Using CWSRF Emerging Contaminants (EC) Funds to Tackle New or Re-emerging Contaminants

2024 National Webinar March 13, 2024

Emerging Contaminants Funding through the Bipartisan Infrastructure Law

Agenda

Using CWSRF EC Funds

Introduction by EPA

- Project Types, Eligibilities and Development
- Funding Application Best Practices
- Summary of Proposed EC Projects

Panel Discussion: SRF Assistance Recipients

- Introduction of Projects and Speakers
- Questions from EPA
- Questions from Audience

Opening Poll Questions

Clean Water SRF Emerging Contaminants (EC) Fund

- New appropriation under the Bipartisan Infrastructure Law (BIL), enacted on November 15, 2021
- Appropriates **\$1 billion over five years** to address ECs
 - \$335M of federal funds have been deployed to states
 - Local governments and utilities can expect additional appropriations over the next three years

All funds are to be awarded to funding applicants as 100% forgivable loans or grants

Clean Water SRF Emerging Contaminants Fund Project Types

All Clean Water EC projects must have a **water quality benefit** and **address an identified EC**.

- Wastewater treatment (centralized & decentralized)
- Septic-to-sewer conversions
- Water reuse
- Biosolids
- Purchasing laboratory equipment
- Groundwater and surface water protection and restoration

- Stormwater management and treatment
- Nonpoint source pollution control
- Source water protection
- Landfill capping and leachate control
- Cleanup of contaminated sites

Clean Water SRF Emerging Contaminants Fund Project Eligibilities

Funds can be used for:

- Planning, design, and construction costs for the portion of the project specific to addressing ECs
- Pilot or demonstration projects to assess EC treatment technologies to develop a future capital project
 - Including monitoring the fate of ECs through the treatment process

Funds **cannot** be used for:

- Identification of ECs
- Operations and maintenance costs
- Routine water quality monitoring

Clean Water SRF Emerging Contaminants Fund Project Development

ECs must be identified prior to applying for funding.*

ECs can be identified through:

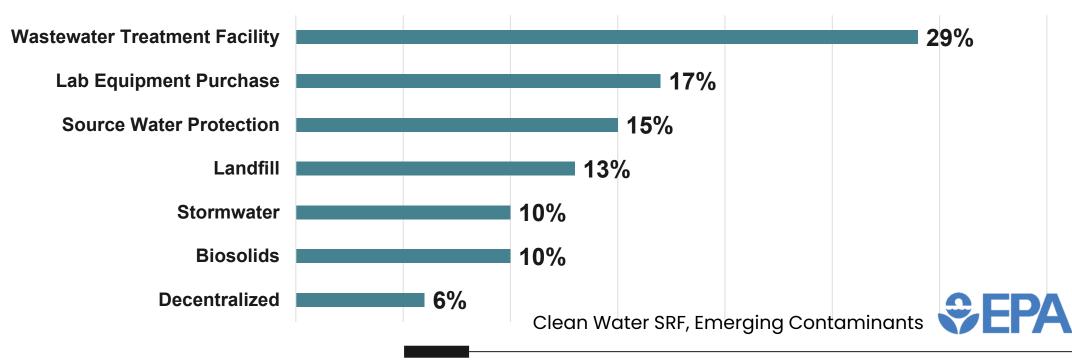
- Traditional sampling & analysis
- For PFAS, qualitative assessment of upstream facilities known or suspected to discharge PFAS
- For nonpoint sources, e.g., stormwater, qualitative or quantitative identification within the drainage area or management area

* States may utilize up to 2% of this appropriation to provide technical assistance to small, rural, and Tribal publicly-owned treatment works

Clean Water SRF Emerging Contaminants Fund Funding Application Best Practices

Include clear eligibility indicators in project descriptions:

- 1. Indicate what EC has been identified and will be addressed: PFAS, microplastics, etc.
- **2. Indicate viable treatment technology** or method that is reasonably expected to address ECs.
- **3. For planning activities that include sampling,** clarify the scope and how they will result in a **capital project**.

