

OFFICE OF ATMOSPHERIC PROTECTION

WASHINGTON, D.C. 20460

October 28, 2024

Mr. Richard Adams
Ozona CCS, LLC
19026 Ridgewood Pkwy
Suite 200
San Antonio, TX 78259

Re: Monitoring, Reporting and Verification (MRV) Plan for O'Neal Gas Unit Well No. 4

Dear Mr. Adams:

The United States Environmental Protection Agency (EPA) has reviewed the Monitoring, Reporting and Verification (MRV) Plan submitted for O'Neal Gas Unit Well No. 4, as required by 40 CFR Part 98, Subpart RR of the Greenhouse Gas Reporting Program. The EPA is approving the MRV Plan submitted by O'Neal Gas Unit Well No. 4 on August 26, 2024, as the final MRV plan. The MRV Plan Approval Number is 1014786-1. This decision is effective October 29, 2024 and is appealable to the EPA's Environmental Appeals Board under 40 CFR Part 78. In conjunction with this MRV plan approval, we recommend reviewing the Subpart PP regulations to determine whether your facility is required to report data as a supplier of carbon dioxide. Furthermore, this decision is applicable only to the MRV plan and does not constitute an EPA endorsement of the project, technologies, or parties involved.

If you have any questions regarding this determination, please contact me or Melinda Miller of the Greenhouse Gas Reporting Branch at miller.melinda@epa.gov.

incerely,

Supervisor, Greenhouse Gas Reporting Branch

Technical Review of Subpart RR MRV Plan for the O'Neal Gas Unit Well No. 4

October 2024

Contents

1	Overview of Project	1
2	Evaluation of the Delineation of the Maximum Monitoring Area (MMA) and Active Monitoring Area (AMA)	2
3	Identification of Potential Surface Leakage Pathways	3
4	Strategy for Detection and Quantifying Surface Leakage of CO ₂ and for Establishing Expected Baselines for Monitoring	7
5	Considerations Used to Calculate Site-Specific Variables for the Mass Balance Equation	. 13
6	Summary of Findings	. 16

<u>Appendices</u>

Appendix A: Final MRV Plan

Appendix B: Submissions and Responses to Requests for Additional Information

This document summarizes the U.S. Environmental Protection Agency's (EPA's) technical evaluation of the Greenhouse Gas Reporting Program (GHGRP) subpart RR Monitoring, Reporting, and Verification (MRV) plan submitted by Ozona CCS, LLC (O'Neal) for its O'Neal Gas Unit Well No. 4 (O'Neal No. 4 well) treated acid gas (TAG) injection project, which injects into the Sligo Formation. Note that this evaluation pertains only to the subpart RR MRV plan for O'Neal No. 4, and does not in any way replace, remove, or affect Underground Injection Control (UIC) permitting obligations. Furthermore, this decision is applicable only to the MRV plan and does not constitute an EPA endorsement of the project, technologies, or parties involved.

1 Overview of Project

Section 1 of the MRV plan states that O'Neal No. 4 well currently has a pending Class II disposal permit that will be issued by the Texas Railroad Commission (TRRC) for the O'Neal No. 4 well (API No. 42-025-32658, UIC No. 56819). The permit application was submitted in September of 2023. This permit would authorize O'Neal to inject up to 1.5 million standard cubic feet per day (MMscf/D) into the Sligo formation at a depth of 15,874 ft to 16,056 ft with a maximum allowable surface pressure of 7,920 pounds per square inch gauge (psig). This injection of treated acid gas will occur for approximately 12 years. The source of the injected TAG is the Pawnee Treating Plant (Plant) in Bee County, Texas. The O'Neal No. 4 well is located about 2 miles south of the Pawnee Gas Plant.

The MRV plan states that the facility and the well design of the O'Neal No. 4 well are planned to protect against the migration of carbon dioxide (CO_2) out of the injection interval, protect against contamination of subsurface formations, and most importantly, to prevent surface releases. The MRV plan states that the injection interval for the O'Neal No. 4 well, the Sligo formation, is located approximately 14,924 ft below the base of the Underground Source of Drinking Water (USDW). As stated in the MRV plan, the O'Neal No. 4 well will inject a CO_2 stream containing 98.2% CO_2 , 0.4% H_2S , 1.03% hydrocarbons, and 0.37% Nitrogen.

Section 2 of the MRV plan describes the geologic setting and injection process for the O'Neal No. 4 well. The MRV plan states that the target injection interval is the lower Cretaceous-age Sligo Formation. As stated in the MRV plan, the Sligo Formation is predominately composed of shelf-edge limestones that were deposited along the lower Cretaceous platform. According to the MRV plan primary porosity and permeability of the upper Sligo Formation tends to develop in high-energy sequences with normal marine conditions that are dominated by the deposition of oolitic and skeletal grainstones. As explained in the MRV plan, the lithologic and petrophysical characteristics of the Sligo Formation at the O'Neal No. 4 well's location indicate that the reservoir contains the necessary thickness, porosity, and permeability to receive the proposed injection stream.

