

9 Draft Environmental Media and General Population Exposure 10 for Diisodecyl Phthalate (DIDP)

Technical Support Document for the Draft Risk Evaluation

(Representative Structure)

27 **TABLE OF CONTENTS**

28	SUMMARY	
29	1 ENVIRONMENTAL MEDIA CONCENTRATION OVERVIEW	
0	2 SCREENING LEVEL ASSESSMENT OVERVIEW	
81 82	2.1 Margin of Exposure Approach2.2 Estimating High-End Exposure	
33	3 LAND PATHWAY	
34	3.1 Biosolids	
5	3.1.1 Weight of Scientific Evidence Conclusions	
6	3.2 Landfills	2
7	3.2.1 Weight of Scientific Evidence Conclusion	
8	4 SURFACE WATER CONCENTRATION	
9	4.1 Modeling Approach for Estimating Concentrations in Surface Water	
-0	4.2 Measured Concentrations	
-1	4.2.1 Measured Concentrations in Surface Water	
2	4.2.2 Measured Concentrations in Sediment4.3 Evidence Integration for Surface Water and Sediment	
.4	4.3 Evidence integration for Surface water and Sedment	
5	Water Concentration	
6	4.4 Weight of Scientific Evidence Conclusions	
7	5 SURFACE WATER EXPOSURE	
8	5.1 Modeling Approach	3
.9	5.1.1 Dermal	
0	5.1.1.1 Risk Screening	
1	5.1.2 Oral Ingestion	
2	5.1.2.1 Risk Screening	
3	5.2 Weight of Scientific Evidence Conclusions	
4	6 DRINKING WATER EXPOSURE	
5	6.1 Modeling Approach for Estimating Concentrations in Drinking Water	
6	6.1.1 Drinking Water Ingestion	
7	6.1.1.1 Risk Screening	
8	6.2 Measured Concentrations in Drinking Water	
9	6.3 Evidence Integration for Drinking Water	
0	6.4 Weight of Scientific Evidence Conclusions	
1	7 FISH INGESTION EXPOSURE	
52	7.1 General Population Fish Ingestion Exposure	
3	7.2 Subsistence Fish Ingestion Exposure	
54	7.3 Tribal Fish Ingestion Exposure	
5	7.4 Risk Screening	
6	7.5 Weight of Scientific Evidence Conclusions7.5.1 Strength, Limitations, Assumptions, and Key Sources of Uncertainty	
7		
58	8 AMBIENT AIR CONCENTRATION	

69	8.1 Modeling Approach for Estimating Concentrations in Ambient Air	44
70	8.2 Measured Concentrations in Ambient Air	47
71	8.3 Modeling Approach for Estimating Concentrations in Soil from Air Deposition	47
72	8.3.1 Air Deposition to Soil	
73 74	8.4 Evidence Integration	50
74 75	8.4.1 Strengths, Limitations, and Sources of Uncertainty for Modeled Air and Deposition Concentrations	50
76	8.5 Weight of Scientific Evidence Conclusions	
77	9 AMBIENT AIR EXPOSURE	
78	9.1 Modeling Approach	52
79	9.1.1 Oral – Soil Ingestion	
80	9.1.2 Dermal – Soil Contact	53
81	9.2 Risk Screening	
82	9.2.1 Oral Ingestion and Dermal Absorption Margin of Exposure	
83	9.3 Weight of Scientific Evidence Conclusions	
84	10 HUMAN BIOMONITORING	55
85	10.1 Human Milk Biomonitoring	55
86	10.1.1 Biomonitoring Information	
87	10.1.2 Hazard Information	
88	10.1.3 Modeling Information	
89 90	10.1.4 Weight of Scientific Evidence Conclusions10.2 Urinary Biomonitoring	
90 91	10.2 Unitary Biomonitoring	
92	10.2.1.1 Temporal Trend of MCNP	
93	10.2.1.2 Daily Intake of DIDP from NHANES	
94	10.2.2 Limitations and Uncertainties of Reverse Dosimetry Approach	
95	10.2.3 Weight of Scientific Evidence Conclusions	64
96 97	11 CONCLUSIONS OF ENVIRONMENTAL MEDIA CONCENTRATION AND GENERAL POPULATION SCREENING LEVEL ANALYSIS	65
98	11.1 Environmental Media Conclusions	65
99	11.2 General Population Screening Level Assessment Conclusion	
100	11.3 Weight of Scientific Evidence Conclusions for General Population Exposure	
101	REFERENCES	69
102	APPENDICES	
103	Appendix A EXPOSURE FACTORS	74
104	A.1 Surface Water Exposure Activity Parameters	77
105	Appendix B BIOMONITORING METHODS AND RESULTS	80
106	Appendix C AMBIENT AIR MODELING RESULTS	84
107	C.1 AERMOD Modeling Inputs, Parameters and Outputs	84
108	C.1.1 Meteorological Data	
109	C.1.2 Urban/Rural Designations	
110	C.1.3 Physical Source Specifications	
111	C.1.4 Temporal Emission Patterns	84

C.1.5 Emission Rates and Sorption	
-	
-	
C.3 Air Deposition to Surface Water and Sediment	
C.3.1 Modeling Results for Air Deposition to Surface Water	
	 C.1.5 Emission Rates and Sorption C.1.6 Deposition Parameters C.1.7 Receptors C.1.8 Other Model Settings C.1.9 Model Outputs C.2 DIDP COUs/OESs and AERMOD Concentration and Deposition Tables C.3 Air Deposition to Surface Water and Sediment C.3.1 Modeling Results for Air Deposition to Surface Water C.3.2 Measured Concentrations in Precipitation

121 122 I IST OF TABLES

122	LIST OF TABLES	
123	Table ES-1. Exposure Pathways Assessed for General Population Screening Level Asessment	9
124	Table 1-1. Crosswalk of Conditions of Use to Assessed Occupational Exposure Scenarios	. 10
125	Table 1-2. Type of Release to the Environment by Occupational Exposure Scenario	. 13
126	Table 2-1. Non-cancer HECs and HEDs Used to Estimate Risks	
127	Table 2-2. Exposure Scenarios Assessed in Screening Level Analysis	. 19
128	Table 4-1. PSC Model Inputs (Chemical Parameters)	
129	Table 4-2. PSC Model Inputs (Waterbody Characteristics)	. 23
130	Table 4-3. Relevant NAICS Codes for Facilities Associated with DIDP Releases	. 24
131	Table 4-4. High-End PSC Modeling Results by COU for Total Water Column, Benthic Pore Water,	
132	and Benthic Sediment in the Receiving Waterbody, Applying a 7Q10 Flow	. 27
133	Table 4-5. High-End PSC Modeling Results for Total Water Column, Applying 30Q5 and Harmonic	
134	Mean Flows	. 27
135	Table 5-1. Modeled Dermal (Swimming) Doses for Adults, Youths, and Children, for the High-End	
136	Release Estimate from Modeling and Monitoring Results	. 32
137	Table 5-2. Risk Screen for Modeled Incidental Dermal (Swimming) Doses for Adults, Youths, and	
138	Children, for the High-End Release Estimate from Modeling and Monitoring Results	. 32
139	Table 5-3. Modeled Incidental Ingestion Doses for Adults, Youths, and Children, for the High-End	
140	Release Estimate from Modeling and Monitoring Results	. 33
141	Table 5-4. Risk Screen for Modeled Incidental Ingestion Doses for Adults, Youths, and Children, for	
142	the High-End Release Estimate from Modeling and Monitoring Results	. 34
143	Table 6-1. Modeled Drinking Water Doses for Adults, Youths, and Children for the High-end	
144	Release Estimate from Modeling and Monitoring Results	. 36
145	Table 6-2. Risk Screen for Modeled Drinking Water Exposure for Adults, Youths, and Children, for	
146	the High-End Release Estimate from Modeling and Monitoring results	. 37
147	Table 7-1. Fish Tissue Concentrations Calculated from Modeled Surface Water Concentrations and	
148	Monitoring Data	. 39
149	Table 7-2. Adult General Population Fish Ingestion Doses by Surface Water Concentration	. 41
150	Table 7-3. Adult Subsistence Fisher Doses by Surface Water Concentration	. 41
151	Table 7-4. Adult Tribal Fish Ingestion Doses by Surface Water Concentration	. 42
152	Table 7-5. Risk Screen for Fish Ingestion Exposure for Tribal Populations	. 43
153	Table 8-1. 95th Percentile Modeled Annual Concentrations ($\mu g/m^3$) based on Fugitive Source, High-	
154	end Facility Release	. 46
155	Table 8-2. 95th Percentile Modeled Daily Deposition (g/m ² -day) Based on Fugitive Source, High-	
156	End Facility Release	
157	Table 10-1. Daily Intake Values for Select Demographics for the 2017 to 2018 NHANES Cycle	. 62
158	Table 11-1. Summary of High-End DIDP Concentrations in Various Environmental Media from	
159	Environmental Releases	
160	Table 11-2. General Population Water Exposure Summary	. 66

161	Table 11-3. Tribal Fish for Adult Ingestion Summary 66	5
162	Table 11-4. General Population Soil from Air to Soil Deposition Exposure Summary	
163	Table 11-5. Screening Level Analysis for High-End Exposure Scenarios for Highest Exposed	
164	Populations	7
165		

166 LIST OF FIGURES

167	Figure 2-1. Potential Human Exposure Pathways for the General Population	18
168	Figure 4-1. Distribution of Receiving Waterbody 7Q10 Modeled Flow for Facilities with Relevant	
169	NAICS Classifications	26
170	Figure 10-1. Reverse Dosimetry Approach for Estimating Daily Intake	57
171	Figure 10-2. Urinary MCNP Concentrations for Children (3 to <16 Years) by Age Group	59
172	Figure 10-3. Urinary MCNP Concentrations for Adults (16+ Years) and Women of Reproductive	
173	Age (16 to 49 Years)	60
	-	

LIST OF APPENDIX TABLES

176	Table_Apx A-1. Body Weight by Age Group	74
177	Table_Apx A-2. Fish Ingestion Rates by Age Group	
178	Table_Apx A-3. Recommended Default Values for Common Exposure Factors	75
179	Table_Apx A-4. Incidental Dermal (Swimming) Modeling Parameters	78
180	Table_Apx A-5. Incidental Oral Ingestion (Swimming) Modeling Parameters	78
181	Table_Apx B-1. Limit of Detection of Urinary MCNP by NHANES Cycle	80
182	Table_Apx B-2. Summary of Urinary MCNP Concentrations (ng/mL) from all NHANES Cycles	
183	Between 2005 and 2018 ^a	80
184	Table_Apx C-1. Assumptions for Intraday Emission-Release Duration	85
185	Table_Apx C-2. Assumptions for Interday Emission-Release Frequency	86
186	Table_Apx C-3. Condition of Uses and Occupational Exposure Scenarios and Associated Releases	89
187	Table_Apx C-4. DIDP 95th Percentile Annual Concentrations (µg/m ³) Modeled from High-End	
188	Fugitive Release Source	91
189	Table_Apx C-5. DIDP 95th Percentile Annual Concentrations (µg/m ³) Modeled from High-End	
190	Stack Release Source	95
191	Table_Apx C-6. DIDP 95th Percentile Daily Concentrations (µg/m ³) Modeled from High-End	
192	Fugitive Release Source	96
193	Table_Apx C-7. DIDP 95th Percentile Daily Concentrations (µg/m ³) Modeled from High-End Stack	
194	Release Source 1	00
195	Table_Apx C-8. DIDP 95th Percentile Annual Deposition Rate (g/m ²) Modeled from High-End	
196	Fugitive Release Source1	
197	Table_Apx C-9. DIDP 95th Percentile Annual Deposition Rate (g/m ²) Modeled from High-End Stack	
198	Release Source 1	05
199	Table_Apx C-10. DIDP 95th Percentile Daily Deposition Rate (g/m ²) Modeled from High-End	
200	Fugitive Release Source1	
201	Table_Apx C-11. DIDP 95th Percentile Daily Deposition Rate (g/m ²) Modeled from High-End Stack	
202	Release Source 1	
203	Table_Apx C-12. Modeling Results for Air Deposition to Surface Water 1	12
204		

205 ABBREVIATIONS AND ACRONYMS

206	7Q10	Lowest 7-day flow in a 10 year period
207	ADD	Average daily dose
208	ADR	Acute dose rate
209	AERMOD	American Meteorological Society (AMS)/EPA Regulatory Model
210	BAF	Bioaccumulation factor
211	BCF	Bioconcentration factor
212	CDC	Centers for Disease Control and Prevention (U.S.)
213	CEM	Consumer Exposure Model
214	COU	Condition of use
215	DAD	Dermal absorbed dose
216	DI	Daily intake
217	DIDP	Diisodecyl phthalate
218	DINP	Diisononyl phthalate
219	ECHO	The EPA Enforcement and Compliance History Online Database
220	Fue	Fractional urinary excretion
221	IIOAC	Integrated indoor-outdoor air calculator
222	EPA	Environmental Protection Agency (U.S.)
223	HEC	Human equivalent concentration
224	HED	Human equivalent dose
225	HM	Harmonic mean
226	KOA	Octanol:air coefficient
227	K _{OC}	Organic carbon:water partition coefficent
228	K _p	Dermal permeability coefficient
229	LADD	Lifetime average daily dose
230	MCNP	Mono-(carboxynonyl) phthalate
231	MOE	Margin of exposure
232	NAICS	North American Industry Classification System
233	NHANES	National Health and Nutrition Examination Survey
234	NPDES	National Pollutant Discharge Elimination System
235	OCSPP	Office of Chemical Safety and Pollution Prevention
236	OES	Occupational exposure scenario
237	OPPT	Office of Pollution Prevention and Toxics
238	PESS	Potentially exposed or susceptible subpopulation(s)
239	POD	Point of departure
240	TSCA	Toxic Substances Control Act
241	WWTP	Wastewater treatment plant

DIDP – Environmental Media Concentration and General Population Exposure: Key Points

EPA evaluated the reasonably available information for various environmental media concentrations and using a screening level approach estimated exposure through different exposure pathways for the general population. The key points are summarized below:

- EPA assessed environmental concentrations of DIDP in air, water, and land (soil, biosolids, and groundwater) for use in environmental exposure and general population exposure assessment.
 - For the land pathway, EPA determined that DIDP will not be persistent or mobile in soils. Therefore, soil and groundwater concentrations resulting from releases to the landfill or to agricultural lands via biosolid applications were not quantified but are discussed qualitatively.
 - For the water pathway, DIDP in water releases is expected to predominantly partition into sediment. The modeled total water column concentration of DIDP was 7,460 µg/L and benthic sediment concentrations of DIDP was 27,600 mg/kg. Both modeled values were orders of magnitude above any monitored value but were used for the purposes of a screening level analysis. Further refinement of the modeled values was not completed due to the water pathway not being identified as a pathway of concern for ecological receptors or the general population.
 - For the air pathway, DIDP in air releases is expected to predominantly partition into the soil or sediment compartments. The modeled soil concentrations of DIDP were 1.85 mg/kg at 100 m and 0.013 mg/kg at 1,000 m from the generic releasing facility.
- Based on the environmental concentrations, a screening level assessment for exposure to the general population through incidental ingestion to surface water from swimming, dermal contact to surface water from swimming, drinking water, fish ingestion, incidental soil ingestion from ambient air to soil deposition, and soil contact from ambient air to soil deposition was conducted and EPA concluded that there were no pathways of concern for the general population.
- 243

This technical document is in support of the TSCA *Draft Risk Evaluation for Diisodecyl Phthalate*(DIDP) (U.S. EPA, 2024h). DIDP is a common chemical name for the category of chemical substances
that includes the following substances: 1,2-benzenedicarboxylic acid, 1,2-diisodecyl ester (CASRN
26761-40-0) and 1,2-benzenedicarboxylic acid, di-C9-11-branched alkyl esters, C10-rich (CASRN
68515-49-1). Both CASRNs contain mainly C10 dialkyl phthalate esters. See the draft risk evaluation
for a complete list of all the technical support documents for DIDP.

250

251 This document describes the use of reasonably available information to estimate environmental

- concentration of DIDP in different environmental media and the use of the estimated concentrations to
- evaluate exposure to the general population. EPA evaluated the reasonably available information for
 releases of DIDP from facilities that use, manufacture, or process DIDP under industrial and/or
- commercial conditions of use (COUs) subject to TSCA regulations detailed in the *Draft Release and*
- 255 Commercial conditions of use (COOS) subject to TSCA regulations detailed in the *Drajt Release and* 256 Occupational Exposure Assessment for Diisodecyl Phthalate (U.S. EPA, 2024c). As described in
- 257 Section 1, using the release data, EPA modeled predicted concentrations of DIDP in surface water and
- sediment (Section 4.1), ambient air (Section 8.1), and soil from air to soil deposition (Section 8.3) in the

United States. When possible, the modeled concentrations were compared to environmental monitoring
data. Concentrations of DIDP in soil and groundwater resulting from releases to the landfill (Section
3.2) or via biosolids (Section 3.1) were not quantified but discussed qualitatively because DIDP is not
expected to be persistent or mobile in soils.

- 263 264 High-end estimates of DIDP concentration in the various environmental media presented in this 265 document were used for a screening level assessment for an environmental and general population 266 exposure assessment. Environmental exposures assessed using the predicted concentrations of DIDP is 267 presented elsewhere in the Draft Environmental Exposure Assessment for DIDP (U.S. EPA, 2024b). 268 General population exposure is discussed in this document using a screening level approach detailed in 269 Section 2. EPA used a margin of exposure (MOE) approach discussed in Section 2.1 using high-end exposure estimates to determine if there were potential non-cancer risks for various exposure pathways. 270 271 High-end exposure estimates were defined as those associated with the industrial and commercial 272 releases from a COU and occupational exposure scenario (OES) that resulted in the highest 273 environmental media concentrations. Table 1-1 provides a crosswalk between COUs and OESs. More 274 details on defining high-end exposure estimates are found in Section 2.2. Plainly, if there is no risk for an individual identified as having the potential for the highest exposure associated with a COU for a 275 276 given pathway of exposure, then that pathway was determined not to be a pathway of concern and not 277 assessed further. If any pathways were identified as a pathway of concern for the general population, 278 further exposure assessments for that pathway would be conducted to include higher tiers of modeling 279 when available, refinement of exposure estimates, and exposure estimates for additional subpopulations 280 and OES/COUs. 281
- 282 Table ES-1 summarizes the exposure pathways assessed for the general population. For DIDP, 283 exposures to the general population via surface water, drinking water, fish ingestion, and ambient air 284 deposition to soil were quantified, while exposures via the land pathway (biosolids and landfills) were qualitatively assessed. Further description of the qualitative and quantitative assessments for each 285 286 exposure pathway can be found in the sections linked in Table ES-1. As summarized in Table ES-1, 287 results described in further detail in the sections linked within the table indicate that biosolids, landfills, 288 surface water, drinking water, fish ingestion, and ambient air are not pathways of concern for DIDP for 289 highly exposed populations based on the OES leading to high-end concentrations of DIDP in 290 environmental media. Therefore, EPA did not further refine the general population exposure assessment 291 to include higher tiers of modeling, additional subpopulations, and additional COUs.
- 292

Occupational Exposure Scenario ^a	Exposure Pathway	Exposure Route	Exposure Scenario	Pathway of Concern ^b									
All Biosolids (Section 3.1)		No specific o qualitative a	exposure scenarios were assessed for ssessments	No									
All	Landfills (Section 3.2)		No specific exposure scenarios were assessed for qualitative assessments										
Use of Lubricants and Functional	Surface Water	Dermal	Dermal exposure to DIDP in surface water during swimming (Section 5.1.1)	No									
Fluids	Surface Water	Oral	Incidental ingestion of DIDP in surface water during swimming (Section 5.1.2)	No									
Use of Lubricants and Functional Fluids	Drinking Water	Oral	Ingestion of drinking water (Section 6.1.1)	No									
	Fish Ingestion		Ingestion of fish for General Population (Section 7.1)	No									
All		Fish Ingestion	Fish Ingestion	Fish Ingestion	Fish Ingestion	Fish Ingestion	Fish Ingestion	Fish Ingestion	Fish Ingestion	Fish Ingestion	Oral	Ingestion of fish for subsistence fishers (Section 7.2)	No
			Ingestion of fish for tribal populations (Section 7.3)	No									
PVC Plastics Compounding	Ambient Air	Oral	Ingestion of DIDP in soil resulting from air to soil deposition (Section 9.1)	No									
		Dermal	Dermal exposure to DIDP in soil resulting from air to soil deposition (Section 9.1.2)	No									

293 Table ES-1. Exposure Pathways Assessed for General Population Screening Level Asessment

^{*a*} Table 1-1 provides a crosswalk of industrial and commercial COUs to OES.

294

^b Using the MOE approach, an exposure pathway was determined to not be a pathway of concern if the MOE was equal to or exceeded the benchmark MOE of 30.

295 **<u>1 ENVIRONMENTAL MEDIA CONCENTRATION OVERVIEW</u>**

EPA assessed environmental concentrations of DIDP in air, water, and land (soil, biosolids and
 groundwater) using monitoring and modeled data for use in an environmental exposure assessment
 presented elsewhere in the *Draft Environmental Exposure Assessment for DIDP* (U.S. EPA, 2024b) and
 general population exposure assessment described in detail in Section 2 and presented throughout the
 document.

301

302 Modeling efforts utilized reasonably available information for releases of DIDP from facilities that use, 303 manufacture, or process DIDP under industrial and/or commercial conditions of use (COUs) subject to 304 TSCA regulations detailed in the Draft Release and Occupational Exposure Assessment for Diisodecyl Phthalate (U.S. EPA, 2024c). EPA categorized the COUs into occupational exposure scenarios (OESs). 305 306 Table 1-1 provides a crosswalk between COUs and OESs. Briefly, each OES is developed based on a set 307 of occupational activities and conditions such that similar environmental releases are expected from the use(s) covered under the OES. For each OES, EPA provided environmental release results, which are 308 309 expected to be representative of all sites for the given OES in the United States. There was no location-310 specific information available. The type of release resulting from each OES is categorized in Table 1-2. In some cases, EPA defined only a single OES for multiple COUs, while in other cases EPA developed 311 multiple OESs for a single COU. EPA made this determination by considering variability in release and 312 use conditions and whether the variability required discrete scenarios or could be captured as a 313 distribution of exposures. The Draft Release and Occupational Exposure Assessment for Diisodecyl 314 Phthalate (U.S. EPA, 2024c) provides further information on each specific COU and OES.

315 316

317 Table 1-1. Crosswalk of Conditions of Use to Assessed Occupational Exposure Scenarios

Life Cycle Stage	Category	Subcategory	OES
Manufacturing	Domestic manufacturing	Domestic manufacturing	Manufacturing
	Importing	Importing	Import and Repackaging
	Repackaging	Repackaging	Import and Repackaging
	Incorporation into formulation, mixture, or reaction product	Adhesives and sealants manufacturing	Incorporation into Adhesives and Sealants
		Laboratory chemicals manufacturing	Incorporation into Other Formulations, Mixtures, or Reaction Products
Processing		Petroleum lubricating oil manufacturing; Lubricants and lubricant additives manufacturing	Incorporation into Other Formulations, Mixtures, or Reaction Products
		Surface modifier in paint and coating manufacturing	Incorporation into Paints and Coatings
		Plastic material and resin manufacturing	PVC Plastics Compounding; Non-PVC Material Compounding
		Plasticizers (paint and coating manufacturing; colorants (including pigments); rubber manufacturing)	Incorporation into Paints and Coatings; Non-PVC Material Compounding;

Life Cycle Stage Category		Subcategory	OES	
		Processing aids, specific to petroleum production (oil and gas drilling, extraction, and support activities)	Incorporation into Other Formulations, Mixtures, or Reaction Products	
		Other (part of the formulation for manufacturing synthetic leather)	PVC Plastics Compounding; Non-PVC Material Compounding	
		Abrasives manufacturing	Application of Adhesives and Sealants	
	Incorporation into articles	Plasticizers (asphalt paving, roofing, and coating materials manufacturing; construction; automotive products manufacturing, other than fluids; electrical equipment, appliance, and component manufacturing; fabric, textile, and leather products manufacturing; floor coverings manufacturing; floor coverings manufacturing; furniture and related product manufacturing; plastics product manufacturing; textiles, apparel, and leather manufacturing; transportation equipment manufacturing; ink, toner, and colorant (including pigment) products manufacturing; photographic supplies manufacturing)	PVC Plastics Converting Non-PVC Material Converting;	
	Recycling	Recycling	Recycling	
Disposal	Disposal	Disposal	Disposal	
Distribution in commerce	Distribution in commerce	Distribution in commerce	Distribution in Commerce	
	Abrasives	Abrasives (surface conditioning and finishing discs; semi-finished and finished goods)	Fabrication or Use of Final Products or Articles	
	Adhesive and sealants	Adhesives and sealants	Application of Adhesives and Sealants	
Industrial uses	Functional fluids (closed systems)	Functional fluids (closed systems) (SCBA compressor oil)	Use of Lubricants and Functional Fluids	
	Lubricant and lubricant additives	Lubricants and lubricant additives	Use of Lubricants and Functional Fluids	
	Solvents (for cleaning or	Solvents (for cleaning or degreasing)	Use of Lubricants and Functional Fluids	

Life Cycle Stage	Category	Subcategory	OES
	degreasing)		
	Automotive, fuel,	Automotive products, other than fluids	Fabrication or Use of Final Products or Articles
	agriculture, outdoor use products	Lubricants	Use of Lubricants and Functional Fluids
		Adhesives and sealants (including plasticizers in adhesives and sealants)	Application of Adhesives and Sealants
	Construction, paint,	Building/construction materials (wire or wiring systems; joint treatment, fire-proof insulation)	Fabrication or Use of Final Products or Articles
	electrical, and metal products	Electrical and electronic products	Fabrication or Use of Final Products or Articles
		Paints and coatings (including surfactants in paints and coatings)	Application of Paints and Coatings
Commercial		Lacquers, stains, varnishes, and floor finishes (as plasticizer)	Application of Paints and Coatings; Application of Adhesives and Sealants
uses	Furnishing, cleaning, treatment/care	Furniture and furnishings	Fabrication or Use of Final Products or Articles
		Construction and building materials covering large surface areas including stone, plaster, cement, glass and ceramic articles; fabrics, textiles, and apparel (as plasticizer) (Floor coverings (vinyl tiles, PVC- backed carpeting, scraper mats))	Fabrication or Use of Final Products or Articles
	products	Ink, toner, and colorant products	Application of Paints and Coatings
		PVC film and sheet	Fabrication or Use of Final Products or Articles
		Plastic and rubber products (textiles, apparel, and leather; vinyl tape; flexible tubes; profiles; hoses)	Fabrication or Use of Final Products or Articles
	Othenwara	Laboratory chemicals	Use of Laboratory Chemicals
	Other uses	Inspection fluid/penetrant	Use of Inspection Fluid and Penetrant

318 319

320 **Table 1-2. Type of Release to the Environment by Occupational Exposure Scenario**

Occupational Exposure Scenario (OES) ^a	Type of Discharge, ^b Air Emission, ^c or Transfer for Disposal ^d				
	Fugitive Air				
	Stack Air				
Manufacturing	Wastewater to Onsite treatment or Discharge to POTW				
	Onsite Wastewater Treatment, Incineration, or Landfill				
	Landfill				
Import and repackaging	Fugitive Air				
	Wastewater to Onsite Treatment, Discharge to POTW, or Landfill				
	Fugitive or Stack Air				
	Wastewater, Incineration, or Landfill				
PVC plastics compounding	Wastewater				
	Fugitive air, Wastewater, Incineration, or landfill				
	Incineration or Landfill				
	Fugitive or Stack Air				
	Wastewater, Incineration, or Landfill				
PVC plastics converting	Wastewater				
	Fugitive air, Wastewater, Incineration, or Landfill				
	Incineration or Landfill				
	Fugitive or Stack Air				
	Wastewater, Incineration, or Landfill				
Non-PVC material compounding	Wastewater				
	Fugitive Air, Wastewater, Incineration, or Landfill				
	Incineration or Landfill				
	Fugitive or Stack Air				
	Wastewater, Incineration, or Landfill				
Non-PVC material converting	Wastewater				
	Fugitive Air, Wastewater, Incineration, or Landfill				
	Incineration or Landfill				
	Fugitive Air				
Incorporation into adhesives and sealants	Stack Air				
searants	Wastewater, Incineration, or Landfill				
	Fugitive Air				
Incorporation into paints and coatings	Stack Air				
	Wastewater, Incineration, or Landfill				
Incorporation into other formulations,	Fugitive Air				
mixtures, and reaction products not	Stack Air				
covered elsewhere	Wastewater, Incineration, or Landfill				
	Trasterrater, memoration, or Lanutin				

Occupational Exposure Scenario (OES) ^{<i>a</i>}	Type of Discharge, ^b Air Emission, ^c or Transfer for Disposal ^d				
Application of paints and coatings	Fugitive Air				
with overspray controls	Stack Air				
[No Overspray Controls]	Wastewater, Incineration, or Landfill				
Application of Adhesives and	Fugitive or Stack Air				
Sealants	Wastewater, Incineration, or Landfill				
Use of Laboratory Chemicals –	Fugitive or Stack Air				
Liquid	Wastewater, Incineration, or Landfill				
	Stack Air				
Use of Laboratory Chemicals – Solid	Wastewater, Incineration, or Landfill				
	Wastewater				
Use of Lubricants and Functional	Landfill				
Fluids	Recycling				
	Fuel Blending (Incineration)				
	Fugitive Air				
Use of Penetrants and Inspection	Wastewater, Incineration, or Landfill				
Fluids	Fugitive Air				
	Wastewater, Incineration, or Landfill				
	Stack Air				
Recycling and Disposal	Fugitive Air, Wastewater, Incineration, or Landfill				
	Wastewater				
^{<i>a</i>} Table 1-1 provides the crosswalk of C ^{<i>b</i>} Direct discharge to surface water; ind ^{<i>c</i>} Emissions via fugitive air or stack air	irect discharge to non-POTW; indirect discharge to POTW				

^{*d*} Transfer to surface impoundment, land application, or landfills

321

All releases from all OESs listed in Table 1-2 were considered, but EPA focused on estimating high-end concentrations of DIDP from the largest estimated releases for the purpose of its screening level assessment for environmental and general population exposures. This means that EPA considered the environmental concentration of DIDP in a given environmental media resulting from the OES that had the highest release compared to the other OES for the same releasing media. The OES resulting in the highest environmental concentration of DIDP varied by environmental media as shown in Table 2-2.

328

329 Additionally, EPA relied on its fate assessment to determine which environmental pathways to consider 330 for its screening level analysis. Details on the environmental partitioning and media assessment can be 331 found in Draft Fate Assessment for DIDP (U.S. EPA, 2024d). Briefly, based on DIDP's fate parameters, EPA anticipated DIDP to be expected predominantly in water, soil, and sediment, with DIDP in soils 332 333 attributable to air to soil deposition and land application of biosolids. Therefore, EPA quantitatively 334 assessed concentrations of DIDP in surface water, sediment, and soil from air to soil deposition. Ambient air concentrations were quantified for the purpose of estimating soil concentrations from air to 335 soil deposition but was not used for the exposure assessment as DIDP was not assumed to be persistent 336 337 in the air $(t_{1/2} = 7.6 \text{ hours (Mackay et al., 2006)})$ and partitioning analysis showed DIDP partitions

338 primarily to soil, compared to air, water, and sediment, even in air releases. Soil concentration of DIDP

- from land applications were not quantitatively assessed in the screening level analysis as DIDP was
- expected to have limited persistence potential and mobility in soils receiving biosolids.
- 341
- 342 Screening-level assessment approaches are described in further detail in Section 2. Based on the types of

releases and fate parameters of DIDP, EPA modeled high-end predicted concentrations of DIDP in

- 344 surface water and sediment (Section 4.1), ambient air (Section 8.1), and soil from air to soil deposition
- 345 (Section 8.3) for the in the United States. The COU and OES associated with the high-end concentration 346 of each media type is described in each section. When possible, the modeled concentrations were
- of each media type is described in each section. When possible, the modeled concentrations were
 compared to environmental monitoring data presented in Sections 4.2.1, 4.2.2, 8.2, and 8.3.1 for surface
- water, sediment, ambient air, and soil, respectively. Based on DIDP's fate parameters detailed in *Draft*
- 349 *Fate Assessment for DIDP* (U.S. EPA, 2024d), concentrations of DIDP in soil and groundwater resulting
- from releases to the landfill (Section 3.2) or via biosolids (Section 3.1) were not quantified but discussed
- 351 qualitatively.

352 2 SCREENING LEVEL ASSESSMENT OVERVIEW

Screening level assessments are useful when there is little location- or scenario-specific information available. EPA began its DIDP exposure assessment using a screening level approach because of limited environmental monitoring data for DIDP and lack of location data for DIDP releases. A screening-level analysis relies on conservative assumptions, including default input parameters for modeling exposure, to assess exposures that would be expected to be on the high end of the expected exposure distribution. Details on the use of screening-level analyses in exposure assessment can be found in EPA's *Guidelines for Human Exposure Assessment* (U.S. EPA, 2019b).

360

For the general population screening level assessment, EPA used a margin of exposure (MOE) approach using high-end exposure estimates to determine if exposure pathways were pathways of concern for potential non-cancer risks. Using the MOE approach, an exposure pathway associated with a COU was determined to not be a pathway of concern if the MOE was equal to or exceeded the benchmark MOE of 30. Further details of the MOE approach are described in Section 2.1.

366

367 High-end exposure estimates used for screening level analyses were defined as those associated with the 368 industrial and commercial releases from a COU and OES that resulted in the highest environmental 369 media concentrations. Additionally, individuals with the greatest intake rate of DIDP per body weight 370 were considered to be those at the upper end of the exposure. Taken together, these exposure estimates 371 are conservative because they were determined using the highest environmental media concentrations 372 and greatest intake rate of DIDP per kilogram of body weight. These exposure estimates are also 373 protective of individuals having less exposure either due to lower intake rate or exposure to lower 374 environmental media concentration. This is explained further in Section 2.2.

375

Plainly, if there is no risk for an individual identified as having the potential for the highest exposure
associated with a COU for a given pathway of exposure, then that pathway was determined not to be a
pathway of concern. If any pathways were identified as having potential for risk to the general
population, further exposure assessments for that pathway would be conducted to include higher tiers of
modeling, additional subpopulations, and OES/COUs.

381 **2.1 Margin of Exposure Approach**

EPA used a MOE approach using high-end exposure estimates to determine if the pathway analyzed is a
pathway of concern. The MOE is the ratio of the non-cancer hazard value (or point of departure (POD))
divided by a human exposure dose. Acute, intermediate, and chronic MOEs for non-cancer inhalation
and dermal risks were calculated using the following equation:

387 Equation 2-1. Margin of Exposure Calculation

388

386

389

MOE =	Non – cancer Hazard Value (POD)
MOE -	Human Exposure

390391 Where:

392	МОЕ	=	Margin of exposure for acute, short-term, or chronic
393			risk comparison (unitless)
394	Non-cancer Hazard Value (POD)	=	Human equivalent concentration (HEC, mg/m ³) or
395			human equivalent dose (HED, in units of mg/kg-
396			day)
397	Human Exposure	=	Exposure estimate (mg/m ³ or mg/kg-day)

398

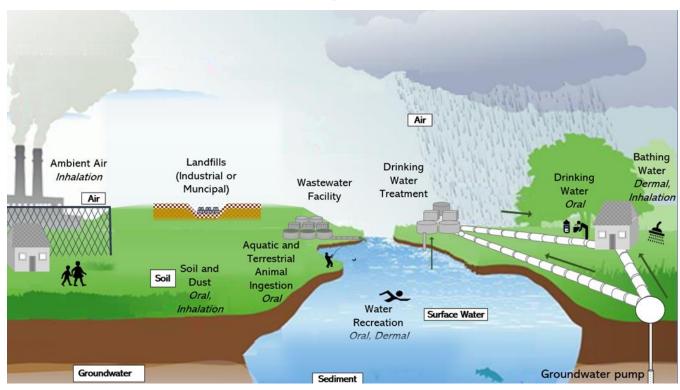
- 399 MOE risk estimates may be interpreted in relation to benchmark MOEs. Benchmark MOEs are typically
- 400 the total uncertainty factor for each non-cancer POD. The MOE estimate is interpreted as a human
- 401 health risk of concern if the MOE estimate is less than the benchmark MOE (*i.e.*, the total uncertainty
- factor). On the other hand, for this screening level analysis, if the MOE estimate is equal to or exceeds
- 403 the benchmark MOE, the exposure pathway is not analyzed further. Typically, the larger the MOE, the 404 more unlikely it is that a non-cancer adverse effect occurs relative to the benchmark. When determining
- 405 whether a chemical substance presents unreasonable risk to human health or the environment, calculated
- 406 risk estimates are not "bright-line" indicators of unreasonable risk, and EPA has the discretion to
- 407 consider other risk-related factors in addition to risks identified in the risk characterization.
- 408

The non-cancer hazard values used for the MOE approach are described in detail in the *Draft Human Health Hazard Assessment for Diisodecyl Phthalate* (U.S. EPA, 2024f), and are summarized in Table
 2-1.

412

413 **Table 2-1. Non-cancer HECs and HEDs Used to Estimate Risks**

Exposure Scenario	Point of Departure (mg/kg-day)	Human Equivalent Concentration (mg/m ³) [ppm]	Human Equivalent Dose (mg/kg-day)	Benchmark Margin of Exposure	References	
Acute, intermediate, and chronic	NOAEL = 38	49 [2.7]	9.0	$UF_{A}=3$ $UF_{H}=10$ $Total UF=30$	(<u>Hushka et al.,</u> 2001; <u>Exxon</u> <u>Biomedical, 2000</u>)	
NOAEL = no-observed-adverse-effect level						


414

Using the MOE approach in a screening level analysis, an exposure pathway associated with a COU was
determined to not be a pathway of concern if the MOE was equal to or exceeded the benchmark MOE of
30.

418 **2.2 Estimating High-End Exposure**

General population exposures occur when DIDP is released into the environment and the environmental media is then a pathway for exposure. As described in the *Draft Release and Occupational Exposure Assessment for Diisodecyl Phthalate* (U.S. EPA, 2024c) and summarized in Table 1-2, releases of DIDP are expected occur to air, water, and land. Figure 2-1 provides a graphic representation of where and in which media DIDP is estimated to be found due to environmental releases and the corresponding route of exposure.

425

427 Figure 2-1. Potential Human Exposure Pathways for the General Population

428 The diagram presents the media (white text boxes) and routes of exposure (italics for oral, inhalation, or dermal) 429 for the general population. Sources of drinking water from surface or water pipes is depicted with grey arrows. 430

- For purposes of a screening level analysis, high-end exposures were estimated for each exposure pathway assessed. *EPA's Guidelines for Human Exposure Assessment* defined high-end exposure estimates as a "plausible estimate of individual exposure for those individuals at the upper end of an exposure distribution, the intent of which is to convey an estimate of exposure in the upper range of the distribution while avoiding estimates that are beyond the true distribution." If risk is not found for these individuals with high-end exposure, no risk is anticipated for central tendency exposures, which is defined as "an estimate of individuals in the middle of the distribution."
- 438

426

Identifying individuals at the upper end of an exposure distribution included consideration of high-end exposure scenarios defined as those associated with the industrial and commercial releases from a COU and OES that resulted in the highest environmental media concentrations. Additionally, individuals with the greatest intake rate of DIDP per body weight were considered to be those at the upper end of the exposure. Intake rate and body weight are dependent on lifestage as shown in Appendix A.

- Table 2-2 summarizes the high-end exposure scenarios that were considered in the screening level analysis including the lifestage assessed as the most potentially exposed population based on intake rate and body weight. Exposure scenarios were assessed quantitatively only when environmental media concentrations were quantified for the appropriate exposure scenario. For example, exposure from soil or groundwater resulting from DIDP release to the environment via biosolids or landfills was not quantitatively assessed because DIDP concentrations to the environment from biosolids and landfills was not quantified. However, the scenarios were still assessed qualitatively for exposures potentially
- 452 resulting from biosolids and landfills.
- 453

Analysis Exposure Exposure OES **Exposure Scenario** Lifestage (**Ouantitative Pathway** Route or Qualitative) Biosolids No specific exposure scenarios were assessed **Oualitative** All for qualitative assessments Section 3.1 Landfills No specific exposure scenarios were assessed Oualitative All for qualitative assessments Section 3.2 Dermal Dermal exposure to Ouantitative DIDP in surface Adults Section 5.1.1 water during swimming Surface Use of Lubricants and **Functional Fluids** Water Oral Incidental ingestion Quantitative of DIDP in surface Youth Section 5.1.2 water during swimming Use of Lubricants and Ingestion of drinking Drinking Oral **Ouantitative** Infants **Functional Fluids** Water Section 6.1.1 water Ingestion of fish for Adult **Ouantitative** General Population Section 7.1 Fish Ingestion of fish for Adult Quantitative All Oral subsistence fishers Section 7.2 Ingestion Ingestion of fish for Adult Ouantitative tribal populations Section 7.3 Ingestion of DIDP in Infant and soil resulting from Ouantitative Children Oral air to soil deposition Section 9.1 **PVC** Plastic Ambient Compounding Air Dermal exposure to Quantitative Infant and DIDP in soil Section 9.1.2 Dermal Children resulting from air to soil deposition

454 Table 2-2. Exposure Scenarios Assessed in Screening Level Analysis

455

456 Modeled surface water concentrations (Section 4.1) were utilized to estimate oral drinking water

457 exposures (Section 6.1.1), incidental dermal exposures (Section 5.1.1), and incidental oral exposures

458 (Section 5.1.2) for the general population. Modeled soil concentrations from air to soil deposition

459 (Section 8.3) were utilized to estimate oral (Section 9.1) and dermal (Section 9.1.2) exposures.

460 If any pathways were identified as an exposure pathway of concern for the general population, further

461 exposure assessments for that pathway would be conducted to include higher tiers of modeling when 462 available and exposure estimates for additional subpopulations and COUs.

463 **3 LAND PATHWAY**

464 **3.1 Biosolids**

Biosolids generated during the treatment of industrial and municipal wastewater may be land applied to 465 466 agricultural fields or pasturelands. During the wastewater treatment process, greater than 93 percent of 467 DIDP is expected to be removed via sorption to wastewater sludge (U.S. EPA, 2024d). A study on DIDP concentrations in biosolids from wastewater treatment plants from the U.S. reported concentrations of 468 DIDP ranging from 4.3 to 24.9 mg/kg (Armstrong et al., 2018). Additionally, concentrations of DIDP in 469 470 sludge from sewage treatment plants outside of the U.S. have been reported as ranging from 3.8 to 83 471 mg/kg (Cousins et al., 2007; ECJRC, 2003). As a conservative estimate, it can be assumed that DIDP 472 concentrations in soils receiving biosolids have the same concentrations as the biosolids; therefore, 473 based on measured data, DIDP concentrations in soils receiving biosolids can be estimated as 83.0 474 mg/kg based off of the observed high-end monitoring data available.

475

476 High-end release scenarios were considered not to be applicable to the evaluation of land application of
477 biosolids. More specifically, high-end releases of DIDP from industrial facilities are unlikely to be
478 discharged directly to municipal wastewater treatment plants without pre-treatment, and biosolids from
479 industrial facilities are unlikely to be directly land applied following on-site treatment.

