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General Outline of this Presentation
1. Background on the incorporation of Monte Carlo methods in 

EPA Risk Evaluations.
2. 1,4-Dioxane Supplemental Risk Evaluation peer review 

process, focusing on feedback received on Monte Carlo 
methods and the associate modifications made by EPA.

3. Improvements in Monte Carlo methods from the peer review 
process and key takeaways for the use of Monte Carlo in EPA 
Risk Evaluations.
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Probabilistic Modeling
• A type of stochastic modeling that allows for random variation of multiple inputs 

where the random variation may be probabilistically influenced by historical data.
• Monte Carlo methods fall under the umbrella of probabilistic modeling. The model 

is run multiple times, and each run uses different input values and generates 
different output values.

• For the 1,4-Dioxane Supplemental Risk Evaluation, EPA implemented Monte Carlo 
methods in a Microsoft Excel-based model using a Monte Carlo add-in tool called 
@Risk.
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Uncertainty and Variability
• Uncertainty refers to lack of knowledge about specific factors, parameters, 

or models.
– Parameter uncertainty (measurement errors, sampling errors, systematic errors)
– Model uncertainty (uncertainty due to necessary simplification of real-world 

processes, use of inappropriate surrogate variables)
– Scenario uncertainty (descriptive errors, aggregation errors, errors in 

professional judgement)
• Variability refers to observed differences attributable to true heterogeneity 

or diversity in a population or exposure parameter.
– Spatial variability refers to differences that may occur because of location.
– Temporal variability refers to variations over time, whether long- or short-term.
– Inter- and intra- site variability refers to differences between sites and variability 

in the day-to-day activities at any particular site.
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Benefits of Monte Carlo Methods
• Monte Carlo modeling offers various benefits to EPA’s Risk Evaluations.

– Incorporation of variability using distributions of input parameters.
– Reduces uncertainty because the model outputs a range of results that are more likely to reflect 

the true distribution.
– Elimination of potential bias from using only monitoring data, such as:

• If the monitoring data are very site-specific, or
• If the monitoring data only capture a portion of the process.
• Incorporates different inputs for engineering controls which may not be captured by monitoring data or deterministic 

approach (e.g., dust capture efficiencies, ventilation rates, etc.).

• These benefits increase the confidence in the resulting release and/or exposure 
estimates.

• However, the results of Monte Carlo modeling are only as good as the data available 
to define the input parameters.
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Implementation of the Monte Carlo Method

1. Define probability distributions for input 
parameters.

2. Generate a set of input values by randomly 
drawing a sample from each probability 
distribution.

3. Execute the deterministic model calculations.
4. Save the output results.
5. Repeat steps 2 through 4 through the appropriate

number of iterations.
6. Aggregate the saved output results and calculate 

statistics.
Figure 1. Flowchart of a Monte Carlo Method Implemented in a 
Microsoft Excel-Based Model Using a Monte Carlo Add-In Tool
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Selecting Input Parameters for the Monte Carlo Model 

• The selection of input parameters for probability distributions are largely informed by 
the availability of data (e.g., from GS, ESD, databases, literature, published chemical 
assessments).
– If sufficient data are available, a distribution can be defined for the parameter.
– If only a single values is known for the parameter, a distribution cannot be made.

• Input parameters may have a variety of probability distributions depending on the 
type of parameter and data available:
– Uniform distribution, discrete distribution, triangular distribution, normal distribution, lognormal 

distribution.
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Calculation Incorporating Input Parameter Distributions

• Deterministic calculation for operating hours associated 
with unloading containers of antifreeze:

𝑂𝑂𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 =
(𝑄𝑄𝑢𝑢𝑢𝑢𝑢𝑢× 𝑁𝑁𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗)

3.79 𝐿𝐿
𝑔𝑔𝑔𝑔𝑔𝑔 × 1 𝑘𝑘𝑘𝑘

𝐿𝐿 × 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

• The degree of stochasticity in this example is represented 
by the three blue input parameters for which 
distributions were used: number of jobs per day and 
container volume.

• Variability could be further incorporated if distributions 
were available for the other parameters, such as RATEfill.
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Parameter Definition

OHcont_unload
Duration of exposure for 

container unloading

Quse Daily use rate of antifreeze

Njobs
Number of antifreeze jobs 

per day

Vcont Container size

RATEfill Fill rate of containers



Calculation Incorporating Input Parameter Distributions (cont.)

• Deterministic calculation for the annual throughput of 
1,4-dioxane in hydraulic fracturing:

𝑄𝑄𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑦𝑦𝑦𝑦 = 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑦𝑦𝑦𝑦 × 3.79 𝐿𝐿
𝑔𝑔𝑔𝑔𝑔𝑔

×
𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 × 𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

• The degree of stochasticity in this example is represented 
by the two blue input parameters for which distributions 
were used: annual use rate per site of fracturing fluids 
containing 1,4-dioxane, and mass fraction of 1,4-dioxane 
in hydraulic fracturing fluid.