The MRV plan states that the Pearsall Formation will serve as the upper confining interval. The MRV plan states that following the deposition of the Sligo Formation, the Lower Cretaceous shelf was drowned by eustatic sea-level rise and deposition of the deep-water Pine Island Shale Member of the Pearsall Formation throughout the region. The Pine Island Shale consists of alternating beds of pelagic mudstone, hemipelagic mudstone, and iron-rich dolomitic mudstone interpreted to have been

deposited along the outer ramp. According to the MRV plan, the 2012 U.S. Geological Survey (USGS) *CO*₂ *Storage Resource Assessment* suggests the Pine Island Shale Member contains the physical properties required to act as a regional seal and noted it is a sufficient regional seal with as little as 50 feet of contiguous shale development.

As stated in the MRV plan, the Lower Sligo and Hosston Formations serve as the lower confining interval. The Hosston to lower Sligo "contact" represents a gradational package with a decrease in terrigenous sediments, an increase in carbonate sediments, and an increase in burrows of marine organisms working up-section into the lower Sligo. The MRV plan also states that the porosity of the Lower Sligo formation ranges from 0 to 2% and permeability is consistently near 0 millidarcies (mD).

The description of the project provides the necessary information for 40 CFR 98.448(a)(6).

2 Evaluation of the Delineation of the Maximum Monitoring Area (MMA) and Active Monitoring Area (AMA)

As part of the MRV plan, the reporter must identify and delineate both the maximum monitoring area (MMA) and active monitoring area (AMA), pursuant to 40 CFR 98.448(a)(1). Subpart RR defines maximum monitoring area as "the area that must be monitored under this regulation and is defined as equal to or greater than the area expected to contain the free phase CO₂ plume until the CO₂ plume has stabilized plus an all-around buffer zone of at least one-half mile." Subpart RR defines active monitoring area as "the area that will be monitored over a specific time interval from the first year of the period (n) to the last year in the period (t). The boundary of the active monitoring area is established by superimposing two areas: (1) the area projected to contain the free phase CO₂ plume at the end of year t, plus an all-around buffer zone of one-half mile or greater if known leakage pathways extend laterally more than one-half mile; (2) the area projected to contain the free phase CO₂ plume at the end of year t + 5." See 40 CFR 98.449.

As stated in the MRV plan, the reservoir modeling calculated that, after 12 years of injection followed by 10 additional years of density drift, the areal extent of the projected plume will be 303 acres. The reservoir is stated to be at hydrostatic equilibrium. Given the geological formation in which this well is located and its previous history as a gas producer, the model is assumed to be primarily saturated with gas. More precisely, the reservoir is assumed to be 80% gas saturated and 20% brine saturated, as deduced from the well log data. O'Neal No. 4 well found that the maximum distance from the wellbore to the edge of the forecasted plume to be approximately 0.45 miles (mi) after the 30-year post-injection period. The MMA boundary represents the stabilized plume boundary after 10 years of density drift plus an all-around buffer zone of one-half mile.

The MRV plan states that O'Neal No. 4 well initially established the AMA boundary by setting it equal to the expected total injection period of 12 years. The AMA was analyzed by super imposing the area based on a one-half mile buffer around the anticipated plume location after 12 years of injection (2037), with the area of the projected free-phase CO₂ plume after 5 additional years (2042). Due to the AMA boundary being only slightly smaller than the MMA boundary, O'Neal No. 4 well defined the AMA as

equal to the MMA. The MRV plan also states that the facility will submit a revised MRV plan by 2037 to provide an updated AMA and MMA.

The delineations of the MMA and AMA were determined to be acceptable per the requirements in 40 CFR 98.448(a)(1). The MMA and AMA described in the MRV plan are clearly delineated in the plan and are consistent with the definitions in 40 CFR 98.449.

3 Identification of Potential Surface Leakage Pathways

As part of the MRV plan, the reporter must identify potential surface leakage pathways for CO_2 in the MMA and the likelihood, magnitude, and timing of surface leakage of CO_2 through these pathways pursuant to 40 CFR 98.448(a)(2). O'Neal No. 4 well identified the following as potential leakage pathways in Section 4 of their MRV plan that required consideration:

- Leakage from surface equipment
- Leakage through existing and future wells within the MMA
- Leakage through faults and fractures
- Leakage through the upper confining layer
- Leakage from natural or induced seismicity

A summary table of O'Neal No. 4 well's evaluation of the likelihood, magnitude, and timing of any potential CO₂ leakage can be found in Table 7 of the MRV plan and is reproduced below.

