Computational Toxicology and Exposure Communities of Practice

Sharing research and promoting collaboration

Thursday, May 23, 11 AM-12 PM ET

Agenda:

- Introduction: Sammy Hanf Communications Specialist, ORD Center for Computational Toxicology and Exposure
- Presentation: Jennifer Olker
 Biologist, ORD Center for Computational
 Toxicology and Exposure
- Q&A
- Closing remarks: Sammy Hanf

For more information on the CompTox CoP, visit: epa.gov/chemical-research/computational-toxicology-communities-practice ECOTOXicology Knowledgebase: Update with Ecologically Relevant Data for Emerging Contaminants

Jennifer Olker Physical Scientist, ORD Center for Computational Toxicology and Exposure

ECOTOXicology Knowledgebase: Update with Ecologically Relevant Data for Emerging Contaminants

Jennifer H. Olker USEPA Office of Research and Development Center for Computational Toxicology and Exposure

USEPA CompTox Communities of Practice May 23, 2024

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the US EPA.

Outline

- What is the ECOTOXicology Knowledgebase?
- Overview of literature search and data curation pipeline
- Examples of updates for several contaminants of emerging and immediate concern
 - Per- and Polyfluoroalkyl substances (PFAS)
 - 6PPD-quinone
 - Cyanotoxins

Background of ECOTOX

Background and History

• Ecological risk assessors need cost-effective methods to locate high-quality ecological toxicity data **DIVERSITY OF SPECIES** MULTIPLE PUBLICATIONS

- US EPA developed ecological toxicity databases
 - AQUatic toxicity Information Retrieval (AQUIRE) database (Duluth, MN lab)
 - PHYTOTOX (Corvallis, OR lab)
 - TERRETOX (Corvallis, OR lab)

Science of the Total Environ

ate (PFOS) but not per

'uces chronic toxici

Exposure to perfluo

Background and History

 Ecological risk assessors need cost-effect methods to locate high-quality ecological toxicity data

<u>Ambient Water Quality Criteria</u> for Aquatic Life (USEPA Office of Water)

National Recommended Aquatic Life Criteria table

Pollutant (P = Priority ↑ Pollutant)	CAS Number \$	Freshwater <u>CMC¹</u> (acute) (µg/L)	Freshwater CCC ² (chronic) (µg/L)	Saltwater <u>CMC</u> ¹ (acute) (µg/L)	Saltwater CCC ² (chronic) (µg/L)	Publication Year	Notes
<u>1,4'-DDT</u> (P)	50293	1.1	0.001	0.13	0.001	1980	
Acrolein (P)	107028	3ug/L	3ug/L	-	-	2009	Aquatic Life Ambient Water Quality
Aesthetic Qualities	-	-	-	-	-	1986	Refer to Quality Criterion Book") for narrative steps
A <u>ldrin</u> (P)	309002	3.0	-	1.3	-	1980	These criteria and a Selenium – Freshwater whed different films evaluation procession evaluations is to local the acute criteria in the dotter cr

Another Control of the control of th

<u>Ecological Risk Assessment</u> for chemical registration and re-registration (USEPA Office of Pesticide Programs)

U.S. Environmental Protection Agence Office of Water

Office of Science and Technolog

Ecological hazard data for the <u>Prioritization and</u> <u>Assessment of Chemicals</u> for Toxic Substances

Control Act/Lautenberg Act (USEPA Office of Pollution Prevention and Toxics)

Ecological Site Assessments and in <u>Emergency Response</u>

(USEPA Office of Land and Emergency Management - Superfund and Resource Conservation and Recovery Act; Regions and States).

What is the ECOTOX Knowledgebase?

- From comprehensive search and review of open and grey literature
- Chemical-based literature searches
- Accessible, structured empirical data from *in vivo* toxicity tests
- Updated quarterly to public website
- 30+ year history

ECOTOX Kno	wledgebase	Home	Search	Explore	Help	Contact Us
Data last updated Mar 14, 2024	Recent chemicals with full searches completed a Arsenic Rec. and Bolyfluoroalky! Substances (REAS)	nd data extracted Phthalates			Total in database 12,934 Chemicals	13,915 Species
See update totals	Fel- and Folyndoloaikyi Substances (FFAS)				54,475 References	1,167,326 Results

About ECOTOX ECOTOX is a comprehensive Knowledgebase providing single chemical environmental toxicity data on aquatic and terrestrial species. Read more in: <u>Olker et al. 2022</u>

Learn More

ANOWLEDGE ST

Getting Started

- Use <u>Search</u> if you know exact parameters or search terms (chemical, species, etc.)
- Use <u>Explore</u> to see what data may be available in ECOTOX (including data plots)
- ECOTOX Quick User Guide (2 pp, 104 K)
- ECOTOX User Guide (100 pp, 735 K)
- ECOTOX Terms Appendix

Other Links

ECOTOX-related documentation and resources.

- Frequent Questions
- <u>Limitations</u>
- Other Tools/Databases
- <u>Recent Additions</u>
- Literature Search Dates

www.epa.gov/ecotox

Applications of ECOTOX

Chemical environmental toxicity data for aquatic and terrestrial organisms

KNOWLED

Data linked to

EPA Program Offices and Regions,

States, Tribes, Other Federal Agencies

and International Entities

Ecological Risk Assessments Ambient Water Quality Criteria Ecological Screening Values Chemical Prioritization Emergency Response

Tools and Applications

Species Sensitivity Distributions Predicted No-Effect Concentrations and Eco-Thresholds for Toxicological Concern Quantitative Structure–Activity Relationships Bioaccumulation Factor Modeling and Validation Adverse Outcome Pathway Development

Databases/Resources

Chemical-based Search Terms*

- Chemical name and CASRN
- Synonyms, tradenames
- Other relevant forms

Literature Search

Use chemical-specific search terms to query multiple literature search engines.

* 40-90 searches conducted per year, not possible to update data for all chemicals each year

Title/Abstract Screening

- Full Text Review
- Established applicability (inclusion) criteria
- Documentation of exclusion reason

Data Extraction

- ECOTOX-specific Controlled Vocabularies
 - Test chemical
 - Test organism
 - Study methods and test conditions
 - Toxicity results
- Updated to public website, with downloadable outputs

Chemical-based Search Terms

- Verify CASRN
- Search various sources for chemical terms
 - STN
 - Pesticide Action Network
 - EPA's Pesticide Fate Database
 - EPA's Chemicals Dashboard
- Synonyms
- Eliminate poor search terms
- Develop search string

Tak(Acilid OR Albrass OR Bexton OR "CP 31393" OR "Kartex A" OR Muharicid OR Niticid OR Propachlor OR Propachlore OR Ramrod OR Satecid OR "US EPA PC Code 019101")

Chemical-based Literature Searches

Search Engines

- 1. Scopus/Science Direct
- 2. ProQuest
- 3. Web of Science
- 4. PubAg or AGRICOLA
- 5. PubMed, Toxline/TOXNET (opt.)
- 6. Dissertation Abstracts

- Established applicability (inclusion) criteria which can be expressed as PECO statement
- Documentation of exclusion reason

Inclusion Criteria

Identify and acquire potentially applicable studies

Review literature for applicability

	Key Area	Data Requirement	applicable studi
P (Population)	Species	 Taxonomically verifiable, ecologically-relevant organisms (including c gametes, embryos, plant cuttings) [NOT bacteria, humans, monkeys, viruses, o 	ells, organs, or yeast]
E (Exposure)	Chemical	 Single, verifiable chemical toxicants, admini an acceptable route 	istered through
	Exposure Amount (Concentration)	 Exposure amount is quantified, either as a distribution in the environment when administered via as a dosage when introduced directly into corganism, via injection, orally, or topically 	concentration soil or water, or or on the
	Exposure Duration	 Known duration from the time of initial exp time of measurement 	osure to the
C (Comparator/ Control)	Control	Must have a control treatment	
O (Outcome)	Effect	 Biological effect measured Effect concurrent with associated chemical 	exposure
	Publication Type	 Primary source of the data [NOT a Review] Study must be a full article in English 	

Adapted from Olker et al. 2022

Data Extraction

- ECOTOX Data Fields consist of ~90 entities
- ECOTOX-specific Controlled Vocabularies
- Developed from 30+ years reviewing the ecotoxicological literature
- Custom GUI designed for ECOTOX data extraction
 - Computationally-assisted forms constrained to controlled vocabularies

Data Extraction Example of multiple ECOTOX records from a single study:

