79 1.6A (3.2A)° 0.63A 0.0079A
(1.26A) (0.016A)
10 23 55 67 12A 23A)  0S55A 0.0067A
(1.10A) (0.013A)
6 17 46 51 0.9A (1.7A) 0.46A 0.0051A
(0.92A) (0.010A)
2.5 6 24 32 0.3A (0.6A) 0.24A 0.0032A
(0.48A) (0.006A)
1.25 2 13 21 0.1A (0.24) 0.13A 0.0021A
(0.26A) (0.004A)
1.00 2 10 18 0.1A (0.2A) 0.10A 0.0018A
(0.20A) (0.004A)
0.625 1 7 0.05A (0.1A) 0.07A f
(0.14A)
TOTAL 100 100 100 SA (10A) 1A (2A) 0.01A
0.02A)

*Reference 8. Source Classification Codes are 10100101, 10200101, and 10300101.
as acrodynamic equivalent diameter.

“Estimated control efficiency for multiple cyclone is 80%; for baghouse, 99.8%.

Units are kg of pollutant/Mg of coal bumed and Ibs. of pollutant/ton of coal burned.

A = coal ash weight %, as fired.

"sufficient data.
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1.3 FUEL OIL COMBUSTION
1.3.1 General*>*

Two major categories of fuel oil are burmed by combustion sources: distillate oils and residual
oils. These oils are further distinguished by grade numbers, with Nos. 1 and 2 being distillate oils;
Nos. 5 and 6 being residual oils; and No. 4 either distillate oil or a mixture of distillate and residual
oils. No. 6 fuel oil is sometimes referred to as Bunker C. Distillate oils are more volatile and less
viscous than residual oils. They have negligible nitrogen and ash contents and usually contain less
than 0.3 percent sulfur (by weight). Distillate oils are used mainly in domestic and small commercial
applications. Being more viscous and less volatile than distillate oils, the heavier residual oils (Nos. §
and 6) must be heated for ease of handling and to facilitate proper atomization. Because residual oils
are produced from the residue remaining after the lighter fractions (gasoline, kerosene, and distillate
oils) have been removed from the crude oil, they contain significant quantities of ash, nitrogen, and
sulfur. Residual oils are used mainly in utility, industrial, and large commercial applications.

1.32 Emissions”

Emissions from fuel oil combustion depend on the grade and composition of the fuel, the type
and size of the boiler, the firing and loading practices used, and the level of equipment maintenance,
Because the combustion characteristics of distillate and residual oils are different, their combustion can
produce significantly different emissions. In general, the baseline emissions of criteria and non-criteria
pollutants are those from uncontrolled combustion sources. Uncontrolled sources are those without
add-on air pollution control (APC) equipment or other combustion modifications designed for emission
control, Baseline emissions for sulfur dioxide (SQ,) and particulate matter (PM) can also be obtained
from measurements taken upstream of APC equipment.

In this section, point source emissions of nitrogen oxides (NO,), SO,, PM, and carbon
monoxide (CO) are being evaluated as criteria pollutants (those emissions which have established
National Primary and Secondary Ambient Air Quality Standards. Particulate matter emissions are
sometimes reported as total suspended particulate (TSP). More recent data generally quantify the
portion of inhalable PM which is considered to be less than 10 microns in acrodynamic diameter (PM-
10). In addition to the criteria pollutants, this section includes point source emissions of some non-
criteria pollutants, nitrous oxide (N,0), volatile organic compounds (VOCs), and hazardous air
pollutants (HAPs), as well as data on particle size distribution to support PM-10 emission inventory
efforts. Emissions of carbon monoxide (CO,) are also being considered because of its possible
participation in global climatic change and the corresponding interest in including this gas in emission
inventories. Most of the carbon in fossil fuels is emitted as CO, during combustion. Minor amounts
of carbon are emitted as CO, much of which ultimately oxidizes to CO,, or as carbon in the ash,
Finally, fugitive emissions associated with the use of oil at the combustion source are being included
in this section,

Tables 1.3-1 through 1.3-4 present emission factors for uncontrolled emissions of criteria
pollutants from fuel oil combustion. A general discussion of emissions of criteria and non-criteria
pollutants from coal combustion is given in the following paragraphs. Tables 1.3-5 through 1.3-8
- present cumulative size distribution data and size specific emission factors for particulate emissions
from fuel oil combustion. Uncontrolled and controlled size specific emission factors are presented in
Figures 1.3-1 through 1.34. Distillate and residual oil categories are given separately, becanse their
combustion produces significantly different particulate, SO,, and NO, emissions.
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Particulate Matter Emissiong>"2132123-24

Particulate matter emissions depend predominantly on the grade of fuel fired. Combustion of
lighter distillate oils results in significantly lower PM formation than does combustion of heavier
residual oils. Among residual oils, firing of Nos. 4 or 5 oils usually produces less PM than does the
firing of heavier No, 6 oil. :

_In general, PM emissions depend on the completeness of combustion as well as on the oil ash
content. The PM emitted by distillate oil-fired boilers is primarily carbonaceous particles resulting
from incomplete combustion of oil and is not correlated to the ash or sulfur content of the oil.
However, PM emissions from residual oil burning is related to the oil sulfur content. This is because
low sulfur No. 6 oil, either refined from namrally low sulfur crude oil or desulfurized by one of
several processes, exhibits substantially lower viscosity and reduced asphaltene, ash, and sulfur
contents, which results in better atomization and more complete combustion. :

Boiler load can also affect particulate emissions in units firing No. 6 oil. At low load
conditions, particulate emissions from utility boilers may be lowered by 30 to 40 percent and by as
much as 60 percent from small industrial and commercial units. However, no significant particulate
emissions reductions have been noted at low loads from boilers firing any of the lighter grades. At
very low load conditions, proper combustion conditions may be difficult to maintain and particulate

Sulfur Oxide Emissions*4%

Sulfur oxide (SO,) emissions are generated during oil combustion from the oxidation of sulfur
contained in the fuel. The emissions of SO, from conventional combustion systems. are predominantly
in the form of SO,. Uncontrolled SO, emissions are almost entirely dependent on the sulfur content of
the fuel and are not affected by boiler size, burner design, or grade of fuel being fired. On average,
more than 95 percent of the fuel sulfur is converted to SO,: about 1 to 5 percent is further oxidized to
sulfur trioxide (SO,); and about 1 to 3 percent is emitted as sulfate particulate. S0, readily reacts with
water vapor (both in the atmosphere and in flue gases) to form a sulfuric acid mist.

Nitrogen Oxides Emissions!-1-1415204-25252941

Oxides of nitrogen (NO,) formed in combustion processes are due either to thermal fixation of
atmospheric nitrogen in the combustion air ("thermal NO,"), or to the conversion of chemically bound
nitrogen in the fuel ("fuel NO,"). The term NO, refers to the composite of nitric oxide (NO) and
nitrogen dioxide (NO,). Nitrous oxide is not included in NO, but has taken on recent interest because
of atmospheric effects. Test data have shown that for most extemal fossil fuel combustion systems,
over 95 percent of the emitted NO, is in the form of NO. :

Experimental measurements of thermal NO, formation have shown that NO, concentration is
exponentially dependent on temperature, and proportional to N, concentration in the flame, the square
root of O, concentration in the flame, and the residence time. Thus, the formation of thermal NO, is
affected by four factors: (1) peak temperature, (2) fuel nitrogen concentration, (3) oxygen
concentration, and (4) time of exposure at peak temperature. The emission trends due to changes in
these factors are generally consistent for all types of boilers: an increase in flame temperature, oxygen
availability, and/or residence time at high temperatures leads to an increase in NO, production.
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Fuel nitrogen conversion is the more important NO,-forming mechanism in residual oil boilers.
Tt can account for 50 percent of the total NO, emissions from residual oil firing. The percent
conversion of fuel nitrogen to NO, varies greatly, however, typically from 20 to 90 percent of mitrogen
in oil is converted to NO,. Except in certain large units having unusually high peak flame
temperatures, or in units firing a low nitrogen content residual oil, fuel NO, generally accounts for
over 50 percent of the total NO, generated. Thermal fixation, on the other hand, is the dominant NO,
formingmeclmnisminunitsﬁringdisﬁnateoﬂs,pﬁmaﬁlybecmlseofﬂ:enegligibleniuogencomemin
these lighter oils. Because distillate oil-fired boilers usually have lower heat release rates, the guantity
of thermal NO, formed in them is less than that of larger units.

A number of variables influence how much NO, is formed by these two mechanisms. One
important variable is firing configuration. NO, emissions from tangentially (comer) fired boilers are,
on the average, less than those of horizontally opposed umits. Also important are the firing practices
employed during boiler operation. Low excess air (LEA) firing, flue gas recirculation (FGR), staged
combustion (SC), reduced air preheat (RAP), low NO, burners (LNBs), or some combination thereof
may result in NO, reductions of 5 to 60 percent. Load reduction (LR) can likewise decrease NO,
production. Nitrogen oxides emissions may be reduced from 0.5 to 1 percent for each percentage
reduction in load from full load operation. It should be noted that most of these variables, with the
exception of excess air, influence the NO, emissions only of large oil fired boilers. Low excess air-
firing is possible in many small boilers, but the resulting NO, reductions are less significant.

RecemNZOemissionsdmamdicatemathMOemissionsﬁomoﬂmmmsﬁmunhsam
considerably below the measurements made prior © 1988. Nevertheless, the N,O formation and
reacﬁonmechanismsarestillnotweulmderstoodorwellcharacteﬁzed. Additional sampling and
msearchisneededmﬁﬂychmaeﬁzeNZOemissionsandwmdemandmeN,Ofomaﬁm
mechanism, Emissionscanvarywidelyﬁomunittounit,orevenfmmﬂ:esameunitatdifferent
operating conditions. It has been shown in some cases that N,O increases with decreasing boiler
temperature. Forthisupdate,avemgeemissionfaaombasedonmponedtestdatahavebeen
developed for conventional oil combustion systems. These factors are presented in Table 1.3-9,

The new source performance standards (NSPS) for PM, SO,, and NO, emissions from residual
oil combustion in fossil fuel-fired boilers are shown in Table 1.3-10.

Carbon Monoxide Emissions'®*

The rate of CO emissions from combustion sources depends on the oxidation efficiency of the
fuel, Byconmningmecombusﬁonpmoesscarefuny.COemissimscanbeminimized. Thus if a unit
is operated improperly or not well maintained, the resulting concentrations of CO (as well as organic
compounds) may increase by several orders of magnimde. Smaller boilers, heaters, and fumaces tend
to emit more of these pollutants than larger combustors. This is because smaller units usually have a
Mghermﬁoofheatumsfermfaceamawﬂamevohmeleadmgwmduoedﬂmemmpemmreand
combustion intensity and, therefore, lower combustion efficiency than larger combustors.

mepmmceofcommeethstgasesofmmbusﬁmsysmsmmspﬂmipanyﬁom
incomplete fuel combustion. Several conditions can lead to incomplete combustion, including:

- insufficient oxygen (O,) availability;

- poor fuel/air mixing;

793 External Combustion Sources 1.3-3




- cold wall flame quenching;
- reduced combustion temperature;

- decreased combustion gas residence time; and
- load reduction (i.e., reduced combustion intensity).

Since various combustion modifications for NO, reduction can produce one or more of the above
conditions, the possibility of increased CO emissions is a concem for environmental, energy efficiency,
and operational reasons.

Organic Compound Emissiong!61930-3564

Small amounts of organic compounds are emitted from combustion. As with CO emissions,
the rate at which organic compounds are emitted depends, to some extent, on the combustion
efficiency of the boiler. Therefore, any combustion modification which reduces the combustion
efficiency will most likely increase the concentrations of organic compounds in the flue gases.

Total organic compounds (TOCs) include VOCs, semi-volatile organic compounds, and
condensible organic compounds. Emissions of VOCs are primarily characterized by the criteria
pollutant class of unbumned vapor phase hydrocarbons. Unbumed hydrocarbon emissions can include
essentially all vapor phase organic compounds emitted from a combustion source. These are primarily
emissions of aliphatic, oxygenated, and low molecular weight aromatic compounds which exist in the
vapor phase at flue gas temperatures. These emissions include all alkanes, alkenes, aldehydes,
carboxylic acids, and substituted benzenes (e.g., benzene, toluene, Xylene, and ethyl benzene).

- The remaining organic emissions are composed largely of compounds emitted from
combustion sources in a condensed phase. These compounds can almost exclusively be classed into a
group known as polycyclic organic matter (POM), and a subset of compounds called polynuclear
aromatic hydrocarbons (PNA or PAH). There are also PAH-nitrogen analogs. Information available
in the literature on POM compounds generally pertains to these PAH groups.

Formaldehyde is formed and emitted during combustion of hydrocarbon-based fuels including
coal and oil. Formaldehyde is present in the vapor phase of the flue gas. Formaldehyde is subject to
oxidation and decomposition at the high temperatures encountered during combustion. Thus, larger
units with efficient combustion (resulting from closely regulated air-fuel ratios, uniformly high
combustion chamber temperatures, and relatively long gas retention times) have lower formaldehyde
emission rates than do smaller, less efficient combustion units. Average emission factors for POM and
formaldehyde from fuel oil combustors are presented in Table 1.3-9, together with N,O emissions data.

Trace Element Emissions!®% 3640

Trace elements are also emitted from the combustion of oil. For this update of AP-42, trace
metals included in the list of 189 hazardous air pollutants under Title IIT of the 1990 Clean Air Act
Amendments are considered. The quantity of trace metals emitted depends on combustion
temperature, fuel feed mechanism, and the composition of the fuel. The temperature determines the
degree of volatilization of specific compounds contained in the fuel. The fuel feed mechanism affects
the separation of emissions into bottom ash and fly ash. X
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The quantity of any given metal emitted, in general, depends on:
- the physical and chemical properties of the element itself;
- its concentration in the fuel;

- the combustion conditions; and

- the type of particulate control device used, and its collection efficiency as a function of
particle size.

It has become widely recognized that some trace metals concentrate in certain waste particle
streams from a combustor (bottom ash, collector ash, flue gas particulate), while others do not.
Various classification schemes have been developed to describe this partitioning have been developed.
The classification scheme used by Baig, et al. is as follows:

- Class 1: Elements which are approximately equally distributed between fly ash and
bottom ash, or show little or no small particle enrichment.

- Class 2: Elements which are enriched in fly ash relative to bottom ash, or show
increasing enrichment with decreasing particle size.

- Class 3;: Elements which are intermediate between Classed 1 and 2.
- Class 4: Elements which are emitted in the gas phase.

By understanding trace metal partitioning and concentration in fine particulate, it is possible to
postulate the effects of combustion controls on incremental trace metal emissions. For example,
several NO, controls for boilers reduce peak flame temperatures (e.g., SC, FGR, RAP, and LR). - If
combustion temperatures are reduced, fewer Class 2 metals will initially volatilize, and fewer will be
available for subsequent condensation and enrichment on fine PM. Therefore, for combustors with
particnlate controls, lowered volatile metal emissions should result due to improved particulate
removal. Flue gas emissions of Class 1 metals (the non-segregating trace metals) should remain :
relatively unchanged.

Lower local O, concentration are also expected to affect segregating metal emissions from
boilers with particle controls. Lower O, availability decreases the possibility of volatile metal
oxidation to less volatile oxides. Under these conditions, Class 2 metals should remain in the vapor
phase as they enter the cooler sections of the boiler. More redistribution to small particles should
occur and emissions should increase. Again, Class 1 metal emissions should remain unchanged.

Other combustion NO, controls which decrease local Q, concentrations (e.g., SC and FGR)
also reduce peak flame temperatures. Under these conditions, the effect of reduced combustion
temperature is expected to be stronger than that of lower O, concentrations. Available trace metals
emissions data for fuel oil combustion in boilers are summarized in Table 1.3-11.

1.3.3 Conmols

The various control techniques and/or devices employed on oil combustion sources depend on

the source category and the pollutant being controlled. Only controls for criteria pollutants are
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discussed here because controls for non-criteria emissions have not been demonstrated or
commercialized for oil combustion sources,

Control techniques may be classified into three broad categories: fuel substitution, combustion
modification, and post combustion control. Fuel substitution involves using "cleaner” fuels @ reduce
emissions. Combustion modification and post- combustion control are both applicable and widely
commercialized for oil combustion sources. Combustion modification is applied primarily for NO,
control purposes, although for small units, some reduction in PM emissions may be available through
improved combustion practice. Post-combustion control is applied to emissions of particulate matter,
S0,, and, to some extent, NO,, from oil combustion.

1.3.3.1 Fuel Substitution®*!2%

Fuel substitution, or the firing of "cleaner” fuel oils, can substantially reduce emissions of a
number of pollutants. Lower sulfur oils, for instance, will reduce SO, emissions in all boilers,
regardless of the size or type of boiler or grade of oil fired. Particulates generally will be reduced
when a lighter grade of oil is fired. Nitrogen oxide emissions will be reduced by switching to either a
distillate oil or a residual oil with less nitrogen. The practice of fuel substitution, however, may be
limitedbytheabilityofagivoperaﬁontoﬁmabeﬂergmdeofoﬂandbythecostandavailability
of that fael. _

1.3.3.2 Combustion Modification#913-1420

Combustion modification includes any physical change in the boiler apparatus itself or in its
operation. Regular maintenance of the bumer system, for example, is important to assure proper
atomization and subsequent minimization of any unburned combustibles. Periodic tuning is important
in small units for maximum operating efficiency and emissions control, particalarly for PM and CO
emissions. Combusﬁonmodiﬁcaﬁons,suchasl.EA,FGR.SC,andmducedloadoperaﬁon, result in
lowered NO, emissions in large facilities.

Particulate Matter Control®

Control of PM emissions from residential and commercial units is accomplished by improved
burner servicing and by incorporating appropriate equipment design changes to improve oil
atomization and combustion aerodynamics. Optimization of combustion aerodynamics using a flame
mtenﬁondevice.swirLand/ormd:cﬂaﬁmisconsidemdmbemebmappmachwwam achieving the
triple goals of low PM emissions, low NO, emissions, and high thermal efficiency.

Large industrial and utility boilers are generally well-designed and well-maintained so that soot
and condensible organic compound emissions are minimized. Particulate matter emissions are more a
result of entrained fly ash in such units, Therefore, post- combustion controls are necessary to reduce
PM emissions from these sources.

NO, Control’~%

In boilers fired on crude oil or residual oil, the control of fuel NO, is very important in
achieving the desired degree of NO, reduction since, typically, fuel NO, accounts for 60 to 80 percent
of the total NO, formed. Fuel nitrogen conversion to NO, is highly dependent on the fuel-to-air ratio
inthecombusﬁonzoneand,incmmasttothelmalNO,fonnaﬁon,isrelaﬁvelyinsensiﬁvetosmall
changes in combustion zone temperature. In general, increased mixing of fuel and air increases
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nitrogen conversion which, in tum, increases fuel NO,. Thus, to reduce fuel NO, fomation, the most
common combustion modification technique is to suppress combustion air levels below the theoretical
amount required for complete combustion. The lack of oxygen creates reducing conditions that, given
sufficient time at high temperatures, cause volatile fuel nitrogen to convert to_N, rather than NO.

In the formation of both thermal and fuel NO,, all of the above reactions and conversions do
not take place at the same time, temperature, or rate. The actual mechanisms for NO, formation in a
specific sitnation are dependent on the quantity of fuel bound nitrogen, if any, and the temperature and
stoichiometry of the flame zone. Although the NO, formation mechanisms are different, both thermal
and fuel NO, are promoted by rapid mixing of fuel and combustion air. This rate of mixing may itself
depend on fuel characteristics such as the atomization quality of liquid fuels. Additionally, thermal
NO, is greatly increased by increased residence time at high temperatures, as mentioned above. Thus,
primary combustion modification controls for both thermal and fuel NO, typically rely on the
following control approaches:

- decrease primary flame zone O, level by:

- decreasing overall O, level;
- controlling (delaying) mixing of fuel and air; and
- use of fuel-rich primary flame zone.

- decrease residence time at high temperatures by:

- decreasing adiabatic flame temperature through dilution;
- decreasing combustion intensity,

- increasing flame cooling; and

- decreased primary flame zone residence time.

Table 1.3-12 shows the relationship between these control strategies and the combustion
modification NO, control techniques currently in use on boilers firing fuel oil.

1.3.3.3 Post Combustion Control*

Post combustion comntrol refers to removal of pollutants from combustion flue gases
downstream of the combustion zone of the boiler. Flue gas cleaning is usually employed on large oil-
fired boilers.

Particulate Matter Control*

Large industrial and utility boilers are generally, well-designed and well-maintained. Hence,
particulate collectors are usually the only method of controlling PM emissians from these sources.
Use of such collectors is described below.

Mechanical collectors, a prevalent type of control device, are primarily useful in controlling
particulates generated during soot blowing, during upset conditions, or when a very dirty heavy oil is
fired. For these situations, high efficiency cyclonic collectors can achieve up to 85 percent control of
particulate. Under normal firing conditions, or when a clean oil is combusted, cyclonic collectors are
not nearly so effective because of the high percentage of small particles (less than 3 micrometers in
diameter) emitted.

7/93 External Combustion Sources 1.3-7



Electrostatic precipitators (ESPs) are commonly used in oil-fired power plants, Older
precipitators, usually small, typically remove 40 to 60 percent of the emitted PM. Because of the low
ash content of the oil, greater collection efficiency may not be required. Currently, new or rebuilt
ESPs can achieve collection efficiencies of up 0 90 percent. -

Scrubbing systems have also been installed on oil fired boilers to control both sulfur oxides
and particulate. These systems can achieve SO, removal efficiencies of 90 to 95 percent and
particulate control efficiencies of 50 to 60 percent.

NO, Control®

The variety of flue gas treatment NO, control technologies is nearly as great as combustion
modification techniques. Although these technologies differ greatly in cost, complexity, and
effectiveness, they all involve the same basic chemical reaction: the combination of NO, with
ammonia (NH,) to form nitrogen (N,) and water (H,0).

In selective catalytic reduction (SCR), the reaction takes Place in the presence of a catalyst,
improving performance. Non-catalytic systems rely on a direct reaction, usually at higher
temperatures, to remove NO,, Although removal efficiencies are lower, non-catalytic systems are
typically less complex and often significantly less costly. Table 1.3-13 presents various catalytic and
non-catalytic NO,-reduction technologies.

SO, Control®<

Commercialized post-combustion flue gas desulfurization (FGD) processes use an alkaline
reagent to absorb SO, in the flue gas and produce a sodium or a calcium sulfate compound. These
solid suifate compounds are then removed in downstream equipment. Flue gas desulfurization
technologies are categorized as wet, semi-dry, or dry depending on the state of the reagent as it leaves
the absorber vessel. These processes are either regenerable (such that the reagent material can be
treated and reused) or are nonregenerable (in which case all waste streams are de-watered and
discarded). _

Wet regenerable FGD processes are attractive because they have the potential for better than
95 percent sulfur removal efficiency, have minimal waste water discharges, and produce a saleable
sulfur product. Some of the current nonregenerable calcium-based processes can, however, produce a

saleable gypsum product,

To date, wet systems are the most commonly applied. Wet systems generally use alkali
slun'iesastheSOxabsorbentmediumandcanbedesignedtoremovegmaterman%pememafﬂxe
incoming SO,. Lime/limestone scrubbers, sodium scrubbers, and dual alkali scrubbing are among the
commercially proven wet FGD systems. Effectiveness of these devices depends not only on control
device design but also operating variables. Table 1.3-14 summarizes commercially available post
combustion SO, control technologies.
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. TABLE 1.3-3 (METRIC UNITS). EMISSION FACTORS FOR TOTAL ORGANIC COMPOUNDS

(TOC), METHANE, AND NONMETHANE TOC (NMTOC)
FROM UNCONTROLLED FUEL OIL COMBUSTION

Firing Configuration TOC Methane® - NMTOC®

(sccy Emission | Rati Emission | Rati Emission | Rati
Factor Factor Factor
kg/10° ¢ kg/10° ¢ kg/10° ¢

Utility boilers

No. 6 oil fired, 0.125 A 0.034 A 0.091 A
nomal firing
(10100401)

No. 6 oil fired, 0.125 A 0.034 A 0.091 A
tangential firing ‘

(10100404)

No. 5 oil fired, ' 0.125 A 0.034 A 0.091 A
nomnal firing

(10100405)

No. 5 oil fired, 0.125 A 0.034 A 0.091 A
tangential firing

. (10100406)

No. 4 oil fired, 0.125 A 0.034 A 0.091 A
normal firing
(10100504)

No. 4 oil fired, 0.125 A 0.034 A 0.091 A
tangential firing _
(10100505)

Industrial boilers

No. 6 oil fired 0.154 A 0.12 A 0.034 A
(102004-01/02/03) '

No. 5 il fired 0154 - A 0.12 A 0.034 A
(10200404)

Distillate oil fired 0.030 A 0.006 A 0.024 A
(102005-01/02/03)

No. 4 oil fired 0.030 A 0.006 A 0.024 A
(10200504)

Commercial/institutional/residential combustors
No. 6 oil fired 0.193 A 0.057 A 0.136 A
. (103004-01/02/03)

No. 5 oil fired 0.193 . A 0.057 A 0.136 A
(10300404) '
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TABLE 1.3-3 (METRIC UNITS). EMISSION FACTORS FOR TOTAL ORGANIC COMPOUNDS
(TOC), METHANE, AND NONMETHANE TOC (NMTOC) .
FROM UNCONTROLLED FUEL OIL COMBUSTION (Continued)

Firing Configuration TOC® . Methane® NMTOC®
@ _ Emission | Rating | Emission | Rating | Emission Rating
Factor Factor Factor
kg/10° ¢ kg/10° ¢ kg/10° ¢
Distillate oil fired 0.067 A 0.026 A 0.041 A
(103005-01/02/03)
No. 4 oil fired 0.067 A 0.026 A - 0.041 A
(10300504) ' _
Residential furnace 0.299 A 0.214 A 0.085 A
(No SCC)

*SCC = Source Classification Code.
*References 16-19. Volatile organic compound emission can increase by several orders of magnitude
if ﬂle boiler is improperly operated or is not well mamtzuned
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TABLE 1.34 (ENGLISH UNITS). EMISSION FACTORS FOR TOTAL ORGANIC COMPOUNDS
. (TOC), METHANE, AND NONMETHANE TOC (NMTOC)
FROM UNCONTROLLED FUEL OIL COMBUSTION

Firing TOC® Methane® ~ NMTOC®

(SCO* Emission Rating Emission Rating Emission Rating
Factor Factor Factor
/10 gal b/10° gal Ib/10° gal

Utility boilers .