Potential Leakage Pathway	Likelihood	Magnitude	Timing
Surface Equipment	Possible during injection operations.	Low. Automated systems will detect leaks and execute shut-down procedures.	During active injection period. Thereafter the well will be plugged.
Existing wells within the MMA	Unlikely. One artificial penetration was drilled into the injection interval. This well has been plugged and abandoned.	Low. Vertical migration of CO ₂ would likely enter a shallower hydrocarbon production zone.	During active injection.
Faults and fractures	Unlikely. There is over 14,000 ft of impermeable rock between the injection zone and the base of the USDW.	Low. Vertical migration of CO ₂ would likely enter a shallower hydrocarbon production zone.	During active injection.

	Unlikely. The lateral	Low. Vertical migration of CO ₂	During active injection.
Unner confining layer	continuity of the UCZ	would likely enter a	
Upper confining layer	consisting primarily of the	shallower hydrocarbon	
	Pearsall Formation which is 500	production zone.	
	ft thick is recognized as a very		
	competent seal.		
	Unlikely. There is over	Low. Vertical migration of CO ₂	During active injection.
Natural or induced	14,000 ft of impermeable	would likely enter a	
seismicity	rock between the injection	shallower hydrocarbon	
ocio:moicy	zone and the base of the	production zone.	
	USDW.		

Magnitude Assessment Description

Low - categorized as little to no impact to safety, health and the environment and the costs to mitigate are minimal.

Medium - potential risks to the USDW and for surface releases does exist, but circumstances can be easily remediated.

High - danger to the USDW and significant surface release may exist, and if occurs this would require significant costs to remediate.

3.1 Leakage from Surface Equipment

Section 4.1 of the MRV plan states the Plant and the O'Neal No. 4 well are designed for separating transporting, and injecting TAG, primarily consisting of CO₂, in a manner to ensure safety to the public, the employees, and the environment. The facilities have been designed to minimize leakage and failure points, following applicable National Association of Corrosion Engineers (NACE) and American Petroleum Institute (API) standards and practices. As the TAG stream contains H₂S, monitors installed for H₂S detection will also indicate the presence of CO₂. These monitors will be installed at key locations around the Plant and the O'Neal No. 4 well. These devices will be continuously monitored by the Supervisory Control and Data Acquisition (SCADA) system and will alert at set points at set points determined by the Plant's Health, Safety, and Environment (HS&E) Director, consistent with Occupational Safety and Health Administration (OSHA) requirements. The Plant will set the detection and alarm states for personnel at 10 ppm and at 40 ppm for initiating Emergency Shutdown. Key monitoring points and parameters are also provided in Table 8 of the MRV plan.

The MRV plan states facilities will incorporate important safety equipment to ensure reliable and safe operations. In addition to the H_2S monitors, emergency shutdown (ESD) valves, with high- and low-pressure shutoff settings to isolate the Plant, the O'Neal No. 4 well, and other components, StarTex has a flare stack to safely handle the TAG when a depressuring event occurs. These facilities will be constructed in the coming months. The exact location of this equipment is not yet known, but it will be installed in accordance with applicable engineering and safety standards.

With continuous air monitoring at the Plant and the O'Neal No. 4 well site, a release of CO₂ would be quickly identified, and the safety systems and protocols would effectuate an orderly shutdown to ensure safety and minimize the release volume. The CO₂ injected into the O'Neal No. 4 well is from the amine unit at the Plant. O'Neal No. 4 well concludes that the leakage of CO₂ through the surface equipment is unlikely.

Thus, the MRV plan provides an acceptable characterization of CO₂ leakage that could be expected through surface equipment.

3.2 Leakage through Existing and Future Wells Within the MMA

Oil and Gas Operations within the Monitoring Area

Section 4.2 of the MRV plan states that the O'Neal No. 4 well is engineered to prevent migration from the injection interval to the surface through a special casing and cementing design as depicted in the schematic provided in Figure 32 of the MRV plan. Mechanical integrity tests (MITs), required under Statewide Rule (SWR) §3.46 [40 CFR §146.23 (b)(3)], will take place every 5 years to verify that the well and wellhead can contain the appropriate operating pressures. If an MIT were to indicate a leak, the well would be isolated, and the leak mitigated to prevent leakage of the injectate to the atmosphere.

According to the MRV plan, a map of all oil and gas wells within the MMA is shown in Figure 33. Figure 34 is a map of all the oil and gas wells that penetrate the MMA's gross injection zone. Only one well penetrates the MMA's gross injection zone. This well is non-productive and has been plugged and abandoned in accordance with TRRC requirements. A summary table of all oil and gas wells within the MMA is provided in Appendix B-1. This table in Appendix B-1 provides the total depth (TD) of all wells within the MMA. The wells that are shallower and do not penetrate the injection zone are separated by the Pearsall Formation with a gross thickness of 535 ft. The Pine Island Shale comprises approximately 130 ft of this interval and provides a competent regional seal—making vertical migration of fluids above the injection zone unlikely.

