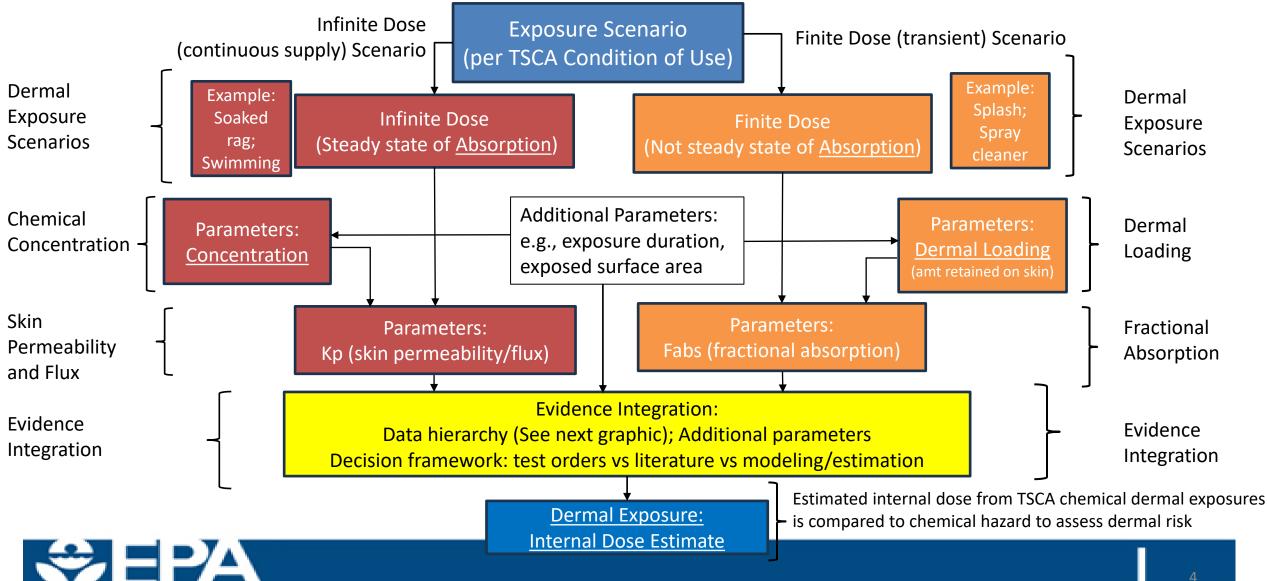
TSCA Exposure Workshop Proposed Draft Framework for Dermal Exposure Assessments in TSCA Risk Evaluations

Nerija Orentas, MES Existing Chemical Risk Assessment Division Office of Pollution Prevention & Toxics Office of Chemical Safety and Pollution Prevention U.S. Environmental Protection Agency

Contributors: John Allran, Aaron Murray, William Irwin, Keith Jacobs, Sarah Gallagher, Amy Benson, Greg Macek, Yousuf Ahmad, Laura Krnavek, Jeff Dawson, Seema Schappelle, Edward Lo, Ariel Hou, Majd El-Zoobi, Nick Suek

OUTLINE

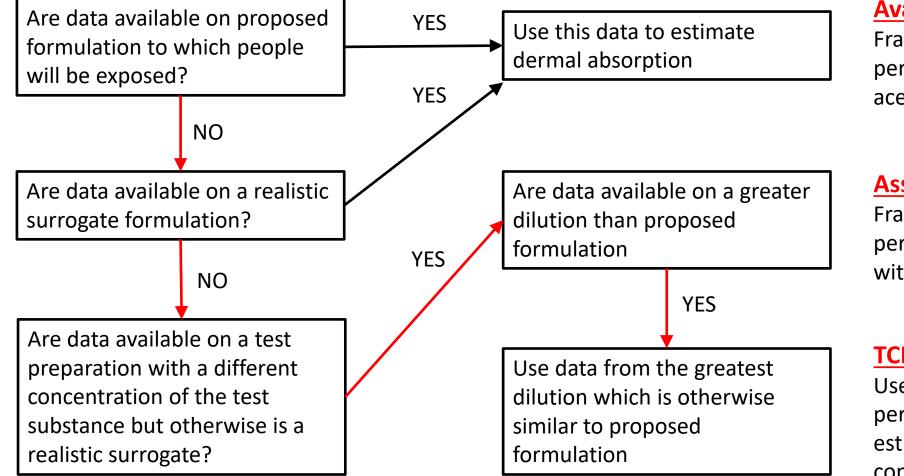
- Background
- Proposed draft dermal framework/decision framework outline
- Data hierarchy
- Decision logic for dermal absorption data selection
- Dermal exposure models



Background

- Dermal exposure to chemicals assessed in TSCA Risk Evaluations is an important route of exposure and risk estimates and risk management
- Scenarios may be different, but EPA recognized a need for aligning occupational/consumer dermal assumptions
- Group of engineers, exposure assessors, industrial hygienist and hazard assessors gathered to form a workgroup
 - -> Ongoing Development of a Proposed Draft Framework

Proposed Draft Framework for Dermal Exposure Assessment


COU-specific data (TEST ORDER or Peer-reviewed) Finite/Infinite Dose Scenarios with corresponding Fraction absorbed/Kp Neat chemical and relevant dilutions

Peer-Reviewed Literature Finite/Infinite Dose Dermal Study Fraction absorbed/Kp Relevant/various dilutions

Modeled/estimates Fabs (fractional absorption)/Kp

Decision Logic for Dermal Absorption Data Selection: TCEP example

Available Data:

Fractional absorption and permeability of TCEP dilution in acetone (~0.001 – 0.005 wt%)

Assumption:

Fractional absorption and permeability coefficient increase with increasing dilution

TCEP Conclusion:

Use fractional absorption and permeability data for dilute TCEP to estimate dermal exposure to higher concentration materials

*Flowchart from OECD 156 Guidance Notes on Dermal Absorption

Models for Assessing Dermal Exposure

Dermal Model for Finite Doses – Fractional Absorption

Model Applicability

- "Splash-type" exposures
- Non-immersive and non-occluded scenarios
- Liquids: < 10 μL/cm², Solids: 1 5 mg/ cm² (OECD 428 Guideline for Skin Absorption Testing)

$D_{exp} = Q_u \times f_{abs} \times SA \times FQ \times WF$

- D_{exp} = Dermal Exposure (mg/day)
- Q_u = Dermal Loading (mg/cm²-event)
- f_{abs} = Fractional Absorption
- SA = Area of Contact (cm²)
- *FQ* = Frequency of Contact (events/day)
- *WF* = Weight Fraction of Chemical

Challenge:

Choice of model for a given scenario is not always obvious

Dermal Model for Infinite Doses – Flux-Based Permeability

Model Applicability

I 😌 FPA

- Continuous supply of chemical against skin
- Immersive or occluded scenarios
 - > Example: Material trapped under glove
- Liquids: >100 μL/cm², Solids >10 mg/ cm² (OECD 28 Guidance Document for Absorption Studies)

$$D_{exp} = K_{p,c} \times C \times SA \times t_{exp}$$

- D_{exp} = Dermal Exposure (mg/day)
- $K_{p,c}$ = Skin Permeability Coefficent at Conc. C (cm/hr)
- *C* = Chemical Concentration (mg/cm³)
- SA = Area of Contact (cm²)
- t_{exp} = Contact Time (hrs/day)

Summary/Next Steps

- Proposed Draft Framework is moving through internal EPA reviews
- Workgroup continuing to meet to revise and address comments

THANK YOU!

QUESTIONS/COMMENTS