No. 6 oil fired, 1.04 A 0.28 A 0.76 A
normal firing

(10100401)

No. 6 oil fired, 1.04 A 0.28 A 0.76 A
tangential firing

(10100404)

No. $ oil fired, 1.04 A 0.28 A 0.76 A
normnal firing -
(10100405)

No. § oil fired, 1.04 A 0.28 A 0.76 A
ngential fing
. (10100406)

No. 4 oil fired, 1.04 A 0.28 A - 076 A

normal firing
(10100504)

No. 4 oil fired, 1.04 A 028 A 0.76 A
tangential firing

(10100505)

Industrial boilers

No. 6 oil fired 1.28 A 1 A 0.28 A
(102004-01/02/03)

No. 5 oil fired 1.28 A 1 A 0.28 A
(10200404)

Distillate oil fired 0.252 A 0.052 A 0.2 A
(102005-01/02/03)

No. 4 oil fired 0.252 A 0.052 A 0.2 A
(10200504)

Commercial/institutional/residential combustors
No. 6 oil fired 1.605 A 0.475 A . L13 A
. (103004-01/02/03) ,

No. 5 oil fired 1.605 A 0475 A 1.13 A
(10300404)
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TABLE 1.3-4 (ENGLISH UNITS). EMISSION FACTORS FOR TOTAL ORGANIC COMPQUNDS
(TOC), METHANE, AND NONMETHANE TOC (NMTOQC) .
FROM UNCONTROLLED FUEL. OIL COMBUSTION (Continned)

Firing ‘ TOC Methane® - NMTOC®
-Configuration
(scey Emission Rating Emission Rating Emission Rating
Factor Factor Factor
/10° gal 1b/10° gal /10° gal
Distillate oil fired 0.556 A 0.216 A 0.34 A
(103005-01/02/03) _
No. 4 oil fired 0.556 A 0.216 A 0.34 A
(10300504) _
Residential fumace 2493 A 1.78 A 0.713 A
(No SCC) :

*SCC = Source Classification Code.
"References 16-19, Volatile organic compound emission can increase by several orders of magnitude
if the boiler is improperly operated or is not well maintained.
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TABLE 1.3-7. CUMULATIVE PARTICLE SIZE DISTRIBUTION AND SIZE SPECIFIC
EMISSION FACTORS FOR UNCONTROLLED INDUSTRIAL BOILERS
FIRING DISTILLATE OIL*

EMISSION FACTOR RATING: E

Particle Size® (um) Cumulative Mass % < Cumnlative Emission Factor,
stated size [kg/10° ¢ (b/10° gal)]

Uncontrolled Uncontroiled

15 68 0.16 (1.33)

10 50 0.12 (1.00)

6 30 0.07 (0.58)
2.5 12 0.03 (0.25)
1.25 9 0.02 (0.17)
1.00 8 0.02 (0.17)
0.625 2 0.005 (0.04)
TOTAL 100 0.24 (2.00)

*Reference 29. Source Classification Codes: 102005-01/02/03.
*Expressed as aerodynamic equivalent diameter.
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TABLE 1.3-8. CUMULATIVE PARTICLE SIZE DISTRIBUTION AND SIZE SPECIFIC
EMISSION FACTORS FOR UNCONTROLLED COMMERCIAL BOILERS BURNING .
RESIDUAL AND DISTILLATE OILL*

EMISSION FACTOR RATING: D

Particle Cumulative Mass % Cumulative Emission Factor,®
Size® (pm) < stated size [kg/10° ¢ (I/10° gal))
Uncon- Uncon- Uncontrolled, Uncontrolied,
trolled, trolled, Residual Oil ' Distillate Qil
Residual Distillate
Qil Qil
15 78 60 ' 0.78A (6.50A) 0.14 (1.17) -
10 62 55 0.62A (5.17A) 0.13 (1.08)
6 44 49 0.44A (3.67A) 0.12 (1.00)
2.5 23 42 0.23A (1.92A) 0.10 (0.83)
1.25 16 38 0.16A (1.33A) 0.09 (0.75)
1.00 14 37 0.14A (1.17A) 0.09 (0.75) .
0.625 13 35 0.13A (1.08A) 0.08 (0.67)
TOTAL 100 100 1A (8.34A) _ 0.24 (2.00)

*Reference 29. Source Classification Codes: 103004-01/02/03/04,103005-01/02/03/04.

*Expressed as acrodynamic equivalent diameter.

“Particulate emission factors for residual oil combustion without emission controls are, on average, a
function of fuel oil grade and sulfur content:
No.60il: A =1.12(S) + 0.37 kg/10° ¢ Where S is the weight % of sulfur in the oil
No.50il: A=12kg/10°¢
No.4o0il: A =0.84kg/10° ¢
No.2o0il: A =024kg/10°¢
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Figure 1.3-1. Cumulative site specific emission factors for utility boilers firing residual oil.
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Figure 1.3-2. Cumulative site specific emission factors for industrial boilers firing residual oil.
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. TABLEL.3-9. EMISSION FACTORS FOR NITROUS OXIDE (N,0), POLYCYCLIC
ORGANIC MATTER (POM), AND FORMALDEHYDE (HCOH) FROM
FUEL OIL COMBUSTION

EMISSION FACTOR RATING: E

Firing Configuration Emission Factor, kg/10° 2 (Ib/10° gal)
(SCO N,O° POM°* HCOW°

Utility/industrial/commercial boilers
No. 6 oil fired 0.013 (0.11) 3.2-36 (7.4-8.4)" 69-174 (161-405)
(101004-01
10200401
10300401)

Distillate oil fired 0.013 (0.11) 9.7 (22 100-174 (233-405)
(10100501
10200501
10300501)

Residential furnaces 0.006 (0.05) NA NA
(No SCC)

*SCC = Source Classification Code.
. "References 28-29.
“References 16-19.
“Particulate and gaseous POM.
“Particulate POM only.
NA = Not available.
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TABLE 1.3-10. NEW SOURCE PERFORMANCE STANDARDS FOR FOSSIL

FUEL FIRED BOILERS .
Standard/ Boiler Size Fuel PM SO, NO,
Boiler Types/ MW or ngfJ ng/J ng/J
Applicability (Million Boiler (b/MMBtu)  (Ib/MMBtu) (Ib/MMBtu)
Criteria Btu/hr) Type [% reduction] [% reduction]  [% reduction]
Subpart D >73 Gas 43 NA 80
| (>250) 0.10) - (0.20)
Industrial- : '
Utility (81| 43 340 129
(0.10) (0.80) (0.30)
Commence
construction Bit./Subbit. 43 520 - 300
after 8/17/71 Coal (0.10) (1.20) . (0.70)
Subpart Da >73 Gas 13 340 86
(>250) (0.03 (0.80) (020)
Utility [NA] [901*- [25]
Commence ol 13 340 - 130
construction (0.03) (0.80) (0.30)
after 9/18/78 [70] [(9o* [30]
Bit./Subbit. 13 520 260/210¢ .
Coal (0.03) (1.20) (0.60/0.50)
[99] 9o - [65/65]
Subpart Db >29 Gas NA* NA' -4
100) : (0.10)
Industrial-
Commercial- Distillate Ol 43 340" 43
Institutional - . (0.10) (0.80) (0.10)
[90]
Commence
construction Residual Oil (Same as for (Sane as for 1308
after 6/19/34™ distillate oil) distillate oil) (0.30)
Pulverized 22 520° 300
Bit./Subbit, (0.05) (1.20) (0.70)
Coal [90]
22 520° 260
Spreader (0.05) (1.20) - (0.60)
Stoker & FBC 190]
22 520¢ 210
Mass-Feed ©.05) (1.20) (0.50) .
Stoker [90]
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. TABLE 1.3-10. NEW SOURCE PERFORMANCE STANDARDS FOR FOSSIL

FUEL FIRED BOILERS (Continued)

Standard/ Boiler Size Fuel PM S0, NO,
Boiler Types/ MW or ng/] ng/J ng/]
Applicability (Million Boiler (Ib/MMBu1) (I»/MMEBt) (Ib/MMBt)

Criteria Btw/hr) Type [% reduction] [% reduction] (% reduction)
Subpart Dc 29-29 Gas 2 - -
(10 - 100)
Small _
Industrial- il M 215 -
Commercial- (0.50)
Institutional
Bit. & Subbit. 22k 520 -
Commence Coal (0.05) (1.20
construction [90]
after
6/9/89

*Zero percent reduction when emissions are less than 86 ng/J (0.20 1b/MMBtu).

70 percent reduction when emissions are less than 260 ng/J (0.60 Ib/MMB1u).

°T'he first number applies to bituminous coal and the second to subbiturninous coal.

4Standard applics when gas is fired in combination with coal, see 40 CFR 60, Subpart Db.

. *Standard is adjusted for fuel combinations and capacity factor limits, see 40 CFR 60, Subpart Db.

'For furnace heat release rates greater than 730,000 J/s-m® (70,000 Buyhr-ft*), the standard is 86 1i/J
(0.20 Ib/MMBtu).

SFor furnace heat release rates greater than 730,000 J/s-m® (70,000 Bty/hr-ft’), the standard is 170 ng/J
(0.40 1b/MMBm).

®Standard applies when gas or oil is fired in combination with coal, see 40 CFR 60, Subpart Dc.

10 percent capacity limit applies for heat input capacities of 8.7 Mwt (30 MMBt/hr) or greater.
*Standard is adjusted for fuel combinations and capacity factor limits, see 40 CFR 60, Subpart Dc.
"Additional requirements apply to facilities which commenced construction, modification, or
reconstruction after 6/19/84 but on or before 6/19/86 (see 40 Code of Federal Regulations Part 60,
Subpart Db).

215 ng/¥ (0.50 Ib/million Btu) limit (but no percent reduction requirement) applies if facilities
combust only very low sulfur oil (< 0.5 wt. % sulfur).

FBC = Fluidized bed combustion.

7/93 External Combustion Sources 1.3-27



'3|qeteAL 10N = YN
"91qe} S{Up Uf powodai (IS Si 3] ‘pUncy sem

jujod vyep suo £[uo § “ainjesdyy o uy poptodar siojo] Jo soBue1 ay Juosaudal S[qe; S Y SI010L) UOSSIWD ML ‘0b-0f ‘6I-OT SAOUIYNY,

3P0 UOREOPISSEID 32IN0S = DS,

(10500€01
10€00201
B (3] @D 68 osy) (N 62 @ 10S00101)
VN gL £l 09 g't VN 6T-1T 15 4 | 81 VN paly 1o eqNsIq

(10¥00€01

_ 10¥00201
(86) (oeeT-L€8) (ZE-+'1) (L€ 61-8D) (TI-LL) BTI-ID (1291 @) Wii-6D) o%2) $0/10-¥00101)
91  ¥96-09€° #I-90 O€0I 08-ZI OS€E SS-06 1689 81 60C8 001 paagl 110 9 "ON

3s "IN 8H U qd 0D g ) te ) T | sy as
«(D089)

(md ,,01/a1) £/3d ‘101081 uoiss|IZ | uopengguc) Supyg

H ONILVY 401DV NOISSINH

SHOYNOS NOLLSNGWOD TIO T8N WO SINTWATT FOVIL Y04 SYOLOVA NOISSING ‘11-€'1 31aV.L

EMISSION FACTORS

on
&

1.3-28



110 [Enpisas UORISRQIUIOY  UORSNGUI0D
*Sijun 30§ %07 pue Ji0 paSeis pue YOI  padmg snig
mau uo pajusurdpdug 3sog  -ofus ppuowMadNS 8 [[IS  AR[IPSIP J0J %ST I Jo sanbynyoa)  uopRINOIPIY
*91qIsed) oq Jou Avur jgonoy  aue sonbanjod) poulquio) 19 SI)RI YOI XN LL Ol €L €5 01 GZ pauquo) sep ongl
*sjus “oqpum pue swng  sad£) udysop ye uo
B0 uspy 1 Linqeisuy owryy oY) o) suopewoyjpow  payudswRldiuf 3q uv) sioumng o) sed ¥od
aqissod gonar o AN1so) JA[SUMND saanbay ‘pajokaar sed anp anj jo uojuod  UORRIANOIY
"SHUN M3 107 PAJINS 15og JqeyeAyY Jo %0e-szodn €L 0) 8¢ 0t 01 1 JO uopenaIOdy S8D onpy
-uopeoydde pjonas
10y fuQ “90JAI9S JO
N0 SIBWNQ IO IoWINQ
doy i wraped
Jawnq asenbs 103 Yop o0y Supy
‘MO[J I8 JO [ONUOD puB  PIJINS )52g “sIouwing IopurBumay
‘porpout s woysds woaned OO JO UORALRS ¥ JO umupupy *Afuo (sooqd)-
£39A)]9p fonJ ssoun Supel-op [nyases sannbar 1gonoy gim sIv10q J¢ "o s1awng 0JAIIS JO
13110q saymnbas usyyo yonoy dqqeieAy 1oy Ao sigeopiddy w/N 0€ 01 01 J0W 10 3UQ N SIduIng
sadfy
ussop |8 103 2qqeeas  supod g Ampuodss suod
‘souo padexoed Ajerdadss A[reoI2wWios j0u JO uopujuIsu} J[B UO[ISNQiB0d
‘SJ{UN JSOUI 10 J[(ISEd]  ‘“ISAMOH ‘s)jun papoase  Jadoud ym pasn aq £19puodes Os)
j0u £jqeqord sy Iyonoy ‘syun -pioy pue o3exoed U0 UBD SIUIIWOYII0IS M SIJWING  UOPSNQUIC)
M3 uo pajuurdur; 1sog djquojidde sy anbynpdag, m»ung 9% 06-0L #¥ 01 LI 0S 01 0Z Suuy yop-jong pagers
*SHOJSSIIND A{OWS puB ‘OH aujpeseq woly doip
‘0D uy aseasoul £4q pajpury % € & Supussaidar 9,
*£oudioNy9 J94j0q Uy 9SBAUSUY $°Z 0] paonpar aq ued : J¢ UCHSRAUC) (vaD v
PapNIOUl S)YIUIq PIPPY JgeiEAY 'O §590%3 LjeIdUdD 7 01 () $Z 010 Jouopnonpoy  SSI0XH MO
o o
AejInSIa [enpisay
sneis avy (uoonpay *ON W013J) anbpnpay, anbRRpoa L,
SJUWWOY) /Amiqereay [epprowwo) |uopesyddy jo a8uvy | jonuo) Jo ssouaapsayd | jo uopduossqg [onuo)

SYATIOE QI O U0 STOULNOD "ON NOLLVOLIIIOW NOILSNEWN0D TI-E'T AT14V.L

1.3-29

External Combustion Sources

7/93



(39zjwiouode :
ue “§3) wsss £19a00a1 *Kouapopyye (GIo¥E) suopipuod
183y SJEUIA[E JO UOPRIBISY]  [BIUIAY) UY SSO] JUBOYWUS)S  JUSIqUIE 0) paonpar Joesyard dvD
sasnbar siofjoq mau w0 Jo gsnesaq payusuiduy  oq usd armeradiug) J[8 uopsnquIod eayarg
onbpjo3) s Jo uopeoyddy 10N “3jqejjeAy I uopsnquwio) /N 9] 0l ¢ ~ Josseddg 11y paonpay
Ti0 Juypns Y3y Supmng ‘S19710Q
udym m:::a._ Iayesyard e sqiy-a1y Joy 3qiseay
PUE JAHOQ UO SUCHINISI PYo| 2q Jou Avpy “s1of10q sed anjy ot uj
Jqissod ‘parnbar wio)s£s ANUINVM PIIIAID yuode Suponpar
Jonuod pue Supouou porensuowsp jou -p1ey pue s8eyoed € se CgN uoposfur
‘uopoafuf SN Sjeroqely  Inq passpjo Aerorownwo)  ofrey 10y sjqeoyiddy oL o) o 0L 01 OF Jo uopaafuy BuOwurY
‘papasu uopedyssip jeay
uopennoju oypods pasealou| pus
IO "SI9JI0q Supyw penyfpe
Supjoe| are gN'T Pim 1e 03 9jqeoydds pajjonucd (aND
paddnba siogj0q Esnpy pajnsucwap o4 Ajjesoudsd paguosop Pm sugpsop s1auIng
WOIY Bjep SUoISspuIo ofjosds  Inq pasegjo Kjjeozounmo)) S19UINQ MON  OS O) OZ 0S 01 07 IOUWING MON *ON Mo
*(vore ugyd
dovuny pagrequd) suajuy
UopsSNGUIod poonpas se ‘wnuRxew  ‘ON uj
sudisop mou uf poyswoiduny  “udsap xoqary pasordun JO %57 01 paONpAr  IsBAIOUY *ON 0[AIS
A1qissod Y7 's[oA9] Y0 sS99x2 Ws paswioidwsl  oq wvO pROTT 'SAZS 941 OF  uj S5EAIIU[ U} smamnq e %:¢)]
U} 35BII0U} UE S9jB)SSdAU Y JNleg “uopeoydde yjoaras pus sad£) Jopp0q  95¥II3p %57 0) 0) MO[J [ony pue uononpay
UM 3A[O3JJ9 Jou anbprpa], € S8 MOU I[qU[IBAY e o) opqeopddy  g91¢  958QI09P %EE IR JO UOPONpIY peo}
IO Ho
ARSI enpisay
sBIS ARy (uoponpsy “ON Wea9g) anbpoag, onbpnoag,
SIUSWWOD) /Aumiqepay [epuounmo) |uopeoyddy jo sSusy | jonuo) jo ssaudAnoapy | jo uopdpasaqg Jonuoc)

(penupu0Dd) SYHTIO QI TO YO STOULNOD *ON NOLLYOHIQOW NOILSNEN0D ‘TI-€'1 H14V.L

793

EMISSION FACTORS

1.3-30



TABLE 1.3-13. POST-COMBUSTION NO, REDUCTION TECHNOLOGIES

Technique Description Advantages Disadvantages
1. Urea Injection of urca - Low capital cost - Temperature dependent
injection  into furnace to react - Relatively simple system - Design must consider boiler operating
with NO, to form - Moderate NO, removal (30- conditions and design
N, and H,0 60%) - Reduction may decreased at lower
- Non-toxic chemical loads
- Typically, low energy injection
sufficient
2. Ammonia Injection of - Low operating cost - Moderately high capital cost
injection = ammonia into - Moderate NO, removal (30- - Ammonia handling, storage,
(Thermal- furnace to react 60%) : vaporization and injection systems
DeNO,) with NO, to form required (Ammonia is a toxic
N, and H,0 chemical)
3. Air Heater Air heater baskets - Moderaie NO, removal (40-65 - Design must address pressure drop,
(AH-)SCR replaced with %) ' maintain heat transfer
catalyst coated - Moderate capital cost - Due to rotation of air heater, only
baskets. Catalyst - No additional ductwork or 50% of catalyst is active at any time

promotes reaction reactor required
of ammonia with - Low pressure drop

NO,. : - Can use urea as ammonia
. feedstock
- Rotating air heater assists
mixing, contact with catalyst
4. Duct SCR A smaller version of - Moderate capital cost -~ Duct location unit specific
conventional SCR is - Moderate NO, removal (30%) temperature, access dependent
placed in existing - No additional ductwork - Some pressure drop must be
ductwork required accommodated
5. Activated  Activate carbon - Active at low temperature - High pressure drop
Carbon catalyst, installed - High surface area reduces - Not a fully commercial technology
SCR downstream of air reactor size
heater, promotes - Low cost of catalyst
reaction of - Can use urea as ammonia

ammonia with NO, feedstock
at low temperature. - Activated carbon is non-
\ hazardous material
- SO, removal as well as NO,
removal
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TABLE 1.3-13. POST-COMBUSTION NO, REDUCTION TECHNOLOGIES (Continued) ,

Technique Description Advantages Disadvantages
1. Urea Injection of urea - Low capital cost - Temperature dependent
injection  into furnace to react - Relatively simple system - Design must consider boiler operating
‘with NO, to foom - Moderate NO, removal (30- conditions and design
N, and H,0 60%) - Reduction may decreased at lower
- Non-toxic chemical loads
- Typically, low energy injection
sufficient
6. Conven-  Catalyst located in - High NO, removal (90%) - Very high capital cost
tional SCR flue gas stream - High operating cost
(usually upstream of - Extensive ductwork to/from reactor
air heater) promotes - Large volume maciv, s B miee?
reaction of -Incrmsedpressuredmpmayrequire
ammonia with NO,, ID fan or larger FD fan
- Reduced efficiency _
- Ammonia sulfate removal equipment
for air heater

- Water treatment of air heater wash
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TABLE 1.3-14. POST-COMBUSTION S0, CONTROLS FOR FUEL OIL

COMBUSTION SOURCES
Control Technology Process Typical Control Re.marks
Efficiencies
Wet scrubber Lime/limestone 80-95+% Applicable to high
' sulfur fuels,
Wet sludge product
Sodium carbonate 80-98% 1-125 MW (5430
million Bw/hr) typical
application range,
High reagent costs
Magnesium 80-95+% Can be regenerated
oxide/hydroxide
Dual alkali 90-96% Uses lime to
regenerate sodium-
based scrubbing liquor
Spray drying Calcium hydroxide 70-90% Applicable to low and
slurry, vaporizes in medium sulfur fuels,
spray vessel Produces dry product
Fumace injection Dry calcium 25-50% Commercialized in
carbonate/hydrate Europe,
injection in upper Several U.S.
furnace cavity demonstration projects
underway
Duct injection Dry sorbent injection 25-50+% Several R&D and
into duct, sometimes demonstration projects
combined with water underway,
spray Not yet commercially
available in the U.S.
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1.4 NATURAL GAS COMBUSTION

1.4.1 Generall

Natural gas is one of the major fuels used throughout the country. 1t is used mainly for
industrial process steam and heat production; for residential and commercial space heating; and for
electric power generation. Natural gas consists of a high percentage of methane (generally above 80
percent) and varying amounits of ethane, propane, butane, and inerts (typically nitrogen, carbon
dioxide, and helium). Gas processing plants are required for the recovery of liquefiable constituents
and removal of hydrogen sulfide before the gas is used (see Natural Gas Processing, Section 9.2). The
average gross heating value of natural gas is approximately 8900 kilocalories per standard cubic meter
(1000 British thermal units per standard cubic foot), usually varying from 8000 to 9800 kcal/scm (900
to 1100 Bt/scf). :

1.42 Emissions and Controls®™

Even though natural gas is considered to be a relatively clean-buming fuel, some emissions
can result from combustion. For example, improper operating conditions, including poor air/fuel
mixing, insufficient air, etc., may cause large amounts of smoke, carbon monoxide (CO), and organic
compound emissions, Moreover, becanse a sulfur-containing mercaptan is added to natural gas to
permit leak detection, small amounts of sulfur oxides will be produced in the combustion process.

Nitrogen oxides (NO,) are the major pollutants of concern when buming natural gas. Nitrogen
oxide emissions depend primarily on the peak temperamre within the combustion chamber as well as
the furnace-zone oxygen concentration, nitrogen concentration, and time of exposure at peak
temperatures. Emission levels vary considerably with the type and size of combustor and with
operating conditions (particularly combustion air temperature, load, and excess air level in boilers).

Currently, the two most prevalent NO, control techniques being applied to natural gas-fired
boilers (which result in characteristic changes in emission rates) are low NO, burners and flue gas
recirculation, Low NO, burners reduce NO, by accomplishing the combustion process in stages.
Staging partially delays the combustion process, resulting in a cooler flame which suppresses NO,
formation. The three most common types of low NO, bumers being applied to natural gas-fired
boilers are staged air burners, staged fuel burners, and radiant fiber burners. Nitrogen oxide emission
reductions of 40 to 85 percent (relative to uncontrolled emission levels) have been observed with low
NO, burners. Other combustion staging techniques which have been applied to natural gas-fired
boilers include low excess air, reduced air preheat, and staged combustion (e.g., bumers-out-of-service
and overfire air). The degree of staging is a key operating parameter influencing NO, emission rates
for these systems.

In a flue gas recirculation (FGR) system, a portion of the flue gas is recycled from the stack to
the burner windbox. Upon entering the windbox, the gas is mixed with combustion air prior to being
fed to the bumer. The FGR system reduces NO, emissions by two mechanisms. The recycled flue
gas in made up of combustion products which act as inerts during combustion of the fuel/air mixtuore.
This additional mass is heated in the combustion zone, thereby lowering the peak flame temperature
and reducing the amount of NO, formed. To a lesser extent, FGR also reduces NO, formation by
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lowering the oxygen concentration in the primary flame zone. The amount of flue gas recirculated is a
key operating parameter influencing NO, emission rates for these systems, Flue gas recirculation is
nommally used in combination with low NO, bumers. When used in combination, these technicues are
capable of reducing uncontrolled NO, emissions by 60 to 90 percent.