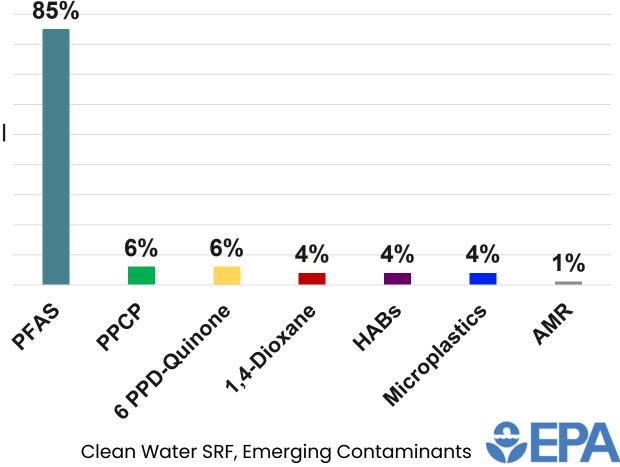

When in doubt, consult your state SRF program.

Clean Water SRF Emerging Contaminants Fund Project Types

In FY 2022, there were 52 proposed **Clean Water SRF** emerging contaminants projects across states and Puerto Rico.

More than half of these projects were project planning efforts.

Percent of Emerging Contaminants Project Types


Clean Water SRF Emerging Contaminants Fund Emerging Contaminants Addressed

Of the 52 proposed projects:

- 85% will address PFAS
- 25% will address other contaminants:
 - Pharmaceuticals and Personal Care Products (PPCP) –
 - 6 PPD-Quinone
 - ♦ 1,4-Dioxane
 - Harmful Algal Blooms (HABs)
 - Microplastics
 - Antimicrobial Resistance (AMR)

Note: Percentage adds up to greater than 100% as some projects address more than one EC.

Percent of Projects Addressing an EC

Panel Discussion

Panelist Introductions

Alisa Blaylock

 Septic-to-Sewer Program Coordinator, Southern Nevada Water Authority

Alan Oyler

Public Works Project Manager, City of Orlando

Bob Spencer

- Capital Projects Coordinator,
 - Green Stormwater Infrastructure Program, Seattle Public Utilities

Southern Nevada Water Authority/ Las Vegas Valley Water District Septic-to-Sewer Conversion

- PPCPs identified in areas of high septic system density during routine groundwater monitoring
 - Presence of PPCPs could be linked to failing decentralized systems
- Connect houses currently on septic to the nearby Flamingo Water Resource Center
 - A portion of which is treated using membrane filtration and ozone disinfection

City of Orlando Water Reclamation Division Biosolids Treatment using SCWO

- Sampled influent, effluent, and biosolids for PFAS
 - Identified biosolids as a potential pathway to the environment
- Wastewater biosolids are predominantly land applied
 - Restricted by groundwater level at land application sites
 - Could be subject to greater regulation if PFAS rules develop
- Need to develop an alternative to land application
 - Supercritical water oxidation (SCWO) technology eliminates the organic fraction of sludge, reducing the volume to be handled into a small quantity of inert mineral salts
 - SCWO is also reported to destroy PFAS chemicals
 - Orlando pilot test of SCWO is scheduled for Summer 2024

City of Seattle Public Utilities

South Thornton Natural Drainage System Installation

- Puget Sound stormwater science team linked 6PPD and 6PPD-quinone to pre-spawn Coho salmon mortality in urban streams
 - 6PPD is a tire rubber antioxidant used to prevent degradation
- Planned installation of 43 bioretention cells along multiple residential blocks within the Thornton Creek Basin
 - Infiltration, sorption and filtration to address 6PPD and 6PPDquinone entering the creek → also TSS, oil, copper, zinc and phosphorus

Panelist Discussion & Questions

Alisa Blaylock

 Septic-to-Sewer Program Coordinator, Southern Nevada Water Authority

Alan Oyler

Public Works Project Manager, City of Orlando

Bob Spencer

- Capital Projects Coordinator,
 - Green Stormwater Infrastructure Program, Seattle Public Utilities

Closing Poll Questions

Resources

CWSRF eligibilities:

https://www.epa.gov/cwsrf/overview-clean-water-state-revolving-fund-eligibilities

CWSRF emerging contaminants case studies & <u>FAQs</u>:

https://www.epa.gov/cwsrf/clean-water-state-revolving-fund-emergingcontaminants

Research references and additional information:

https://www.epa.gov/sustainable-water-infrastructure/clean-water-technologycenter

Contact Information

State CWSRF Program Contacts

https://www.epa.gov/cwsrf/state-cwsrf-program-contacts

EPA CWSRF Emerging Contaminants Team

Thank you for attending!

