

AVERT Overview and Step-by-Step Instructions

U.S. Environmental Protection Agency State Energy and Environment Program Updated April 2024

SEPA United States Environmental Protection Agency

Overview of AVERT Development for Energy Efficiency (EE), Renewable Energy (RE), and Electric Vehicle (EV) Programs

- AVERT (AVoided Emissions and geneRation Tool) translates the impacts of EE, RE, EVs, energy storage, and other energy policies and programs into emission impacts (PM_{2.5}, NO_x, SO₂, CO₂, VOCs, and NH₃).
 - It aims to address a key reason states have not implemented previous <u>EE/RE State Implementation Plan (SIP) guidance</u>.
- AVERT has been thoroughly reviewed, well documented, and tested. EPA has:
 - Conducted multiple external and internal peer reviews.
 - Benchmarked AVERT against industry standard electric power sector model – PROSYM.
 - Worked with states to beta-tested tool for functionality, appropriate uses, and clarity of user manual.
- AVERT was first released in 2014 and is built to be:
 - User friendly
 - Transparent
 - Credible

For more information on EPA's EE/RE SIP Roadmap visit: <u>https://www.epa.gov/energy-efficiency-and-</u>renewable-energy-sips-and-tips/energy-efficiencyrenewable-energy-roadmap.

AVERT's Evolution

vided Emissions and geneRation Tool www.epa.gov/avert	2014 O	 Initial release of AVERT with data for CO₂, NO_X, and SO₂. 	
	2015 🔿	 Published first paper comparing emissions from AVERT regions and EE/RE resources. 	
	2016 🔿	Extensive training and outreach, including video tutorials.	
	2017 🔿	 Addressed net vs. gross considerations by accounting for parasitic load and transmission and distribution line loss. Added PM_{2.5}. Generated emission rates to support quick analyses. 	
	2018 🔿	Added compatibility with EPA's COBRA tool.Launch of web-based AVERT.	Ongoing activities
	2019	 Updated AVERT to provide year-specific transmission and distribution loss factors from EIA generation and sales data. 	 Annual data updates
	2020 🔿	 Revised AVERT regions to reflect the modern electric grid. Added offshore wind and scaleable RE capacity factors. Added statewide analysis function (web AVERT only). 	 Enhancements Compatibility updates
	2021	 Annual data updates, including newer source data and capacity factors. Added VOCs and NH₃. 	
	2022 🔿	Annual data updates, including newer source data and capacity factors.	
	2023 🔿	 Added capability to model the impact of electric vehicles. Added new summary outputs, including vehicle emission changes and references to long-run marginal emission rates. 	
\$EPA	2024	 Added energy storage and solar PV-plus-storage as new resources to model. 	3

Emission Quantification Methods Basic to Sophisticated

Applications for AVERT-Calculated Emissions

- SIP credit in a state's National Ambient Air Quality Standard (NAAQS) Clean Air Act Plan
 - EE and RE only, not suitable for vehicles
- Compare emission impacts of varying levels of energy programs, projects, and policies
- Calculate emission reductions in your state or county using AVERT's web-based edition
- Use AVERT-generated emission rates to estimate magnitude of emission reductions without running the tool
 - Eight categories include offshore and onshore wind, rooftop- and utility-scale solar, rooftop PV-plus-storage (2023 only) and utilityscale PV-plus-storage (2023 only), portfolio EE, and uniform EE programs
- This is not a long-term projection tool
 - To conduct analysis more than five years from the baseline, users must use AVERT's statistical module and future year scenario template

How AVERT Has Been Used 100+ citations as of spring 2024

- Energy Policy
- ...and more

The Clean Air Benefits of Wind Energy

STRATEGIC PLAN

JOIN ORE

Resource pages and factsheets

are permut: imprementing solar energy can reduce greenhouse gas emission communities from the potential adverse effects of climate change. Many reg their local governments have taken steps to become streamts of their surrou by incorporating environmental sustainability into comprehensive plans or p required to meet certain goals and standards established by the state to in footprints and improve the overall quality of life for the community. Incorporating into these plans can augment all of these efforts and the subsequent benefits.

INCLASSION DESCRIPTION AND AD 2014 STREAMS EDUCATORS

PRESENTATIONS

The Solar for the Environment Toolkit provides regional councils with the foundation to integrate solar energy into existing energy or sustainability plans or develop their own. The toolkit presents basic information concerning solar energy adoption's environmental benefits and then explores different wave a relocal caucuit and/or local dovernment can finance, plan, and inclament different wave and the solar dovernment can finance.