The MRV plan states the shallower offset hydrocarbon wells within the MMA will also serve as above zone monitoring wells. Should any of the sequestered volumes migrate vertically, they would potentially enter the shallower hydrocarbon reservoir. Regular sampling and analysis are performed on the produced hydrocarbons. O'Neal No. 4 well states if a material difference in the quantity of CO₂ in the sample occurs indicating a potential migration of injectate from the Sligo Formation, then it would investigate and develop a mitigation plan.

Future Drilling

The MRV plan states potential leakage pathways caused by future drilling in the area are not expected to occur. The deeper formations have proven to date to be nonproductive in this area, and therefore the facility does not see this as a risk. This is supported by a review of the TRRC Rule 13 (Casing, Cementing, Drilling, Well Control, and Completion Requirements), 16 TAC §3.13. The Sligo is not among the formations listed for which operators in Bee County and District 2 (where the O'Neal No. 4 well is located)

are required to comply with TRCC Rule 13; therefore, the TRRC does not believe there are productive horizons below the Sligo. The O'Neal No. 4 well drilling permit is provided in Appendix A-2.

Groundwater Wells

The MRV plan states that a groundwater well search resulted in five groundwater wells found within the MMA, as identified by the Texas Water Development Board. The surface and intermediate casings of the O'Neal No. 4 well, as shown in Figure 35 of the MRV plan, are designed to protect the shallow freshwater aquifers consistent with applicable TRRC regulations and the Groundwater Advisory Unit (GAU) letter issued for this location. The MRV plan also states that the wellbore casings and cements also prevent CO₂ leakage to the surface along the borehole. For these reasons, the O'Neal No. 4 well concludes that leakage of the sequestered CO₂ to groundwater is unlikely.

Thus, the MRV plan provides an acceptable characterization of CO₂ leakage that could be expected through existing wells within the MMA.

3.3 Leakage through Faults and Fractures

Section 4.3 of the MRV plan states detailed mapping of openhole logs surrounding the O'Neal No. 4 well did not identify any faulting within either the Pearsall or Sligo sections. However, there is a general lack of deep penetrators within the area that limits the amount of openhole coverage available.

According to the MRV plan, the majority of the published literature suggests that faulting near the project area is restricted to the shallower, overlying Cenozoic section, as shown in Figure 9 of the MRV plan, with shallow faults dying out before reaching the Pearsall Formation. One source interpreted the potential for faulting to the south. The potential fault is depicted in Figure 8 of the MRV plan relative to the location of the O'Neal No. 4 well. According to the map, the interpreted fault lies approximately 4.25 miles south-southeast of the well and approximately 3.9 mi south-southeast of the stabilized plume extent in the year 2047. O'Neal No. 4 well states in the unlikely scenario in which the injection plume or pressure front reaches the potential fault, and the potential fault was to act as a transmissive pathway, the upper confining Pearsall shale contains sufficient thickness and petrophysical properties required to confine and protect injectates from leaking outside of the permitted injection zone.

Thus, the MRV plan provides an acceptable characterization of CO₂ leakage that could be expected through faults and fractures.

3.4 Leakage through the Confining Layer

Section 4.4 of the MRV plan states the Sligo injection zone has competent sealing intervals present above and below the targeted carbonate sequence of the Sligo section. The overlying Pine Island Shale Member of the Pearsall Formation is approximately 130 ft thick at the O'Neal No. 4 well. Above this confining unit, the Cow Creek Limestone, Cow Creek Shale, and Bexar Shale Members of the Pearsall Formation will act as additional confinement between the injection interval and the USDW. The MRV plan states that the USDW lies well above the sealing properties of the formations outlined above,

making stratigraphic migration of fluids into the USDW highly unlikely. The MRV plan also states that the petrophysical properties of the lower Sligo and Hosston Formations make these ideal for lower confinement. The low porosity and permeability of these underlying formations minimizes the likelihood of downward migration of injected fluids. The relative buoyancy of injectate to the in-situ reservoir fluid makes migration below the lower confining layer unlikely

Thus, the MRV plan provides an acceptable characterization of CO₂ leakage that could be expected through the confining layer.