Journal of Environmental Sciences Volume 22, Issue 5, 2010, Pages 744-751

Thyroid disruption by technical decabromodiphenyl ether (DE-83R) at low concentrations in *Xenopus laevis*

NOEC = No Observed Effect Level LOEC = Lowest Observed Effect Level NR = Not Reported

ECOTOX Data Fields

Category	ECOTOX data fields (examples)	
Chemical	Chemical identifier (CASRN, DTXSID)	
	Chemical Analysis	
	Chemical Formulation & Grade	
	 Concentration(s)/Dose(s) tested 	
Species	 Species identifiers (ITIS TSN, NCBI TaxID, Taxonomy) 	
	Life stage, Age, Sex	
	Organism Source	
Study Methods &	Experimental design	
	Control(s)	
Test	Test location and method	
conditions	Exposure type, route, and media	
	Study and exposure duration	
	 Physical and Chemical Soil and Water Parameters (e.g., pH, Temperature, Dissolved Oxygen) 	
Test Results	 Specific Effect Measured (with higher-level groups) 	
	Calculated Endpoint	
	 Concentration associated with effect and endpoint 	
	 Response site (e.g., whole organism, specific organ or body part) 	
	 Statistical significance and level of response 	4

Extract study and toxicity data

* ECOTOX Data Fields

https://cfpub.epa.gov/ecot ox/help.cfm?sub=widefinitions

* ECOTOX Vocabularies:

https://cfpub.epa.gov/ecot ox/help.cfm?sub=termappendix

Supporting Study Evaluation and Data Synthesis

- ECOTOX inclusion criteria overlaps with standard study evaluation questions
- ECOTOX data fields for study design, test conditions, and results inform detailed study evaluation
- Multiple output options for further analysis and synthesis

ECOTOX: www.epa.gov/ecotox

ECOTOX Knowledgebase		Home	Search	Explore	Help	Contact Us
Data last updated Mar 14, 2024	Recent chemicals with full searches completed Arsenic	and data extracted Phthalates			Total in database 12,934 Chemicals	13,915 Species
See update totals	Per- and Polyfluoroalkyl Substances (PFAS	5)			54,475 References	1,167,326 Results

About ECOTOX

ECOTOX is a comprehensive Knowledgebase providing single chemical environmental toxicity data on aquatic and terrestrial species. Read more in: Olker et al. 2022

Learn More

Getting Started

- Use <u>Search</u> if you know exact parameters or search terms (chemical, species, etc.)
- Use <u>Explore</u> to see what data may be available in ECOTOX (including data plots)
- ECOTOX Quick User Guide (2 pp, 104 K)
- **ECOTOX User Guide** (100 pp, 735 K)
- ECOTOX Terms Appendix

Other Links

ECOTOX-related documentation and resources.

- Frequent Questions
- Limitations
- Other Tools/Databases
- <u>Recent Additions</u>
- Literature Search Dates

Recent Updates

Applying ECOTOX Data Curation Pipeline to PFAS

https://cfpub.epa.gov/ecotox/explore.cfm?cgid=36

Literature searches

			# of citations					
Search	Chemical List	# of DEAS	Down	Screened at	Full-te	xt Review		
Month-Year			Loaded	Title/	Identified	New additions		
			IDaueu	Abstract	identined	to queue		
April 2018	EPA Cross-Agency from CompTox Chemicals Dashboard (CCD)	207	29,775	8,181	373	332		
Nov 2018	ToxCast Set 1 List of 75 Test Samples (50 not on above)	75	8,474	472	15	14		
July 2019	<u>Annual Search</u> : All above + EPA Research List (CCD) + ToxCast Set 2 List of 75	322	88,688	6,425	97	73		
Oct 2019	ToxCast Replacement Test Samples (23 not in above)	36	1,109	137	3	3		
Jan 2020	PFAS Quarterly Update ^a	24	15,695	615	18	16		
April 2020	PFAS Quarterly Update ^a	24	18,831	3,443	451	53		
July 2020	<u>Annual Search</u> ^b : All previous lists + any PFAS found in literature screening	412	451,862	136,771	3,573	392		
Oct 2020	PFAS Quarterly Update ^a	24	32,688	2,958	110	38		
Jan 2021	PFAS Quarterly Update ^a	24	30,011	3,296	94	25		
April 2021	PFAS Quarterly Update ^a	24	29,376	2,952	633	29		
July 2021	<u>Annual Search</u> ^b : All previous lists + any PFAS found in literature screening	432	601,140	38,658	1,822	1133		
Feb 2022	<u>Annual Search ^c</u> : PFAS Structure list PFASSTRUCTv4 + PFAS chemicals without explicit structures (PFASDEV1) from CCD	12,039	1,180,470	88,628	1,917	530		
Nov 2022	Supplemental search for PFAS on new PFAS Structure list (PFASSTRUCTv5) that were not in Feb 2022 search	4,149	575,987	35,112	823	118		
July 2023	<u>Annual Search</u> ^c (Refresh): PFAS Structure list (PFASSTRUCTv5) [published Jan 2021 -present]	14,735	455,113	7,498	582	446		

^a Quarterly update searches were conducted Jan 2020 – April 2021 for 24 priority PFAS. ^b Annual searches in 2020 and 2021 also included expanded set of general PFAS terms. ^c Annual searches in 2022 and 2023 included chemical names and synonyms.

Literature searches

			# of citations					
Search	Chemical List	# of DEAS	Down-	Screened at	Full-te	xt Review		
Month-Year			loaded	Title/	Identified	New additions		
			Todaca	Abstract	lacintinea	to queue		
April 2018	EPA Cross-Agency from CompTox Chemicals Dashboard (CCD)	207	29,775	8,181	373	332		
Nov 2018	ToxCast Set 1 List of 75 Test Samples (50 not on above)	75	8,474	472	15	14		
July 2019	<u>Annual Search</u> : All above + EPA Research List (CCD) + ToxCast Set 2 List of 75	322	88,688	6,425	97	73		
Oct 2019	ToxCast Replacement Test Samples (23 not in above)	36	1,109	137	3	3		
Jan 2020	PFAS Quarterly Update ^a	24	15,695	615	18	16		
April 2020	PFAS Quarterly Update ^a	24	18,831	3,443	451	53		
Feb 2022	<u>Annual Search ^c</u> : PFAS Structure list PFASSTRUCTv4 + PFAS chemicals without explicit structures (PFASDEV1) from CCD	12,039	1,180,470	88,628	1,917	530		
Nov 2022	Supplemental search for PFAS on new PFAS Structure list (PFASSTRUCTv5) that were not in Feb 2022 search	4,149	575,987	35,112	823	118		
July 2023	<u>Annual Search</u> ^c (Refresh): PFAS Structure list (PFASSTRUCTv5) [published Jan 2021 -present]	14,735	455,113	7,498	582	446		

^a Quarterly update searches were conducted Jan 2020 – April 2021 for 24 priority PFAS. ^b Annual searches in 2020 and 2021 also included expanded set of general PFAS terms. ^c Annual searches in 2022 and 2023 included chemical names and synonyms.

Priority PFAS (n=24)

Analyte Name	Acronym	CASRN linear	Application
Perfluorotetradecanoic acid	PFTreA	376-06-7	
Perfluorotridecanoic acid	PFTriA	72629-94-8	
Perfluorododecanoic acid	PFDoA	307-55-1	
Perfluoroundecanoic acid	PFUnA	2058-94-8	
Perfluorodecanoic acid	PFDA	335-76-2	DoD ESV ^a
Perfluorononanoic acid	PFNA	375-95-1	DoD ESV
Perfluorooctanoic acid	PFOA	335-67-1	DoD ESV; OW ^b
Perfluoroheptanoic acid	PFHpA	375-85-9	
Perfluorohexanoic acid	PFHxA	307-24-4	DoD ESV
Perfluoropentanoic acid	PFPeA	2706-90-3	
Perfluorobutyric acid	PFBA	375-22-4	DoD ESV
Perfluorodecanesulfonic acid	PFDS	335-77-3	
Perfluorononanesulfonic acid	PFNS	68259-12-1	
Perfluorooctanesulfonic acid	PFOS	1763-23-1	DoD ESV; OW ^b
Perfluoroheptanesulfonic acid	PFHpS	375-92-8	
Perfluorohexanesulfonic acid	PFHxS	355-46-4	DoD ESV
Perfluoropentanesulfonic acid	PFPeS	2706-91-4	
Perfluorobutanesulfonic acid	PFBS	375-73-5	DoD ESV
Perfluorooctanesulfonamide	PFOSA	754-91-6	
Fluorotelomer sulphonic acid 8:2	FtS 8:2	39108-34-4	
Fluorotelomer sulphonic acid 6:2	FtS 6:2	27619-97-2	
Fluorotelomer sulphonic acid 4:2	FtS 4:2	757124-72-4	
N-ethyl-N-((heptadecafluorooctyl)sulfonyl) glycine	NEtFOSAA	2991-50-6	
N-(Heptadecafluorooctylsulfonyl)-N-methylglycine	NMeFOSAA	2355-31-9	