Two post-combustion techmologies that may be applied to natural gas-fired boilers to reduce
NO, emissions by further amounis are selective noncatalytic reduction and selective catalytic
reduction. These systems inject ammonia (or urea) into combustion flue gases to reduce inlet NO,
emission rates by 40 to 70 percent.

Although not measured, all particulate matter (PM) from natural gas combustion has been
estimated to be less than 1 micrometer in size. Particulate matter is composed of filterable and
condensible fractions, based on the EPA sampling method. Filterable and condensible emission rates
are of the same order of magnitude for boilers; for residential furnaces, most of the PM is in the form
of condensible material. :

The rates of CO and trace organic emissions from boilers and furnaces depend on the
efficiency of natural gas combustion. These emissions are minimized by combustion practices that
promote high combustion temperatures, long residence times at those temperatures, and turbulent
mixing of fuel and combustion air. In some cases, the addition of NO, control systems such as FGR
and low NO, bumners reduces combustion efficiency (due to lower combustion temperatures), resulting
in higher CO and organic emissions relative to uncontrolled boilers.

Emission factors for natural gas combustion in boilers and fumaces are presented in Tables
1.4-1 through 1.4-3. For the purposes of developing emission factors, natural gas combustors have
been organized into four general categories: utility/large industrial boilers, small industrial boilers,
commercial boilers, and residential fumaces, Boilers and fumaces within these categories share the
same general design and operating characteristics and hence have similar emission characteristics when
combusting natural gas. The primary factor used to demarcate the individual combustor categories is
heat input.
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LOAD REDUCTION COEFFICIENT

Figure 1.4-1, Ipadreducﬁonooeﬂicinmasaﬂmcﬁonofboilerloﬂ
(Used to determine NO, reductions at reduced loads in large boilers.)
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1.5 LIQUEFIED PETROLEUM GAS COMBUSTION
1.5.1 General

Liquefied petroleum gas (LPG or LP-gas) consists of propane, propylene, butane, and
butylenes; the product used for domestic heating is substantially propane. This gas, obtained mostly
from gas wells (but also to a lesser extent as a refinery by-product) is stored as a liquid under
moderate pressures. There are three grades of LPG available as heating fuels: commercial-grade
propane, engine fuel-grade propane (also known as HD-5 propane), and commercial-grade butane, In
addition, there are high purity grades of LPG available for laboratory work and for use as aerosol
propellants. Specifications for the various LPG grades are available from the American Society for
Testing and Materials and the Gas Processors Association. A typical heating value for commercial-
grade propane and HD-5 propane is 6,090 kcaifliter (91,500 Btu/gallon), after vaporization; for
commercial-grade butane, the vatue is 6,790 kcal/liter (102,000 Btu/gallon).

The largest market for LPG is the domestic/commercial market, followed by the chemical
industry (where it is used as a petrochemical feedstock) and agriculture. Propane is also used as an
engine fuel as an alternative to gasoline and as a stand-by fuel for facilities that have interruptible
. natural gas service contracts.

1.52 Emissions and Controls**

Liquefied petroleum gas is considered a "clean” fuel because it does not produce visible
emissions. However, gaseous pollutants such as carbon monoxide (CO), organic compounds, and
nitrogen oxides (NO,) do occur. The most significant factors affecting these emissions are burner
design, burner adjustment, and flue gas venting. Improper design, blocking and clogging of the flue
vent, and insufficient combustion air result in improper combustion and the emissions of aldehydes,
CO, hydrocarbons, and other organics. Nitrogen oxide emissions are a function of a number of
variables, including temperature, excess air, fuel/air mixing, and residence time in the combustion
zone. The amount of sulfur dioxide (SO,) emitted is directly proportional to the amount of sulfur in
the fuel. Emission factors for LPG combustion are presented in Tables 1.5-1 and 1.5-2.

Nitrogen oxides are the only pollutant for which emission controls have been developed.
Propane and butane are being used in Southemn California as backup fuel to natural gas, replacing
distillate oil in this role pursuant to the phaseout of fuel oil in that region. Emission controls for NO,
have been developed for firetube and watertmbe boilers firing propane or butane. Vendors are now
warranting retrofit systems to levels as low as 30 to 40 ppm (based on 3 percent oxygen). These low-
NO, systems use a combination of low NO, burners and flue gas recirculation. Some burner vendors
use water or steam injection into the flame zone for NO, reduction. This is a trimming technique
which may be necessary during backup fuel periods because LPG typically has a higher NO -forming
potential than natural gas; conventional natural gas emission control systems may not be sufficient to
reduce LPG emissions to mandated levels. Also, LPG bumers are more prone to sooting under the
modified combustion conditions required for low NO, emissions. The extent of allowable combustion
modifications for LPG may be more limited than for natral gas.

One NO, control system that has been demonstrated on small commercial boilers is flue gas
recirculation (FGR). Nitrogen oxide emissions from propane combustion can be reduced by as much
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as 50 percent by recirculating 16 percent of the flue gas. Nitrogen oxide emission reductions of over
60pementhavebeenacbievedwiﬂ1FGRandlowNO,bumersusedincdmb_inaﬁon.
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TABLE 1.5-1. (ENGLISH UNITS) EMISSION FACTORS FOR LPG
COMBUSTION®
(Source Classification Codes)

EMISSION FACTOR RATING: E

Butane Emission Factor Propanc Emission Factor
1b/1000 gal 1b/1000 gal
Industrial Commercial Industrial Commercial
Boilers® Boilers® Boilers® Boilers®
(10201001) (10301001) (10201002) (10301002)
Filterable particulate matter® 0.6 0.5 0.6 0.4
Sulfur oxides® 0.098 0.098 0.108 0.108
Nitrogen oxides’ 21 15 19 14
Carbon dioxide 14,700 14,700 12,500 12,500
Carbon monoxide 3.6 2.1 3.2 1.9
Total organic compounds 0.6 0.6 0.5 0.5

. 2Assumes emissions (except SO, and NO,) are the same, on a heat input basis, as for natural gas
combustion. The NO, emission factors have been multiplied by a comection factor of 1.5 which is
the approximate ratio of propane/butane NO, emissions to natoral gas NO, emissions.

*Heat input capacities generally between 10 and 100 million Btu/hour.

“Heat input capacities generally between 0.3 and 10 million Btu/hour.

“Filterable particulate matter (PM) is that PM collected on or prior to the filter of an EPA Method 5
(or equivalent) sampling train.

“Expressed as SO,. S equals the sulfur content expressed on gr/100 ft® gas vapor. For example, if the
butane sulfur content is 0.18 g1/100 £ emission factor would be (0.09 x 0.18=) 0.016 Ib of
S50,/1000 gal butane burned.

Expressed as NO,.
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TABLE 15-2, (METRIC UNITS) EMISSION FACTORS FOR LPG COMBUSTION®
(Source Classification Codes)

EMISSION FACTOR RATING: E

Pollutant Butane Emission Factor Propane Emission Factor
kg/1000 liters kg/1000 Liters
Industrial Commercial Industrial Commercial
Boilers® Boilers® Boilers® Boilers®
(10201001) (10301001) (10201002) (10301002)
Filterable particulate matter® 0.07 0.06 0.07 0.05
Sulfur oxides® 0.0118 0.0118 0.0128 0.0128
Nitrogen oxides' 25 1.8 2.3 1.7
Carbon dioxide 1,760 l.760l 1,500 1,500
Carbon monoxide 04 0.3 0.4 0.2
Total organic compounds 0.07 0.07 0.06 0.06

‘Assumesmissions(exceptSO,andNO,)meﬂ:esame,aheatinputbasis.asfornamwlgas
combustion, The NO, emission factors have been multiplied by a correction factor of 1.5 which is
theapproxﬁnatemﬁoofpmpmemMeNO‘emissiommnaumlgasNo,emissiom.
"Heat input capacities generally between 3 and 29 MW.
“Heat input capacities generally between 0.1 and 3 MW.

¢ particulate matter (PM) is that PM collected on or prior to the filter of an EPA Method 5
(or equivalent) sampling train.
’ExpmwedasSO,Sequalsﬂ:esulfurcontemexpmssedonngOﬂ’gasvapor. For example, if the
butane sulfur content is 0.18 gr/100 f* emission factor would be (0.011 x 0.18) = 0.0020 kg of
S0,/1000 liters butane bumed.
‘Expressed as NO,.
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1.6 WOOD WASTE COMBUSTION IN BOILERS

1.6.1 General'®

The bumning of wood waste in boilers is mostly confined to those industries where it is
available as a byproduct. It is bured both to obtain heat energy and to alleviate possible solid waste
disposal problems. In boilers, wood waste is normally bumned in the form of hogged wood, sawdust,
shavings, chips, sanderdust, or wood trim. Heating values for this waste range from about 2,200 to
2,700 kcal/kg (4,000 to 5,000 Bru/Ib) of fuel on a wet, as-fired basis. The moisture comtent of as-fired
wood is typically near 50, weight percent but may vary from 5 to 75 weight percent depending on the
waste type and storage operations.

Generally, bark is the major type of waste burned in pulp mills; either a mixture of wood and
bark waste or wood waste alone is bumed most frequently in the humber, furniture, and plywood
industries. As of 1980, there were approximately 1,600 wood-fired boilers operating in the U.S., with
a total capacity of over 30 GW (1.0 x 10" Btu/hr).

1.6.2 Firing Practices®’

Various boiler firing configurations are used for burning wood waste. One common type of
boiler used in smaller operations is the Duich oven. This unit is widely used because it can bumn fuels
with very high moisture content. Fuel is fed into the oven through an opening in the top of 2
refractory-lined furnace. The fuel accumulates in a cone-shaped pile on a flat or sloping grate.
Combustion is accomplished in two stages: (1) drying and gasification, and (2) combustion of gaseous
products. The first stage takes place in the primary fumace, which is separated from the secondary
furnace chamber by a bridge wall. Combustion is completed in the secondary chamber before gases
enter the boiler section. The large mass of refractory helps to stabilize combustion rates but also
causes a slow response to fluctnating steam demand.

In another boiler type, the fuel cell oven, fuel is dropped onto suspended fixed grates and is
fired in a pile. Unlike the Duich oven, the refractory-lined fuel cell also uses combustion air
preheating and positioning of secondary and tertiary air injection ports to improve boiler efficiency.
Because of their overall design and operating similarities, however, fuel cell and Duich oven boilers
have comparable emission characteristics.

The most common firing method employed for wood-fired boilers larger than 45,000 kg/hr
(100,000 Ib/r) steam generation rate is the spreader stoker. With this boiler, wood enters the furnace
through a fuel chute and is spread either pneumatically or mechanically across the furnace, where
small pieces of the fuel bumn while in suspension. Simultaneously, larger pieces of fuel are spread in a
thin, even bed on a stationary or moving grate. The buming is accomplished in three stages in a
single chamber: (1) moisture evaporation; (2) distillation and buming of volatile matter; and (3)
buming of fixed carbon. This type of operation has a fast response to load changes, has improved
combustion control, and can be operated with multiple fuels. Natural gas or oil is often fired in
spreader stoker boilers as auxiliary fuel. This is done to maintain constant steam when the wood
waste supply fluctuates and/or to provide more steam than can be generated from the waste supply
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alone. Although spreader stokers are the most common stokers among larger wood-fired boilers,
overfeed and wuderfeed stokers are also utilized for smaller units. '

Another boiler type sometimes used for wood combustion is the suspension-firing boiler. This
boiler differs from a spreader stoker in that small-sized fuel (normally less than 2 mm) is blown into
the boiler and combusted by supporting it in air rather than on fixed grates. Rapid changes in
combusﬁonrateand.themfore,steamgenemﬁonratea:epossiblebecausetheﬁnelydividedfuel
particles bum very quickly.

A recent development in wood firing is the fluidized bed combustion (FBC) boiler, A
fluidized bed consists of inert particles through which air is blown so that the bed behaves as a fluid.
Wood waste enters in the space above the bed and bumns both in suspension and in the bed. Because
of the large thermal mass represented by the hot inert bed particles, fluidized beds can handle fuels
with moisture contents up to near 70 percent (total basis). Fluidized beds can also handle dirty fuels
(up to 30 percent inert material). Wood fuel is pyrolyzed faster in a fluidized bed than on a grate due
to its immediate contact with hot bed material. As a result, combustion is rapid and results in nearly
complete combustion of the organic matter, thereby minimizing emission of unbumed organic
compounds, '

1.6.3 Emissions And Controls*!

The major emission of concern from wood boilers is particulate matter (PM), although other
pollutants, particularly carbon monoxide (CO) and organic compounds, may be emitted in significant
quantities under poor operating conditions. These emissions depend on a number of variables,
including (1) the composition of the waste fuel bumed, (2) the degree of flyash reinjection employed
and (3) fumace design and operating conditions.

The composition of wood waste depends largely on the industry from which it originates.
Pulping operations, for example, produce great quantities of bark that may contain more than 70
weight percent moisture, sand, and other non-combustibles. As a result, bark boilers in pulp mills may
emit considerable amounts of particulate matter to the atmosphere unless they are well controlled. On
the other hand, some operations, such as farniture manufactyring, generate a clean, dry wood waste
(e.g., 2 to 20 weight percent moisture) which produces relatively low particulate emission levels when
properly bumed. Still other operations, such as sawmills, burn a varying mixture of bark and wood
waste that results in PM emissions somewhere between these two extremes.

Furnace design and operating conditions are particularly important when firing wood waste.
For example, because of the high moisture content that may be present in wood waste, a larger than
usual area of refractory surface is often necessary to dry the fuel before combustion. In addition,
sufficient secondary air must be supplied over the fuel bed to burn the volatiles that account for most
of the combustible material in the waste. When proper drying conditions do not exist, or when
secondary combustion is incomplete, the combustion temperature is lowered, and increased PM, CO,
and organic compound emissions may result. Short term emissions can fluctuate with significant
variations in fuel moisture content.

Flyash reinjection, which is commonly used with larger boilers to improve fuel efficiency, has
a considerable effect on PM emissions. Because a fraction of the collected flyash is reinjected into the
boiler, the dust loading from the fumace and, consequently, from the collection device increase

1.6-2 EMISSION FACTORS - | 7/93




significantly per unit of wood waste bumned. More recent boiler installations typically separate the
collected particulate into large and small fractions in sand classifiers. The larger particles, which are
mostly carbon, are reinjected into the furnace, The smaller particles, mostly inorganic ash and sand,
are sent to ash disposal.

Currently, the four most common control devices used to reduce PM emissions from wood-
fired boilers are mechanical collectors, wet scrubbers, electrostatic precipitators (ESPs), and fabric
filters. The use of multitube cyclone (or multiclone) mechanical collectors provides particulate control
for many hogged boilers. Often, two multiclones are used in series, allowing the first collector to
remove the bulk of the dust and the second to remove smaller particles. The efficiency of this
arrangement is from 65 to 95 percent. The most widely used wet scrubbers for wood-fired boilers are
venturi scrubbers. With gas-side pressure drops exceeding 4 kPa (15 inches of water), particulate
collection efficiencies of 90 percent or greater have been reported for venturi scrubbers operating on
wood-fired boilers.

Fabric filters (i.c., baghouses) and ESPs are employed when collection efficiencies above 95
percent are required. When applied to wood-fired boilers, ESPs are often used downstream of
mechanical collector precleaners which remove larger-sized particles. Collection efficiencies of 93 to
99.8 percent for PM have been observed for ESPs operating on wood-fired boilers.

A variation of the ESP is the electrostatic gravel bed filter. In this device, PM in flue gases is
removed by impaction with gravel media inside a packed bed; collection is augmented by an
electrically charged grid within the bed. Particulate collection efficiencies are typicaily near 95
percent,

Fabric filters have had limited applications to wood-fired boilers. The principal drawback to
fabric filtration, as perceived by potential users, is a fire danger arising from the collection of
combustible carbonaceous fly ash, Steps can be taken to reduce this hazard, including the installation
of a mechanical collector upstream of the fabric filter to remove large burning particles of fly ash (i.e.,
"sparklers”). Despite complications, fabric filters are generally preferred for boilers firing salt-laden
wood. This fuel produces fine particulates with a high salt content. Fabric filters are capable of high
fine particle collection efficiencies; in addition, the salt content of the particles has a quenching effect,
thereby reducing fire hazards. In two tests of fabric filters operating on salt-laden wood-fired boilers,
particulate collection efficiencies were above 98 percent.

Emissions of nitrogen oxides (NO,) from wood-fired boilers are lower than those from coal-
fired boilers due to the lower nitrogen content of wood and the lower combustion temperatures which
characterize wood-fired boilers. For stoker and FBC boilers, overfire air ports may be used to lower
NO, emissions by staging the combustion process. In those areas of the U.S. where NO, emissions
must be reduced to their lowest levels, the application of selective non-catalytic reduction (SNCR) and
selective catalytic reduction (SCR) to waste wood-fired boilers has either been accomplished (SNCR)
or is being contemplated (SCR). Both systems are post-combustion NO, reduction techniques in
which ammonia (or urea) is injected into the flue gas to selectively reduce NO, to nitrogen and water.
In one application of SNCR to an industrial wood-fired boiler, NO, reduction efficiencies varied
between 35 and 75 percent as the ammonia:NO, ratio increased from 0.4 to 3.2.

Emission factors and emission factor ratings for wood waste boilers are summarized in Tables
1.6-1 through 1.6-7. Emission factors are for uncontrolled combustors, unless otherwise indicated.
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Cumulative particle size distribution data and associated emission factors are presented in Tables 1.6-8
and 1.6-9. Uncontrolled and controlled size-specific emission factors are plotted in Figures 1.6-1 and
1.6-2. All emission factors presented are based on the feed rate of wet, as-fired wood with average
properties of 50 weight percent moisture and 2,500 kcal/kg (4,500 Btu/Ib) higher heating values,
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TABLE 1.6-3 EMISSION FACTORS FOR TOTAL ORGANIC COMPOUNDS (TOC) AND
CARBON DIOXIDE (CO,) FROM WOOD WASTE COMBUSTION

Source Category TOC® Co,’
(sccy’ . .
kg/Mg Ib/ton Rating kg/Mg Ib/ton Rating

Fuel cell/Dutch oven 0.09 0.18 C 1100 2100 B
boilers
(o SCC)
Stoker boilers 0.11 0.2 c 1100 2100 B
(o SCO)
FBC boilers® NDf ND 1100 2100 B
(m SCO)

'Unitsamkgofpoﬂuna:ﬂ/Mgofwoodwastebumedmdlbs.ofpoﬂutaWﬁonofwoodwasnebmned.
Emission factros are b ased on wet, as-fired wood waste with average properties of 50 weight percent
moisture and 2500 kcal/kg (4500 Bwy/Ib) higher heating value.
*SCC = Source Classification Code.
“References 11, 14-15, 18. Emissions measured as total hydrocarbons, converted to kg carbon/Mg fuel
(Ib carbon/ton fuel).

. ‘References 11, 14-15, 17, 27.
*FBC = Fluidized bed combustion.
'ND = No data.
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Table 1.6-4 (Metric Units). EMISSION FACTORS FOR SPECIATED ORGANIC COMPO
FROM WOOD WASTE COMBUSTION®* -

Organic Compound® Emission Factor Average Emission Emission
_ Range* Factor Factor
kg/Mg kg/Mg Rating
Phenols 3.2E-05-6.0E-05 1.9E-(4 C
Acenaphthene 4.3E-08-2.1E-06 1.7E-06 C
Fluorene 8.5E-08-14E-05 4.8E-06 c
Phenanthrene 1.0E-06-9.0E-05 2.8E-05 C
Anthracene 4 3E-08-1.7E-04 1.9E-05 C
Fluoranthene 43E-0843E-4 4.5E-05 C
Pyrene 2,1E-07-2.9E-05 8.5E-06 C
Benzo(a)anthracene 4.3E-08-3.2E-06 9.0E-07 C
Benzo(b+k)fluoranthene 1.7E-07-9.5E-05 1.9E-05 C
Benzo(a)pyrene 4.3E-08-1.5E-07 9.5E-08 D
Benzo(g,hi)perylene 43E-08-1.7E-06 6.0E-07 C
- Chrysene 4.3E-08-1.5E-04 2.1E-05 C
Indeno(1,2,3,c.d)pyrene 4.3E-08-3.0E-07 L7E-07 D
Polychlorinated dibenzo-p-dioxins 1L.5E-09-1.7E-08 6.0E-09% C
Polychlorinated dibenzo-p-forans 2.3E-09-3.6E-08 1.5E-08% C
Acenaphthylene 3.0E-07-3.4E-05 22E-05 C
Pyrene 4.5E-06F D .
Methyl anthracene 7.0E-05% D
Acrolein 2.0E-06* D
Solicyladehyde L.IE-05* D
Benzaldchyde 6.0E-06* D
Formaldehyde 1'2E-(4-1.6E-02 3.3E-03 Cc -
Acetaldehyde 3.0E-05-1.2E-02 1.5E-03 C
Benzene 43E-05-7.0E-03 1.8E-03 C
Naphthalene 2.5E-05-2.9E-03 11E-03 C
2,3,7,8-Tetrachlorodibenzo-p-dioxin 1.1E-011-2.6E-011 1.8E-11 D

*Units are kg of pollutant/Mg of wood waste burned and Ibs. of pollutant/ton wood waste burned. Emission

factors are based on wet, as-fired wood waste with average properties
higher heating valwe. Source Classification Codes are 10100901/02/03

keal/kg
and 10300901/02/03.

ies of 50 weight percent

moistyre and 2500
» 1020090102/03/04/05/06/07,

*Pollutants in this table represent organic species measured for wood waste combustors. Other organic species
maydmhmbememimdeuedmamtmmmedmwmmtawmemaﬁmsbebwmalyﬁml
timi

‘References 11-15, 18, 26-28.

“Excludes data from combustion of salt-laden wood. For salt-laden wood, emission factor is 6.5E-07 kg/Mg

with a D rating,

*Excludes data from combustion of salt-laden wood. For salt-laden

with a D rating.

wood, emission factor is 2.8E-07 kg/Mg

fBased on data from one source test.
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Table 1.6-5 (English Units). EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS
FROM WOOD WASTE COMBUSTION® -

Emission Factor

Oreamic C T Y Emiss Eamissi
_ Range* Factor Factor
Ib/ton ib/ton Rating
Phenols 64E-05-1.2E-04 39E-04 C
Acenaphthene 8.6E-08-4.3E-06 3.4E-06 C
Fluorene 1.7E-07-2.8E-05 9.6E-06 C
Phenanthrene 2.0E-06-1.8E-04 5.7TE-05 C
Anthracene 8.GE-(8-3.5E-(4 3.8E-05 C
Fluoranthene 8.6E-08-3.6E-04 9.0E-05 C
Pyrene 43E-07-59E-05 1L.7E-05 C
Benzo(a)anthracene 8.6E-(08-64E-06 1.8E-06 C
Benzo(b+k)fluoranthene 34E-(7-19E-04 2.9E-05 C
Benzo(a)pyrene 8.6E-08-3.0E-07 19E-07 D
Benzo(g.h,i)perylene 8.6E-(8-3.5E-06 1.2E-06 C
Chrysene 8.6E-08-3.0E-(4 43E-05 C
Indeno(1,2,3,c.d)pyrenc 8.6E-08-6.0E-07 34E-07 D
Polychlorinated dibenzo-p-dioxins 3.0E-09-33E-08 1.2B-08% C
Polychlorinated dibenzo-p-furans 4.6E-09-72E-08 29E-08% C
Acenaphthylene 6.0E-07-6 8E-05 44E-05 C
Pyrene : 9.0E-06* D
Methyl anthracene 14E-04* D
Acrolein 4.0E-06* D
Solicyladchyde 23E-05* D
Benzaldehyde 12E-05* D
Formaldehyde 23E-04-3.3E-02 6GE-03 C
Acetaldehyde 6.1E-05-2.4E-02 3.0E-03 C
Benzene 8.6E-05-14E(2 3.6E-03 C
Naphthalene 5.0E-05-5.8E-03 23E-03 C
23,7 8-Tetrachlorodibenzo-p-dioxin 2.12E-011-5.11E-011 3.6E-11 D

*Units are kg of pollutant/Mg of wood waste bumed and Ibs. of pollutant/ton of wood waste burned.
Emsmmfacmmmhmdmwenm-ﬁmdwowwmwnhamgemmdsomtwmmm
and 4500 Bay/Ib higher heating value. Sowce Classification Codes are 10100901/02/03,
1020090102/03/04/05/06/07, and 1030090102/03.

*pollutants in this table represent organic species measared for wood waste combustors.

Other organic species may also have becn emitted but were either not measured or were present at
‘References 11-15, 18, 26-28.

“Emission factors are for total dioxins and furans, not toxic equivalents,

“Excludes data from combustion of salt-laden wood. For salt-laden wood, emission factor is 1.3E-06 Ibfton
with a D rating.

fExclndes data from combustion of salt-laden wood. For salt-laden wood, emission factor is 5.5E-07 Ib/ton
with 2 D rating,

EBased on data from one source test.
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Table 1.6-6 (Metric Units). EMISSION FACTORS FOR SPECIATED METALS
FROM WOOD WASTE COMBUSTION® -

Trace Element® Emission Factor Average Emission Emission
Range*® Factor Factor
kg/Mg kg/Mg Rating

Chromium (VI) 1.5E-05-2.9E-05 2.3E05 D

Copper 7.0E-06-6,0E-04 - 95E-05 C

Zinc 4 9E-05-1.1E-02 22E-03 C

Barium 2.2E-(3¢ D

Potassium : 3.9E-01¢ D

Sodium : 9.0E-03¢ D

Iron 4 3E-(04-33E-02 22EQ02 D .

Lithinm . 3.5E-05¢ . D

Boron 4.0E-04¢ D

Chlorine ‘ 39E-03¢ D

Vanadium 6.0E-05¢ D .