3.5 Leakage from Natural or Induced Seismicity

Section 4.5 of the MRV plan states that O'Neal No. 4 well is located in an area of the Gulf of Mexico considered to be active from a seismic perspective. Therefore, the Bureau of Economic Geology's TexNet (from 2017 to present) and USGS's Advanced National Seismic System (from 1971 to present) databases were reviewed to identify any recorded seismic events within 25 kilometers (km) of the O'Neal No. 4 well. The MRV plan states the investigation identified a multitude of seismic events within the 25-km search radius; however, the magnitude of most of the events was below 2.5. The nearest seismic event with a recorded magnitude of 3.0 or greater was measured approximately 5.6 km northwest of the O'Neal No. 4 well at a depth of 5 km. The results of the investigation are plotted on the map provided in Figure 36 of the MRV plan relative to the O'Neal No. 4 well and the 25-km search radius.

The MRV plan states the Plant will have operating procedures and set points programmed into the control and SCADA systems to ensure operating pressures are maintained within the injection and confining intervals' approved fracture gradients. Given the seismic activity in the area, O'Neal No. 4 well states it will closely monitor nearby TexNet station EF71 for activity and any corresponding irregularities in the operating pressures of the O'Neal No. 4 well.

Thus, the MRV plan provides an acceptable characterization of CO₂ leakage that could be expected through natural or induced seismicity.

Overall, the MRV plan provides an acceptable characterization of potential CO₂ leakage pathways as required by 40 CFR 98.448(a)(2).

4 Strategy for Detection and Quantifying Surface Leakage of CO₂ and for Establishing Expected Baselines for Monitoring

40 CFR 98.448(a)(3) requires that an MRV plan contain a strategy for detecting and quantifying any surface leakage of CO_2 , and 40 CFR 98.448(a)(4) requires that an MRV plan include a strategy for establishing the expected baselines for monitoring potential CO_2 leakage. Section 5 of the MRV plan discusses the strategy that O'Neal No. 4 well will employ for detecting and quantifying surface leakage of CO_2 through the pathways identified in Section 4, to meet the requirements of 40 CFR §98.448(a)(3).

As the injectate stream contains both H_2S and CO_2 , the H_2S will be a proxy for CO_2 leakage and therefore the monitoring systems in place to detect H_2S will also indicate a release of CO_2 . Monitoring will occur during the planned 12-year injection period or cessation of injection operations, plus a proposed 10-year post-injection period until the plume has stabilized.

- Leakage from surface equipment
- Leakage through existing and future wells within the MMA
- Leakage through faults and fractures
- Leakage through confining seals
- Leakage from natural or induced seismicity

A summary table of O'Neal No. 4 well's strategy for monitoring any potential CO₂ leakage can be found in Table 9 of the MRV plan and is reproduced below.

Leakage Pathway	Monitoring Method
	Fixed H ₂ S monitors at the Plant and well site
Surface equipment	Visual inspections
	Monitor SCADA systems for the Plant and well site
	Monitor CO ₂ levels in above zone producing wells
	Mechanical Integrity Tests (MIT) of O'Neal No. 4 well every 5 years
Existing wells within the MMA	Visual inspections
	Annual soil gas sampling near well locations that penetrate the Upper Confining Zone within the AMA
Leakage through groundwater wells	Annual groundwater samples from existing water well(s)
Leakage from future wells	Monitor drilling activity and compliance with TRRC Rule 13 Regulations
Faults and Fractures	SCADA continuous monitoring at the well site (volumes and pressures)
	Monitor CO ₂ levels in above zone producing wells
	Monitor CO ₂ levels in above zone producing wells
Natural or induced seismicity	Monitor existing TexNet station

4.1 Detection of Leakage from Surface Equipment

Section 5.1 of the MRV plan states the Plant and the O'Neal No. 4 well were designed to operate in a safe manner to minimize the risk of an escape of CO₂ and H₂S. Leakage from surface equipment is unlikely and would quickly be detected and addressed. The facility design minimizes leak points through the equipment used, and key areas are constructed with materials that are NACE and API compliant. A baseline atmospheric CO₂ concentration will be established prior to commencing operation once facility construction has been completed. Ambient H₂S monitors will be located at the plant and near the O'Neal No. 4 well site for local alarm and are connected to the SCADA system for continuous monitoring.

According to the MRV plan, the plant and the O'Neal No. 4 well are continuously monitored through automated control systems. In addition, field personnel conduct routine visual field inspections of gauges and gas monitoring equipment. The effectiveness of the internal and external corrosion control program is monitored through the periodic inspection of the corrosion coupons and inspection of the cathodic protection system. These inspections and the automated systems allow O'Neal No. 4 well to detect and respond to any leakage situation quickly. The surface equipment will be monitored for the injection and post-injection period. The MRV plan states should leakage be detected during active injection operations, the volume of CO₂ released will be calculated based on operating conditions at the time of the event, per 40 CFR 98.448(a)(5) and 40 CFR 98.444(d).

The MRV plan states pressures, temperatures, and flow rates through the surface equipment are continuously monitored during operations. If a release occurred from surface equipment, the amount of CO_2 released would be quantified based on the operating conditions, including pressure, flow rate, percentage of CO_2 in the injectate, size of the leak-point opening, and duration of the leak.