480

481 Due to its low water solubility (0.00017 mg/L) and affinity for sorption to soil and organic constituents 482 in soil (log $K_{OC} = 5.09$), DIDP is unlikely to migrate to groundwater via runoff after land application of 483 biosolids. Additionally, the half-life of 28 to 52 days in aerobic soils (U.S. EPA, 2024d) indicates that 484 DIDP will have low persistence potential in the aerobic environments associated with freshly applied 485 biosolids. Since the physical and chemical properties of DIDP indicate that it is unlikely to migrate from 486 land applied biosolids to groundwater via runoff, EPA did not model groundwater concentrations 487 resulting from land application of biosolids.

488

489 Although DIDP is not expected to be solubilized by rainwater and conveyed as a solute in runoff during 490 and after precipitation events, it is possible that DIDP sorbed to soil particles may be conveyed via 491 overland flow of surface runoff to nearby surface water bodies and enter the water sorbed to suspended 492 sediments. This sorbed DIDP may then be transported downstream, settle to the benthic environment, 493 and be incorporated into the sediment.

494

500

There is limited measured data on concentrations of DIDP in biosolids or soils receiving biosolids and there is uncertainty that concentrations used in this analysis are representative of all types of

496 interest uncertainty that concentrations used in this analysis are representative of an types of497 environmental releases. However, the high-quality biodegradation rates and physical and chemical

- 497 environmental releases. However, the high-quality biodegradation rates and physical and chemical 498 properties show that DIDP will have limited persistence potential and mobility in soils receiving
- 499 biosolids.

3.1.1 Weight of Scientific Evidence Conclusions

501 There is considerable uncertainty in the applicability of using generic release scenarios and wastewater 502 treatment plant modeling software to estimate concentrations of DIDP in biosolids. Additionally, there is 503 uncertainty in the relevancy of the biosolids monitoring data to the COUs considered in this evaluation. 504 Overall, due to the high confidence in the biodegredation rates and physical and chemical data, there is 505 robust confidence that in soils receiving DIDP will not be mobile and will have low persistence 506 potential.

507 **3.2 Landfills**

508 DIDP may biodegrade in the aerobic, upper portions of landfills and may be hydrolyzed under the high-509 temperature, caustic pH regimes that exist in the lower portions of landfills; however, DIDP is expected 510 to be persistent in landfills due to its lack of biodegradation in anaerobic conditions, which predominate 511 lower portions of landfills. Additionally, large amounts DIDP will likely be present in landfills as it is 512 continually added from consumer products that use DIDP in their formulation.

513

514 Due to its low water solubility (0.00017 mg/L) and affinity for organic carbon (log Koc = 5.09), DIDP is expected to be present at low concentrations in landfill leachate. Measured concentrations of DIDP in 515 516 landfill leachates collected from four landfills in Sweden were below detection for all samples analyzed 517 (n = 11) (Kalmykova et al., 2013). Further, any DIDP that may present in landfill leachates will not be 518 mobile in receiving soils and sediments due to its high affinity for organic carbon. Sediments near a 519 landfill in Sweden were found to have a DIDP concentration of 290 µg/kg (Cousins et al., 2007). For 520 comparison, the same study reported that sediment taken from background lakes had DIDP 521 concentrations below the detection limit of 100 µg/kg for all samples and reported that sediments from 522 urban locations had DIDP concentrations ranging from below detection to 3400 µg/kg (Cousins et al., 523 2007). Since the physical and chemical properties of DIDP indicate that it is unlikely to be present in 524 landfill leachate or be mobile in soils, modeling of groundwater contamination due to landfill leachate 525 containing DIDP was not performed.

526

534

527 While there is limited measured data on DIDP in landfill leachates, the data suggest that DIDP is

528 unlikely to be present in landfill leachates. Further, the small amounts of DIDP that could potentially be

529 in landfill leachates will have limited mobility and are unlikely to infiltrate groundwater due to high

affinity of DIDP for organic compounds that would be present in receiving soil and sediment.

531 Interpretation of the high-quality physical and chemical property data also suggest that DIDP is unlikely

to be present in landfill leachate. Therefore, EPA concludes that further assessment of DIDP in landfill

533 leachate is not needed.

3.2.1 Weight of Scientific Evidence Conclusion

There is uncertainty in the relevancy of the landfill leachate monitoring data to the COUs considered in this evaluation. Based on the biodegredation and hydrolysis data for conditions relevant to landfills, there is high confidence DIDP will be persistent in landfills. Overall, due high-quality physical and chemical property data, there is robust confidence that DIDP is unlikely to be present in landfill leachates.

SURFACE WATER CONCENTRATION 4 540

EPA searched peer-reviewed literature, gray literature, and databases of environmental monitoring data 541 542 to obtain concentrations of DIDP in ambient surface water and aquatic sediments. Though the available 543 monitoring data were limited, DIDP was found in detectable concentrations in ambient surface waters, 544 raw and finished drinking water, and in aquatic sediments. Limited monitoring studies measuring DIDP 545 within water and sediment are likely due to difficulties in quantifying DIDP within environmental samples (Chen et al., 2016; Lin et al., 2003). EPA conducted modeling of estimated industrial releases to 546 547 surface water to assess the expected resulting environmental media concentrations from TSCA COUs 548 presented in Table 1-1. Section 4.1 reports EPA modeled surface water concentrations and modeled 549 sediment concentrations. Section 4.2.1 includes a summary of monitoring concentrations for ambient 550 surface water, and Section 4.2.2 includes monitoring concentrations for sediment found from the 551 systematic review process.

4.1 Modeling Approach for Estimating Concentrations in Surface Water 552

553 EPA conducted modeling with the U.S. EPA's Variable Volume Water Model with Point Source 554 Calculator tool (PSC), to estimate concentrations of DIDP within surface water and sediment. PSC 555 considers model inputs of physical and chemical properties of DIDP (*i.e.*, K_{OW}, K_{OC}, water column half-556 life, photolysis half-life, hydrolysis half-life, and benthic half-life) allowing EPA to model predicted 557 surface water concentrations (U.S. EPA, 2019d). The PSC model was also used to estimate settled 558 sediment in the benthic region of streams. 559

560 Site-specific parameters influence how partitioning occurs over time. For example, the concentration of 561 suspended sediments, water depth, and weather patterns all influence how a chemical may partition 562 between compartments. Physical and chemical properties of the chemical itself also influence 563 partitioning and half-lives into environmental media. DIDP has a log K_{OC} of 5.04 to 5.78, indicating a 564 high potential to sorb to suspended particles in the water column and settled sediment in the benthic 565 environment (U.S. EPA, 2012; Mackay et al., 2006; Williams et al., 1995).

566

567 Physical and chemical properties selected by EPA for this assessment were applied as inputs to the PSC 568 model (Table 4-1).

- 569
- 570

Parameter	Value		
Koc	145,000 mL/g		
Water Colum Half-life	50 days at 25 °C		
Photolysis Half-life	8 days at 30		
Hydrolysis Half-life	1,200 days at 25 °C		
Benthic Half-life	3,000 days at 25 °C		
Molecular Weight	446.67		
Vapor Pressure (torr)	0.0000001		
Solubility	0.00017 mg/L		
Heat of Henry	50,000 J/mol		

Table 4.1 BSC Model Inputs (Chamical Demonstrate)

Parameter	Value		
Reference Temp	25 °C		

571

572 A generic setup for the model environment and media parameters was applied consistently across all

573 PSC runs. The standard EPA "farm pond" waterbody characteristics were used to parameterize the water

column and sediment parameters (Table 4-2). Generic modeled waterbody parameters were also applied,

575 with a standardized width of 5 m, length of 40 m, and depth of 1 m.

576 577

Table 4-2. PSC Model Inputs (Waterbody Characteristics)

Parameter	Value
DFAC	1.19
Water Column Suspended Sediment	30 mg/L
Chlorophyll	0.005 mg/L
Water Column foc	0.04
Water Column DOC	5.0 mg/L
Water Column Biomass	0.4 mg/L
Benthic Depth	0.05 m
Benthic Porosity	0.50
Benthic Bulk Density	1.35 g/cm ³
Benthic foc	0.04
Benthic DOC	5.0 mg/L
Benthic Biomass	0.006 g/m ²

578

579 A distribution of flow metrics was generated by collecting flow data for facilities across 20 North 580 American Industry Classification System (NAICS) codes associated with DIDP-releasing facilities 581 (Table 4-3). The EPA Enforcement and Compliance History Online (ECHO) database was accessed via 582 the API and queried for facilities regulated under the Clean Water Act within each of the 20 relevant NAICS codes. All available National Pollutant Discharge Elimination System (NPDES) permit IDs 583 584 were retrieved from the facilities returned by the query. An additional query of the DMR REST service was conducted via the ECHO API to return NHDPlus reach code associated with the receiving 585 586 waterbody for each available facility. Modeled flow metrics were then extracted for the retrieved reach codes, from the NHDPlus V2.1 Flowline Network EROM Flow database. The EROM database provides 587 modeled monthly average flows for each month of the year. While the EROM flow database represents 588 589 averages across a 30-year time period, the lowest of the monthly average flows was selected as a 590 substitute for the 30Q5 flow used in modeling, as both approximate the lowest observed monthly flow at a given location. The substitute 30Q5 flow was then plugged into the regression equation used by E-591 592 FAST to convert between these flow metrics and solved for the 7Q10 using Equation 4-1. In previous 593 assessments, the EPA has selected the 7Q10 flow as a representative low flow scenario for biological 594 impacts due to effluent in streams, while the harmonic mean represents a more average flow for 595 assessing chronic drinking water exposure.

7 3	Equation 4-1. C	alculating the 7Q10 Flow							
	$\mathbf{7Q10} = \frac{\left(0.409 \frac{cfs}{MLD} * \frac{\mathbf{30Q5}}{1.782}\right)^{1.0352}}{0.409 \frac{cfs}{MLD}}$								
)	$7Q10 = \frac{cfs}{0.409 cfs}$								
)	Where:	$0.409 \frac{MLD}{MLD}$							
1		= the modeled 7Q10 flow, in MLD							
2	30Q5								
3									
4 5	Further, the harm	nonic mean (HM) flow was calculated using Equation 4-2, derived from the relevant E-							
5	FAST regression								
7									
3 9	Equation 4-2. C	alculating the Harmonic Mean Flow							
		$HM = 1.194 * \frac{\left(0.409 \frac{cfs}{MLD} * AM\right)^{0.473} * \left(0.409 \frac{cfs}{MLD} * 7Q10\right)^{0.552}}{0.409 \frac{cfs}{MLD}}$							
)		$HM = 1.194 * - 0.409 \frac{cfs}{cfs}$							
1	Where:	MLD							
2	HM	= the modeled harmonic mean flow, in MLD							
`	434								
3	AM 7010	= the annual average flow from NHD, in MLD							
1	AM 7Q10	 the annual average flow from NHD, in MLD the modeled 7Q10 flow from the previous equation, in MLD 							
	7Q10								
4 5	7Q10	= the modeled 7Q10 flow from the previous equation, in MLD							
4 5	<i>7Q10</i> Table 4-3. Relev	 the modeled 7Q10 flow from the previous equation, in MLD vant NAICS Codes for Facilities Associated with DIDP Releases 							
4 5	7Q10 Table 4-3. Relev NAICS Code	= the modeled 7Q10 flow from the previous equation, in MLD vant NAICS Codes for Facilities Associated with DIDP Releases NAICS Name							
4 5	7Q10 Table 4-3. Relev NAICS Code 322220	 the modeled 7Q10 flow from the previous equation, in MLD vant NAICS Codes for Facilities Associated with DIDP Releases NAICS Name Paper Bag and Coated and Treated Paper Manufacturing 							
4 5	7Q10 Table 4-3. Relev NAICS Code 322220 325110	 the modeled 7Q10 flow from the previous equation, in MLD vant NAICS Codes for Facilities Associated with DIDP Releases NAICS Name Paper Bag and Coated and Treated Paper Manufacturing Petrochemical Manufacturing 							
4 5	7Q10 Table 4-3. Relev NAICS Code 322220 325110 325199	 the modeled 7Q10 flow from the previous equation, in MLD vant NAICS Codes for Facilities Associated with DIDP Releases NAICS Name Paper Bag and Coated and Treated Paper Manufacturing Petrochemical Manufacturing All Other Basic Organic Chemical Manufacturing 							
4 5	7Q10 Table 4-3. Relev NAICS Code 322220 325110 325199 325211	 the modeled 7Q10 flow from the previous equation, in MLD vant NAICS Codes for Facilities Associated with DIDP Releases NAICS Name Paper Bag and Coated and Treated Paper Manufacturing Petrochemical Manufacturing All Other Basic Organic Chemical Manufacturing Plastics Material and Resin Manufacturing 							
4 5	7Q10 Table 4-3. Relev NAICS Code 322220 325110 325199 325211 325212	 the modeled 7Q10 flow from the previous equation, in MLD xant NAICS Codes for Facilities Associated with DIDP Releases NAICS Name Paper Bag and Coated and Treated Paper Manufacturing Petrochemical Manufacturing All Other Basic Organic Chemical Manufacturing Plastics Material and Resin Manufacturing Synthetic Rubber Manufacturing 							
4 5	7Q10 Table 4-3. Relev NAICS Code 322220 325110 325199 325211 325212 325320	 the modeled 7Q10 flow from the previous equation, in MLD vant NAICS Codes for Facilities Associated with DIDP Releases NAICS Name Paper Bag and Coated and Treated Paper Manufacturing Petrochemical Manufacturing All Other Basic Organic Chemical Manufacturing Plastics Material and Resin Manufacturing Synthetic Rubber Manufacturing Pesticide And Other Agricultural Chemical Manufacturing 							
4 5	7Q10 Table 4-3. Relev NAICS Code 322220 325110 325199 325211 325212 325320 325510	 the modeled 7Q10 flow from the previous equation, in MLD AILCS Codes for Facilities Associated with DIDP Releases NAICS Name Paper Bag and Coated and Treated Paper Manufacturing Petrochemical Manufacturing All Other Basic Organic Chemical Manufacturing Plastics Material and Resin Manufacturing Synthetic Rubber Manufacturing Pesticide And Other Agricultural Chemical Manufacturing Paint and Coating Manufacturing 							
4 5	TQ10 Table 4-3. Relev NAICS Code 322220 325110 325199 325211 325212 325320 325510 325520	 the modeled 7Q10 flow from the previous equation, in MLD vant NAICS Codes for Facilities Associated with DIDP Releases NAICS Name Paper Bag and Coated and Treated Paper Manufacturing Petrochemical Manufacturing All Other Basic Organic Chemical Manufacturing Plastics Material and Resin Manufacturing Synthetic Rubber Manufacturing Pesticide And Other Agricultural Chemical Manufacturing Paint and Coating Manufacturing Adhesive Manufacturing 							
4 5	TQ10 Table 4-3. Relev NAICS Code 322220 325110 325199 325211 325212 325320 325510 325520 325613	 the modeled 7Q10 flow from the previous equation, in MLD XAICS Codes for Facilities Associated with DIDP Releases NAICS Name Paper Bag and Coated and Treated Paper Manufacturing Petrochemical Manufacturing All Other Basic Organic Chemical Manufacturing Plastics Material and Resin Manufacturing Synthetic Rubber Manufacturing Pesticide And Other Agricultural Chemical Manufacturing Paint and Coating Manufacturing Surface Active Agent Manufacturing 							
4 5	7Q10 Table 4-3. Relev NAICS Code 322220 325110 325199 325211 325212 325320 325510 325520 325613 325991	 the modeled 7Q10 flow from the previous equation, in MLD Ant NAICS Codes for Facilities Associated with DIDP Releases NAICS Name Paper Bag and Coated and Treated Paper Manufacturing Petrochemical Manufacturing All Other Basic Organic Chemical Manufacturing Plastics Material and Resin Manufacturing Synthetic Rubber Manufacturing Pesticide And Other Agricultural Chemical Manufacturing Paint and Coating Manufacturing Surface Active Agent Manufacturing Custom Compounding of Purchased Resins 							
4 5	7Q10 Table 4-3. Relev NAICS Code 322220 325110 325199 325212 325320 325510 325520 325613 325991 325998	 the modeled 7Q10 flow from the previous equation, in MLD Tant NAICS Codes for Facilities Associated with DIDP Releases NAICS Name Paper Bag and Coated and Treated Paper Manufacturing Petrochemical Manufacturing All Other Basic Organic Chemical Manufacturing Plastics Material and Resin Manufacturing Synthetic Rubber Manufacturing Pesticide And Other Agricultural Chemical Manufacturing Paint and Coating Manufacturing Surface Active Agent Manufacturing Custom Compounding of Purchased Resins All Other Miscellaneous Chemical Product and Preparation Manufacturing 							

NAICS Code	NAICS Name
422690	Other Chemical and Allied Products Wholesalers
423610	Electrical Apparatus and Equipment, Wiring Supplies, And Related Equipment Merchant Wholesalers
424610	Plastics Materials and Basic Forms and Shapes Merchant Wholesalers
424690	Other Chemical and Allied Products Merchant Wholesalers
424910	Farm Supplies Merchant Wholesalers
444120	Paint And Wallpaper Stores

617

In addition to the hydrologic flow data retrieved from the NHDPlus database, information about the

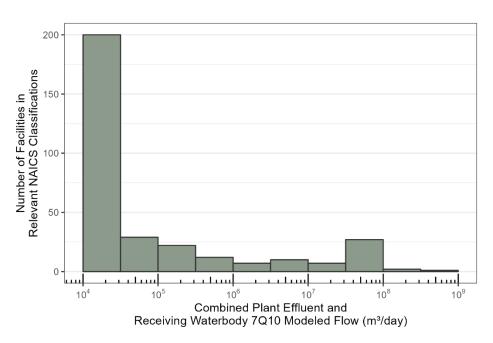
619 facility effluent rate was collected, as available, from the ECHO API. A minimum effluent flow rate of

620 six cubic feet per second, derived from the average reported effluent flow rate acros facilities, was

applied. The receiving waterbody 7Q10 flow was then calculated as the sum of the hydrologic 7Q10

622 flow estimated from regression, and the facility effluent flow. From the distributions of flow statistics

reported, the median receiving waterbody represented a stream with minimal flow, dominated by the


624 effluent from the facility, while the lower end of the distribution represented a stream with essentially no 625 flow beyond the facility effluent. As there was little variation between the minimum and median stream

flow beyond the facility effluent. As there was little variation between the minimum and median strear conditions of the resulting receiving waterbody flow rates across the pooled flow data of all relevant

627 NAICS codes, the median 7Q10 flow rate was selected to be applied as a conservative low flow

628 condition across the modeled releases (Figure 4-1).

629

631

Figure 4-1. Distribution of Receiving Waterbody 7Q10 Modeled Flow for Facilities with Relevant NAICS Classifications

634

635 Quantified release estimates to surface water were evaluated with PSC modeling. For each COU with 636 surface water releases, categorized as wastewater in Table 1-2, the highest estimated release to surface water was modeled. The total days of release associated with the highest COU release was applied as 637 continuous days of release per year (for example, a scenario with 250 days of release per year was 638 modeled as 250 consecutive days of release, followed by 115 days of no release, per year). Rather than 639 640 incorporating assumptions about weekly or monthly release schedules, modeling the days of release as 641 consecutive days in a year provides a more conservative approach in which sediment concentrations 642 continue to build up without intermittent flushing. Raw daily concentration estimates from PSC were 643 manually evaluated for the highest resulting concentrations in an averaging window equal to the total 644 days of release (for example, a scenario with 250 days of release was evaluated for the highest 250-day 645 average concentration).

646

647 Releases were evaluated for resulting environmental media concentrations at the point of release (*i.e.*, in the immediate receiving waterbody receiving the effluent). Due to uncertainty about the prevalence of 648 649 wastewater treatment from DIDP-releasing facilities, all releases are assumed initially to be released to 650 surface water without treatment. However, due to the partitioning of the compound to sediment, waste water treatment is expected to be highly effective at removing DIDP from the water column prior to 651 discharge, with treated effluent showing over 93 percent removal (U.S. EPA, 2024c). High-end and 652 653 central tendency release modeling is shown in Table 4-4. This first tier analysis includes some notably high estimated concentrations in the receiving waterbody and sediment. These likely represent a 654 mismatch of higher release amounts with lower flows, due to the generic nature of the release 655 656 assessment and hydrologic flow data, and lack of site-specific data. These values are carried through to 657 the ecological risk assessment for further evaluation as a conservative high-end approach to screen for ecological risk discussed in the Draft Environmental Exposure Assessment for DIDP (U.S. EPA, 658 659 2024b). 660

Table 4-4. High-End PSC Modeling Results by COU for Total Water Column, Benthic Pore Water, and Benthic Sediment in the Receiving Waterbody, Applying a 7Q10 Flow

Occupational Exposure Scenario ^a	Number of Operating Days Per Year	Daily Release (kg/day)	7Q10 Total Water Column Concentration (µg/L)	7Q10 Benthic Pore Water Concentration (µg/L)	7Q10 Benthic Sediment Concentration (µg/m ³)		
Manufacturing	180	0.03	1.47	0.861	4990		
Use of Lubricants and Functional Fluids	4	189.96	10,200	495	2,870,000		
Non-PVC Plastic Compounding	280	96.32	5,410	3,540	20,500,000		
Non-PVC Plastic Converting	251	2.65	149	94.7	549,000		
PVC Plastic Compounding	254	133.02	7,460	4,760	27,600,000		
PVC Plastic Converting	251	6.19	348	221	1,280,000		
Recycling and Disposal	254	1.42	79.9	51	296,000		
^a Table 1-1 provides the crosswalk of OES to COUs							

663

The OES with the highest total water column concentration (Use of Lubricants and Functional Fluids) was additionally run under harmonic mean and 30Q5 flow conditions (Table 4-5). These additional results were selected to screen for risks to human health. Two scenarios were run for this high-end release: one without any wastewater treatment applied to reduce DIDP concentrations (as in the modeling shown previously in this section), and another with a wastewater treatment removal efficiency of 93 percent applied (<u>Tran et al., 2014</u>), substantially reducing the modeled concentrations in the receiving waterbody.

671

Table 4-5. High-End PSC Modeling Results for Total Water Column, Applying 30Q5 and Harmonic Mean Flows

Scenario	Release Estimate (kg/day)	Median 30Q5 Flow (m³/d)	Median Harmonic Mean Flow (m³/d)	Removal Efficiency Applied (%)	Harmonic Mean Concentration (µg/L)	30Q5 Concentration (µg/L)	
Use of Lubricants and Functional Fluids ^a Without Wastewater Treatment	189.96	19,879.8	24,221.47	0.00	7,540	9,110	
Use of Lubricants and Functional Fluids ^a With Wastewater Treatment	189.96	19,879.8	24,221.47	94	452	547	
^{<i>a</i>} Table 1-1 provides the crosswalk of OES to COUs							

674 **4.2 Measured Concentrations**

4.2.1 Measured Concentrations in Surface Water

Eight studies within the pool of reasonably available information reported DIDP concentrations within 676 surface water. No U.S. studies were identified. However, primary studies were identified as reporting 677 678 DIDP in surface waters from Europe (Tran et al., 2014; Björklund et al., 2009) and China (Cheng et al., 679 2019; Wen et al., 2018; Shi et al., 2012). The highest concentrations of DIDP reported within these 680 studies includes values collected from the Fontenay-les-Briis wastewater treatment plant (WWTP) 681 inputs and outputs of 23.4 \pm 19.7 µg/L and 0.26 \pm 0.22 µg/L, respectively, demonstrating a 98.9 percent removal efficiency from influent to effluent (Tran et al., 2014). Among the three studies in China, Wen 682 et al. (2018) reported maximum and median concentrations of DIDP (64 percent detection frequency) 683 684 within surface waters of the Songhua River watershed of $0.88 \,\mu g/L$ and $0.43 \,\mu g/L$, respectively. The 685 post-WWTP concentration reported by (Tran et al., 2014) and median concentration reported in (Wen et 686 al., 2018) are the same order of magnitude as the water solubility limit for DINP reported as 0.17 μ g/L 687 (see Draft Physical Chemistry Assessment for Diisodecyl Phthalate (U.S. EPA, 2024g)).

4.2.2 Measured Concentrations in Sediment

689 Thirteen studies within the pool of reasonably available information reported DIDP concentrations 690 within sediment. Limited information was available on measured concentrations of DIDP in sediment in the U.S. with one study on sediments from the Chester River, Maryland (Peterson and Freeman, 1984). 691 692 Sediment was sampled for several phthalate esters, including DIDP, at sites along Morgan Creek and Chester River approximately six years after a possible hurricane related spill at industrial sites. DIDP in 693 694 sediment was recorded at concentrations of $690 \pm 220 \,\mu g/kg$ from a retention pond near the site and 540 \pm 170 µg/kg 2 km downstream from the site, Frye Farm. The nearest collection site after Frye Farm was 695 8 km downstream and DIDP concentrations in sediment were reported to be below detection limits for 696 697 quantification. The study demonstrates that DIDP has limited long range transport from an initial release site, however, the development of identification and quantification methodology has improved greatly 698 699 since its initial publication.

700

688

675

701 The Swedish National Screening Program for phthalates analyzed DIDP in sediments collected from areas within the country representing 1) national background lakes; 2) a diffuse urban source; 3) a point 702 703 source for phthalates (Cousins et al., 2007). No DIDP was detected at the background lake serving as 704 reference site up to the limit of detection (100 μ g/kg). However, DIDP in urban sediments ranged from 705 less than 100 to 3,400 µg/kg and sediments near a suspected point source landfill site were recorded at a 706 maximum DIDP concentration of 290 µg/kg. Chen et al. (2016) reported a maximum concentration of 707 DIDP within sediments collected from Kaohsiung Harbor, Taiwan. DIDP was detected at all 20 708 collection sites within the harbor with a maximum mean concentration detected at Site 4 of $3,796 \pm$ 709 1,171 µg/kg.

710

711 <u>Mackintosh et al. (2006)</u> sampled sediment from False Creek Harbor, Vancouver, British Columbia,

- Canada, characterized by the authors as an urbanized marine ecosystem, reported maximum DIDP concentration in the sediment from twelve samples at $589 \,\mu g/kg$ with a geometric mean of $385 \,\mu g/kg$.
- The same study reported the geometric mean concentration of DIDP within suspended solids at 43,200
- μ g/kg attributing the difference between suspended solid and sediment concentrations to rates of
- desorption and biodegradation exceeding the rate of decrease in organic carbon between suspended
- 717 solids and sediment. Mackintosh et al. (2006) indicated that these observations further support
- 717 solus and sedment. <u>Wackintosh et al. (2000)</u> indicated that these observations further support 718 observations associated with phthalate diesters inability to magnify within aquatic food webs. Sediment
- collections at similar sample sites from False Creek by Blair et al. (2009) were graphically represented
- 720 as less than $120 \,\mu g/kg$.

Sediment associated with urban stormwater runoff collected within an underground sedimentation facility in Göteborg, Sweden, represents the highest concentration of DIDP within sediment at 60,000 μ g/kg (Björklund et al., 2009). The nature of the sedimentation facility is to isolate and retain sediments from stormwater runoff within a treatment facility and not representative of sediments associated with surface waters.

726 **4.3 Evidence Integration for Surface Water and Sediment**

727 728

738

4.3.1 Strengths, Limitations, and Sources of Uncertainty for Modeled and Monitored Surface Water Concentration

729 EPA conducted modeling with PSC to estimate concentrations of DIDP within surface water and sediment. PSC considers model inputs of physical and chemical properties of DIDP (i.e., Kow, Koc, 730 731 water column half-life, photolysis half-life, hydrolysis half-life, and benthic half-life) allowing EPA to 732 model predicted sediment concentrations. The use of vetted physical and chemical properties of DIDP 733 increases confidence in the application of the PSC model. Only the chemical release amount, days-on of 734 chemical release, and the receiving water body hydrologic flow were changed for each COU/OES. A 735 standard EPA waterbody was used to represent a consistent and conservative receiving waterbody 736 scenario. Uncertainty associated with location-specific model inputs (e.g., flow parameters and 737 meteorological data) is present as no facility locations were identified for DIDP releases.

739 The modeled data represent estimated concentrations near hypothetical facilities that are actively 740 releasing DIDP to surface water, while the reported measured concentrations represent sampled ambient 741 water concentrations of DIDP. Differences in magnitude between modeled and measured concentrations 742 may be due to measured concentrations not being geographically or temporally close to known releases 743 of DIDP. No U.S.-based studies were identified for surface water and sediment concentrations of DIDP. 744 In addition, when modeling with PSC, EPA assumed all releases were directly discharged to surface 745 waters without prior treatment, and that no releases were routed through publicly owned treatment 746 works (POTWs) prior to release. EPA recognizes that this is a conservative assumption that results in no 747 removal of DIDP prior to release to surface water. 748

749 Concentrations of DIDP within the sediment were estimated using the highest 2015 to 2020 annual 750 releases and estimates of 7Q10 hydrologic flow data for the receiving water body that were derived from National Hydrography Dataset (NHD) modeled (EROM) flow data. The 7Q10 flow represents the 751 lowest 7-day flow in a 10-year period and is a conservative approach for examining a condition where a 752 753 potential contaminant may be predicted to be elevated due to periodic low flow conditions. Surrogate 754 flow data collected via the EPA ECHO API and the NHDPlus V2.1 EROM flow database include self-755 reported hydrologic reach codes on NPDES permits and the best available flow estimations from the EROM flow data. The confidence in the flow values used, with respect to the universe of facilities for 756 757 which data were pulled, should be considered moderate-to-robust. However, there is uncertainty in how 758 representative the median flow rates are as applied to the facilities and COUs represented in the DIDP 759 release modeling. Additionally, a regression-based calculation was applied to estimate flow statistics 760 from NHD-acquired flow data, which introduces some additional uncertainty. EPA assumes that the 761 results presented in this section include a bias toward over-estimation of resulting environmental 762 concentrations due to conservative assumptions in light of the uncertainties.

763 **4.4 Weight of Scientific Evidence Conclusions**

764 Due to the lack of release data for facilities discharging DIDP to surface waters, releases were modeled, 765 and the high-end estimate for each COU was applied for surface water modeling. Additionally, due to 766 site-specific release information, a generic distribution of hydrologic flows was developed from

- 767 facilities which had been classified under relevant NAICS codes, and which had NPDES permits. The
- median flow rates selected from the generated distributions represented conservative low flow rates.
- 769 When coupled with high-end release scenarios, these low flow rates result in high modeled
- concentrations. The high-end modeled concentrations in surface water and sediment exceed the highest
- values available from monitoring studies by about three orders of magnitude. <u>EPA has slight confidence</u>
- in the modeled concentrations as being representative of actual releases as no U.S. monitoring studies
- 773 were identified for comparison. For the purpose of a screening assessment, EPA has robust confidence 774 that no surface water release scenarios result in instream concentrations that exceed the concentrations
- 774 inat no surface water release scenarios result in instream concentrations that exceed the concentration 775 presented in this evaluation, due to the bias toward over-estimation based on many conservative
- estimates used for modeling. Other model inputs were derived from reasonably available literature
- 777 collected and evaluated through EPA's systematic review process for TSCA risk evaluations. All
- monitoring and experimental data included in this analysis were from articles rated "medium" or "high"
- 779 quality from this process.

780 5 SURFACE WATER EXPOSURE

781 Concentrations of DIDP in surface water can lead to different exposure scenarios including dermal 782 exposure (Section 5.1.1) or incidental ingestion exposure (Section 5.1.2) to the general population 783 swimming in affected waters. Additionally, surface water concentrations may impact drinking water 784 exposure (Section 6) and fish ingestion exposure (Section 7).

785

790

For the purpose of a screening level analysis, exposure scenarios were assessed using the highest concentration of DIDP in surface water based on highest releasing OES (Use of Lubricants and Functional Fluids) as estimated in Section 4.1 for various lifestages (*e.g.*, adult, youth, children).

789 **5.1 Modeling Approach**

5.1.1 Dermal

The general population may swim in affected surface waters (streams and lakes) that are affected by
 DIDP contamination. Modeled surface water concentrations estimated in Section 4.1 were used to
 estimate acute doses (ADR) from dermal exposure while swimming.

The following equation was used to calculate incidental dermal (swimming) doses for adults, youth, and
children:

798 Equation 5-1. Acute Incidental Dermal Calculation

799

800 801 $ADR = \frac{SWC \times K_p \times SA \times ET \times CF1 \times CF2}{BW}$

A summary of inputs utilized for these exposure estimates are provided in Appendix A.1.

EPA used the dermal permeability coefficient (Kp) (0.0071cm/hr). EPA utilized the Consumer Exposure Model (CEM) (U.S. EPA, 2022) to estimate the steady-state aqueous permeability coefficient of DIDP.

Table 5-1 shows a summary of the estimates of ADRs due to dermal exposure while swimming for

adults, youth, and children for the highest end release value of Use of Lubricants and Functional Fluids.

The modeled concentrations are included with and without a wastewater treatment removal efficiency of 94 percent applied. Both treated and untreated scenarios were assessed due to uncertainty about the

prevalence of wastewater treatment from discharging facilities, and to demonstrate the hypothetical

disparity in exposures between treated and untreated effluent in the generic release scenarios. In addition

to these modeled concentrations, the monitored concentrations from Tran et al. (2014) representing pre-

and post- wastewater treatment conditions were included for comparison. The monitored values

815 represent concentrations roughly two orders of magnitude less than the high-end modeled counterparts.

816

Table 5-1. Modeled Dermal (Swimming) Doses for Adults, Youths, and Children, for the High End Release Estimate from Modeling and Monitoring Results

Samaia	Water ColumnAdultConcentrations(≥21 years)		Youth (11–15 years)	Child (6–10 years)			
Scenario	30Q5 Conc. (μg/L)	ADR _{POT} (mg/kg-day)	ADR _{POT} (mg/kg-day)	ADR _{POT} (mg/kg-day)			
Use of Lubricants and Functional Fluids ^{<i>a</i>}	9,110	4.73E-02	3.62E-02	2.20E-02			
Without Wastewater Treatment							
Use of Lubricants and Functional Fluids ^{<i>a</i>}	547	2.84E-03	2.17E-03	1.32E-03			
With Wastewater Treatment							
High from Monitoring (<u>Tran</u> et al., 2014)	23.4	1.21E-04	9.30E-05	5.64E-05			
Without Wastewater Treatment							
High from Monitoring (<u>Tran</u> et al., 2014)	0.26	1.35E-06	1.03E-06	6.27E-07			
With Wastewater Treatment							
^{<i>a</i>} Table 1-1 provides the crosswalk of OES to COUs.							

819

5.1.1.1 Risk Screening

Based on the estimated dermal doses in Table 5-1, EPA screened for risk to adults, youth, and children.
Table 5-2 summarizes the acute MOEs based on the dermal doses. Using acute dose based on the

highest modeled 95th percentile, the MOEs are greater than the benchmark of 30. Based on the

823 conservative modeling parameters for surface water concentration and exposure factors parameters, risk

for non-cancer health effects for dermal absorption through swimming is not expected.

825

Table 5-2. Risk Screen for Modeled Incidental Dermal (Swimming) Doses for Adults, Youths, and Children, for the High-End Release Estimate from Modeling and Monitoring Results

Scenario	Water Column Concentrations	Adult (≥21 years)	Youth (11–15 years)	Child (6–10 years)			
	30Q5 Conc. (µg/L)	Acute MOE	Acute MOE	Acute MOE			
Use of Lubricants and Functional Fluids ^a	9,110	1.90E02	2.49E02	4.10E02			
Without Wastewater Treatment							
Use of Lubricants and Functional Fluids ^{<i>a</i>}	547	3.17E03	4.14E03	6.83E03			
With Wastewater Treatment							
High from Monitoring	23.4	7.41E04	9.68E04	1.60E05			
Without Wastewater Treatment							
High from Monitoring	0.26	6.67E06	8.71E06	1.44E07			
With Wastewater Treatment							
^a Table 1-1 provides the crosswalk of OES to COUs.							

828

829

5.1.2 Oral Ingestion

The general population may swim in affected surfaces waters (streams and lakes) that are affected by DIDP contamination. Modeled surface water concentrations estimated in Section 4.1 were used to

832 estimate acute doses (ADR) due to ingestion exposure while swimming.

833

834 The following equation was used to calculate incidental oral (swimming) doses for all COUs for adults, youth, and children: 835

836

837 **Equation 5-2.** Acute Incidental Ingestion Calculation

838

$$ADR = \frac{SWC \times IR \times CF1}{BW}$$

839 840

842

841 A summary of inputs utilized for these estimates are present in Appendix A.1.

843 Table 5-3. Modeled Incidental Ingestion Doses for Adults, Youths, and Children, for the High-End 844 **Release Estimate from Modeling and Monitoring Results**

Scenario	Water Column Concentrations	Adult (≥21 years)	Youth (11–15 years)	Child (6–10 years)				
	30Q5 Conc. (µg/L)	ADR _{POT} (mg/kg-day)	ADR _{POT} (mg/kg-day)	ADR _{POT} (mg/kg-day)				
Use of Lubricants and Functional Fluids ^a	9,110	3.14E-02	4.88E-02	2.75E-02				
Without Wastewater Treatment								
Use of Lubricants and Functional Fluids ^a With Wastewater Treatment	547	1.89E-03	2.93E-03	1.65E-03				
High from Monitoring Without Wastewater Treatment	23.4	8.07E-05	1.25E-04	7.06E-05				
High from Monitoring With Wastewater Treatment	0.26	8.97E-07	1.39E-06	7.85E-07				
^a Table 1-1 provides the crosswalk of OES to COUs								

845

5.1.2.1 Risk Screening

Based on the estimated incidental ingestion doses in Table 5-3, EPA screened for risk to adults, youth, 846 and children. Table 5-4 summarizes the acute and chronic MOEs based on the incidental ingestion 847 848 doses. Using the acute dose based on the highest modeled 95th percentile, the MOEs are greater than the 849 benchmark of 30. Based on the conservative modeling parameters for surface water concentration and exposure factors parameters, risk for non-cancer health effects for incidental ingestion through 850 851 swimming is not expected.

852

Table 5-4. Risk Screen for Modeled Incidental Ingestion Doses for Adults, Youths, and Children, for the High-End Release Estimate from Modeling and Monitoring Results

Scenario	Water Column Concentrations	Adult (≥21 years)	Youth (11–15 years)	Child (6–10 years)		
	30Q5 Conc. (µg/L)	Acute MOE	Acute MOE	Acute MOE		
Use of Lubricants and Functional Fluids ^a	9,110	286	185	327		
Without Wastewater Treatment						
Use of Lubricants and Functional Fluids ^a	547	4,770	3,070	5,450		
With Wastewater Treatment						
High from Monitoring	23.4	111,000	71,900	127,000		
Without Wastewater Treatment						
High from Monitoring	0.26	10,000,000	6,470,000	11,500,000		
With Wastewater Treatment						
^{<i>a</i>} Table 1-1 provides the crosswalk of OES to COUs.						

5.2 Weight of Scientific Evidence Conclusions

No site-specific information was reasonably available when estimating release of DIDP to the 856 857 environment. Release estimates were provided for generic scenarios. As such, there is considerable 858 uncertainty in the production volume estimate and the resulting environmental release estimates. In addition, there is uncertainty in the relevancy of the monitoring data to the modeled estimates presented 859 in this evaluation. As stated in Section 4.4 there is slight confidence in the modeled concentrations as 860 861 being representative of actual releases, due to the bias toward over-estimation. Therefore, there is robust confidence that no surface water release scenarios exceed the concentrations presented in this 862 evaluation. 863

863 <u>eva</u> 864

865 Swimming Ingestion/Dermal Estimates

Two scenarios (youth being exposed dermally and through incidental ingestion while swimming in surface water) were assessed as high-end potential exposures to DIDP in surface waters. EPA's *Exposure Factors Handbook* provided detailed information on the youth skin surface areas and event per day of the various scenarios (U.S. EPA, 2017b). Non-diluted surface water concentrations were used when estimating dermal exposures to youth swimming in streams and lakes. DIDP concentrations will dilute when released to surface waters, but it is unclear what level of dilution will occur when the general population swims in waters with DIDP releases.

873 6 DRINKING WATER EXPOSURE

Drinking water in the United States typically comes from surface water (*i.e.*, lakes, rivers, reservoirs) and groundwater. The source water then flows to a treatment plant where it undergoes a series of water treatment steps before being dispersed to homes and communities. In the U.S., public water systems relying on surface water often use conventional treatment processes that include coagulation, flocculation, sedimentation, filtration, and disinfection, as required by law.

879

Very limited information is available on the removal of DIDP in drinking water treatment plants. As
stated in the *Draft Fate Assessment for Diisodecyl Phthalate* (U.S. EPA, 2024d), no data were identified
by the EPA for DIDP in drinking water in the U.S. Based on the low water solubility and log K_{OW},
DIDP in water it is expected to mainly partition to suspended solids present in water. The available
information suggest that the use of flocculants and filtering media could potentially help remove DIDP
during drinking water treatment by sorption into suspended organic matter, settling, and physical
removal.

6.1 Modeling Approach for Estimating Concentrations in Drinking Water

888

6.1.1 Drinking Water Ingestion

889 Drinking Water Intake Estimates via Modeled Surface Water Concentrations

890 Modeled surface water concentrations estimated in Section 4.1 were used to estimate drinking water exposures. For risk screening purposes, only the OES scenario resulting in the highest modeled surface 891 water concentrations, Use of Lubricants and Functional Fluids, was included in the drinking water 892 893 exposure analysis, alongside the highest monitored surface water concentrations. A wastewater 894 treatment efficiency of 94 percent removal efficiency was assumed for treatment of facility effluent 895 before discharge to the receiving waterbody, before becoming influent at a downstream drinking water 896 treatment plant. A range of drinking water treatment removal rates from 63.1 percent to over 99 percent 897 removal was observed in (Shi et al., 2012), and a conservative 63.1 percent removal was applied for the 898 scenario with drinking water treatment. The drinking water scenario presented here with both 899 wastewater treatment on the facility effluent, and further drinking water treatment applied, is expected to 900 be the scenario most representative of actual high-end drinking water exposure in the general 901 population.

902903 Drinking water doses were calculated using the following equations:904

905 Equation 6-1. Acute Drinking Water Ingestion Calculation

906

907

 $ADR_{POT} = \frac{SWC \times \left(1 - \frac{DWT}{100}\right) \times IR_{dw} \times RD \times CF1}{BW \times AT}$

908 909 Equation 6-2. Average Daily Drinking Water Ingestion Calculation

910

$$ADD_{POT} = \frac{SWC \times \left(1 - \frac{DWT}{100}\right) \times IR_{dw} \times ED \times RD \times CF1}{BW \times AT \times CF2}$$

- 911 912
- 913 Where:

914 ADR_{POT} = Potential Acute Dose Rate (mg/kg/day)

915 ADD_{POT} = Potential Average Daily Dose (mg/kg/day)

916 917	SWC	=	Surface water concentration (ppb or μ g/L; 30Q5 conc for ADR, harmonic mean for ADD, LADD, LADC)
918	DWT	=	Removal during drinking water treatment (percent)
919	IRdw	=	Drinking water intake rate (L/day)
920	RD	=	Release days (days/yr for ADD, LADD and LADC; 1 day for ADR)
921	ED	=	Exposure duration (years for ADD, LADD and LADC; 1 day for ADR)
922	BW	=	Body weight (kg)
923	AT	=	Exposure duration (years for ADD, LADD and LADC; 1 day for ADR)
924	CF1	=	Conversion factor $(1.0 \times 10^{-3} \text{ mg/}\mu\text{g})$
925	CF2	=	Conversion factor (365 days/year)
926			

927 The ADR and ADD for chronic non-cancer were calculated using the 95th percentile ingestion rate for drinking water. The lifetime average daily dose (LADD) was not estimated because available data are 928 929 insufficient to determine the carcinogenicity of DIDP. Therefore, EPA is not evaluating DIDP for carcinogenic risk. Table 6-1 summarizes the drinking water doses for adults, youth, and children for 930 water applying only wastewater treatment and water applying both wastewater treatment and drinking 931 932 water treatment. These estimates do not incorporate additional dilution beyond the point of discharge 933 and in this case, it is assumed that the surface water outfall is located very close (within a few km) to the 934 drinking water intake location. Applying dilution factors would decrease the dose for all scenarios.