• Variability could be further incorporated if a distribution 
was available for the other parameter, RHOfracturing_fluid.

9

Parameter Definition

Qdioxane_site_yr

Annual throughput per 
site of 1,4-dioxane in 
hydraulic fracturing

Qsite_yr

Annual use rate per 
site of fracturing fluids 
containing 1,4-dioxane

RHOfracturing_fluid
Density of fracturing 

fluid

Fdioxane_fracturing_f
luid

Mass fraction of 1,4-
dioxane in hydraulic 

fracturing fluid 



Calculation Incorporating Input Parameter Distributions (cont.)

• Deterministic calculation for dust releases that are captured 
and controlled during the use of solid laundry detergents:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
= 𝑄𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑑𝑑𝑑𝑑𝑑𝑑 × 𝐹𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 × 𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
× 𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 × 𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

• The degree of stochasticity in this example is represented by 
the six blue input parameters for which distributions were 
used.

• As all parameters have distributions, variability has been 
incorporated to the highest degree.
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Parameter Definition

Qfacility_day

Daily use rate of 
powder laundry 

detergents

Fformulations_dioxane

Fraction of laundry 
detergents containing 

1,4-dioxane

Fdioxane_laundry

Mass fraction of 1,4-
dioxane in laundry 

detergent

Fdust_generation

Fraction of chemical 
lost during transfer of 

solid powders

Fdust_capture
Capture efficiency for 
dust capture methods

Fdust_control
Control efficiency for 
dust control methods



Addition of Discussion on Sensitivity
• Peer reviewers recommended to include 

sensitivity analysis so that parameters that 
are driving releases/exposures could be 
identified, along with potential outliers 
skewing the data.

• This tornado chart shows the impact of the 
input parameters on 8-hour TWA exposure 
during use of antifreeze.

– The larger the bar, the more sensitive the daily 
release result is on the input value.

• The largest impact parameters were 
identified to ensure distributions were 
available. All the inputs listed in this 
example have distributions.
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1,4 Dioxane Charge Questions for the SACC
• During the peer review meeting, EPA presented charge questions to receive targeted feedback 

on the risk evaluation.
• In Charge Question 1, EPA specifically requested feedback on Monte Carlo methods used in the 

risk evaluation, focusing on:
• Monte Carlo method development,
• Uncertainty and variability associated with Monte Carlo modeling,
• Distribution shape (e.g., triangular, discrete, etc.),
• Data used to define input parameter distributions, and
• Application of Monte Carlo modeling to the risk evaluation.

• A key purpose for these specific charge questions was to receive peer review on the Monte 
Carlo method development process that could be applied to other models used in future risk 
evaluations.
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Peer Review Recommendations on the Monte Carlo Methods

• Common recommendations:
– Parameter distributions should be based on recent data, as opposed to old 

data.
– Industry data should be used to inform parameter distributions.
– Specific scenarios should be modeled as opposed to generic industry-wide 

scenarios.
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Summary of Improvements from Peer Review
• EPA created a new Monte Carlo model, eliminating the use of outdated monitoring 

data for dish soap and detergent.
• Peer review provided additional data sources for input parameters, allowing EPA to 

replace older or less representative datasets.
• EPA modified the risk evaluation to add transparency in input parameter discussions 

and discussions of model sensitivity.
• Overall, this resulted in improvements to the models, some of which increased the 

Weight of Scientific Evidence conclusion for the exposure estimates.
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Current and Future Monte Carlo Use in Risk Evaluations
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• EPA has incorporated Monte Carlo modeling into various release and exposure 
scenarios throughout various chemical risk evaluations:

Release Modeling

• Textile Dyes

Exposure Modeling

• Domestic Manufacture
• Chemical Processing
• Vapor Degreasing
• Aerosol Applications
• Use of Lubricants
• Waste Handling, Disposal, 

Treatment, and Recycling

Release & 
Exposure Modeling

• Import and Repackaging
• Incorporation into Paints 

and Coatings
• Incorporation into Articles
• Use of Laboratory 

Chemicals
• Dry Cleaning and Spot 

Cleaning
• Hydraulic Fracturing



Key Takeaways for the Use of Monte Carlo in Risk Evaluations 

• Monte Carlo methods better incorporate variability in assessments and can 
be used with limited datasets. 

• Monte Carlo methods can provide more representative exposure estimates 
compared to monitoring data, where monitoring data are limited, outdated, 
or biased.

• However, using more generic data or assumptions to fill data gaps can add 
uncertainty. As highlighted in the 1,4-dioxane peer review process, having 
more sources of data for model input parameters adds significant value to 
Monte Carlo models.

• Parameter variability improves the representativeness of estimates while 
increasing the confidence in risk characterization.
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