Table 9 of the MRV plan provides a detailed characterization of detecting CO₂ leakage that could be expected from surface equipment.

Thus, the MRV plan provides adequate characterization of the O'Neal No. 4 well's approach to detect potential leakage through surface equipment as required by 40 CFR 98.448(a)(3).

4.2 Detection of Leakage through Existing and Future Wells Within the MMA

Section 4.2 of the MRV plan states that O'Neal No. 4 well continuously monitors and collects injection volumes, pressures, and temperatures through their SCADA systems, for the O'Neal No. 4 well. This data is reviewed by qualified personnel and will follow response and reporting procedures when data exceeds acceptable performance limits. A change of injection or annular pressure would indicate the presence of a possible leak and be thoroughly investigated. In addition, O'Neal No. 4 well states MITs are performed every 5 years, as expected by the TRRC and UIC, and would also indicate the presence of a leak. Upon a negative MIT, the well would be isolated and investigated to develop a leak mitigation plan.

As discussed previously in the MRV plan, TRRC Rule 13 would ensure that new wells in the field would be constructed to prevent migration from the injection interval.

In addition to the fixed monitors described previously, the MRV plan states that the facility will also establish and operate an in- field monitoring program to detect CO_2 leakage within the AMA. This would include H_2S monitoring as a proxy for CO_2 at the well site and annual soil gas samples taken near any identified wells that penetrate the injection interval within the AMA. These samples will be analyzed by a qualified third party. Prior to commencing operation, and through the post-injection monitoring period, O'Neal No. 4 well states it will have these monitoring systems in place.

The MRV plan states that currently, there is only one well in the MMA identified that penetrates the injection interval. This well was plugged and abandoned in 2007. The TRRC records are provided in

Appendix A-4. O'Neal No. 4 well will take an annual soil gas sample from this area, which will be analyzed by a third-party lab. Additional monitoring will be added as the AMA is updated over time.

The MRV plan states O'Neal No. 4 well will also utilize shallower producing gas wells as proxies for above-zone monitoring wells. Production data from these wells is analyzed for monthly production statements, and therefore would be an early indicator of any possible subsurface issues. Should any material change from historical trends in the CO₂ concentration occur, O'Neal No. 4 well would investigate and develop a corrective action plan. Should any CO₂ migrate vertically from the Sligo, the magnitude risk of this event is very low, as the producing reservoir provides an ideal containment given the upper confining zone of this reservoir has proven competent.

Groundwater Quality Monitoring

According to the MRV plan, O'Neal No. 4 well will monitor the groundwater quality above the confining interval by sampling from groundwater wells near the O'Neal No. 4 well and analyzing the samples with a third-party laboratory on an annual basis. In the case of O'Neal No. 4 well, five existing groundwater wells have been identified within the AMA, as shown in Figure 38 of the MRV plan. Initial groundwater quality tests will be performed to establish a baseline prior to commencing operations.

Table 9 of the MRV plan provides a detailed characterization of detecting CO₂ leakage that could be expected through existing and future wells within the MMA.

Thus, the MRV plan provides adequate characterization of O'Neal No. 4 well's approach to detect potential leakage through existing and future wells within the MMA as required by 40 CFR 98.448(a)(3).

4.3 Detection of Leakage through Faults, Fractures, or Confining Seals

Section 5.3 of the MRV plan states that the facility will continuously monitor the operations of the O'Neal No. 4 well through the automated controls and SCADA systems. Any deviation from normal operating volume and corresponding injection pressure could indicate movement into a potential leak pathway, such as a fault or breakthrough of the confining seal, and it would trigger an alert due to a change in the injection pressure. Any such alert would be reviewed by field personnel and appropriate action would be taken, including shutting in the well, if necessary.

According to the MRV plan, the facility will also utilize shallower producing wells as proxies for above-zone monitoring wells. Production data is analyzed regularly for monthly production statements and therefore would be an early indicator of any possible subsurface issues. Should any material change from historical trends in the CO₂ concentration occur, O'Neal No. 4 well would investigate and develop a corrective action plan. The MRV plan also states should any CO₂ migrate vertically from the Sligo Formation, the magnitude risk of this event is very low, as the producing reservoir provides an ideal containment given the upper confining zone has proven competent.

Table 9 of the MRV plan provides a detailed characterization of detecting CO₂ leakage that could be expected through faults and fractures.

Thus, the MRV plan provides adequate characterization of O'Neal No. 4 well's approach to detect potential leakage through faults, fractures, or confining seals as required by 40 CFR 98.448(a)(3).