935

936 Table 6-1. Modeled Drinking Water Doses for Adults, Youths, and Children for the High-end **Release Estimate from Modeling and Monitoring Results** 937

	Surface Water Concentrations		Adult (≥21 years)		Youth (11–15 years)		Infant (birth to <1 year)	
	30Q5 Conc. (µg/L)	Harmonic Mean Conc. (µg/L)	ADR _{POT} (mg/kg- day)	ADD (mg/kg- day)	ADR _{POT} (mg/kg-day)	ADD (mg/kg- day)	ADR _{POT} (mg/kg-day)	ADD (mg/kg-day)
Use of Lubricants and Functional Fluids ^a With Wastewater Treatment	547	452	2.19E-02	1.36E-05	1.69E-02	6.87E-06	7.71E-02	3.48E-05
Use of Lubricants and Functional Fluids ^a With Wastewater Treatment and Drinking Water Treatment	202	167	8.11E-03	5.03E-06	6.25E-03	2.54E-06	2.84E-02	1.28E-05
High from Monitoring With Wastewater Treatment	0.26	0.26	1.05E-05	7.83E-09	8.06E-06	3.95E-09	3.67E-05	2.00E-08

es the crosswalk of UES to COUS.

938

6.1.1.1 Risk Screening

Based on the estimated drinking water doses in Table 6-1, EPA screened for risk to adults, youth, and 939 940 children. Table 6-2 summarizes the acute and chronic MOEs based on the drinking water doses. Using

the acute and chronic dose based on the highest modeled 95th percentile, the MOEs are greater than the

- 942 benchmark of 30. <u>Based on the conservative modeling parameters for drinking water concentration and</u>
- 943 exposure factors parameters, risk for non-cancer health effects for drinking water ingestion is not
- 944 945

expected.

- 946 This assessment assumes that concentrations at the point of intake for the drinking water system are
- 947 equal to the concentrations in the receiving waterbody at the point of release, where treated effluent is
- being discharged from a facility. In reality some distance between the point of release and a drinking
- water intake would be expected, providing space and time for additional reductions in water column
- 950 concentrations via degradation, partitioning, and dilution. Some form of additional treatment would
- typically be expected for surface water at a drinking water treatment plant, including coagulation,
- 952 flocculation, and sedimentation, and/or filtration. This treatment would likely result in even greater 953 reductions in DIDP concentrations prior to releasing finished drinking water to customers.
- 954

Table 6-2. Risk Screen for Modeled Drinking Water Exposure for Adults, Youths, and Children, for the High-End Release Estimate from Modeling and Monitoring results

μg/L)	Harmonic Mean Conc. (µg/L) 452	Acute MOE	Chronic MOE	Acute	Character		
ł7	452		MUE	MOE	Chronic MOE	Acute MOE	Chronic MOE
	432	409	660,000	531	131,000	117	258,000
)2	167	1,110	1,790,000	1,440	3,550,000	316	701,000
26	0.26	860,000	1,150,000,000	1,120,000	2,280,000,000	245,000	450,000,000
			0.26 860,000				

957

958 Drinking Water via Leaching of Landfills to Groundwater

959 DIDP is expected to biodegrade in the upper, aerobic portions of landfills. In lower-landfills where

anaerobic conditions are likely, DIDP is not expected to biodegrade, but may be hydrolysed under

961 elevated temperature and more caustic pH regimes. Despite the degradation of DIDP in landfills, DIDP

962 is still expected to be persistent as it leached from consumer products disposed of in landfills which use

963 DIDP in their formulation. Due to this, DIDP is likely to be present in landfill leachate up to its aqueous

964 limit of solubility (0.00017 mg/L). However, due to its affinity for organic carbon, DIDP is expected to

- be immobile in groundwater. Even in cases where landfill leachate containing DIDP were to migrate to
- 966 groundwater, DIDP would likely partition from groundwater to organic carbon present in the subsurface,
- 967 limiting its likelihood for migration to drinking water sources.

968 **6.2 Measured Concentrations in Drinking Water**

- 969 Shi et al. (2012) reported DIDP concentrations in untreated and treated drinking water sampled from
- 970 five main cities in the Yangtze River Delta area of China in 2010. DIDP concentrations in source water
- for the various cities ranged from $3.4 \times 10^1 \pm 2.7$ ng/L to $2.8 \times 10^2 \pm 8.8$ ng/L while DIDP concentration in tap water ranged from $1.8 \pm 5 \times 10^{-1}$ ng/L to $9.6 \times 10^1 \pm 1.7$ ng/L. No drinking water studies in the United
- 973 State were identified.

974 **6.3 Evidence Integration for Drinking Water**

- 975 EPA estimates low potential exposure to DIDP via drinking water, when considering expected treatment
- 976 removal efficiencies, even under high-end release scenarios. Additional qualitative considerations
- suggest that actual measured concentrations in raw and finished water would decrease further. While
- 978 monitoring data in the United States were not identified, available finished drinking water
- 979 concentrations reported from China were less than 1 μ g/L, corroborating the expectation of very little
- 980 exposure to the general population via treated drinking water.

981 6.4 Weight of Scientific Evidence Conclusions

- 982 EPA has moderate confidence in the treated surface water as drinking water exposure scenario. As
- described in Section 3.2, EPA did not assess drinking water estimates as a result of leaching from
 landfills to groundwater and subsequent migration to drinking water wells.

985 7 FISH INGESTION EXPOSURE

Surface water concentrations for DIDP associated with a particular COU were modeled using PSC by 986 987 COU/OES water release as described in Section 4.1. However, modeled surface water concentrations exceeded the estimates of the water solubility limit for DIDP (approximately 1.7×10^{-4} mg/L) by 1 to 5 988 989 orders of magnitude (see Draft Physical Chemistry Assessment for Diisodecyl Phthalate (U.S. EPA, 990 2024g)). Additionally, as described in the Draft Environmental Exposure Assessment for Diisodecyl 991 Phthalate (U.S. EPA, 2024a), based on the sorption and physical and chemical properties, DIDP within 992 suspended solids is not expected to be bioavailable. Therefore, DIDP concentrations in fish is calculated 993 in the Draft Environmental Exposure Assessment for DIDP (U.S. EPA, 2024b) based on a solubility of 1.7×10^{-4} mg/L and a predicted bioconcentration factor (BCF) (Arnot-Gobas method) of 1.29 L/kg. The 994 calculated concentration of DIDP in fish using a BCF is 2.2×10^{-4} mg/kg, which is two orders of 995 magnitude lower than the highest DIDP concentrations reported within aquatic biota (see Table 7-1). 996 997

998 For estimating exposure to humans from fish ingestion, calculating fish concentration using a 999 bioaccumulation factor (BAF) is preferred because it considers the animal's uptake of a chemical from 1000 both diet and the water column. For DIDP, a BAF of 9.9 L/kg was estimated using the Arnot-Gobas 1001 method for upper trophic organisms (see Draft Fate Assessment for Diisodecyl Phthalate (U.S. EPA, 1002 2024d)). Table 7-1 compares the fish tissue concentration calculated using a BAF with the measured fish 1003 tissue concentrations obtained from literature. For comparison, Table 7-1 also includes fish tissue concentrations that were derived from a BCF. Fish tissue concentration calculated with a predicted BAF 1004 1005 were greater than the concentration calculated with a predicted BCF but was still lower than that 1006 reported within published literature.

1007

1008 In addition, EPA calculated fish tissue concentrations using the highest monitored surface water concentrations. As described in Section 4.2.1, the highest concentrations of DIDP were reported for the 1009 influent of the Fontenav-les-Briis WWTP in France at 23.4 \pm 19.7 µg/L (2.34×10⁻² \pm 1.97×10⁻² mg/L) 1010 1011 (Tran et al., 2014). This monitored concentration corresponds to untreated wastewater and does not 1012 consider the nearly 99 percent removal efficiency of DIDP measured in the study. Furthermore, DIDP within suspended solids found in wastewater could result in concentrations greater than the water 1013 1014 solubility limit. However, DIDP is not expected to be bioavailable for uptake by aquatic organisms due 1015 to its strong sorption to organic matter and hydrophobicity (see Draft Fate Assessment for Diisodecyl 1016 Phthalate (U.S. EPA, 2024d)). EPA still calculated fish tissue concentrations using the measured 1017 concentration from the Fontenay-les-Briis WWTP plus one standard deviation as a worst-case scenario. 1018 Fish tissue concentrations calculated with monitored surface water concentrations are one to two orders 1019 of magnitude higher than that reported within published literature (Table 7-1).

1020

Table 7-1. Fish Tissue Concentrations Calculated from Modeled Surface Water Concentrations and Monitoring Data

Data Approach	Data Description	Surface Water Concentration	Fish Tissue Concentration (wet weight)	
Modeled Surface Water Concentration	Predicted BCF (Arnot-Gobas method) of 1.29 L/kg (<u>U.S. EPA</u> , <u>2017a</u>)	Estimates of the water solubility limit for DIDP that is approximately 1.7E–04 mg/L	2.2E-04 mg/kg	
	Predicted BAF (Arnot-Gobas method) of 9.9 L/kg (<u>U.S. EPA,</u> <u>2017a</u>)	Estimates of the water solubility limit for DIDP which is approximately 1.7E-04 mg/L	1.68E-03 mg/kg	

Data Approach	Data Description	Surface Water Concentration	Fish Tissue Concentration (wet weight)
Monitored	Predicted BCF (Arnot-Gobas method) of 1.29 L/kg (<u>U.S. EPA,</u> 2017a)	4.31E-02 mg/L	5.56E-02 mg/kg
Surface Water Concentration	Predicted BAF (Arnot-Gobas method) of 9.9 L/kg (<u>U.S. EPA, 2017a</u>)	4.31E-02 mg/L	4.27E-01 mg/kg
Fish Tissue Monitoring Data (Wild-Caught)	Two studies measured DIDP in juvenile shiner perch.	N/A	8.40E–03 mg/kg (<u>Mackintosh</u> <u>et al., 2004</u>) 5.7E–02 mg/kg (<u>McConnell,</u> <u>2007</u>)

1023 **7.1 General Population Fish Ingestion Exposure**

EPA estimated exposure from fish consumption for all lifestages by using age-specific ingestion rates (Table_Apx A-2). This section presents exposure estimates for only adults 16 years or older to allow for comparison with subsistence and tribal fishers, which also only estimate exposure for adults. However, as shown in Table_Apx A-2, the highest 90th percentile fish ingestion rate per kilogram of body weight is for a young toddler between 1 and 2 years old. While results are not shown, the exposure estimates for a young toddler are within the same magnitude as for adults (U.S. EPA, 2024e).

1030

1031 The 50th percentile (central tendency) and 90th percentile ingestion rate (IR) for adults is 5.04 g/day and 1032 22.2 g/day, respectively. The ADR and ADD for chronic non-cancer were calculated using the 90th 1033 percentile and central tendency IR, respectively. The LADD was not estimated because available data 1034 are insufficient to determine the carcinogenicity of DIDP (U.S. EPA, 2024f). Therefore, EPA is not 1035 evaluating DIDP for carcinogenic risk. Acute and chronic non-cancer exposure estimates via fish 1036 ingestion were calculated according to the following equation:

10371038 Equation 7-1. Fish Ingestion Calculation

1039 1040

$$ADR \text{ or } ADD = \frac{SWC \times BAF \times IR \times CF1 \times CF2 \times ED}{AT \times BW}$$

1041 1042 Where:

1042	where:			
1043		ADR	=	Acute Dose Rate (mg/kg/day)
1044		ADD	=	Average Daily Dose (mg/kg/day)
1045		SWC	=	Surface water (dissolved) concentration (μ g/L)
1046		BAF	=	Bioaccumulation factor (L/kg wet weight)
1047		IR	=	Fish ingestion rate (g/day)
1048		CF1	=	Conversion factor (0.001 mg/µg)
1049		CF2	=	Conversion factor for kg/g (0.001 kg/g)
1050		ED	=	Exposure duration (year)
1051		AT	=	Averaging time (year)
1052		BW	=	Body weight (80 kg)
1053				
1054	The year	s within	an ag	e group (<i>i.e.</i> , 62 years for adults) was used for the exposure duration and
1055	•	· ·	1	

1055 averaging time to characterize non-cancer risks.

1056 The exposures calculated using the water solubility limit, monitored surface water concentrations, and

1057 BAF are presented in Table 7-2. Risks were not characterized using the general population fish ingestion

1058 doses because the sentinel exposure scenario (*i.e.*, tribal fish ingestion) did not result in any risk

1059 estimates below their corresponding benchmark. Risk estimates for the general population are also

1060 above benchmark because their fish ingestion rate is much lower than that for tribal populations. Section

1061 7.4 provides more details.

1062

1063 **Table 7-2. Adult General Population Fish Ingestion Doses by Surface Water Concentration**

	ADR (mg/kg-day)	ADD (mg/kg-day)
Water solubility limit (1.7E–04 mg/L)	4.66E-07	1.06E-07
Monitored SWC from a WWTP's influent (4.31E-02 mg/L)	1.18E-04	2.69E-05

1064 **7.2 Subsistence Fish Ingestion Exposure**

1065 Subsistence fishers represent a potentially exposed or susceptible subpopulation(s) (PESS) group due to their greatly increased exposure via fish ingestion (142.4 g/day compared to a 90th percentile of 22.2 1066 g/day for the general population) (U.S EPA, 2000). The ingestion rate for subsistence fishers apply to 1067 only adults aged 16 to less than 70 years. EPA is unable to determine subsistence fisher exposure 1068 1069 estimates specific to younger lifestages based on reasonably available information. EPA calculated 1070 exposure for subsistence fishers using Equation 7-1 and the same inputs as the general population except 1071 for the ingestion rate. Furthermore, unlike the general population fish ingestion rates, there is no central 1072 tendency or 90th percentile ingestion rate for the subsistence fisher. The same value was used to 1073 estimate both the ADD and ADR.

1074

1075 The exposures calculated using the water solubility limit, monitored surface water concentrations, and 1076 BAF are presented in Table 7-3. Risks were not characterized using the subsistence fisher doses because 1077 the sentinel exposure scenario (*i.e.*, tribal fish ingestion) did not result in any risk estimates below their 1078 corresponding benchmark. Risk estimates for the subsistence fisher are also above benchmark because 1079 their fish ingestion rate is lower than that for tribal populations. Section 7.4 provides more details.

1080

1081 **Table 7-3. Adult Subsistence Fisher Doses by Surface Water Concentration**

	ADR/ADD (mg/kg-day)
Water solubility limit (1.7E–04 mg/L)	2.99E-06
Monitored SWC from a WWTP's influent (4.31E–02 mg/L)	7.60E-04

1082 **7.3 Tribal Fish Ingestion Exposure**

Tribal populations represent another PESS group. In the United States there are a total of 574 federally 1083 1084 recognized American Indian Tribes and Alaska Native Villages and 63 state recognized tribes. Tribal 1085 cultures are inextricably linked to their lands, which provide all their needs from hunting, fishing, food 1086 gathering, and grazing horses to commerce, art, education, health care, and social systems. These 1087 services flow among natural resources in continuous interlocking cycles, creating a multi-dimensional 1088 relationship with the natural environment and forming the basis of *Tamanwit* (natural law) (Harper et al., 1089 2012). Such an intricate connection to the land and the distinctive lifeways and cultures between 1090 individual tribes create many unique exposure scenarios that can expose tribal members to higher doses of contaminants in the environment. However, EPA quantitatively evaluated only the tribal fish 1091 1092 ingestion pathway for DIDP because of data limitations and recognizes that this overlooks many other 1093 unique exposure scenarios.

1094 U.S. EPA (2011) (Chapter 10, Table 10-6) summarizes relevant studies on current tribal-specific fish 1095 ingestion rates that covered 11 tribes and 94 Alaskan communities. The daily ingestion rates for the 94 1096 Alaskan communities are reported as a minimum, median, and maximum. However, those values were 1097 not considered because the study did not report the sampled age group, which precludes calculation of 1098 an ingestion rate per kilogram of body. The median value is also lower than the mean ingestion rate per 1099 kilogram of body weight reported in a 1997 survey of adult members (16 years and older) of the 1100 Suguamish Tribe in Washington. Adults from the Suguamish Tribe reported a mean ingestion rate of 2.7 1101 g/kg-day, or 216 g/day assuming an adult body weight of 80 kg. This value is also the highest among all 1102 central tendency values in the Exposure Factors Handbook (U.S. EPA, 2011). In comparison, the 1103 ingestion rates for the adult subsistence fisher and general population are 142.2 and 22.2 g/day, 1104 respectively. A total of 92 adults responded to the survey funded by the Agency for Toxic Substances and Disease Registry (ATSDR) through a grant to the Washington State Department of Health, of which 1105 1106 44 percent reported consuming less fish/seafood today compared to 20 years ago. One reason for the 1107 decline is restricted harvesting caused by increased pollution and habitat degradation (Duncan, 2000).

1108

1109 Because current fish consumption rates are suppressed by contamination, degradation, or loss of access,

1110 EPA reviewed existing literature for ingestion rates that reflect heritage rates. Heritage rates refer to 1111 those that existed prior to non-indigenous settlement on tribal fisheries resources, as well as changes in

1112 culture and lifeways (U.S. EPA, 2016). Heritage ingestion rates were identified for four tribes, all

1112 culture and meways (0.5. EPA, 2010). Heritage ingestion rates were identified for four tribes, an 1113 located in the Pacific Northwest region. The highest heritage ingestion rate was reported for the

1114 Kootenai Tribe in Idaho at 1,646 g/day (Ridolfi, 2016) (that study was funded through an EPA contract).

1115 The authors conducted a comprehensive review and evaluation of ethnographic literature, historical

1116 accounts, harvest records, archaeological and ecological information, as well as other studies of heritage

1117 consumption. The heritage ingestion rate is estimated for Kootenai members living in the vicinity of

1118 Kootenay Lake in British Columbia, Canada; the Kootenai Tribe once occupied territories in parts of

1119 Montana, Idaho, and British Columbia. It is based on a 2,500 calorie per day diet, assuming 75 percent 1120 of the total caloric intake comes from fish and using the average caloric value for fish. Notably, the 1121 authors acknowledged that assuming 75 percent of caloric intake comes from fish may overestimate fish 1122 intake.

1123

1124 EPA calculated exposure via fish consumption for tribes using Equation 7-1 and the same inputs as the 1125 general population except for the ingestion rate. Two ingestion rates were used: 216 g/day for current 1126 consumption and 1,646 g/day for heritage consumption. Similar to the subsistence fisher, EPA used the 1127 same ingestion rate to estimate both the ADD and ADR. The heritage ingestion rate is assumed to be applicable to adults. For current ingestion rates, U.S. EPA (2011) provides values specific to younger 1128 1129 lifestages, but adults still consume higher amounts of fish per kilogram of body weight. An exception is 1130 for the Squaxin Island Tribe in Washington that reported an ingestion rate of 2.9 g/kg-day for children 1131 under 5 years old. That ingestion rate for children is nearly the same as the adult ingestion rate of 2.7

1132 g/kg-day for the Suquamish Tribe. As a result, exposure estimates based on current ingestion rates (IR)

1133 focused on adults (Table 7-4).

1134

1135 Table 7-4. Adult Tribal Fish Ingestion Doses by Surface Water Concentration

	ADR/ADD ((mg/kg-day)
	Current IR	Heritage IR
Water solubility limit (1.7E–04 mg/L)	4.54E-06	2.62E-05
Monitored SWC from a WWTP's influent (4.31E–02 mg/L)	1.15E-03	6.64E-03

1136 **7.4 Risk Screening**

1137 Exposure estimates are the highest for tribal populations because of their elevated fish ingestion rates compared to the general population and subsistence fisher. As such, tribal populations represent the 1138 sentinel exposure scenario. Risk estimates calculated from the water solubility limit of DIDP as the 1139 1140 surface water concentration were four-to-five orders of magnitude above its non-cancer risk benchmark 1141 using both the current and heritage fish ingestion rate (Table 7-5). Using the highest measured DIDP 1142 levels from the influent of the Fontenay-les-Briis WWTP in France as the surface water concentration, 1143 risk estimates for tribal populations were still two orders of magnitude above its corresponding 1144 benchmark for both fish ingestion rates. Exposure estimates based on conservative values such as surface water concentration from untreated wastewater still resulted in risk estimates that are above their 1145 benchmarks. Therefore, these results indicate that fish ingestion is not a pathway of concern for DIDP 1146 for tribal members, subsistence fisher, and the general population. 1147

1148

1149 **Table 7-5. Risk Screen for Fish Ingestion Exposure for Tribal Populations**

Calculation Method	Acute and Chronic Non-cancer MOEs (Total Uncertainty Factor = 30)			
	Current mean IR	Heritage IR		
Water solubility limit (1.7E–04 mg/L)	1,980,000	344,000		
Monitored SWC from a WWTP's influent (4.31E–02 mg/L)	7,810	1,360		

1150 **7.5 Weight of Scientific Evidence Conclusions**

1151

7.5.1 Strength, Limitations, Assumptions, and Key Sources of Uncertainty

To account for the variability in fish consumption across the United States, fish intake estimates were 1152 1153 considered for both general population, subsistence fishing populations and tribal populations. In 1154 estimating fish concentrations, diluted surface water concentrations were not considered. It is unclear what level of dilution may occur between the surface water at the facility outfall and habitats where fish 1155 reside. No monitoring data were available indicating the consumption of fish containing DIDP. EPA did 1156 1157 find very limited monitoring data indicating DIDP concentrations in fish tissue. The reported fish tissue concentrations in the monitoring data are higher than the modeled estimates but lower than the 1158 1159 concentrations calculated with monitored surface water concentrations. Based on this, EPA has 1160 moderate confidence in its estimations of fish ingestion.

1161 8 AMBIENT AIR CONCENTRATION

Based on its physical and chemical properties DIDP is expected to predominantly partition into the soil 1162 1163 or sediment compartments when released into air. Release estimates indicated release of DIDP into 1164 fugitive or stack air. Additionally, EPA searched peer-reviewed literature, gray literature, and databases 1165 to obtain concentrations of DIDP in ambient air from monitoring studies. Section 8.1 and 8.3 reports 1166 EPA modeled ambient air concentrations and deposition fluxes used to estimate soil concentrations from air to soil deposition, respectively. Section 8.2 displays the aggregated results of reported monitoring 1167 1168 concentrations for ambient air found in the peer-reviewed and gray literature from the systematic 1169 review.

1170 8.1 Modeling Approach for Estimating Concentrations in Ambient Air

EPA used the American Meteorological Society (AMS)/EPA Regulatory Model (AERMOD) to estimate 1171 1172 ambient air concentrations and air deposition of DIDP from EPA estimated releases. AERMOD was 1173 utilized to incorporate refined parameters for gaseous concentrations as well as particle deposition. 1174 AERMOD is a steady-state Gaussian plume dispersion model that incorporates air dispersion based on 1175 planetary boundary layer turbulence structure and scaling concepts, including treatment of both surface 1176 and elevated sources and both simple and complex terrain. More specifically, AERMOD can incorporate 1177 a variety of emission source characteristics, chemical deposition properties, complex terrain, and site-1178 specific hourly meteorology to estimate air concentrations and deposition amounts at user-specified 1179 population distances and at a variety of averaging times. More details about AERMOD, equations within 1180 the model, input, and output parameters, and supporting documentation in the AERMOD Users' Guide 1181 (U.S. EPA, 2018). 1182

1183 AERMOD was run under two land categories: urban and rural, and for two meteorology conditions 1184 using Sioux Falls, South Dakota, for central tendency meteorology and Lake Charles, Louisiana, for 1185 higher-end meteorology, 10 distances, and 3 percentiles (10th, 50th and 95th percentiles). A full 1186 description of the input parameters selected for AERMOD and details regarding post-processing of the 1187 results are provided in Appendix C. Additional, input parameters for deposition, partitioning factors 1188 between the gaseous and particulate phases, particle sizes, meteorological data, urban/rural designations, 1189 and physical source specifications were required to run the higher tier model to obtain particle 1190 deposition rates.

1191

1192 Based on its physical and chemical properties and short half-life in the atmosphere, $t_{1/2} = 7.6$ hours (Mackay et al., 2006). DIDP is assumed to not be persistent in the air. However, the AEROWINTM 1193 module in EPI SuiteTM estimates that a large fraction of DIDP could be sorbed to airborne particulates. 1194 1195 Therefore, EPA focused on modeled air concentrations and deposition rates for the distances: 100 1196 meters (m), 100 to 1000 m, and 1000 m. These distances are also consistent with the fenceline and 1197 community populations as described in the fenceline methodology (Draft Screening Level Approach for 1198 Assessing Ambient Air and Water Exposures to Fenceline Communities Version 1.0). The deposition 1199 results are covered in Section 8.3.

1200

Full tables of all annual and daily modeled concentrations for all OESs and distances (10 m to 10,000 m)

are provided in Appendix C. However, only the highest modeled annual air concentrations used for the environmental and general population exposure assessment are shown in this section. The highest

1203 modeled annual air concentrations resulted from high-end fugitive air releases from the PVC Plastics

1204 modeled annual an concentrations resulted from high-end fugitive air releases from the PVC Plastics 1205 Compounding OES (COU to OES crosswalk provided in Table 1-1). Table 8-1 is an excerpt of the 95th

1206 percentile modeled annual air concentrations based on high-end estimated releases for fugitive modeled

1207 emissions. A maximum annual ambient air concentration of $4.7 \times 10^2 \,\mu g/m^3$ at 100 m from the facility

- 1208 was modeled for PVC plastic compounding OES, based on higher-end meteorology and rural land
- 1209 category scenario.

1210 Table 8-1. 95th Percentile Modeled Annual Concentrations (µg/m³) based on Fugitive Source, High-end Facility Release

Occupational Exposure Scenario ^a Meteorology		Distance										
	Wieteorology	Land	10 M	30 M	30-60 M	60 M	100 M	100-1000 M	1000 M	2500 M	5000 M	10000 M
	Central	Rural	1.2E03	1.0E03	8.5E02	5.9E02	3.3E02	6.6E01	1.0E01	1.7E00	4.2E-01	9.9E-02
	Tendency	Urban	2.9E03	9.1E02	7.3E02	3.5E02	1.5E02	2.4E01	3.0E00	6.1E-01	1.8E-01	5.0E-02
PVC Plastic Compounding		Rural	2.8E03	1.7E03	1.3E03	8.7E02	4.7E02	8.6E01	1.3E01	2.2E00	5.5E-01	1.3E-01
	High-End	Urban	4.6E03	1.4E03	1.1E03	4.9E02	2.1E02	2.8E01	4.0E00	8.0E-01	2.4E-01	6.5E-02
	Table 1-1 provides the crosswalk of OES to COUs. Sold – Indicates highest modeled concentration within 100 to 1,000 m from facility release.											

1211

1212 8.2 Measured Concentrations in Ambient Air

EPA searched peer-reviewed literature, gray literature, and databases to obtain concentrations of DIDP 1213 1214 in ambient air. Ambient air concentrations of DIDP were measured in one study in Sweden (Cousins et 1215 al., 2007). This study was given a medium rating during the systematic review. See Draft Risk 1216 Evaluation for Diisodecyl Phthalate (DIDP) – Systematic Review Supplemental File: Data Quality Evaluation Information for General Population, Consumer, and Environmental Exposure (U.S. EPA, 1217 1218 2024i). The Sweden sampling program measured both background areas and in areas near identified 1219 possible sources of DIDP. Background air samples were collected at Rao, which is a station in the 1220 Sweden national monitoring program and part of the co-operative program for the monitoring and 1221 evaluation of long-range transmission of air pollutants in Europe (EMEP) network. Two industrial sites 1222 were selected: Gislaved and Stenungsund, which were a plastics and former rubber production facility 1223 and chemicals/plastics production facility, respectively. Cousins et al. (2007) recorded a detection rate of 67 percent for DIDP with a range of 3.0×10^{-4} to $5.5 \times 10^{-3} \,\mu g/m^3$ which were within the range of the 1224 EPA's modeled concentrations $(4.0 \times 10^{-12} \text{ to } 4.7 \times 10^2 \,\mu\text{g/m}^3)$ between the 100 m to 1000 m distances. 1225 EPA's modeled concentration for its highest release scenario (plastic compounding OES) was many 1226 1227 orders of magnitude higher than the monitored value. However, this may be attributed to the 1228 conservative assumptions and inputs that went into the modeling. Please see Sections 8.4 and 8.5 for 1229 further details on evidence integration and weight of scientific evidence conclusions.

8.3 Modeling Approach for Estimating Concentrations in Soil from Air Deposition

1232 Based on its physical and chemical properties and short half-life in the atmosphere, DIDP is assumed to 1233 not be persistent in the air and estimated that a large fraction of DIDP could be sorbed to airborne 1234 particulates. Therefore, EPA focused on modeled air concentrations and deposition rates for the 1235 distances: 100 m, 100 to 1000 m and 1000 m. Refer to Section 8.1 for details on modeling approach for 1236 air concentrations. Due to uncertainties about a generic characterization of particulates for use in all 1237 modeling scenarios for DIDP, AERMOD's "Method 2" was selected for modeling of particle 1238 deposition, as that method requires less information about the distribution of particle sizes. Method 2 1239 requires the fraction by mass of emitted particles that is 2.5 micrometers (μ m) or smaller in aerodynamic 1240 diameter (*i.e.*, the mass fraction which is PM_{2.5}) and the mass-mean particle diameter. Based the PM_{2.5} mass fraction on information presented in EPA's 2019 Integrated Science Assessment for Particulate 1241 1242 Matter (U.S. EPA, 2019c) the atmospheric $PM_{2.5}$ mass fraction was assumed to be 0.14 and the mass-1243 mean diameter was 10 µm.

1244 8.3.1 Air Deposition to Soil

Table 8-2 is excerpts of the 95th percentile modeled daily deposition rates based on high-end estimated releases for fugitive emissions. A maximum daily deposition rate of 3.2×10^{-1} g/m²-day at 100 m from the facility was modeled for PVC Plastic Compounding OES, based on higher-end meteorology and rural land category scenario. Tables of all annual and daily modeled deposition rates for all OESs and distances (10 m to 10,000 m) are provided in Appendix C.

1250 Table 8-2. 95th Percentile Modeled Daily Deposition (g/m²-day) Based on Fugitive Source, High-End Facility Release

Occupational Exposure	Meteorology	Land	Distance									
Scenario ^a			10 M	30 M	30-60 M	60 M	100M	100-1000 M	1000 M	2500 M	5000 M	10000 M
Plastic Compounding	Central	Rural	1.0E00	9.7E-01	6.1E-01	4.3E-01	2.3E-01	1.9E-02	7.2E-03	1.3E-03	3.5E-04	9.1E-05
	Tendency	Urban	1.8E00	1.2E00	7.3E-01	4.6E-01	1.9E-01	8.7E-03	3.0E-03	6.3E-04	2.0E-04	6.3E-05
	High-End	Rural	2.1E00	1.3E00	8.3E-01	5.8E-01	3.2 E-01	2.4E-02	8.5E-03	1.6E-03	4.3E-04	1.0E-04
		Urban	3.3E00	1.6E00	8.8E-01	5.2E-01	2.1E-01	1.0E-02	3.4E-03	7.0E-04	2.1E-04	6.6E-05
^{<i>a</i>} Table 1-1 provides the crosswalk of OES to COUs.												
Bold – Indicates highest modeled concentration within 100 to 1,000 m from facility release.												

1251

1252 Since the octanol:air coefficient (K_{OA}) indicates that DIDP will favor the organic carbon present in 1253 airborne particles, particle deposition can be a significant pathway for DIDP to be transported to other 1254 environmental compartments, such as soil and surface water. Soil concentrations from air deposition 1255 were also estimated for the COU scenarios with air releases. Using the daily deposition rates, the DIDP 1256 concentration in soil was calculated with the following equations based on EPA's Office of Pesticide 1257 Programs standard farm pond scenario (U.S. EPA, 1999) and European Chemicals Bureau Technical 1258 Guidance Document (ECB, 2003): 1259 1260 **Equation 8-1. Total Deposition to Soil Calculation** 1261 1262 **TotDep** = Daily**Dep** × **Ar** × **CF** 1263 1264 Where: 1265 TotDep = Total daily deposition to soil (μg) = Daily deposition flux to soil (g/m^2) 1266 DailvDep 1267 = Area of soil $(90,000 \text{ m}^2)$ Ar CF = Conversion of grams to micrograms 1268 1269 1270 **Equation 8-2. Soil Concentration Calculation** 1271 1272 $SoilConc = TotDep / (Ar \times Mix \times Dens)$ 1273 Where: 1274 SoilConc = Daily-average concentration in soil ($\mu g/kg$) 1275 TotDep = Total daily deposition to soil (μg 1276 Mix = Mixing depth (m); default = 0.1 m; from (ECB, 2003) 1277 = Area of soil $(90,000 \text{ m}^2)$ Ar 1278 Dens = Density of soil; default = $1,700 \text{ kg/m}^3$; from (ECB, 2003) 1279 1280 The above equations assume instantaneous mixing with no degradation or other means of chemical 1281 reduction in soil over time and that DIDP loading in soil is only from direct air-to-surface deposition 1282 (*i.e.*, no runoff). 1283 1284 Using maximum modeled deposition rates from fugitive releases and the equations above, high-end concentration of DIDP in soil from modeled air to soil deposition at 100 m and 1,000 m from a 1285 1286 hypothetical release site for the PVC plastics compounding OES was 1.85 mg/kg and 0.051 mg/kg per day. Comparatively, the highest reported soil concentration of DIDP reported within the reasonably 1287 1288 available literature is from (Tran et al., 2015), reporting a DIDP concentration of 0.013 mg/kg in rural 1289 soil (Doue, Seine-et-Marne, France; population 1,029). 1290 1291 Air deposition can also lead to DIDP concentrations in water and sediment. EPA modeled surface water 1292 and sediment concentrations of DIDP resulting from air deposition and provides the results in Appendix 1293 C.3.1. However, modeling results indicate a rapid decline in DIDP concentrations from air to surface 1294 water and sediment at distances greater than 100 m from fugitive releases. Even at a 10 m distance, 1295 surface water and sediment concentrations resulting from water releases as described in Section 4.1 were

many orders of magnitude higher and used as the primary concentrations for the environmental and

1297 general population exposure assessment.

1298 **8.4 Evidence Integration**

12998.4.1Strengths, Limitations, and Sources of Uncertainty for Modeled Air and Deposition1300Concentrations

1301 *AERMOD*

AERMOD is an EPA regulatory model and has been thoroughly peer reviewed (U.S. EPA, 2003);

therefore, the general confidence in results from the model is high but relies on the integrity and quality
of the inputs used and interpretation of the results. For the full analysis, EPA used estimated releases as
direct inputs to AERMOD.

1306

1307 Since EPA estimated generic release scenarios were used for emissions input, AERMOD runs do not 1308 include latitude/longitude information. Therefore, there is some uncertainty associated with the modeled 1309 distances from each release point and the associated exposure concentrations to which hypothetical 1310 fenceline communities may be exposed. Additionally, based on the generic release scenarios, air releases 1311 were categorized into two categories: (1) fugitive or stack air and (2) fugitive air, water, incineration, or 1312 landfill with the former being a combined estimate of vapor releases from fugitive and stack air and the 1313 latter being a combined estimate of particulate release via all of the listed waste streams. EPA modeled 1314 stack air using the combined release estimate categorized as fugitive or stack air while modeling fugitive 1315 air using the combined release estimate categorized as fugitive air, water, incineration, or landfill. 1316 Specifically, plastic compounding releases, which were identified as having the highest air releases from 1317 fugitive emissions, and used for environmental and general population exposure, were categorized as 1318 releasing to fugitive air, water, incineration, or landfill, with no distinction to a specific waste stream. As 1319 such, there may be an overestimation of air concentration associated with plastic compounding that was 1320 used for screening level analysis purposes as release estimates provided combined releases.

1321

1322 In addition, estimated release scenarios do not include source specific stack parameters that can affect 1323 plume characteristics and associated dispersion of the plume. Therefore, EPA used pre-defined stack 1324 parameters defined by integrated indoor-outdoor air calculator (IIOAC), to represent stack parameters of 1325 all facilities modeled using each of these methodologies. Those stack parameters include a stack height 1326 10 m above ground with a 2-meter inside diameter, an exit gas temperature of 300 degrees Kelvin, and 1327 an exit gas velocity of 5 m per second (see Table 6 of the User's Guide: Integrated Indoor-Outdoor Air 1328 Calculator (IIOAC), 2019, 5205690). These parameters were selected since they represent a slow-1329 moving, low-to-the-ground plume with limited dispersion which results in a more conservative estimate 1330 of exposure concentrations at the distances evaluated. As such, these parameters may result in some 1331 overestimation of emissions for certain facilities modeled. Additionally, the assumption of a 10×10 area 1332 source for fugitive releases may impact the exposure estimates very near a releasing facility (*i.e.*, 10 m 1333 from a fugitive release). This assumption places the 10-meter exposure point just off the release point 1334 that may result in either an over or underestimation of exposure depending on other factors like 1335 meteorological data, release heights, and plume characteristics.

1336

1337 AERMOD was used to model daily and annual air concentration and deposition rates from air to land 1338 and water from each EPA estimated release scenario. Based on physical and chemical properties of 1339 DIDP (see Draft Physical Chemistry Assessment for Diisodecyl Phthalate (U.S. EPA, 2024g)), EPA 1340 considered only particle deposition and for the purposes of modeling, it was assumed that 100 percent of 1341 the emitted mass of DIDP immediately adsorbs to atmospheric particles for air exposure concentrations 1342 and air deposition. EPA used chemical-specific parameters as input values for AERMOD deposition 1343 modeling but due to limited data and relied on AERMOD's method 2 for particle distribution. A full 1344 description of the input parameters selected for AERMOD and details regarding post-processing of the

1345 results are provided in Appendix C.

13468.5 Weight of Scientific Evidence Conclusions

Although the range of reported measured concentrations $(3.0 \times 10^{-4} \text{ to } 5.5 \times 10^{-3} \text{ } \mu\text{g/m}^3)$ for ambient air 1347 found in the only monitoring study identified from the systematic review, Cousins et al. (2007), falls 1348 within range of the ambient air modeled concentrations $(4.0 \times 10^{-12} \text{ to } 4.7 \times 10^2 \,\mu\text{g/m}^3)$ from AERMOD, 1349 the highest modeled concentrations of DIDP in ambient air were many orders of magnitude higher than 1350 1351 any monitored value. In addition, this is the only study from systematic review with monitoring ambient 1352 air data that was collected in Sweden, which affects the representativeness when comparing to modeled concentrations based on reported releases in the United States. Taken together with the moderate 1353 1354 confidence in the release data detailed in Draft Release and Occupational Exposure Assessment for Diisodecyl Phthalate (U.S. EPA, 2024c) and conservative assumptions used for modeled air dispersion 1355 1356 and particle distribution inputs, EPA has slight confidence in the air and deposition concentrations

1357 modeled based on EPA estimated releases using AERMOD with a bias towards overestimation.

1358 9 AMBIENT AIR EXPOSURE

1359 **9.1 Modeling Approach**

DIDP is a liquid at environmental temperatures with a melting point of -50° C (Haynes, 2014) and a vapor pressure of 5.28×10^{-7} mm Hg at 25°C (NLM, 2020). Based on its physical and chemical properties and short half-life in the atmosphere, $t_{1/2} = 7.6$ hours (Mackay et al., 2006), DIDP was assumed to not be persistent in the air. The AEROWINTM module in EPI SuiteTM estimates that a large fraction (75 to 80 percent) of DIDP could be sorbed to airborne particulates and these particulates may be resistant to atmospheric oxidation.

1366

The Level III Fugacity model in EPI SuiteTM (LEV3EPITM) was used for the DIDP Tier II Fate analysis to predict DIDP's behavior in different environmental compartments. The model utilizes inputs on an organic chemical's physical chemistry characteristics and degradation rates to predict partitioning of chemicals between environmental compartments and the persistence of a chemical in a model environment. See the *Draft Fate Assessment for Diisodecyl Phthalate* (U.S. EPA, 2024d) for the fate assessment for DIDP.

1373

1374 Under all emission scenarios, DIDP is expected to predominantly partition into the soil or sediment

1375 compartments. Based on this information, exposure to DIDP via the inhalation route is not expected.

1376 However, there may be exposure via soil ingestion and soil contact resulting from air to soil deposition

which is modeled in Section 8.3.1 and used to calculate soil ingestion and dermal doses in Sections 9.1.1
and Section 9.1.2, respectively. For this screening exercise, only the highest modeled facility release was
included in the exposure analysis.

9.1.1 Oral – Soil Ingestion

1381 The acute dose rate (ADR) for soil ingestion can be calculated using Equation 9-1 below.

- 13821383 Equation 9-1. Acute Dose Rate Calculation for Soil Ingestion
- 1384

Acute Dose Rate(ADR) =
$$\frac{C_{soil} \times CF \times IR}{BW \times AT_{EF}}$$

1385 Where:

1386	C_{soil} = Chemical concentration in soil (mg/kg)							
1387	CF = Conversion factor (1.0E-03 kg/mg)							
1388	IR = Ingestion rate of soil (mg/day)							
1389	BW = Body weight (kg)							
1390	AT_{EF} = Averaging time for exposure frequency (basis for hazard POD; 1 day for acute)							
1391								
1392	ADR is calculated using the highest modeled 95th percentile soil concentration of $1.85E03 \mu g/kg$ (1.85							
1393	mg/kg) at 100 m from PVC Plastic Compounding OES from Section 8.3.1 and exposure parameters							
1394	from the EPA Exposure Factors Handbook (U.S. EPA, 2017b), which are also summarized in							
1395	Table_Apx A-3. To maximize the ADR, a conservative exposure scenario was developed using a high							
1396	soil ingestion rate and low body weight from the following parameters:							
1397								
1398	• Infant to youth (6 months to <12 years)							
1399	\circ IR = 200 mg/day							

• Toddler (Age 1 to 5)

1402 Acute Dose Rate (ADR) = $\frac{1.85 \frac{\text{mg}}{\text{kg}} x \, 1.0 E^{-03} \frac{\text{kg}}{\text{mg}} x \, 200 \text{mg/day}}{16.2 \, \text{kg} \, x \, 1 \, \text{day}} = 0.0228 \, \frac{\text{mg}}{\text{kg-day}}$ 1403 1404 9.1.2 Dermal – Soil Contact 1405 The acute dose rate for soil dermal contact (*i.e.*, the dermal absorbed dose (DAD)) can be calculated 1406 using Equation 9-2 below. 1407 1408 **Equation 9-2.** Acute Soil Dermal Calculation Dermal Absorbed Dose (DAD) = $\frac{C_{soil} x CF x AF x ABS_d x SA_{soil} x EV}{BW x AT_{FF}}$ 1409 1410 Where: 1411 Csoil Chemical concentration in soil (mg/kg) = Conversion factor (1.0E–03 kg/mg) CF1412 = 1413 AFAdherence factor of soil to skin (mg/cm²-event) = 1414 $ABS_d =$ Dermal absorption fraction (Assume 1 = 100 percent) 1415 Skin surface area (cm^2) SA \equiv 1416 EV= Events per day 1417 BW = Body weight (kg) 1418 $AT_{EF} =$ Averaging time for exposure frequency (basis for hazard POD; 1 day for 1419 acute) 1420 DAD is calculated using the highest modeled 95th percentile soil concentration of $1.85 \times 10^3 \,\mu\text{g/kg}$ (1.85 1421 mg/kg) at 100 m from PVC Plastic Compounding OES and parameters from the EPA Exposure Factors 1422 Handbook (U.S. EPA, 2017b), which are also summarized in Table Apx A-3, using a similar exposure 1423 1424 scenario from the previous ADR, exposure parameters were: 1425 • Child \circ AF = 0.2 1426 \circ SA = 2.700 cm² 1427 1428 \circ BW = 16.2 kg 1429 \circ EV = 1 event 1430 $Dermal Absorbed Dose (DAD) = \frac{1.85 \frac{mg}{kg} \times 1.0E^{-03} \frac{kg}{mg} \times 0.2 \frac{mg}{cm^2 - event} \times 1 \times 2,700 \ cm^2 \ x \ 1 \ event}{16.2 \ box{ best}}$ 1431 1432 Dermal Absorbed Dose (DAD) = $0.0617 \frac{mg}{kg - day}$ 1433

1434 9.2 Risk Screening

1435	9.2.1 Oral Ingestion and Dermal Absorption Margin of Exposure
1436	The ADR (0.0228 mg/kg-day) and DAD (0.0617 mg/kg-day) are calculated based on the highest
1437	modeled 95th percentile soil concentration of $1.85 \times 10^3 \mu$ g/kg (1.85 mg/kg) at 100 m from PVC Plastic
1438	Compounding OES in Sections 9.1 and 9.1.2, respectively, and the HED of 9.0 mg/kg-day and
1439	benchmark of 30 provided in Table 2-1:
1440	

1441
$$Margin of Exposure (MOE) = \frac{\text{HED}}{ADR + DAD}$$

1442
1443
$$Margin of Exposure (MOE) = \frac{9.0 \frac{mg}{kg - day}}{\left(0.0228 \frac{mg}{kg - day} + 0.0617 \frac{mg}{kg}\right)}$$

1444

Margin of Exposure (MOE) = 106.5

mg

1445 1446

1447 Using the acute dose based on the highest modeled 95th percentile soil concentration at 100 m, the 1448 resulting MOE is 106.5, which is greater than the benchmark of 30. Based on the conservative modeling

1449 parameters for air deposition rate and exposure factors parameters, risk for non-cancer health effects for 1450 oral ingestion and dermal absorption through ambient air deposition is not exposed.