Examples Using AVERT

- Cost-Effectiveness Analysis for ASHRAE 90.1-2019 Multiple States (<u>Pacific</u> <u>Northwest National Laboratory, 2021</u>)
- Climate and Health Benefits of Increasing Renewable Energy Deployment in the United States (<u>Buonocore et al., 2019</u>)
- Potential Air Quality Benefits from Increased Solar Photovoltaic Electricity Generation in the Eastern United States (<u>Abel et al., 2017</u>)
- The Health and Environmental Benefits of Wind and Solar Energy in the United States, 2007-2015 (<u>LBNL, January 2017</u>)
- Electric Vehicles and Air Quality (<u>North Carolina Department of</u> <u>Environmental Quality and the South Carolina Energy Office</u>)
- Carbon Reductions and Health Co-benefits from U.S. Residential Energy Efficiency Measures (<u>Levy et al., 2016</u>)
- Renewable Portfolio Standard (RPS) Benefits Report (<u>LBNL and NREL, January</u> <u>2016</u>)
- U.S. EPA's Ozone Advance Program <u>Clark County, NV's</u> Paths Forward
- Assessing Emission Benefits of Renewable Energy and Energy Efficiency Programs (<u>U.S. EPA, April 2015</u>)
- Maine Distributed Solar Valuation Study (<u>Maine PUC, March 2015</u>)
- CarbonCount[™] Green Bonds Scores (<u>Alliance to Save Energy, March 2015</u>)

How AVERT Works

- AVERT's Main Module simulates the hourly changes in generation and air emissions (PM_{2.5}, NO_x, SO₂, CO₂, VOCs, and NH₃) at EGUs resulting from EE, RE, EVs, energy storage, and other energy policies and programs.
- User input: MWhs saved from energy programs, wind and solar generation (MW), number of EVs and location of EV deployment, or energy storage parameters
 - Multiple options are built into the tool
 - Users can manually enter hourly impact data
- User can retire, add and change emission rates of EGU and re-run simulation using AVERT's Future Year Scenario Template and Statistical Module.

AVERT's Modules and Data Files

Most users will only need to use the Regional Data Files and AVERT Main

Module to calculate emissions. The web version of the Main Module provides similar functionality without the need to download any files or software.

AVERT's Data Driven Analysis

- AVERT uses a data-driven analysis to distinguish which EGUs respond to marginal changes in load.
 - AVERT analyzes EGU datasets from EPA's Air Markets and Program Data (hourly, unit-by-unit generation and emissions).
 - Dataset includes EGUs with capacity of 25 MW or greater.
 - Supplemented with PM_{2.5}, VOCs, and NH₃ data from EPA's National Emissions Inventory.
 - AVERT's Statistical Module gathers statistics on EGU operations under specific load conditions, and then replicates changes through a Monte Carlo analysis.
 - AVERT's Regional Data Files contain hourly and unit-level emissions and generation data.

AVERT Main Module

Avoided Emissions and generation Tool

EPA

AVERT's Web-Based Main Module

- Users can choose between AVERT's Excel-based version or the Web Edition
- In 2018, EPA released AVERT's Web Edition
 - The online platform allows users to quickly estimate energy program impacts using current year dataset
 - Users can enter standard energy settings
 - Results are shown in graphical form and savable formats
- Allows statewide multiregion runs

www.epa.gov/avert/avert-web-edition

AVERT's Excel-Based Main Module Step-by-Step Overview

- Enabling Macros
- Using AVERT
- Step 1. Load Regional Data File
- Step 2. Set Energy Scenario
- Step 3. Run Scenario
- Step 4. Display Results

AVERT's Excel-Based Main Module Enabling Macros

- In Windows, AVERT is compatible with Excel 2007 or newer versions.
- On a Mac, AVERT is compatible with Excel 2011 or newer versions.
 - Only the Main Module has been optimized for Mac.
 Other components (e.g., the Statistical Module) require Windows.
- You may want to revert to the default macro settings after using the model. Enabling macros in other Excel files may allow potentially dangerous code to run.

AVERT's Excel-Based Main Module Enabling Macros in Windows*

In Excel 2010 or newer, click File > Options

Next, click Trust Center > Trust Center Settings > Macro Settings > Enable all macros

*If using Excel 2007, click the Microsoft Office Button:

*If using Excel on a Mac, select "Enable macros" in the dialog box that appears when opening the file.