^a Department of Defense (DoD) Ecological Screening Values (ESVs)

^b USEPA Office of Water (OW) draft criteria, included related forms for PFOA and PFOS (i.e., K-PFOS) PFAS Results

Curation available as of 3/14/2023

- >1,600 Publications
- 809 Aquatic
- 869 Terrestrial
- 360 PFAS with ecotoxicity data (PFOS, PFOA dominate)
- 813 species (aquatic and terrestrial vertebrates, invertebrates, plants)

Box size represents # of references for each chemical 25

Benchmark Derivation Applications

DoD Tri-Services ERA Work Group

- Ecological Screening Values (ESVs) for screening-level ecological risk assessments at DOD federal facilities (*Final Report Sept 2021*)
- Coordination with USEPA OLEM, OW, ORD, and Regions

https://www.denix.osd.mil/dodepa/

US EPA Office of Water

- Data for PFOS and PFOA aquatic life criteria development
 - 2022 draft criteria
 - New studies since draft
- Routine searches for additional possible ALC PFAS

https://www.epa.gov/wqc/aquatic-life-criteria-perfluorooctanoic-acid-pfoa https://www.epa.gov/wqc/aquatic-life-criteria-perfluorooctane-sulfonate-pfos

Highlighting Chemical and Taxonomic Data Needs

Data Gaps: Perfluorinated Carboxylic Acids

	PFBA		PFHA		PFOA		PFNA		PFDA	
	Acute	Chronic								
Molluscs					Х	Х		Х		Х
Crustaceans	Х			Х	Х	Х	Х	Х	Х	
Fish	Х	Х		Х	Х	Х	Х	Х	Х	Х
Worms					Х	Х				
Amphibians					Х	Х	Х		Х	
Other Invertebrates	Х		Х		Х	Х				
Insects/Spiders		Х			Х	Х		Х		
Plants						Х		Х		Х

Aquatic only

Acute: <= 96 hour exposure; Mortality; LC50, EC50

Chronic: = > 7 Days; Behavior, Development, Growth, Mortality, Population, Reproduction; all "Endpoints"

On-going Process

Prioritization of data extraction

of pending studies by type of PFAS

Category		Papers not yet received	In Full-text Screening	Acceptable for ECOTOX, but data extraction PENDING	
Standard PFAS		0	4	22	
Endocrine active compounds		0	1	17	Current
Pesticides	Aquatic or Bee studies	0	0	21	priorities
	Terrestrial – data limited	0	0	26	
	Terrestrial – 5 well-studied compounds*	8	129	512	
Anesthetics		0	0	69	
	Total		134	667	

*Flubendiamide, Hexaflumuron, Lufenuron, Cryolite, Tetraconazole

Development of systematic evidence map & manuscript

6PPD-quinone

Common tire chemical implicated in mysterious deaths of at-risk salmon

Coho salmon in urban streams have been dying in the U.S. Pacific Northwest

3 DEC 2020 · BY ERIK STOKSTAD

https://www.science.org/content/article/common-tirechemical-implicated-mysterious-deaths-risk-salmon RESEARCH

ECOTOXICOLOGY

A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon

Zhenyu Tian^{1,2}, Haoqi Zhao³, Katherine T. Peter^{1,2}, Melissa Gonzalez^{1,2}, Jill Wetzel⁴, Christopher Wu^{1,2}, Ximin Hu³, Jasmine Prat⁴, Emma Mudrock⁴, Rachel Hettinger^{1,2}, Allan E. Cortina^{1,2}, Rajshree Ghosh Biswas⁵, Flávio Vinicius Crizóstomo Kock⁵, Ronald Soong⁵, Amy Jenne⁵, Bowen Du⁶, Fan Hou³, Huan He³, Rachel Lundeen^{1,2}, Alicia Gilbreath⁷, Rebecca Sutton⁷, Nathaniel L. Scholz⁸, Jay W. Davis⁹, Michael C. Dodd³, Andre Simpson⁵, Jenifer K. McIntyre⁴, Edward P. Kolodziej^{1,2,3}*

In U.S. Pacific Northwest coho salmon (*Oncorhynchus kisutch*), stormwater exposure annually causes unexplained acute mortality when adult salmon migrate to urban creeks to reproduce. By investigating this phenomenon, we identified a highly toxic quinone transformation product of *N*-(1,3-dimethylbutyl)-*N*'-phenyl-p-phenylenediamine (6PPD), a globally ubiquitous tire rubber antioxidant. Retrospective analysis of representative roadway runoff and stormwater-affected creeks of the U.S. West Coast indicated widespread occurrence of 6PPD-quinone (<0.3 to 19 micrograms per liter) at toxic concentrations (median lethal concentration of 0.8 ± 0.16 micrograms per liter). These results reveal unanticipated risks of 6PPD antioxidants to an aquatic species and imply toxicological relevance for dissipated tire rubber residues.

https://www.science.org/doi/epdf/10.1126/science.abd6951

6PPD & 6PPD-quinone: Identification and curation of ecotoxicity results

• Identify and curate relevant ecotoxicity studies on tire rubber antioxidant 6PPD and its transformation product 6PPD-quinone.

Lit Search	# Refs reviewed	Identified by Title and Abstract	# Refs in ECOTOX
April 2021	6,129	4	2
Sept 2022 'Refresh'	1,264	13	21
Sept 2023 'Refresh'	2,364	22 (18 new)	36

- Rapid identification of recent publications:
 - Monthly reviews
 - Consultation OW & Regions

6PPD and 6PPD-quinone: 36 references, 847 records

https://cfpub.epa.gov/ecotox/explore.cfm?cas=275 4428185,793248

ECOTOX Know	ECOTOX Knowledgebase				Home Sea	rch	Explore	Help			Contac	t Us:
< Explore 🔗 Chemicals Custom Group 🛛												
Aquatic Ter	rrestrial	Group Summary	y Reco	ords Plot View					🖸 Sen	nd Query Filters to Searc	:h	
Query Filters 2 Chemicals										🖸 Expo	rt CS\	V
Select one or more of each filter to reduce the records. Chemicals are ordered by CAS Number.												
Chemicals	(2)	Showing all 2 chem	icals from 79	93248 to 2754428185								
2 Selected	~	CAS	^ c	CHEMICAL NAME	RECORDS		PUBLICATIONS	YEAR MIN		YEAR MAX		
Species Group	(8)	type to filter										
All	~	793248	6 	SPPD		404	1	7	1977	20	23	>
Class	(12)	2754428185	6 	5PPD-Quinone		443	2	5	2021	20	23	>
Order	(16)	Rows per page:	~				1-2 of 2			Previous	Ne	ext

https://cfpub.epa.gov/ecotox/explore.cfm?cas=2754428185,793248

ECOTOX Knowledgebase K Explore & Chemicals Custom Group Aquatic Terrestrial **Group Summary** 2 Chemicals **Query Filters** Select one or more of of each filter to Chemicals are ordered by CAS reduce the records. Chemicals (2) Showing **all** 2 chemicals fron 2 Selected \sim CAS type to filter ... Species Group (8) All \sim 793248 Class (12) 2754428185 All \sim Rows per page: (16) Order 20