1450 <u>oral ingestion and dermal absorption through ambient air deposition is not expected.</u>

1451 **9.3 Weight of Scientific Evidence Conclusions**

There is robust confidence in the exposure factors inputs (U.S. EPA, 2017b) used for modeling exposure for soil ingestion and soil contact. However, as stated in Section 8.5 there EPA has slight confidence in the air and deposition concentrations modeled based on EPA estimated releases being representative of actual releases, but for the purposed of a screening level assessment, EPA has robust confidence that it's modeled releases used for estimating air to soil deposition is appropriately conservative for a screening level analysis. Therefore, EPA has robust confidence that no exposure scenarios will lead to greater doses than presented in this evaluation.

1459 10 HUMAN BIOMONITORING

1460 The use of human biomonitoring data is an important tool for determining total exposure to a chemical

1461 for real world populations. Reverse dosimetry using human biomonitoring data can provide an estimate

1462 of the total dose (or aggregate exposure) responsible for the measured biomarker. Intake doses estimated

- 1463 using reverse dosimetry is not source apportionable and is therefore not directly comparable to the 1464 exposure estimates presented throughout this document associated with specific COUs. However, the
- exposure estimates presented throughout this document associated with specific COUs. However, the total intake dose estimated from reverse dosimetry can help contextualize the exposure estimates from
- 1466 TSCA COUs as being potentially underestimated or overestimated.
- 1467

1468 This section discusses monitoring and modeling results for human milk (Section 10.1) and urinary

1469 biomonitoring (Section 10.2). Human milk biomonitoring data provides information for infant exposure

- 1470 to DIDP from human milk ingestion, while urinary biomonitoring provides total exposure from all
- 1471 sources for different life stages.

1472 **10.1 Human Milk Biomonitoring**

1473 Infants are a potentially susceptible lifestage because of their higher exposure per body weight, 1474 immature metabolic systems, and the potential for chemical toxicants to disrupt sensitive developmental 1475 processes, among other reasons. Reasonably available information from studies of experimental rodent 1476 models also indicates that DIDP is a developmental toxicant, and that developmental toxicity occurs 1477 following gestational exposure to DIDP (U.S. EPA, 2024f). EPA considered exposure (Section 10.1.1) 1478 and hazard (Section 10.1.2) information, as well as pharmacokinetic models (Section 10.1.3), to 1479 determine how to evaluate infant exposure to DIDP from human milk ingestion. EPA concluded that the 1480 most scientifically supportable approach is to use human health hazard values that are based on maternal 1481 exposure over two generations. It is thus expected to incorporate potential risks to infants from exposure 1482 through milk even though human milk concentrations were not modeled, as the subsequent sections will 1483 explain in more detail.

1484

1494

10.1.1 Biomonitoring Information

1485 While the physical and chemical properties of DIDP indicate a potential for accumulation in human milk 1486 (molecular weight of 446.68 g/mol and lipophilic with log Kow of 10.21), biomonitoring data, albeit 1487 limited, have not demonstrated the presence of DIDP in human milk. One study of 78 German mothers 1488 who were not occupationally exposed to phthalates did not measure DIDP in milk samples above its 1489 limit of detection (0.1 ng/g lipid weight) (Fromme et al., 2011). A study from China by Chen et al. 1490 (2008) similarly did not measure DIDP above its limit of detection (0.05 µg/L wet weight) among the 1491 samples collected from 40 women with no known history of occupational exposure to DIDP. No U.S. 1492 biomonitoring studies of DIDP in human milk were identified. Since available biomonitoring studies did 1493 not detect DIDP in milk, infant exposure through this route could be not estimated with measured data.

10.1.2 Hazard Information

1495 Several studies of experimental rodent models have characterized the developmental and reproductive 1496 toxicity from exposure to DIDP (U.S. EPA, 2024f). The most sensitive adverse effect is observed in 1497 fetal and infant lifestages that result from maternal and/or paternal exposure via oral administration of 1498 DIDP. The critical effect for DIDP is reduced F2 offspring (*i.e.*, offspring produced by the second 1499 parental generation) survival on postnatal days one and four in a two-generation study of reproduction of 1500 rats (Hushka et al., 2001; Exxon Biomedical, 2000). There are uncertainties as to whether effects on F2 1501 offspring survival resulted from gestational, lactational, or combined gestational and lactational 1502 exposure to DIDP, or even if the effect was mediated via maternal and/or paternal exposure to DIDP. No 1503 studies have evaluated only lactational exposure from quantified levels of DIDP in milk. The human

health hazard values used in this assessment are based on developmental toxicity following maternal
exposures over two generations and are therefore expected to incorporate any effect that may result from
offspring exposure through milk. The hazard values also correspond to maternal exposure to the parent
phthalate (DIDP) and not metabolites of DIDP.

1508 **10.1.3 Modeling Information**

EPA identified a pharmacokinetic model as the best available model to estimate transfer of lipophilic chemicals from mother to infants during gestation and lactation, hereafter referred to as the Kapraun model (Kapraun et al., 2022). The only chemical-specific parameter required by the Kapraun model is the elimination half-life in the animal species of interest. However, significant uncertainties in establishing an appropriate half-life value for DIDP does not support using the model to quantify lactational transfer and exposure for TSCA COUs.

1515

1516 One of the key uncertainties in identifying an appropriate half-life is selecting a value that is sensitive

- and specific. DIDP is rapidly metabolized to its primary metabolite MIDP (a monoester), which
 undergoes further oxidation reactions to produce multiple secondary metabolites (see the toxicokinetics)
- summary in the *Draft Human Health Hazard Assessment for Diisodecyl Phthalate* (U.S. EPA, 2024f)
- 1519 for further details). Secondary metabolites are frequently detected in urine samples, whereas DIDP and
- 1521 MIDP are not (Saravanabhavan and Murray, 2012). This indicates that neither the parent compound nor
- 1522 the primary metabolite is a sensitive biomarker of exposure to DIDP. A secondary metabolite will be
- 1523 more appropriate, but secondary metabolites may also overlap with other parent phthalates
- 1524 (Saravanabhavan and Murray, 2012). Lastly, half-life can vary by not only the measured substance (*i.e.*,
- parent versus any of the metabolites) but also by the tissue matrix. Half-lives have been reported to be 1
- to 2 orders of magnitudes longer in epididymal fat than in plasma, liver, or other less fatty tissues for the related di(2-ethylhexyl) phthalate (DEHP) after controlling for dose and exposure route in rats
- 1528 (Domínguez-Romero and Scheringer, 2019; Oishi and Hiraga, 1982). While similar studies were not
- 1529 identified for DIDP, it may follow the same pattern as DEHP whereby half-lives in fatty tissues like the
- 1530 mammary gland may be longer than those measured in urine or blood. In summary, existing studies do
- 1531 not provide a half-life value that is both sensitive and specific to the metabolites. Some studies have
- 1532 measured the half-life for DIDP, but given its relatively fast metabolism, modeling infant exposure via 1533 human milk ingestion using DIDP's half-life may underestimate doses.
- 1534

Limitations in hazard data also support EPA's conclusion that modeling exposure estimates will not be informative. No studies have evaluated only lactational exposure, and hazard values are based on

- 1537 maternal exposure to the parent phthalate. In other words, the hazard studies do not elucidate the toxic
- moiety for DIDP and assume it can be any of the metabolites because of the parent compound's rapid
- 1539 metabolism. EPA is unable to calculate hazard values for the secondary metabolites in the absence of
- such studies. Thus, even if there are robust data measuring the half-life of all DIDP's metabolites,
- allowing EPA to then estimate exposure to metabolites via human milk ingestion, there are no
- 1542 corresponding hazard values for risk characterization.
- 1543
- 1544 The human health hazard values used in this assessment are based on developmental toxicity following
- 1545 maternal exposures over two generations and are therefore expected to incorporate any effect that may 1546 mault from offenring exposure through will Pick estimates associated through with D. (CPick F. J. J.
- result from offspring exposure through milk. Risk estimates presented throughout *Draft Risk Evaluation* for *Diisodecyl Phthalate* (U.S. EPA, 2024h) are based on this hazard value and are expected to
- 1547 *Jor Dusoaccy Finnance* (0.5. EFA, 2024ff) are based on this hazard val 1548 incorporate risks to infants that may result from exposure through milk.

1549 **10.1.4 Weight of Scientific Evidence Conclusions**

1550 The uncertainties associated with the window of exposure for hazard values and the lack of sensitive and

- 1551 specific half-life data precluded EPA from modeling human milk concentrations by COU. However,
- 1552 EPA has robust confidence that using the human health hazard values for maternal exposure over two
- 1553 generations will incorporate potential risks to a nursing infant.

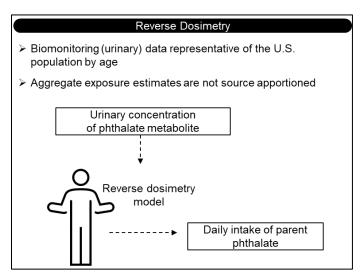
1554 **10.2 Urinary Biomonitoring**

Reverse dosimetry is an approach, as shown in Figure 10-1, of estimating an external exposure or intake 1555 dose to a chemical using biomonitoring data (U.S. EPA, 2019b). In the case of phthalates, U.S. Centers 1556 1557 for Disease Control and Prevention's (CDC) National Health and Nutrition Examination Survey 1558 (NHANES) dataset provides a relatively recent (data available through 2017 to 2018) and robust source 1559 of urinary biomonitoring data that is considered a national, statistically representative sample of the non-1560 institutionalized, U.S. civilian population. Phthalates have elimination half-lives on the order of several 1561 hours and are quickly excreted from the body in urine and to some extent feces (ATSDR, 2022; EC/HC, 1562 2015a). Therefore, the presence of phthalate metabolites in NHANES urinary biomonitoring data 1563 indicates recent phthalate exposure.

1564

1565 Reverse dosimetry is a powerful tool for estimating exposure, but reverse dosimetry modeling does not

distinguish between routes or pathways of exposure and does not allow for source apportionment (*i.e.*,


1567 exposure from TSCA COUs cannot be isolated). Instead, reverse dosimetry provides an estimate of the

total dose (or aggregate exposure) responsible for the measured biomarker. Therefore, intake doses

estimated using reverse dosimetry is not directly comparable the exposure estimates from the variousenvironmental media presented in this document. However, the total intake dose estimated from reverse

1570 dosimetry can help contextualize the exposure estimates from TSCA COUs as being potentially

- 1572 underestimated or overestimated.
- 1573

- 1574
- 1575

Figure 10-1. Reverse Dosimetry Approach for Estimating Daily Intake

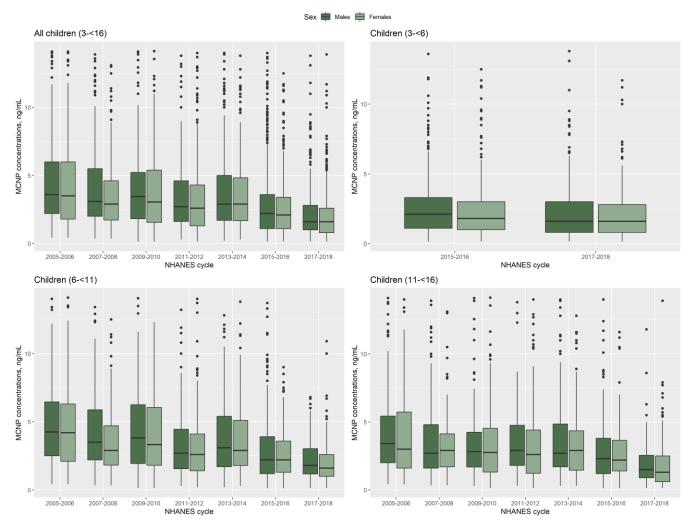
1576 **10.2.1 Approach for Analyzing Biomonitoring Data**

EPA analyzed urinary biomonitoring data from NHANES, which reports urinary concentrations for 15
phthalate metabolites specific to individual phthalate diesters. Specifically, EPA analyzed data for
mono-(carboxynonyl) phthalate (MCNP), a metabolite of DIDP, which has been reported in the 2005 to
2018 NHANES survey years. Sampling details can be found in Appendix B. Urinary concentrations of
MCNP were quantified for different lifestages. The lifestages assessed included: women of reproductive
age (16 to 49 years old), adults (16 years old and up), adolescents (11 to less than 16 years old), children
(6 to less than 11 years old), and toddlers (3 to less than 6 years old) when data were available. Urinary

1584 concentrations of MCNP were analyzed for all available NHANES survey years to examine the

- 1585 temporal trend of DIDP exposure. However, intake doses using reverse dosimetry were calculated for 1586 the most recent NHANES cycle (2017 to 2018) as being most representative of current exposures.
- 1586 1587

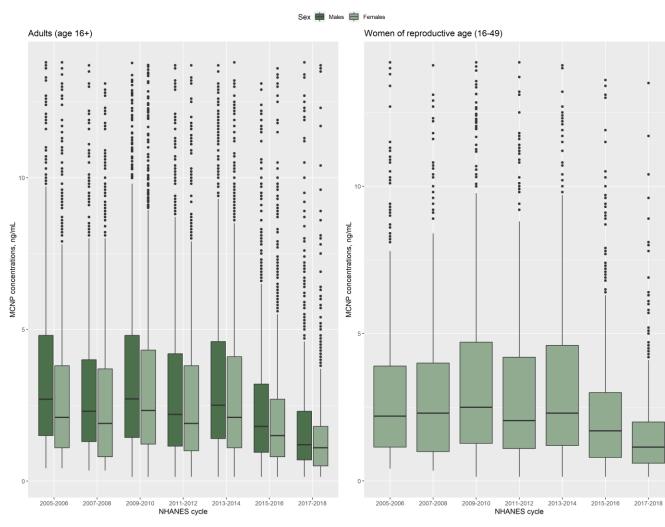
1588 NHANES uses a multi-stage, stratified, clustered sampling design that intentionally oversamples certain


- 1589 demographic groups; to account for this, all data was analyzed using the survey weights provided by
- 1590 NHANES and analyzed using weighted procedures in SAS and SUDAAN statistical software. Median
- and 95th percentile concentrations were calculated in SAS and reported for lifestages of interest. Median
- and 95th percentile concentrations are provided in Table_Apx B-2. Statistical analyses of MCNP trends
- over time were performed with PROC DESCRIPT using SAS-callable SUDAAN.
- 1594

To maximize comparability with existing phthalate assessments from the U.S. Consumer Product Safety
 Commission (U.S. CPSC, 2014) and Health Canada (ECCC/HC, 2020), the urinary phthalate
 concentrations calculated in the present analysis were not creatinine corrected. Although comparability

- 1598 between existing assessments is beneficial, the urinary phthalate concentrations must be interpreted with
- 1599 caution, as men have higher creatinine levels than women due to differences in muscle mass. As a result,
- 1600 phthalate concentrations among men may appear artificially higher than concentrations among women.
- 1601 **10.2.1.1 Temporal Trend of MCNP**

Figure 10-2 and Figure 10-3 show urinary MCNP concentrations plotted over time for the various
 populations to visualize the temporal trends of DIDP exposure. Overall, MCNP concentrations have
 decreased over time for all lifestages.


1605

1606

1607 Figure 10-2. Urinary MCNP Concentrations for Children (3 to <16 Years) by Age Group

- 1608 Maximum values in the boxplots represent the 95th percentile of the data. Values represented as dots are outliers
- 1609 that are greater than 1.5 the interquartile range of the data.

1610

1611 Figure 10-3. Urinary MCNP Concentrations for Adults (16+ Years) and Women of Reproductive

1612 Age (16 to 49 Years)

- 1613 Maximum values in the boxplots represent the 95th percentile of the data. Values represented as dots are outliers
- 1614 that are greater than 1.5 the interquartile range of the data.
- 1615

1616 Overall urinary concentrations among all children under 16 have significantly decreased over time at

- both the 50th and 95th percentile (50th percentile, p < 0.001; 95th percentile, p < 0.001) (Figure 10-2).
- 1618 Among age groups, statistically significant decreases of the 50th and 95th percentile of urinary MCNP
- 1619 concentrations over time were observed for children aged 3 to less than 6 years of age (50th percentile, p
- 1620 < 0.001; 95th percentile, p < 0.001), 6 to less than 11 years of age (50th percentile, p < 0.001; 95th
- 1621 percentile, p < 0.001, and 11 to less than 16 years of age (50th percentile, p < 0.001; 95th percentile, p < 0.001
- 1622 0.001) (Figure 10-2).
- 1623
- 1624 Similarly, among adults, MCNP concentrations significantly decreased over time for all adults and for
- 1625 women of reproductive age (adjusted p-values were both <0.001) (Figure 10-3). Additionally, among all
- adult participants, the total urinary MCNP concentration for all years was significantly higher among men than among women (p < 0.001) (Figure 10-3).

1628 **10.2.1.2 Daily Intake of DIDP from NHANES**

- 1629 Using MCNP concentrations measured in the most recently available sampling cycle (2017 to 2018),
- 1630 EPA estimated the daily intake of DIDP through reverse dosimetry. Reverse dosimetry approaches that

1631 1632 1633 1634 1635 1636 1636	incorporate basic pharmacokinetic information are available for phthalates (Koch et al., 2007; Koch et al., 2003; David, 2000) and have been used in previous phthalate risk assessments conducted by U.S. CPSC (2014) and Health Canada (ECCC/HC, 2020) to estimate daily intake values for exposure assessment. For phthalates, reverse dosimetry can be used to estimate a daily intake (DI) value for a parent phthalate diester based on phthalate monoester metabolites measured in human urine using Equation 10-1 (Koch et al., 2007). For DIDP, the phthalate monoester metabolite would be MCNP.
1638 1639	Equation 10-1. Calculating the Daily Intake Value from Urinary Biomonitoring Data
1640	$Phthalate DI = \frac{(UE_{sum} \times CE)}{Fue_{sum}} \times MW_{Parent}$
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654	 Where: Phthalate DI = Daily intake (μg/kgbw/day) value for the parent phthalate diester UE_{sum} = The sum molar concentration of urinary metabolites associated with the parent phthalate diester (in units of μmole per gram creatinine). CE = The creatinine excretion rate normalized by body weight (in units of mg creatinine per kg bodyweight per day). CE can be estimated from the urinary creatinine values reported in biomonitoring studies (<i>i.e.</i>, NHANES) using the equations of Mage et al. (2008) based on age, gender, height, and race, as was done by Health Canada (ECCC/HC, 2020) and U.S. CPSC (2014). Fue_{sum} = The summed molar fraction of urinary metabolites. The molar fraction describes the molar ratio between the amount of metabolite excreted in urine and the amount of parent compound taken up. MW_{parent} = The molecular weight of the parent phthalate diester (in units of g/mole).
1655 1656 1657 1658 1659 1660 1661 1662	Daily intake values were calculated for each participant from NHANES. A creatinine excretion rate for each participant was calculated using equations provided by Mage et al. (2008). The applied equation is dependent on the participant's age, height, race, and sex to accommodate variances in urinary excretion rates. Creatinine excretion rate equations were only reported for people who are non-Hispanic Black and non-Hispanic White, so the creatinine excretion rate for participants of other races were calculated using the equation for non-Hispanic White adults or children, in accordance with the approach used by U.S. CPSC (2015).
1663 1664 1665 1666 1667 1668 1669 1669	No controlled human exposure studies of DIDP have been conducted and no fractional urinary excretion (F_{ue}) values for DIDP are available. To estimate daily intake of DIDP from NHANES urinary MCNP biomonitoring data, EPA used an F_{ue} value of 0.099 for mono-(carboxyoctyl) phthalate (MCOP), a metabolite of diisononyl phthalate (DINP). The use of the DINP F_{ue} value as a surrogate for DIDP is supported by the structural similarity of the two phthalates. Further, DINP F_{ue} values have been used as a surrogate for DIDP in existing assessments of DIDP by Health Canada (ECCC/HC, 2020; EC/HC, 2015b). U.S. CPSC (2014) used a F_{ue} value of 0.04 but did not provide a citation for this value; as such, EPA replicated Health Canada's approach of using the DINP F_{ue} value for DIDP.
1671 1672 1673 1674 1675	The calculated daily intake values in this analysis shown in Table 10-1 for the various lifestages at the 50th and 95th exposure percentile are similar to those reported by U.S. CPSC (2014) and Health Canada (ECCC/HC, 2020). The daily intake values in the present analysis are calculated with 2017 to 2018 NHANES data, while daily intake estimates by U.S. CPSC and Health Canada were based on 2005 to

- 1676 2006 and 2009 to 2010 NHANES survey data, respectively.
- 1677

1678 Daily intake values in the U.S. CPSC (2014) report were estimated for men and women of reproductive 1679 age (15 to 45) and reported at the 99th percentile rather than the 95th percentile, so the results are similar 1680 but not directly comparable to those in the present analysis. U.S. CPSC reports a median daily intake 1681 value for adults aged 15 to 45 as 1.1 μ g/kg-day and a 99th percentile daily intake value of 35 μ g/kg-day 1682 using NHANES data from 2005 to 2006.

1683

1684 The Health Canada (ECCC/HC, 2020) assessment reports median and 95th percentile daily intake values 1685 for male children aged 6 to 11 as 1.4 and 4.4 μ g/kg-day, respectively. The reported median and 95th 1686 percentile daily intake values for adults (age 20 or older) were 0.76 and 4.4 μ g/kg-day for males and 1687 0.65 and 4.9 μ g/kg-day for females.

1688

Demographic	Exposure Percentile	Daily Intake Value (Median [95% CI]) (µg/kg-bw-day)
Women of reproductive age	50	1.17 (0.80-1.54)
Women of reproductive age	95	3.50 ^{<i>a</i>}
Adults (16+)	50	1.29 (0.92-1.66)
Adults (16+)	95	7.18^{a}
Female adults	50	1.17 (0.80-1.54)
Female adults	95	3.50 ^a
Male adults	50	1.59 (1.06-2.12)
Male adults	95	7.41 ^{<i>a</i>}
Adolescents (11-<16 years old)	50	1.37 (1.10-1.64)
Adolescents (11-<16 years old)	95	4.27 (0.65-7.88)
Female adolescents	50	1.32 (0.94-1.70)
Female adolescents	95	3.38 (2.01-4.76)
Male adolescents	50	1.51 (1.19-1.83)
Male adolescents	95	9.66 ^{<i>a</i>}
Children (6-<11 years old)	50	1.19 (1.07-1.30)
Children (6-<11 years old)	95	6.35 (-4.37-17.07)
Female children	50	1.25 (0.99-1.51)
Female children	95	13.14 ^{<i>a</i>}
Male children	50	1.14 (1.00-1.28)
Male children	95	2.70 (2.18-3.23)
Toddlers (3-5 years old)	50	1.00 (0.91-1.10)
Toddlers (3-5 years old)	95	4.65 (1.52-7.79)
Female toddlers	50	0.97 (0.82-1.12)
Female toddlers	95	7.32 (-0.38-15.02)

1689 Table 10-1. Daily Intake Values for Select Demographics for the 2017 to 2018 NHANES Cycle

Demographic	Exposure Percentile	Daily Intake Value (Median [95% CI]) (µg/kg-bw-day)		
Male toddlers	50	1.02 (0.88-1.16)		
Male toddlers 95 3.60 (0.10-7.10)				
^{<i>a</i>} 95% confidence intervals (CI) could not be calculated due to small sample size or a standard error of zero.				

1690

1691 As described earlier, reverse dosimetry modeling does not distinguish between routes or pathways of 1692 exposure and does not allow for source apportionment (*i.e.*, exposure from TSCA COUs cannot be 1693 isolated). Therefore, general population exposure estimates from exposure to ambient air, surface water, 1694 and soil are not directly comparable. However, in contrasting the general population exposures 1695 estimated for a screening level analysis with the NHANES biomonitoring data, many of the acute dose rates or average daily doses from a single exposure scenario exceed the total daily intake values 1696 1697 estimated using NHANES. Taken together with results from U.S. CPSC (2014) stating that DIDP exposure comes primarily from diet for women, infants, toddlers, and children and that the outdoor 1698 environment did not contribute to DIDP exposures, the exposures to the general population via ambient 1699 air, surface water, and drinking water quantified in this document are likely overestimates, as estimates 1700 from individual pathways exceed the total intake values measured even at the 95th percentile of the U.S. 1701 1702 population for all ages.

10.2.2 Limitations and Uncertainties of Reverse Dosimetry Approach

Controlled human exposure studies have been conducted and provide estimates of the urinary molar 1704 1705 excretion factor (*i.e.*, the F_{ue}) to support use of a reverse dosimetry approach. These studies most 1706 frequently involve oral administration of an isotope-labelled (e.g., deuterium or carbon-13) phthalate 1707 diester to a healthy human volunteer and then urinary excretion of monoester metabolites is monitored 1708 over 24 to 48 hours. F_{ue} values estimated from these studies have been used by both U.S. CPSC (2014) 1709 and Health Canada (ECCC/HC, 2020) to estimate phthalate daily intake values using urinary biomonitoring data. To estimate the daily intake value for DIDP, the Fue value for MCOP, a DINP 1710 1711 metabolite was used (ECCC/HC, 2020). Use of analogue to estimate DIDP daily intake values is a source of uncertainty. 1712

1713

1703

1714 Use of reverse dosimetry and urinary biomonitoring data to estimate daily intake of phthalates is

1715 consistent with approaches employed by both U.S. CPSC (2014) and Health Canada (ECCC/HC, 2020).

1716 However, there are challenges and sources of uncertainty associated with the use of reverse dosimetry

approaches. U.S. CPSC considered several sources of uncertainty associated with use of human urinary
biomonitoring data to estimate daily intake values and conducted a semi-quantitative evaluation of
uncertainties to determine the overall effect on daily intake estimates (see Section 4.1.3 of (U.S. CPSC,

17202014)). Identified sources of uncertainty include: (1) analytical variability in urinary metabolite1721measurements; (2) human variability in phthalate metabolism and its effect on metabolite conversion1722factors (*i.e.*, the F_{ue}); (3) temporal variability in urinary phthalate metabolite levels; (4) variability in

- urinary phthalate metabolite levels due to fasting prior to sample collection; (5) variability due to fastelimination kinetics and spot samples; and (6) creatinine correction models for estimating daily intake
- 1725 values.
- 1726

In addition to some of the limitations and uncertainties discussed above and outlined by U.S. CPSC
(2014), the short half-lives of phthalates can be a challenge when using a reverse dosimetry approach.
Phthalates have elimination half-lives on the order of several hours and are quickly excreted from the
body in urine and to some extent feces (ATSDR, 2022; EC/HC, 2015a). Therefore, spot urine samples,

- as collected through NHANES and many other biomonitoring studies, are representative of relatively
- recent exposures. Spot urine samples were used by Health Canada (<u>ECCC/HC, 2020</u>) and U.S. CPSC
 (2014) to estimate daily intake values. However, due to the short half-lives of phthalates, a single spot
- sample may not be representative of average urinary concentrations that are collected over a longer term
- or calculated using pooled samples (<u>Shin et al., 2019</u>; <u>Aylward et al., 2016</u>). Multiple spot samples
 provide a better characterization of exposure, with multiple 24-hour samples potentially leading to better
- 1737 characterization but are less feasible to collect for large studies (Shin et al., 2019). Due to rapid
- 1737 characterization but are less reasible to confect for large studies (<u>Shiff et al., 2019</u>). Due to rapid 1738 elimination kinetics, U.S. CPSC concluded that spot urine samples collected at a short time (2 to 4
- 1739 hours) since last exposure may overestimate human exposure, while samples collected at a longer time
- 1740 (greater than 14 hours) since last exposure may underestimate exposure (see Section 4.1.3 of (U.S.
- 1741 <u>CPSC, 2014</u>) for further discussion).

1742 **10.2.3 Weight of Scientific Evidence Conclusions**

1743 For the urinary biomonitoring data, despite the uncertainties discussed in Section 10.2.2, overall U.S. CPSC (2014) concluded that factors that might lead to an overestimation of daily intake seem to be well 1744 balanced by factors that might lead to an underestimation of daily intake. Therefore, reverse dosimetry 1745 1746 approaches "provide a reliable and robust measure of estimating the overall phthalate exposure." Given similar approach and estimated daily intake values, EPA has robust confidence in the estimated daily 1747 1748 intake values presented in this document. Again, reverse dosimetry modeling does not distinguish 1749 between routes or pathways of exposure and does not allow for source apportionment (*i.e.*, exposure 1750 from TSCA COUs cannot be isolated), but EPA has robust confidence in the use of its total daily intake 1751 value to contextualize the exposure estimates from TSCA COUs as being overestimated as described in 1752 Section 10.2.1.2.

Page 64 of 112

1753 11 CONCLUSIONS OF ENVIRONMENTAL MEDIA 1754 CONCENTRATION AND GENERAL POPULATION SCREENING 1755 LEVEL ANALYSIS

1756 **11.1 Environmental Media Conclusions**

Based off the environmental release assessment presented in the *Draft Release and Occupational Exposure Assessment for Diisodecyl Phthalate* (U.S. EPA, 2024c) DIDP is expected to be released to the environment via air, water, biosolids, and landfills. Environmental media concentrations were quantified in ambient air, soil from ambient air deposition, surface water, and sediment. Given the physical and chemical properties and fate parameters of DIDP, concentrations of DIDP in soil and groundwater from releases to biosolids and landfills were not assessed quantitatively and instead discussed qualitatively.

1763

1771

High-end concentration of DIDP in surface water, sediment, and soil from air to soil deposition were
estimated for the purpose of a screening level analysis for environmental exposure described in the *Draft Environmental Exposure Assessment for DIDP* (U.S. EPA, 2024b) and for general population exposure
described in this document. Table 11-1 summarizes the highest concentrations of DIDP estimated in
different environmental media based on releases to the environmental from various COUs. The summary
table also indicates whether the high-end estimate was used for environmental exposure assessment or
general population exposure assessment.

Table 11-1. Summary of High-End DIDP Concentrations in Various Environmental Media from Environmental Releases

OES ^a	Release Media	Environmental Media	DIDP Concentration	Environmental or General Population		
		Total Water Column (7Q10)	7,460 μg/L	Environmental		
	Water	Benthic Pore Water (7Q10)	4,760 μg/L	Environmental		
PVC plastics compounding		Benthic Sediment (7Q10)	27,600 mg/kg	Environmental		
•••••••	Fugitive Air	Soil (Air to Soil Deposition 100 m)	1.85E03 µg/kg	General Population		
		Soil (Air to Soil Deposition 1,000 m)	13 µg/kg	Environmental		
Use of lubricants		Surface Water (30Q5)	9,110 μg/L	General Population		
and functional fluids	Water	Surface Water (Harmonic Mean)	7,450 μg/L	General Population		
^{<i>a</i>} Table 1-1 provides the crosswalk of OES to COUs.						

1774 **11.2 General Population Screening Level Assessment Conclusion**

The general population can be exposed to DIDP from various exposure pathways. As shown in Table 2-2, exposures to the general population via surface water, drinking water, fish ingestion, and soil from air to soil deposition were quantified while exposures via the land pathway (biosolids and landfills) were qualitatively assessed. Based on the high-end estimates of environmental media concentrations summarized in Table 11-1, general population exposures were estimated for the lifestage that would be most exposed based on intake rate and body weight.

1782Table 11-2 summarizes the general population exposure from surface water and drinking water. The

1783 exposure routes assessed included incidental dermal and incidental ingestion from swimming in surface

1784 water and ingestion of drinking water for adults. The MOE for each exposure scenario assessed for

water was greater than the benchmark of 30, indicating that surface water and drinking water are notpathways of concern for non-cancer risk.

1787

Occupational	Water Column Concentrations		Incidental Dermal Surface Water ^{<i>b</i>}		Incidental Ingestion Surface Water ^c		Drinking Water ^d	
Exposure Scenario ^a	30Q5 Conc. (µg/L)	Harmonic Mean Conc. (µg/L)	ADR _{POT} (mg/kg- day)	Acute MOE	ADR _{POT} (mg/kg- day)	Acute MOE	ADD _{POT} (mg/kg- day)	Chronic MOE
Use of Lubricants and Functional Fluids Without Wastewater Treatment	9,110	7,540	4.73E-02	190	3.62E-02	286	N/A	N/A
Use of Lubricants and Functional Fluids With Wastewater Treatment	100	83	5.20E-04	17,300	3.98E-04	26,000	636	1,410,000
Use of Lubricants and Functional Fluids With Wastewater and Drinking Water Treatment	N/A	N/A	N/A	N/A	N/A	N/A	1,724	3,820,000
N/A = not applicable ^a Table 1-1 provides a ^b Most exposed age g ^c Most exposed age g ^d Most exposed age g	roup: Adults roup: Youth	$(\geq 21 \text{ years})$ (11–15 years)		COUs to Ol	ES.			

1788 Table 11-2. General Population Water Exposure Summary

^d Most exposed age group: Infant (birth to <1 year)

1789

Table 11-3 summarizes the fish ingestion exposures for adults in tribal populations. Because of higher
ingestion rates, tribal populations were selected as the subpopulation with the greatest exposure, greater
than that of the general population. The MOE even for heritage ingestion rates in tribal populations were
greater than the benchmark of 30, indicating that fish ingestion is not a pathways of concern for noncancer risk.

1795

1796Table 11-3. Tribal Fish for Adult Ingestion Summary

	Current Mean	Ingestion Rate	Heritage Ingestion Rate	
Calculation Method	ADR/ADD (mg/kg-day)	MOE	ADR/ADD (mg/kg-day)	MOE
Water solubility limit (1.7E–04 mg/L)	4.54E-06	1,980,000	2.62E-05	344,000
Monitored SWC from a WWTP's influent (4.31E-02 mg/L)	1.15E-03	7,810	6.64E-03	1,360

1797

1798Table 11-4 summarizes the soil ingestion and dermal contact to soil exposure resulting from air to soil1799deposition for infants and children (ages 6 months to less than 12 years). The MOE for each exposure

1800 scenario assessed was greater than the benchmark of 30, indicating that ingestion and dermal contact to

soil from air to soil deposition is not a pathways of concern for non-cancer risk.

1802 Table 11-4. General Population Soil from Air to Soil Deposition Exposure Summary

Occupational		Soil Ingestion		Dermal Soil Contact		
Occupational Exposure Scenario ^a	Soil Concentration ^b (mg/kg)	ADD (mg/kg- day)	MOE ^c	Soil Concentration ^b (mg/kg)	DAD (mg/kg- day)	MOE ^c
PVC Plastic Compounding	1.85	0.0228	106.5	1.85	0.0617	106.5
^{<i>a</i>} Table 1-1 provides a crosswalk of industrial and commercial COUs to OES. ^{<i>b</i>} Air and soil concentrations are 95th percentile at 100m from the emitting facility ^{<i>c</i>} MOE for soil ingestion and dermal contact represent aggregated exposure						

1803

Table 11-5 summarizes the conclusions from above for surface water, drinking water, fish ingestion, and
ambient air but also includes the conclusions for biosolids and landfills which were assessed
qualitatively in Section 3.1 and 3.2, respectively. Results indicate that ambient air, surface water,

1807 drinking water, biosolids, landfills, and fish ingestion are not pathways of concern for DIDP for the

1808 highest exposed populations. Therefore, EPA did not further refine the general population exposure

1809 assessment to include higher tiers of modeling, additional subpopulations, or additional COUs.

1810

1811 Table 11-5. Screening Level Analysis for High-End Exposure Scenarios for Highest Exposed 1812 Populations

OES ^a	Exposure Pathway	Exposure Route	Exposure Scenario	Lifestage	Pathway of Concern ^b		
All	Biosolids (Section 3.1)	No specific ex assessments	posure scenarios were assessed	for qualitative	No		
All	Landfills (Section 3.2)	No specific ex assessments	No specific exposure scenarios were assessed for qualitative assessments				
Use of Lubricants and Functional	C. C. W.	Dermal	Dermal exposure to DIDP in surface water during swimming (Section 5.1.1)	Adults (>21 years)	No		
Fluids	Surface Water	Oral	Incidental ingestion of DIDP in surface water during swimming (Section 5.1.2)	Youth (11-15 years)	No		
Use of Lubricants and Functional Fluids	Drinking Water	Oral	Ingestion of drinking water (Section 6.1.1)	Infants (<1 year)	No		
			Ingestion of fish for General Population (Section 7.1)	Adult (>21 years)	No		
All	Fish Ingestion	Oral	Ingestion of fish for subsistence fishers (Section 7.2)	Adult (>21 years)	No		
			Ingestion of fish for tribal populations (Section 7.3)	Adult (>21 years)	No		
PVC Plastic Compounding	Ambient Air	Oral	Ingestion of DIDP in soil resulting from air to soil deposition	Infant and Children (6 month-12	No		

Pathway	Route	Exposure Scenario	Lifestage	Pathway of Concern ^b
		(Section 9.1)	years)	
	Dermal	Dermal exposure to DIDP in soil resulting from air to soil deposition (Section 9.1.2)	Infant and Children (6 month-12 years)	No

^b Using the MOE approach, an exposure pathway was determined to not be a pathway of concern if the MOE was equal to or exceeded the benchmark MOE of 30.

11.3 Weight of Scientific Evidence Conclusions for General Population 1813 Exposure 1814

The weight of scientific evidence supporting the exposure estimate is decided based on the strengths, 1815 1816 limitations, and uncertainties associated with the exposure estimates, which are discussed in detail for biosolids (3.1.1), landfills (3.2.1), surface water (4.3.1), drinking water (6.3), fish ingestion (7.5.1), 1817 ambient air (8.4.1), and biomonitoring (10.2.3). EPA summarized its weight of scientific evidence using 1818 1819 confidence descriptors: robust, moderate, slight, or indeterminate confidence descriptors. EPA used 1820 general considerations (i.e., relevance, data quality, representativeness, consistency, variability,

- 1821 uncertainties) as well as chemical-specific considerations for its weight of scientific evidence conclusions.
- 1822 1823

1824 EPA determined robust confidence in its qualitative assessment of biosolids (3.1.1) and landfills (3.2.1).

1825 For its quantitative assessment, EPA modeled exposure due to various exposure scenarios resulting from

1826 different pathways of exposure. Exposure estimates utilized high-end inputs for the purpose of a

1827 screening level analysis. When available, monitoring data was compared to modeled estimates to

1828 evaluate overlap, magnitude, and trends. For its quantitative assessment of surface water (4.3.1), 1829

drinking water (6.3), fish ingestion (7.5.1), soil from ambient air to soil deposition (8.4.1), and urinary 1830 biomonitoring (10.2.3) EPA has robust confidence that the screening level analysis was appropriately

1831 conservative e to determine that no environmental pathway has the potential for non-cancer risk to the

- 1832 general population. Despite slight and moderate confidence in the estimated absolute values themselves,
- confidence in exposure estimates capturing high-end exposure scenarios was robust given the many 1833
- 1834 conservative assumptions which yielded modeled values exceeding those of monitored values and
- 1835 exceeding total daily intake values calculated from NHANES biomonitoring data. Furthermore, risk
- 1836 estimates for high-end exposure scenarios were still consistently above the benchmarks, adding to
- 1837 confidence that non-cancer risks are not expected.

