

May 15, 2024

Dermal Exposure Factors: Dermal Loading of Liquids

EPA Modeling Approach for Assessing Dermal Exposure

Dermal Model for Finite Doses – Fractional Absorption

Model Applicability

- "Splash-type" exposures
- Non-immersive and non-occluded scenarios
- Liquids: < 10 μL/cm², Solids: 1 5 mg/ cm² (OECD 428 Guideline for Skin Absorption Testing)

$$D_{exp} = Q_u \times f_{abs} \times SA \times FT \times Y_{derm}$$

- D_{exp} = Dermal Exposure (mg/day)
- Q_u = Dermal Loading (mg/cm²-event)
- f_{abs} = Fractional Absorption
- SA = Area of Contact (cm²)
- *FT* = Frequency of Contact (events/day)
- Y_{derm} = Weight Fraction of Chemical

Dermal Model for Infinite Doses – Flux-Based Permeability

Model Applicability

- Continuous supply of chemical against skin
- Immersive or occluded scenarios
 - > Example: Material trapped under glove
- Liquids: >100 μL/cm², Solids >10 mg/ cm² (OECD 28 Guidance Document for the Conduct of Skin Absorption Studies)

$$D_{exp} = K_{p,c} \times C \times SA \times t_{exp}$$

- D_{exp} = Dermal Exposure (mg/day)
- $K_{p,c}$ = Skin Permeability Coefficent at Conc. C (cm/hr)
- *C* = Chemical Concentration (mg/cm³)
- SA = Area of Contact (cm²)
- *t_{exp}* = Contact Time (hrs/day)

Finite Dose Model – How does it work?

$D_{exp} = Q_u \times f_{abs} \times SA \times FT \times Y_{derm}$

EPA assumes:

 Q_u

fabs-

SA

FT

- For liquids, the applied dose is **a thin film** covering of the liquid covering one or two hands
- There is absorption of the dose over an 8-hr shift
 - Workers wash hands well at end of the 8-hr shift
 - Material remaining in the skin <u>after washing</u> <u>hands</u> is potentially absorbable
 - A certain area of skin, often equivalent to that of one or two hands, is exposed a quantity (dose) of the chemical
- A single 8-hr exposure event
- derm Based on product content

Finite Dose Model – How does it work? (2)

$$D_{exp} = Q_u \times f_{abs} \times SA \times FT \times Y_{derm}$$

EPA assumes:

- For liquids, the applied dose is a thin film covering of the liquid covering one or two hands
 - 1) Based on experimental data, e.g., IVPT, including determination of material remaining in the skin <u>after washing hands</u>
- 2) Based on diffusion modeling
- = 1 hand: 535 cm² (male), 445 cm² (female)
- = 2 hands: 1,070 cm² (male), 890 cm² (female)
- **FT** = 1 event

 Q_{11}

fabs-

SA

derm • Based on product content

Dermal Loading – Liquids

EPA Assumptions for Dermal Loading:

- "Routine" or Incidental Contact with Liquids:
 - > 0.7 mg/cm²-event (low-end default)
 - 1.4 mg/cm²-event (central tendency)
 - > 2.1 mg/cm²-event (high-end)
- Routine **Immersion** in Liquids:
 - 1.3 mg/cm²-event (low-end default)
 - 3.8 mg/cm²-event (central tendency)
 - 10.3 mg/cm²-event (high-end)

How does this compare?

FDA requires application of 2 mg/cm² of sunscreen in human clinical pharmacokinetic studies.

Dermal Loading – Liquids (2)

Where do the dermal loading defaults come from? A 1988 EPA study* looked at retention of liquids on skin for three liquids and three exposure scenarios

<u>Liquids</u>

- Mineral oil
- Cooking oil
- Bath oil

<u>Scenarios</u>

- Initial wipe of hands with saturated cloth, plus wipe removal
- Secondary wipe after initial wipe, plus wipe removal
- Immersion of the hand in liquid, plus wipe removal

^{*} USEPA. 1988. Methods for assessing exposure to chemical substances, Volume 13, Methods for estimating retention of liquids on hands. EPA 560/5-85-017

Dermal Loading – Liquids: Incidental Contact

Where do the dermal loading defaults come from?

<u>Liquids</u>

Cooking oil

- Highest liquid (oil values)
 - > 0.7 mg/cm²-event (partial removal)
 - 1.4 mg/cm²-event (average?)
 - > 2.1 mg/cm²-event (high-end)

Scenarios

Initial wipe of hands with saturated cloth, plus wipe removal

Dermal Loading – Liquids: Full Immersion

Where do the dermal loading defaults come from?

<u>Liquids</u>

• Mineral oil

Scenarios

- Cooking oil
- Highest/high-end, lowest/low-end
 - 1.3 mg/cm²-event (Cooking oil, removal)
 - 3.8 mg/cm²-event (?? Beats me ??)
 - 10.3 mg/cm²-event (mineral oil immersion)

• Immersion of the hand in liquid, plus wipe removal

Dermal Loading – Other Data

Are other measured dermal loading data available?

- There are a few dozen studies that have measured dermal loading of liquids during real-world tasks
 - High-end values (2.3 7.5 mg/cm²) align with EPA defaults
 - Low-end values (10⁻² to 10⁻⁶ mg/cm²) are much lower than the EPA low-end defaults
 the same is probably true of centraltendency
- Dermal loading data from an EPA report on intermittent contact with liquid films (0.00054-0.009 mg/cm²) are consistent with the lower end of measured exposures.*

*Occupational Dermal Exposure Assessment. A Review of Methodologies and Field Data, Final Report. U.S. Environmental Protection Agency, Washington, DC. September 30, 1996.

Range of Measured Dermal Loading Values

Applicability of Dermal Loading Data

The current default dermal loading parameters are appropriate for some, but not all, conditions of use.

- → Can the domain of applicability of those default parameters be better defined?
- → Are there other dermal exposure domains, i.e., a group of conditions of use, that can be defined?
- → Are there available data to characterize dermal loading for other dermal exposure domains? Do data need to be generated?

Applicability of Dermal Loading Data, cont.

What are the characteristics of the **default data** that dictate its applicability?

- \rightarrow Conditions of use
 - Handling a saturated rag (more than incidental contact)
 - Total immersion of the hand
- → Worker behavior
 - Direct dermal contact, i.e., no PPE (gloves)
 - Hands may or may not be wiped off
 - Hands are not washed off before the end of the day
- \rightarrow Material properties
 - Low volatility liquid
 - High viscosity liquid

Dermal Loading Data Needs

For what *domains* are data needed?

- \rightarrow Conditions of use
 - True incidental contact with a liquid
- → Worker behavior
 - Hands are not wiped off or washed off
 - Hands are wiped off
 - Hands are washed off
- → Material properties
 - Aqueous solutions (lower viscosity liquids)
 - Highly volatile and semi-volatile liquids

Path Forward

- → Domains of conditions of use need to be defined (how many? → 3 or 4?)
- → Review available data on dermal loading that could be used to characterize each domain
 - Data from the scientific literature
 - Pesticide Handlers Exposure Database?
- → Generate new data, especially for other kinds of liquids