Literature Search Dates

 $\overline{}$

 \sim

2 results						
Targeted literature searche engines (e.g., Web of Scien corresponding to the date chemical or chemical grou	es are conduct ce, Agricola, Ta indicated in th p, with some s	ed using che xNet, ProQu e fourth colu earches inclu	mical names, synonym est, etc). Chemicals lis mn. Each search is ide Iding multiple chemico	ns, and CASRNs in multiple search ted below had targeted searches ntified in the table by the requested als/CASRNs.	Search	0
Citations from these search ECOTOX. Toxicity data resu publications in ECOTOX for	hes will underg lts may take 6 a chemical du	go data abstr months or lo le to related o	chem 1,4-Benzenediamine 1,4-Benzenediamine 1,4-Benzenediamine 1,4-Benzenediamine 1,4-Benzenediamine 1,4-BENZENEDIAM 1-N-(4-Methylpentan- 2-((4-Methylpentan- 2-((4-Methylpentan- 2-((4-Methylpentan-	eet the inclusionary criteria for e, N-(1,3-dimethylbutyl)-N ⁻ -phenyl- a, N-(1,3-dimethylbutyl)-N'-phenyl- a, N~1~-(1,3-dimethylbutyl)-N~4~-phenyl- IINE, N1-(1,3-DIMETHYLBUTYL)-N4-PHENYL- h-2-yl)-4-N-phenylbenzene-1,4-diamine 2-yl)amino)-5-((phenyl-d5)amino)cyclohexane-1,4-dione 2-yl)amino)-5-(phenylamino)cyclohexa-2,5-diene-1,4-dio 2-yl)amino]-5-(phenylamino)cyclohexa-2,5-diene-1,4-dio	Export C	CSV
PROJECT	# CAS	# TERMS	2-anilino-5-(4-methy 2-anilino-5-[(4-methy 4-(1,3-Dimethylbutyl 4-(Dimethylbutylami	Ipentan-2-ylamino)cyclohexa-2,5-diene-1,4-dione ylpentan-2-yl)amino]cyclohexa-2,5-diene-1,4-dione lamino)diphenylamine no)diphenylamin		
6PPD & Degradates	- <u>3</u>	<u>93</u>	4-(Dimetriviousianin 6PPD 6PPD quinone 6PPD-quinone Accinox ZC Antage 6C	, ophenylamine	2023	>
6PPD-quinone [Show Matches]	- 2	<u>79</u>	Antigene 6C Antioxidant 4020 Antioxidant 6C Antioxidant CD 13 Antioxidant PD 2 Antozite 67		2023	>
Rows per page:	1		Antozite 67F BRN 2215491 DBDA 1-2 of 2	(continues for 2 pages)	1	Next
20 ~						

X

Contact Us

6PPD & 6PPD-quinone – 2023 Search

Problem Statement: Toxicity data of 6PPD-quinone on aquatic organisms needed for evaluation of toxicity effects, species sensitivity, and determination of mode of action.

6PPD-quinone & 6PPD: 36 refs, 847 records

Curated data available on ECOTOX: https://cfpub.epa.gov/ecotox/explore.cfm?cas=2754428185,793248

6PPD-quinone & 6PPD: 36 refs, 847 records

Curated data available on ECOTOX: https://cfpub.epa.gov/ecotox/explore.cfm?cas=2754428185,793248

6PPD-quinone & 6PPD: Mortality data

Mortality

Data available in March 2024 update

Mortality

6PPD-quinone & 6PPD: Mortality data

Example export of records – Mortality data for Fish

												_	
								Organism		Exposure	Media	Test	Number
CAS Number	Chemical Name	Chemical Grade	Chemical Analysis	Chemical Purity	Species Scientific Name	Species Common Name	Organism Lifestage	Age	Age Units	Туре	Туре	Location	of Doses
2754428185	2-[(1,3-Dimethylbutyl)amino]-5-	(phenylamino)2,5-cy	Measured	>95	Salvelinus leucomaenis	Whitespotted Char	Juvenile	<1	Year(s)	Renewal	Fresh water	Lab	6
2754428185	2-[(1,3-Dimethylbutyl)amino]-5-	(phenylamino)2,5-cy	Measured	>95	Salvelinus leucomaenis	Whitespotted Char	Juvenile	<1	Year(s)	Renewal	Fresh water	Lab	6
2754428185	2-[(1,3-Dimethylbutyl)amino]-5-	(phenylamino)2,5-cy	Measured	>95	Salvelinus leucomaenis	Whitespotted Char	Juvenile	<1	Year(s)	Renewal	Fresh water	Lab	6
2754428185	2-[(1,3-Dimethylbutyl)amino]-5-	(phenylamino)2,5-cy	Measured	>95	Salvelinus leucomaenis	Whitespotted Char	Juvenile	<1	Year(s)	Renewal	Fresh water	Lab	6
2754428185	2-[(1,3-Dimethylbutyl)amino]-5-	(phenylamino)2,5-cy	Measured	>95	Oncorhynchus masou ssp.	Cherry Salmon	Juvenile	<1	Year(s)	Renewal	Fresh water	Lab	2
2754428185	2-[(1,3-Dimethylbutyl)amino]-5-	(phenylamino)2,5-cy	Measured	>95	Oncorhynchus masou ssp.	Cherry Salmon	Juvenile	<1	Year(s)	Renewal	Fresh water	Lab	2
2754428185	2-[(1,3-Dimethylbutyl)amino]-5-	(phenylamino)2,5-cy	Measured	>95	Salvelinus leucomaenis	Whitespotted Char	Juvenile	<1	Year(s)	Renewal	Fresh water	Lab	6
2754428185	2-[(1,3-Dimethylbutyl)amino]-5-	(phenylamino)2,5-cy	Measured	>95	Salvelinus leucomaenis	Whitespotted Char	Juvenile	<1	Year(s)	Renewal	Fresh water	Lab	6
2754428185	2-[(1,3-Dimethylbutyl)amino]-5-	(phenylamino)2,5-cy	Measured	>95	Salvelinus curilus	Southern Dolly Varden	Juvenile	<1	Year(s)	Renewal	Fresh water	Lab	2
2754428185	2-[(1,3-Dimethylbutyl)amino]-5-	(phenylamino)2,5-cy	Measured	>95	Salvelinus curilus	Southern Dolly Varden	Juvenile	<1	Year(s)	Renewal	Fresh water	Lab	2
2754428185	2-[(1,3-Dimethylbutyl)amino]-5-	(phenylamino)2,5-cy	Unmeasured	>95	Salvelinus leucomaenis	Whitespotted Char	Juvenile	<1	Year(s)	Static	Fresh water	Lab	3
2754428185	2-[(1,3-Dimethylbutyl)amino]-5-	(phenylamino)2,5-cy	Measured	>95	Salvelinus leucomaenis	Whitespotted Char	Juvenile	<1	Year(s)	Renewal	Fresh water	Lab	6
2754428185	2-[(1,3-Dimethylbutyl)amino]-5-	(phenylamino)2,5-cy	Unmeasured	>95	Salvelinus curilus	Southern Dolly Varden	Juvenile	<1	Year(s)	Static	Fresh water	Lab	3
2754428185	2-[(1,3-Dimethylbutyl)amino]-5-	(phenylamino)2,5-cy	Measured	>95	Salvelinus curilus	Southern Dolly Varden	Juvenile	<1	Year(s)	Renewal	Fresh water	Lab	2
2754428185	2-[(1,3-Dimethylbutyl)amino]-5-	(phenylamino)2,5-cy	Measured	NR	Salvelinus alpinus	Arctic Char	Juvenile	~3	Year(s)	Renewal	Fresh water	Lab	2
2754428185	2-[(1,3-Dimethylbutyl)amino]-5-	(phenylamino)2,5-cy	Measured	>95	Oncorhynchus masou ssp.	Cherry Salmon	Juvenile	<1	Year(s)	Renewal	Fresh water	Lab	2
2754428185	2-[(1,3-Dimethylbutyl)amino]-5-	(phenylamino)2,5-cy	Unmeasured	>95	Oncorhynchus masou ssp.	Cherry Salmon	Juvenile	<1	Year(s)	Static	Fresh water	Lab	3
2754428185	2-[(1,3-Dimethylbutyl)amino]-5-	(phenylamino)2,5-cy	Measured	>95	Salvelinus leucomaenis	Whitespotted Char	Juvenile	<1	Year(s)	Renewal	Fresh water	Lab	6
2754428185	2-[(1,3-Dimethylbutyl)amino]-5-	(phenylamino)2,5-cy	Unmeasured	>95	Salvelinus leucomaenis	Whitespotted Char	Juvenile	<1	Year(s)	Static	Fresh water	Lab	3
2754428185	2-[(1,3-Dimethylbutyl)amino]-5-	(phenylamino)2,5-cy	Unmeasured	>98.0	Danio rerio	Zebra Danio	Embryo	<16	Cell stage	Renewal	Culture	Lab	10
2754428185	2-[(1,3-Dimethylbutyl)amino]-5-	(phenylamino)2,5-cy	Unmeasured	>98.0	Danio rerio	Zebra Danio	Embryo	<16	Cell stage	Renewal	Culture	Lab	10
2754428185	2-[(1,3-Dimethylbutyl)amino]-5-	(phenylamino)2,5-cy	Unmeasured	>98.0	Danio rerio	Zebra Danio	Embryo	<16	Cell stage	Renewal	Culture	Lab	10
2754428185	2-[(1,3-Dimethylbutyl)amino]-5-	(phenylamino)2,5-cy	Unmeasured	>98.0	Danio rerio	Zebra Danio	Embryo	<16	Cell stage	Renewal	Culture	Lab	10