AVERT's Excel-Based Main Module Using AVERT

- Add details about the user, the date, and the energy program for which impacts are to be estimated.
- Click on the button labeled "Click here to begin."

Welcome to AVERT's Main Module

AVERT is an EPA tool that quantifies the generation and emission changes of energy policies and programs in the contiguous United States. Please refer to the AVERT user manual for details on step-by-step instructions, appropriate uses, and assumptions built into the tool.

Svnapse

AVERT

NOTE

Please ensure macros are enabled on your computer. AVERT requires Excel 2007 or higher in Windows and Excel 2011 or higher on Mac.

AVERT v4.3 Developed by Synapse Energy Economics, Inc., April 2024

Jse the blue entry t	o describe each scenario and keep track of multiple versions	of	AVERT.	
Editor:			Click bere	Ν
Date edited:			to hogin	
Edition name:		N	to begin	
Edition description:			\searrow	
			Click here to restore default Excel	

EPA

AVERT's Excel-Based Main Module Step 1. Load Regional Data File

Regions represent relatively autonomous electricity production zones and are aggregations of one or more balancing authority.

Regions include

- California
- Carolinas
- Central
- Florida
- Mid-Atlantic
- Midwest
- New England
- New York
- Northwest
- Rocky Mountains
- Southeast
- Southwest
- Tennessee
- Texas

• Select a region for analysis by either using the dropdown or clicking the map.

- Selecting a region loads region-specific data for wind and solar capacity factors and dynamically creates a hyperlink to that region's data on EPA's website.
- After selecting a region, click the link under the map to download it from EPA's website.

 In the box labeled "Enter filepath," double-click the blue area to navigate to the location of the downloaded regional data file.

• Click the button under "Load data" entitled:

Clicking this button loads the following information from the regional data file:

- Hourly fossil load
- EGU information (e.g., location, fuel type)
- Typical EGU performance for generation and emissions at a given regional load

A popup will indicate when the file has finished loading and remind you how to handle states that are split across multiple AVERT regions.

Step 1. Load Regional Data File Regional Data File import pop-up

- Regional Data Files (RDFs) released before July 2017 do not have PM_{2.5} emissions and they include net generation values to account for parasitic losses.
- If you are using an earlier RDF, another pop-up box will alert you and suggest that you download a newer RDF from EPA's website.

AVERT	
Note that this regional data file does not include PM2.5 data and quantifi emission impacts based on gross generation. To obtain inputs with PM2. and net generation, click on the hyperlink under the AVERT map.	es 5 data
	ОК

 This page leads you through the process of creating an energy impact profile depicting the impacts expected from an energy program.