1838 **REFERENCES**

Armstrong, DL; Rice, CP; Ramirez, M; Torrents, A. (2018). Fate of four phthalate plasticizers under
various wastewater treatment processes. J Environ Sci Health A Tox Hazard Subst Environ Eng
53: 1075-1082. http://dx.doi.org/10.1080/10934529.2018.1474580
ATSDR. (2022). Toxicological profile for di(2-ethylhexyl)phthalate (DEHP) [ATSDR Tox Profile].
(CS274127-A). Atlanta, GA. https://www.atsdr.cdc.gov/ToxProfiles/tp9.pdf
Aylward, LL; Hays, SM; Zidek, A. (2016). Variation in urinary spot sample, 24 h samples, and longer-
term average urinary concentrations of short-lived environmental chemicals: implications for
exposure assessment and reverse dosimetry. J Expo Sci Environ Epidemiol 27: 582-590.
http://dx.doi.org/10.1038/jes.2016.54
Björklund, K; Cousins, AP; Strömvall, AM; Malmqvist, PA. (2009). Phthalates and nonylphenols in
urban runoff: Occurrence, distribution and area emission factors. Sci Total Environ 407: 4665-
4672. http://dx.doi.org/10.1016/j.scitotenv.2009.04.040
Blair, JD; Ikonomou, MG; Kelly, BC; Surridge, B; Gobas, FA. (2009). Ultra-trace determination of
phthalate ester metabolites in seawater, sediments, and biota from an urbanized marine inlet by
LC/ESI-MS/MS. Environ Sci Technol 43: 6262-6268. http://dx.doi.org/10.1021/es9013135
Chen, CF; Chen, CW; Ju, YR; Dong, CD. (2016). Determination and assessment of phthalate esters
content in sediments from Kaohsiung Harbor, Taiwan. Mar Pollut Bull 124: 767-774.
http://dx.doi.org/10.1016/j.marpolbul.2016.11.064
Chen, JA; Liu, H; Qiu, Z; Shu, W. (2008). Analysis of di-n-butyl phthalate and other organic pollutants
in Chongqing women undergoing parturition. Environ Pollut 156: 849-853.
http://dx.doi.org/10.1016/j.envpol.2008.05.019
Cheng, Z; Liu, JB; Gao, M; Shi, GZ; Fu, XJ; Cai, P; Lv, YF; Guo, ZB; Shan, CQ; Yang, ZB; Xu, XX;
Xian, JR; Yang, YX; Li, KB; Nie, XP. (2019). Occurrence and distribution of phthalate esters in
freshwater aquaculture fish ponds in Pearl River Delta, China. Environ Pollut 245: 883-888.
http://dx.doi.org/10.1016/j.envpol.2018.11.085
Cousins, AP; Remberger, M; Kaj, L; Ekheden, Y; Dusan, B; Brorstroem-Lunden, E. (2007). Results
from the Swedish National Screening Programme 2006. Subreport 1: Phthalates (pp. 39).
(B1750). Stockholm, SE: Swedish Environmental Research Institute.
http://www3.ivl.se/rapporter/pdf/B1750.pdf
David, RM. (2000). Exposure to phthalate esters [Letter]. Environ Health Perspect 108: A440.
http://dx.doi.org/10.1289/ehp.108-a440a
Domínguez-Romero, E; Scheringer, M. (2019). A review of phthalate pharmacokinetics in human and
rat: What factors drive phthalate distribution and partitioning? [Review]. Drug Metab Rev 51:
314-329. http://dx.doi.org/10.1080/03602532.2019.1620762
Duncan, M. (2000). Fish consumption survey of the Suquamish Indian Tribe of the Port Madison Indian
Reservation, Puget Sound Region. Suquamish, WA: The Suquamish Tribe, Port Madison Indian
Reservation. http://www.deq.state.or.us/wq/standards/docs/toxics/suquamish2000report.pdf
EC/HC. (2015a). State of the science report: Phthalate substance grouping: Medium-chain phthalate
esters: Chemical Abstracts Service Registry Numbers: 84-61-7; 84-64-0; 84-69-5; 523-31-9;
5334-09-8;16883-83-3; 27215-22-1; 27987-25-3; 68515-40-2; 71888-89-6. Gatineau, Quebec:
Environment Canada, Health Canada. https://www.ec.gc.ca/ese-ees/4D845198-761D-428B-
A519-75481B25B3E5/SoS_Phthalates%20%28Medium-chain%29_EN.pdf
EC/HC. (2015b). State of the Science Report: Phthalates Substance Grouping: Long-chain Phthalate
Esters. 1,2-Benzenedicarboxylic acid, diisodecyl ester (diisodecyl phthalate; DIDP) and 1,2-
Benzenedicarboxylic acid, diundecyl ester (diundecyl phthalate; DUP). Chemical Abstracts
Service Registry Numbers: 26761-40-0, 68515-49-1; 3648-20-2. Gatineau, Quebec:
Environment Canada, Health Canada. https://www.ec.gc.ca/ese-
ees/default.asp?lang=En&n=D3FB0F30-1

007	
887	ECB. (2003). Technical guidance document on risk assessment: Part II. (EUR 20418 EN/2).
888	Luxembourg: Office for Official Publications of the European Communities.
889	http://ihcp.jrc.ec.europa.eu/our_activities/public-
890	health/risk_assessment_of_Biocides/doc/tgd/tgdpart2_2ed.pdf
891	ECCC/HC. (2020). Screening assessment - Phthalate substance grouping. (En14-393/2019E-PDF).
892	Environment and Climate Change Canada, Health Canada.
893	https://www.canada.ca/en/environment-climate-change/services/evaluating-existing-
894	substances/screening-assessment-phthalate-substance-grouping.html
895	ECJRC. (2003). European Union risk assessment report, vol 36: 1,2-Benzenedicarboxylic acid, Di-C9-
896	11-Branched alkyl esters, C10-Rich and Di-"isodecyl"phthalate (DIDP). In 2nd Priority List.
897	(EUR 20785 EN). Luxembourg, Belgium: Office for Official Publications of the European
898	Communities.
899	http://publications.jrc.ec.europa.eu/repository/bitstream/JRC25825/EUR%2020785%20EN.pdf
900	Exxon Biomedical. (2000). Support: two generation reproduction toxicity study in rats with MRD-94-
901	775, final report, with cover letter dated 8/3/2000 [TSCA Submission]. (Project Number
902	177535A. OTS0559621-1. 89000000282. 8EHQ-0800-14300. TSCATS/446390). Exxon Mobil
903	Chemical Company.
904	Fromme, H; Gruber, L; Seckin, E; Raab, U; Zimmermann, S; Kiranoglu, M; Schlummer, M; Schwegler,
905	U; Smolic, S; Völkel, W. (2011). Phthalates and their metabolites in breast milk - Results from
906	the Bavarian Monitoring of Breast Milk (BAMBI). Environ Int 37: 715-722.
907	http://dx.doi.org/10.1016/j.envint.2011.02.008
908	Harper, B; Harding, A; Harris, S; Berger, P. (2012). Subsistence Exposure Scenarios for Tribal
909	Applications. Hum Ecol Risk Assess 18: 810-831.
910	http://dx.doi.org/10.1080/10807039.2012.688706
911	Haynes, WM. (2014). CRC handbook of chemistry and physics
912	Diisodecyl phthalate (95 ed.). Boca Raton, FL: CRC Press.
913	Hushka, LJ; Waterman, SJ; Keller, LH; Trimmer, GW; Freeman, JJ; Ambroso, JL; Nicolich, M; McKee,
914	RH. (2001). Two-generation reproduction studies in rats fed di-isodecyl phthalate. Reprod
915	Toxicol 15: 153-169. <u>http://dx.doi.org/10.1016/S0890-6238(01)00109-5</u>
916	Kalmykova, Y; Björklund, K; Strömvall, AM; Blom, L. (2013). Partitioning of polycyclic aromatic
917	hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachates and stormwater.
918	Water Res 47: 1317-1328. <u>http://dx.doi.org/10.1016/j.watres.2012.11.054</u>
019 020	Kapraun, DuF; Zurlinden, ToJ; Verner, Ma-A; Chiang, Ca; Dzierlenga, MiW; Carlson, LaM; Schlosser,
20	PaM; Lehmann, GeM. (2022). A generic pharmacokinetic model for quantifying mother-to-
21	offspring transfer of lipophilic persistent environmental chemicals. Toxicol Sci 2022: kfac084.
22	http://dx.doi.org/10.1093/toxsci/kfac084
23	Koch, HM; Becker, K; Wittassek, M; Seiwert, M; Angerer, J; Kolossa-Gehring, M. (2007). Di-n-
24	butylphthalate and butylbenzylphthalate - urinary metabolite levels and estimated daily intakes:
925	Pilot study for the German Environmental Survey on children. J Expo Sci Environ Epidemiol 17:
926	378-387. <u>http://dx.doi.org/10.1038/sj.jes.7500526</u>
27	Koch, HM; Drexler, H; Angerer, J. (2003). An estimation of the daily intake of di(2-
928	ethylhexyl)phthalate (DEHP) and other phthalates in the general population. Int J Hyg Environ
929	Health 206: 77-83. <u>http://dx.doi.org/10.1078/1438-4639-00205</u>
930 921	Lin, ZP; Ikonomou, MG; Jing, H; Mackintosh, C; Gobas, FA. (2003). Determination of phthalate ester
931	congeners and mixtures by LC/ESI-MS in sediments and biota of an urbanized marine inlet.
32	Environ Sci Technol 37: 2100-2108. <u>http://dx.doi.org/10.1021/es026361r</u>
33	Mackay, D; Shiu, WY; Ma, KC; Lee, SC. (2006). Handbook of physical-chemical properties and
934 935	environmental fate for organic chemicals Disodecul phthalate, Boca Paton, EL: CPC press

1935 Diisodecyl phthalate. Boca Raton, FL: CRC press.

1936	Mackintosh, CE; Maldonado, J; Hongwu, J; Hoover, N; Chong, A; Ikonomou, MG; Gobas, FA. (2004).
1937	Distribution of phthalate esters in a marine aquatic food web: Comparison to polychlorinated
1938	biphenyls. Environ Sci Technol 38: 2011-2020. http://dx.doi.org/10.1021/es034745r
1939	Mackintosh, CE; Maldonado, JA; Ikonomou, MG; Gobas, FA. (2006). Sorption of phthalate esters and
1940	PCBs in a marine ecosystem. Environ Sci Technol 40: 3481-3488.
1941	http://dx.doi.org/10.1021/es0519637
1942	Mage, DT; Allen, RH; Kodali, A. (2008). Creatinine corrections for estimating children's and adult's
1943	pesticide intake doses in equilibrium with urinary pesticide and creatinine concentrations. J Expo
1944	Sci Environ Epidemiol 18: 360-368. http://dx.doi.org/10.1038/sj.jes.7500614
1945	McConnell, ML. (2007) Distribution of phthalate monoesters in an aquatic food web. (Master's Thesis).
1946	Simon Fraser University, Burnaby, Canada. Retrieved from http://summit.sfu.ca/item/2603
1947	NCHS. (2021). National Health and Nutrition Examination Survey - 2017-2018 Data Documentation,
1948	Codebook, and Frequencies: Phthalates and Plasticizers Metabolites - Urine (PHTHTE_J)
1949	[Website]. https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/PHTHTE_J.htm
1950	NLM. (2020). PubChem database: compound summary: Diisodecyl phthalate.
1951	https://pubchem.ncbi.nlm.nih.gov/compound/Diisodecyl-phthalate
1952	Oishi, S; Hiraga, K. (1982). Distribution and elimination of di-2-ethylhexyl phthalate and mono-2-
1953	ethylhexyl phthalate after a single oral administration of di-2-ethylhexyl phthalate in rats. Arch
1954	Toxicol 51: 149-156.
1955	Peters, RJB; Beeltje, H; van Delft, RJ. (2008). Xeno-estrogenic compounds in precipitation. J Environ
1956	Monit 10: 760-769. http://dx.doi.org/10.1039/b805983g
1957	Peterson, JC; Freeman, DH. (1984). Variations of phthalate ester concentrations in sediments from the
1958	Chester River, Maryland. Int J Environ Anal Chem 18: 237-252.
1959	http://dx.doi.org/10.1080/03067318408077006
1960	<u>Ridolfi.</u> (2016). Heritage fish consumption rates of the Kootenai Tribe of Idaho. Washington, DC: U.S.
1961	Environmental Protection Agency. https://www.epa.gov/sites/default/files/2017-
1962	01/documents/heritage-fish-consumption-rates-kootenai-dec2016.pdf
1963	Saravanabhavan, G; Murray, J. (2012). Human biological monitoring of diisononyl phthalate and
1964	diisodecyl phthalate: a review [Review]. J Environ Public Health 2012: 810501.
1965	http://dx.doi.org/10.1155/2012/810501
1966	Shi, W; Hu, X; Zhang, F; Hu, G; Hao, Y; Zhang, X; Liu, H; Wei, S; Wang, X; Giesy, JP; Yu, H. (2012).
1967	Occurrence of thyroid hormone activities in drinking water from eastern China: Contributions of
1968	phthalate esters. Environ Sci Technol 46: 1811-1818. http://dx.doi.org/10.1021/es202625r
1969	Shin, HM; Bennett, DH; Barkoski, J; Ye, X; Calafat, AM; Tancredi, D; Hertz-Picciotto, I. (2019).
1970	Variability of urinary concentrations of phthalate metabolites during pregnancy in first morning
1971	voids and pooled samples. Environ Int 122: 222-230.
1972	http://dx.doi.org/10.1016/j.envint.2018.11.012
1973	Tran, BC; Teil, MJ; Blanchard, M; Alliot, F; Chevreuil, M. (2014). BPA and phthalate fate in a sewage
1974	network and an elementary river of France. Influence of hydroclimatic conditions. Chemosphere
1975	119C: 43-51. http://dx.doi.org/10.1016/j.chemosphere.2014.04.036
1976	Tran, BC; Teil, MJ; Blanchard, M; Alliot, F; Chevreuil, M. (2015). Fate of phthalates and BPA in
1977	agricultural and non-agricultural soils of the Paris area (France). Environ Sci Pollut Res Int 22:
1978	11118-11126. <u>http://dx.doi.org/10.1007/s11356-015-4178-3</u>
1979	U.S EPA. (2000). Methodology for deriving ambient water quality criteria for the protection of human
1980	health (2000). (EPA/822/B-00/004). Washington, DC: U.S. Environmental Protection Agency,
1981	Office of Water. <u>http://www.epa.gov/waterscience/criteria/humanhealth/method/complete.pdf</u>
1982	U.S. CPSC. (2014). Chronic Hazard Advisory Panel on Phthalates and Phthalate Alternatives (with
1983	appendices). Bethesda, MD: U.S. Consumer Product Safety Commission, Directorate for Health
1984	Sciences. https://www.cpsc.gov/s3fs-public/CHAP-REPORT-With-Appendices.pdf

1985	U.S. CPSC. (2015). Estimated phthalate exposure and risk to pregnant women and women of
1986	reproductive age as assessed using four NHANES biomonitoring data sets (2005/2006,
1987	2007/2008, 2009/2010, 2011/2012). Rockville, Maryland: U.S. Consumer Product Safety
1988	Commission, Directorate for Hazard Identification and Reduction.
1989	https://web.archive.org/web/20190321120312/https://www.cpsc.gov/s3fs-public/NHANES-
1990	Biomonitoring-analysis-for-Commission.pdf
1991	U.S. EPA. (1989). Risk assessment guidance for superfund, volume I: Human health evaluation manual
1992	(Part A). Interim final. (EPA/540/1-89/002). Washington, DC.
1993	https://www.epa.gov/sites/production/files/2015-09/documents/rags_a.pdf
1994	U.S. EPA. (1999). Proposed methods for determining watershed-derived percent crop areas and
1995	considerations for applying crop area adjustments to surface water screening models:
1996	Presentation to FIFRA Science Advisory Panel. Washington, DC: Office of Pesticide Programs.
1997	U.S. EPA. (2003). AERMOD: Latest Features and Evaluation Results. (454R03003).
1998	http://nepis.epa.gov/exe/ZyPURL.cgi?Dockey=P1009S6X.txt
1999	U.S. EPA. (2004). Risk Assessment Guidance for Superfund (RAGS), volume I: Human health
2000	evaluation manual, (part E: Supplemental guidance for dermal risk assessment).
2001	(EPA/540/R/99/005). Washington, DC: U.S. Environmental Protection Agency, Risk
2002	Assessment Forum. https://www.epa.gov/risk/risk-assessment-guidance-superfund-rags-part-e
2003	U.S. EPA. (2011). Exposure factors handbook: 2011 edition [EPA Report]. (EPA/600/R-090/052F).
2004	Washington, DC: U.S. Environmental Protection Agency, Office of Research and Development,
2005	National Center for Environmental Assessment.
2006	https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100F2OS.txt
2007	U.S. EPA. (2014). Estimated fish consumption rates for the U.S. population and selected subpopulations
2008	(NHANES 2003-2010) [EPA Report]. (EPA-820-R-14-002). Washington, DC.
2009	https://www.epa.gov/sites/production/files/2015-01/documents/fish-consumption-rates-2014.pdf
2010	U.S. EPA. (2015). Evaluation of Swimmer Exposures Using the SWIMODEL Algorithms and
2011	Assumptions. https://www.epa.gov/sites/production/files/2016-
2012	11/documents/swimodel_final.pdf
2013	U.S. EPA. (2016). Guidance for conducting fish consumption surveys. (823B16002).
2014	https://www.epa.gov/sites/production/files/2017-01/documents/fc_survey_guidance.pdf
2015	U.S. EPA. (2017b). Update for Chapter 5 of the Exposure Factors Handbook: Soil and dust ingestion
2016	[EPA Report]. (EPA/600R-17/384F). Washington, DC: National Center for Environmental
2017	Assessment, Office of Research and Development.
2018	https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100TTX4.txt
2019	U.S. EPA. (2018). User's Guide for the AMS/EPA Regulatory Model (AERMOD). (EPA Document
2020	Number: EPA-454/B-18-001). U.S. EPA.
2021	U.S. EPA. (2019a). Exposure factors handbook chapter 3 (update): Ingestion of water and other select
2022	liquids [EPA Report]. (EPA/600/R-18/259F). Washington, DC.
2023	https://cfpub.epa.gov/ncea/efp/recordisplay.cfm?deid=343661
2024	U.S. EPA. (2019b). Guidelines for human exposure assessment [EPA Report]. (EPA/100/B-19/001).
2025	Washington, DC: Risk Assessment Forum. <u>https://www.epa.gov/sites/production/files/2020-</u>
2026	01/documents/guidelines for human exposure assessment final2019.pdf
2027	U.S. EPA. (2019c). Integrated Science Assessment (ISA) for particulate matter (final report, Dec 2019).
2028	(EPA/600/R-19/188). Washington, DC.
2029	https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=347534
2030	U.S. EPA. (2019d). Point Source Calculator: A Model for Estimating Chemical Concentration in Water
2031 2032	Bodies. Washington, DC: U.S. Environmental Protection Agency, Office of Chemical Safety and Pollution Prevention.
2032	U.S. EPA. (2021). About the Exposure Factors Handbook [Website].
2033	<u>0.5. Er A.</u> (2021). About the Exposure Factors Handbook [website].

	May 2024
2034 2035	https://www.epa.gov/expobox/about-exposure-factors-handbook U.S. EPA. (2022). Consumer Exposure Model (CEM) user guide, Version 3.0. (EPA Contract #EP-W-
2036	12-010). Washington, DC: U.S. Environmental Protection Agency, Office of Pollution
2037	Prevention and Toxics.
2038	U.S. EPA. (2024a). Draft Environmental Exposure Assessment for Diisodecyl Phthalate. Washington,
2039	DC: Office of Pollution Prevention and Toxics.
2040	U.S. EPA. (2024b). Draft Environmental Hazard Assessment for Diisodecyl Phthalate. Washington, DC:
2041	Office of Pollution Prevention and Toxics.
2042	U.S. EPA. (2024c). Draft Environmental Release and Occupational Exposure Assessment for Diisodecyl
2043	Phthalate. Washington, DC: Office of Pollution Prevention and Toxics.
2044	U.S. EPA. (2024d). Draft Fate Assessment for Diisodecyl Phthalate. Washington, DC: Office of
2045	Pollution Prevention and Toxics.
2046	U.S. EPA. (2024e). Draft Fish Ingestion Risk Calculator for Diisodecyl Phthalate (DIDP). Washington,
2047	DC: Office of Pollution Prevention and Toxics.
2048	U.S. EPA. (2024f). Draft Human Health Hazard Assessment for Diisodecyl Phthalate. Washington, DC:
2049	Office of Pollution Prevention and Toxics.
2050	U.S. EPA. (2024g). Draft Physical Chemistry Assessment for Diisodecyl Phthalate. Washington, DC:
2051	Office of Pollution Prevention and Toxics.
2052	U.S. EPA. (2024h). Draft Risk Evaluation for Diisodecyl Phthalate. Washington, DC: Office of
2053	Pollution Prevention and Toxics.
2054	U.S. EPA. (2024i). Draft Risk Evaluation for Diisodecyl Phthalate – Systematic Review Supplemental
2055	File: Data Quality Evaluation Information for General Population, Consumer, and Environmental
2056	Exposure. Washington, DC: Office of Pollution Prevention and Toxics.
2057	Wen, ZD; Huang, XL; Gao, DW; Liu, G; Fang, C; Shang, YX; Du, J; Zhao, Y; Lv, LL; Song, KS.
2058	(2018). Phthalate esters in surface water of Songhua River watershed associated with land use
2059	types, Northeast China. Environ Sci Pollut Res Int 25: 7688-7698.
2060	http://dx.doi.org/10.1007/s11356-017-1119-3
2061	Williams, MD; Adams, WJ; Parkerton, TF; Biddinger, GR; Robillard, KA. (1995). Sediment sorption
2062	coefficient measurements for four phthalate esters: Experimental results and model theory.
2063	Environ Toxicol Chem 14: 1477-1486. <u>http://dx.doi.org/10.1002/etc.5620140906</u>
2064	

2065 APPENDICES

2066

2067 Appendix A EXPOSURE FACTORS

2068 2069

Table_Apx A-1. Body Weight by Age Group

Age Group ^a	Mean Body Weight (kg) ^b
Infant (<1 year)	7.83
Young toddler (1 to <2 years)	11.4
Toddler (2 to <3 years)	13.8
Small child (3 to <6 years)	18.6
Child (6 to <11 years)	31.8
Teen (11 to <16 years)	56.8
Adults (>16 years)	80.0
^{<i>a</i>} Age group weighted average ^{<i>b</i>} See Table 8-1 of (<u>U.S. EPA, 2011</u>)	

2070 2071

Table_Apx A-2. Fish Ingestion Rates by Age Group

Age Group	Fish Ingestion Rate (g/kg-day) ^a				
	50th Percentile	90th Percentile			
Infant (<1 year) ^{b}	N/A	N/A			
Young toddler (1 to <2 years) ^b	0.053	0.412			
Toddler (2 to <3 years) ^b	0.043	0.341			
Small child (3 to <6 years) ^b	0.038	0.312			
Child (6 to <11 years) ^b	0.035	0.242			
Teen (11 to <16 years) ^b	0.019	0.146			
Adult (>16 years) ^c	0.063	0.277			
Subsistence fisher (adult) ^d	1.78				
 ^a Age group weighted average, using body weight from Table_Apx A-1. ^b See Table 20a of (U.S. EPA, 2014) ^c See Table 9a of (U.S. EPA, 2014) 					

^d (<u>U.S EPA, 2000</u>)

2073 Table_Apx A-3. Recommended Default Values for Common Exposure Factors

Symbol	Definition	Recommended Default Value	Recommended Default Value	Source
-		Occupational	Residential	
ED	Exposure Duration (hrs/day)	8	24	
EF	Exposure Frequency (days/year)	250	365	
EY	Exposure Years (years)	40	 33 Adult 1 Infant (birth to <1 year) 5 Toddler (1 to 5 years) 5 Child (6 to 10 years) 5 Youth (11 to 15 years) 5 Youth (16 to 20 years) 	Number of years in age group, up to the 95th percentile residential occupancy period. See Table 16-5 of U.S. EPA Exposure Factors Handbook (U.S. EPA, 2011). Note: These age bins may vary for different measurements and sources
AT	Averaging Time Non-cancer	Equal to total exposure duration or 365 days/yr × EY; whichever is greater	Equal to total exposure duration or 365 days/yr × EY; whichever is greater	See pg. 6-23 of Risk assessment guidance for superfund, volume I: Human health evaluation manual (Part A). (<u>U.S. EPA,</u> <u>1989</u>)
	Averaging Time Cancer	78 years (28,470 days)	78 years (28,470 days)	See Table 18-1 of EPA Exposure Factors Handbook (<u>U.S. EPA,</u> <u>2011</u>)
BW	Bodyweight (kg)	80	 80 Adult 7.83 Infant (birth to <1 year) 16.2 Toddler (1 to 5 years) 31.8 Child (6 to 10 years) 56.8 Youth (11 to 15 years) 71.6 Youth (16 to 20 years) 65.9 Adolescent woman of childbearing age (16 to <21) – apply to all developmental exposure scenarios 	See Table 8-1 of EPA Exposure Factors Handbook (U.S. EPA, 2011) (Refer to Figure 31 for age- specific BW) Note: These age bins may vary for different measurements and sources See Table 8-5 of EPA Exposure Factors Handbook (U.S. EPA, 2011)

Symbol	Definition	Recommended Default Value	Recommended Default Value	Source	
		Occupational	Residential		
IR _{dw-acute}	Drinking Water Ingestion Rate (L/day) - acute	3.219 Adult	3.219 Adult 1.106 Infant (birth to <1 year) 0.813 Toddler (1 to 5 years) 1.258 Child (6 to 10 years) 1.761 Youth (11 to 15 years) 2.214 Youth (16 to 20 years)	See Tables 3-15 and 3-33; weighted average of 90th percentile consumer-only ingestion of drinking water (birth to <6 years) (<u>U.S. EPA,</u> <u>2011</u>)	
IR _{dw} - chronic	Drinking Water Ingestion Rate (L/day) - chronic	0.880 Adult	0.880 Adult 0.220 Infant (birth to <1 year) 0.195 Toddler (1 to 5 years) 0.294 Child (6 to 10 years) 0.315 Youth (11 to 15 years) 0.436 Youth (16 to 20 years)	U.S. EPA Exposure Factors Handbook Chapter 3 (U.S. EPA, 2011), Table 3-9 per capita mean values; weighted averages for adults (years 21 to 49 and 50+), for toddlers (years 1-2, 2-3, and 3-<6).	
IR _{inc}	Incidental water Ingestion Rate (L/hr)		0.025 Adult 0.05 Child (6 to < 16 years)	U.S. EPA (2015), Evaluation of Swimmer Exposures Using the SWIMODEL Algorithms and Assumptions	
IR _{fish}	Fish Ingestion Rate (g/day)		22 Adult	U.S. EPA (2014), Estimated Fish Consumption Rates for the U.S. Population and Selected Subpopulations This represents the 90th percentile consumption rate of fish and shellfish from inland and nearshore waters for the U.S. adult population 21 years of age and older, based on NHANES data from 2003 to 2010	

Symbol	Definition	Recommended Default Value	Recommended Default Value	Source
		Occupational	Residential	
IR _{soil}	Soil Ingestion Rate (mg/day)	50 Indoor workers 100 Outdoor workers	100 Infant (<6 months) 200 Infant to Youth (6 months to <12 years)	U.S. EPA Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (1991)
			100 Youth to Adult (12 years and up)1,000 Soil Pica Infant to Youth (1 to <12 years)	U.S. EPA Exposure Factors Handbook Chapter 5 (2011), Table 5-1, Upper percentile daily soil and dust ingestion
			50,000 Geophagy (all ages)	
SA _{water}	Skin Surface Area Exposed (cm ²) used for incidental water dermal contact		19,500 Adult 7,600 Child (3 to < 6 years) 10,800 Child (6 to < 11 years) 15,900 Youth (11 to < 16 years)	U.S. EPA Exposure Factors Handbook Chapter 7 (2011), Table 7-1, Recommended Mean Values for Total Body Surface Area, for Children (sexes combined) and Adults by Sex
Кр	Permeability Constant (cm/hr) used for incidental water dermal contact		0.001 Or calculated using Kp equation with chemical specific Kow and MW (see exposure formulas)	US EPA, 1992. Dermal Exposure Assessment: Principles and Applications. Office of Research and Development. Table 5-7, "Predicted Kp Estimates for Common Pollutants
SA _{soil}	Skin Surface Area Exposed (cm ²) used for soil dermal contact	3,300 Adult	5,800 Adult 2,700 Child	EPA Risk Assessment Guidance for Superfund RAGS Part E for Dermal Exposure (<u>U.S. EPA,</u> <u>2004</u>)
AF _{soil}	Adherence Factor (mg/cm ²) used for soil dermal contact	0.2 Adult	0.07 Adult 0.2 Child	EPA Risk Assessment Guidance for Superfund RAGS Part E for Dermal Exposure (<u>U.S. EPA,</u> <u>2004</u>)

2074A.1 Surface Water Exposure Activity Parameters

2076 Table_Apx A-4. Incidental Dermal (Swimming) Modeling Parameters

Input	Description (Units)	Adult (≥21 years)	Youth (11–15 years)	Child (6–10 years)	Notes	Reference
BW	Body weight (kg)	80	56.8	31.8	EPA <i>Exposure Factors Handbook</i> Chapter 8 (2011), Table 8-1 mean body weight	(<u>U.S. EPA,</u> <u>2021</u>)
SA	Skin surface area exposed (cm ²)	19,500	15,900	10,800	U.S. EPA Swimmer Exposure Assessment Model (SWIMODEL), 2015	(<u>U.S. EPA,</u> 2015)
ET	Exposure time (hr/day)	3	2	1	High-end default short-term duration from U.S. EPA Swimmer Exposure Assessment Model (SWIMODEL), 2015.	(<u>U.S. EPA,</u> <u>2015</u>)
ED	Exposure duration (years for ADD)	33	5	5	Number of years in age group, up to the 95th percentile residential occupancy period. EPA <i>Exposure Factors Handbook</i> Chapter 16 (2011), Table 16-5.	(<u>U.S. EPA,</u> <u>2021</u>)
AT	Averaging time (years for ADD)	33	5	5	Number of years in age group, up to the 95th percentile residential occupancy period. EPA <i>Exposure Factors Handbook</i> Chapter 16 (2011), Table 16-5.	(<u>U.S. EPA,</u> 2021)
Кр	Permeability coefficient (cm/hr)	0.	0071 cm/hr		CEM estimate aqueous Kp	(<u>U.S. EPA,</u> 2022)

2077 2078

Table_Apx A-5. Incidental Oral Ingestion (Swimming) Modeling Parameters

Input	Description (Units)	Adult (≥ 21 years)	Youth (11–15 years)	Child (6–10 years)	Notes	Reference
IR _{inc}	Ingestion rate (L/hr)	0.092	0.152	0.096	EPA <i>Exposure Factors Handbook</i> Chapter 3 (2019), Table 3-7, upper percentile ingestion while swimming.	(<u>U.S. EPA,</u> 2019a)
BW	Body weight (kg)	80	56.8	31.8	EPA <i>Exposure Factors Handbook</i> Chapter 8 (2011), Table 8-1 mean body weight.	(<u>U.S. EPA,</u> 2021)
ET	Exposure time (hr/day)	3	2	1	High-end default short-term duration from U.S. EPA Swimmer Exposure Assessment Model (SWIMODEL), 2015; based on competitive swimmers in the age class.	(<u>U.S. EPA,</u> <u>2015</u>)
IR _{inc-} daily	Incidental daily ingestion rate (L/day)	0.276	0.304	0.096	Calculation: ingestion rate × exposure time	
IR/BW	Weighted incidental daily ingestion rate (L/kg-day)	0.0035	0.0054	0.0030	Calculation: ingestion rate/body weight	
ED	Exposure duration (years for ADD)	33	5	5	Number of years in age group, up to the 95th percentile residential occupancy period. EPA <i>Exposure Factors Handbook</i> Chapter 16 (2011), Table 16-5.	(<u>U.S. EPA,</u> 2021)
AT	Averaging time (years for ADD)	33	5	5	Number of years in age group, up to the 95th percentile residential occupancy period. EPA <i>Exposure Factors Handbook</i> Chapter 16 (2011), Table 16-5.	(<u>U.S. EPA,</u> 2021)

Input	Description (Units)	Adult (≥ 21 years)	Youth (11–15 years)	Child (6–10 years)	Notes	Reference
CF1	Conversion factor (mg/µg)	1.00E-03				
CF2	Conversion factor (days/year)	365				

2080 Appendix B BIOMONITORING METHODS AND RESULTS

Mono-(carboxynonyl) phthalate (MCNP), a metabolite of DIDP, has been reported in the 2005 to 2018 2081 U.S. Centers for Disease Control and Prevention (CDC) National Health and Nutrition Evaluation 2082 Surveys (NHANES) datasets. MCNP was measured in 24,549 members of the general population, 2083 2084 including 7084 children aged 15 and under and 17,465 adults aged 16 and older. MCNP was quantified 2085 in urinary samples from a one-third subsample of all participants aged six and older. Beginning with the 2005 to 2006 cycle of NHANES, all participants between three to five years were eligible for MCNP 2086 2087 urinary analysis. Urinary MCNP concentrations were quantified using high performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Limits of detection (LOD) for each 2088 cycle on NHANES are provided in Table Apx B-1. Values below the LOD were replaced by the lower 2089 limit of detection divided by the square root of two (NCHS, 2021). 2090

2091

2092

2093

Table_Apx B-1. Limit of Detec	tion of Urinary MCNP by
NHANES Cycle	

NHANES Cycle	LOD (ng/mL)
2005-2006	0.6
2007-2008	0.5
2009-2010	0.2
2011-2012	0.2
2013-2014	0.2
2015-2016	0.2
2017-2018	0.2

2095Table_Apx B-2. Summary of Urinary MCNP Concentrations (ng/mL) from all NHANES Cycles2096Between 2005 and 2018^a

NHANES Cycle	Age Group	Subset	Sample Size	Detection Frequency	50th Percentile (95%CI) (ng/mL)	95th Percentile (95% CI) (ng/mL)
2005- 2006	Adults	All adults	1,831	1,646 (89.90%)	2.8 (2.4-3.3)	18.2 (10-36.8)
2005- 2006	Adults	Females	935	819 (87.59%)	2.1 (1.8-2.8)	11.3 (8.3-17.2)
2005- 2006	Adults	Males	896	827 (92.30%)	2.7 (2.4-3.4)	18.3 (9.6-36.8)
2005- 2006	Children	11-15 years	412	385 (93.45%)	3.6 (3-4.1)	18.5 (13.1-21.2)
2005- 2006	Children	6-10 years	305	289 (94.75%)	4.6 (3.8-5.6)	21.5 (14.7-37.9)
2005- 2006	Children	All children	717	674 (94.00%)	4 (3.4-4.4)	19.1 (14.7-25.7)
2005- 2006	Children	Females	343	322 (93.88%)	3.9 (3-4.5)	19.1 (14.4-24.7)

NHANES Cycle	Age Group	Subset	Sample Size	Detection Frequency	50th Percentile (95%CI) (ng/mL)	95th Percentile (95% CI) (ng/mL)
2005- 2006	Children	Males	374	352 (94.12%)	4 (3.4-4.7)	19.1 (13.2-30.1)
2005- 2006	Women of reproductive age	All women	616	538 (87.34%)	2.1 (1.8-2.8)	11.3 (8.3-17.2)
2007- 2008	Adults	All adults	2021	1792 (88.67%)	2.5 (2.2-2.8)	16.1 (10-29.1)
2007- 2008	Adults	Females	1030	880 (85.44%)	2.5 (2.2-3.1)	12.2 (8.9-18.8)
2007- 2008	Adults	Males	991	912 (92.03%)	2.4 (2.2-2.9)	16.2 (10-29.1)
2007- 2008	Children	11-15 years	265	257 (96.98%)	2.8 (2.4-3)	16.3 (11.6-48.8)
2007- 2008	Children	6-10 years	318	306 (96.23%)	3.2 (2.7-3.8)	10.8 (8.6-16.7)
2007- 2008	Children	All children	583	563 (96.57%)	2.9 (2.7-3.4)	16.8 (12.7)
2007- 2008	Children	Females	280	269 (96.07%)	2.9 (2.4-3.8)	13.1 (8.9-32.4)
2007- 2008	Children	Males	303	294 (97.03%)	2.8 (2.6-3.3)	24.7 (11.6-54.7)
2007- 2008	Women of reproductive age	All women	571	501 (87.74%)	2.5 (2.2-3.1)	12.2 (8.9-18.8)
2009- 2010	Adults	All adults	2127	2101 (98.78%)	3.12 (2.58-3.65)	19.88 (13.05- 26.65)
2009- 2010	Adults	Females	1040	1023 (98.37%)	2.8 (2.46-3.44)	23.66 (17.19- 28.71)
2009- 2010	Adults	Males	1087	1087 (100.00%)	3.13 (2.56-3.68)	19.9 (12.8-26.65)
2009- 2010	Children	11-15 years	281	280 (99.64%)	2.75 (2.24-3.52)	12.56 (7.64- 17.32)
2009- 2010	Children	6-10 years	341	338 (99.12%)	3.79 (2.89-4.7)	15.7 (10.58- 23.24)
2009- 2010	Children	All children	622	618 (99.36%)	3.34 (2.69-3.97)	14.94 (12.04- 18.3)
2009- 2010	Children	Females	310	308 (99.35%)	3.25 (2.52-4.04)	16.46 (11.21- 18.44)
2009- 2010	Children	Males	312	310 (99.36%)	3.48 (2.5-4.19)	14.05 (9.13- 40.22)
2009- 2010	Women of reproductive age	All women	608	597 (98.19%)	2.8 (2.46-3.44)	23.66 (17.19- 28.71)

NHANES Cycle	Age Group	Subset	Sample Size	Detection Frequency	50th Percentile (95%CI) (ng/mL)	95th Percentile (95% CI) (ng/mL)
2011- 2012	Adults	All adults	1894	1876 (99.05%)	2.9 (2.5-3.3)	20.8 (15.2-28.5)
2011- 2012	Adults	Females	933	926 (99.25%)	2 (1.7-2.3)	11.3 (8.5-14.3)
2011- 2012	Adults	Males	961	950 (98.86%)	3.1 (2.6-3.5)	20.8 (16.2-31.3)
2011- 2012	Children	11-15 years	265	264 (99.62%)	2.5 (2-3.2)	11.4 (7.3-13.8)
2011- 2012	Children	6-10 years	330	330 (100.00%)	2.5 (2-3)	13 (7.9-16.6)
2011- 2012	Children	All children	595	594 (99.83%)	2.4 (2.1-3)	11.3 (8.7-13.8)
2011- 2012	Children	Females	297	296 (99.66%)	2.4 (1.7-3)	12 (9.1-14.2)
2011- 2012	Children	Males	298	298 (100.00%)	2.3 (2-3)	9 (8.1-13.8)
2011- 2012	Women of reproductive age	All women	536	530 (98.88%)	2 (1.7-2.3)	11.3 (8.5-14.3)
2013- 2014	Adults	All adults	2,040	2,007 (98.38%)	3.4 (2.8-3.8)	19.4 (16.1-25.7)
2013- 2014	Adults	Females	1,076	1,052 (97.77%)	2.6 (2.3-2.8)	20.6 (11.9-33.6)
2013- 2014	Adults	Males	964	955 (99.07%)	3.4 (2.8-3.8)	19.1 (16.1-25.7)
2013- 2014	Children	11-15 years	299	299 (100.00%)	2.9 (2.4-3.4)	15.4 (10.4-20.9)
2013- 2014	Children	6-10 years	346	346 (100.00%)	3.2 (2.6-4.1)	20.5 (10.4-54)
2013- 2014	Children	All children	645	645 (100.00%)	3.2 (2.8-3.8)	16.9 (12.8-22.5)
2013- 2014	Children	Females	324	324 (100.00%)	2.9 (2.7-3.7)	14.1 (10.4-17.6)
2013- 2014	Children	Males	321	321 (100.00%)	3.2 (2.6-4)	20.5 (11.4-37.6)
2013- 2014	Women of reproductive age	All women	599	581 (96.99%)	2.6 (2.3-2.8)	20.6 (11.9-33.6)
2015- 2016	Adults	All adults	1,880	1,830 (97.34%)	1.9 (1.5-2.3)	12.2 (8.9-13.1)
2015- 2016	Adults	Females	984	956 (97.15%)	1.4 (1.2-1.7)	13.95 (5.8-27.5)
2015- 2016	Adults	Males	896	874 (95.87%)	1.9 (1.6-2.4)	11.9 (8.2-14.1)

NHANES Cycle	Age Group	Subset	Sample Size	Detection Frequency	50th Percentile (95%CI) (ng/mL)	95th Percentile (95% CI) (ng/mL)
2015- 2016	Children	11-15 years	284	281 (98.94%)	2.2 (1.9-2.7)	11 (6.1-15.9)
2015- 2016	Children	3-5 years	465	461 (99.14%)	2.4 (2-2.8)	6.3 (5.3-9.7)
2015- 2016	Children	6-10 years	346	343 (99.13%)	2.3 (2.1-2.5)	8.5 (6.8-11.5)
2015- 2016	Children	All children	1,095	1,085 (99.09%)	2.2 (2-2.5)	8.7 (7-11.6)
2015- 2016	Children	Females	517	513 (99.23%)	2.2 (1.9-2.6)	8.5 (6.2-15.9)
2015- 2016	Children	Males	578	572 (98.96%)	2.2 (2-2.5)	9 (6.3-12.4)
2015- 2016	Women of reproductive age	All women	564	550 (97.52%)	1.4 (1.2-1.7)	13.95 (5.8-27.5)
2017- 2018	Adults	Males	944	905 (95.87%)	1.3 (1.1-1.5)	13.3 (5.2-31.9)
2017- 2018	Adults	All adults	1,896	1,804 (95.15%)	1.3 (1.1-1.5)	13.3 (5.2-31.9)
2017- 2018	Adults	Females	952	899 (94.43%)	1.2 (0.8-1.5)	4.5 (3.9-5.8)
2017- 2018	Children	11-<16 years	213	208 (97.65%)	1.2 (1.1-1.5)	7.7 (3.1-14.6)
2017- 2018	Children	3-<6 years	379	375 (98.94%)	1.6 (1.2-2)	9.6 (3.1-16.5)
2017- 2018	Children	6-<11 years	274	271 (98.91%)	1.8 (1.5-2.1)	30.4 (4.1-43.8)
2017- 2018	Children	All children	866	854 (98.61%)	1.5 (1.4-1.7)	9.1 (4.9-31.1)
2017- 2018	Children	Females	447	440 (98.43%)	1.5 (1.2-1.7)	10.9 (4.6-43.8)
2017- 2018	Children	Males	419	419 (98.81%)	1.5 (1.4-1.9)	6.3 (4.1-14.6)
2017- 2018	Women of reproductive age	All women	496	467 (94.15%)	1.2 (0.8-1.5)	4.5 (3.9-5.8)

2098 Appendix C AMBIENT AIR MODELING RESULTS

2099 C.1 AERMOD Modeling Inputs, Parameters and Outputs

2100 C.1.1 Meteorological Data

Because the scenarios are not at real locations, scenarios were modeled twice with two different 2101 meteorological stations. In the development of EPA's Integrated Indoor-Outdoor Air Calculator 2102 2103 (IIOAC),¹ meteorological stations were used for each region of the country. From that set, it was 2104 determined that meteorological conditions from Sioux Falls, SD led to central-tendency modeled concentrations and particle deposition, and those from Lake Charles, LA led to higher-end modeled 2105 2106 concentrations (though more central-tendency results for particle deposition), relative to the other 2107 regional stations (see Sections 5.4 and 5.7.4 of that User Guide for more information on the stations). 2108 These two meteorological stations were utilized for modeling DIDP (Sioux Falls, SD for central-2109 tendency meteorology; Lake Charles, LA for higher-end meteorology), with the same data from years 2110 2011 to 2015 used for IIOAC.

2111

2112 No new processing of meteorological data was done—all data had been previously processed with

2113 version 16216 of AERMOD's meteorological preprocessor (AERMET).^{2,3} Following EPA guidance,⁴ all

2114 processing utilized sub-hourly wind measurements (to calculate hourly-averaged wind speed and wind

direction; see Section 8.4.2 of the guidance). The "ADJ_U*" option (for mitigating modeling issues

2116 during light-wind, stable conditions) was not used, which could lead to model overpredictions of 2117 ambient concentrations during those particular conditions. All processing also used automatic

ambient concentrations during those particular conditions. All processing also used automaticsubstitutions for small gaps in data for cloud cover and temperature.

appoint data for cloud cover and temperature

2119

C.1.2 Urban/Rural Designations

Air emissions taking place in an urbanized area are subject to the effects of urban heat islands,
particularly at night. When sources are set as urban in AERMOD, the model will modify the boundary
layer to enhance nighttime turbulence, often leading to higher nighttime air concentrations. AERMOD
uses urban-area population as a proxy for the intensity of this effect.

2124

2128

Each scenario once as urban and once as not urban. There is no recommended default urban population for AERMOD modeling, so an urban population of one million people was assumed—this is the same population used with IIOAC.¹

C.1.3 Physical Source Specifications

All of a scenario's emissions were centered on one location. The same default physical parameters as in IIOAC: stack emissions released from a point source at 10 meters (m) above ground from a 2-m inside diameter, with an exit gas temperature of 300 Kelvin and an exit gas velocity of 5 m per second (see Table 6 of the IIOAC User Guide¹), and fugitive emissions released at 3.05 m above ground from a

2133 square area source 10 m on a side (see Table 7 of the IIOAC User Guide¹).