6PPD-quinone & 6PPD

Next Steps:

- Update literature search every 6 months
 - Next search planned for June 2024
- Add new publications as identified (between lit searches)
 - Continued consultation with EPA programs and regions
- Expand literature search to include related PPDs and alternatives

Applying ECOTOX Data Curation Pipeline to Cyanotoxins

- Identify and curate relevant ecotoxicity studies for cyanotoxins associated with harmful algal blooms (HABs)
- Literature searches for 15 priority cyanotoxins + 98 additional cyanotoxins
- Rapid identification of additional recent publications:
 - Monthly reviews
 - Consultation HABs researchers
- Provide structured effects data for priority cyanotoxins, including study details and toxicity results

Priority cyanotoxins

	Priority cyanotoxins	CASRN	Activity
1	Microcystin-LR ^a	101043-37-2	Hepatotoxic
2	Microcystin-RR ^a	111755-37-4	Hepatotoxic
3	Anatoxin-a ^a	64285-06-9	Neurotoxic
4	Guanitoxin [Anatoxin-a(S)] ^b	103170-78-1	Neurotoxic
5	Saxitoxin ^a	35523-89-8	Neurotoxic
6	Prymnesin 1 ^a	168180-17-4	Hemolytic
7	Prymnesin 2 ^a	168010-52-4	Hemolytic
8	Beta-methylamino-L-alanine (BMAA) ^a	15920-93-1	Neurotoxic
9	Cylindrospermopsin ^a	143545-90-8	Hepatotoxic
10	Lyngbyatoxin-a ª	70497-14-2	Dermatoxic, cytotoxic
11	Oscillatoxin ^b	66671-95-2	Dermatoxic, cytotoxic
12	Aplysiatoxin ^b	52659-57-1	Dermatoxic, cytotoxic
13	Debromoaplysiatoxin ^b	52423-28-6	Dermatoxic, cytotoxic
14	Neo-debromoaplysiatoxin ^b	2334247-91-3	Dermatoxic, cytotoxic
15	19-bromoaplysiatoxin ^b	66648-18-8	Dermatoxic, cytotoxic

^a March 2021
literature search
^b November 2022
supplemental
literature search.

Sources for list of additional cyanotoxins

Single Laboratory Validated Method for Determination of Microcystins and Nodularin in Ambient Freshwaters by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)

November 2017 U.S. Environmental Protection Agency Office of Research and Development 1200 Pennsylvania Avenue, NW

EPA document # EPA/600/R-17/344

EPA Report <u># EPA/600/R-17/344</u>

Mar. Drugs 2013, 11, 991-1018; doi:10.3390/md11040991 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review An Overview on the Marine Neurotoxin, Saxitoxin: **Genetics**, Molecular Targets, Methods of Detection and Ecological Functions Kathleen D. Cusick ^{1,2,*} and Gary S. Sayler ^{1,2,3,4} ¹ The University of Tennessee Center for Environmental Biotechnology, 676 Dabney Hall, Knoxville, TN 37996, USA; E-Mail: sayler@utk.edu ² Department of Microbiology, the University of Tennessee, Knoxville, TN 37996, USA Department of Ecology and Evolutionary Biology, the University of Tennessee, Knoxville, TN 37996, USA ⁴ Oak Ridge National Lab, UT-ORNL Joint Institute of Biological Sciences, Oak Ridge, TN 37831, USA * Author to whom correspondence should be addressed; E-Mail: kdaumer@utk.edu: Tel.: +1-865-974-8080. Received: 31 December 2012; in revised form: 17 February 2013 / Accepted: 19 February 2013 / Published: 27 March 2013

Cusick and Sayler 2013 doi: 10.3390/md11040991

Cyanotoxins

Problem Statement: Toxicity data of cyanotoxins on aquatic organisms needed for evaluation of toxicity effects, species sensitivity, and determination of mode of action.

Cyanotoxins: Literature Inventory

1,108 References tagged with 99 cyanotoxins

Box size represents # of references for each chemical

As of May 1, 2024:

1,108 publications identified 869 Aquatic 277 Terrestrial

Full Data Extraction:

On-going process

514 publications 470 Aquatic 56 Terrestrial

Cyanotoxins: Literature Inventory

Cyanotoxins: Full Data Extraction

Current Priorities:

Exposure route: Aqueous, Oral, Dietary

Aquatic test organisms

Wild birds and mammals

15 priority cyanotoxins

Full Data Extraction:

On-going process

514 publications 470 Aquatic 56 Terrestrial

Deprioritized

Exposure: Injection, In vitro

Terrestrial plants & invertebrates, rodents & domestic birds (i.e., quail, chicken)

Studies lacking calculated toxicity value / endpoint (i.e., LC50)

Additional MLR studies with zebrafish (n=25) Aquatic invert studies with non-priority cyanotoxins (n=24)

Cyanotoxins: Data on ECOTOX

- 77238392 Microcystin
- 64285069 Anatoxin-a
- 101043372 Microcystin LR
- 35523898 Saxitoxin
- 15920931 beta-N-Methylamino-L-alan...
- 143545908 Cylindrospermopsin
- 111755374 Microcystin RR
- 118399227 Nodularin
- 1219922301 Anatoxin-a fumarate
- 11050218 Ciguatoxin
- 79580282 Brevetoxin-2 (PbTx-2)
- * 35554086 Saxitoxin dihydrochloride
- 322408742 [D-Leu1]Microcystin-LR
- 98112415 Brevetoxin-1 (PbTx-1)
- 77238176 Aphantoxin
- 4368289 Tetrodotoxin
- 52423286 Debromoaplysiatoxin
- 154037704 Microcystin LF
- 220355668 Saxitoxin diacetate
- 101064486 Microcystin YR
- 78111178 Okadaic acid

Curated data available on ECOTOX: <u>https://cfpub.epa.gov/ecotox/explore.cfm?cgid=40</u>

Cyanotoxins: Data on ECOTOX

- 77238392 Microcystin
- 64285069 Anatoxin-a
- 101043372 Microcystin LR
- 35523898 Saxitoxin
- 15920931 beta-N-Methylamino-L-alan...
- 143545908 Cylindrospermopsin
- 111755374 Microcystin RR
- 118399227 Nodularin
- 1219922301 Anatoxin-a fumarate
- 11050218 Ciguatoxin
- 79580282 Brevetoxin-2 (PbTx-2)
- 35554086 Saxitoxin dihydrochloride
- 322408742 [D-Leu1]Microcystin-LR
- 98112415 Brevetoxin-1 (PbTx-1)
- 77238176 Aphantoxin
- 4368289 Tetrodotoxin
- 52423286 **Debromoaplysiatoxin**
- 154037704 Microcystin LF
- 220355668 Saxitoxin diacetate
- 101064486 Microcystin YR
- 78111178 Okadaic acid

Curated data available on ECOTOX: <u>https://cfpub.epa.gov/ecotox/explore.cfm?cgid=40</u>

Cyanotoxins: Data on ECOTOX – Fish Microcystin LR

Species

Priority cyanotoxins

	Priority cyanotoxins	CASRN	# of refs with data extracted
1	Microcystin-LR	101043-37-2	253ª
2	Microcystin-RR	111755-37-4	29 ^a
3	Anatoxin-a	64285-06-9	26 ^b
4	Guanitoxin [Anatoxin-a(S)]	103170-78-1	1
5	Saxitoxin	35523-89-8	20 ^b
6	Prymnesin 1	168180-17-4	0
7	Prymnesin 2	168010-52-4	0
8	Beta-methylamino-L-alanine (BMAA)	15920-93-1	15 ^b
9	Cylindrospermopsin	143545-90-8	41
10	Lyngbyatoxin-a	70497-14-2	2
11	Oscillatoxin	66671-95-2	0
12	Aplysiatoxin	52659-57-1	0
13	Debromoaplysiatoxin	52423-28-6	2
14	Neo-debromoaplysiatoxin	2334247-91-3	0
15	19-bromoaplysiatoxin	66648-18-8	0

^a 70 additional publications have toxin identified only as "microcystin" (CASRN 77238-39-2)

^b Publications for related chemicals extracted but not included in counts

Pending data extraction (as of 5/1/24)

<u>Aquatic</u>
3 PLANT studies (1 MLR, 1 CYL, 1 CYAT)
26 INVERT studies (3 MLR / MRR, 24 CYAT)
28 FISH studies