Cobalt® 6.5E-05¢ D

Tharium 8.5E-06° D

Tungsten 5.5E-06° D

Dysprosium : 6.5E-06° D

Samarinm 1.0E-05¢ D

Neodymium 1.3E-05° D .

Praeseodymium 1.5E-05° D

Iodine 8.0E-06° D

Tin 1.5E-05¢ D

Molybdenum 95E-05¢ D

Niobium 1.7E-05¢ D

Zirconium _ 1.7E-04¢ D

Yttriom 2.8E-05¢ D

Rubidium : _ 6.0B-04¢ D

Bromine 1.8E-04¢ D

Germaniym 1.7E-06¢ D

Arsenic 7.0E-07-1.2E-04 4 4E-05 C

Cadmium 13E-06-2.7E-(4 8.5E-06 C

Chromium (Total) 3.0E-06-2.3E-04 6.5E-05 C

Manganese 1.5E-04-2.6E-02 44E-03 C

Mercury 1.3E-06-1.0E-05 3.7E-06 c

Nickel 1.7E-05-29805 2.3E-04 C

Seleniinn 8.5E-06-9.0E-06 8.8E-06 D

*Units are kg of pollutant/Mg of wood waste burned and Ibs. of pollutant/ton of wood waste burned.

Emission factors are based on wet, as-fired wood waste with average properties of 50 weight percent moisture

and 25(0) keal/kg higher heating valne. Source Classification Codes are 10100901/02/03,

10200901/02/03/04/05/06/07, and 10300901/~ 3.

*Pollutants in this table represent metal species :neasured for wood waste combustors. Other metal species may

also have been emitted bot were either not measured or were present at concentrations below analytical limits. ;
“References 11-15. .
“Based on data from one soorce test.
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Table 1.6-7 (English Units). EMISSION FACTORS FOR SPECIATED METALS
FROM WOOD WASTE COMBUSTION' B

Trace Element® Emission Factor Average Emission Emission
Range* Factor Factor
Ib/ton Ib/ton Rating

Chromium (VI) 3.1E-05-5.9E-05 4.6E-05 D
Copper 1.4E-05-12E-03 19E-04 c
Zinc 9 9E-05-2.3E-02 44E-03 D
Barium 4 4E-03° D
Potassinm 7.8E-01° D
Sodium 1.86-02¢ D
Iron 8.6E-04-8.7E- 02 44E-02 D
Lithinm 7.0E-05¢ D
Boron 8.0E-04¢ D
Chlorine 7 8E-03! D
Vanadivm 1.2E-04° D
Cobalt 13E-(4¢ D
Thorium 1.7E-05¢ D
Tungsten 1.1E-05° D
Dysprosinm 1.3E-05¢ D
Samarinm 2.0E-05¢ D
. Neodymiom 2.6E-05° D
Praescodymium 3.0B-05¢ D
Todine 1.8E-05¢ D
Tin 3.1E-05° D
~ Molybdenum 1.98-04¢ D
Niobinm 3.5E-05¢ D
Zirconium 3.5E-04¢ D
Yuriom 5.6E-05¢ D
Rubidiom 12E-03¢ D
Bromine 3.9E-04° D
Germanium 2.5E-06° D
Arsenic 14E-06-24E-(4 8.8E-05 C
Cadmium 2.7E-06-54E-04 1.7E-05 C
Chromium (Total) 6.0E-06-4.6E-04 13E-04 C
Manganese 3.0E-M-5.2E-(2 89E-03 C
Mercury 2.6E-06-2.1E-05 6.5E-06 C
Nickel 34E-05-5.8E03 5.6E-4 C
Selenium 1.7E-05-1.8E-05 1.8E-05 D

“Units are kg of pollutant/Mg of wood waste burned and Ibs. of pollutant/ton of wood waste burned.

Emission factors are based on wet, as-fired wood waste with average properties of 50 weight percent

moistare and 4500 Btu/Ib higher heating valve. Source Classification Codes are 10100901/02/03,

10200901/02/03/04/05/06/07, and 10300901/02/03.

“Pollutants in this table represent metal species measured for wood waste combustors. Other metal

spedesmayﬂsohavebemeuﬁmdbutmdﬂmnotmswedmwmprwnmmaﬁom
. ‘References 11-13,

“Based on data from one source test.
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1.7 LIGNITE COMBUSTION

1.7.1 Generat!*

Lignite is a coal in the early stages of coalification, with properties intermediate to those of
bituminous coal and peat. The two geographical areas of the U.S. with extensive lignite deposits are
centered in the States of North Dakota and Texas. The lignite in both areas has a high moisture
content (30 to 40 weight percent) and a low heating value, [1,400 to 1,900 kcal/kg (2,500 to 3,400
Btu/lb), on a wet basis]. Consequently, lignite is burned near where it is mined. A small amount is
used in industrial and domestic situations, but lignite is mainly used for steam/electric production in
power plants, Lignite combustion has advanced from small stokers and the first pulverized coal (PC)
and cyclone-fired units to large (greater than 800 MW) PC power plants.

The major advantages of firing lignite are that it is relatively abundant (in the North Dakota
and Texas regions), relatively low in cost, and low in sulfur content. The disadvantages are that more
fuel and larger facilities are necessary to generaie a unit of power than is the case with bituminous
coal. The reasons for this are: (l)hgmteshlghermOMcontentmeansﬂ:atmoreenergy:slostm
evaporating water, which reduces boiler efficiency; (2) more energy is required to grind lignite to
combustion-specified size, especially in PC-fired umits; (3) greater tube spacing and additional soot
blowing are required because of lignite’s higher ash fouling tendencies; and (4) because of its lower
heating value, more lignite must be handled to produce a given amount of power. Lignite usually is
not cleaned or dried before combustion (except for incidental drying in the crusher or pulverizer and
during transport to the burner). Nomajorpmblemsexlstwlthmehandhngoroombusuonofhgmte
when its unique characteristics are taken into account.

1.72 Emissions 21117

The major pollutants generated from firing lignite, as with any coal, are particulate matter

(PM), sulfur oxides (SO,), and nitrogen oxides (NO,). Emissions rates of organic compounds and

carbon monoxide (CO) are much lower than those for the major pollutants under normal operating
conditions.

Emission levels for PM appear most dependent on the firing configuration of the beiler.
Pulverized coal-fired units and spreader stokers fire much or all of the lignite in suspension; they emit
a greater quantity of flyash per unit of fuel burmed than do cyclones and other stokers. Cyclone
furnaces collect much of the ash as molten slag in the furnace itself. Stokers (other than spreader)
retain a large fraction of the ash in the fuel bed and bottom ash.

The NO, emissions from lignite combustion are mainly a function of the boiler design, firing
configuration, and excess air level. Stokers produce lower NO, levels than PC units and cyclones,
mainly becanse most stokers are relatively small and have lower peak flame temperatures. The boilers
constructed since implementation of the 1971 and 1979 new source performance standards (40 Code of
Federal Regulations, Part 60, Subparts D and Da respectively) have NO, controls integrated into the
boiler design and have comparable NO, emission levels to the small stokers. In most boilers,
regardless of firing configuration, lower excess combustion air resulis in lower NO, emissions.
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However, lowering the amount of excess air in a lignite-fired boiler can also affect the potential for
ash fouling. ’

The rate of SO, emissions from lignite combustion are a function of the alkali (especially
sodium) content of the ash. For combustion of most fossil fuels, over 90 percent of the fuel sulfur is
emitted as sulfur dioxide (SO,) because of the low alkali content of the fuels, By contrast, a
significant fraction of the sulfur in lignite reacts with alkaline ash components during combustion and
is retained in the boiler bottom ash and flyash. Tests have shown that less than 50 percent of the
available sulfur may be emitted as SO, when a high-sodium lignite is burned, whereas more than 90
percent may be emitted from a low-sodium lignite, As an approximate average, about 75 percent of
the lignite sulfur will be emitted as SO,; the remainder will be retained in the ash as various sulfate
salts,

1.7.3 Controls>11-17

Most lignite-fired utility boilers are equipped with electrostatic precipitators (ESPs) with
collection efficiencies as high as 99.5 percent for total PM. Older and smaller ESPs have lower
collection efficiencies of approximately 95 percent for total PM, Older industrial and commercial
units also may be equipped with cyclone collectors that normally achieve 60 to 80 percent collection
efficiency for total PM.

Flue gas desulfurization (FGD) systems (comparable to those used on bituminous coal-fired
boilers) are in current operation on several lignite-fired utility boilers. Flue gases are treated through
wet or dry desulfurization processes of either the throwaway type (in which all waste streams are
discarded) or the recovery/regenerable type (in which the S0, absorbent is regenerated and reused).
Wet systems generally use alkali slurries as the SO, absorption medium and can reduce SO, emissions
by 90 percent or more. Spray dryers (or dry scrubbers) spray a solution or shurry of alkaline material
into a reaction vessel as a fine mist that mikes with the flue gas. The SO, reacts with the alkaline
mist to form salts. The solids from the spray dryer and the salts formed are collected in a particalate
control device.

Over 50 percent reduction of NO, emissions can be achieved by changing the bumer
geometry, controlling air flow in the fumace, or making other changes in operating procedures.
Overfire air and low NO, bumers are two demonstrated NO, control techniques for lignite
combustion. '

Baseline emission factors for NO,, SO,, and CO are presented in Tables 1.7-1 and 1.7-2.
Baseline emission factors for total PM and nitrous oxide (N50) are given in Table 1.7-3. Specific
emission factors for the cumulative particle size distributions are provided in Tables 1.7-4 and 1.7-5.
Uncontrolled and controlled size-specific emission factors are presented in Figures 1.7-1 and 1.7-2.

carbon dioxide (CO,) and organic compounds. As a result, the bituminous coal emission factors for
these pollutants presented in Section 1.1 of this document may also be used to estimate emissions from
lignite combustion. '

Emission factors for trace elements from uncontrolled lignite oombuéﬁon are summarized in
Tables 1.7-6 and 1.7-7, based on currently available data, '
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Controlled emission factors for NO,, CO, and PM are presented in Tables 1.7-8 and 1.7-9.
Controlled SO, emissions will depend primarily of applicable regulations and FGD equipment
performance, if applicable. Section 1.1 contains a discussion of FGD performance capabilities which
is also applicable to lignite-fired boilers. Controlled emission factors for selected hazardous air
pollutants are provided in Tables 1.7-10 and 1.7-11.

7/93 External Combustion Sources 1.7-3




Table 1.7-1 (Metric Units). EMISSION FACTORS FOR SULFUR OXIDES (S0,),
NITROGEN OXIDES (NO,), AND CARBON MONOXIDE (CO)
FROM UNCONTROLLED LIGNITE COMBUSTION®

Firing Configuration S0,° No,d . Cco°
s "
(5CO Emission | Rating | Emission | Rating | Emission Rating
Factor Factor Factor
Pulverized coal, dry 158° C 3.7 C
bottom, tangential
(SCC 10100302)
Pulverized coal, dry 158 C 5.6 C 013 ¢
bottom, wall fired
(SCC 10100301)
Cyclone 158 c 6.3 c
(SCC 10100303)
Spreader stoker 158 C 29 C
(SCC 10100306)
Other stoker 158 C 29 C
(SCC 10100304)¢ .
Atmospheric fluidized bed 38 D 1.8 C 0.08 C
(no SCC)
*Units are kg of pollutant/Mg of fuel bumed.
bSCC= Source Classification Code.
°Reference 2.
“References 2-3, 7-8, 15-16.
“References 7, 16.

®S= Weight % sulfur content of lignite, wet basis.
For high sodium ash (Na,0 > 8%), use 118S.
For low sodium ash (Na,0 < 2%), use 178.
If ash sodium content is unknown, use 158.
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Table 1.7-2 (English Units). EMISSION FACTORS FOR SULFUR OXIDES (SO,),
NITROGEN OXIDES (NO,), AND CARBON MONOXIDE (CO)
FROM UNCONTROLLED LIGNITE COMBUSTION® -

Firing Configuration S0,° No¢ co®
Sl Emission | Rating | Emission | Rating | Emission | Rating
Factor Factor Factor
Pulverized coal, dry 308° o 7.3 Cc
bottom, tangential
(SCC 10100302)
Pulverized coal, dry © 308 c 11.1 c 0.25 c
bottom, wall fired
(SCC 10100301)
Cyclone 308 c 12.5 c
(SCC 10100303) |
Spreader stoker 308 C 58 C
(SCC 10100306)
Other stoker 308 C 58 c
. (SCC 10100304
Atmospheric fluidized bed 308 C 3.6 c 0.15 c
(no SCC)

% Jnits are 1b. of pollutant/ton of fuel burned.

bSCC= Source Classification Code.

®Reference 2.

dReferences 2-3, 7-8, 15-16.

- ®References 7, 16.

fS— Weight % sulfur content of lignite, wet basis.
For high sodium ash (Nay0 > 8%), use 228.
For low sodium ash (Na,0 < 2%), use 34S.
If ash sodium content is unknown, use 30S.

7/03 | External Combustion Sources 1.7-5




Table 1.7-3, EMISSION FACTORS FOR PARTICULATE MATTER (PM) AND
NITROUS OXIDE (N,0) FROM LIGNITE COMBUSTION®

Firing Configuration PMP . N,O°

CC
(5¢O Emission Factor Rating Emission Factor Rating
Pulverized coal, dry 3.3A (6.5A) E

Pulverized coal, dry 2.6A (5.1A) E
bottom,

wall fired

(SCC 10100301)

Cyclone | 34A678) - C
(SCC 10100303)

Spreader stoker 4.0A (8.0A) E
(SCC 10100306)

Other stoker L.7A (3.4A) E
(SCC 10100304) .

Atmospheric fluidized bed 1.2 2.5) E

#Units are kg of pollutant/Mg of fuel bumed and 1b. of pollutant/ton of fucl bumed.
SCC= Source Classification Code. :

bReferences 5-6, 12, 14, A = weight % ash content of lignite, wet basis.
°Reference 18. -
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1.7-8
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Figure 1.7-1. Cumulative size specific emission factors for boilers

firing pulverized lignite.
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Figure 1.7-2. Cumulative size specific emission factors for lignite-

fired spreader stokers.
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Table 1.7-8. CONTROLLED EMISSION FACTORS FOR
NITROGEN OXIDES (NO,) AND CARBON MONOXIDE (CO)
FROM CONTROLLED LIGNITE COMBUSTION®

Firing Configuration NO,° co*

Emission Factor Rating Emission Factor Rating
kg/Mg (Ib/ton) kg/Mg (Ib/ton) :

Pulverized coal, dry 3.3 (6.6) Cc 0.05 (0.10) D

Pulverized coal, dry 23 @6) c 0.24 (048) D

*Units are kg of pollutant/Mg of fuel burned and 1b. of pollutant/ton of fuel bumed.
SCC = Source Classification Code.

bReference 15, 16.

“References 15,
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Table 1.7-9. EMISSION FACTORS FOR PARTICULATE MATTER (PM) EMISSIONS
FROM CONTROLLED LIGNITE COMBUSTION®

Firing Oonﬁg_lmﬁon Comntrol Device PM

(SO Emission Factor Rating
Subpart D Boilers, Baghouse 0.08A (0.16A) C
Pulverized coal,

Tangential and wall-fired Wet scrubber 0.05A (0.10A) C
(no SCC)

Subpart Da Boilers, Wet scrubber 0.01A (0.02A) C
Pulverized coal,

Tangential fired

(no SCC)

Atmospheric fluidized bed Limestone addition 0.03A (0.06A) D

aReference15-16.A=weight%ashcontentoflignitz,wetbasis.
Unitsarekgofpollmanthgofmelbumedandlb.ofpollmantltonofmelbumed.
SCC = Source Classification Code.
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Table 1.7-10 (Metric Units). EMISSION FACTORS FOR
TRACE METALS AND POLYCYCLIC ORGANIC
FROM CONTROLLED LIGNITE COMB

EMISSION FACTOR RATING: E

MATTER (POM)
USTION®

Firing Configuration Control Device Emission Factor, pg/J
(5CO Cr Mn POM
Pulverized coal - Multi-cyclones 29-32
(SCC 10100301) ESP 8.6
High efficiency cold-side 0.99
ESP
Pulverized wet bottom ESP 15
(®o SCC)
Pulverized dry bottom Multi-cyclones 0.78-7.9%
(@0 SCCy ESP 18 1.1° .
Cyclone furnace ESP <33 57 0.05°-0.68°
(SCC 10100303) Multi-cyclones 710
Stoker, Multi-cyclones 13 47
configuration unknown
(no SCC) ESP <23
Spreader stoker Mutlti-cyclones 6.3°
(SCC 10100306)

*References 19-20, Units are

SCC = Source Classification Code.
imarily trimethyl propenyl naphthalene.

“Primarily biphenyl.

1.7-14
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Table 1.7-11 (English Units). EMISSION FACTORS FOR
TRACE METALS AND POLYCYCLIC ORGANIC MATTER (POM)
FROM CONTROLLED LIGNITE COMBUSTION®

EMISSION FACTOR RATING: E

Firing Configuration Control Device Emission Factor, Ib/10'2Btu
(§co Cr Mn POM
Pulverized coal Multi-cyclones 61-74
(SCC 10100301) ESP 20

High efficiency cold-side ESP 23
Pulverized wet bottom ESP 3
(mo SCO)
Pulverized dry bottom Multi-cyclones 1.8-18°
(no SCC) ESP a2 2.6°

. Cyclone furnace ESP <28 133 0.11°-1.6°

(SCC 10100303) Muhicvclones 1700
Stoker, Multi-cyclones 30 110
configuration unknown
@o SCO) ESP <54
Spreader stoker Multi-cyclones 15°
(SCC 10100306)

*References 19-20. Units are Ib. of pollutantlloan of fuel burned.
SCC = Source Classification Code.

bprimarily trimethy! propenyl naphthalene.

“Primarily biphenyl.
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1.8 BAGASSE COMBUSTION IN SUGAR MILLS
1.8.1 Process Description'®

Bagasse is the matted cellulose fiber residue from sugar cane that has been processed in a
sugar mill, Previously, bagasse was bumed as means of solid waste disposal. However, as the cost of
fuel oil, natural gas, and electricity have increased, the definition of bagasse has changed from refuse
to a fuel.

The U.S. sugar cane industry is located in the tropical and subtropical regions of Florida,
Texas, Louisiana, Hawaii, and Puerto Rico. Except for Hawaii, where sugar cane production takes
place year round, sugar mills operate seasonally from 2 to 5 months per year.

Sugarcaneisalargegrasswithabamboo—likc stalk that grows 8 to 15 feet tall. Only the
stalk contains sufficient sucrose for processing into sugar. All other parts of the sugar cane (i.c.,
leaves, top growth and roots) are termed “rash." The objective of harvesting is to deliver the sugar
cane to the mill with a minimum of trash or other extraneous material. The cane is normally burned
in the field to remove 2 major portion of the trash and to control insects and rodents. See¢ Section
11.1 for methods to estimate these emissions. The three most common methods of harvesting are
handcutﬁng,machinecuuing,andmechanicalraldng. The cane that is delivered to a particular sugar
mi]lwﬂﬂvmymuashmddincomm&pendingonﬂmharvesﬁngmemodmdweamermndiﬁms.
Inside the mill, cane preparation for extraction usually involves washing the cane to remove trash and
dist, chopping, and then crushing. Juice is extracted in the milling portion of the plant by passing the
choppedandcrushedcanethmughaseﬁesofgmovedmlls. The cane remaining after milling is
bagasse.

Bagasse is a fuel of varying composition, consistency, and heating value. These characteristics
depend on the climate, type of soil upon which the cane is grown, vatiety of cane, harvesting method,
amount of cane washing, and the efficiency of the milling plant. In general, bagasse has a heating
value between 1,700 and 2,200 kcal/kg (3,000 and 4,000 B/lb) on a wet, as-fired basis. Most
bagassehasamoisuuecontzmbetween45 and 55 percent by weight.

Fuel cells, horseshoe boilers, and spreader stoker boilers are used to burn bagasse. Horseshoe
boilers and fuel cellsdiﬂ’erintheshapesofmeirfumaccateammnoﬂ:ermspectsaresimilarin
design and operation. In these boilers (most common among older plants), bagasse is gravity-fed
through chutes and piles onto a refractory hearth. Primary and overfire combustion air flows through
ports in the furnace walls; buming begins on the surface pile. Many of these units have dumping
hearths that permit ash removal while the unit is operating.

In more-recently built sugar mills, bagasse is bumed in spreader stoker boilers. Bagasse feed
to these boilers enters the fumace through a fuel chute and is spread pneumatically or mechanically
across the furnace, where part of the fuel bums while in suspension. Simultaneously, large pieces of
fuel are spread in a thin, even bed on a stationary or moving grate. The flame over the grate radiates
heat back to the fuel to aid combustion. The combustion area of the furnace is lined with heat
exchange tubes (waterwalls).
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1.82 Emissions and Controls'®

The most significant pollutant emitted by bagasse-fired boilers is Particulate matter, caused by
the turbulent movement of combustion gases with respect to the burning bagasse and resultant ash.
Emissions of SO, and NO, are lower than conventional fossil fuels due to the characteristically low
levels of sulfur and nitrogen associated with bagasse.

content by not properly washing and preparing the cane. Upsets in combustion conditions can canse
increased emissions of carbon monoxide (CO) and unburned organics, typically measured as volatile
organic compounds (VOCS) and total organic compounds (TOCs).

Mechanical collectors and wet scrubbers are commonly used to control particulate emissions
from bagasse-fired boilers, Mechanical collectors may be installed in single cyclone, double cyclone,
or multiple cyclone (i.e., multiclone) arrangements. The reported PM collection efficiency for
mechanicalcolleclnrsisZOtoﬁOpement. Duetomeabrasivenmneofbagasseﬂyash,mechanical
collector performance may deteriorate over time due to erosion if the system is not well maintained.

The most widely used wet scrubbers for bagasse-fired boilers are impingement and venturi
scrubbers. Impingement scrubbers normally operate at gas-side pressure drops of 5 to 15 inches of
water, typical pressure drops for venturi scrubbers are over 15 inches of water. Impingement
scrubbers are in greater use due to lower energy requirements and fewer operating and maintenance
problems, Reported PM collection efficiencies for both scrubber types are 90 percent or greater,

Gaseous emissions (e.g., S0O,, NO,, CO, and organics) may also be absorbed to a significant
extent in a wet scrubber, Alkali compounds are sometimes utilized in the scrubber to prevent low pH
conditions. If CO,-generating compounds (such as sodium carbonate or calcium carbonate) are used,
CO, emissions will increase.

Fabric filters and electrostatic ipitators have not been used to a significant extent for
controlling PM from bagasse-fired boilers due to potential fire hazards (fabric filters) and relatively
higher costs (both devices).

Emission factors and emission factor ratings for bagasse-fired boilers. are shown in Table 1.8-1
(metric units) and Table 1.8-2 (English units).

Fugitive dust may be generated by truck traffic and cane handling operations at the sugar mill.
Particulate matter emissions from these Sources may be estimated by consulting Section 11.2.
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Table 1.8-1 (Metric Units). EMISSION FACTORS FOR BAGASSE-FIRED BOILERS"

Emission factor,
Pollutant g/kg steam® kg/Mg bagasse® Rating
Particulate matter’
Uncontrolled 3.9 7.8 ' C
Controlled
Mechanical collector 21 42 D
Wet scrubber 04 0.8 B
PM-10°
Controlled
Wet scrubber 0.34 0.68 D
Carbon dioxide
Uncontrolled® 390 780 A
Nitrogen oxides
Uncontrolled’ 0.3 0.6 C
Polycyclic organic matter
Uncontrolled® 2.5E4 5.0E4 : D

*Source Classification Code is 10201101.

®Units are gram of pollutant/kg of steam produced,

where 1 kg of wet bagasse fired produces 2 kg of steam.

“Units are kg of pollutant/Mg of wet, as-fired bagasse containing approximately 50 percent moisture,
by weight. - _

SReferences 2, 6-14. Includes only filterable PM (i.e., that particulate collected on or prior to the filter
of an EPA Method 5 (or equivalent) sampling train.

References 6-14. CO, emissions will increase following a wet scrubber in which CO,-generating
reagems(suchassodiumcarbonateorcalciummrbonam)ateumd.

References 13-14.

tReference 13. Based on measurements collected downstream of PM control devices which may have
provided some removal of polycyclic organic matter (POM) condensed on PM.
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Table 1.8-2 (English Units). EMISSION FACTORS FOR BAGASSE-FIRED BOILERS®

Enilission factor
Pollutant | 11,000 Ib steam® Ib/ton bagasse® Rating
Particulate matter®
Uncontrolled 3.9 15.6 - C
Controlled
Mechanical collector 21 84 D
Wet scrubber 04 1.6 B
EM:1¢¢
Controlled
Wet scrubber 0.34 1.36 D
Carbon _dioxide
Uncontrolled® | 390 1,560 A
Nitrogen oxides _
Uncontrolled! 0.3 1.2 C
Polycyclic organic matter
Uncontrolled® 2.5E4 10E-3 D

*Source Classification Code is 10201101,

*Units are Ibs. of pollutant/1,000 Ibs. of steam produced,

where 1 Ib. of wet bagasse fired produces 2 Ibs. of steam. :

“Units are Ibs. of pollutant/ton of wet, as-fired bagasse containing approximately 50 percent moisture,
by weight.

‘References 2, 6-14. Includes only filterable PM (i.c., that particulate collected on or prior to the filter
of an EPA Method 5 (or equivalent) sampling train,

‘References 6-14. CO, emissions will increase following a wet scrubber in which CO,-generating
reagents (such as sodium carbonate or calcium carbonate) are used.