DIRECTIONS: Enter the energy efficiency energy storage changes for one or more	and/or renewable policies, program	e energy ns, and/o	and/or electric vehicle and/ or projects.	'or							W
Each entry is additive, creating a single	energy change pr	ofile.			Enter de	tailed load	d change	data by h	our		4.0.
To modify each hour manually, click the	button on the righ	t.									1. Reg
For further instructions, consult Section	4 of the AVERT Us	ser Manu	ial.								
					C	Changes ir	n Hourly Er	nergy:			
Enter EE based on the % reduction of r	egional fossil gen	eration					è .	8.0	ਸ ਸ ≩	××	2. Se
Reduce generation by a percent in som	e or all hours	~ ~ ~			3 2 2	4 Ε	흔 크 크	In Para	ŏŏž	ŏŏ	So
Apply reduction to top X% hours:	0%	% OT to	op nours	<pre></pre>							
Reduction % In top X% of nours:	0.0%	% real	uction	<u>≨</u> -500			C. S. M. Jan	William .			2.0.
And/of enter EE distributed evening time	o o o o o o o o o o o o o o o o o o o	CIMb		I,000	the last		(14) N	1111	att alle alle a	6 N	3. RU
OR	0	Gwii		2 - 1 500	HILLINN.	ultin ult			'' A A DI'' UNI	dia ta	
Reduce each hour by constant MW	0.0	MW					and they	"Han H	- I. b. 1	1.6.16	4
And/or enter annual capacity of RE res	ources				TABLE IN P	10111			a Adatabat	and las	R
Onshore wind capacity:	5000	MW		툴 -2,500	hankt.	1.			nd a ritti	tre-hte	
Offshore wind not available	0	MW	Edit capacity	-3,000							
Utility solar PV capacity:	165	MW	factors								N
Rooftop solar PV capacity:	0	MW		The currently entere	d reduction p	profile equals	: 14,195 GWł	n, or 2.8% of	regional foss	sil generation.	
And/or enter electric vehicle (EV) data					K al ana		K al as				
				Table 1. Sales and	sales i	in entire	vehicles	in entire			<u> </u>
Enter Battery EVs:	50,000			Stock comparison	re	aion	te	ion			
number of Flagtic troppit buogo:	0			Light-duty vehicles	2	.4%	0	.1%			
vehicles Electric achool buses.	0		View detailed EV	Transit buses		0%	0	.0%			
Select location of EV deployment	Entire Region	1	uuu	Table 2 FEDE FY	Historica	l additions	EEBE re	auired to	EERE r	equired	
	Entire Region	+		comparison for Entire	(annual	avg. 2019-	offset E	V demand	divided by	historical	
				Region	ANW A	GWh	AR	GWh	Addi Adh	GWh	
				EE (retail)	595	5,209	6	53	1%	1%	
				Onshore Wind	2,969	8,320	28	78	1%	1%	
				Utility Solar	1,030	2,128	10	20	1%	1%	
				Total	4,640	16,062	44	151	-		
And/or enter energy storage data	Mara -										
Pair storage with solar?	Yes		Select 'Yes' to limit charging	to hours with solar generation.							
Distributed storage capacity:	100	MVV									
Duration:	4	hre			-						
Durauon.	4	MMb									
I Itility-scale storage energy:	4000										

If the hourly load impacts expected from an energy policy, program, or measure are known, a manual stream of load impact values can be entered for every hour of the year by clicking the "Enter detailed load change by hour" button. Displacements (load reductions) should be entered as positive values.

Enter detailed load change data by hour

Midwest, 2019

Manual Energy Profile Entry

	Clic Step 2	ck here to retu : Set Energy S	rn to cenario	Positive numbers entered to load rea	by the user correspond ductions.	Delete all manual data		
Date 👻	Hour	Day of Wer	Regional Fossil Load (MV	Manual Profile (MW) - Utility Scale	Manual Profile (MW) - Distributed	Total Change (MW) 🔻	Larger than 15%?	Outside of Range?
1/1/2019	1	Tuesday	41,014			-2,124		
1/1/2019	2	Tuesday	39,656			-2,208		
1/1/2019	3	Tuesday	39,597			-2,310		
1/1/2019	4	Tuesday	39,994			-2,446		
1/1/2019	5	Tuesday	41,311			-2,438		
1/1/2019	6	Tuesday	43,352			-2,472		
1/1/2019	7	Tuesday	45,127			-2,432		
1/1/2019	8	Tuesday	47,024			-2,302		
1/1/2019	9	Tuesday	49,427			-2,218		
1/1/2019	10	Tuesday	52,645			-2,241		
1/1/2019	11	Tuesday	54,944			-2,214		
1/1/2019	12	Tuesday	56,125			-2,146		
1/1/2019	13	Tuesday	57,672			-1,985		
1/1/2019	14	Tuesday	58,192			-1,859		
1/1/2019	15	Tuesday	58,764			-1,746		
1/1/2019	16	Tuesday	59,484			-1,745		
1/1/2010	17	Tuesday	ເດັດຈວ			1 725		

Charging pattern:

This page also allows you to estimate an energy impact from basic characteristics:

- Reduce fossil-fuel generation by a percent in some or all hours
- Reduce fossil-fuel generation by total GWh
- Reduce each hour by a constant MW
- Renewable energy proxy, with the ability to scale hourly capacity factors
- Electric vehicle data by number of vehicles, with the ability to select a location of deployment and enter detailed data
- Energy storage data by capacity, duration, and charging pattern, with the ability to pair storage with solar generation and enter detailed data
- Combination of energy programs including combining pre-set options with manual hourly energy profile entry