(25 MLR [zebrafish],
1 MLR & MRR [zebrafish],
2 CYAT [rainbow trout])

<u>Terrestrial</u>
59 PLANT studies
16 INVERT studies
2 RODENT studies (1 MLR, 1 CYAT)
4 Dom. Bird studies (fowl, chicken, quail)

On-going Process

- Prioritization of data extraction
 - Aquatic and Aquatic-dependent wildlife
 - Priority Cyanotoxins
- Providing aquatic results to EPA Programs & HAB researchers
- Development of systematic evidence map & manuscript

ECOTOX Team

Jennifer Olker

ECOTOX Coordinator Great Lakes Toxicology and Ecology Division US EPA ORD Center for Computational Toxicology and Exposure <u>Olker.Jennifer@epa.gov</u>

www.epa.gov/ecotox

ECOTOX Support:

218-529-5225

Dale Hoff, GLTED Division Director

Contract staff:

General Dynamics Information Technology (GDIT) SpecPro Professional Services (SPS)

Senior Environmental Employment (SEE) staff

ecotox.support@epa.gov

To cite ECOTOX or read more details: Olker et al. 2022, https://doi.org/10.1002/etc.5324

€PA

EPA hosts webinar series dedicated to delivering the latest information and training on our cutting-edge research addressing environmental and public health issues.

If you are interested in upcoming webinars, stay up-to-date with email notifications:

Webinar dates and topics are subject to change.

Tools and Resources Training

June 6: EnviroAtlas

°.

Registration and Additional Information Coming Soon!

Healthy and Resilient Communities Research

June 11: *Cumulative Impacts: How Potential Flood Exposures, Resource Access, and Social Vulnerability Affect Resilience Outcomes* <u>Registration and Additional Information</u>

Computational Toxicology and Exposure Communities of Practice

June 27: Chemical Transformation Simulator

Registration and Additional Information

Extra slides:

- Basic ECOTOX demo
- Taxonomic distribution of PFAS toxicity data
- 6PPD-quinone example data extraction
- Cyanotoxins literature flow diagram

Demo of ECOTOX: www.epa.gov/ecotox

ECOTOX Know	vledgebase	Home	Search	Explore	Help	Contact Us
Data last updated Mar 14, 2024 See update totals	Recent chemicals with full searches completed Arsenic Per- and Polyfluoroalkyl Substances (PFAS	and data extracted Phthalates S)			Total in database 12,934 Chemicals 54,475 References	13,915 Species 1,167,326 Results

About ECOTOX

ECOTOX is a comprehensive Knowledgebase providing single is chemical environmental toxicity data on aquatic and terrestrial species.

Read more in: Olker et al. 2022

Learn More

Getting Started

- Use <u>Search</u> if you know exact parameters or search terms (chemical, species, etc.)
- Use <u>Explore</u> to see what data may be available in ECOTOX (including data plots)
- ECOTOX Quick User Guide (2 pp, 104 K)
- ECOTOX User Guide (100 pp, 735 K)
- ECOTOX Terms Appendix

Other Links

ECOTOX-related documentation and resources.

- Frequent Questions
- Limitations
- Other Tools/Databases
- <u>Recent Additions</u>
- Literature Search Dates

www.epa.gov/ecotox

ECOTOX Overview: Olker et al. 2022 https://doi.org/10.1002/etc.5324

Demo of ECOTOX: www.epa.gov/ecotox

ECOTOX Know	ledgebase	Home	Search	Explore	Help	Contact Us
Data last updated Mar 14, 2024 See update totals	Recent chemicals with full searches completed Arsenic Per- and Polyfluoroalkyl Substances (PFAS	and data extracted Phthalates			Total in database 12,934 Chemicals 54,475 References	13,915 Species 1,167,326 Results

About ECOTOX

ECOTOX is a comprehensive Knowledgebase providing single chemical environmental toxicity data on aquatic and terrestrial species.

Read more in: Olker et al. 2022

Learn More

Getting Started

- Use <u>Search</u> if you know exact parameters or search terms (chemical, species, etc.)
- Use <u>Explore</u> to see what data may be available in ECOTOX (including data plots)
- ECOTOX Quick User Guide (2 pp, 104 K)
- ECOTOX User Guide (100 pp, 735 K)
- ECOTOX Terms Appendix

Other Links

ECOTOX-related documentation and resources.

- Frequent Questions
- Limitations
- Other Tools/Databases
- <u>Recent Additions</u>
- Literature Search Dates

ECOTOXicology Knowledgebase: Explore

ECOTOXicology Knowledgebase: Search

ECOTOX Knowl	edge	base			Home	e S	earch E	xplore H	lelp					Cor	ntact Us
Parameters		Aquatic	Terrestrial												
All Chemicals	+											Cu	stomize ()utput I	Fields
All Effects	+	CAS Number	Chemical Name	Chemical Grade	Chemical Analysis	Chemical Purity	Species Scientific Name	Species Common Name	Organism Lifestage	Organism Age	Age Units	Exposure Type	Media Type	Test Location	Number of Doses
All Endpoints	+	2754428185 2754428185 2754428185 2754428185	P[(1,3-Dimethylbutyl)amino]-5-(P[(1,3-Dimethylbutyl)amino]-5-(P[(1,3-Dimethylbutyl)amino]-5-(P[(1,3-Dimethylbutyl)amino]-5-(ohenylamino)2,5-cy ohenylamino)2,5-cy ohenylamino)2,5-cy ohenylamino)2,5-cy	(Measured (Measured (Measured (Measured	>95 >95 >95 >95	Salvelinus leucomaenis Salvelinus leucomaenis Salvelinus leucomaenis Salvelinus leucomaenis	Whitespotted Char Whitespotted Char Whitespotted Char Whitespotted Char	Juvenile Juvenile Juvenile Juvenile	<1 <1 <1 <1 <1	Year(s) Year(s) Year(s) Year(s)	Renewal Renewal Renewal Renewal	Fresh water Fresh water Fresh water Fresh water	Lab Lab Lab Lab	6 6 6 6
All Species	+	2754428185 2754428185 2754428185 2754428185	-[(1,3-Dimethylbutyl)amino]-5-([-[(1,3-Dimethylbutyl)amino]-5-([-[(1,3-Dimethylbutyl)amino]-5-([-[(1,3-Dimethylbutyl)amino]-5-(ohenylamino)2,5-cy ohenylamino)2,5-cy ohenylamino)2,5-cy	(Measured (Measured (Measured (Measured	>95 >95 >95 >95	Oncorhynchus masou ssp Oncorhynchus masou ssp Salvelinus leucomaenis Salvelinus leucomaenis	. Cherry Salmon . Cherry Salmon Whitespotted Char Whitespotted Char	Juvenile Juvenile Juvenile	<1 (1) <1 (1) <1 (1)	Year(s) Year(s) Year(s)	Renewal Renewal Renewal	Fresh water Fresh water Fresh water	Lab Lab Lab	2 2 6
All Test Conditions	+	2754428185 2754428185 2754428185	<pre>2-[(1,3-Dimethylbutyl)amino] -5 (2-[(1,3-Dimethylbutyl)amino]-5-(2-[(1,3-Dimethylbutyl)amino]-5-(2-[(1,3-Dimethylbutyl)amino]-5-(2-[(1,2-Dimethylbutyl)amino</pre>	ohenylamino)2,5-cy ohenylamino)2,5-cy ohenylamino)2,5-cy	(Measured (Measured (Measured (Unmeasured	>95 >95 >95 >95	Salvelinus curilus Salvelinus curilus Salvelinus leucomaenis	Southern Dolly Varden Southern Dolly Varden Whitespotted Char	Juvenile Juvenile Juvenile	<1 <1 <1 <1	Year(s) Year(s) Year(s)	Renewal Renewal Static	Fresh water Fresh water Fresh water	Lab Lab Lab	2 2 3
All Publication Options	+	2754428185 2754428185 2754428185 2754428185	[(1,3-Dimethylouty)Jamino]-5-([(1,3-Dimethylbutyl)amino]-5-([(1,3-Dimethylbutyl)amino]-5-([(1,3-Dimethylbutyl)amino]-5-(ohenylamino)2,5-cy ohenylamino)2,5-cy ohenylamino)2,5-cy ohenylamino)2,5-cy	(Measured (Unmeasured (Measured (Measured	>95 >95 >95 NR	Salvelinus curilus Salvelinus curilus Salvelinus curilus Salvelinus alpinus	Southern Dolly Varden Southern Dolly Varden Arctic Char	Juvenile Juvenile Juvenile	<1 <1 <1 ~3	Year(s) Year(s) Year(s) Year(s)	Static Renewal Renewal	Fresh water Fresh water Fresh water	Lab Lab Lab Lab	3 2 2
		2754428185 2754428185 2754428185 2754428185 2754428185	[(1,3-Dimethylbutyl)amino]-5-([(1,3-Dimethylbutyl)amino]-5-([(1,3-Dimethylbutyl)amino]-5-([(1,3-Dimethylbutyl)amino]-5-(ohenylamino)2,5-cy ohenylamino)2,5-cy ohenylamino)2,5-cy ohenylamino)2,5-cy	(Measured (Unmeasured (Measured (Unmeasured	>95 >95 >95 >95	Oncorhynchus masou ssp Oncorhynchus masou ssp Salvelinus leucomaenis Salvelinus leucomaenis	. Cherry Salmon . Cherry Salmon Whitespotted Char Whitespotted Char	Juvenile Juvenile Juvenile Juvenile	<1 <1 <1 <1	Year(s) Year(s) Year(s) Year(s)	Renewal Static Renewal Static	Fresh water Fresh water Fresh water Fresh water	Lab Lab Lab Lab	2 3 6 3
		2754428185 2754428185 2754428185 2754428185	!-[(1,3-Dimethylbutyl)amino]-5-(!-[(1,3-Dimethylbutyl)amino]-5-([-[(1,3-Dimethylbutyl)amino]-5-('-[(1,3-Dimethylbutyl)amino]-5-(ohenylamino)2,5-cy ohenylamino)2,5-cy ohenylamino)2,5-cy ohenylamino)2,5-cy	CUnmeasured CUnmeasured CUnmeasured	>98.0 >98.0 >98.0 >98.0	Danio rerio Danio rerio Danio rerio Danio rerio	Zebra Danio Zebra Danio Zebra Danio Zebra Danio	Embryo Embryo Embryo Embryo	<16 <16 <16 <16	Cell stage Cell stage Cell stage Cell stage	Renewal Renewal Renewal	Culture Culture Culture Culture	Lab Lab Lab Lab	10 10 10
		27377201037		sien ylamino j2,3-cy	onneasureu	- 55.0		2001d Damo	Lindryo	10	cen stage	nenewal	culture	Lub	10