2134 C.1.4 Temporal Emission Patterns

2135 Table_Apx C-1 contains assumptions for intraday release duration, for the durations seen in the DIDP

¹ IIOAC page: <u>https://www.epa.gov/tsca-screening-tools/iioac-integrated-indoor-outdoor-air-calculator</u>.

² AERMET page: <u>https://www.epa.gov/scram/meteorological-processors-and-accessory-programs#aermet</u>.

³ Note: The RTR program's inhalation-risk modeling now uses data mostly from year 2019 and a more updated version of AERMET (see The HEM4 User's Guide: <u>https://www.epa.gov/system/files/documents/2021-09/hem4_1_users_guide_0.pdf</u>). However, we do not anticipate the modeling used here to be sensitive to these differences.

⁴ EPA Guideline on Air Quality Models: https://www.epa.gov/sites/default/files/2020-09/documents/appw_17.pdf.

2136 scenarios. These assumptions are based on consultation with EPA. The hours shown conform to

- AERMOD's notation scheme of using hours 1 to 24, where hour 1 is the hour ending at 1 am and hour
- 2138 24 is the final hour of the same day ending at midnight. Note that some durations provided in EPA's air-
- release workbooks were decimal values, which were rounded to the nearest whole number for modeling
- 2140 (*e.g.*, 4.58 hours per day mapped to 5 hours per day).
- 2141 2142

Hours per Day of Emissions	Implemented for Modeling: Assumed Hours of the Day Emitting (Inclusive)
4	Hours 13–16 (hour ending at 1 pm through hour ending at 4 pm; <i>i.e.</i> , 12 to 4 pm)
5	Hours 13–17 (hour ending at 1 pm through hour ending at 5 pm; <i>i.e.</i> , 12 to 5 pm)
6	Hours 12–17 (hour ending at 12 pm through hour ending at 5 pm; <i>i.e.</i> , 11 am to 5 pm)
7	Hours 11–17 (hour ending at 11 am through hour ending at 5 pm; <i>i.e.</i> , 10 am to 5 pm)
9	Hours 9–17 (hour ending at 9 am through hour ending at 5 pm; <i>i.e.</i> , 8 am to 5 pm)
10	Hours 9–18 (hour ending at 9 am through hour ending at 6 pm; <i>i.e.</i> , 8 am to 6 pm)
14	Hours 7–20 (hour ending at 7 am through hour ending at 8 pm; <i>i.e.</i> , 6 am to 8 pm)
15	Hours 6–20 (hour ending at 6 am through hour ending at 8 pm; <i>i.e.</i> , 5 am to 8 pm)
16	Hours 6–21 (hour ending at 6 am through hour ending at 9 pm; <i>i.e.</i> , 5 am to 9 pm)
24	All (Hours 1–24)

Table_Apx C-1. Assumptions for Intraday Emission-Release Duration

2143

2144 Table_Apx C-2 contains assumptions for interday release frequency. The estimated releases prescribed 2145 18 different release frequencies. To simplify the modeling, 18 release frequencies were mapped to 7 2146 release frequencies that were previously used on other chemical modeling for general population and co-2147 located receptors, plus 1 frequency (180 days per year) newly created for this current effort. Those 2148 mapped to higher frequencies (more days per year; 7 such cases) means somewhat less health protection 2149 because the emissions are spread out over more days (e.g., 235 instead of 219, or 286 instead of 280). 2150 Those mapped to lower frequencies (fewer days per year; 5 such cases) means somewhat more health 2151 protection because the emissions are spread out over fewer days (e.g., 180 instead of 208, or 300 instead of 325). There were six frequencies modeled as-is with their EPA-prescribed frequency. 2152

EPA Prescribed Release Frequency (days per year)	Mapped Release Frequency for Modeling (days per year)	Implemented for Modeling: Days When Emissions Are on (format of month number/day number)
180 and 208	180	The first 15 days of each month
219, 223, 232, 234, and 235	235	All Mon.–Fri. except NOT 1/1–1/8, 4/1–4/7, 7/1– 7/7, 10/1–10/7, and 12/25–12/31 (and also NOT 12/24 in 2012)
247, 249, 250, 251, 254, and 257	250	All Mon.–Fri. except NOT 1/1–1/5 and 12/21–12/31 (and also NOT 1/4 in 2011 and 2013–2015)
258	258	All Mon.–Fri. except NOT 12/24–12/26 (and also NOT 12/27 in 2011 and 2014–2015, and also NOT 12/28 in 2015)
260	260	All Mon.–Fri. except NOT 12/25 in 2012 and 1/1 in 2013–2015
280	286	The first 24 days of each month, except NOT 1/24 and 2/24
287	287	The first 24 days of each month, except NOT 12/24
325	300	All days except NOT 12/27–12/31 and the first 5 days of each month (and also NOT 12/26 in 2012)

2154 Table_Apx C-2. Assumptions for Interday Emission-Release Frequency

2155

C.1.5 Emission Rates and Sorption

Emission rates (kilograms per year) were estimated for each scenario, for fugitive and stack sources as appropriate. For each scenario and source, the annual emissions were allocated evenly to each hour and day when emissions were "on" in the model. Rates were converted to those needed by AERMOD (grams per second for stack sources; grams per second per m² for fugitive sources). The fugitive sources were modeled as 100 m² (see Appendix C.1.3). Indirect photochemical half-life values for each chemical: 7.68 hours for DIDP and 5.36 hours for DINP, which were converted to seconds (27,648 and 19,296 s, respectively) for AERMOD modeling.

2163

2164 Based on physical and chemical properties and short half-life values, EPA concluded in their Tier 1 2165 analyses that DIDP and DINP are assumed to be not persistent in air, but a large fraction of each 2166 chemical could sorb to airborne particles which may be resistant to atmospheric oxidation. For the 2167 purposes of modeling, it was assumed that 100 percent of the emitted mass of DIDP and DINP 2168 immediately sorbs to atmospheric particles. While this is a health-protective assumption for chemical 2169 exposure through deposition, it is supported by our estimations of fraction mass sorbed (1.00 for DIDP 2170 and 0.95 for DINP). We based these estimations on EPA-provided values of octanol-air partition 2171 coefficient ($K_{OA} = 1.08E13$ and 7.94E11 for DIDP and DINP, respectively), suggested values from EPA's Consumer Exposure Model for airborne particles' fraction organic matter and density ($f_{om} = 0.4$ 2172 2173 and density = 1E9 milligrams per cubic meter $[m^3]$ ⁵, and the suggested value for atmospheric

⁵ Suggested values for atmospheric particle fraction organic matter and density, and the formula for calculating K_P, are

2174 concentration of total suspended particulates at residential sites from California's CalTOX model (TSP 2175 = 6.15×10^{-8} kilograms [kg] per m³).⁶ We estimated fraction mass sorbed as (K_P * TSP) / [1 + (K_P * TSP)], where K_P is the particle-air partition coefficient estimated as f_{om} * K_{OA} / density.⁵

C.1.6 Deposition Parameters

The characteristics of ambient atmospheric particles may vary widely by location, based on site-specific activities like agriculture, industry, and mobile sources as well as site-specific characteristics like land cover. The characteristics of emitted particulates may vary widely based on facility- and emission-unitspecific aspects.

2182

2177

Due to uncertainties about a generic characterization of particulates for use in all modeling scenarios for
DIDP, EPA used AERMOD's "Method 2" for modeling of particle deposition, as that method requires
less information about the distribution of particle sizes. Method 2 requires the fraction by mass of
emitted particles that is 2.5 micrometers (μm) or smaller in aerodynamic diameter (*i.e.*, the mass fraction
which is PM2.5) and the mass-mean particle diameter.

- 2189 It was assumed that the atmospheric PM2.5 mass fraction was 0.14 and the mass-mean diameter was 10 2190 μ m. In assuming instantaneous sorption of emitted DIDP to atmospheric particles, this effectively 2191 characterized the DIDP releases and transport as 14 percent PM2.5 by mass with a mass-mean diameter 2192 of 10 μ m.
- 2193

2200

2188

The PM2.5 mass fraction was based on information presented in EPA's 2019 Integrated Science Assessment for Particulate Matter.⁷ Specifically, the assessment's Table 2-4 presents summary statistics for PM2.5 concentrations across various U.S. monitors (for years 2013 to 2015), indicating a mean annual PM2.5 concentration of $8.6 \,\mu\text{g/m}^3$. That value was divided by the value of TSP concentration discussed above in Appendix C.1.5 (*i.e.*, 6.15E8 kg/m³ or 61.5 μ g/m³) to estimate a PM2.5 mass fraction of 0.14.

2201 The mass-mean diameter was based on information from the assessment's Table 2-4 discussed above, 2202 Table 2-6, and other assumptions. Table 2-6 presents summary statistics for PM2.5 to PM10 2203 concentrations across various U.S. monitors (for years 2013 to 2015), indicating a mean daily PM2.5 to 2204 PM10 concentration of 7.8 μ g/m³. Dividing that value by the assumed TSP concentration yields a 2205 PM2.5 to PM10 mass fraction of 0.13. This suggests that 0.73 by mass of TSP is particles 10 µm or 2206 larger (1 - [0.13 PM2.5 to PM10] - [0.14 PM2.5] = 0.73). It was assumed a mass-mean diameter of 0.1 µm for PM2.5, 4 µm for PM2.5 to PM10, and 15 to 20 µm for PM larger than 10 µm. Thus, the assumed 2207 2208 mass-mean diameter is between 11 and 15 μ m (calculated as [0.1 μ m * 0.14] + [4 μ m * 0.13] + [15 to 2209 $20 \,\mu\text{m}$ * 0.73). Based on this, a mass-mean particle diameter of 10 μm was assumed.

- 2210 **C.1.7 Receptors**
- All modeling scenarios utilized regions of gridded receptors and several rings/radials of receptors. The rings had receptors placed every 22.5 degrees (starting due north of the source) for distances 10, 30, and

provided in Section 3 of the User Guide for EPA's Consumer Exposure Model: <u>https://www.epa.gov/sites/default/files/2019-06/documents/cem 2.1 user guide.pdf</u>.

⁶ The suggested value of concentration of TSP at California residential sites is provided in version 1.5 of the CalTOX model (see Table VI of: CalEPA (California Environmental Protection Agency), Department of Toxic Substances Control. 1993. Parameter Values and Ranges for CalTOX. Draft (July)). This value also is used in EPA's multimedia modeling for the Risk and Technology Review Program using their TRIM.FaTE model.

⁷ EPA's 2019 Integrated Science Assessment for Particulate Matter:

https://assessments.epa.gov/isa/document/&deid=347534.

60 m from the source for co-located receptors and 100, 1,000, 2,500, 5,000, and 10,000 m from the

- source for general-population receptors. Then, there was one grid for the co-located receptors and was
- regularly spaced (at 10 m intervals) between 30 and 60 m from the source. Another grid was for generalpopulation receptors and was regularly spaced (at 100 m intervals) between 100 m and 1,000 m from the
- source—an area termed "community" in IIOAC¹. All receptors were at 1.8 m above ground, as a proxy
- for breathing height for concentration estimations. A duplicate set of receptors was at ground level (0 m)
- 2219 for deposition estimations.

C.1.8 Other Model Settings

A flat terrain was assumed for all modeling scenarios. Daily- and period-average outputs were produced for every run, where the period was 5 years.

2223

2227

2220

Since each scenario was modeled with two different meteorological scenarios, that means two separate
 runs (AERMOD cannot run two variations of meteorology in the same simulation). Additionally, the
 urban setting was toggled on/off for each scenario.

C.1.9 Model Outputs

2228 Each simulation output daily- and period-average concentrations, and daily- and period-total deposition, 2229 at every receptor. All runs included outputs stratified by source type (i.e., separate outputs for fugitive 2230 sources and stack sources). Post-processing scripts were used to summarize the outputs for each scenario 2231 and for each meteorological and land-cover scenario. AERMOD's concentration output units of $\mu g/m^3$ were converted to parts per million (ppm), using the formula: $ppm = 24.45 * (\mu m/m^3 / 1.000) / chemical$ 2232 2233 molecular weight in grams per mole, where the molecular weight is 446.7 for DIDP and 418.62 for DINP. Deposition units are g/m^2 . For each modeling scenario, the following statistics were calculated 2234 2235 for daily and period results at each of the receptor groups identified in Section C.1.7 (*i.e.*, each ring and 2236 grid of receptors):

2237 2238

2239

2240

2241

2242

2243

- Minimum;
- Maximum;
- Average;
- Standard Deviation; and
- 10th, 25th, 50th, 75th, and 95th percentiles.

At the 60-m distance for a given scenario, for example, there is a period-average concentration at each of the 16 receptors at that distance. The average statistic calculated is the average of those 16 values (*i.e.*, the average concentration at 60 m), which incorporates lower values from locations typically upwind from the source and higher values from locations typically downwind. The 50th percentile is the median of those 16 values. The maximum value is the highest period-average concentration from among the 16 values (*i.e.*, the one receptor with the highest value).

2250

Staying with that same example, there also is a set of daily-average concentrations at each of the 16 receptors at the 60-m distance—1,826 values at each receptor. The average statistic we calculated is the average of those 16*1,826 values (*i.e.*, the average daily concentration at 60 m), which incorporates lower values (from days when the receptor location largely was upwind from the source) and higher values (from days when the receptor location largely was downwind from the source); this will be close to the average of the period-average values discussed above. The 50th percentile is the median of those

- 2257 16*1,826 values. The maximum value is the highest daily-average concentration estimated at any
- location on any day at the 60-m distance.
 Fugitive sources were modeled fairly low to the ground (3.05 m above ground) and with no buoyancy or

2260 momentum to their emissions; therefore, in most scenarios, it was expected that concentrations and 2261 deposition from fugitive emissions to be highest close to the source, near the 10-m distance, and 2262 decrease exponentially at farther distances. Since stack sources are emitted at a height of 10 m, with 2263 some momentum (5 m per second) and at a temperature (300 Kelvin) frequently warmer than ambient 2264 air, concentrations resulting from stack emissions frequently will peak farther away (e.g., near the 100-m 2265 distance) and that peak often will be lower relative to fugitive concentrations. The day-by-day 2266 meteorological conditions will control the distance and magnitude of these concentration and deposition 2267 peaks-for example, low winds will bring the peak closer to the source and increase its magnitude, 2268 while unstable conditions or high mixing heights can dilute the pollutant concentrations.

2269

The statistics on modeled concentrations and deposition for DIDP, for each scenario and averaging time were presented in the supplemental files: *Conc Memo Table 1 - Annual.CSV* and *Conc Memo Table 1 - Daily.CSV* present the range (minimum—maximum), mean, and standard deviation of values for period (annual) and daily concentrations, respectively, with matching files for deposition ("depo"). *Conc Memo Table 2 - Daily.CSV* present the 10th, 50th, and 95th percentile values, again with matching files for deposition.

- 2276
- 2277

Tables

2278 2279

C.2 DIDP COUS/OESs and AERMOD Concentration and Deposition

Condition of Use	Occupational Exposure Scenario	Media of Release
Manufacturing - Import	Import - Repackaging	fugitive air
Processing - Repackaging	Import - Repackaging	fugitive air
Domestic Manufacturing	Manufacturing	fugitive air
Domestic Manufacturing	Manufacturing	stack air
Plastic Compounding	Plastic Compounding	Fugitive air, water, incineration, or landfill
Plastic Converting	Plastic Converting	Fugitive air, water, incineration, or landfill
Non-PVC Plastic Compounding	Non-PVC Plastic Compounding	Fugitive air, water, incineration, or landfill
Non-PVC Plastic Converting	Non-PVC Plastic Converting	Fugitive air, water, incineration, or landfill
Adhesive and Sealant Manufacturing	Processing - Incorporation into formulation, mixture, or reaction product	fugitive air
Adhesive and Sealant Manufacturing	Processing - Incorporation into formulation, mixture, or reaction product	stack air
Paint and Coating Manufacturing	Processing - Incorporation into formulation, mixture, or reaction product	fugitive air
Paint and Coating Manufacturing	Processing - Incorporation into formulation, mixture, or reaction product	stack air

Condition of Use	Occupational Exposure Scenario	Media of Release
Incorporation into other articles not covered elsewhere	Processing - Incorporation into formulation, mixture, or reaction product	fugitive air
Incorporation into other articles not covered elsewhere	Processing - Incorporation into formulation, mixture, or reaction product	stack air
Use of Paints and Coatings	Use of Paints and Coatings	fugitive air
Use of Paints and Coatings	Use of Paints and Coatings	stack air
Use of Paints and Coatings	Use of Paints and Coatings w/o Engineering Controls	fugitive air
Use of Adhesives and Sealants	Use of Adhesives and Sealants	fugitive or stack air
Commercial Uses - Laboratory Chemicals	Use of Laboratory Chemicals	fugitive or stack air
Commercial Uses - Laboratory Chemicals	Use of Laboratory Chemicals	Stack air
Other Uses - Inspection Fluid/Penetrant	Use of Inspection Fluid/Penetrant (Aerosol)	fugitive air
Other Uses - Inspection Fluid/Penetrant	Use of Inspection Fluid/Penetrant (Non-Aerosol)	fugitive air

2281 Table_Apx C-4. DIDP 95th Percentile Annual Concentrations (µg/m³) Modeled from High-End Fugitive Release Source

Scenario						<u>, </u>	Distance	<u> </u>	<u>, </u>			
Scenario	Meteorology	Land	10M	30M	30-60M	60M	100M	100-1000M	1000M	2500M	5000M	10000M
	Central	Rural	1.7E-07	1.4E-07	1.2E-07	8.3E-08	4.7E-08	9.3E-09	1.5E-09	2.4E-10	6.0E-11	1.4E-11
Adhesive Sealant	Tendency	Urban	4.1E-07	1.3E-07	1.0E-07	4.9E-08	2.2E-08	3.3E-09	4.3E-10	8.7E-11	2.5E-11	7.1E-12
Adhesive Sealant Manufacturing Processing Commercial Uses Laboratory Chemicals_Scenario 1 Domestic Manufacturing, Average PV Domestic Manufacturing, PV6: Troy Chemical Corp. Phoenix Incorporation into other articles not covered elsewhere, Processing - Incorporation into formulation, mixture, or reaction product Manufacturing - Import , Import - Repackaging, PV1: LG Hausys America, Inc. Manufacturing -	High-End	Rural	4.0E-07	2.4E-07	1.9E-07	1.2E-07	6.7E-08	1.2E-08	1.9E-09	3.2E-10	7.8E-11	1.8E-11
U	High-End	Urban	6.5E-07	1.9E-07	1.6E-07	7.0E-08	3.0E-08	3.9E-09	5.6E-10	1.1E-10	3.3E-11	9.2E-12
	Central	Rural	1.5E-08	1.4E-08	1.1E-08	7.8E-09	4.4E-09	8.8E-10	1.4E-10	2.3E-11	5.8E-12	1.4E-12
Commercial Uses T Laboratory T Chemicals_Scenario 1 H Domestic C Manufacturing, T	Tendency	Urban	3.9E-08	1.2E-08	9.7E-09	4.6E-09	2.1E-09	3.2E-10	4.1E-11	8.3E-12	2.4E-12	6.8E-13
	High End	Rural	3.7E-08	2.2E-08	1.7E-08	1.2E-08	6.2E-09	1.1E-09	1.8E-10	2.9E-11	7.3E-12	1.7E-12
Adhesive SealantTManufacturing ProcessingFCommercial UsesTLaboratoryFChemicals_Scenario 1FDomesticCManufacturing, Manufacturing, Manufacturing, Manufacturing, PV6: Proy Chemical Corp. PhoenixCDomesticCManufacturing, PV6: Provered elsewhere, Processing - ncorporation into or reaction productCManufacturing, PV6: Processing - ncorporation into ormulation, mixture, or reaction productFManufacturing, PV6: Comport, Import - Repackaging, PV1: Comport - Comport - 	High-End	Urban	6.0E-08	1.8E-08	1.5E-08	6.5E-09	2.8E-09	3.7E-10	5.2E-11	1.1E-11	3.1E-12	8.6E-13
Domestic	Central	Rural	3.1E-05	1.7E-05	1.4E-05	8.2E-06	4.5E-06	7.2E-07	1.5E-07	2.3E-08	5.7E-09	1.5E-09
	Tendency	Urban	4.8E-05	1.7E-05	1.3E-05	6.3E-06	2.7E-06	3.5E-07	4.0E-08	8.2E-09	2.5E-09	7.7E-10
0	High End	Rural	6.9E-05	2.7E-05	1.8E-05	1.1E-05	4.9E-06	6.4E-07	9.7E-08	1.7E-08	4.7E-09	1.3E-09
Average PV	High-End	Urban	8.2E-05	2.4E-05	1.6E-05	8.2E-06	3.4E-06	3.2E-07	4.8E-08	8.9E-09	2.6E-09	7.6E-10
	Central Tendency	Rural	3.6E-06	1.6E-06	1.2E-06	6.6E-07	2.8E-07	3.3E-08	4.7E-09	8.2E-10	2.5E-10	7.9E-11
		Urban	4.0E-06	1.6E-06	1.2E-06	5.8E-07	2.4E-07	2.5E-08	2.7E-09	4.5E-10	1.4E-10	4.8E-11
Manufacturing, Manufacturing, PV6: Troy Chemical Corp.	High End	Rural	8.4E-06	2.4E-06	1.5E-06	7.6E-07	2.8E-07	2.3E-08	2.2E-09	3.4E-10	1.0E-10	3.8E-11
Phoenix	High-End	Urban	8.4E-06	2.3E-06	1.5E-06	7.6E-07	2.8E-07	2.1E-08	2.1E-09	3.1E-10	9.2E-11	3.6E-11
	Central	Rural	5.3E-06	4.5E-06	3.8E-06	2.6E-06	1.5E-06	2.9E-07	4.6E-08	7.7E-09	1.9E-09	4.4E-10
	Tendency	Urban	1.3E-05	4.0E-06	3.2E-06	1.5E-06	6.8E-07	1.0E-07	1.3E-08	2.7E-09	8.0E-10	2.2E-10
Processing -		Rural	1.3E-05	7.4E-06	5.9E-06	3.9E-06	2.1E-06	3.8E-07	6.0E-08	9.9E-09	2.5E-09	5.8E-10
formulation, mixture,	High-End	Urban	2.0E-05	6.0E-06	4.9E-06	2.2E-06	9.5E-07	1.2E-07	1.8E-08	3.6E-09	1.0E-09	2.9E-10
Manufacturing -	Central	Rural	1.1E-08	4.6E-09	3.4E-09	1.7E-09	6.8E-10	7.1E-11	6.7E-12	1.1E-12	3.4E-13	1.2E-13
	Tendency	Urban	1.2E-08	4.5E-09	3.3E-09	1.6E-09	6.4E-10	5.5E-11	5.6E-12	8.3E-13	2.5E-13	9.6E-14
LG Hausys America,		Rural	2.2E-08	6.0E-09	3.8E-09	1.9E-09	7.2E-10	5.1E-11	5.1E-12	6.5E-13	1.7E-13	7.3E-14
	High-End	Urban	2.2E-08	6.0E-09	3.8E-09	1.9E-09	7.1E-10	5.0E-11	5.0E-12	6.5E-13	1.7E-13	7.3E-14
	Central	Rural	2.6E-08	1.1E-08	8.1E-09	4.1E-09	1.6E-09	1.7E-10	1.6E-11	2.7E-12	8.2E-13	2.9E-13
Import, Import -	Tendency	Urban	2.8E-08	1.1E-08	7.9E-09	3.9E-09	1.5E-09	1.3E-10	1.3E-11	2.0E-12	6.0E-13	2.3E-13
Repackaging, PV2:	High-End	Rural	5.2E-08	1.4E-08	9.2E-09	4.6E-09	1.7E-09	1.2E-10	1.2E-11	1.6E-12	4.1E-13	1.7E-13

a .							Distance	9				
Scenario	Meteorology	Land	10M	30M	30-60M	60M	100M	100-1000M	1000M	2500M	5000M	10000M
Harwick Standard Distribution Corp.		Urban	5.2E-08	1.4E-08	9.2E-09	4.6E-09	1.7E-09	1.2E-10	1.2E-11	1.5E-12	4.1E-13	1.8E-13
Manufacturing -	Central	Rural	6.9E-08	3.1E-08	2.3E-08	1.2E-08	4.9E-09	5.8E-10	7.2E-11	1.3E-11	3.6E-12	1.1E-12
Distribution Corp. Manufacturing - Import , Import - Repackaging, PV3: Tremco Incorporated Manufacturing - Import , Import - Repackaging, PV4: Akrochem Corp. Non-PVC Plastic Compounding Non-PVC Plastic Converting Other Uses - Inspection Fluid/Penetrant, Use	Tendency	Urban	7.6E-08	3.0E-08	2.2E-08	1.1E-08	4.5E-09	4.5E-10	4.5E-11	7.8E-12	2.3E-12	7.8E-13
	High-End	Rural	1.5E-07	4.2E-08	2.7E-08	1.4E-08	5.2E-09	3.8E-10	3.9E-11	5.4E-12	1.6E-12	5.8E-13
_	підп-Епа	Urban	1.5E-07	4.2E-08	2.7E-08	1.4E-08	5.1E-09	3.5E-10	3.8E-11	5.1E-12	1.4E-12	5.4E-13
Manufacturing -	Central	Rural	8.8E-09	3.7E-09	2.7E-09	1.4E-09	5.4E-10	5.7E-11	5.3E-12	9.1E-13	2.8E-13	9.6E-14
Import, Import -	Tendency	Urban	9.3E-09	3.6E-09	2.6E-09	1.3E-09	5.2E-10	4.4E-11	4.5E-12	6.6E-13	2.0E-13	7.7E-14
Repackaging, PV4:	High End	Rural	1.7E-08	4.8E-09	3.1E-09	1.6E-09	5.7E-10	4.1E-11	4.1E-12	5.2E-13	1.4E-13	5.8E-14
Akrochem Corp.	High-End	Urban	1.7E-08	4.8E-09	3.1E-09	1.5E-09	5.7E-10	4.0E-11	4.0E-12	5.2E-13	1.4E-13	5.9E-14
	Central	Rural	5.9E01	4.9E01	4.2E01	2.9E01	1.7E01	3.4E00	5.5E-01	8.8E-02	2.2E-02	5.1E-03
Non-PVC Plastic	Tendency	Urban	1.5E02	4.6E01	3.6E01	1.8E01	8.1E00	1.2E00	1.6E-01	3.2E-02	9.7E-03	2.8E-03
Compounding	High-End	Rural	1.4E02	8.5E01	6.6E01	4.4E01	2.4E01	4.4E00	6.8E-01	1.1E-01	2.8E-02	6.6E-03
	підп-спа	Urban	2.3E02	7.0E01	5.5E01	2.5E01	1.1E01	1.4E00	2.0E-01	4.1E-02	1.2E-02	3.4E-03
	Central	Rural	1.5E00	1.3E00	1.1E00	7.3E-01	4.1E-01	8.3E-02	1.3E-02	2.2E-03	5.3E-04	1.2E-04
Non-PVC Plastic	Tendency	Urban	3.6E00	1.1E00	9.1E-01	4.3E-01	1.9E-01	2.9E-02	3.8E-03	7.7E-04	2.2E-04	6.3E-05
Converting	High-End	Rural	3.5E00	2.1E00	1.7E00	1.1E00	5.9E-01	1.1E-01	1.3E-02 2.2E-03 5.3E-04 1 3.8E-03 7.7E-04 2.2E-04 6 1.7E-02 2.8E-03 6.9E-04 1	1.6E-04		
	High-Elia	Urban	5.7E00	1.7E00	1.4E00	6.2E-01	2.7E-01	3.5E-02	5.0E-03	1.0E-03	2.9E-04	8.1E-05
Other Uses -	Central	Rural	2.4E-02	2.1E-02	1.7E-02	1.2E-02	6.7E-03	1.3E-03	2.1E-04	3.5E-05	8.6E-06	2.0E-06
	Tendency	Urban	5.9E-02	1.8E-02	1.5E-02	7.0E-03	3.1E-03	4.8E-04	6.1E-05	1.2E-05	3.6E-06	1.0E-06
of Inspection		Rural	5.7E-02	3.4E-02	2.7E-02	1.8E-02	9.6E-03	1.8E-03	2.7E-04	4.5E-05	1.1E-05	2.6E-06
Fluid/Penetrant (Aerosol)	High-End	Urban	9.2E-02	2.8E-02	2.2E-02	1.0E-02	4.3E-03	5.6E-04	8.0E-05	1.6E-05	4.8E-06	1.3E-06
Other Uses -	Central	Rural	2.3E-08	1.9E-08	1.6E-08	1.1E-08	6.4E-09	1.3E-09	2.0E-10	3.3E-11	8.1E-12	1.9E-12
Inspection	Tendency	Urban	5.6E-08	1.8E-08	1.4E-08	6.7E-09	3.0E-09	4.5E-10	5.8E-11	1.2E-11	3.5E-12	9.7E-13
Fluid/Penetrant, Use of Inspection		Rural	5.5E-08	3.2E-08	2.5E-08	1.7E-08	9.1E-09	1.7E-09	2.6E-10	4.3E-11	1.1E-11	2.5E-12
Fluid/Penetrant (Non- Aerosol)	High-End	Urban	8.8E-08	2.6E-08	2.1E-08	9.5E-09	4.1E-09	5.3E-10	7.6E-11	1.6E-11	4.5E-12	1.3E-12
Paint and Coating	Central	Rural	8.0E-08	6.9E-08	5.8E-08	4.0E-08	2.3E-08	4.5E-09	7.1E-10	1.2E-10	2.9E-11	6.7E-12
Manufacturing,	Tendency	Urban	2.0E-07	6.2E-08	4.9E-08	2.4E-08	1.1E-08	1.6E-09	2.1E-10	4.2E-11	1.2E-11	3.4E-12

a ·							Distance	!				
Scenario	Meteorology	Land	10M	30M	30-60M	60M	100M	100-1000M	1000M	2500M	5000M	10000M
Processing -	High-End	Rural	1.9E-07	1.1E-07	8.9E-08	5.9E-08	3.2E-08	5.9E-09	9.1E-10	1.5E-10	3.8E-11	8.8E-12
Incorporation into formulation, mixture, or reaction product		Urban	3.1E-07	9.2E-08	7.5E-08	3.4E-08	1.5E-08	1.9E-09	2.7E-10	5.5E-11	1.6E-11	4.4E-12
Plastic Compounding	Central	Rural	1.2E03	1.0E03	8.5E02	5.9E02	3.3E02	6.6E01	1.0E01	1.7E00	4.2E-01	9.9E-02
	Tendency	Urban	2.9E03	9.1E02	7.3E02	3.5E02	1.5E02	2.4E01	3.0E00	6.1E-01	1.8E-01	5.0E-02
	High-End	Rural	2.8E03	1.7E03	1.3E03	8.7E02	4.7E02	8.6E01	1.3E01	2.2E00	5.5E-01	1.3E-01
		Urban	4.6E03	1.4E03	1.1E03	4.9E02	2.1E02	2.8E01	4.0E00	8.0E-01	2.4E-01	6.5E-02
Plastic Converting	Central	Rural	5.5E01	4.7E01	3.9E01	2.7E01	1.5E01	3.0E00	4.8E-01	7.9E-02	2.0E-02	4.6E-03
	Tendency	Urban	1.3E02	4.2E01	3.4E01	1.6E01	7.1E00	1.1E00	1.4E-01	2.8E-02	8.3E-03	2.3E-03
	High-End	Rural	1.3E02	7.7E01	6.1E01	4.0E01	2.2E01	4.0E00	6.2E-01	1.0E-01	2.6E-02	6.0E-03
		Urban	2.1E02	6.3E01	5.1E01	2.3E01	9.9E00	1.3E00	1.8E-01	3.7E-02	1.1E-02	3.0E-03
Processing -	Central	Rural	1.7E-08	6.9E-09	5.1E-09	2.6E-09	1.0E-09	1.1E-10	1.0E-11	1.7E-12	5.2E-13	1.8E-13
Repackaging, Import - Repackaging, Average	Tendency	Urban	1.8E-08	6.8E-09	5.0E-09	2.5E-09	9.7E-10	8.3E-11	8.4E-12	1.3E-12	3.8E-13	1.4E-13
PV CAS 1	High-End	Rural	3.3E-08	9.0E-09	5.8E-09	2.9E-09	1.1E-09	7.7E-11	7.6E-12	9.8E-13	2.6E-13	1.1E-13
		Urban	3.3E-08	9.0E-09	5.8E-09	2.9E-09	1.1E-09	7.6E-11	7.6E-12	9.7E-13	2.6E-13	1.1E-13
Processing -	Central Tendency	Rural	2.8E-05	2.4E-05	2.1E-05	1.4E-05	8.0E-06	1.6E-06	2.5E-07	4.2E-08	1.0E-08	2.4E-09
Repackaging, Import - Repackaging, Average		Urban	7.1E-05	2.2E-05	1.8E-05	8.4E-06	3.7E-06	5.8E-07	7.4E-08	1.5E-08	4.4E-09	1.2E-09
PV CAS 2	High-End	Rural	6.6E-05	3.9E-05	3.1E-05	2.1E-05	1.1E-05	2.1E-06	3.2E-07	5.3E-08	1.3E-08	3.1E-09
		Urban	1.1E-04	3.2E-05	2.6E-05	1.2E-05	5.1E-06	6.6E-07	9.4E-08	1.9E-08	5.6E-09	1.5E-09
Processing -	Central	Rural	6.0E-09	2.5E-09	1.9E-09	9.6E-10	3.9E-10	4.4E-11	4.2E-12	6.3E-13	2.0E-13	7.9E-14
Repackaging, Import - Repackaging, PV4:	Tendency	Urban	6.4E-09	2.4E-09	1.9E-09	8.7E-10	3.4E-10	3.7E-11	3.3E-12	5.4E-13	1.6E-13	6.0E-14
Akrochem Corp. (CT	High-End	Rural	1.3E-08	3.5E-09	2.3E-09	1.1E-09	4.2E-10	3.2E-11	3.0E-12	4.0E-13	1.2E-13	5.0E-14
Release)		Urban	1.3E-08	3.5E-09	2.2E-09	1.1E-09	4.2E-10	3.1E-11	3.0E-12	3.9E-13	1.2E-13	5.0E-14
Processing -	Central	Rural	3.0E-08	1.2E-08	9.2E-09	4.6E-09	1.8E-09	1.9E-10	1.8E-11	3.1E-12	9.3E-13	3.2E-13
Repackaging, Import - Repackaging, PV5: Chemspec, Ltd.	Tendency	Urban	3.2E-08	1.2E-08	8.9E-09	4.4E-09	1.7E-09	1.5E-10	1.5E-11	2.2E-12	6.8E-13	2.6E-13
	High-End	Rural	5.8E-08	1.6E-08	1.0E-08	5.2E-09	1.9E-09	1.4E-10	1.4E-11	1.8E-12	4.6E-13	2.0E-13
		Urban	5.9E-08	1.6E-08	1.0E-08	5.2E-09	1.9E-09	1.4E-10	1.4E-11	1.7E-12	4.6E-13	2.0E-13
Use of Adhesives and	Central	Rural	1.6E-07	1.3E-07	1.1E-07	7.5E-08	4.2E-08	8.8E-09	1.3E-09	2.2E-10	5.4E-11	1.4E-11
Sealants, Use of	Tendency	Urban	3.8E-07	1.2E-07	9.2E-08	4.6E-08	2.1E-08	3.0E-09	4.0E-10	8.4E-11	2.5E-11	7.1E-12

S	Matarala						Distance	e				
Scenario	Meteorology	Land	10M	30M	30-60M	60M	100M	100-1000M	1000M	2500M	5000M	10000M
Adhesives and	High-End	Rural	3.6E-07	2.2E-07	1.7E-07	1.2E-07	6.2E-08	1.2E-08	1.8E-09	3.0E-10	7.4E-11	1.7E-11
Sealants		Urban	6.0E-07	1.8E-07	1.5E-07	6.5E-08	2.8E-08	3.7E-09	5.3E-10	1.1E-10	3.2E-11	8.7E-12
Use of Paints and	Central	Rural	3.5E-08	3.0E-08	2.5E-08	1.7E-08	1.0E-08	2.0E-09	3.3E-10	5.3E-11	1.3E-11	3.1E-12
Coatings, Use of	Tendency	Urban	8.9E-08	2.8E-08	2.1E-08	1.1E-08	4.9E-09	7.0E-10	9.5E-11	2.0E-11	5.8E-12	1.7E-12
Paints and Coatings	High-End	Rural	8.4E-08	5.1E-08	4.0E-08	2.7E-08	1.5E-08	2.7E-09	4.1E-10	6.9E-11	1.7E-11	4.0E-12
		Urban	1.4E-07	4.2E-08	3.3E-08	1.5E-08	6.7E-09	8.4E-10	1.2E-10	2.5E-11	7.3E-12	2.0E-12
Use of Paints and	Central Tendency	Rural	3.5E-08	2.9E-08	2.5E-08	1.7E-08	9.9E-09	2.0E-09	3.3E-10	5.3E-11	1.3E-11	3.1E-12
Coatings, Use of Paints and Coatings		Urban	8.9E-08	2.8E-08	2.1E-08	1.1E-08	4.8E-09	7.0E-10	9.4E-11	1.9E-11	5.8E-12	1.7E-12
w/o Engineering	High-End	Rural	8.3E-08	5.1E-08	4.0E-08	2.7E-08	1.4E-08	2.7E-09	4.1E-10	6.8E-11	1.7E-11	4.0E-12
Controls		Urban	1.4E-07	4.2E-08	3.3E-08	1.5E-08	6.6E-09	8.4E-10	1.2E-10	2.5E-11	7.3E-12	2.0E-12
		Max	4.6E03	1.7E03	1.3E03	8.7E02	4.7E02	8.6E01	1.3E01	2.2E00	5.5E-01	1.3E-01
		Mean	1.4E02	5.9E01	4.8E01	2.7E01	1.4E01	2.4E00	3.7E-01	6.4E-02	1.7E-02	4.1E-03
Summary Sta	usucs	Median	1.6E-07	8.0E-08	6.6E-08	3.7E-08	1.8E-08	2.8E-09	4.1E-10	7.6E-11	2.1E-11	5.6E-12
		Min	8.8E-09	3.6E-09	2.6E-09	1.3E-09	5.2E-10	4.0E-11	4.0E-12	5.2E-13	1.4E-13	5.8E-14

2283 <u>Table_Apx C-5. DIDP 95th Percentile Annual Concentrations (µg/m³) Modeled from High-End Stack Release Source</u>

Scenario	Meteorology					,	Distance	0				
Scenario	Wieteorology	Land	10M	30M	30-60M	60M	100M	100-1000M	1000M	2500M	5000M	10000M
	Central	Rural	1.9E-12	1.5E-10	1.3E-09	1.8E-09	3.6E-09	1.2E-09	4.2E-10	1.2E-10	8.1E-11	7.3E-11
Adhesive Sealant	Tendency	Urban	8.8E-12	2.6E-10	1.5E-09	2.1E-09	3.8E-09	1.3E-09	4.7E-10	1.5E-10	5.3E-11	1.7E-11
Manufacturing Processing Commerical Uses Laboratory Chemicals_Scenario 2 Domestic Manufacturing, Average PV Domestic Manufacturing, Manufacturing, Manufacturing, Manufacturing, PV6: Troy Chemical Corp. Phoenix	Iliah End	Rural	9.4E-13	2.0E-10	1.8E-09	2.6E-09	4.6E-09	2.1E-09	9.8E-10	3.1E-10	2.3E-10	1.0E-10
	High-End	Urban	6.7E-12	4.3E-10	2.8E-09	4.3E-09	7.1E-09	2.3E-09	7.8E-10	2.2E-10	7.4E-11	2.2E-11
Commerical Uses	Central	Rural	5.5E-09	4.5E-07	3.8E-06	5.4E-06	1.1E-05	3.5E-06	1.3E-06	3.6E-07	2.5E-07	2.3E-07
Laboratory	Tendency	Urban	2.6E-08	7.8E-07	4.6E-06	6.2E-06	1.1E-05	3.8E-06	1.4E-06	4.6E-07	1.6E-07	5.2E-08
Chemicals_Scenario	High-End	Rural	2.8E-09	5.8E-07	5.4E-06	7.8E-06	1.4E-05	6.3E-06	2.9E-06	9.2E-07	7.0E-07	3.0E-07
2	High-End	Urban	2.0E-08	1.3E-06	8.4E-06	1.3E-05	2.1E-05	7.0E-06	2.4E-06	6.8E-07	2.2E-07	6.8E-08
Domestic	Central	Rural	7.8E-03	5.6E-01	4.8E00	6.7E00	1.4E01	4.9E00	1.1E00	2.8E-01	1.4E-01	1.3E-01
Manufacturing,	Tendency	Urban	5.0E-02	1.2E00	6.7E00	8.7E00	1.5E01	5.1E00	1.1E00	3.2E-01	1.1E-01	3.8E-02
Manufacturing,	High End	Rural	5.3E-03	8.4E-01	8.3E00	1.3E01	2.3E01	7.7E00	2.1E00	5.6E-01	2.4E-01	1.1E-01
Average PV	High-End	Urban	4.6E-02	1.9E00	1.2E01	1.8E01	2.8E01	7.7E00	1.8E00	4.1E-01	1.3E-01	4.0E-02
Domestic	Central	Rural	9.1E-08	1.1E-04	1.4E-03	2.2E-03	4.3E-03	1.4E-03	2.4E-04	5.2E-05	2.0E-05	1.2E-05
	Tendency	Urban	4.1E-07	1.4E-04	1.5E-03	2.5E-03	4.7E-03	1.5E-03	2.4E-04	5.1E-05	1.6E-05	5.9E-06
	High-End	Rural	2.0E-07	2.2E-04	2.5E-03	4.2E-03	7.9E-03	2.0E-03	2.8E-04	4.0E-05	1.3E-05	4.8E-06
Phoenix	підп-Епа	Urban	4.0E-07	2.4E-04	2.5E-03	4.3E-03	8.0E-03	2.0E-03	2.7E-04	3.8E-05	1.1E-05	4.3E-06
Incorporation into	Central	Rural	1.2E-11	9.4E-10	7.9E-09	1.1E-08	2.2E-08	7.3E-09	2.6E-09	7.3E-10	5.0E-10	4.5E-10
other articles not covered elsewhere,	Tendency	Urban	5.4E-11	1.6E-09	9.5E-09	1.3E-08	2.3E-08	7.7E-09	2.9E-09	9.3E-10	3.2E-10	1.0E-10
Processing -	High-End	Rural	5.8E-12	1.2E-09	1.1E-08	1.6E-08	2.8E-08	1.3E-08	6.0E-09	1.9E-09	1.5E-09	6.2E-10
Incorporation into formulation, mixture, or reaction product		Urban	4.1E-11	2.6E-09	1.8E-08	2.7E-08	4.4E-08	1.4E-08	4.8E-09	1.4E-09	4.6E-10	1.4E-10
Paint and Coating	Central	Rural	1.2E-13	9.7E-12	8.1E-11	1.2E-10	2.3E-10	7.5E-11	2.7E-11	7.6E-12	5.2E-12	4.7E-12
Manufacturing,	Tendency	Urban	5.6E-13	1.7E-11	9.8E-11	1.3E-10	2.4E-10	8.0E-11	3.0E-11	9.6E-12	3.4E-12	1.1E-12
Processing - Incorporation into formulation, mixture, or reaction product	High-End	Rural	6.0E-14	1.3E-11	1.2E-10	1.7E-10	2.9E-10	1.3E-10	6.2E-11	2.0E-11	1.5E-11	6.4E-12
		Urban	4.3E-13	2.7E-11	1.8E-10	2.8E-10	4.5E-10	1.5E-10	5.0E-11	1.4E-11	4.7E-12	1.4E-12
Use of Paints and	Central	Rural	3.1E-05	3.9E-03	3.4E-02	4.6E-02	9.1E-02	3.3E-02	1.1E-02	3.2E-03	2.2E-03	1.9E-03
Coatings, Use of	Tendency	Urban	1.9E-04	6.5E-03	4.0E-02	5.3E-02	9.8E-02	3.5E-02	1.3E-02	4.0E-03	1.4E-03	4.6E-04