Enter EE ba	ased on the % reduct	ion of regional fo	ssil gene	ration			
Reduce gen	eration by a percent in	some or all hours					
Apply reduct	tion to top X% hours:	0%	% of top hours				
Reduction %	6 in top X% of hours:	0.0%	% reduction				
And/or ente	er EE distributed eve	enly throughout th	e year				
Reduce gen	eration by annual GWI	0	GWh				
OI	R						
Reduce eac	h hour by constant MW	0.0	MW				
And/or ente	er annual capacity of	RE resources					
Onshore wir	nd capacity:	5000	MW				
Offshore wir	nd not available	0	MW	Edit capacity			
Utility solar F	PV capacity:	165	MW	factors			
Rooftop sola	ar PV capacity:	0	MW				
And/or ente	er electric vehicle (E	V) data					
Enter	Battery EVs:	50,000			1		
Ellier number of	Plug-in hybrid EVs:	0					
Nobislos	Electric transit buses:	0		View detailed EV			
venicles	Electric school buses	0		data			
Select locati	on of EV deployment:	Entire Region	Ļ				
					1		
And/or ente	er energy storage da	ta	_				
Pair storage	with solar?	Yes	J	Select "Yes" to limit c	harging to hours	with solar generation	
Utility-scale	storage capacity:	100	MW				
Distributed s	storage capacity:	0	MW				
Duration:		4	hrs				
Utility-scale	storage energy:	400	MWh				
Distributed s	storage energy:	0	MWh				

Midday Charging

View detailed energy storage data

 If you enter a scenario that exceeds 15% of regional fossil load in any given hour, you will be shown an alert highlighting the hours of exceedance, but you can still proceed with the calculations.

C4											
Step 2: Set Energy	y Scenario)									
-	-										
DIRECTIONS: Enter the energy efficient	ency and/or renewal	le energy	and/or electric vehicle and/or								W
energy storage changes for one or r	more policies, progra	ams. and/	or projects.								
Each entry is additive, creating a sin	ale energy change r	rofile			Enter det	ailed load	d change	data by h	our		
To modify each hour manually click	the button on the ric	ht									1. Re(
For further instructions, consult Sec	tion 4 of the AVERT I	lear Manu		Contract Descent of		and street at				and balance	
Torianier instructions, consult Sec	uon 4 or ure AVENT		iai.	Claudone Energy of	ange pronie es	hannes in	Hourly Er	norminone or	more nours (see belowj.	
Enter FE based on the % reduction	of regional fossil ge	neration				nangeon	r riouriy Er	lorgy.			2 5
Reduce generation by a percent in s	some or all hours			5 5	응 눈 눈	r i	ê s s	an de	ž ž ž	a a	2. S
Apply reduction to top X% hours:	0%	% of to	op hours	0 + + +			- -				
Reduction % in top X% of hours:	0.0%	% red	uction					. In			
And/or enter EE distributed evenly	throughout the year			<u></u> -2,000 —	a ha t		HALLAND	علية أأثث	del a		3. Ru
Reduce generation by annual GWh:	0	GWh		-3.000	ulti Lulti .	mild. No				H.H.	
OR				<u>للله</u> -4.000	<u>, 110 10 10 10 10 10 10 10 10 10 10 10 10</u>	Mu n i	L. J. M. L			N PARA	
Reduce each hour by constant MW:	0.0	MW		-5 000	ես Մանե	՝ հրվել	the least	- (kg) H.			4.
And/or enter annual capacity of RE	resources				11111				1. 4 . (н
Onshore wind capacity:	12000	MVV		5 -0,000	1.00					L L	
Unshore wind not available	165	MVV	Edit capacity	-7,000							
Dunity Solar PV capacity.	100	MIN	lactors	The currently entere	d reduction n	rofile ecu als	33 812 GM	or 6.6% of	regional for	sil generation	
And/or enter electric vehicle (EV) d	ata	WIYY			areadononip	i orine e apreni		,,	regionarios	an gerrer anore	
				Table 1. Sales and	% of annu	ial vehicle	% of re	gistered			
Battery EVs:	50,000	1		stock comparison	sales i	n entire vion	vehicles	in entire			
Plug-in hybrid EVs:	0	1		Light-duty vehicles	2.	4%	0	u1%			
Electric transit buses:	0]	View detailed EV	Transit buses	0.	0%	0	.0%			
Electric school buses	0		data	School buses	0.	0%	0	.0%			
Select location of EV deployment:	Entire Region	1		Table 2. EERE E¥	fannual	additions	EERE re	quired to	divided b	required i historical	
				comparison for Entire	20	1211	offset E	¥ demand	add	itions	
				Tregion Contemport	ANV.	Cilviti E coor	Alla"	GWh	AN	(3)//)	
				EE (retail) On shore \vin f	595	5,209	6	53	1%	174	
				Utility Solar	2,969	8,320	28	78	1%	12	
				Total	1,030	2,128	44	20			
And/or enter energy storage data					4,040	10,002	**	101			
Pair storage with solar?	Yes	1	Select "Yes" to limit charaing to	hours with solar generation.							
Utility-scale storage capacity:	100	MW									
Distributed storage capacity:	0	MW									
Duration:	4	hrs			-						
Utility-scale storage energy:	400	MWh									
Distributed storage energy:	0	MWh									
1	Middley Observations	1000	Minute defaulted an entry of the	and all the second s							