ECOTOXicology Knowledgebase: Help

ECOTOX Knowledge	ebase Home Search Explore Help	Contact Us						
Table of Contents	Web Site Information							
Starting Out Web Site Information About ECOTOX Disclaimer & Limitations Recent Additions	A Welcome to the U.S. EPA ECOTOX Web site! The ECOTOXicology Knowledgebase (ECOTOX) is a source for locating single chemical toxicity data for aquatic life, terrestrial plants and wildlife. ECOTOX was created and is maintained by the U.S.EPA's <u>Center for Computational Toxicology and Exposure's (CCTE's) Great Lakes Toxicology Ecology Division</u> <u>(GLTED)</u> .							
Navigating this Web Site Frequent Questions	ECOTOX integrates three previously independent databases - AQUIRE, PHYTOTOX, and TERRETOX - into a unique system which includes toxicity data derived predominately from the peer-reviewed literature, for aquatic life, terrestrial plants, and terrestrial wildlife, respectively.							
How do I Learn Basics Select Search Parameters	You should review the <u>limitations</u> of ECOTOX data retrieval for an understanding of system and minimum data requirements prior to performing searches on this site. You should consult the original scientific paper to ensure an understanding of the context of the data retrieved from ECOTOX.							
Select Report Format/Sort Order Navigate/View Reports	ECOTOX Documentation • <u>ECOTOX User Guide</u> (100 pp, 735 K) • <u>ECOTOX Quick User Guide</u> (2 pp, 104 K)	59						

ECOTOXicology Knowledgebase: Search Planner

COTOX Knowled	gebase	Home	Search	Explore	Help		
able of Contents	Web Site Information			ECOTOX SE Use this form to h others to perform	ARCH PLAN	INING FORM arches or to docume	ent searches for yourself or
arting Out	Search Discours (DDE) (5 pp. 122 K, About DDE)			Chemicals			
Web Site Information	<u>Search Planner (PDF)</u> (5 pp, 133 K, <u>About PDF</u>)			Chemical Name	s CAS Numbers	Predefined Groups	Organic Compounds
About ECOTOX Disclaimer & Limitations Recent Additions Navigating this Web Site Frequent Questions	Taxonomic Searching Within ECOTOX you may conduct a search by entering Name(s), or Common Name or Other Taxonomic Name buttons allow for partial or exact name matches. You records within ECOTOX include a Scientific name for the have been verified in reliable taxonomic sources. The ECOTOX species file includes historical synonyme species name that is noted as a taxonomic synonyme using the currently acceptable genus and species name	g the Species Name or r ne(s). The Contains and can also search by Spe the test species. All nan s for the species. If a sea in our system, ECOTOX	number(s), Genus/Specie Exact Match radio cies Group. All data nes and predefined grou arch is conducted using a will present the results	ps		Metal Compounds Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Chromium Copper Iron Lead Manganese Mercury Nickel Organotin Selenium Silver Vanadium Zinc	Conazoles Cyanotoxins DDT and metabolites Dibenzofurans Explosives Glycol Ethers Major Ions Neonicotinoids Nitrosamines Perchlorates Phthalate Esters Polyaromatic Hydrocarbons (PAH) Polychlorinated Biphenyls (PCB) Polybrominated Diphenyl Ethers (PBDE) Pharmaceutical Personal Care (PPCP) Strobins Per- and Polyfluoroalkyl Substances (PFAS)
w do I	Taxonomic Entry			Scientific Name Taxonomic Leve	s/ lis Common N	lames Species ECOTOX Numbers of	Predefined Taxonomic Groups
Learn Basics Select Search Parameters Select Report Format/Sort Order	Species Number: All species in ECOTOX have been as numbers and text information (either Scientific or co- are always searched as an exact match. Example Taxonomic Search	ssigned a unique numb mmon names) in one se	er. You can include earch. Species numbers			NCBI Taxit	Ds Amphibians Amphibians Insects/Spiders Molluscs Birds Other Invertebrates Reptiles Crustaceans Mammals Worms
Navigate/View Peports	i ne example below is the correct method of entering	; query text. You can ent	er a mix of numbers and				Fish All Plants
	Example Genus/Species Name Query	it matches by the ECON	on queiy.				Algae Moss/Hornworts, Fungi, Flowers, Trees, Shrubs, Ferns Special Interest Standard Test Species US Threatened/Endangered Species US Exotic/Nuisance

PFAS Toxicity Data for >800 Biological Species

Taxonomic Distribution of PFAS Toxicity Data

	PFAS	ΓΟΧ	
	# of	# of	# of
Group	Compounds	References	Records
All Species	294	1,609	43,873
Fish	210	464	16,669
Insects/Spiders	50	584	8,514
Flowers, Trees, Shrubs, Ferns	61	199	4,971
Birds	45	77	2,559
Worms	33	79	2,347
Crustaceans	57	101	2,500
Algae	56	74	1,368
Amphibians	27	53	1,596
Molluscs	58	45	1,038
Other Invertebrates	34	39	918
Mammals	27	33	637
Fungi	11	57	560
Reptiles	3	8	137
Miscellaneous	8	4	29
			6/

Data Inventory → Summary/Synthesis

Fig. 4. Environmental relevance of 6PPD-quinone. (A) Using retrospective UPLC-HRMS analysis of archived sample extracts, 6PPD-quinone was quantified in roadway runoff and runoff-affected receiving waters. Each symbol corresponds to duplicate or triplicate samples, and boxes indicate first and third quartiles. For comparison, the 0.8 µg/liter LC₅₀ value for juvenile coho salmon and detected 6PPD-guinone levels in 250 and 1000 mg/liter TWP leachate are included. (B) Predicted ranges of potential 6PPD-quinone mass formation in passenger

TWP = tire tread wear particle cars (for example, four tires, ~36 kg tire rubber mass) and heavy trucks (for example, 18 tires, ~900 kg of tire rubber) (represented in orange) and measured 6PPD-guinone concentrations in affected environmental compartments (represented in blue, with experimental data italicized). Predicted ranges reflect calculations applying 0.4 to 2% 6PPD per total vehicle tire rubber mass followed by various yield scenarios (1 to 75% ultimate yields) for 6PPD reaction with ground-level ozone to form 6PPD-quinone.