References 13-14. -

*Reference 13. Based on measurements collected downstream of PM control devices which may have
provided some removal of polycyclic organic matter (POM) condensed on PM.
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1.9 RESIDENTIAL FIREPLACES
1.9.1 General®

Fireplaces are used primarily for aesthetic effects and secondarily as a supplemental heating
source in houses and other dwellings. Wood is the most common fuel for fireplaces, but coal and
densified wood "logs" may also be burned. The user intermittently adds fuel to the fire by hand.

Fireplaces can be divided into two broad categories, 1) masonry (generally brick and/or stone,
assembled on site, and integral to a structure) and 2) prefabricated (usually metal, installed on site as a
package with appropriate duct work).

Masonryﬁreplacestypicallyhavelargeﬁxedopelﬁngstotheﬁrebedandhavedampersabove
the combustion area in the chimney to limit room air and heat losses when the fireplace is not being
used. Some masonry fireplaces are designed or retrofitted with doors and louvers to reduce the intake
of combustion air during use.

Prefabricated fireplaces are commonly equipped with louvers and glass doors to reduce the
intake of combustion air, and some are surrounded by ducts through which floor level air is drawn by
natural convection, heated and retumed to the room. Many varieties of prefabricated fireplaces are
now available on the market. One general class is the freestanding fireplace, the most common of
which consists of an inveried sheet metal funnel and stovepipe directly above the fire bed. Another
class is the "zero clearance” fireplace, an iron or heavy gauge steel firebox lined inside with firebrick
and surrounded by multiple steel walls with spaces for air circulation. Some zero clearance fireplaces
can be inserted into existing masonry fireplace openings, and thus are sometimes called "inserts.”
Some of these units are equipped with close fitting doors and have operating and combustion
characteristics similar to wood stoves. (See Section 1.10, Residential Wood Stoves.)

Masonry fireplaces usually heat a room by radiation, with a significant fraction of the
combustion heat lost in the exhaust gases and through fireplace walls. Moreover, some of the radiant
heat entering the room goes toward warming the air that is pulled into the residence to make up for
that drawn up the chimney. The net effect is that masonry fireplaces are usually inefficient heating
devices. Indeed, in cases where combustion is poor, where the outside air is cold, or where the fire is
allowed to smolder (thus drawing air into a residence without producing appreciable radiant heat
energy), a net heat loss may occur in a residence using a fireplace. Fireplace heating efficiency may
be improved by a number of measures that either reduce the excess air rate or transfer back into the
residence some of the heat that would normally be lost in the exhaust gases or through fireplace walls.
As noted above, such measures are commonly incorporated into prefabricated units, As a result, the
energy efficiencies of prefabricated fireplaces are slightly higher than those of masonry fireplaces.

1.9.2 Emissions'™

The major pollutants of concern from fireplaces are unburnt combustibles, including carbon
monoxide, gaseous organics and particulate matter (i.e., smoke). Significant quantities of unbumt
combustibles are produced because fireplaces are inefficient combustion devices, with high
uncontrolled excess air rates and without any sort of secondary combustion. The latter is especially
important in wood burning because of its high volatile matter content, typically 80 percent by dry
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weight. In addition to unburnt combustibles, lesser amounts of nitrogen oxides and sulfur oxides are
emitted.

Hazardous Air Pollutants (HAPs) are a minor, but potentially important component of wood
smoke. A group of HAPs known as polycyclic organic matter (POM) includes potential carcinogens
such as benzo(a)pyrene (BaP). POM results from the combination of free radical species formed in
the flame zone, primarily as a consequence of incomplete combustion. Under reducing conditions,
radical chain propagation is enhanced, allowing the buildup of complex organic material such as POM.
The POM is generally found in or on smoke particles, although some sublimation into the vapor phase
is probable. -

Another important constituent of wood smoke is creosote. This tar-like substance will burn if
the fire is hot enough, but at insufficient temperatures, it may deposit on surfaces in the exhaust
system. Cheosotedepositsareaﬁrehazardinmeﬂue,buttheycmbereducediflhechimneyis
insulated to prevent creosote condensation or if the chimney is cleaned regularly to remove any

buildup,

Fireplace emissions are highly variable and are a function of many wood characteristics and
operating practices. In general, conditions which promote a fast bum rate and a higher flame intensity
enhance secondary combustion and thereby lower emissions. Conversely, higher emissions will result
from a slow bum rate and a lower flame intensity. Such generalizations apply particularly to the
carlier stages of the bumning cycle, when significant quantities of combustible volatile matter are being
driven out of the wood. Later in the buming cycle, when all volatile matter has been driven out of the
wood, the charcoal that remains bums with relatively few emissions.

Emission factors and their ratings for wood combustion in residential fireplaces are given in
Tables 1.9-1. and 1.9-2, :
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Table 1.9-1. (ENGLISH UNITS) EMISSION FACTORS FOR WOOD COMBUSTION IN
RESIDENTIAL FIREPLACES
(Source Classification Code: 2104008001)

Device ' Pollutant Emission Factor® Rating
Ib/ton

Fireplace PM-10° 34.6 B
Carbon Monoxide® 252.6 B
Sulfur Oxides® 04 A
Nitrogen oxides* 2.6 C
Carbon Dioxide’ 3400 (o
Total VOCs® 229.0 D
POM" 1.6E-3 E
Aldehydes® 24 E

*Units are in Ibs. of pollutant/ton of dry wood burned.
vReferences 2, 5, 7, 13; contains filterable and condensable particulate matter (PM); PM emissions are
considered to be 100% PM-10 (i.e., PM with an acrodynamic diameter of 10pm or less).

. “References 2, 4, 5, 9, 13.
‘References 1, 8.
References 4, 9; expressed as NO,.
References 5, 13
tReferences 4 - 5, 8. Datausedtocalculawtheaverageemissionfactorwerecoﬂectedbyvaﬁous
methods. While the emission factor may be representative of the source population in general, factors
may not be accurate for individual sources.
BReference 2. _
jDal;ausecltoc.alculatetheaverageemissionfactzorwerecollectedfmmasingleﬁreplaceandarenot
representative of the general source population.
tReferences 4, 11.
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Table 1.9-2, (METRIC UNITS) EMISSION FACTORS FOR WOOD COMBUSTION IN
RESIDENTIAL FIREPLACES
(Source Classification Code: 2104008001)

Device Pollutant Emission Factor* Rating
gkg

Fireplace PM-10° 17.3 B
Carbon Monoxide® . 126.3 B
Sulfur Oxides? 0.2 A
Nitrogen oxides® 1.3 c
Carbon Dioxide! 1700 C
Total VOCs® 1145 D
POM" 0.8E-3 E
Aldehydes* 12 E

'Unitsareingramsofpoﬂutant/kgofdrywoodbumed. _
*References 2, 5, 7, 13; contains filterabie and condensable particulate matter (PM); PM emissions are
considered to be 100% PM-10 (i.e., PM with an aerodynamic diameter of 10pm or less).
‘References 2, 4, 5, 9, 13.

1, 8.
‘References 4, 9; expressed as NO,.
‘References 5, 13
References 4 - 5, 8. Data used to calculate the average emission factor were collected by various
methods. While the emission factor may be representative of the source population in general, factors
may not be accurate for individual sources,
"Reference 2. :
’Datausedtocalculatetheaverageemissifactorwerecoﬂectedfmm a single fireplace and are not
representative of the general source population.

4, 11,
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1.10 RESIDENTIAL WOOD STOVES

1.10.1 General

Woodstovesa:ecommonlyusedinresidenceSasspaoeheaIers. They are used both as the

primary source of residential heat and to supplement conventional heating systems.

Five different categories should be considered whenesﬁmaﬂngemjssionsﬁ'omwoodbuming
devices due to differences inboﬂ:themagnimdeandthecompositionoftheemissions:

- the conventional wood stove,
- the noncatalytic wood stove,
- the catalytic wood stove,
- the pellet stove, and
- the masonry heater.
Among these categories, there are many variations in device design and operation characteristics.

The conventional stove category comprises all stoves without catalytic combustors not included
in the other noncatalytic categories (i.e., noncatalytic and pellet). Conventional stoves do not have any
emission reduction technology or design features and, in most cases, Were manufactured before July 1,
1986. Stoves of many different airflow designs may be in this category, such as updraft, downdraft,
crossdraft and S-flow.

Noncatalytic wood stoves are those units that do not employ catalysts but do have emission
reducing technology or features. Typical noncatalytic design includes baffles and secondary
combustion chambers.

Catalytic stoves are equipped with a ceramic or metal honeycomb device, called a combustor
or converter, that is coated with a noble metal such as platinum or palladium. The catalyst material
reduces the ignition temperature of the unbumned volatile organic compounds (VOC) and carbon
monoxide (CO) in the exhaust gases, thus augmenting their ignition and combustion at normal stove
operating r2mperaures. Asmesecomponmtsofthegasesbum.metemmnnueinsideﬂn catalyst
increases to a point at which the ignition of the gases is essentially seif sustaining.

Pellet stoves are those fueled with pellets of sawdust, wood products, and other biomass
materialsmwsedimomanageableshap&sandsizes. These stoves have active air flow systems and
unique grate design to accommodate this type of fuel. Some pellet stove models are subject to the
1988 New Source Performance Standards (NSPS), while others are exempt due to 2 high air-to-fuel
ratio (i.e., greater than 33-to-1).

Masonryheatersarela:ge,enclosedchambersmadeofmasonrypxbductsoracombinaﬁonof
masonry products and ceramic materials. These devices are exempt from the 1988 NSPS due to their
weight (i.e., greater than 800 kg). Masonryheamersaregainingpoptﬂaﬁtyasacleanerburningand
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heatefﬁcientfonnofpﬁmaxyandsupplementalheat,mlaﬁvemsmneoﬂmrtypesofwoodheaters. In
4 masonry heater, a complete charge of wood is bumed in a relatively short period of time. The use

ofmasonrymateﬁalspromotesheatu'ansfer. , Tadiant heat from the heater warms the
surrounding area for many hours after the fire has burned out.
1.10.2 Emissions

PammmemissiommedeﬁnedmmisdisamsimasmewmlcatchmeasmdbymeEPA
Method SH (Oregon Method 7) sampling train.! A small portion of wood stove particulate emissions
includes "solid" particles of elemental carbon and wood. The vast majority of particulate emissions is
condensed organic products of incomplete combustion equal to or less than 10 micrometers in
aerodynamic diameter (PM-10), Although reported particle size data are scarce, one reference states
that95percemﬁtheparticlesemmfmmawoodstovewere less than 0.4 micrometers in size,?
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Phase I stoves meet only the July 1, 1988 EPA standards; and Pre-Phase I stoves do not meet any of
the EPA standards but in most cases do necessarily meet the Oregon 1986 certification standards.’
The emission factors for PM and CO in Tables 1.10-1 and 1.10-2 are averages, derived entirely from
field test data obtained under actual operating conditions. Still, there is a potential for higher
emissions from some wood stove, pellet stove and masonry heater models.

As mentioned, particulate emissions are defined as the total emissions equivalent to that
collected by EPA Method SH. This method employs a heated filter followed by three impingers, an
unheated filter, and a final impinger. Particulate emissions factors are presented as values equivalent
to that collected with Method SH. Conversions are employed, as appropriate, for data collected with
other methods.

Table 1.10-7 shows net efficiency by device type, determined entirely from field test data. Net
or overall efficiency is the product of combustion efficiency multiplied by heat transfer efficiency.
Wood heater efficiency is an important parameter used, along with emission factors and percent
degradation, when calculating PM-10 emission reduction credits. Percent degradation is related to the
loss in effectiveness of a wood stove control device or catalyst over a period of operation. Control
degradation for any stove, including noncatalytic wood stoves, may also occur as a result of
deteriorated seals and gaskets, misaligned baffles and bypass mechanisms, broken refractories, or other
damaged functional components. The increase in emissions which can result from control degradation
has not been quantified. However, recent wood stove testing in Colorado and Oregon should produce
results which allow estimation of emissions as a function of stove age.
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TABLE 1.10-3. (ENGLISH AND METRIC UNITS) ORGANIC COMPOUND EMISSION
FACTORS FOR RESIDENTIAL WOOD COMBUSTION®
(Source Classnﬁcauon Codes)

(EMISSION FACTOR RATING: E)p

Compounds WOOD STOVE TYPE
Conventional Catalytic

(SCC 2104008051) (SCC 2104008030)

1b/ton gkg Ibfton - ghkg
Ethane 1.470 0.735 1.376 0.688
Ethylene 4.490 2.245 3.482 1.741
Acetylene 1.124 0.562 0.564 0.282
Propane 0.358 0.179 - 0.158 0.079
Propene 1.244 0.622 0.734 0.367
i-Butane 0.028 0.014 0.010 0.005
n-Butane 0.056 0.028 0.014 0.007
Butenes® 1.192 0.596 0.714 - 0.357
Pentenes® 0.616 0.308 0.150 0.075
Benzene 1,938 0.969 1.464 0.732
Toluene 0.730 0.365 0.520 0.260
Furan 0.342 0.171 0.124 0.062
Methyl Ethyl Ketone 0.290 0.145 0.062 0.031
2-Methyl Furan 0.656 0.328 0.084 - 0.042
2,5-Dimethy] Furan 0.162 0.081 0.002 0.011
Furfural 0.486 0.243 0.146 0.073
O-Xylene : 0.202 0.101 0.186 0.093

"Reference 17. Units are in Ibs, of pollumnt/ton of dry wood bumed and grams of pollutant/kg of dry

°l -butene, 1-butene t-2-butene, c-2-butene, 2-me-1-butene, 2-me-butene are reported as butenes.
%1-pentene, t-2-pentene, and c-2-pentene are reported as pentenes.
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TABLE 1.10-4. (ENGLISH UNITS) POLYCYCLIC AROMATIC HYDROCARBON (PAH)
EMISSION FACTORS FOR RESIDENTIAL WOOD COMBUSTION®
(Source Classification Codes) -

(EMISSION FACTOR RATING: E)®

STOVE TYPE
Pollutant Conventional® Noncatalytic” Catalytic® Exempt Pellet’
(SCC (SCC (scc (SCC
2104008051) 2104008050) 2104008030) 2104008053)

PAH
Acenaphthene 0.010 0.010 0.006
Acenaphthylene 0212 0.032 0.068
Anthracene 0014 0.009 0.008
Benzo(a)Anthracene 0.020 <0001 0.024
Benzo(b)Fluoranthene 0.006 0.004 0.004 2.60E-05
Benzo(g,h,i)Fluoranthene 0.028 0.006
Benzo(k)Fluoranthene 0.002 <0,001 0.002
Benzo(g.h,i)Perylene 0.004 0.020 0.002
Benzo(a)Pyrene 0.004 0.006 0.004
Benzo(e)Pyrene 0.012 0.002 0.004

. Biphenyl | 0.022
Chrysene 0.012 0.010 0.010 752605
Dibenzo(a,h)Anthracene 0.000 0.004 0.002
7,12-Dimethylbenz(a)Anthracene 0.004
Fluoranthene 0.020 0.008 0.012 548805
Fluorene 0.024 0.014 0.014
Indeno(1,2,3,cd)Pyrene 0.000 0.020 . 0.004
9-Methylanthracene 0.004
12-Methylbenz(a)Anthracene 0.002
3-Methylchlolanthrene <0.001
1-Methylphenanthrene 0.030
Naphthalene 0288 0.144 0.186
Nitronaphthalene 0.000
Perylene 0.002
Phenanthrene 0.078 0.118 0.489 3.32E-05
Phenanthrol 0.000
Phenol <0.001
Pyrene 0.024 0.008 0.010 4.34E-05
PAH Total 0.730 0.500 0414

Unitsareinﬂ:s.ofpbﬂutant/tonofdrywoodbmed.
|’D::nashowahighdegwe:ot'variabilitywithintllesourcepopulalionand/orc:alma‘:‘romasmall:mml:ﬂ'of
sources. Factors may not be accurate for individual sources.
“Reference 17.

. “References 15, 18 - 20.

' “References 14 - 18.
tReference 27. Exempt = Exempt from 1988 NSPS (i.e., air : fuel >35:1).

7/93 External Combustion Sources 1.10-7




TABLE 1.10-5. (METRIC UNITS)

POLYCYCLIC AROMATIC HYDROCARBON (PAH)

EMISSION FACTORS FOR RESIDENTIAL WOOD COMBUSTION®
(Source Classification Codes) . '

(Emission Factor Rating: E)®

Pollutant STOVE TYPE

Conventional® Noncatalytic® Catalytic* Exempt Pelletf
(scc (scc (sCC (scc

2104008051) 2104008050) 2104008030) 2104008053)

PAH

Acenaphthene 0.005 0.005 0.003

Acenaphthylene 0.106 0.016 0.034

Anthracene 0.007 0.004 0.004

Benzo(a)Anthracene 0.010 <0.001 0.012

Benzo(b)Fluoranthene 0.003 0.002 0.002 1.30E-05

Benzo(g,h.i)Fluoranthene 0.014 0.003

Benzo(k)Fluoranthene 0.001 <0.001 0.001

Benzo(g,hi)Perylene - 0002 0.010 0.001

Benzo(a)Pyrene 0.002 0.003 0.002

Benzo(e)Pyrene 0.006 0.001 0.002

Biphenyl 0.011 .

Chrysene 0.006 0.005 . 0.005 3.76E-05

Dibenzo(a,h)Anthracene 0.000 0.002 0.001

7.,12-Dimethylbenz(a)Anthracene 0.002

Fluoranthene 0.010 0.004 0.006 2.74E-05

Fluorene 0.012 0.007 0.007

Indeno(1,2,3,cd)Pyrene 0.000 0.010 0.002

9-Methylanthracene 0.002

12-Methylbenz(a) Anthracene 0.001

3-Methylchlolanthrene <0.001

1-Methyiphenanthrene 0.015

Naphthalene 0.144 0072 0.093

Nitronaphthalene 0.000

Perylene 0.001

Phenanthrene 0.039 0.059 0.024 1.66E-05

Phenanthrol 0.000

Phenol <0,001

Pyrene 0.012 0.004 0.005 242E05

PAH Total 0.365 0.250 0.207

'Unilsareingmmsofpollutantlkgofdrywoodbmed. '
bDatashowahighdegreeofvariabilitywithinﬂ:esomcepopulaﬁonand/orcameﬁ'omasmnnmnberof

sources. Factors may not be accurate for individual sonrces.

TReference 17. , '

“References 15, 18 - 20. ' .
‘References 14 - 18.

Reference 27. Exempt = Exempt from 19838 NSPS (i.e., air : fuel >35:1).
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TABLE 1.10-6. (ENGLISH AND METRIC UNITS) TRACE ELEMENT EMISSION FACTORS
FOR RESIDENTIAL WOOD COMBUSTION®
(Source Classification Codes)

(EMISSION FACTOR RATING: E)’

WOOD STOVE TYPE

Element Conventional Noncatalytic Catalytic
(SCC 2104008051) (SCC 2104008050) (SCC 2104008030)
Ib/ton gkg Ib/ton gkg Ib/ton gkg

Cadmium (Cd) 2905  11E05 2005  10E05  46E-05  23E05
Chromium (Cr)  <1OE06 <10E-06 <lOE-06 <lLOE-05 <10B-06  <LO-EOG
Mamganese (Mn)  17B04  87E05  14E04  70E05  22E04  LIEOA
Nickel (Ni) L4E.05  70E06 20B-05 1OE05  22E06  1OE-06

*References 14, 17. Units are in Ibs. of pollutant/ton of dry wood bumed and grams of pollutant/kg of

dry wood bumed.

”Ihcdaﬁused&devdop&meﬁahanﬂmwedamghdegrwofvaﬁabmanhmmesm
. population. Factors may not be accurate for individual sources.

TABLE 1.10-7. SUMMARY OF WOOD HEATER NET EFFICIENCIES®

Wood Heater Type Source Net Efficiency (%) Reference
Code
Wood Stoves
Conventional 2104008051 54 26
Noncatalytic 2104008050 68 9, 12, 26
Catalytic 2104008030 68 6, 26
Pellet Stoves®
Certified 2104008053 68 11
Exempt 56 27
Masonry Heaters
Al 2104008055 58 28

*Net efficiency is a function of both combustion efficiency and heat transfer efficiency.
The percentages shown here are based on data collected from in-home testing.
. bCertified = Certified pursuant to 1988 NSPS.
Exempt = Exempt from 1988 NSPS (i.c., air : fuel >35:1).
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1.11 WASTE OIL COMBUSTION
1.11.1 General'

Waste, orusedoﬂcanbebumedinavaﬁetyofcombusﬁonsystemsincludingindusuial
boilers; commercial/institutional boilers; space heaters; asphalt plants; cement and lime Kkilns; other
types of dryers and calciners; and steel production blast furnaces. Boilers and space heaters consume
the bulk of the waste oil bumed. Space heaters are small combustion units [generally less than 0.1
MW (250,000 Btw/hr input)] that are common in automobile service stations and automotive repair
shops where supplies of waste crankcase oil are available,

Boilers designed to bum No. 6 (residual) fuel oils or one of the distillate fuel oils can be used
1o bumn waste oil, with or without modifications for optimizing combustion. As an alternative to boiler
modification, the properties of waste oil can be modified by blending it with fuel oil, to the extent
required to achieve a clean-buming fuel mixture.

1.11.2 Emissions and Controls"?

Waste oil includes used crankcase oils from automobiles and trucks, used industrial lubricating
oils (such as metal working oils), and other used industrial oils (such as heat transfer fluids). When
discarded, these oils become waste oils due to a breakdown of physical properties and to
contamination by the materials they come in contact with. The different types of waste oils may be
burned as mixtres or as single fuels where supplies allow; for example, some space heaters in
automotive service stations bum waste crankcase oils.

Contamination of the virgin oils with a variety of materials leads to an air pollution potential
when these oils are burned. Potential pollutants include particulate matter (PM), small particles below
10 micrometers in size (PM-10), toxic metals, organic compounds, carbon monoxide (CO), sulfur
oxides (SO,), nitrogen oxides (NO,), hydrogen chioride, and global warming gases (CO,, methane).

Ash levels in waste oils are normally much higher than ash levels in either distillate oils or
residual oils. Waste oils have substantially higher concentrations of most of the trace elements
reported relative to those concentrations found in virgin fuel oils. However, because of the shift to
unleaded gasoline, the concentration of lead in waste crankcase oils has continued to decrease in recent
years. Without air pollution controls, higher concentrations of ash and trace metals in the waste fuel
translate to higher emission levels of PM and trace metals than is the case for virgin fuel oils.

Low efficiency pretreatment steps, such as large particle removal with screens or coarse filters,
are common prefeed procedures at oil-fired boilers. Reductions in total PM emissions can be expected
from these techniques but little or no effects have been noticed on the levels of (PM-10) emissions.

Constituent chlorine in waste oils typically exceeds the concentration of chlorine in virgin
distillate and residual oils. High levels of halogenated solvents are often found in waste oil as a result
of inadvertent or deliberate additions of the contaminant solvents to the waste oils. Many efficient
combustors can destroy more than 99.99 percent of the chlorinated solvents present in the fuel.
However, given the wide array of combustor types which bum waste oils, the presence of these
compounds in the emission stream cannot be ruled out.

793 External Combustion Sources 1.11-1




The flue gases from waste oil combustion often contain organic compounds other than
chlorinated solvents. At ppmw levels, several hazardous organic compounds have been found in waste
oils. Benzene, toluene, polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-d-dioxins are a
few of the hazardous compounds that have been detected in waste oil samples. - Additionally, these
hazardous compounds may be formed in the combustion process as products of incomplete

. Emission factors and emission factor ratings for waste oil combustion are shown in Tables
L.11-1 through 1.11-5. Emission factors have been determined for emissions from uncontrolled small
boilers and space heaters combusting waste oil. The use of both blended and unblended fuels is
included in the mix of combustion operations.

. Emissions from waste oil used in batch asphalt plants may be estimated using the procedures
outlined in Section 4.5.
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2. SOLID WASTE DISPOSAL.

As defined in the Solid Waste Disposal Act of 1965, the term “solid waste™ means garbage, refuse, and other
discarded solid materials, including solid-waste materials resulting from industrial, commercial, and agricultural
operations, and from community activities. It includes both combustibles and noncombustibles.

Solid wastes may be classified into four general categories: urban, industrial, mineral, and agricultural.
Although urban wastes represent only a relatively small part of the total solid wastes produced, this category has
a large potential for air pollution since in heavily populated areas solid waste is often burned to reduce the bulk
of material requiring final disposal ! The following discussion will be lirhited to the urban and industrial waste
categories.

An average of 5.5 pounds (2.5 kilograms) of urban refuse and garbage is collected per capita per day in the
United States.2 This figure does not include uncollected urban and industrial wastes that are disposed of by other
means. Together, uncollected urban and industrial wastes contribute at least 4.5 pounds (2.0 kilograms) per
capita per day. The total gives a conservative per capita generation rate of 10 pounds (4.5 kilograms) per day of
urban’and industrial wastes. Approximately 50 percent of all the urban and industrial waste generated in the
United States is burned, using a wide variety of combustion methods with both enclosed and open
burning3. Atmospheric emissions, both gaseous and particulate, result from refuse disposal operations that use
combustion to reduce the quantity of refuse. Emissions from these combustion processes cover a wide range
because of their dependence upon the refuse burned, the method of combustion or incineration, and other
factors. Because of the large number of variables involved, it is not possible, in general, to delineate when a higher
or lower emission factor, or an intermediate value should be used. For this reason, an average emission factor has
been presented.

References

1. Solid Waste - It Will Not Go Away. League of Women Voters of the United States. Publication Number 675.
April 1971,

2. Black, R.J., HL. Hickman, Jr.. AJ. Klee, A.J. Muchick, and R.D. Vaughan. The National Solid Waste
Survey: An Interim Report. Public Health Service, Environmental Control Administration. Rockville, Md.
1968.