4.4 Detection of Leakage from Natural or Induced Seismicity

The MRV plan states that while the likelihood of a natural or induced seismicity event is low, O'Neal No. 4 well plans to use the nearest TexNet seismic monitoring station, EF71, to monitor the area around the facility. The TexNet station is approximately 3 mi to the northwest, as shown in Figure 38 of the MRV plan. The MRV plan states that this is a sufficient distance to allow for accurate and detailed monitoring of the seismic activity in the area. O'Neal No. 4 well will monitor this station for any seismic activity, and if a seismic event of 3.0 magnitude or greater is detected, it will review the injection volumes and pressures of the O'Neal No. 4 well to determine if any significant changes have occurred that would indicate potential leakage.

The MRV plan also states O'Neal No. 4 well will continuously monitor operations through the SCADA system. Any deviation from normal operating pressure and volume set points would trigger an alarm for investigation by operations staff. Such a variance could indicate movement into a potential leak pathway, such as a fault or breakthrough of the confining seal. Any such alert would be reviewed by field personnel and appropriate action would be taken, including shutting in the well, if necessary.

Table 9 of the MRV plan provides a detailed characterization of detecting CO₂ leakage that could be expected from natural or induced seismicity.

Thus, the MRV plan provides adequate characterization of O'Neal No. 4 well's approach to detect potential leakage from natural or induced seismicity as required by 40 CFR 98.448(a)(3).

4.5 Quantification

Section 7.4 of the MRV plan states the potential for pathways for all previously mentioned forms of leakage is unlikely. Given the possibility of uncertainty around the cause of a leakage pathway that is mentioned above, O'Neal No. 4 well believes the most appropriate method to quantify the mass of CO₂ released will be determined on a case-by-case basis. Any mass of CO₂ detected leaking to the surface will be quantified by using industry proven engineering methods including, but not limited to, engineering analysis on surface and subsurface measurement data, dynamic reservoir modeling, and history-matching of the sequestering reservoir performance, among others. If any leakage were to be detected, the volume of CO₂ released would be quantified based on the operating conditions at the time of release, in accordance with 40 CFR 98.448(a)(5).

4.6 Determination of Baselines

Section 6 of the MRV plan identifies the strategies that the facility will undertake to establish the expected baselines for monitoring CO₂ surface leakage per 40 CFR 98.448(a)(4). O'Neal No. 4 well will

also use existing SCADA monitoring systems to identify changes from the expected performance that may indicate leakage of CO₂. The MRV plan identifies the following strategies for determining baselines:

Visual Inspections

The MRV plan states regular inspections will be conducted by field personnel at the Plant and the O'Neal No. 4 well site. These inspections will aid in identifying and addressing possible issues to minimize the risk of leakage. If any issues are identified, such as vapor clouds or ice formations, corrective actions will be taken to address such issues.

CO₂/H₂S Detection

The MRV plan states that in addition to the fixed monitors in the Plant and at the wellsite, the facility will perform an annual in-field sampling program to monitor and detect any CO₂ leakage within the AMA. This will consist of soil gas sampling near any artificial penetrations of the injection zone and sampling of water wells. These probes have special membrane inserts that collect the gas samples over a 21-day period. These will be analyzed by a third-party lab to be analyzed for CO₂, H₂S, and trace contaminants typically found in a hydrocarbon gas stream. The lab results will be provided in the annual report should they indicate a material variance from the baseline. Initial samples will be taken and analyzed before the commencement of operations and will establish the baseline reference levels.

Operational Data

The MRV plan states upon starting injection operations, baseline measurements of injection volumes and pressures will be recorded. Any significant deviations over time will be analyzed for indication of leakage of injectate and the corresponding component of CO₂.

Continuous Monitoring

The MRV plan states the total mass of CO_2 emitted by surface leakage and equipment leaks will not be measured directly, as the injection stream for this project is near the OSHA Permissible Exposure Limit (PEL) 8-hour Time Weighted Average (TWA) of 5,000 ppm. Direct leak surveys present a hazard to personnel due to the presence of H_2S in the gas stream. Continuous monitoring systems will trigger alarms if there is a release. The mass of the CO_2 released would be calculated based on the operating conditions, including pressure, flow rate, percentage of CO_2 , size of the leak-point opening, and duration. This method is consistent with 40 CFR 98.448(a)(5) and 40 CFR 98.444(d), allowing the operator to calculate site-specific variables used in the mass balance equation.

The MRV plan also states in the case of a depressuring event, the acid gas stream will be sent to a flare stack to be safely processed and will be reported under reporting requirements for the plant. Any such events will be accounted for in the sequestered reporting volumes consistent with Section 7.4 of the MRV plan.