 If you enter a scenario that exceeds the calculable range in any given hour, you will be directed to change load impact in the hours identified in the "Outside of Range?" column of the Manual Energy Profile Entry page. These cells must be corrected before you may proceed.

Mid	lwest, 2019								AV	ERT			
	Manual Energy Profile Entry												
Click here to return to Step 2: Set Energy Scenario					Positive numbers entered to load rec	l by the user correspond ductions.	Delete all manual data						
	Date 💂	Hour 👻	Day of We 🖕	Regional Fossil Load (MV 🖕	Manual Profile (MW) - Utility Scale	Manual Profile (MW) - Distributed	Total Change (MW) 🖵	Larger than 15%? 💂	Outside of Range?				
	9/4/2019	11	Wednesday	76,612			0			T			
	9/4/2019	12	Wednesday	79,598			0						
	9/4/2019	13	Wednesday	82,462		_	0			┶			
	9/4/2019	14	Wednesday	84,067			-92,399	ERROR: Yes	ERROR: New load is too low, please increase	e			
	9/4/2019	15	Wednesday	85,211			-93,657	ERROR: Yes	ERROR: New load is too low, please increase	e			
	9/4/2019	16	Wednesday	86,065			-94,595	ERROR: Yes	ERROR: New load is too low, please increase	e			
	9/4/2019	17	Wednesday	84,609			-92,995	ERROR: Yes	ERROR: New load is too low, please increase	e I			
	9/4/2019	18	Wednesday	82,729		•	0			┿┛			
	9/4/2019	19	Wednesday	80,189			0						
	9/4/2019	20	Wednesday	77,389			0						
	9/4/2019	21	Wednesday	70,940			0						
	9/4/2019	22	Wednesday	63.217			0						
	9/4/2019	23	Wednesday	56,250			0						
	9/4/2019	24	Wednesday	50,922			1 0						
	9/5/2019	1	Thursday	46,106			1 0						
	9/5/2019	2	Thursday	43 436			1 0 1		1				

AVERT's Excel-Based Main Module Step 3. Run Scenario

 Run the scenario by selecting the button entitled "Click here to calculate changes to generation and emissions."

← Back

AVERT's Excel-Based Main Module Step 3. Run Scenario

- This step calculates hourly change in generation and emissions (PM_{2.5}, SO₂, NO_X, CO₂, VOCs, and NH₃) for each fossil EGU within the selected region.
- Note that this is a processor-intensive step.
 When using an older computer, or when analyzing regions with many fossil EGU, this step may take up to 10 minutes.

• The results generated in Step 3 are aggregated in three groups of charts and tables in Step 4.

Summary tables - Power	sector only							
Annual regional results	Results for top ten peak days							
Annual results by county	Monthly results by county							
Daily NOx results by county								
Charts and finures David	er en etter en lu							
Charts and ligures - Powe	er sector only							
Map of generation and emissions	Hourly results by week							
Monthly results by selected geography	Signal-to-noise diagnostic							
Summary tables, charts, a Power sector and avoided	and figures - d vehicle emissions data							
Annual regional results - with vehicle	Annual county results - with vehicle							
Results by selected	Posulte by month							

Emission rates over tim

geography

Annual regional impacts

- This table displays the total annual generation and emissions as reported for the region in the base year ("Original") and as calculated by AVERT's Main Module after the modeled energy impact ("Post Impact").
- See the <u>user manual</u> for information on additional AVERT outputs that include vehicle emissions.