3. Nationwide Inventory of Air Pollutant Emissions, 1968. U.S. DHEW, PHS, EHS, National Air Pollution
Control Administration. Raleigh, N.C. Publication Number AP-73. August 1970.
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2.1 REFUSE COMBUSTION

Refuse combustion involves the burning of garbage and other nonhazardous solids, commonly
called municipal solid waste (MSW). Types of combustion devices used to burn refuse include single
chamber units, multiple chamber units, and trench incinerators.

2.1.1 General!?

As of January 1992, there were over 160 municipal waste combustor (MWC) plants operating
in the United States with capacities greater than 36 megagrams per day (Mg/day) [40 tons per day
(tpd)], with a total capacity of approximately 100,000 Mg/day (110,000 tpd of MSW).! Itis
projected that by 1997, the total MWC capacity will approach 150,000 Mg/day (165,000 tpd), which
represents approximately 28 percent of the estimated total amount of MSW generated in the United
States by the year 2000.

Federal regulations for MWCs are currently under three subparts of 40 CFR Part 60. Subpart
E covers MWC units that began construction after 1971 and have capacities to combust over
45 Mg/day (50 tpd) of MSW. Subpart Ea establishes new source performance standards (NSPS) for
MWC units which began construction or modification after December 20, 1989 and have capacities
over 225 Mg/day (250 tpd). An emission guideline (EG) was established under Subpart Ca covering
MWC units which began construction or modification prior to December 20, 1989 and have capacities
of greater than 225 Mg/day (250 tpd). The Subpart Ea and Ca regulations were promulgated on
February 11, 1991.

Subpart E includes a standard for particulate matter (PM). Subpart Ca and Ea currently
establish standards for PM, tetra- through octa- chlorinated dibenzo-p-dioxin/chlorinated
dibenzofurans (CDD/CDFs), hydrogen chloride (HCI), sulfur dioxide (SO,), nitrogen oxides (NO,)
(Subpart Ea only), and carbon monoxide (CQ). Additionally, standards for mercury (Hg), lead (Pb),
cadmium (Cd), and NO, (for Subpart Ca) are currently being considered for new and existing
facilities, as required by Section 129 of the Clean Air Act Amendments (CAAA) of 1990.

In addition to requiring revisions of the Subpart Ca and Ea regulations to include these
additional pollutants, Section 129 also requires the EPA to review the standards and guidelines for the
pollutants currently covered under these subparts. It is likely that the revised regulations will be more
stringent. The regulations are also being expanded to cover new and existing MWC facilities with
capacities of 225 Mg/day (250 tpd) or less. The revised regulations will likely cover facilities with
capacities as low as 18 to 45 Mg/day (20 to 50 tpd). These facilities are currently subject only to
State regulations. :

2.1.1.1 Combustor Technology — There are three main classes of technologies used to combust
MSW: mass burn, refuse-derived fuel (RDF), and modular combustors. This section provides a
general description of these three classes of combustors. Section 2.1.2 provides more details
regarding design and operation of each combustor class.

With mass burn units, the MSW is combusted without any preprocessing other than removal

of items too large to go through the feed system. In a typical mass burn combustor, refuse is placed
on a grate that moves through the combustor. Combustion air in excess of stoichiometric amounts is
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supplied both below (underfire air) and above (overfire air) the grate. Mass burn combustors are
usually erected at the site (as opposed to being prefabricated at another location), and range in size .
from 46 to 900 Mg/day (50 to 1,000 tpd) of MSW throughput per unit. The mass burn combustor
category can be divided into mass burn/waterwall (MB/WW), mass burn/rotary waterwall combustor
(MB/RC), and mass burn refractory wall (MB/REF) designs. Mass burn/waterwall designs have
water-filled tubes in the furnace walls that are used to recover heat for production of steam and/or
electricity. Mass burn/rotary waterwall combustors use a rotary combustion chamber constructed of
water-filled tubes followed by a waterwall furnace, Mass burn refractory designs are older and
typically do not include any heat recovery. Process diagrams for a typical MB/WW combustor, a
MB/RC combustor, and one type of MB/REF combustor are presented in Figures 2.1-1, 2.1-2 and
2.1-3, respectively.

Refuse-derived fuel combustors burn processed waste that varies from shredded waste to
finely divided fuel suitable for co-firing with pulverized coal. Combustor sizes range from 290 to
1,300 Mg/day (320 to 1,400 tpd). A process diagram for a typical RDF combustor is shown in
Figure 2.1-4, Waste processing usually consists of removing noncombustibles and shredding, which
generally raises the heating value and provides a more uniform fuel. The type of RDF used depends
on the boiler design. Most boilers designed to burn RDF use spreader stokers and fire fluff RDF in a
semi-suspension mode. A subset of the RDF technology is fluidized bed combustors (FBC).

Modular combustors are similar to mass burn combustors in that they burn waste that has not
been pre-processed, but they are typically shop fabricated and generally range in size from 4 to
130 Mg/day (5 to 140 tpd) of MSW throughput. One of the most common types of modular
combustors is the starved air or controlied air type, which incorporates two combustion chambers. A
process diagram of a typical modular starved-air (MOD/SA) combustor is presented in Figure 2.1-5, .
Air is supplied to the primary chamber at sub-stoichiometric levels. The incomplete combustion
products (CO and organic compounds) pass into the secondary combustion chamber where additional
air is added and combustion is completed. Another type of modular combustor design is the modular
excess air (MOD/EA) combustor which consists of two chambers as with MOD/SA units, but is
functionally similar to mass burn unit in that it uses excess air in the primary chamber.

2.1.2  Process Description*
Types of combustors described in this section include:
. Mass burn waterwall, |
L Mass burn rotary waterwall,
° Mass burn refractory wall,
L Refuse-derived fuel-fired,
Fiuidized bed,

o Modular starved air, and
. Modular excess air. : :
2.1.2.1 Mass Burn Waterwall Combustors — The MB/WW design represents the predominant .

technology in the existing population of large MWCs, and it is expected that over 50 percent of new
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Figure 2.1-2. Simplified process flow diagram
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Nearly all modern MB/WW facilities utilize reciprocating grates or roller grates to move the
waste through the combustion chamber. The grates typically include three sections. On the initial
grate section, referred to as the drying grate, the moisture content of the w
ignition. The second grate section, referred to as the burning grate, is wh
burning takes place. The third grate section, referred to as the burnout or finishing grate, is where
remaining combustibles in the waste are burped. Smaller units may have only two individual grate
sections. Bottom ash is discharged from the finishing grate into a water-filled ash quench pit or ram
discharger. From there, the moist ash is discharged to a conveyor system and transported to an ash
load-out or storage area prior to disposal. Dry ash systems have been used in some designs, but their
use is not widespread.

Combustion air is added from beneath the grate by way of underfire air plenums. The
majority of MB/WW systems supply underfire air to the individual grate sections through multiple

The flue gas exits the combustor and passes through additional heat recovery sections to one
or more air pollution control devices (APCD). The types of APCDs that may be used are discussed
in Section 2.1.4. '

2.1.2.2 Mass Burn Rotary Waterwall Combustors —~ A more unique mass burn design is the MB/RC.
Plants of this design range in size from 180 to 2,400 Mg/day (200 to 2,700 tpd), with typically two
or three units per plant. This type of system uses a rotary combustion chamber. Following pre-
sorting of objects too large to fit in the combustor, the waste is ram fed to the inclined rotary
combustion chamber, which rotates slowly, causing the waste to advance and tumble as it burns.
Underfire air is injected through the waste bed, and overfire air is provided above the waste bed.
Bottom ash is discharged from the rotary combustor to an afterburner grate and then into a wet
quench pit. From there, the moist ash is conveyed to an ash load-out or storage area prior to
disposal.

Approximately 80 percent of the combustion air is provided along the rotary combustion
chamber length, with most of the air provided in the first half of the chamber. The rest of the
combustion air is supplied to the afterburner grate and above the rotary combustor outlet in the boiler.
The MB/RC operates at about 50 percent excess air, compared with 80 to 100 percent for typical
MB/WW firing systems. Water flowing through the tubes in the rotary chamber recovers heat from c

2.1-8 EMISSION FACTORS 7/93



combustion. Additional heat recovery occurs in the boiler waterwall, superheater, and economizer.
From the economizer, the flue gas is typically routed to APCDs.

2.1.2.3 Mass Burn Refractory Wall Combustors - Prior to 1970 there were numerous MB/REF
MWCs in operation. The purpose of these plants was to achieve waste reduction;.energy recovery
was generally not incorporated in their design. Most of the roughly 25 MB/REF plants that still
operate or that were built in the 1970s and 1980s use electrostatic precipitators (ESPs) to reduce PM
emissions, and several have heat recovery boilers. Most MB/REF combustors have unit sizes of 90
to 270 Mg/day (100 to 300 tpd). It is not expected that additional plants of this design will be built in
the United States.

The MB/REF combustors comprise several designs. One design involves a batch-fed upright
combustor, which may be cylindrical or rectangular in shape. A second design is based on a
rectangular combustion chamber with a traveling, rocking, or reciprocating grate. This type of
combustor is continuously fed and operates in an excess air mode. If the waste is moved on a
traveling grate, it is not sufficiently aerated as it advances through the combustor. As a result, waste
burnout or complete combustion is inhibited by fuel bed thickness, and there is considerable potential
for unburned waste to be discharged into the bottom ash pit. Rocking and reciprocating grate systems
stir and aerate the waste bed as it advances through the combustion chamber, thereby improving
contact between the waste and combustion air and increasing the burnout of combustibles. The
system generally discharges the ash at the end of the grate to a water quench pit for collection and
disposal in a landfill.

Because MB/REF combustors do not contain a heat transfer medium (such as the waterwalls
that are present in modern energy recovery units), they typically operate at higher excess air rates
(150 to 300 percent) than MB/WW combustors (80 to 100 percent). The higher excess air levels are
required to prevent excessive temperatures, which can result in refractory damage, slagging, fouling,
and corrosion problems. One adverse effect of higher excess air levels is the potential for increased
carryover of PM from the combustion chamber and, ultimately, increased stack emission rates. High
PM carryover may also contribute to increased CDD/CDF emissions by providing increased surface
area for downstream catalytic formation to take place. A second problem is the potential for high
excess air levels to quench (cool) the combustion reactions, preventing thermal destruction of organic
species.

An alternate, newer MB/REF combustor is the Volund design (Figure 2.1-3 presents this
MB/REF design). This design minimizes some of the problems of other MB/REF systems. A
refractory arch is installed above the combustion zone to reduce radiant heat losses and improve solids
burnout. The refractory arch also routes part of the rising gases from the drying and combustion
grates through a gas by-pass duct to the mixing chamber. There the gas is mixed with gas from the
burnout grate or kiln. Bottom ash is conveyed to an ash quench pit. Volund MB/REF combustors
operate with 80 to 120 percent excess air, which is more in line with excess air levels in the MB/WW
designs. As a result, lower CO levels and better organics destruction are achievable, as compared to
other MB/REF combustors.

21.2.4 Refuse-derived Fuel Combustors - Refuse-derived fuel combustors burn MSW that has been
processed to varying degrees, from simple removal of bulky and noncombustible items accompanied
by shredding, to extensive processing to produce a finely divided fuel suitable for co-firing in
pulverized coal-fired boilers. Processing MSW to RDF generally raises the heating value of the waste
because many of the noncombustible items are removed.
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A set of standards for classifying RDF types has been established by the American Society for
Testing and Materials. The type of RDF used is dependent on the boiler design. Boilers that are
designed to burn RDF as the primary fuel usually utilize spreader stokers and fire fluff RDF in a
semi-suspension mode. This mode of feeding is accomplished by using an air swept distributor,
which allows a portion of the RDF to burn in suspension and the remainder to be burned out after
falling on a horizontal traveling grate. The number of RDF distributors in a single unit varies
directly with unit capacity. The distributors are normally adjustable so that the trajectory of the waste
feed can be varied. Because the traveling grate moves from the rear to the front of the furnace,
distributor settings are adjusted so that most of the waste lands on the rear two-thirds of the grate.
This allows more time for combustion to be completed on the grate. Bottom ash drops into a water-
filled quench chamber, Some traveling grates operate at a single speed, but most can be manually
adjusted to accommodate variations in burning conditions. Underfire air is normally preheated and
introduced beneath the grate by a single plenum. Overfire air is injected through rows of high-
pressure nozzles, providing a zone for mixing and completion of the combustion process. These
combustors typically operate at 80 to 100 percent excess air.

Due to the basic design of the semi-suspension feeding systems, PM levels at the inlet to the
pollution control device are typically double those of mass burn systems and more than an order of
magnitude higher than MOD/SA combustors. The higher particulate loadings may contribute to the
catalytic formation of CDD/CDF. However, controlled Hg emissions from these plants are
considerably lower than from mass burn plants as a result of the higher levels of carbon present in the
PM carryover, as Hg adsorbs onto the carbon and can be subsequently captured by the PM control
device. '

Pulverized coal-(PC) fired boilers can co-fire fluff RDF or powdered RDF. In a PC-fired
boiler that co-fires fluff with pulverized coal, the RDF is introduced into the combustor by air
transport injectors that are located above or even with the coal nozzles. Due to its high moisture
content and large particle size, RDF requires a longer burnout time than coal. A significant portion
of the larger, partially burned particles disengage from the gas flow and fall onto stationary drop
grates at the bottom of the furnace where combustion is completed. Ash that accumulates on the
grate is periodically dumped into the ash hopper below the grate. Refuse-derived fuel can also be
co-fired with coal in stoker-fired boilers.

2.1.2.5 Fluidized Bed Combustors — In an FBC, fluff or pelletized RDF is combusted on a turbulent
bed of noncombustible material such as limestone, sand, or silica. In its simplest form, an FBC
consists of a combustor vessel equipped with a gas distribution plate and underfire air windbox at the
bottom. The combustion bed overlies the gas distribution plate. The combustion bed is suspended or
“fluidized" through the introduction of underfire air at a high flow rate, The RDF may be injected
into or above the bed through ports in the combustor wall. Other wastes and supplemental fuel may
be blended with the RDF outside the combustor or added into the combustor through separate
openings. Overfire air is used to complete the combustion process.

There are two basic types of FBC systems: bubbling bed and circulating bed. With bubbling
bed combustors, most of the fluidized solids are maintained near the bottom of the combustor by
using relatively low air fluidization velocities. This helps reduce the entrainment of solids from the
bed into the flue gas, minimizing recirculation or reinjection of bed particles. In contrast, circulating

bed combustors operate at relatively high fluidization velocities 0 promote carryover of solids into the -

upper section of the combustor. Combustion occurs in both the bed and upper section of the
combustor. By design, a fraction of the bed material is entrained in the combustion gas and enters a
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cyclone separator which recycles unburned waste and inert particles to the lower bed. Some of the
ash is removed from the cyclone with the solids from the bed.

Good mixing is inherent in the FBC design. Fluidized bed combustors have very uniform gas
temperatures and mass compositions in both the bed and in the upper region of the combustor. This
allows the FBCs to operate at lower excess air and temperature levels than conventional combustion
systems. Waste-fired FBCs typically operate at excess air levels between 30 and 100 percent and at
bed temperatures around 815°C (1,500°F). Low temperatures ar¢ necessary for waste-firing FBCs
because higher temperatures lead to bed agglomeration.

2.1.2.6 Modular Starved-air (Controlled-air) Combustors — In terms of number of facilities,
MOD/SA combustors represent a large segment of the existing MWC population. However, because
of their small sizes, they account for only a small percent of the total capacity. The basic design of a
MOD/SA combustor consists of two separate combustion chambers, referred to as the "primary” and
“secondary” chambers. Waste is batch-fed to the primary chamber by a hydraulically activated ram.
The charging bin is filled by a front end loader or other means. Waste is fed automatically on a set
frequency, with generally 6 to 10 minutes between charges. '

Waste is moved through the primary combustion chamber by either hydraulic transfer rams or
reciprocating grates. Combustors using transfer rams have individual hearths upon which combustion
takes place. Grate systems generally include two separate grate sections. In either case, waste
retention times in the primary chamber are long, lasting up to 12 hours. Bottom ash is usually
discharged to a wet quench pit.

The quantity of air introduced into the primary chamber defines the rate at which waste burns.
Combustion air is introduced in the primary chamber at sub-stoichiometric levels, resulting in a flue
gas rich in unburned hydrocarbons. The combustion air flow rate to the primary chamber is
controlled to maintain an exhaust gas temperature set point, generally 650 to 980°C (1,200 to
1,800°F), which corresponds to about 40 to 60 percent theoretical air.

As the hot, fuel-rich flue gases flow to the secondary chamber, they are mixed with additional
air to complete the burning process. Because the temperature of the exhaust gases from the primary
chamber is above the autoignition point, completing combustion is simply a matter of introducing air
into the fuel-rich gases. The amount of air added to the secondary chamber is controlied to maintain
a desired flue gas exit temperature, typicaily 980 to 1,200°C (1,800 to 2,200°F). Approximately
80 percent of the total combustion air is introduced as secondary air. Typical excess air levels vary
from 80 to 150 percent.

The walls of both combustion chambers are refractory lined. Early MOD/SA combustors did
not include energy recovery, but a waste heat boiler is common in newer installations, with two or
more combustion modules manifolded to a single boiler. Combustors with energy recovery
capabilities also maintain dump stacks for use in an emergency, or when the boiler and/or air
pollution control equipment are not in operation.

Most MOD/SA MWCs are equipped with auxiliary fuel burners located in both the primary
and secondary combustion chambers. Auxiliary fuel can be used during startup (many modular units
do not operate continuously) or when problems are experienced maintaining desired combustion

temperatures. In general, the combustion process is self-sustaining through control of air flow and
feed rate, so that continuous co-firing of auxiliary fuel is normally not necessary.
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2.1.2.7 Modular Excess Air Combustors — There are fewer MOD/EA MWCs than MOD/SA
MWCs. The design of MOD/EA units is similar to that of MOD/SA units, including the presence of
primary and secondary combustion chambers. Waste is batch-fed to the primary chamber, which is
refractory-lined. The waste is moved through the primary chamber by hydraulic transfer rams,
oscillating grates, or a revolving hearth. Bottom ash is discharged to a wet quench pit. Additional
flue gas residence time for fuel/carbon burnout is provided in the secondary chamber, which is also

Unlike the MOD/SA combustors but similar to MB/REF units, 2 MOD/EA combustor
typically operates at about 100 percent excess air in the primary chamber, but may vary between

2.1.3 Emissions*”’

Depending on the characteristics of the MSW and combustion conditions in the MWC, the
following pollutants can be emitted:

. PM,

. Metals (in solid form on PM, except for Hg),
. Acid gases (HCI, SO,),

. Co,

L NO,, and

. Toxic organics (most notably CDD/CDF).

A brief discussion on each of the pollutants is provided below, along with discussions on controls
used to reduce emissions of these pollutants to the atmosphere.

2.1.3.1 Particulate Matter —~ The amount of PM exiting the furnace of an MWC depends on the

Waste characteristics, the physical nature of the combustor design, and the combustor’s operation.
Under normal combustion conditions, solid fly ash particulates formed from inorganic,
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noncombustible constituents in MSW are released into the flue gas. Most of this particulate is
captured by the facility’s APCD and are not emitted to the atmosphere.

Particulate matter can vary greatly in size with diameters ranging from less than one
micrometer to hundreds of micrometers (um). Fine particulates, having diameters. less than 10pm
(known as PM-10), are of increased concern because a greater potential for inhalation and passage
into the pulmonary region exists. Further, acid gases, metals, and toxic organics may preferentially
adsorb onto particulates in this size range. The NSPS and EG for MWCs regulate total PM, while
PM-10 is of interest for State Implementation Plans and when dealing with ambient PM
concentrations. In this chapter, "PM" refers to total PM as measured by EPA Reference Method 5.

The level of PM emissions at the inlet of the APCD will vary according the combustor
design, air distribution, and waste characteristics. For example, facilities that operate with high
underfire/overfire air ratios or relatively high excess air levels may entrain greater quantities of PM
and have high PM levels at the APCD inlet. For combustors with multiple-pass boilers that change
the direction of the flue gas flow, part of the PM may be removed prior to the APCD. Lastly, the
physical properties of the waste being fed and the method of feeding influences PM levels in the flue
gas. Typically, RDF units have higher PM carryover from the furnace due to the suspension-feeding
of the RDF. However, controlled PM emissions from RDF plants do not vary substantially from
other MWCs (i.e., MB/WW), because the PM is efficiently collected in the APCD.

2.1.3.2 Metals — Metals are present in a variety of MSW streams, including paper, newsprint, yard
wastes, wood, batteries, and metal cans. The metals present in MSW are emitted from MWCs in
association with PM [e.g., arsenic (As), Cd, chromium (Cr), and Pb} and as vapors, such as Hg.
Due to the variability in MSW composition, metal concentrations are highly variable and are
essentially independent of combustor type. If the vapor pressure of a metal is such that condensation
onto particulates in the flue gas is possible, the metal can be effectively removed by the PM control
device. With the exception of Hg, most metals have sufficiently low vapor pressures to result in
almost all of the metals being condensed. Therefore, removal in the PM control device for these
metals is generally greater than 98 percent. Mercury, on the other hand, has a high vapor pressure at
typical APCD operating temperatures, and capture by the PM control device is highly variable. The
fevel of carbon in the fly ash appears to affect the level of Hg control. A high level of carbon in the
fly ash can enhance Hg adsorption onto particles removed by the PM control device.

5 1.3.3 Acid Gases — The chief acid gases of concern from the combustion of MSW are HCI and
SO,. Hydrogen fluoride (HF), hydrogen bromide (HBr), and sulfur trioxide (SO;) are also generally
present, but at much lower concentrations. Concentrations of HCl and SO, in MWC flue gases
directly relate to the chlorine and sulfur content in the waste. The chlorine and sulfur contents vary
considerably based on seasonal and local waste variations. Emissions of SO, and HC] from MWCs
depend on the chemical form of sulfur and chlorine in the waste, the availability of alkali materials in
combustion-generated fly ash that act as sorbents, and the type of emission control system used. Acid
gas concentrations are considered to be independent of combustion conditions. The major sources of
chlorine in MSW are paper and plastics. Sulfur is contained in many constituents of MSW, such as
asphalt shingles, gypsum wallboard, and tires. Because RDF processing does not generally impact
the distribution of combustible materials in the waste fuel, HCI and SO, concentrations for mass burn
and RDF units are similar. )

2.1.3.4 Carbon Monoxide — Carbon monoxide emissions result when all of the carbon in the waste

is not oxidized to carbon dioxide (CO,). High levels of CO indicate that the combustion gases were
not held at a sufficiently high temperature in the presence of oxygen (O,) for a long enough time to
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Because O, levels and air distributions vary among combustor types, CO levels also vary
among combustor types. For example, semi-suspension-fired RDF ynits generally have higher CO

CDD/CDF and CO indicates that high levels of CO (several hundred parts per million by volume
[ppmv]), corresponding to poor combustion conditions, frequently correlate with high CDD/CDF
emissions. When CO levels are low, however, correlations between CO and CDD/CDF are not well
defined (due to the fact that many mechanisms may contribute to CDD/CDE formation), but
CDD/CDF emissions are generally lower. '

2.1.3.5 Nitrogen Oxides -- Nitrogen oxides are products of all fuel/air combustion processes. Nitric
oxide (NO) is the primary component of NO,; however, nitrogen dioxide (NO,) and nitrous oxide
(N,0) are also formed in smaller amounts, The combination of the compounds is referred to as NO,.

temperatures [less than 1,090°C (2,000°F)], while fixation of atmospheric nitrogen occurs at higher
temperatures. Because of the relatively low temperatures at which MWC furnaces operate, 70 to

2.1.3.6 Organic Compounds ~ A variety of organic compounds, including CDD/CDF,
chlorobenzene (CB), polychlorinated biphenyls (PCBs), chlorophenols (CPs), and polyaromatic
hydrocarbons (PAHs) are present in MSW or can be formed during the combustion and :
post-combination processes. Organics in the flue £as can exist in the vapor phase or can be

design and operation of both the combustor and the APCDs.

Based on potential health effects, CDD/CDF has been a focus of many research and
regulatory activities, Due to toxicity levels, attention is most often placed on levels of CDD/CDF in
the tetra- through octa-homolog groups and specific isomers within those groups that have chlorine
substituted in the 2, 3, 7, and 8 positions. As noted earlier, the NSPS and EG for MWCs regulate
the total tetra- through octa-CDD/CDF.

2.1.4 Controls®10
A wide variety of control technologies are used to control emissions from MWCs. The

control of PM, along with metals that have adsorbed onto the PM, is most frequently accomplished
through the use of an ESP or fabric filter (FF). Although other PM control technologies (e.g.,
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cyclones, electrified gravel beds, and venturi scrubbers) are available, they are seldom used on
existing systems, and it is anticipated that they will not be frequently used in future MWC systems.
The control of acid gas emissions (i.e., SO, and HCI) is most frequently accomplished through the
application of acid gas control technologies such as spray drying or dry sorbent injection, followed by
a high efficiency PM control device. Some facilities use a wet scrubber to control acid gases. It is
anticipated that dry systems (spray drying and dry sorbent injection) will be more widely used than
wet scrubbers on future U. S. MWC systems. Each of these technologies is discussed in more detail
below,

2.1.4.1 Electrostatic Precipitators — Electrostatic precipitators consist of a series of high-voltage (20
to 100 kilovolts) discharge electrodes and grounded metal plates through which PM-laden flue gas
flows. Negatively charged ions formed by this high-voltage field (known as a "corona”) attach to PM
in the flue gas, causing the charged particles to migrate toward, and be collected on, the grounded
plates. The most common types of ESPs used by MWCs are (1) plate wire units in which the
discharge electrode is a bottom weighted or rigid wire, and (2) flat plate units which use flat plates
rather than wires as the discharge electrode.