Saamania	Motoonology						Distance	1				
Scenario	Meteorology	Land	10M	30M	30-60M	60M	100M	100-1000M	1000M	2500M	5000M	10000M
Paints and Coatings	High End	Rural	2.2E-05	4.6E-03	5.1E-02	6.8E-02	1.2E-01	5.4E-02	2.3E-02	7.3E-03	6.0E-03	2.6E-03
		Urban	1.5E-04	1.1E-02	7.6E-02	1.1E-01	1.8E-01	5.9E-02	2.1E-02	5.8E-03	2.0E-03	5.9E-04
		Max	5.0E-02	1.9E00	1.2E01	1.8E01	2.8E01	7.7E00	2.1E00	5.6E-01	2.4E-01	1.3E-01
Summany Sta	Summer Statistics	Mean	3.9E-03	1.6E-01	1.1E00	1.7E00	2.9E00	9.1E-01	2.2E-01	5.7E-02	2.3E-02	1.2E-02
Summary Statistics		Median	1.3E-08	6.8E-07	5.0E-06	7.0E-06	1.2E-05	5.0E-06	1.9E-06	5.7E-07	2.4E-07	1.5E-07
		Min	6.0E-14	9.7E-12	8.1E-11	1.2E-10	2.3E-10	7.5E-11	2.7E-11	7.6E-12	3.4E-12	1.1E-12

2284 2285 2286

Table_Apx C-6. DIDP 95th Percentile Daily Concentrations (µg/m³) Modeled from High-End Fugitive Release Source

Scenario	Motoonology						Distance					
Scenario	Meteorology	Land	10M	30M	30-60M	60M	100M	100-1000M	1000M	2500M	5000M	10000M
	Central	Rural	7.2E-07	5.9E-07	4.4E-07	3.3E-07	1.9E-07	1.5E-08	5.9E-09	1.0E-09	2.5E-10	5.7E-11
Adhesive Sealant	Tendency	Urban	1.5E-06	5.4E-07	3.2E-07	2.1E-07	9.4E-08	5.2E-09	1.9E-09	4.0E-10	1.2E-10	3.5E-11
Manufacturing Processing	Llich End	Rural	1.1E-06	9.0E-07	6.3E-07	4.6E-07	2.5E-07	1.9E-08	7.3E-09	1.3E-09	3.4E-10	7.7E-11
	High-End	Urban	2.3E-06	6.9E-07	4.1E-07	2.6E-07	1.1E-07	6.1E-09	2.2E-09	4.5E-10	1.3E-10	3.8E-11
	Central	Rural	6.6E-08	5.4E-08	4.1E-08	3.1E-08	1.8E-08	1.4E-09	5.7E-10	9.9E-11	2.4E-11	5.6E-12
Commerical Uses	Tendency	Urban	1.4E-07	5.0E-08	3.0E-08	2.0E-08	8.8E-09	4.9E-10	1.8E-10	3.8E-11	1.1E-11	3.3E-12
Laboratory Chemicals_Scenario 1	Llich End	Rural	1.0E-07	8.2E-08	5.8E-08	4.2E-08	2.3E-08	1.8E-09	6.7E-10	1.2E-10	3.1E-11	7.2E-12
_	High-End	Urban	2.1E-07	6.4E-08	3.7E-08	2.4E-08	1.0E-08	5.7E-10	2.1E-10	4.2E-11	1.2E-11	3.5E-12
Domestic	Central	Rural	1.8E-04	9.3E-05	5.9E-05	3.9E-05	1.7E-05	5.8E-07	1.9E-07	3.0E-08	8.3E-09	2.4E-09
Manufacturing,	Tendency	Urban	2.4E-04	9.0E-05	5.1E-05	3.3E-05	1.4E-05	4.8E-07	1.8E-07	2.9E-08	8.0E-09	2.7E-09
Manufacturing,	III als Ea d	Rural	2.6E-04	1.1E-04	6.7E-05	4.3E-05	1.9E-05	6.6E-07	2.1E-07	3.1E-08	8.3E-09	2.6E-09
Average PV	High-End	Urban	3.2E-04	9.8E-05	5.4E-05	3.4E-05	1.4E-05	5.0E-07	1.9E-07	3.1E-08	8.4E-09	2.9E-09
Domestic	Central	Rural	2.2E-05	9.4E-06	5.0E-06	3.2E-06	1.2E-06	2.0E-08	7.0E-09	8.1E-10	1.9E-10	4.6E-11
Manufacturing,	Tendency	Urban	2.4E-05	9.4E-06	5.0E-06	3.2E-06	1.2E-06	2.1E-08	7.4E-09	9.1E-10	2.2E-10	6.1E-11
Manufacturing, PV6: Troy Chemical Corp.	III als Ea d	Rural	3.3E-05	1.0E-05	5.1E-06	3.1E-06	1.1E-06	2.1E-08	7.0E-09	8.5E-10	2.3E-10	8.2E-11
Phoenix	High-End	Urban	3.3E-05	1.0E-05	5.1E-06	3.1E-06	1.1E-06	2.1E-08	7.0E-09	8.7E-10	2.4E-10	8.5E-11
Incorporation into other articles not Central Tendency	Central	Rural	2.3E-05	1.9E-05	1.4E-05	1.0E-05	5.9E-06	4.7E-07	1.9E-07	3.2E-08	7.7E-09	1.8E-09
	Tendency	Urban	4.8E-05	1.7E-05	1.0E-05	6.6E-06	3.0E-06	1.6E-07	6.0E-08	1.3E-08	3.8E-09	1.1E-09
covered elsewhere,	High-End	Rural	3.5E-05	2.8E-05	2.0E-05	1.4E-05	7.8E-06	6.1E-07	2.3E-07	4.1E-08	1.1E-08	2.4E-09

a .							Distance					
Scenario	Meteorology	Land	10M	30M	30-60M	60M	100M	100-1000M	1000M	2500M	5000M	10000M
Processing - Incorporation into formulation, mixture, or reaction product		Urban	7.2E-05	2.2E-05	1.3E-05	8.1E-06	3.5E-06	1.9E-07	7.0E-08	1.4E-08	4.1E-09	1.2E-09
Manufacturing -	Central	Rural	5.5E-08	2.3E-08	1.3E-08	8.1E-09	3.1E-09	6.2E-11	2.1E-11	2.7E-12	7.1E-13	2.3E-13
Import , Import - Repackaging, PV1:	Tendency	Urban	5.7E-08	2.2E-08	1.2E-08	8.0E-09	3.0E-09	6.1E-11	2.1E-11	2.8E-12	7.6E-13	2.5E-13
LG Hausys America,	High-End	Rural	7.4E-08	2.3E-08	1.3E-08	7.5E-09	2.8E-09	5.9E-11	1.9E-11	2.5E-12	7.2E-13	2.8E-13
Inc.	Tingii-End	Urban	7.4E-08	2.3E-08	1.2E-08	7.5E-09	2.7E-09	5.8E-11	1.9E-11	2.5E-12	7.3E-13	2.8E-13
Manufacturing -	Central	Rural	1.3E-07	5.4E-08	3.0E-08	1.9E-08	7.4E-09	1.5E-10	5.0E-11	6.5E-12	1.7E-12	5.5E-13
Import , Import - Repackaging, PV2:	Tendency	Urban	1.4E-07	5.3E-08	3.0E-08	1.9E-08	7.2E-09	1.5E-10	5.0E-11	6.7E-12	1.8E-12	6.0E-13
Harwick Standard	High-End	Rural	1.8E-07	5.6E-08	3.0E-08	1.8E-08	6.6E-09	1.4E-10	4.5E-11	6.0E-12	1.7E-12	6.8E-13
Distribution Corp.	Tigii-Eild	Urban	1.8E-07	5.6E-08	3.0E-08	1.8E-08	6.5E-09	1.4E-10	4.5E-11	6.0E-12	1.7E-12	6.8E-13
Manufacturing -	Central	Rural	3.4E-07	1.5E-07	8.4E-08	5.4E-08	2.1E-08	4.6E-10	1.5E-10	2.0E-11	5.4E-12	1.8E-12
Import, Import -	Tendency	Urban	3.7E-07	1.5E-07	8.3E-08	5.3E-08	2.1E-08	4.6E-10	1.5E-10	2.2E-11	5.8E-12	2.0E-12
Repackaging, PV3:	High-End	Rural	4.8E-07	1.5E-07	8.3E-08	5.0E-08	1.9E-08	4.3E-10	1.3E-10	1.7E-11	4.8E-12	1.9E-12
Tremco Incorporated	Tigii-Eild	Urban	4.8E-07	1.5E-07	8.2E-08	5.0E-08	1.9E-08	4.3E-10	1.3E-10	1.7E-11	4.9E-12	1.9E-12
Manufacturing -	Central	Rural	4.4E-08	1.8E-08	1.0E-08	6.5E-09	2.5E-09	5.0E-11	1.7E-11	2.2E-12	5.7E-13	1.8E-13
Import, Import -	Tendency	Urban	4.6E-08	1.8E-08	9.9E-09	6.4E-09	2.4E-09	4.9E-11	1.7E-11	2.3E-12	6.1E-13	2.0E-13
Repackaging, PV4:	High-End	Rural	5.9E-08	1.9E-08	1.0E-08	6.0E-09	2.2E-09	4.7E-11	1.5E-11	2.0E-12	5.8E-13	2.3E-13
Akrochem Corp.	Tigii-Eild	Urban	6.0E-08	1.9E-08	9.9E-09	6.0E-09	2.2E-09	4.7E-11	1.5E-11	2.0E-12	5.8E-13	2.3E-13
	Central	Rural	2.3E02	1.9E02	1.4E02	1.1E02	6.3E01	5.3E00	2.1E00	3.7E-01	9.3E-02	2.1E-02
Non-PVC Plastic	Tendency	Urban	4.9E02	1.8E02	1.1E02	7.0E01	3.2E01	1.8E00	6.6E-01	1.4E-01	4.2E-02	1.2E-02
Compounding	High-End	Rural	3.6E02	2.9E02	2.1E02	1.5E02	8.3E01	6.7E00	2.5E00	4.5E-01	1.2E-01	2.6E-02
	Tigii-Eild	Urban	7.4E02	2.3E02	1.3E02	8.4E01	3.7E01	2.1E00	7.5E-01	1.5E-01	4.5E-02	1.3E-02
	Central	Rural	6.4E00	5.2E00	3.9E00	2.9E00	1.7E00	1.3E-01	5.2E-02	9.0E-03	2.2E-03	5.0E-04
Non-PVC Plastic	Tendency	Urban	1.4E01	4.8E00	2.9E00	1.9E00	8.3E-01	4.6E-02	1.7E-02	3.6E-03	1.1E-03	3.1E-04
Converting	High-End	Rural	9.8E00	7.9E00	5.6E00	4.0E00	2.2E00	1.7E-01	6.4E-02	1.2E-02	3.0E-03	6.8E-04
	Tingii-Eliu	Urban	2.0E01	6.1E00	3.6E00	2.3E00	1.0E00	5.4E-02	2.0E-02	4.0E-03	1.2E-03	3.3E-04
Other Uses -	Central	Rural	1.0E-01	8.4E-02	6.3E-02	4.7E-02	2.7E-02	2.1E-03	8.5E-04	1.5E-04	3.5E-05	8.1E-06
Inspection	Tendency	Urban	2.2E-01	7.8E-02	4.6E-02	3.0E-02	1.4E-02	7.4E-04	2.8E-04	5.8E-05	1.7E-05	5.0E-06

a •							Distance					
Scenario	Meteorology	Land	10M	30M	30-60M	60M	100M	100-1000M	1000M	2500M	5000M	10000M
Fluid/Penetrant, Use		Rural	1.6E-01	1.3E-01	9.0E-02	6.5E-02	3.6E-02	2.8E-03	1.0E-03	1.9E-04	4.8E-05	1.1E-05
of Inspection Fluid/Penetrant (Aerosol)	High-End	Urban	3.3E-01	9.9E-02	5.8E-02	3.7E-02	1.6E-02	8.7E-04	3.2E-04	6.5E-05	1.9E-05	5.4E-06
Other Uses -	Central	Rural	9.8E-08	8.0E-08	6.0E-08	4.5E-08	2.5E-08	2.0E-09	8.0E-10	1.4E-10	3.3E-11	7.7E-12
Inspection Fluid/Penetrant, Use	Tendency	Urban	2.1E-07	7.4E-08	4.4E-08	2.9E-08	1.3E-08	7.0E-10	2.6E-10	5.5E-11	1.7E-11	4.8E-12
of Inspection		Rural	1.5E-07	1.2E-07	8.6E-08	6.2E-08	3.4E-08	2.6E-09	9.9E-10	1.8E-10	4.5E-11	1.1E-11
Fluid/Penetrant (Non- Aerosol)	High-End	Urban	3.1E-07	9.4E-08	5.5E-08	3.5E-08	1.5E-08	8.3E-10	3.0E-10	6.1E-11	1.8E-11	5.1E-12
Paint and Coating	Central	Rural	3.5E-07	2.8E-07	2.1E-07	1.6E-07	8.9E-08	7.1E-09	2.8E-09	4.9E-10	1.2E-10	2.7E-11
Manufacturing, Processing -	Tendency	Urban	7.3E-07	2.6E-07	1.6E-07	1.0E-07	4.5E-08	2.5E-09	9.2E-10	1.9E-10	5.8E-11	1.7E-11
Incorporation into		Rural	5.3E-07	4.3E-07	3.0E-07	2.2E-07	1.2E-07	9.3E-09	3.5E-09	6.3E-10	1.6E-10	3.7E-11
formulation, mixture, or reaction product	High-End	Urban	1.1E-06	3.3E-07	2.0E-07	1.2E-07	5.4E-08	2.9E-09	1.1E-09	2.2E-10	6.3E-11	1.8E-11
	Central	Rural	5.1E03	4.2E03	3.1E03	2.3E03	1.3E03	1.1E02	4.2E01	7.2E00	1.7E00	4.0E-01
Plastic Compounding	Tendency	Urban	1.1E04	3.8E03	2.3E03	1.5E03	6.6E02	3.7E01	1.4E01	2.8E00	8.6E-01	2.5E-01
Flastic Compounding	High-End	Rural	7.8E03	6.3E03	4.5E03	3.2E03	1.8E03	1.4E02	5.1E01	9.3E00	2.4E00	5.5E-01
	High-End	Urban	1.6E04	4.9E03	2.9E03	1.8E03	8.0E02	4.3E01	1.6E01	3.2E00	9.3E-01	2.6E-01
	Central	Rural	2.4E02	1.9E02	1.4E02	1.1E02	6.1E01	4.9E00	1.9E00	3.3E-01	8.0E-02	1.8E-02
Plastic Converting	Tendency	Urban	5.0E02	1.8E02	1.1E02	6.9E01	3.1E01	1.7E00	6.3E-01	1.3E-01	4.0E-02	1.2E-02
Flastic Converting	High-End	Rural	3.6E02	2.9E02	2.1E02	1.5E02	8.1E01	6.3E00	2.4E00	4.3E-01	1.1E-01	2.5E-02
	підп-Епа	Urban	7.5E02	2.3E02	1.3E02	8.4E01	3.7E01	2.0E00	7.3E-01	1.5E-01	4.3E-02	1.2E-02
Processing -	Central	Rural	8.2E-08	3.4E-08	1.9E-08	1.2E-08	4.6E-09	9.4E-11	3.2E-11	4.1E-12	1.1E-12	3.5E-13
Repackaging, Import -	Tendency	Urban	8.6E-08	3.4E-08	1.9E-08	1.2E-08	4.5E-09	9.2E-11	3.1E-11	4.2E-12	1.2E-12	3.8E-13
Repackaging, Average	High-End	Rural	1.1E-07	3.5E-08	1.9E-08	1.1E-08	4.2E-09	8.9E-11	2.8E-11	3.8E-12	1.1E-12	4.3E-13
PV CAS 1	підп-Епа	Urban	1.1E-07	3.5E-08	1.9E-08	1.1E-08	4.1E-09	8.8E-11	2.8E-11	3.8E-12	1.1E-12	4.3E-13
Processing -	Central	Rural	1.2E-04	9.8E-05	7.3E-05	5.5E-05	3.2E-05	2.6E-06	1.0E-06	1.8E-07	4.3E-08	1.0E-08
Repackaging, Import -	Tendency	Urban	2.5E-04	9.0E-05	5.4E-05	3.5E-05	1.6E-05	8.8E-07	3.3E-07	6.8E-08	2.1E-08	6.0E-09
Repackaging, Average	High End	Rural	1.8E-04	1.5E-04	1.0E-04	7.6E-05	4.1E-05	3.3E-06	1.2E-06	2.2E-07	5.6E-08	1.3E-08
PV CAS 2 High-End	ringii-Eliu	Urban	3.8E-04	1.1E-04	6.7E-05	4.3E-05	1.9E-05	1.0E-06	3.7E-07	7.6E-08	2.2E-08	6.3E-09
Processing -	Central	Rural	3.7E-08	1.5E-08	7.9E-09	4.9E-09	1.8E-09	2.8E-11	9.2E-12	9.5E-13	1.7E-13	2.8E-14

C	Mataanalaan						Distance					
Scenario	Meteorology	Land	10M	30M	30-60M	60M	100M	100-1000M	1000M	2500M	5000M	10000M
Repackaging, Import -	Tendency	Urban	4.0E-08	1.5E-08	8.0E-09	5.0E-09	1.8E-09	2.9E-11	9.9E-12	1.1E-12	2.4E-13	4.4E-14
Repackaging, PV4: Akrochem Corp. (CT		Rural	5.5E-08	1.6E-08	8.4E-09	5.1E-09	1.8E-09	3.2E-11	1.0E-11	1.3E-12	3.4E-13	1.1E-13
Release)	High-End	Urban	5.5E-08	1.6E-08	8.3E-09	5.1E-09	1.8E-09	3.1E-11	1.0E-11	1.3E-12	3.4E-13	1.2E-13
Processing -	Central	Rural	1.5E-07	6.1E-08	3.4E-08	2.2E-08	8.3E-09	1.7E-10	5.7E-11	7.4E-12	1.9E-12	6.2E-13
Repackaging, Import -	Tendency	Urban	1.6E-07	6.0E-08	3.3E-08	2.2E-08	8.1E-09	1.6E-10	5.6E-11	7.6E-12	2.1E-12	6.8E-13
Repackaging, PV5:	Iliah End	Rural	2.0E-07	6.3E-08	3.4E-08	2.0E-08	7.5E-09	1.6E-10	5.1E-11	6.8E-12	1.9E-12	7.7E-13
Chemspec, Ltd.	High-End	Urban	2.0E-07	6.3E-08	3.4E-08	2.0E-08	7.4E-09	1.6E-10	5.0E-11	6.8E-12	2.0E-12	7.7E-13
Use of Adhesives and	Central	Rural	5.9E-07	4.8E-07	3.7E-07	2.8E-07	1.6E-07	1.4E-08	5.3E-09	9.4E-10	2.4E-10	5.6E-11
Sealants, Use of	Tendency	Urban	1.2E-06	4.4E-07	2.7E-07	1.7E-07	7.9E-08	4.6E-09	1.6E-09	3.4E-10	1.0E-10	3.1E-11
Adhesives and	High-End	Rural	9.1E-07	7.4E-07	5.3E-07	3.8E-07	2.1E-07	1.8E-08	6.4E-09	1.2E-09	3.0E-10	7.0E-11
	підп-Епа	Urban	1.8E-06	5.6E-07	3.4E-07	2.1E-07	9.4E-08	5.5E-09	1.9E-09	3.9E-10	1.2E-10	3.2E-11
	Central	Rural	1.4E-07	1.1E-07	8.7E-08	6.6E-08	3.8E-08	3.2E-09	1.3E-09	2.2E-10	5.6E-11	1.3E-11
Use of Paints and	Tendency	Urban	3.0E-07	1.1E-07	6.4E-08	4.2E-08	1.9E-08	1.1E-09	3.9E-10	8.2E-11	2.5E-11	7.2E-12
Coatings, Use of Paints and Coatings	High-End	Rural	2.2E-07	1.8E-07	1.3E-07	9.1E-08	5.0E-08	4.1E-09	1.5E-09	2.7E-10	6.9E-11	1.6E-11
	підп-Епа	Urban	4.4E-07	1.4E-07	8.0E-08	5.1E-08	2.2E-08	1.3E-09	4.5E-10	9.3E-11	2.7E-11	7.6E-12
Use of Paints and	Central	Rural	1.4E-07	1.1E-07	8.6E-08	6.5E-08	3.8E-08	3.2E-09	1.3E-09	2.2E-10	5.6E-11	1.3E-11
Coatings, Use of Paints and Coatings	Tendency	Urban	3.0E-07	1.1E-07	6.4E-08	4.2E-08	1.9E-08	1.1E-09	3.9E-10	8.2E-11	2.5E-11	7.2E-12
w/o Engineering	High End	Rural	2.2E-07	1.8E-07	1.2E-07	9.0E-08	5.0E-08	4.0E-09	1.5E-09	2.7E-10	6.9E-11	1.6E-11
Controls		Urban	4.4E-07	1.4E-07	8.0E-08	5.0E-08	2.2E-08	1.3E-09	4.5E-10	9.2E-11	2.7E-11	7.6E-12
		Max	1.6E04	6.3E03	4.5E03	3.2E03	1.8E03	1.4E02	5.1E01	9.3E00	2.4E00	5.5E-01
Summary Sta	tistics	Mean	4.7E02	2.3E02	1.5E02	1.1E02	5.4E01	3.8E00	1.5E00	2.7E-01	7.0E-02	1.7E-02
Summary Sta	USUCS	Median	5.6E-07	3.1E-07	2.0E-07	1.4E-07	6.7E-08	4.3E-09	1.6E-09	3.1E-10	8.7E-11	2.3E-11
		Min	3.7E-08	1.5E-08	7.9E-09	4.9E-09	1.8E-09	2.8E-11	9.2E-12	9.5E-13	1.7E-13	2.8E-14

2289 Table_Apx C-7. DIDP 95th Percentile Daily Concentrations (µg/m³) Modeled from High-End Stack Release Source

Comor i o	Mataonalaon						Distan	ce				
Scenario	Meteorology	Land	10M	30M	30-60M	60M	100M	100-1000M	1000M	2500M	5000M	10,000M
	Central	Rural	2.6E-12	3.1E-10	2.0E-09	4.0E-09	9.0E-09	2.5E-09	1.4E-09	4.8E-10	3.3E-10	2.3E-10
Adhesive Sealant	Tendency	Urban	1.2E-11	1.1E-09	3.6E-09	6.0E-09	1.1E-08	3.0E-09	1.9E-09	6.3E-10	2.3E-10	7.4E-11
Manufacturing Processing	High End	Rural	1.6E-12	4.3E-10	2.9E-09	5.5E-09	1.2E-08	3.8E-09	2.0E-09	1.1E-09	8.3E-10	3.7E-10
6	High-End	Urban	8.7E-12	1.6E-09	5.6E-09	9.4E-09	1.6E-08	5.1E-09	2.9E-09	8.4E-10	2.7E-10	8.3E-11
	Central	Rural	7.8E-09	9.3E-07	5.8E-06	1.2E-05	2.7E-05	7.6E-06	4.2E-06	1.5E-06	1.0E-06	7.6E-07
Commercial Uses	Tendency	Urban	3.6E-08	3.3E-06	1.1E-05	1.8E-05	3.1E-05	9.1E-06	5.7E-06	1.9E-06	7.0E-07	2.3E-07
Laboratory Chemicals_Scenario 2	II als En d	Rural	4.8E-09	1.3E-06	8.4E-06	1.6E-05	3.5E-05	1.1E-05	6.1E-06	3.2E-06	2.5E-06	1.1E-06
—	High-End	Urban	2.6E-08	4.6E-06	1.6E-05	2.8E-05	4.9E-05	1.5E-05	8.8E-06	2.5E-06	8.2E-07	2.5E-07
Domestic	Central	Rural	3.5E-03	1.4E00	9.3E00	2.1E01	4.5E01	8.8E00	4.0E00	1.0E00	4.3E-01	1.7E-01
Manufacturing,	Tendency	Urban	2.0E-02	5.4E00	2.0E01	3.5E01	5.6E01	9.7E00	5.1E00	1.4E00	4.3E-01	1.4E-01
Manufacturing,	II als En d	Rural	2.3E-03	2.7E00	1.8E01	3.6E01	7.3E01	1.2E01	4.9E00	1.2E00	5.0E-01	1.7E-01
Average PV	High-End	Urban	2.2E-02	8.1E00	3.2E01	5.3E01	8.7E01	1.4E01	6.8E00	1.5E00	4.4E-01	1.4E-01
Domestic	Central	Rural	1.0E-09	1.8E-04	2.1E-03	6.1E-03	1.5E-02	2.1E-03	8.3E-04	1.2E-04	2.9E-05	1.1E-05
Manufacturing, Manufacturing, PV6:	Tendency	Urban	3.7E-09	3.4E-04	3.3E-03	8.5E-03	1.8E-02	2.2E-03	8.9E-04	1.3E-04	3.4E-05	1.1E-05
Troy Chemical Corp.	High-End	Rural	3.3E-08	5.3E-04	5.0E-03	1.1E-02	2.4E-02	2.6E-03	8.5E-04	1.1E-04	2.9E-05	1.1E-05
Phoenix	High-End	Urban	3.5E-08	6.4E-04	5.4E-03	1.2E-02	2.5E-02	2.6E-03	8.6E-04	1.1E-04	3.0E-05	1.1E-05
Incorporation into	Central	Rural	1.6E-11	1.9E-09	1.2E-08	2.5E-08	5.5E-08	1.6E-08	8.6E-09	3.0E-09	2.0E-09	1.4E-09
other articles not covered elsewhere,	Tendency	Urban	7.5E-11	7.0E-09	2.2E-08	3.7E-08	6.5E-08	1.9E-08	1.2E-08	3.9E-09	1.4E-09	4.6E-10
Processing -		Rural	9.8E-12	2.7E-09	1.8E-08	3.4E-08	7.2E-08	2.3E-08	1.2E-08	6.7E-09	5.1E-09	2.3E-09
Incorporation into formulation, mixture, or reaction product	High-End	Urban	5.4E-11	9.5E-09	3.4E-08	5.8E-08	1.0E-07	3.1E-08	1.8E-08	5.2E-09	1.7E-09	5.1E-10
Paint and Coating	Central	Rural	1.7E-13	2.0E-11	1.3E-10	2.6E-10	5.7E-10	1.6E-10	8.8E-11	3.1E-11	2.1E-11	1.5E-11
Manufacturing, Processing -	Tendency	Urban	7.7E-13	7.2E-11	2.3E-10	3.8E-10	6.7E-10	1.9E-10	1.2E-10	4.0E-11	1.4E-11	4.7E-12
Incorporation into		Rural	1.0E-13	2.7E-11	1.8E-10	3.5E-10	7.4E-10	2.4E-10	1.3E-10	6.9E-11	5.3E-11	2.3E-11
or reaction product	High-End	Urban	5.5E-13	9.9E-11	3.5E-10	6.0E-10	1.0E-09	3.2E-10	1.9E-10	5.3E-11	1.7E-11	5.3E-12
Use of Paints and	Central	Rural	7.6E-05	8.4E-03	4.8E-02	9.9E-02	2.3E-01	6.3E-02	3.5E-02	1.2E-02	8.4E-03	6.6E-03
Coatings, Use of	Tendency	Urban	3.2E-04	2.7E-02	8.4E-02	1.4E-01	2.6E-01	7.5E-02	4.6E-02	1.5E-02	5.5E-03	1.8E-03

Saamaria	Motoopology						Distan	ce				
Scenario	Meteorology	Land	10M	30M	30-60M	60M	100M	100-1000M	1000M	2500M	5000M	10,000M
Paints and Coatings	High End	Rural	4.4E-05	1.1E-02	7.2E-02	1.4E-01	2.8E-01	9.9E-02	5.3E-02	2.7E-02	2.0E-02	9.4E-03
		Urban	2.1E-04	3.9E-02	1.4E-01	2.4E-01	4.1E-01	1.2E-01	7.2E-02	2.1E-02	6.7E-03	2.0E-03
		Max	2.2E-02	8.1E00	3.2E01	5.3E01	8.7E01	1.4E01	6.8E00	1.5E00	5.0E-01	1.7E-01
Summony Sto	C		1.7E-03	6.3E-01	2.8E00	5.2E00	9.4E00	1.6E00	7.5E-01	1.8E-01	6.6E-02	2.3E-02
Summary Statistics		Median	4.3E-09	2.3E-06	9.5E-06	1.7E-05	3.3E-05	1.0E-05	5.9E-06	2.2E-06	9.2E-07	5.0E-07
		Min	1.0E-13	2.0E-11	1.3E-10	2.6E-10	5.7E-10	1.6E-10	8.8E-11	3.1E-11	1.4E-11	4.7E-12

2290 2291

2292 Table_Apx C-8. DIDP 95th Percentile Annual Deposition Rate (g/m²) Modeled from High-End Fugitive Release Source

						J	Distance					
Scenario	Meteorology	Land	10M	30M	30-60M	60M	100M	100- 1000M	1000M	2500M	5000M	10,000M
	Central	Rural	5.0E-08	5.2E-08	4.3E-08	2.5E-08	1.4E-08	3.2E-09	4.5E-10	7.4E-11	1.9E-11	4.9E-12
Adhesive Sealant	Tendency	Urban	1.1E-07	7.2E-08	5.6E-08	2.7E-08	1.1E-08	1.6E-09	1.8E-10	3.6E-11	1.1E-11	3.6E-12
Manufacturing Processing		Rural	1.3E-07	9.0E-08	6.6E-08	3.9E-08	2.1E-08	4.3E-09	5.8E-10	9.9E-11	2.6E-11	6.6E-12
Tiocessing	High-End	Urban	2.1E-07	1.1E-07	8.7E-08	3.7E-08	1.5E-08	1.7E-09	2.3E-10	4.7E-11	1.4E-11	4.3E-12
	Central	Rural	4.6E-09	4.8E-09	4.0E-09	2.3E-09	1.3E-09	3.0E-10	4.3E-11	7.1E-12	1.9E-12	4.7E-13
Commercial Uses	Tendency	Urban	1.0E-08	6.7E-09	5.3E-09	2.6E-09	1.1E-09	1.4E-10	1.7E-11	3.4E-12	1.1E-12	3.3E-13
Laboratory Chemicals_Scenario 1		Rural	1.2E-08	8.2E-09	6.1E-09	3.6E-09	2.0E-09	4.0E-10	5.4E-11	9.2E-12	2.4E-12	6.1E-13
Chemicals_Scenario I	High-End	Urban	1.9E-08	1.0E-08	8.1E-09	3.5E-09	1.4E-09	1.6E-10	2.1E-11	4.4E-12	1.3E-12	4.0E-13
Domestic	Central	Rural	1.3E-05	1.1E-05	8.5E-06	4.5E-06	1.9E-06	3.2E-07	4.6E-08	7.4E-09	2.2E-09	6.7E-10
Manufacturing,	Tendency	Urban	1.9E-05	1.5E-05	1.1E-05	5.2E-06	2.0E-06	2.1E-07	2.2E-08	4.4E-09	1.5E-09	5.5E-10
Manufacturing,		Rural	3.4E-05	1.8E-05	1.3E-05	6.3E-06	2.6E-06	3.0E-07	3.9E-08	7.1E-09	2.3E-09	7.1E-10
Average PV	High-End	Urban	4.0E-05	2.0E-05	1.5E-05	6.2E-06	2.3E-06	2.3E-07	2.6E-08	4.8E-09	1.6E-09	5.9E-10
Domestic	Central	Rural	1.4E-06	1.4E-06	1.1E-06	5.5E-07	2.1E-07	2.2E-08	2.0E-09	3.7E-10	1.2E-10	4.3E-11
Manufacturing,	Tendency	Urban	1.5E-06	1.7E-06	1.2E-06	6.1E-07	2.3E-07	2.2E-08	1.9E-09	3.2E-10	1.0E-10	3.9E-11
Manufacturing, PV6: Troy Chemical Corp.		Rural	5.0E-06	2.6E-06	1.6E-06	7.9E-07	2.8E-07	2.3E-08	2.0E-09	3.1E-10	1.0E-10	4.2E-11
Phoenix	High-End	Urban	5.0E-06	2.6E-06	1.7E-06	7.9E-07	2.8E-07	2.3E-08	2.0E-09	2.9E-10	9.6E-11	4.1E-11
	Central	Rural	1.6E-06	1.6E-06	1.4E-06	7.7E-07	4.2E-07	1.0E-07	1.4E-08	2.3E-09	6.1E-10	1.5E-10
	Tendency	Urban	3.4E-06	2.3E-06	1.8E-06	8.6E-07	3.5E-07	4.9E-08	5.5E-09	1.1E-09	3.5E-10	1.1E-10
covered elsewhere,	High-End	Rural	4.2E-06	2.8E-06	2.1E-06	1.2E-06	6.7E-07	1.4E-07	1.8E-08	3.1E-09	8.2E-10	2.1E-10

						J	Distance					
Scenario	Meteorology	Land	10M	30M	30-60M	60M	100M	100- 1000M	1000M	2500M	5000M	10,000M
Processing - Incorporation into formulation, mixture, or reaction product		Urban	6.6E-06	3.4E-06	2.7E-06	1.2E-06	4.6E-07	5.3E-08	7.2E-09	1.5E-09	4.5E-10	1.4E-10
Manufacturing -	Central	Rural	4.1E-09	4.3E-09	3.3E-09	1.6E-09	5.7E-10	5.6E-11	4.6E-12	7.6E-13	2.6E-13	1.0E-13
Import , Import - Repackaging, PV1:	Tendency	Urban	4.8E-09	4.9E-09	3.8E-09	1.7E-09	6.4E-10	5.9E-11	5.0E-12	7.6E-13	2.6E-13	1.1E-13
LG Hausys America,	High End	Rural	1.3E-08	7.2E-09	4.8E-09	2.2E-09	7.8E-10	6.2E-11	5.3E-12	7.1E-13	2.3E-13	9.3E-14
Inc.	High-End	Urban	1.4E-08	7.3E-09	4.9E-09	2.2E-09	7.9E-10	6.2E-11	5.3E-12	7.2E-13	2.4E-13	9.8E-14
Manufacturing -	Central	Rural	9.8E-09	1.0E-08	7.8E-09	3.7E-09	1.4E-09	1.3E-10	1.1E-11	1.8E-12	6.1E-13	2.4E-13
Import, Import -	Tendency	Urban	1.1E-08	1.2E-08	9.0E-09	4.2E-09	1.5E-09	1.4E-10	1.2E-11	1.8E-12	6.3E-13	2.6E-13
Repackaging, PV2: Harwick Standard		Rural	3.2E-08	1.7E-08	1.1E-08	5.3E-09	1.9E-09	1.5E-10	1.3E-11	1.7E-12	5.4E-13	2.2E-13
Distribution Corp.	High-End	Urban	3.2E-08	1.8E-08	1.2E-08	5.3E-09	1.9E-09	1.5E-10	1.3E-11	1.7E-12	5.7E-13	2.3E-13
Manufacturing -	Central	Rural	2.5E-08	2.7E-08	2.0E-08	9.7E-09	3.7E-09	4.3E-10	3.8E-11	6.7E-12	2.0E-12	7.0E-13
Import, Import -	Tendency	Urban	2.9E-08	3.0E-08	2.3E-08	1.1E-08	4.1E-09	3.9E-10	3.4E-11	6.1E-12	2.0E-12	7.3E-13
Repackaging, PV3:		Rural	8.5E-08	4.7E-08	3.0E-08	1.4E-08	5.1E-09	3.9E-10	3.6E-11	5.2E-12	1.6E-12	6.2E-13
Tremco Incorporated	High-End	Urban	8.6E-08	4.7E-08	3.1E-08	1.4E-08	5.2E-09	3.9E-10	3.6E-11	4.9E-12	1.6E-12	6.1E-13
Manufacturing -	Central	Rural	3.3E-09	3.4E-09	2.6E-09	1.2E-09	4.6E-10	4.5E-11	3.7E-12	6.1E-13	2.1E-13	8.1E-14
Import, Import -	Tendency	Urban	3.8E-09	3.9E-09	3.0E-09	1.4E-09	5.2E-10	4.7E-11	4.0E-12	6.1E-13	2.1E-13	8.9E-14
Repackaging, PV4:		Rural	1.1E-08	5.8E-09	3.8E-09	1.8E-09	6.2E-10	5.0E-11	4.2E-12	5.7E-13	1.8E-13	7.5E-14
Akrochem Corp.	High-End	Urban	1.1E-08	5.9E-09	3.9E-09	1.8E-09	6.3E-10	5.0E-11	4.3E-12	5.8E-13	1.9E-13	7.9E-14
	Central	Rural	1.7E01	1.8E01	1.4E01	8.7E00	4.7E00	1.2E00	1.7E-01	2.7E-02	7.1E-03	1.9E-03
Non-PVC Plastic	Tendency	Urban	3.8E01	2.6E01	2.1E01	1.0E01	4.2E00	5.3E-01	6.7E-02	1.4E-02	4.4E-03	1.4E-03
Compounding		Rural	4.6E01	3.1E01	2.4E01	1.4E01	7.8E00	1.5E00	2.1E-01	3.6E-02	9.6E-03	2.4E-03
	High-End	Urban	7.4E01	4.0E01	3.1E01	1.4E01	5.4E00	6.1E-01	8.4E-02	1.7E-02	5.4E-03	1.6E-03
	Central	Rural	4.4E-01	4.6E-01	3.8E-01	2.2E-01	1.2E-01	2.8E-02	3.9E-03	6.5E-04	1.7E-04	4.3E-05
Non-PVC Plastic	Tendency	Urban	9.5E-01	6.3E-01	5.0E-01	2.4E-01	9.9E-02	1.4E-02	1.6E-03	3.2E-04	9.9E-05	3.1E-05
Converting		Rural	1.2E00	7.9E-01	5.8E-01	3.4E-01	1.9E-01	3.8E-02	5.2E-03	8.7E-04	2.3E-04	5.8E-05
Other Uses - nspection	High-End	Urban	1.9E00	9.5E-01	7.7E-01	3.3E-01	1.3E-01	1.5E-02	2.0E-03	4.2E-04	1.3E-04	3.8E-05
	Central	Rural	7.2E-03	7.5E-03	6.2E-03	3.5E-03	1.9E-03	4.6E-04	6.4E-05	1.1E-05	2.8E-06	7.0E-07
	Tendency	Urban	1.5E-02	1.0E-02	8.1E-03	3.9E-03	1.6E-03	2.2E-04	2.5E-05	5.2E-06	1.6E-06	5.1E-07
Fluid/Penetrant, Use of Inspection		Rural	1.9E-02	1.3E-02	9.4E-03	5.5E-03	3.1E-03	6.1E-04	8.3E-05	1.4E-05	3.7E-06	9.5E-07
Fluid/Penetrant	High-End	Urban	3.0E-02	1.5E-02	1.3E-02	5.3E-03	2.1E-03	2.4E-04	3.3E-05	6.8E-06	2.1E-06	6.2E-07

]	Distance					
Scenario	Meteorology	Land	10M	30M	30-60M	60M	100M	100- 1000M	1000M	2500M	5000M	10,000M
(Aerosol)												
Other Uses -	Central	Rural	6.8E-09	7.1E-09	5.9E-09	3.3E-09	1.8E-09	4.3E-10	6.1E-11	1.0E-11	2.6E-12	6.6E-13
Inspection Fluid/Penetrant, Use	Tendency	Urban	1.5E-08	9.8E-09	7.7E-09	3.7E-09	1.5E-09	2.1E-10	2.4E-11	4.9E-12	1.5E-12	4.8E-13
of Inspection		Rural	1.8E-08	1.2E-08	9.0E-09	5.3E-09	2.9E-09	5.8E-10	7.9E-11	1.3E-11	3.6E-12	9.0E-13
Fluid/Penetrant (Non- Aerosol)	High-End	Urban	2.9E-08	1.5E-08	1.2E-08	5.0E-09	2.0E-09	2.3E-10	3.1E-11	6.4E-12	2.0E-12	5.9E-13
Paint and Coating	Central	Rural	2.4E-08	2.5E-08	2.1E-08	1.2E-08	6.5E-09	1.5E-09	2.1E-10	3.5E-11	9.3E-12	2.3E-12
Manufacturing, Processing -	Tendency	Urban	5.2E-08	3.4E-08	2.7E-08	1.3E-08	5.4E-09	7.4E-10	8.5E-11	1.7E-11	5.4E-12	1.7E-12
Incorporation into		Rural	6.3E-08	4.3E-08	3.2E-08	1.9E-08	1.0E-08	2.1E-09	2.8E-10	4.7E-11	1.3E-11	3.2E-12
formulation, mixture, or reaction product	High-End	Urban	1.0E-07	5.2E-08	4.2E-08	1.8E-08	7.0E-09	8.2E-10	1.1E-10	2.3E-11	6.9E-12	2.1E-12
	Central	Rural	3.5E02	3.7E02	3.0E02	1.7E02	9.5E01	2.3E01	3.2E00	5.2E-01	1.4E-01	3.4E-02
	Tendency	Urban	7.6E02	5.1E02	4.0E02	1.9E02	7.9E01	1.1E01	1.2E00	2.5E-01	7.9E-02	2.5E-02
Plastic Compounding	II: als Ea d	Rural	9.3E02	6.3E02	4.7E02	2.7E02	1.5E02	3.0E01	4.1E00	7.0E-01	1.8E-01	4.7E-02
	High-End	Urban	1.5E03	7.6E02	6.1E02	2.6E02	1.0E02	1.2E01	1.6E00	3.3E-01	1.0E-01	3.1E-02
	Central	Rural	1.6E01	1.7E01	1.4E01	8.0E00	4.4E00	1.0E00	1.5E-01	2.4E-02	6.3E-03	1.6E-03
Plastic Converting	Tendency	Urban	3.5E01	2.3E01	1.8E01	8.9E00	3.7E00	5.0E-01	5.7E-02	1.2E-02	3.7E-03	1.2E-03
Flastic Converting	High-End	Rural	4.3E01	2.9E01	2.2E01	1.3E01	7.0E00	1.4E00	1.9E-01	3.2E-02	8.5E-03	2.2E-03
	High-Elia	Urban	6.8E01	3.5E01	2.8E01	1.2E01	4.8E00	5.5E-01	7.5E-02	1.5E-02	4.7E-03	1.4E-03
Processing -	Central	Rural	6.2E-09	6.4E-09	4.9E-09	2.3E-09	8.6E-10	8.5E-11	6.9E-12	1.2E-12	3.9E-13	1.5E-13
Repackaging, Import -	Tendency	Urban	7.2E-09	7.4E-09	5.7E-09	2.6E-09	9.7E-10	8.9E-11	7.5E-12	1.1E-12	4.0E-13	1.7E-13
Repackaging, Average	High-End	Rural	2.0E-08	1.1E-08	7.2E-09	3.3E-09	1.2E-09	9.3E-11	8.0E-12	1.1E-12	3.4E-13	1.4E-13
PV CAS 1	Tingii-Eild	Urban	2.0E-08	1.1E-08	7.4E-09	3.4E-09	1.2E-09	9.4E-11	8.0E-12	1.1E-12	3.6E-13	1.5E-13
Processing -	Central	Rural	8.2E-06	8.6E-06	7.2E-06	4.1E-06	2.3E-06	5.5E-07	7.7E-08	1.3E-08	3.3E-09	8.4E-10
Repackaging, Import -	Tendency	Urban	1.8E-05	1.2E-05	9.6E-06	4.6E-06	1.9E-06	2.6E-07	3.0E-08	6.2E-09	2.0E-09	6.2E-10
Repackaging, Average	High-End	Rural	2.2E-05	1.5E-05	1.1E-05	6.5E-06	3.6E-06	7.2E-07	9.7E-08	1.7E-08	4.4E-09	1.1E-09
PV CAS 2 H Processing - C	Tingii-Eild	Urban	3.5E-05	1.8E-05	1.5E-05	6.2E-06	2.5E-06	2.9E-07	3.8E-08	7.9E-09	2.4E-09	7.2E-10
	Central	Rural	2.4E-09	2.5E-09	1.9E-09	9.3E-10	3.5E-10	3.3E-11	2.7E-12	4.5E-13	1.5E-13	5.9E-14
	Tendency	Urban	2.8E-09	2.9E-09	2.1E-09	1.1E-09	3.9E-10	3.6E-11	2.8E-12	4.6E-13	1.5E-13	6.1E-14
Akrochem Corp. (CT	High-End	Rural	8.6E-09	4.3E-09	2.9E-09	1.3E-09	4.5E-10	3.9E-11	3.2E-12	4.5E-13	1.5E-13	6.5E-14
Release)	ingn End	Urban	8.7E-09	4.3E-09	3.0E-09	1.3E-09	4.6E-10	3.9E-11	3.2E-12	4.6E-13	1.5E-13	6.6E-14