Midwest, 2019

Output: Annual Regional Results

Click her	<u>re to return to Step 4</u>	: Display Outputs	
	Original	Post Change	Change
Generation (MWh)	510,511,950	496,346,300	-14,165,650
Heat Input (MMBtu)	4,917,277,270	4,781,000,140	-136,277,130
Total Emissions from Fossil Generation Flee	et (Ib)		
SO ₂	710,791,670	688,590,480	-22,201,180
NO _x	528,845,720	512,351,890	-16,493,840
Ozone season NO x	224,707,220	219,219,340	-5,487,880
CO ₂	881,078,630,540	856,608,184,030	-24,470,444,170
PM _{2.5}	47,484,740	46,181,070	-1,303,670
VOCs	15,329,350	14,879,660	-449,690
NH ₃	10,163,730	9,893,010	-270,720
AVERT-derived Emission Rates (Ib/MWh)	Average Fossil		Marginal Fossil
S02	1.392		Ø
NO _X	1.036		Ø
Ozone season NO x	0.976		Ø
CO ₂	1,725.873		Ø
PM _{2.5}	0.093		Ø
VOCs	0.030		Ø
NH ₃	0.020		Ø
	0.020		2

Select unit for emissions:

lb

Ozone season is defined as May 1 - September 30. Ozone season emissions are a subset of annual emissions.

Negative numbers indicate displaced generation and emissions.

All results are rounded to the nearest 10. A dash ("—") indicates non-zero results, but within +/- 10 units. When users evaluate a portfolio scenario including EVs and EE or RE, marginal fossil values are not reported and a null sign ("Ø") is shown.

Data on this page do not include changes to ICE vehicle emissions (e.g., emissions from tailpipes).

Annual Results by County

This table presents a summary of the changes in generation and emissions, not including vehicle emissions, for each of the counties from each of the states contained within the region. A line for each county containing an EGU is displayed.

Midwest, 2019

Output: Annual Results by County

Click here to return to Step 4: Display Outputs

		Peak Generation,	Annual			
_		Post-Change	Generation, Post-	Annual Change in	Annual Change in	Annual Cha
State	County 🔽	(MW) 💌	Change (MWh) 🗠	Generation (MW 🚬	SO2 (lb)	NOx (I
AR	Craighead County	73	22,770	-3,350	-30	-5,06
AR	Hot Spring County	1,248	4,629,020	-178,740	-650	-54,01
AR	ndependence County	1,399	5,314,450	-297,080	-1,613,720	-404,9
AR	Jefferson County	1,718	8,230,440	-366,070	-1,811,200	-488,5
AR	Mississippi County	1,142	7,020,830	-165,550	-173,290	-98,48
AR	Pulaski County	402	320,570	-38,740	-50	-50,70
AR	Union County	1,784	10,861,670	-261,910	-860	-16,85
IA	Allamakee County	212	421,460	-34,900	-18,520	-16,00
IA	Audubon County	84	101,680	-9,880	-820	-9,88
IA	Black Hawk County	8	3,870	-500	-	-2,48
IA	Cerro Gordo County	461	2,427,620	-119,390	-440	-5,05
IA	Des Moines County	193	1,123,640	-23,090	-135,000	-40,01
IA	Louisa County	677	3,081,720	-226,710	-723,380	-387,4
IA	Marshall County	708	3,624,360	-143,380	-470	-13,93
IA	Muscatine County	150	923,040	-24,720	-33,160	-69,65
IA	Polk County	312	268,650	-28,280	-190	-3,65
IA	Pottawattamie Count	1,351	7,595,430	-322,030	-646,710	-500,7
IA	Scott County	38	5,040	-1,030	_	-1,87
IA	Story County	27	131,200	-4,950	-490	-7,03
IA	Union County	35	5,220	-1,100	-20	-12,05
IA	Wapello County	685	3,608,080	-153,200	-120,720	-163,6
IA	Woodbury County	1,086	2,934,430	-259,640	-911,980	-518,7

- For each county, annual output statistics are given for:
- Peak Gross Generation Post-Impact
- Annual Gross Generation Post-Impact
- Annual Change in Generation
- Annual Change in Heat $P_{2,8}^{2,48}$ Input/PM_{2.5}/SO₂/NO_X/CO₂ $P_{3,7,4}^{40,01}$ /VOCs/NH₃
 - Ozone Season Change in SO₂/NO_X/PM_{2.5}
 - Ozone Season, 10 Peak Days
 - Change in $SO_2/NO_x/PM_{2.5}$

Results for Top Ten Peak Days

 This table displays a summary of the ten days in the region featuring the highest level of fossil fuel load, not including changes to vehicle emissions.