As a general rule, the greater the amount of collection plate area, the greater the ESP’s PM
collection efficiency. Once the charged particles are collected on the grounded plates, the resulting
dust layer is removed from the plates by rapping, washing, or some other method and collected in a
hopper. When the dust layer is removed, some of the collected PM becomes re-entrained in the flue
gas. To assure good PM collection efficiency during plate cleaning and electrical upsets, ESPs have
several fields located in series along the direction of flue gas flow that can be energized and cleaned
independently. Particles re-entrained when the dust layer is removed from one field can be
recollected in a downstream field. Because of this phenomena, increasing the number of fields
generally improves PM removal efficiency.

Small particles generally have lower migration velocities than large particles and are therefore
more difficult to collect. This factor is especially important to MWCs because of the large amount of
total fly ash smaller than 1 pm. As compared to pulverized coal fired combustors, in which only 1 to
3 percent of the fly ash is generally smaller than 1 um, 20 to 70 percent of the fly ash at the inlet of
the PM control device for MWCs is reported to be smaller than 1 pm. As a result, effective
collection of PM from MWCs requires greater collection areas and lower flue gas velocities than
many other combustion types.

As an approximate indicator of collection efficiency, the specific collection area (SCA) of an
ESP is frequently used. The SCA is calculated by dividing the collecting electrode plate area by the
flue gas flow rate and is expressed as square feet of collecting area per 28 cubic meters per minute
(1000 cubic feet per minute) of flue gas. In general, the higher the SCA, the higher the collection
efficiency. Most ESPs at newer MWCs have SCAs in the range of 400 to 600. When estimating
emissions from ESP-equipped MWCs, the SCA of the ESP should be taken into consideration. Not
all ESPs are designed equally and performance of different ESPs will vary.

2 1.4.2 Fabric Filters — Fabric filters are also used for PM and metals control, particularly in
combination with acid gas control and flue gas cooling. Fabric filters (also known as "baghouses®)
remove PM by passing flue gas through a porous fabric that has been sewn into a cylindrical bag.
Multiple individual filter bags are mounted in an arranged compartment. A complete FF, in turn,
consists of 4 to 16 individual compartments that can be independently operated.
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As the flue gas flows through the filter bags, particulate is collected on the filter surface,
mainly through inertial impaction. The collected particulate builds up on the bag, forming a filter
cake. As the thickness of the filter cake increases, the pressure drop across the bag also increases.
Once pressure drop across the bags in a given compartment becomes excessive, that compartment is
generally taken off-line, mechanically cleaned, and then placed back on-line. .

Fabric filters are generally differentiated by cleaning mechanisms. Two main filter cleaning
mechanisms are used: reverse-air and pulse-jet. In a reverse-air FF, flue gas flows through

unsupported filter bags, leaving the particulate on the inside of the bags. The particulate builds up to

form a particulate filter cake. Ce excessive pressure drop across the filter cake is reached, air is
blown through the filter in the opposite direction, the filter bag collapses, and the filter cake falls off

the outside of the bags. To remove the particulate filter cake, compressed air is pulsed through the
inside of the filter bag, the filter bag expands and collapses to its pre-pulsed shape, and the filter cake

2.1.4.3 Spray Drying — Spray dryers (SD) are the most frequently used acid gas control technology
for MWCs in the United States. When used in combination with an ESP or FF, the system can
control CDD/CDF, PM (and metals), S0O,, and HCI emissions from MWCs. Spray dryer/fabric filter
systems are more common than SD/ESP systems and are used mostly on new, large MWCs. In the
spray drying process, lime slurry is injected into the SD through either a rotary atomizer or dual-fluid
nozzles. The water in the slurry evaporates to cool the flue gas, and the lime reacts with acid gases
to form calcium salts that can be removed by a PM control device. The SD is designed to provide
sufficient contact and residence time to produce a dry product before leaving the SD adsorber vessel.
The residence time in the adsorber vessel is typically 10 to 15 seconds. The particulate leaving the
SD contains fly ash plus calcium salts, water, and unreacted hydrated lime.

The key design and operating parameters that significantly affect SD performance are SD
outlet temperature and lime-to-acid gas stoichiometric ratio. The SD outlet approach to saturation
temperature is controlled by the amount of water in the slurry. More effective acid gas removal
occurs at lower approach to saturation temperatures, but the temperature must be high enough to
ensure the slurry and reaction products are adequately dried prior to collection in the PM control
device. For MWC flue gas containing significant chlorine, a minimum SD outlet temperature of
around 115°C (240°F) is required to control agglomeration of PM and sorbent by calcium chloride.
Outlet gas temperature from the SD is usually around 140°C (285°F).

The stoichiometric ratio is the molar ratio of calcium in the lime slurry fed to the SD divided
by the theoretical amount of calcium required to completely react with the inlet HCI and SO, in the
flue gas. At a ratio of 1.0, the moles of calcium are equal to the moles of incoming HCI and S0,.
However, because of mass transfer limitations, incomplete mixing, differing rates of reaction (SO,
reacts more slowly than HCI), more than the theoretical amount of lime is generally fed to the SD,
The stoichiometric ratio used in SD systems varies depending on the level of acid gas reduction
required, the temperature of the flue gas at the SD exit, and the type of PM control device used.
Lime is fed in quantities sufficient to react with the Peak acid gas concentrations expected without
severely decreasing performance. The lime content in the slurry is generally about 10 percent by
weight, but cannot exceed approximately 30 percent by weight without clogging of the lime slurry
feed system and spray nozzles. :

2.1.4.4 Dry Sorbent Injection - This type of technology has been developed primarily to control
acid gas emissions. However, when combined with flue gas cooling and either an ESP or FF,
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sorbent injection processes may also control CDD/CDF and PM emissions from MWCs. Two
primary subsets of dry sorbent injection technologies exist. The more widely used of these
approaches, referred to as duct sorbent injection (DSI), involves injecting dry alkali sorbents into flue
gas downstream of the combustor outlet and upstream of the PM control device. The second
approach, referred to as furnace sorbent injection (FSI), injects sorbent directly into the combustor.

In DSI, powdered sorbent is pneumatically injected into either a separate reaction vessel or a
section of flue gas duct located downstream of the combustor economizer or quench tower. Alkali in
the sorbent (generally calcium or sodium) reacts with HCl, HF, and SO, to form alkali salts fe.g.,
calcium chloride (CaCl,), calcium fluoride (CaF,), and calcium sulfite (CaS0;)). By lowering the
acid content of the flue gas, downstream equipment can be operated at reduced temperatures while
minimizing the potential for acid corrosion of equipment. Solid reaction products, fly ash, and
unreacted sorbent are collected with either an ESP or FF.

Acid gas removal efficiency with DSI depends on the method of sorbent injection, flue gas
temperature, sorbent type and feed rate, and the extent of sorbent mixing with the flue gas. Not all
DSI systems are of the same design, and performance of the systems will vary. Flue gas temperature
at the point of sorbent injection can range from about 150 to 320°C (300 to 600°F) depending on the
sorbent being used and the design of the process. Sorbents that have been successfully tested include
hydrated lime (Ca(OH),), soda ash (Na,CO,), and sodium bicarbonate (NaHCO,). Based on
published data for hydrated lime, some DSI systems can achieve removal efficiencies comparable to
SD systems; however, performance is generally lower.

By combining flue gas cooling with DS, it may be possible to increase CDD/CDF removal
through a combination of vapor condensation and adsorption onto the sorbent surface. Cooling may
also benefit PM control by decreasing the effective flue gas flow rate (i.e., cubic meters per minute)
and reducing the resistivity of individual particles.

Furnace sorbent injection involves the injection of powdered alkali sorbent (either lime or
limestone) into the furnace section of a combustor. This can be accomplished by addition of sorbent
to the overfire air, injection through separate ports, or mixing with the waste prior to feeding to the
combustor. As with DSI, reaction products, fly ash, and unreacted sorbent are collected using an

ESP or FF.

The basic chemistry of FSI is similar to DSI. Both use a reaction of sorbent with acid gases
to form alkali salts. However, several key differences exist in these two approaches. First, by
injecting sorbent directly into the furnace [at temperatures of 870 to 1,200°C (1 ,600 to 2,200°F)]
limestone can be calcined in the combustor to form more reactive lime, thereby allowing use of less
expensive limestone as a sorbent. Second, at these temperatures, SO, and lime react in the
combustor, thus providing a mechanism for effective removal of SO, at relatively low sorbent feed
rates. Third, by injecting sorbent into the furnace rather than into a downstream duct, additional time
is available for mixing and reaction between the sorbent and acid gases. Fourth, if a significant
portion of the HCI is removed before the flue gas exits the combustor, it may be possible to reduce
the formation of CDD/CDF in latter sections of the flue gas ducting. However, HCI and lime do not
react with each other at temperatures above 760°C (1,400°F). This is the flue gas temperature that
exists in the convective sections of the combustor. Therefore, HC removal may be lower than with
DSI. Potential disadvantages of FSI include fouling and erosion of convective heat transfer surfaces
by the injected sorbent. '
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2.1.4.5 Wet Scrubbers - Many types of wet scrubbers have been used for controlling acid gas
emissions from MWCs. These include Spray towers, centrifugal scrubbers, and venturi scrubbers.
Wet scrubbing technology has primarily been used in Japan and Europe. Currently, it is not

followed by a one- or two-stage absorber system. With single-stage scrubbers, the flue gas reacts
with an alkaline scrubber liquid to simultaneously remove HC] and SO,. With two-stage scrubbers, a
low-pH water scrubber for HCI removal is installed upstream of the alkaline SO, scrubber. The
alkaline solution, typically containing calcium hydroxide [Ca(OH),], reacts with the acid gas to form
salts, which are generally insoluble and may be removed by sequential clarifying, thickening, and
vacuum filtering, The dewatered salts or sludges are then disposed. : :

2.1.4.6 Nitrogen Oxide Control Techniques — The control of NO, emissions can be accomplished
through either combustion controls or add-on controls. Combustion controls include staged
combustion, low excess air (LEA), and flue gas recirculation (FGR). Add-on controls which have
been tested on MWCs include selective noncatalytic reduction (SNCR), selective catalytic reduction
(SCR), and natural gas reburning.

~ Combustion controls involve the control of temperature or 0, to reduce NO, formation.
With LEA, less air is supplied, which lowers the supply of O, that is available to react with N, in the
combustion air, In staged combustion, the amount of underfire air is reduced, which generates a

With SNCR, ammonia (NH3,) or urea is injected into the furnace along with chemical
additives to reduce NO, to N, without the use of catalysts. Based on analyses of data from U.S.
MWCs equipped with SNCR, NO, reductions of 45 percent are achievable.

Natural gas reburning involves limiting combustion air produce an LEA zone. Recirculated
flue gas and natural gas are then added to this LEA zone to produce a fuel-rich zone that inhibits NO,
formation and promotes reduction of NO; to N,. Natural gas reburning has been evaluated on both
pilot- and full-scale applications and achieved NO, reductions of 50 to0 60 percent.

2.1.5 Mercury Controls!1-14

Unlike other metals, Hg exists in vapor form at typical APCD operating temperatures. As a
result, collection of Hg in the APCD is highly variable. Factors that affect Hg control are good PM
control, low temperatures in the APCD system, and a sufficient level of carbon in the fly ash.

Higher levels of carbon in the fly ash enhance Hg adsorption onto the PM, which is removed by the
PM control device. To keep the Hg from volatilizing, it is important to operate the control systems at
low temperatures, generally less than about 300 to 400°F. .
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Several mercury control technologies have been used on waste combustors in the
United States, Canada, Europe, and Japan. These control technologies include the injection of
activated carbon or sodium sulfide (Na,$) into the flue gas prior to the DSI- or SD-based acid gas
control system, or the use of activated carbon filters. :

With activated carbon injection, Hg is adsorbed onto the carbon particle, which is then
captured in the PM control device. Test programs using activated carbon injection on MWCs in the
United States have shown Hg removal efficiencies of 50 to over 95 percent, depending on the carbon
feed rate. '

Sodium sulfide injection involves spraying Na,$ solution into cooled flue gas prior to the acid
gas control device. Solid mercuric sulfide is precipitated from the reaction of Na,$ and Hg and can
be collected in the PM control device. Results from tests on Furopean and Canadian MWCs have
shown removal efficiencies of 50 to over 90 percent. Testings on a U.S. MWC, however, raised
questions on the effectiveness of this technology due to possible oversights in the analytical procedure
used in Europe and Canada.

Fixed bed activated carbon filters are another Hg control technology being used in Europe.
With this technology, the flue gas is passed through a fixed bed of granular activated carbon where
the Hg is adsorbed. Segments of the bed are periodically replaced as system pressure drop increases.

2.1.6 Emissions'¥12!

Tables 2.1-1 through 2.1-9 present emission factors for MWCs. The tables are for distinct
combustor types (i.e., MB/WW, RDF), and include emission factors for uncontrolled (prior to any
pollution control device) levels and for controlled levels based on various APCD types (i.e., ESP,
SD/FF). There are a large amount of data available for this source category, and as a result of this,
many of the emission factors have high quality ratings. However, for some categories there were
only limited data, and the ratings are low. In these cases, one should refer to the EPA Background
Information Documents (BIDs) developed for the NSPS and EG, which more thoroughly analyze the
data than does AP-42, as well as discuss performance capabilities of the control technologies and
expected emission levels. Also, when using the MWC emission factors, it should be kept in mind
that these are average values, and emissions from MW(Cs are greatly affected by the composition of
the waste and may vary for different facilities due to seasonal and regional differences. The AP-42
background report for this section includes data for individual facilities that represent the range for a
combustor/control technology category.
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Table 2.1-9 (Metric and Eng

lish Units). EMISSION FACTORS FOR

MODULAR STARVED
AIR COMBUSTORS2:b
(SCCs 50100101, 50300114)
Uncontrolled ESPC
Emission Emission
Factor o Factor
Pollutant kg/Mg Ib/ton Rating kg/Mg Ib/ton Rating
pmd 1.72E+00 | 3.43E+00| B 1.74E-01 | 3.48E-01 B
As® 3.34E-4 | 6.69E-04 C 5.25E-05 | 1.05E-04 D
cde 1.20E-03 | 2.41E-03 D 2.30E-04 | 4.59E-04 D
Cre 1.65E-03 | 3.31E-03 C 3.08E-04 | 6.16E-04 D
Hge.f 2.8E-03 | 5.6 E-03 A 2.8 E03 | 5.6 E-03 A
Nie 2.76E-03 | 5.52E-03 D 5.04E-04 | 1.01E-03 E
Pbe —_ — 1.41E-03 | 2.82E-03 C
SOs 1.61E+00 | 3.23E+00 E * *
HCIe 1.08E+00 | 2.15E+00 D * *
NO,E 1.58E+00 | 3.16E+00 B * *
cog 1.50E-01 | 2.99E-01 B * *
CDD/CDFh | 1.47E-06 | 2.94E-06 D 1.88E-06 | 3.76E-06 Cc

a Emission factors were calculated from con
9,570 dscf/MBtu and a heating
be substituted by multiplying

dividing by 4,500 B/Ib. SCC

b Emission factors should be used for estimating long-term, not short.

centrations using an F-factor of
value of 4,500 Bw/Ib. Other heating values can
the emission

factor by the new heating value and
= Source Classification Code.

emission levels. This particularly applies to pollutants measured with a

continuous emission monitor

¢ ESP = Electrostatic Precipitator
d PM = total particulate matter, as measured with EPA Reference Method 5.

e Hazardous Air Pollutants

Amendments.

MOD/SA combustors.

£ Control of NO, and CO is not tied to traditi
h CDD/CDF = total tetra-throug
dibenzofurans, 2,3,7,8

Mercury levels based on emission levels measu

ing system (e.g., CO, NOy).

listed in Title I of the 1990 Clean Air Act

Hazardous Air Pollutants listed in Title I of the 1990 Clean Air Act
Amendments,
* = Same as "uncontrolled" for these pollutants.
~— = Not available

EMISSION FACTORS

term

" .
»

red at mass bum, MOD/EA, and

onal acid gas/PM control devices.
h octa-chlorinated dibenzo-p-dioxin/chlorinated
-tetrachlorodibenzo-p-dioxin and dibenzofurans are
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Another point to keep in mind when using emission factors is that certain control
technologies, specifically ESPs and DSI systems, are not all designed with equal performance
capabilities. The ESP and DSI-based emission factors are based on data from a variety of facilities
and represent average emission levels for MWCs equipped with these control technologies. To
estimate emissions for a specific ESP or DSI system, refer to either the AP-42 background report for
this section or the NSPS and EG BIDs to obtain actual emissions data for these facilities. These
documents should also be used when conducting risk assessments, as well as for determining removal
efficiencies. Since the AP-42 emission factors represent averages from numerous facilities, the
uncontrolled and controlled levels frequently do not correspond to simultaneous testing and should not
be used to calculate removal efficiencies.

Emission factors for MWCs were calculated from flue gas concentrations using an F-factor of
9,570 dry standard cubic feet per million British thermal unit (Btu) and an assumed heating value of
the waste of 4,500 Btu per pound (Bt/lb) for all combustors except RDF, for which a 5,500 Btu/lb
heating value was assumed. These are average values for MWCs, however, a particular facility may
have a different heating value for the waste. In such a case, the emission factors shown in the tables
can be adjusted by multiplying the emission factor by the actual facility heating value and dividing by
the assumed heating value (4,500 or 5,500 Buv/lb, depending on the combustor type). Also,
conversion factors to obtain concentrations, which can be used for developing more specific emission
factors or make comparisons to regulatory limits, are provided in Tables 2.1-10 and 2.1-11 for all
combustor types (except RDF) and RDF combustors, respectively.

Also note that the values shown in the tables for PM are for total PM, and the CDD/CDF
data represent total tetra- through octa-CDD/CDF. For SO,, NO,, and CO, the data presented in the
tables represent long-term averages, and should not be used to estimate short-term emissions. Refer
to the EPA BIDs which discuss achievable emission levels of SO,, NO;, and CO for different
averaging times based on analysis of continuous emission monitoring data. Lastly, for PM and
metals, levels for MB/WW, MB/RC, MB/REF, and MOD/EA were combined to determine the
emission factors, since these emissions should be the same for these types of combustors. For
controlled levels, data were combined within each control technology type (e.g., SD/FF data, ESP
data). For Hg, MOD/SA data were also combined with the mass burn and MOD/EA data.

2.1.7 Other Types Of Combustors!?2-134

Industrial/commercial Combustors - The capacities of these units cover a wide range,
generally between 23 and 1,800 kilograms (50 and 4,000 pounds) per hour. Of either single- or
multiple-chamber design, these units are ofien manually charged and intermittently operated. Some
industrial combustors are similar to municipal combustors in size and design. Emission control
systems include gas-fired afterburners, scrubbers, or both. Under Section 129 of the CAAA, these
types of combustors will be required to meet emission limits for the same list of pollutants as for
MWCs. The EPA has not yet established these limits.

Trench Combustors - Trench combustors, also called air curtain incinerators, forcefully
project a curtain of air across a pit in which open burning occurs. The air curtain is intended to
increase combustion efficiency and reduce smoke and PM emissions. Underfire air is also used to
increase combustion efficiency.
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Table 2.1-10. CONVERSION FACTORS FOR ALL COMBUSTOR TYPES

EXCEPT RDF
Divide By To Obtain*
For As, Cd, Cr, Hg, Ni, Pb, and CDD/CDF:
- kg/Mg refuse
Ib/ton refuse 4.03 x 106 pg/dscm
8.06 x 10-6
For PM:;
kg/Mg refuse 4.03 x 1073 mg/dscm
Ib/ton refuse 8.06 x 1073
For HCI:
kg/Mg refuse 6.15x 103 ppmv
Ib/ton refuse 1.23 x 102
For SOy:
kg/Mg refuse 1.07 x 102 ppmv
Ib/ton refuse 2.15x 102
For NOy:
kg/Mg refuse 7.70 x 10-3 ppmv
Ib/ton refuse 1.54 x 102
For CO: '
kg/Mg refuse 4.69 x 10-3 ppmv
Ib/ton refuse 9.4 x 103
*at 7 percent Oy,
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Table 2.1-11. CONVERSION FACTORS FOR REFUSE-DERIVED

FUEL COMBUSTORS
Divide By " To Obtain*
For As, Cd, Cr, Hg, Ni, Pb, and CDD/CDF:
kg/Mg refuse
Ib/ton refuse 4.92 x 106 pg/dscm
9.85 x 10
For PM:
kg/Mg refuse 492 x 107 mg/dscm
Ib/ton refuse 9.85 x 107
For HCl:
kg/Mg refuse 7.5 103 ppmv
Ib/ton refuse 1.5x 102
For SO3:
kg/Mg refuse 1.31 x 102 ppmv
Ib/ton refuse 2.62 x 1072
For NOg:
kg/Mg refuse 9.45 x 10-3 ppmv
Ib/ton refuse 1.89 x 102
For CO: '
kg/Mg refuse 5.75 x 1073 ppmv
Ib/ton refuse 1.15 x 102
*at 7 percent O7.
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Trench combustors can be built either above- or below-ground. They have refractory walls
and floors and are normally 8-feet wide and 10-feet deep. Length varies from 8 to 16 feet. Some
units have mesh screens to contain larger particles of fly ash, but other add-on pollution controls are
normally not used.

Trench combustors burning wood wastes, yard wastes, and clean lumf)er are exempt from
Section 129, provided they comply with opacity limitations established by the Administrator. The

primary use of air curtain incinerators is the disposal of these types of wastes, however, some of
these combustors are used to burn MSW or construction and demolition debris.

In some states, trench combustors are often viewed as a version of open burning and the use
of these types of units has been discontinued in some States.

Domestic Combustors - This category includes combustors niarketed for residential use.
These types of units are typically located at apartment complexes, residential buildings, or other
multiple family dwellings, and are generally found in urban areas. Fairly simple in design, they may

regulations.

Flue-fed Combustors - These units, commonly found in large apartment houses or other
multiple family dwellings, are characterized by the charging method of dropping refuse down the
combustor flue and into the combustion chamber. Modified flue-fed incinerators utilize afterburners
and draft controls to improve combustion efficiency and reduce emissions. Due to their small size,
these types of units are not currently covered by the MWC regulations.

Emission factors for industrial/commercial, trench, domestic, and flue fed combustors are
presented in Table 2.1-12. : _
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2.2 AUTOMOBILE BODY INCINERATION

The information presented in this section has been reviewed but not updated since it was
originally prepared because no recent data were found and it is rarely practiced today. Auto bodies
are likely to be shredded or crushed and used as scrap metal in secondary metal production
operations, which are discussed in Chapter 7. :

2.2.1 Process Description

Auto incinerators consist of a single primary combustion chamber in which one or several
partially stripped cars are burned. Sl" ires are removed.) Approximately 30 to 40 minutes is required
10 burn two bodies simultaneously.© As many as 50 cars per day can be burned in this batch-type
operation, depending on the capacity of the incinerator. Continuous operations in which cars are
placed on a conveyor belt and passed through a tunnel-type incinerator have capacities of more than

50 cars per 8-hour day.
2.2.2 Emissions and Ccmtrols1

Both the degree of combustion as determined by the incinerator design and the amount of
combustible material left on the car greatly affect emissions. Temperatures on the order of 1200°F
(650°C) are reached during auto body incineration.2 This relatively low combustion temperature is a
result of the large incinerator volume needed to contain the bodies as compared with the small
quantity of combustible material. The use of overfire air jets in the primary combustion chamber
increases combustion efficiency by providing air and increased turbulence.

In an attempt to reduce the various air pollutants produced by this method of burning, some
auto incinerators are equipped with emission control devices. Afterburners and low-voltage
electrostatic precipators have been used to reduce particulate emissions; the former also reduces some
of the gaseous emissions.3>4 When afterburners are used to control emissions, the temperature in the
secondary combustion chamber should be at least 1500°F (815°C). Lower temperatures result in
higher emissions. Emission factors for auto body incinerators are presented in Table 2.2-1.
Particulate matter is likely to be mostly in the PM-10 range, but no data are available to support this
hypothesis. Although no data are available, emissions of HCl are expected due to the increased use
of clorinated plastic materials in automobiles.
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Table 2.2-1. EMISSION FACTORS FOR AUTO BODY INCINERATIONa
EMISSION FACTOR RATING: D

—

With Afterburner ,

Ib/car

Uncontrolled

Pollutants

Particulatesb 2 0.9 1.5 0.68
Carbon monoxide¢ 2.5 1.1 Neg Neg
TOC (as CHg)¢ 0.5 0.23 Neg Neg
Nitrogen oxides (NO,)d 0.1 0.05 0.02 0.01
Aldehydes (HCOH)d 0.2 0.09 0.06 0.03
Organic acids (acetic)d 0.21 0.10 0.07 0.03

Based on 250 1b (113 kg) of combustible material on stripped car
body.

bReferences 2 and 4.

Based on data for open burning and References 2 and 5.
dReference 3.
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Pollution Control Association, 12:64-73, February 1962. '
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2.3 CONICAL BURNERS

The information presented in this section has not been updated since it was originally prepared
because no recent data were found. The use of conical burners is much less prevalent now than in
the past and they are essentially obsolete.

2.3.1 Process Dee;cription1

Conical burners are generally truncated metal cones with screened top vents. The charge is
placed on a raised grate by either conveyor or bulldozer; however, the use of a conveyor results in
more efficient burning. No supplemental fuel is used, but combustion air is often supplemented by
underfire air blown into the chamber below the grate and by overfire air introduced through
peripheral openings in the shell.