]	Distance					
Scenario	Meteorology	Land	10M	30M	30-60M	60M	100M	100- 1000M	1000M	2500M	5000M	10,000M
Processing -	Central	Rural	1.1E-08	1.2E-08	8.9E-09	4.2E-09	1.5E-09	1.5E-10	1.2E-11	2.1E-12	6.9E-13	2.7E-13
Repackaging, Import -	Tendency	Urban	1.3E-08	1.3E-08	1.0E-08	4.7E-09	1.7E-09	1.6E-10	1.4E-11	2.1E-12	7.2E-13	3.0E-13
Repackaging, PV5:		Rural	3.6E-08	2.0E-08	1.3E-08	5.9E-09	2.1E-09	1.7E-10	1.4E-11	1.9E-12	6.1E-13	2.5E-13
Chemspec, Ltd.	High-End	Urban	3.7E-08	2.0E-08	1.3E-08	6.0E-09	2.1E-09	1.7E-10	1.4E-11	1.9E-12	6.4E-13	2.7E-13
Use of Adhesives and	Central	Rural	4.5E-08	4.9E-08	3.8E-08	2.3E-08	1.2E-08	3.0E-09	4.0E-10	6.7E-11	1.9E-11	5.0E-12
Sealants, Use of	Tendency	Urban	9.6E-08	6.9E-08	5.3E-08	2.7E-08	1.1E-08	1.4E-09	1.7E-10	3.6E-11	1.1E-11	3.5E-12
Adhesives and		Rural	1.2E-07	8.2E-08	6.0E-08	3.6E-08	2.0E-08	4.0E-09	5.4E-10	9.3E-11	2.5E-11	6.3E-12
Sealants High-End	Urban	1.9E-07	1.0E-07	8.2E-08	3.5E-08	1.4E-08	1.6E-09	2.2E-10	4.4E-11	1.4E-11	4.1E-12	
	Central	Rural	1.0E-08	1.1E-08	8.6E-09	5.2E-09	2.9E-09	7.1E-10	9.9E-11	1.6E-11	4.3E-12	1.2E-12
Use of Paints and	Tendency	Urban	2.3E-08	1.6E-08	1.2E-08	6.1E-09	2.5E-09	3.2E-10	4.0E-11	8.3E-12	2.6E-12	8.3E-13
Coatings, Use of Paints and Coatings		Rural	2.8E-08	1.9E-08	1.4E-08	8.4E-09	4.7E-09	9.2E-10	1.3E-10	2.2E-11	5.8E-12	1.5E-12
I and Coatings	High-End	Urban	4.4E-08	2.4E-08	1.9E-08	8.2E-09	3.3E-09	3.7E-10	5.1E-11	1.1E-11	3.2E-12	9.8E-13
Use of Paints and	Central	Rural	1.0E-08	1.1E-08	8.5E-09	5.2E-09	2.8E-09	7.1E-10	9.9E-11	1.6E-11	4.2E-12	1.1E-12
Coatings, Use of	Tendency	Urban	2.2E-08	1.6E-08	1.2E-08	6.1E-09	2.5E-09	3.2E-10	4.0E-11	8.3E-12	2.6E-12	8.3E-13
Paints and Coatings w/o Engineering		Rural	2.7E-08	1.9E-08	1.4E-08	8.4E-09	4.7E-09	9.1E-10	1.3E-10	2.2E-11	5.7E-12	1.5E-12
Controls	High-End	Urban	4.4E-08	2.4E-08	1.9E-08	8.2E-09	3.3E-09	3.7E-10	5.1E-11	1.1E-11	3.2E-12	9.7E-13
	Summary Statistics	Max	1.5E03	7.6E02	6.1E02	2.7E02	1.5E02	3.0E01	4.1E00	7.0E-01	1.8E-01	4.7E-02
a a a		Mean	4.2E01	2.7E01	2.1E01	1.1E01	5.1E00	9.0E-01	1.2E-01	2.2E-02	6.0E-03	1.6E-03
Summary Sta		Median	5.8E-08	4.7E-08	3.1E-08	1.6E-08	6.8E-09	1.2E-09	1.5E-10	2.9E-11	8.1E-12	2.2E-12
		Min	2.4E-09	2.5E-09	1.9E-09	9.3E-10	3.5E-10	3.3E-11	2.7E-12	4.5E-13	1.5E-13	5.9E-14

2295 Table_Apx C-9. DIDP 95th Percentile Annual Deposition Rate (g/m²) Modeled from High-End Stack Release Source

							Distance					
Scenario	Meteorology	Land	10M	30M	30-60M	60M	100M	100- 1000M	1000M	2500M	5000M	10,000M
	Central	Rural	8.7E-09	3.0E-09	2.4E-09	2.2E-09	3.0E-09	1.2E-09	2.3E-10	5.7E-11	3.0E-11	2.3E-11
Adhesive Sealant	Tendency	Urban	8.0E-09	3.1E-09	2.7E-09	2.7E-09	3.7E-09	1.3E-09	2.5E-10	7.3E-11	2.5E-11	8.4E-12
Manufacturing Processing	III.ah End	Rural	9.5E-09	3.0E-09	3.1E-09	3.3E-09	4.7E-09	1.5E-09	3.8E-10	1.1E-10	7.6E-11	3.2E-11
C	High-End	Urban	9.1E-09	3.5E-09	3.9E-09	4.4E-09	6.0E-09	1.8E-09	3.7E-10	9.7E-11	3.3E-11	1.0E-11
	Central	Rural	2.7E-05	9.0E-06	7.2E-06	6.5E-06	8.8E-06	3.4E-06	6.8E-07	1.8E-07	9.3E-08	7.0E-08
Commercial Uses	Tendency	Urban	2.5E-05	9.3E-06	8.2E-06	8.0E-06	1.1E-05	4.0E-06	7.7E-07	2.3E-07	7.8E-08	2.6E-08
Laboratory Chemicals_Scenario 2	III.ah End	Rural	2.8E-05	8.8E-06	9.1E-06	9.9E-06	1.4E-05	4.6E-06	1.1E-06	3.2E-07	2.3E-07	9.6E-08
_	High-End	Urban	2.7E-05	1.1E-05	1.2E-05	1.3E-05	1.8E-05	5.4E-06	1.1E-06	2.9E-07	9.8E-08	3.1E-08
Domestic	Central	Rural	1.3E01	5.3E00	5.5E00	6.9E00	1.3E01	4.7E00	7.1E-01	1.9E-01	7.6E-02	4.6E-02
Manufacturing,	Tendency	Urban	1.2E01	6.7E00	8.7E00	1.1E01	1.7E01	5.6E00	7.8E-01	1.9E-01	7.2E-02	2.7E-02
Manufacturing,		Rural	4.3E01	1.4E01	1.5E01	1.6E01	2.4E01	7.3E00	1.2E00	2.6E-01	1.1E-01	4.7E-02
Average PV	Hign-End	Urban	4.1E01	1.7E01	1.9E01	2.1E01	2.9E01	8.2E00	1.1E00	2.4E-01	7.9E-02	2.9E-02
Domestic	Central	Rural	2.1E-03	7.8E-04	1.4E-03	2.0E-03	4.2E-03	1.6E-03	1.9E-04	3.5E-05	1.2E-05	5.6E-06
Manufacturing, Manufacturing, PV6:	Tendency	Urban	1.8E-03	7.2E-04	1.6E-03	2.4E-03	4.9E-03	1.8E-03	2.1E-04	3.9E-05	1.2E-05	4.8E-06
Troy Chemical Corp.	High End	Rural	3.5E-03	1.5E-03	3.1E-03	4.8E-03	8.9E-03	2.5E-03	2.6E-04	3.9E-05	1.3E-05	5.2E-06
Phoenix	High-End	Urban	3.3E-03	1.2E-03	3.1E-03	5.0E-03	9.1E-03	2.5E-03	2.7E-04	3.8E-05	1.2E-05	5.0E-06
Incorporation into	Central	Rural	5.4E-08	1.8E-08	1.5E-08	1.3E-08	1.8E-08	7.1E-09	1.4E-09	3.5E-10	1.9E-10	1.4E-10
other articles not covered elsewhere,	Tendency	Urban	5.0E-08	1.9E-08	1.7E-08	1.6E-08	2.3E-08	8.1E-09	1.6E-09	4.5E-10	1.6E-10	5.2E-11
Processing -		Rural	5.8E-08	1.8E-08	1.9E-08	2.1E-08	2.9E-08	9.5E-09	2.3E-09	6.7E-10	4.7E-10	2.0E-10
Incorporation into	High-End		5.6E-08	2.2E-08	2.4E-08	2.7E-08	3.7E-08	1.1E-08	2.3E-09	6.0E-10	2.0E-10	6.3E-11
formulation, mixture, or reaction product		Urban										
Paint and Coating	Central	Rural	5.5E-10	1.9E-10	1.5E-10	1.4E-10	1.9E-10	7.4E-11	1.4E-11	3.7E-12	1.9E-12	1.4E-12
Manufacturing, Ter	Tendency	Urban	5.1E-10	2.0E-10	1.7E-10	1.7E-10	2.3E-10	8.4E-11	1.6E-11	4.6E-12	1.6E-12	5.4E-13
Processing - Incorporation into		Rural	6.0E-10	1.9E-10	2.0E-10	2.1E-10	3.0E-10	9.8E-11	2.4E-11	6.9E-12	4.8E-12	2.0E-12
formulation, mixture, for reaction product	High-End	Urban	5.8E-10	2.3E-10	2.5E-10	2.8E-10	3.8E-10	1.1E-10	2.4E-11	6.2E-12	2.1E-12	6.5E-13
Use of Paints and	Central	Rural	2.1E-01	7.4E-02	5.7E-02	5.2E-02	7.6E-02	2.8E-02	6.0E-03	1.5E-03	8.3E-04	6.0E-04

	Meteorology						Distance					
Scenario		Land	10M	30M	30-60M	60M	100M	100- 1000M	1000M	2500M	5000M	10,000M
U	Tendency	Urban	1.9E-01	7.5E-02	6.4E-02	6.7E-02	9.4E-02	3.3E-02	6.7E-03	2.0E-03	7.0E-04	2.3E-04
and Coatings	High-End	Rural	2.6E-01	8.1E-02	8.2E-02	8.2E-02	1.2E-01	4.0E-02	9.3E-03	2.8E-03	2.0E-03	8.3E-04
		Urban	2.5E-01	9.5E-02	9.7E-02	1.1E-01	1.5E-01	4.6E-02	1.0E-02	2.6E-03	8.7E-04	2.8E-04
		Max	4.3E01	1.7E01	1.9E01	2.1E01	2.9E01	8.2E00	1.2E00	2.6E-01	1.1E-01	4.7E-02
Summary Statistics		Mean	3.9E00	1.5E00	1.7E00	2.0E00	3.0E00	9.3E-01	1.4E-01	3.2E-02	1.2E-02	5.4E-03
		Median	2.7E-05	9.2E-06	8.6E-06	8.9E-06	1.2E-05	4.3E-06	9.4E-07	2.6E-07	9.6E-08	5.1E-08
		Min	5.1E-10	1.9E-10	1.5E-10	1.4E-10	1.9E-10	7.4E-11	1.4E-11	3.7E-12	1.6E-12	5.4E-13

2296 2297

2298 Table_Apx C-10. DIDP 95th Percentile Daily Deposition Rate (g/m²) Modeled from High-End Fugitive Release Source

				-			Distance	e				
Scenario	Meteorology	Land	10M	30M	30-60M	60M	100M	100- 1000M	1000M	2500M	5000M	10,000M
	Central	Rural	1.5E-10	1.4E-10	8.7E-11	6.1E-11	3.2E-11	2.7E-12	1.0E-12	1.9E-13	5.0E-14	1.3E-14
Adhesive Sealant	Tendency	Urban	2.6E-10	1.8E-10	1.0E-10	6.5E-11	2.6E-11	1.2E-12	4.2E-13	9.0E-14	2.9E-14	8.9E-15
Manufacturing Processing	High-End	Rural	2.9E-10	1.8E-10	1.2E-10	8.2E-11	4.5E-11	3.4E-12	1.2E-12	2.3E-13	6.0E-14	1.5E-14
		Urban	4.6E-10	2.2E-10	1.3E-10	7.4E-11	3.0E-11	1.4E-12	4.8E-13	9.9E-14	3.0E-14	9.3E-15
Commercial Uses	Central	Rural	1.3E-11	1.2E-11	7.9E-12	5.6E-12	3.0E-12	2.6E-13	9.7E-14	1.8E-14	4.8E-15	1.3E-15
Laboratory	Tendency	Urban	2.4E-11	1.6E-11	9.5E-12	6.0E-12	2.4E-12	1.2E-13	4.0E-14	8.4E-15	2.7E-15	8.3E-16
Chemicals_Scenario	High-End	Rural	2.7E-11	1.7E-11	1.1E-11	7.5E-12	4.1E-12	3.2E-13	1.1E-13	2.1E-14	5.6E-15	1.4E-15
1		Urban	4.2E-11	2.0E-11	1.1E-11	6.8E-12	2.7E-12	1.3E-13	4.4E-14	9.2E-15	2.8E-15	8.6E-16
Demestie	Central	Rural	3.4E-08	3.4E-08	2.0E-08	1.3E-08	5.6E-09	1.9E-10	6.5E-11	1.1E-11	3.4E-12	1.1E-12
Domestic Manufacturing,	Tendency	Urban	5.5E-08	4.3E-08	2.4E-08	1.5E-08	5.7E-09	1.6E-10	6.0E-11	1.2E-11	3.9E-12	1.3E-12
Manufacturing,		Rural	8.8E-08	4.9E-08	2.6E-08	1.6E-08	6.4E-09	2.3E-10	6.9E-11	1.2E-11	3.8E-12	1.3E-12
Average PV	High-End	Urban	1.1E-07	5.3E-08	2.8E-08	1.6E-08	5.9E-09	1.7E-10	6.1E-11	1.2E-11	4.2E-12	1.5E-12
Domestic Manufacturing, Manufacturing, PV6: Troy Chemical Corp.	Central	Rural	3.1E-09	4.6E-09	2.6E-09	1.7E-09	6.5E-10	1.1E-11	4.1E-12	5.2E-13	1.1E-13	2.6E-14
		Urban	4.1E-09	5.4E-09	3.0E-09	1.9E-09	7.0E-10	1.2E-11	4.6E-12	6.0E-13	1.4E-13	3.6E-14
	High-End	Rural	1.1E-08	6.8E-09	3.5E-09	2.1E-09	7.4E-10	1.4E-11	4.8E-12	6.3E-13	1.8E-13	5.9E-14

			Distance												
Scenario	Meteorology	Land	10M	30M	30-60M	60M	100M	100- 1000M	1000M	2500M	5000M	10,000M			
Phoenix		Urban	1.1E-08	6.9E-09	3.5E-09	2.1E-09	7.4E-10	1.4E-11	4.9E-12	6.5E-13	1.8E-13	6.2E-14			
Incorporation into	Central	Rural	4.6E-09	4.3E-09	2.7E-09	1.9E-09	1.0E-09	8.6E-11	3.2E-11	5.9E-12	1.6E-12	4.1E-13			
other articles not covered elsewhere,	Tendency	Urban	8.2E-09	5.5E-09	3.2E-09	2.0E-09	8.2E-10	3.9E-11	1.3E-11	2.8E-12	9.0E-13	2.8E-13			
Processing -		Rural	9.2E-09	5.8E-09	3.7E-09	2.6E-09	1.4E-09	1.1E-10	3.8E-11	7.0E-12	1.9E-12	4.6E-13			
Incorporation into formulation, mixture, or reaction product	High-End	Urban	1.5E-08	6.9E-09	3.9E-09	2.3E-09	9.3E-10	4.5E-11	1.5E-11	3.1E-12	9.5E-13	2.9E-13			
Manufacturing -	Central	Rural	1.0E-11	1.3E-11	7.3E-12	4.6E-12	1.7E-12	3.3E-14	1.2E-14	1.7E-15	4.5E-16	1.4E-16			
Import , Import -	Tendency	Urban	1.3E-11	1.5E-11	8.4E-12	5.1E-12	1.9E-12	3.7E-14	1.3E-14	1.9E-15	5.1E-16	1.6E-16			
Repackaging, PV1: LG Hausys America,		Rural	2.7E-11	1.7E-11	9.1E-12	5.3E-12	1.9E-12	4.0E-14	1.3E-14	1.8E-15	5.4E-16	2.1E-16			
Inc.	High-End	Urban	2.8E-11	1.7E-11	9.3E-12	5.4E-12	1.9E-12	4.0E-14	1.4E-14	1.9E-15	5.4E-16	2.1E-16			
Manufacturing -	Central Tendency	Rural	2.5E-11	3.1E-11	1.7E-11	1.1E-11	4.1E-12	8.0E-14	2.9E-14	4.1E-15	1.1E-15	3.2E-16			
Import, Import -		Urban	3.0E-11	3.5E-11	2.0E-11	1.2E-11	4.4E-12	8.8E-14	3.2E-14	4.5E-15	1.2E-15	3.9E-16			
Repackaging, PV2: Harwick Standard	High-End	Rural	6.6E-11	4.1E-11	2.2E-11	1.3E-11	4.5E-12	9.5E-14	3.2E-14	4.4E-15	1.3E-15	5.0E-16			
Distribution Corp.		Urban	6.7E-11	4.2E-11	2.2E-11	1.3E-11	4.5E-12	9.6E-14	3.2E-14	4.5E-15	1.3E-15	5.1E-16			
Manufacturing -	Central	Rural	6.5E-11	7.7E-11	4.5E-11	2.9E-11	1.1E-11	2.3E-13	8.2E-14	1.2E-14	3.2E-15	1.1E-15			
Import, Import -	Tendency	Urban	7.7E-11	8.8E-11	5.0E-11	3.1E-11	1.2E-11	2.5E-13	8.8E-14	1.3E-14	3.6E-15	1.3E-15			
Repackaging, PV3:	High End	Rural	1.6E-10	1.0E-10	5.5E-11	3.2E-11	1.2E-11	2.6E-13	8.4E-14	1.2E-14	3.5E-15	1.4E-15			
Tremco Incorporated	rign-End	Urban	1.7E-10	1.0E-10	5.6E-11	3.2E-11	1.2E-11	2.6E-13	8.5E-14	1.2E-14	3.5E-15	1.4E-15			
Manufacturing -	Central	Rural	8.2E-12	1.0E-11	5.8E-12	3.7E-12	1.4E-12	2.7E-14	9.7E-15	1.4E-15	3.6E-16	1.1E-16			
Import, Import -	Tendency	Urban	1.0E-11	1.2E-11	6.7E-12	4.1E-12	1.5E-12	2.9E-14	1.1E-14	1.5E-15	4.1E-16	1.3E-16			
Repackaging, PV4: Akrochem Corp.	High-End	Rural	2.2E-11	1.4E-11	7.3E-12	4.3E-12	1.5E-12	3.2E-14	1.1E-14	1.5E-15	4.3E-16	1.7E-16			
Akrochem Corp.	rigii-Elia	Urban	2.3E-11	1.4E-11	7.4E-12	4.3E-12	1.5E-12	3.2E-14	1.1E-14	1.5E-15	4.4E-16	1.7E-16			
Non-PVC Plastic Compounding	Central	Rural	4.9E-02	4.4E-02	2.8E-02	2.0E-02	1.0E-02	9.8E-04	3.6E-04	6.7E-05	1.8E-05	4.8E-06			
	Tendency	Urban	8.6E-02	5.7E-02	3.4E-02	2.1E-02	8.6E-03	4.3E-04	1.4E-04	3.1E-05	9.8E-06	3.0E-06			
	High End	Rural	9.7E-02	6.0E-02	3.8E-02	2.7E-02	1.5E-02	1.2E-03	4.1E-04	7.5E-05	2.0E-05	5.1E-06			
	High-End	Urban	1.5E-01	7.1E-02	4.1E-02	2.4E-02	9.7E-03	5.0E-04	1.6E-04	3.4E-05	1.0E-05	3.2E-06			
Non-PVC Plastic	Central	Rural	1.3E-03	1.2E-03	7.7E-04	5.4E-04	2.8E-04	2.4E-05	9.0E-06	1.7E-06	4.4E-07	1.1E-07			

		Distance												
Scenario	Meteorology	Land	10M	30M	30-60M	60M	100M	100- 1000M	1000M	2500M	5000M	10,000M		
Converting	Tendency	Urban	2.3E-03	1.6E-03	9.1E-04	5.7E-04	2.3E-04	1.1E-05	3.7E-06	7.9E-07	2.5E-07	7.9E-08		
	III als Ea d	Rural	2.6E-03	1.6E-03	1.0E-03	7.2E-04	4.0E-04	3.0E-05	1.1E-05	2.0E-06	5.3E-07	1.3E-07		
	High-End	Urban	4.1E-03	1.9E-03	1.1E-03	6.6E-04	2.6E-04	1.3E-05	4.2E-06	8.8E-07	2.7E-07	8.2E-08		
Other Uses -	Central	Rural	2.1E-05	2.0E-05	1.2E-05	8.7E-06	4.6E-06	3.9E-07	1.5E-07	2.7E-08	7.1E-09	1.9E-09		
Inspection Fluid/Penetrant, Use	Tendency	Urban	3.7E-05	2.5E-05	1.5E-05	9.3E-06	3.8E-06	1.8E-07	6.0E-08	1.3E-08	4.1E-09	1.3E-09		
of Inspection		Rural	4.2E-05	2.6E-05	1.7E-05	1.2E-05	6.4E-06	4.9E-07	1.7E-07	3.2E-08	8.6E-09	2.1E-09		
Fluid/Penetrant (Aerosol)	High-End	Urban	6.6E-05	3.1E-05	1.8E-05	1.1E-05	4.2E-06	2.1E-07	6.8E-08	1.4E-08	4.3E-09	1.3E-09		
Other Uses -	Central	Rural	2.0E-11	1.9E-11	1.2E-11	8.3E-12	4.4E-12	3.7E-13	1.4E-13	2.6E-14	6.8E-15	1.8E-15		
Inspection Fluid/Penetrant, Use	Tendency	Urban	3.5E-11	2.4E-11	1.4E-11	8.8E-12	3.6E-12	1.7E-13	5.7E-14	1.2E-14	3.9E-15	1.2E-15		
of Inspection	High-End	Rural	4.0E-11	2.5E-11	1.6E-11	1.1E-11	6.1E-12	4.7E-13	1.6E-13	3.1E-14	8.2E-15	2.0E-15		
Fluid/Penetrant Non-Aerosol)		Urban	6.3E-11	3.0E-11	1.7E-11	1.0E-11	4.0E-12	2.0E-13	6.5E-14	1.4E-14	4.1E-15	1.3E-15		
Paint and Coating	Central	Rural	7.0E-11	6.6E-11	4.2E-11	2.9E-11	1.5E-11	1.3E-12	4.9E-13	9.0E-14	2.4E-14	6.2E-15		
Manufacturing, Processing -	Tendency	Urban	1.3E-10	8.4E-11	4.9E-11	3.1E-11	1.3E-11	5.9E-13	2.0E-13	4.3E-14	1.4E-14	4.3E-15		
Incorporation into		Rural	1.4E-10	8.8E-11	5.6E-11	3.9E-11	2.1E-11	1.7E-12	5.8E-13	1.1E-13	2.9E-14	7.1E-15		
formulation, mixture, or reaction product	High-End	Urban	2.2E-10	1.1E-10	6.0E-11	3.6E-11	1.4E-11	6.9E-13	2.3E-13	4.8E-14	1.5E-14	4.5E-15		
	Central	Rural	1.0E00	9.7E-01	6.1E-01	4.3E-01	2.3E-01	1.9E-02	7.2E-03	1.3E-03	3.5E-04	9.1E-05		
Plastic Compounding	Tendency	Urban	1.8E00	1.2E00	7.3E-01	4.6E-01	1.9E-01	8.7E-03	3.0E-03	6.3E-04	2.0E-04	6.3E-05		
Plastic Compounding	High-End	Rural	2.1E00	1.3E00	8.3E-01	5.8E-01	3.2E-01	2.4E-02	8.5E-03	1.6E-03	4.3E-04	1.0E-04		
	підп-спа	Urban	3.3E00	1.6E00	8.8E-01	5.2E-01	2.1E-01	1.0E-02	3.4E-03	7.0E-04	2.1E-04	6.6E-05		
	Central	Rural	4.7E-02	4.5E-02	2.8E-02	2.0E-02	1.0E-02	8.9E-04	3.3E-04	6.1E-05	1.6E-05	4.2E-06		
Plastic Converting	Tendency	Urban	8.5E-02	5.7E-02	3.4E-02	2.1E-02	8.6E-03	4.0E-04	1.4E-04	2.9E-05	9.4E-06	2.9E-06		
	High-End	Rural	9.5E-02	6.0E-02	3.8E-02	2.7E-02	1.5E-02	1.1E-03	3.9E-04	7.3E-05	2.0E-05	4.8E-06		
		Urban	1.5E-01	7.1E-02	4.1E-02	2.4E-02	9.7E-03	4.7E-04	1.6E-04	3.2E-05	9.8E-06	3.0E-06		
Processing -	Central	Rural	1.6E-11	1.9E-11	1.1E-11	7.0E-12	2.6E-12	5.0E-14	1.8E-14	2.6E-15	6.7E-16	2.0E-16		
Repackaging, Import	Tendency	Urban	1.9E-11	2.2E-11	1.3E-11	7.7E-12	2.8E-12	5.5E-14	2.0E-14	2.9E-15	7.7E-16	2.5E-16		

							Distance	e				
Scenario	Meteorology	Land	10M	30M	30-60M	60M	100M	100- 1000M	1000M	2500M	5000M	10,000M
- Repackaging,	High End	Rural	4.1E-11	2.6E-11	1.4E-11	8.0E-12	2.8E-12	6.0E-14	2.0E-14	2.8E-15	8.1E-16	3.1E-16
Average PV CAS 1	High-End	Urban	4.2E-11	2.6E-11	1.4E-11	8.1E-12	2.9E-12	6.1E-14	2.0E-14	2.8E-15	8.2E-16	3.2E-16
Processing -	Central	Rural	2.4E-08	2.2E-08	1.4E-08	1.0E-08	5.3E-09	4.7E-10	1.7E-10	3.2E-11	8.7E-12	2.3E-12
Repackaging, Import	Tendency	Urban	4.3E-08	2.9E-08	1.7E-08	1.1E-08	4.4E-09	2.1E-10	7.1E-11	1.5E-11	4.8E-12	1.5E-12
- Repackaging,	Iliah End	Rural	4.8E-08	3.0E-08	1.9E-08	1.4E-08	7.4E-09	5.8E-10	2.0E-10	3.7E-11	1.0E-11	2.5E-12
Average PV CAS 2	High-End	Urban	7.5E-08	3.6E-08	2.1E-08	1.2E-08	4.9E-09	2.4E-10	8.0E-11	1.7E-11	5.0E-12	1.6E-12
Processing -	Central	Rural	5.3E-12	7.8E-12	4.5E-12	2.9E-12	1.1E-12	1.7E-14	6.0E-15	6.4E-16	1.1E-16	1.5E-17
Repackaging, Import	Tendency	Urban	7.03E-12	9.5E-12	5.2E-12	3.3E-12	1.2E-12	1.9E-14	7.0E-15	8.2E-16	1.6E-16	2.8E-17
- Repackaging, PV4: Akrochem Corp. (CT High-End	Iliah End	Rural	1.88E-11	1.19E-11	6.16E-12	3.65E-12	1.28E-12	2.23E-14	8.04E-15	1.06E-15	2.73E-16	9.03E-17
Release)	Ingn-End	Urban	1.92E-11	1.21E-11	6.27E-12	3.69E-12	1.29E-12	2.26E-14	8.16E-15	1.07E-15	2.79E-16	9.17E-17
	Central Tendency	Rural	2.8E-11	3.5E-11	2.0E-11	1.3E-11	4.6E-12	9.0E-14	3.3E-14	4.6E-15	1.2E-15	3.7E-16
Processing - Repackaging, Import		Urban	3.4E-11	4.0E-11	2.3E-11	1.4E-11	5.0E-12	9.9E-14	3.6E-14	5.1E-15	1.4E-15	4.4E-16
- Repackaging, PV5:	Iliah End	Rural	7.4E-11	4.6E-11	2.5E-11	1.4E-11	5.1E-12	1.1E-13	3.6E-14	5.0E-15	1.5E-15	5.6E-16
Chemspec, Ltd.	High-End	Urban	7.6E-11	4.7E-11	2.5E-11	1.5E-11	5.1E-12	1.1E-13	3.7E-14	5.0E-15	1.5E-15	5.8E-16
Use of Adhesives	Central Tendency	Rural	1.3E-10	1.2E-10	7.3E-11	5.1E-11	2.7E-11	2.5E-12	8.9E-13	1.7E-13	4.7E-14	1.2E-14
and Sealants, Use of		Urban	2.3E-10	1.4E-10	8.5E-11	5.3E-11	2.2E-11	1.1E-12	3.7E-13	7.9E-14	2.5E-14	7.9E-15
Adhesives and	Iliah End	Rural	2.5E-10	1.5E-10	9.6E-11	6.6E-11	3.7E-11	3.1E-12	1.1E-12	1.9E-13	5.2E-14	1.3E-14
Sealants	High-End	Urban	3.8E-10	1.8E-10	1.0E-10	6.0E-11	2.5E-11	1.3E-12	4.1E-13	8.5E-14	2.7E-14	8.2E-15
	Central	Rural	2.9E-11	2.7E-11	1.7E-11	1.2E-11	6.3E-12	5.9E-13	2.1E-13	4.0E-14	1.1E-14	2.9E-15
Use of Paints and	Tendency	Urban	5.2E-11	3.4E-11	2.0E-11	1.3E-11	5.2E-12	2.6E-13	8.6E-14	1.8E-14	5.9E-15	1.8E-15
Coatings, Use of Paints and Coatings	Iliah End	Rural	5.8E-11	3.6E-11	2.3E-11	1.6E-11	8.9E-12	7.2E-13	2.5E-13	4.5E-14	1.2E-14	3.1E-15
	High-End	Urban	9.0E-11	4.3E-11	2.5E-11	1.5E-11	5.9E-12	3.0E-13	9.7E-14	2.0E-14	6.2E-15	1.9E-15
Use of Paints and	Central	Rural	2.9E-11	2.6E-11	1.7E-11	1.2E-11	6.2E-12	5.8E-13	2.1E-13	4.0E-14	1.1E-14	2.8E-15
Coatings, Use of Paints and Coatings	Tendency	Urban	5.2E-11	3.4E-11	2.0E-11	1.3E-11	5.1E-12	2.6E-13	8.6E-14	1.8E-14	5.8E-15	1.8E-15
		Rural	5.8E-11	3.6E-11	2.3E-11	1.6E-11	8.8E-12	7.2E-13	2.5E-13	4.5E-14	1.2E-14	3.1E-15
	High-End	Urban	9.0E-11	4.3E-11	2.5E-11	1.4E-11	5.8E-12	3.0E-13	9.6E-14	2.0E-14	6.2E-15	1.9E-15
Summary Sta	tistics	Max	3.3E00	1.6E00	8.8E-01	5.8E-01	3.2E-01	2.4E-02	8.5E-03	1.6E-03	4.3E-04	1.0E-04

			Distance												
Scenario	Meteorology	Land	10M	30M	30-60M	60M	100M	100- 1000M	1000M	2500M	5000M	10,000M			
		Mean	1.0E-01	6.3E-02	3.8E-02	2.5E-02	1.2E-02	7.8E-04	2.7E-04	5.3E-05	1.5E-05	4.0E-06			
		Median	1.7E-10	1.1E-10	6.6E-11	4.5E-11	2.2E-11	1.3E-12	4.2E-13	8.8E-14	2.6E-14	7.5E-15			
		Min	8.2E-12	1.0E-11	5.8E-12	3.7E-12	1.4E-12	2.7E-14	9.7E-15	1.4E-15	3.6E-16	1.1E-16			

2299 2300

2301 Table_Apx C-11. DIDP 95th Percentile Daily Deposition Rate (g/m²) Modeled from High-End Stack Release Source

							Distance					
Scenario	Meteorology	Land	10M	30M	30-60M	60M	100M	100- 1000M	1000M	2500M	5000M	10000M
	Central	Rural	8.7E-13	8.6E-13	2.1E-12	3.5E-12	6.3E-12	9.7E-13	4.4E-13	1.3E-13	7.5E-14	4.7E-14
Adhesive Sealant	Tendency	Urban	2.0E-12	3.1E-12	4.4E-12	5.7E-12	7.9E-12	1.1E-12	5.3E-13	1.5E-13	5.4E-14	1.9E-14
Manufacturing Processing	High-End	Rural	2.1E-12	1.0E-12	3.1E-12	5.1E-12	8.2E-12	1.5E-12	6.0E-13	2.3E-13	1.5E-13	6.3E-14
		Urban	3.7E-12	3.2E-12	5.8E-12	7.8E-12	1.0E-11	1.6E-12	7.2E-13	1.9E-13	6.3E-14	2.0E-14
Commercial Uses	Central	Rural	3.0E-09	2.6E-09	6.3E-09	1.1E-08	1.9E-08	2.9E-09	1.3E-09	4.0E-10	2.3E-10	1.5E-10
	Tendency	Urban	6.3E-09	9.3E-09	1.3E-08	1.7E-08	2.4E-08	3.4E-09	1.6E-09	4.6E-10	1.7E-10	5.7E-11
Laboratory Chemicals_Scenario 2	High-End	Rural	6.5E-09	3.1E-09	9.3E-09	1.5E-08	2.4E-08	4.5E-09	1.8E-09	7.0E-10	4.5E-10	1.9E-10
		Urban	1.2E-08	9.8E-09	1.7E-08	2.3E-08	3.1E-08	4.9E-09	2.2E-09	5.7E-10	1.9E-10	6.0E-11
	Central	Rural	5.8E-04	1.8E-03	7.8E-03	1.6E-02	3.4E-02	4.2E-03	1.8E-03	4.1E-04	1.6E-04	6.8E-05
Domestic Manufacturing,	Tendency	Urban	1.5E-03	8.2E-03	2.1E-02	3.1E-02	4.7E-02	4.7E-03	2.0E-03	4.9E-04	1.8E-04	6.7E-05
Manufacturing, Average PV	II'sh Esd	Rural	2.8E-03	4.0E-03	1.8E-02	3.4E-02	5.5E-02	6.2E-03	2.3E-03	5.1E-04	2.0E-04	7.4E-05
	High-End	Urban	4.3E-03	1.3E-02	3.3E-02	4.9E-02	6.6E-02	6.5E-03	2.4E-03	5.3E-04	1.9E-04	7.2E-05
	Central	Rural	9.5E-10	1.4E-07	1.3E-06	4.0E-06	1.1E-05	1.2E-06	4.8E-07	6.9E-08	1.9E-08	6.9E-09
Domestic Manufacturing, Manufacturing, PV6: Troy	Tendency	Urban	1.6E-09	2.6E-07	2.2E-06	5.8E-06	1.4E-05	1.4E-06	5.4E-07	8.2E-08	2.3E-08	7.9E-09
Chemical Corp. Phoenix	High-End	Rural	1.5E-07	6.9E-07	4.5E-06	9.7E-06	1.9E-05	1.7E-06	5.8E-07	8.0E-08	2.3E-08	8.6E-09
Ĩ	підп-Епа	Urban	1.7E-07	7.5E-07	4.9E-06	1.0E-05	2.0E-05	1.7E-06	5.9E-07	8.1E-08	2.3E-08	9.0E-09
articles not covered elsewhere, Processing -	Central	Rural	5.4E-12	5.3E-12	1.3E-11	2.2E-11	3.9E-11	6.0E-12	2.7E-12	8.0E-13	4.6E-13	2.9E-13
	Tendency	Urban	1.2E-11	1.9E-11	2.7E-11	3.5E-11	4.9E-11	7.0E-12	3.3E-12	9.2E-13	3.4E-13	1.1E-13
	High-End	Rural	1.3E-11	6.3E-12	1.9E-11	3.1E-11	5.1E-11	9.2E-12	3.7E-12	1.4E-12	9.3E-13	3.9E-13
		Urban	2.3E-11	2.0E-11	3.6E-11	4.8E-11	6.4E-11	1.0E-11	4.5E-12	1.2E-12	3.9E-13	1.2E-13

							Distance					
Scenario	Meteorology	Land	10M	30M	30-60M	60M	100M	100- 1000M	1000M	2500M	5000M	10000M
reaction product												
Paint and Coating	Central	Rural	5.5E-14	5.5E-14	1.3E-13	2.2E-13	4.0E-13	6.2E-14	2.8E-14	8.3E-15	4.8E-15	3.0E-15
Manufacturing, Processing -	Tendency	Urban	1.3E-13	2.0E-13	2.8E-13	3.7E-13	5.1E-13	7.2E-14	3.4E-14	9.5E-15	3.5E-15	1.2E-15
Incorporation into formulation, mixture, or	High End	Rural	1.3E-13	6.5E-14	2.0E-13	3.2E-13	5.2E-13	9.5E-14	3.8E-14	1.5E-14	9.6E-15	4.0E-15
reaction product	High-End	Urban	2.4E-13	2.1E-13	3.7E-13	5.0E-13	6.6E-13	1.1E-13	4.6E-14	1.2E-14	4.0E-15	1.3E-15
	Central	Rural	4.0E-05	2.4E-05	5.4E-05	8.5E-05	1.5E-04	2.5E-05	1.1E-05	3.3E-06	1.9E-06	1.3E-06
Use of Paints and Coatings,	Tendency	Urban	7.0E-05	8.4E-05	1.1E-04	1.4E-04	1.9E-04	2.8E-05	1.3E-05	3.7E-06	1.4E-06	4.6E-07
Use of Paints and Coatings	High End	Rural	7.1E-05	3.0E-05	8.2E-05	1.3E-04	2.0E-04	3.8E-05	1.6E-05	5.8E-06	3.7E-06	1.6E-06
	High-End	Urban	1.2E-04	8.5E-05	1.4E-04	1.9E-04	2.5E-04	4.1E-05	1.8E-05	4.6E-06	1.5E-06	4.9E-07
	· · ·		4.3E-03	1.3E-02	3.3E-02	4.9E-02	6.6E-02	6.5E-03	2.4E-03	5.3E-04	2.0E-04	7.4E-05
Summary Statistics		Mean	3.4E-04	9.6E-04	2.9E-03	4.6E-03	7.2E-03	7.7E-04	3.1E-04	7.0E-05	2.7E-05	1.0E-05
		Median	2.3E-09	6.2E-09	1.1E-08	1.6E-08	2.4E-08	3.9E-09	1.7E-09	5.1E-10	2.1E-10	1.1E-10
		Min	5.5E-14	5.5E-14	1.3E-13	2.2E-13	4.0E-13	6.2E-14	2.8E-14	8.3E-15	3.5E-15	1.2E-15

2303 C.3 Air Deposition to Surface Water and Sediment

2304

C.3.1 Modeling Results for Air Deposition to Surface Water

AERMOD modeled deposition rates were also used in conjunction with the Point Source Calculator to 2305 2306 estimate DIDP concentrations in surface water and sediment. Direct deposition of DIDP to surface water 2307 from air releases were evaluated using deposition rates derived from the modeling described in Section 8.3 and the PSC methodology described in Section 4.1. As noted in Section 4.1, the standard EPA 2308 2309 waterbody applied for the modeling has a surface of 5 m by 40 m, resulting in a surface area of 200 m². Area deposition rates estimated by AERMOD were multiplied by this surface area to generate localized 2310 2311 loading values applied as point sources in PSC, for comparison with direct releases to surface water. 2312 Deposition rates were highest across the Plastic Compounding COU, and the highest deposition values 2313 at each radial distance for that COU were included in this analysis as a screening exercise.

2314

2315 Table_Apx C-12 shows the deposition rates and associated water column, pore water, and sediment

concentrations in the receiving waterbody, applying a 7Q10 flow rate. The highest resulting

concentrations occurred at the 10 m distance from the modeled facility and decreased with greater

distance from the facility. The highest concentrations estimated due to air deposition at 10 m are less
than half of the lowest concentrations estimated from direct, untreated facility releases reported in Table

2320

4-4.

2321

		Distance												
	10M	30M	30-60M	60M	100 M	100-1000M	1000M	2500M	5000M	10000M				
Max Deposition Rate (g/m ² /day)	3.3E00	1.6E00	8.8E-01	5.8E-01	3.2E-01	2.4E-02	8.5E-03	1.6E-03	4.3E-04	1.0E-04				
Total Deposition over 200 m ² (kg/day)	6.52E-01	3.10E-01	1.76E-01	1.15E-01	6.30E-02	4.86E-03	1.71E-03	3.16E-04	8.52E-05	2.08E-05				
			Media con	centrations	in receiving	g waterbody a	t distance							
Water Column (µg/L)	3.66E01	1.74E01	9.88E00	6.48E00	3.54E00	2.73E-01	9.57E-02	1.77E-02	4.78E-03	1.17E-03				
Pore Water (µg/L)	2.33E01	1.11E01	6.30E00	4.13E00	2.26E00	1.74E-01	6.11E-02	1.13E-02	3.05E-03	7.45E-04				
Sediment (µg/kg)	1.35E05	6.44E04	3.66E04	2.40E04	1.31E04	1.01E03	3.54E02	6.56E01	1.77E01	4.32E00				

2322 Table_Apx C-12. Modeling Results for Air Deposition to Surface Water

2323 C.3.2 Measured Concentrations in Precipitation

2324 Peters et al. (2008) reported DIDP concentrations within precipitation collected from 47 locations in the 2325 Netherlands and 3 three sites in Germany. DIDP was detected in 3 of the 50 collection sites with median 2326 and maximum concentrations of $<0.1 \mu g/L$ and 98.4 $\mu g/L$, respectively. The other nine phthalates 2327 analyzed within the same study were reported at equal to or greater than 44 of the 50 total sites.