Midwest, 2019

Output: Results for Top Ten Peak Days

Click here to return to Step 4: Display

		Total Fossil	Expected Change in	Change in	Change in NO _x	Change in SO ₂	Change in CO ₂	Change in PM _{2.5}
Day Rank	Date	Generation (MWh)	Generation (MWh)	Generation	(lb)	(lb)	(tons)	(lb)
1	Jul 19	1,966,680	-23,210	-23,430	-33,220	-26,670	-17,990	-2,180
2	Jan 30	1,930,570	-31,960	-32,170	-26,800	-35,940	-23,230	-3,010
3	Jul 17	1,900,580	-30,600	-30,450	-44,130	-35,760	-26,670	-3,030
4	Jan 31	1,897,480	-41,200	-41,790	-31,460	-49,550	-28,810	-3,900
5	Jul 02	1,895,160	-33,240	-33,310	-46,410	-41,120	-27,570	-3,110
6	Jul 18	1,887,940	-28,370	-28,470	-42,420	-34,100	-24,780	-2,850
7	Aug 06	1,879,770	-29,460	-29,560	-41,760	-36,260	-24,730	-2,850
8	Aug 12	1,863,210	-27,270	-26,720	-38,000	-30,180	-22,680	-2,720
9	Aug 19	1,842,710	-29,090	-28,640	-39,040	-32,880	-24,030	-2,870
10	Jul 16	1,841,700	-31, <mark>1</mark> 80	-31,090	-42,750	-37,100	-27,220	-3,170

Negative numbers indicate displaced generation and emissions.

All results are rounded to the nearest 10. A dash ("---") indicates non-zero results, but within +/- 10 units.

Data on this page do not include changes to ICE vehicle emissions (e.g., emissions from tailpipes).

AVER1

Map of generation and emissions changes

 This dynamic map allows the user to view where emissions change within the selected region, not including changes from vehicle emissions. Users can view changes in generation, heat input, PM_{2.5}, SO₂, NO_x, and CO₂.

Results by month

Monthly output can be viewed over the entire region, or a specific state or county within the region.

- First select region, state, or county in the top dropdown menu.
- If selecting a state, choose the state in the next dropdown menu.
- If selecting a county, choose both the state and the county in the next two dropdown menus.
- See the <u>user manual</u> for information on additional AVERT outputs that include vehicle emissions.

Hourly results by week

This graph displays a dynamic representation of hourly impacts to each EGU in a region.
 Individual plants are stacked as gradated bar plots.

SEPA

AVERT's Excel-Based Main Module Step 4. Display Results

Hourly results by week

 The second figure shows the same week-long energy impact profile, but presents the change in generation in reference to the total fossil-fuel load to illustrate the degree of change represented by the energy program relative to the baseline.

Signal-to-noise diagnostic

- This chart is a scatterplot of every hour of the year, showing calculated total change in generation in each hour (y-axis) against the userinput change in generation in each hour (x-axis).
- Ideally, AVERT perfectly matches change in unit generation to the amount of energy impacts requested by the user.
- This graphic shows where that assumption holds, where it does not hold, and to what extent.

COBRA Output

- AVERT outputs may be used as inputs to EPA's CO-Benefits Risk Assessment (COBRA) Health Impacts Screening and Mapping Tool to assess public health implications of the modeled scenario.
- To download a COBRA-formatted file, double-click the blue box to enter a filepath and hit the green button to save a CSV file (example below).
- The file will contain county-level emission impacts for PM_{2.5}, SO₂, NO_x, VOCs, and NH₃ and will be ready for upload into COBRA.
- AVERT is only able to generate SMOKE emissions data for the power sector. Vehicle emissions will not be included.

COBRA text file generation

Enter a filepath, then click the button to save a COBRA text file.

NOTE

Please be patient.

This calculation may take up to twenty minutes to run on older machines.

> Generate COBRA text files

For More Information

- Visit the AVERT website at <u>www.epa.gov/avert</u>.
- Contact EPA at <u>avert@epa.gov</u>.

CONTACT US

AVoided Emissions and geneRation Tool (AVERT)

- AVERT Web Edition
- Download AVERT Excel Edition
- How to Run Scenarios
 - Avoided Emission Factors

- Basic Information
- AVERT Overview
- Uses of AVERT
- Publications that Cite AVERT
- AVERT User Manual

Web Edition