2.3.2 Emissions and Controls

The quantities and types of pollutants released from conical burners are dependent on the
composition and moisture content of the charged material, control of combustion air, type of charging
system used, and the condition in which the incinerator is maintained. The most critical of these
factors seems to be the level of maintenance on the incinerators. It is not uncommon for conical
burners to have missing doors and numerous holes in the shell, resulting in excessive combustion air,
low temperatures, and, therefore, high emission rates of combustible pollutzmus.2

Particulate control systems have been adapted to conical burners with some success. These

control systems include water curtains (wet caps) and water scrubbers. Emission factors for conical
burners are shown in Table 2.3-1.
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2.4 OPEN BURNING

2.4.1 Generall

Open burning can be done in open drums or baskets, in fields and yards, and in large open
dumps or pits. Materials commonly disposed of in this manner include municipal waste, auto body
components, landscape refuse, agricultural field refuse, wood refuse, bulky industrial refuse, and
leaves.

Current regulations prohibit open burning of hazardous waste. One exception is for open
burning and detonation of explosives, particularly waste explosives that have the potential to detonate,
-and bulk military propellants which cannot safely be disposed of through other modes of treatment.

The following Source Classification Codes (SCCs) pertain to open burning;:

Government
50100201 General Refuse
50100202 Vegetation Only

Commercial/Institutional
5020020 Wood
50200202 Refuse

Industrial
50300201 Wood/Vegetation/Leaves
50300202 Refuse
50300203 Auto Body Components
50300204 Coal Refuse Piles
50300205 Rocket Propellant

2.4.2 Emissions!-22

Ground-level open burning emissions are affected by many variables, including wind, ambient
temperature, composition and moisture content of the debris burned, and compactness of the pile. In
general, the relatively low temperatures associated with open burning increase emissions of particulate
matter, carbon monoxide, and hydrocarbons and suppress emissions of nitrogen oxides, Sulfur oxide
emissions are a direct function of the sulfur content of the refuse.

2.4.2.1 Municipal Refuse

Emission factors for the open burning of municipal refuse are presented in Table 2.4-1.

2.4.2.2 Automobile Components

Emission factors for the open burning of automobile components including upholstery, belts,
hoses, and tires are presented in Table 2.4-1.

Emission factors for the burning of scrap tires only are presented in Tables 2.4-2 through
2.4-4. Although it is illegal in many states to dispose of tires using open burning, fires often occur at

10/92 " Solid Waste Disposal 2.4-1




Table 2.4-1

Emission Factors for Open Burning of Municipal Refuse

Emission Factor Rating: D

vocCa
Sulfur Carbon Nitrogen
Source Particulate | Oxides | Monoxid Methane | Nonmeth Oxides
i € ane
Municipal Refuseb
kg/Mg 8 0.5 42 6.5 15 3
Ib/ton 16 1.0 85 13 30 6
Automobile Components®
kg/Mg 50 Neg. 62 5 16 2
Ib/ton 100 Neg. 125 10 32 4
-H_‘—"'——l‘—ﬁ_uu_—-_—__.._...——_ = m

3 Data indicate that VOC emissions are approximately 25% methane, 8% other saturates, 18%
olefins, 42% others (oxygenates, acetylene, aromatics, trace formaldehyde).

b References 2 and 7 .

© Reference 2. Upholstery, belts, hoses, and tires burned together.

tire stockpiles and through illegal burning activities. Of the emission factors presented here are used

to estimate emissions from an accidental tire fire, it should be kept in mind that emissions from

burning tires are generally dependent on the burn rate of the tire. A greater potential for emissions
exists at lower burn rates, such as when a tire is smoldering, rather than burning out of control. In
addition, the emission factors presented here for tire "chunks" are probably more appropriate than for
"shredded"” tire for estimating emissions from an accidental tire fire because there is likely to be more
air-space between the tires in an actual fire. As discussed in Reference 21, it is difficult to estimate
emissions from a large pile of tires based on these results, but emissions can be related to a mass burn
rate. To use the information presented here, it may be helpful to use the following estimates: tires
tested in Reference 21 weighed approximately 7 kilograms and one volume of one tire is
approximately 7 ft3 (15 pounds). Table 2.4-2 presents emission factors for particulate metals. Table

2.4-3 presents emission factors for polycyclic aromatic hydrocarbons (PAH’s), and Table 2.4-4

presents emissions for other volatile hydrocarbons. For more detailed information on this subject
consult the reference cited at the end of this chapter.

2.4.2.3 Agricultural Waste

Organic Agricuitural Waste. Organic refuse burning consists of burning field crops, wood,
and leaves. Emissions from organic agricultural refuse burning are dependent mainly on the moisture
content of the refuse and, in the case of the field crops, on whether the refuse is burned in a headfire

or a backfire. Headfires are started at the upwind side of a field and allowed to progress in the

direction of the wind, whereas backfires are started at the downwind edge and forced to progress in a

direction opposing the wind.

Other variables such as fuel loading (how much refuse material is burned per unit of land

area) and how the refuse is arranged (in piles, rows, or spread out) are also important in certain

instances. Emission factors for open agricultural burning are presented in Table 2.4-5 as a function

2.42
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of refuse type and also, in certain instances, as a function of burning techniques and/or moisture
content when these variables are known to significantly affect emissions. Table 2.4-5 also presents
typical fuel loading values associated with each type of refuse. These values can be used, along with
the corresponding emission factors, to estimate emissions from certain categories of agricultural
burning when the specific fuel loadings for a given area are not known.

Emissions from leaf burning are dependent upon the moisture content, density, and ignition
location of the leaf piles. Increasing the moisture content of the leaves generally increases the amount
of carbon monoxide, hydrocarbon, and particulate emissions. Carbon monoxide emissions decreases
if moisture content is high but increases if moisture content is low. Increasing the density of the piles
increases the amount of hydrocarbon and particulate emissions, but has a variable effect on carbon
monoxide emissions.

The highest emissions from open burning of leaves occur when the base of the leaf pile is
ignited. The lowest emissions generally arise from igniting a single spot on the top of the pile.
Particulate, hydrocarbon, and carbon monoxide emissions from window ignition (piling the leaves
into a long row and igniting one end, allowing it to burn toward the other end) are intermediate
between top and bottom ignition. Emission factors for leaf burning are presented in Table 2.4-6. For
more detailed information on this subject, the reader should consult the reference cited at the end of
this section,

Agricultural Plastic Film. Agricultural plastic film that has been used for ground moisture
and weed control. Large quantities of plastic film are commonly disposed of when field crops are
burned. The plastic film may also be gathered into large piles and burned separately or burned in an
air curtain. Emissions from burning agricultural plastic are dependent on whether the film is new or -
has been exposed to vegetation and possibly pesticides. Table 2.4-7 presents emission factors for
organic compounds emitted from burning new and used plastic film in piles or in piles where air has
been forced through them to simulate combustion in an air curtain. Table 2.4-8 presents emission
factors for PAH’s emitted from open burning of inorganic plastic film.

2.4-14 EMISSION FACTORS 10/92




Table 2.4-7
. Emission Factors for Organic Compounds From Burning Plastic Film?
Emission Factor Rating: C

o Condition of plastic
Unused Plastic Used Plastic
Pollutant Units Pileb Forced air® Pileb Forced air®
| Benzene (mg/kg plastic) 0.0478 0.0288 0.0123 0.0244
(1b/1000 tons plastic) 0.0955 0.0575 0.0247 0.0488
Toluene (mg/kg plastic) 0.0046 0.0081 0.0033 0.0124
(1b/1000 tons plastic) 0.0092 0.0161 0.0066 0.0248
Ethyl benzene | (mg/kg plastic) 0.0006 0.0029 0.0012 0.0056
(1b/1000 tons plastic) 0.0011 0.0058 | 0.0025 0.0111
1-Hexene (mg/kg plastic) 0.0010 0.0148 0.0043 0.0220
| (v/1000 tons plastic) 0.0020 0.0296 0.0086 0.0440

4Reference 22

YEmission factors are for plastic gathered in a pile and burned.
. CEmission factors are for plastic burned in a pile with a forced

air current.
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2.5 SEWAGE SLUDGE INCINERATION

There are approximately 170 sewage sludge incineration (SSI) plants in operation in the
United States. Three main types of incinerators are used: multiple hearth, fluidized bed, and electric
infrared. Some sludge is co-fired with municipal solid waste in combustors based on refuse
combustion technology (see Section 2.1). Refuse co-fired with sludge in combustors based on sludge
incinerating technology is limited to multiple hearth incinerators only.

Over 80 percent of the identified operating sludge incinerators are of the multiple hearth
design. About 15 percent are fluidized bed combustors and 3 percent are electric. The remaining
combustors co-fire refuse with sludge. Most sludge incinerators are located in the Eastern
United States, though there are a significant number on the West Coast. New York has the largest
number of facilities with 33. Pennsylvania and Michigan have the next-largest numbers of facilities
with 21 and 19 sites, respectively.

Sewage sludge incinerator emissions are currently regulated under 40 CFR Part 60, Subpart 0
and 40 CFR Part 61, Subparts C and E. Subpart 0 in Part 60 establishes a New Source Performance
Standard for particulate matter. Subparts C and E of Part 61—National Emission Standards for
Hazardous Air Pollution (NESHAP)—establish emission limits for beryllium and mercury,
respectively.

In 1989, technical standards for the use and disposal of sewage sludge were proposed as
40 CFR Part 503, under authority of Section 405 of the Clean Water Act. Subpart G of this
proposed Part 503 proposes to establish national emission limits for arsenic, beryllium, cadmium,
chromium, lead, mercury, nickel, and total hydrocarbons from sewage sludge incinerators. The
proposed limits for mercury and beryllium are based on the assumptions used in developing the
NESHAP’s for these pollutants, and no additional controls were proposed to be required. Carbon
monoxide emissions were examined, but no limit was proposed.

2.5.1 Process Description!-2

Types of incineration described in this section include:

. Multiple hearth,

o Fluidized bed, and

. Electric.

Single hearth cyclone, rotary kiln, and wet air oxidation are also briefly discussed.
2.5.1.1 Multiple Hearth Furnaces — The multiple hearth furnace was originally developed for
mineral ore roasting nearly a century ago. The air-cooled variation has been used to incinerate
sewage sludge since the 1930s. A cross-sectional diagram of a typical multiple hearth furnace is
shown in Figure 2.5-1. The basic multiple hearth furnace (MHF) is a vertically oriented cylinder.

The outer shell is constructed of steel, lined with refractory, and surrounds a series of horizontal
refractory hearths. A hollow cast iron rotating shaft runs through the center of the hearths. Cooling
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air is introduced into the shaft which extend above the hearths. Each rabble arm is equipped with a
number of teeth, approximately 6 inches in length, and spaced about 10 inches apart. The teeth are
shaped to rake the sludge in a spiral motion, alternating in direction from the outside in, to the inside
out, between hearths. Typically, the upper and lower hearths are fitted with four rabble arms, and
the middle hearths are fitted with two. Burners, providing auxiliary heat, are located in the sidewalls
of the hearths. :

In most multiple hearth furnaces, partially dewatered sludge is fed onto the perimeter of the
top hearth. The rabble arms move the sludge through the incinerator by raking the sludge toward the
center shaft where it drops through holes located at the center of the hearth. In the next hearth the
sludge is raked in the opposite direction. This process is repeated in all of the subsequent hearths.
The effect of the rabble motion is to break up solid material to allow better surface contact with heat
and oxygen. A sludge depth of about 1 inch is maintained in each hearth at the design sludge flow
rate. :

Scum may also be fed to one or more hearths of the incinerator, Scum is the material that
floats on wastewater. It is generally composed of vegetable and mineral oils, grease, hair, waxes,
fats, and other materials that will float. Scum may be removed from many treatment units including
preaeration tanks, skimming tanks, and sedimentation tanks. Quantities of scum are generally small
compared to those of other wastewater solids.

Ambient air is first ducted through the central shaft and its associated rabble arms. A
portion, or all, of this air is then taken from the top of the shaft and recirculated into the lowermost
hearth as preheated combustion air. Shaft cooling air which is not circulated back into the furnace is
ducted into the stack downstream of the air pollution control devices. The combustion air flows
upward through the drop holes in the hearths, countercurrent to the flow of the sludge, before being
exhausted from the top hearth. Air enters the bottom to cool the ash. Provisions are usually made to
inject ambient air directly into on the middle hearths as well.

From the standpoint of the overall incineration process, multiple hearth furnaces can be
divided into three zones. The upper hearths comprise the drying zone where most of the moisture in
the sludge is evaporated. The temperature in the drying zone is typically between 425 and 760°C
(800 and 1400°F). Sludge combustion occurs in the middle hearths (second zone) as the temperature
is increased to about 925°C (1700°F). The combustion zone can be further subdivided into the
upper-middle hearths where the volatile gases and solids are burned, and the lower-middie hearths
where most of the fixed carbon is combusted. The third zone, made up of the lowermost hearth(s), is
the cooling zone. In this zone the ash is cooled as its heat is transferred to the incoming combustion
air.

Muitiple hearth furnaces are sometimes operated with afterburners to further reduce odors and
concentrations of unburned hydrecarbons. In afierburning, furnace exhaust gases are ducted to a
chamber where they are mixed with supplemental fuel and air and completely combusted. Some
incinerators have the flexibility to allow sludge to be fed to a lower hearth, thus allowing the upper
hearth(s) to function essentially as an afterburner. '

Under normal operating condition, 50 to 100 percent excess air must be added to a MHF in
order to ensure complete combustion of the sludge. Besides enhancing contact between fuel and
oxygen in the furnace, these relatively high rates of excess air are necessary to compensate for normal
variations in both the organic characteristics of the sludge feed and the rate at which it enters the
incinerator. When an inadequate amount of excess air is available, only partial oxidation of the
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carbon will occur, with a resultant increase in emissions of carbon monoxide, soot, and hydrocarbons.
Too much excess air, on the other hand, can cause increased entrainment of particulate and
unnecessarily high auxiliary fuel consumption.

Multiple hearth furnace emissions are usually controlled by a venturi scrubber, an
impingement tray scrubber, or a combination of both. Wet cyclones and dry cyclones are also used.
Wet electrostatic precipitators (ESPs) are being installed as retrofits where tighter limits on particulate
matter and metals are required by State regulations.

2.5.1.2 Fluidized Bed Incinerators -- Fluidized bed technology was first developed by the petroleum
industry to be used for catalyst regeneration. Figure 2.5-2 shows the cross section diagram of a
fluidized bed furnace. Fluidized bed combustors (FBCs) consist of vertically oriented outer shell
constructed of steel and lined with refractory. Tuyeres (nozzles designed to deliver blasts of air) are
located at the base of the furnace within a refractory-lined grid. A bed of sand, approximately

0.75 meters (2.5 feet) thick, rests upon the grid. Two general configurations can be distinguished on
the basis of how the fluidizing air is injected into the furnace. In the "hot windbox" design the
combustion air is first preheated by passing through a heat exchanger where heat is recovered from
the hot flue gases. Alternatively, ambient air can be injected directly into the furnace from a cold
windbox. '

Partially dewatered sludge is fed into the lower portion of the furnace. Air injected through
the tuyeres, at pressure of from 20 to 35 kilopascals (3 to 5 pounds per square inch grade),
simultaneously fluidizes the bed of hot sand and the incoming sludge. Temperatures of 750 to 925°C
(1400 to 1700°F) are maintained in the bed. Residence times are typically 2 to 5 seconds. As the
sludge burns, fine ash particles are carried out the top of the furnace. Some sand is also removed in
the air stream; sand make-up requirements are on the order of 5 percent for every 300 hours of
operation. '

Combustion of the sludge occurs in two zones. Within the bed itself (Zone 1) evaporation of
the water and pyrolysis of the organic materials occur nearly simultaneously as the temperature of the
sludge is rapidly raised. In the second zone, (freeboard area) the remaining free carbon and
combustible gases are burned. The second zone functions essentially as an afterburner.

Fluidization achieves nearly ideal mixing between the sludge and the combustion air and the
turbulence facilitates the transfer of heat from the hot sand to the sludge. The most noticeable impact
of the better burning atmosphere provided by a fluidized bed incinerator is seen in the limited amount
of excess air required for complete combustion of the sludge. Typically, FBCs can achieve complete
combustion with 20 to 50 percent excess air, about half the excess air required by multiple hearth
furnaces. As a consequence, FBC incinerators have generally lower fuel requirements compared to
MHF incinerators. '

Fluidized bed incinerators most often have venturi scrubbers or venturi/impingement tray
scrubber combinations for emissions coatrol. - :

2.5.1.3 Electric Infrared Incinerators - The first electric infrared furnace was installed in 1975, and
their use is not common. Electric infrared incinerators consist of a horizontally oriented, insulated
furnace. A woven wire belt conveyor extends the length of the furnace and infrared heating elements
are located in the roof above the conveyor belt. Combustion air is preheated by the flue gases and is
injected into the discharge end of the furnace. Electric infrared incinerators consist of a number of
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prefabricated modules, which can be linked together to provide the necessary furnace length. A
cross section of an electric furnace is shown in Figure 2.5-3.

The dewatered sludge cake is conveyed into one end of the incinerator. An internal roller
mechanism levels the sludge into a continuous layer approximately one inch thick across the width of
the belt. The sludge is sequentially dried and then burned as it moves beneath the infrared heating
elements. Ash is discharged into a hopper at the opposite end of the furnace. The preheated
combustion air enters the furnace above the ash hopper and is further heated by the outgoing ash.
The direction of air flow is countercurrent to the movement of the sludge along the conveyor.
Exhaust gases leave the furnace at the feed end. Excess air rates vary from 20 to 70 percent.

Compared to MHF and FBC technologies, the electric infrared furnace offers the advantage of
lower capital cost, especially for smaller systems. However, electricity costs in some areas may make
an electric furnace infeasible. One other concern is replacement of various components such as the
woven wire belt and infrared heaters, which have 3- to 5-year lifetimes.

Electric infrared incinerator emissions are usually controlled with a venturi scrubber or some
other wet scrubber.

2.5.1.4 Other Technologies -~ A number of other technologies have been used for incineration of
sewage sludge, including cyclonic reactors, rotary kilns, and wet oxidation reactors. These processes
are not in widespread use in the United States and will be discussed only briefly.

The cyclonic reactor is designed for small capacity applications. It is constructed of a vertical
cylindrical chamber that is lined with refractory. Preheated combustion air is introduced into the
chamber tangentially at high velocities. The sludge is sprayed radially toward the hot refractory
walls. Combustion is rapid: The residence time of the sludge in the chamber is on the order of
10 seconds. The ash is removed with the flue gases.

Rotary kilns are also generally used for small capaclty applications. The kiln is inclined
slightly from the horizontal plane, with the upper end receiving both the sludge feed and the
combustion air. A burner is located at the lower end of the kiln. The circumference of the kiln
rotates at a speed of about 6 inches per second. Ash is deposited into a hopper located below the
burner.

The wet oxidation process is not strictly one of incineration; it instead utilizes oxidation at
elevated temperature and pressure in the presence of water (flameless combustion). Thickened
sludge, at about 6 percent solids, is first ground and mixed with a stoichiometric amount of
compressed air. The slurry is then pressurized. The mixture is then circulated through a series of
heat exchangers before entering a pressurized reactor. The temperature of the reactor is held between
175 and 315°C (350 and 600°F). The pressure is normally 7,000 to 12,500 kilopascals (1,000 to
1,800 pounds per square inch grade). Steam is usually used for auxiliary heat. The water and
remaining ash are circulated out the reactor and are finally separated in a tank or lagoon. The liquid
phase is recycled to the treatment plant. Off-gases must be treated to eliminate odors: wet scrubbing,
afterburning or carbon absorption may be used.
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2.5.1.5 Co-Incineration and Co-Firing — Wastewater treatment plant sludge generally has a high
water content and in some cases, faitly high levels of inert materials. As a result, its net fuel value is
often low. If sludge is combined with other combustible materials in a co-incineration scheme, a
furnace feed can be created that has both a low water concentration and a heat value high enough to
sustain combustion with little or no supplemental fuel.

Virtually any material that can be burned can be combined with sludge in a co-incineration
process. Common materials for co-combustion are coal, municipal solid waste (MSW), wood waste
and agriculture waste. Thus, a municipal or industrial waste can be disposed of while providing an
autogenous (self-sustaining) sludge feed, thereby solving two disposal problems.

There are two basic approaches to combusting sludge with MSW: 1) use of MSW
combustion technology by adding dewatered or dried sludge to the MSW combustion unit, and 2) use
of sludge combustion technology by adding processed MSW as a supplemental fuel to the sludge
furnace. With the latter, MSW is processed by removing noncombustibles, shredding, air classifying,
and screening. Waste that is more finely processed is less likely to cause problems such as severe
erosion of the hearths, poor temperature control, and refractory failures.

2.5.2 Emissions and Controls!-

Sewage sludge incinerators potentially emit significant quantities of pollutants. The major
pollutants emitted are: 1) particulate matter, 2) metals, 3) carbon monoxide (CO), 4) nitrogen oxides
(NO,), 5) sulfur dioxide (SO,), and 6) unburned hydrocarbons. Partial combustion of sludge can
result in emissions of intermediate products of incomplete combustion (PIC), including toxic organic
compounds.

Uncontrolled particulate emission rates vary widely depending on the type of incinerator, the
volatiles and moisture content of the sludge, and the operating practices employed. Generally,
uncontrolled particulate emissions are highest from fluidized bed incinerators because suspension
burning results in much of the ash being carried out of the incinerator with the flue gas.
Uncontrolled emissions from multiple hearth and fluidized bed incinerators are extremely variable,
however. Electric incinerators appear to have the lowest rates of uncontrolled particulate release of
the three major furnace types, possibly because the sludge is not disturbed during firing. In general,
higher airflow rates increase the opportunity for particulate matter to be entrained in the exhaust
gases. Sludge with low volatile content or high moisture content may compound this situation by
requiring more supplemental fuel to burn. As more fuel is consumed, the amount of air flowing
through the incinerator is also increased. However, no direct correlation has been established
between air flow and particulate emissions.

Metals emissions are affected by metals content of the studge, fuel bed temperature, and the
level of particulate matter control. Since metals which are volatilized in the combustion zone
condense in the exhaust gas stream, most metals (except mercury) are associated with fine particulate
and are removed as the fine particulates are removed.

Carbon monoxide is formed when available oxygen is insufficient for complete combustion or
when excess air levels are too high, resulting in lower combustion temperatures.

Nitrogen and sulfur oxide emissions are primarily the result of oxidation of nitrogen and

sulfur in the sludge. Therefore, these emissions can vary greatly based on local and seasonal sewage
characteristics.
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Emissions of volatile organic compounds also vary greatly with incinerator type and
operation. Incinerators with countercurrent air flow such as multiple hearth designs provide the
greatest opportunity for unburned hydrocarbons to be emitted. In the MHF, hot air and wet sludge
feed are contacted at the top of the furnace. Any compounds distilled from the solids are immediately
vented from the furnace at temperatures too low to completely destruct them.

Particulate emissions from sewage sludge incinerators have historically been controlled by wet
scrubbers, since the associated sewage treatment plant provides both a convenient source and a good
disposal option for the scrubber water. The types of existing sewage sludge incinerator controls range
from low pressure drop spray towers and wet cyclones to higher pressure drop venturi scrubbers and
venturi/impingement tray scrubber combinations. Electrostatic precipitators and baghouses are
employed, primarily where sludge is co-fired with municipal solid waste. The most widely used
control device applied to a multiple hearth incinerator is the impingement tray scrubber. Older units
use the tray scrubber alone while combination venturi/impingement tray scrubbers are widely applied
to newer multiple hearth incinerators and to fluidized bed incinerators. Most electric incinerators and
many fluidized bed incinerators use venturi scrubbers only.

In a typical combination venturi/impingement tray scrubber, hot gas exits the incinerator and
enters the precooling or quench section of the scrubber. Spray nozzles in the quench section cool the
incoming gas and the quenched gas then enters the venturi section of the control device. Venturi
water is usually pumped into an inlet weir above the quencher. The venturi water enters the scrubber
above the throat and floods the throat completely. This eliminates build-up of solids and reduces
abrasion. Turbulence created by high gas velocity in the converging throat section deflects some of
the water traveling down the throat into the gas stream. Particulate matter carried along with the gas
stream impacts on these water particles and on the water wall. As the scrubber water and flue gas
leave the venturi section, they pass into a flooded elbow where the stream velocity decreases,
allowing the water and gas to separate. Most venturi sections come equipped with variable throats.
By restricting the throat area within the venturi, the linear gas velocity is increased and the pressure
drop is subsequently increased. Up to a certain point, increasing the venturi pressure drop increases
the removal efficiency. Venturi scrubbers typically maintain 60 to 99 percent removal efficiency for
particulate matter, depending on pressure drop and particle size distribution.

At the base of the flooded elbow, the gas stream passes through a connecting duct to the base
of the impingement tray tower. Gas velocity is further reduced upon entry to the tower as the gas
stream passes upward through the perforated impingement trays. Water usually enters the trays from
inlet ports on opposite sides and flows across the tray. As gas passes through each perforation in the
tray, it creates a jet which bubbles up the water and further entrains solid particles. At the top of the
tower is a mist eliminator to reduce the carryover of water droplets in the stack effluent gas. The
impingement section can contain from one to four trays, but most systems for which data are
available have two or three trays.

Emission factors and emission factor ratings for multiple hearth sewage sludge incinerators
are shown in Tables 2.5-1 through 2.5-5. Tables 2.5-6 through 2.5-8 present emission factors for
fluidized bed sewage sludge incinerators. Table 2.5-9 presents the available emission factors for
electric infrared incinerators. Tables 2.5-10 and 2.5-11 present the cumulative particle size
distribution and size specific emission factors for sewage sludge incinerators. Figures 2.54, 2.5-5,
and 2.5-6 present cumulative particle size distribution and size-specific emission factors for multiple-
hearth, fluidized-bed, and electric infrared incinerators, respectively.
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