LOGY

B

tous tire rubber-derived chemical induces ortality in coho salmon

Haoqi Zhao³, Katherine T. Peter^{1,2}, Melissa Gonzalez^{1,2}, Jill Wetzel⁴, Christopher Wu^{1,2}, mine Prat⁴, Emma Mudrock⁴, Rachel Hettinger^{1,2}, Allan E. Cortina^{1,2}, n Biswas⁵, Flávio Vinicius Crizóstomo Kock⁵, Ronald Soong⁵, Amy Jenne⁵, Bowen Du⁶, He³, Rachel Lundeen^{1,2}, Alicia Gilbreath⁷, Rebecca Sutton⁷, Nathaniel L. Scholz⁸, Michael C. Dodd³, Andre Simpson⁵, Jenifer K. McIntyre⁴, Edward P. Kolodziej^{1,2,3}*

Northwest coho salmon (Oncorhynchus kisutch), stormwater exposure annually ined acute mortality when adult salmon migrate to urban creeks to reproduce. By his phenomenon, we identified a highly toxic quinone transformation product of butyl)-N'-phenyl-p-phenylenediamine (6PPD), a globally ubiquitous tire rubber trospective analysis of representative roadway runoff and stormwater-affected creeks st Coast indicated widespread occurrence of 6PPD-quinone (<0.3 to 19 micrograms

contrations (median lethal concentration of 0.8 ± 0.16 micrograms per liter). anticipated risks of 6PPD antioxidants to an aquatic species and imply for dissipated tire rubber residues.

ence.org/doi/epdf/10.1126/science.abd6951

RESEARCH

ECOTOXICOLOGY

A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon

Zhenyu Tian^{1,2}, Haoqi Zhao³, Katherine T. Peter^{1,2}, Melissa Gonzalez^{1,2}, Jill Wetzel⁴, Christopher Wu^{1,2}, Ximin Hu³, Jasmine Prat⁴, Emma Mudrock⁴, Rachel Hettinger^{1,2}, Allan E. Cortina^{1,2}, Rajshree Ghosh Biswas⁵, Flávio Vinicius Crizóstomo Kock⁵, Ronald Soong⁵, Amy Jenne⁵, Bowen Du⁶, Fan Hou³, Huan He³, Rachel Lundeen^{1,2}, Alicia Gilbreath⁷, Rebecca Sutton⁷, Nathaniel L. Scholz⁸, Jay W. Davis⁹, Michael C. Dodd³, Andre Simpson⁵, Jenifer K. McIntyre⁴, Edward P. Kolodziej^{1,2,3,*}

In U.S. Pacific Northwest coho salmon (*Oncorhynchus kisutch*), stormwater exposure annually causes unexplained acute mortality when adult salmon migrate to urban creeks to reproduce. By investigating this phenomenon, we identified a highly toxic quinone transformation product of ≡ Menu 🖗 🔆 19223 Tian 2021 annota. × + Gene

Find text or t

Ð

2

1

Ð

1

1

Q

=

All tools Edit Convert Sign

Ð,

C,

A

Fig. S2.

URMS-affected coho photos in the field and the lab. (A) Field-observed adult female coho that died from URMS in Miller Creek, Burien, WA, USA on Oct 23, 2019. The intact egg sack at right confirmed its status as a pre-spawn female. See **Movie S1** for details. (B) Observed juvenile coho salmon mortality (experiment in progress) upon exposure to 250 mg/L TWP leachate. TWP leachate was acutely (~2-6 h) lethal to juvenile coho (250 mg/L positive controls, 98.5% mortality in 24 h exposure, N=135 fish from 27 exposures over 2+ years). (C) Juvenile coho salmon (experiment in progress) that were exposed to purified ozone-synthesized 6PPD-quinone (nominal concentrations ~20 µg/L "product"), unpurified 6PPD ozonation mixture (~20 µg/L "parent + product"), and 6PPD at 450 µg/L ("20X parent") and 6PPD at 30 µg/L ("parent"). At the time photo was taken (~4 h exposure), purified 6PPD-quinone had killed 4/5 coho, with a remaining symptomatic fish (See **Movie S2** for details.), the unpurified mixture killed 2/5 coho (with another one symptomatic), and both 6PPD concentrations had not induced any observed symptoms or mortality in juvenile coho.

Tian,Z., H. Zhao, K.T. Peter, M. Gonzalez, J. Wetzel, C. Wu, X. Hu, J. Prat, E. Mudrock, R. Hettinger, A.E. Cortina, R. A Ubiquitous Tire Rubber-Derived Chemical Induces Acute Mortality in Coho Salmon. Science 371(6525): 185-189, 2021. ECOREF #189223

≡ Menu 🏠 🛣 189223	3 Tian 2021 annota 🗙 🕂 Create	⊙ Ç 🔵 — □ ×
All tools Edit Convert	Sign	Find text or tools 🔍 📄 🏫 🖨 🖗 🔗 🖾
Our breakthrough came by assuming that abiotic environmental transformations commental transformations comments of hydrogen and oxygen atoms relative to carbon Image: State of the state o	tions, roadway runoff, bulk TWP leachate, and final toxic TWP frac- tion exposures, confirming the phenotypic anchor (5-9). Using withetic 6PPD-quinone (purity -95%), we performed controlled dosing experiments (00 concen- trations, n= 160 fab in two inde- pendent exposures), GPD-quinone was highly toxic (median lethal oncentration (LC ₀) d079 ± 0.06 yr BSW, C1 (0.55, 1.1) BSW leachate #2 BSW c1 (0.55, 1.1)	× 82 Comments Q ♀ ···· Q Comment or use @ to invite others □ · Page 3 5 Ø JFrisch May 5
ols Q 🗄 🏟 🖨 🖗 2 🛛 🖁 di	estine to be a set of the set of	Highlighted Text
82 Comments Q y ··· Q % n- mment or use @ to invite others ↓	80 •	JFrisch Oct 7
SURVEY as as	40 / 1 [95% Cl [0.63 0.96]] confident assessment of GPD toxi- city was precluded by its poor solu- bility, high instability, and formation of products during exposure. To assess environmental refe-	TWP LEACHATE
JFrisch Od7 اور 4 NR-MORT 80% الله- عا الالله- عا	vice we used UPLC-HRMS to ref- o 1 2 3 4 for the second se	3 LC50 NOTE ER189478 REPORTED THAT THIS VALUE IS HIGHER THAN IT
JFrisch Oat7 ed Highlighted Text ed n- fi- or	coho exposures to rankwy runoff (n = 265 fish). Erro bars represent three reglicates ef eight find (except TWP leachtat ($n = 265$ fish). Erro bars rist duplicate of $n = 10$ fish). EPPD-guinone concentrations were from retrospective quartification. (B) Socie-ersponse curves for 24-hour junele coho exposures to zone-synthesized GPPD-quinone (10 concertations, two replicates n = 160 fish). Curves were fitted to a four yearantee indication code (10 concertations, two replicates n = 160 fish). Curves were fitted to a four yearantee indication code. (30 concertations, four effected by URANS, 6PPD-	SHOULD BE, AND DOES ADDITIONAL TESTS TO REPORT A LOWER LCS0 VALUE OF 95 NG/L 3
JFrisch Oct 7 Is- Highlighted Text Is	confidence interval. The second sec	VS JFrisch Oct 17
	s contain vert M_{2} such as the part of period in the period in the part of period i	5 OEF BEHAVIOR SYMPTOMS
JFrisch Od7	th gas-phase 5-[[4-methylpentan-2-yl]amino]cyclohexa-2,5- detected in pre- and poststorm samples, but ustrial grade diene1,4-dione]. Consistent with environmental BDD granet detected environmental BDD granet de	
2 INK-ZERO 450 UG/L 54 Inz aby	$\begin{array}{c} \sigma_{21} \sigma_{22} \\ \sigma_{12} \\ \sigma_{13} $	JFrisch Oct7
JFrisch Oct7 Stef Highlighted Text et	mis synthetic continues $(2i)$ also were detected in $accordinations and accordinations accordination accordination and Bcordinations in the second synthesized and time the achiever detrived RPD and the Report and the an$	Highlighted Text
JFrisch Od7	analysis con- analysis con- derived and concentration of the integration of the constraints of the constrain	✓ Page 8 8 Q
Highlighted Text		

Problem Statement: Toxicity data of 6PPD-quinone on aquatic organisms needed for evaluation of toxicity effects, species sensitivity, and determination of mode of action.

Cyanotoxins: Literature search and study selection flow diagram