Groundwater Monitoring

The MRV plan states initial samples will be taken from groundwater wells in the area of the O'Neal No. 4 well upon approval of the MRV plan, and before commencement of CO₂ injection. These samples will be analyzed, and reports prepared by a third-party laboratory testing for pH, total dissolved solids (TDS), CO₂, and volatile organic compounds (VOC). Initial samples will be taken and analyzed before the commencement of operations and will establish the baseline reference levels. Sampling select wells will be performed annually. The MRV plan also states that in the event a material deviation in the sample analysis occurs, the results will be provided in the annual report.

Thus, the MRV plan provides an acceptable approach for detecting and quantifying leakage and for establishing expected baselines in accordance with 40 CFR 98.448(a)(3) and 40 CFR 98.448(a)(4).

5 Considerations Used to Calculate Site-Specific Variables for the Mass Balance Equation

5.1 Determining Mass of CO₂ Received

According to the MRV plan, the CO_2 received for the O'Neal No. 4 well is wholly injected and not mixed with any other supply. Therefore, the facility concludes that the annual mass of CO_2 injected will equal the amount received. The MRV plan states that any future streams would be metered separately before being combined into the calculated stream.

O'Neal No. 4 well provides an acceptable approach to calculating the mass of CO₂ received in accordance with subpart RR requirements.

5.2 Determining Mass of CO₂ Injected

Section 7.2 of the MRV plan states that the mass of CO_2 injected will be measured with a volumetric flow meter. The total annual mass of CO_2 , in metric tons, will be calculated by multiplying the mass flow by the CO_2 concentration in the flow according to Equation RR-5:

$$CO_{2,u} = \sum_{p=1}^{4} Q_{p,u} * D * C_{CO_{2,p,u}}$$

Where:

CO_{2,u} = Annual CO₂ mass injected (metric tons) as measured by flow meter u.

 $Q_{p,u}$ = Quarterly volumetric flow rate measurement for flow meter u in quarter p at standard conditions (standard cubic meters per quarter).

D = Density of CO₂ at standard conditions (metric tons per standard cubic meter): 0.0018682.

 $C_{\text{CO2},p,u}$ = CO_2 concentration measurement in flow for flow meter u in quarter p (vol. percent CO_2 , expressed as a decimal fraction).

p = Quarter of the year.

u = Flow meter.

O'Neal No. 4 well provides an acceptable approach to calculating the mass of CO₂ injected in accordance with subpart RR requirements.

5.3 Mass of CO₂ Produced

The MRV plan states that O'Neal No. 4 well is not part of an enhanced oil recovery project; therefore, no CO₂ will be produced.

5.4 Calculation of Mass of CO₂ Emitted by Surface Leakage

The MRV plan states that the mass of CO_2 emitted by surface leakage and equipment leaks will not be measured directly due to the H_2S concentration in the injection stream. Direct leak surveys are dangerous and present a hazard to personnel. Because no venting is expected to occur, the calculations would be based on the unusual event that a blowdown is required, and those emissions would be sent to a flare stack and reported as a part of the required GHG reporting for the plant. Any leakage would be detected and managed as an upset event. Continuous monitoring systems should trigger an alarm upon a release of H_2S and CO_2 . The mass of the CO_2 released would be calculated for the operating conditions, including pressure, flow rate, size of the leak point opening, and duration of the leak. This method is consistent with 40 CFR 98.448(a)(5).

Should CO₂ surface leakage occur, the MRV plan states that the mass emitted would be calculated for each surface pathway according to methods outlined in the plan and totaled using Equation RR-10 as

$$CO_{2E} = \sum_{x=1}^{X} CO_{2,x}$$

follows:

Where:

CO_{2E} = Total annual CO₂ mass emitted by surface leakage (metric tons) in the reporting year.

 $CO_{2,x}$ = Annual CO_2 mass emitted (metric tons) at leakage pathway x in the reporting year.

X = Leakage pathway.

Calculation methods using equations from subpart W will be used to calculate CO₂ emissions due to any surface leakage between the flow meter used to measure injection quantity and the injection wellhead.

O'Neal No. 4 well provides an acceptable approach for calculating the mass of CO₂ emitted by surface leakage in accordance with subpart RR requirements.

5.5 Calculation of Mass of CO₂ Sequestered

The MRV plan states that the mass of CO_2 sequestered in subsurface geologic formations will be calculated based on Equation RR-12. Data collection for calculating the amount of CO_2 sequestered will begin once the subsurface recompletion and surface facilities construction has been completed, as well as the approval of this MRV plan. As this well will not actively produce oil or natural gas, or any other fluids, as follows:

$$CO_2 = CO_{2I} - CO_{2E} - CO_{2FI}$$

Where:

 CO_2 = Total annual CO_2 mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year

 CO_{2l} = Total annual CO_2 mass injected (metric tons) in the well or group of wells covered by this source category in the reporting year

CO_{2E} = Total annual CO₂ mass emitted (metric tons) by surface leakage in the reporting year

 CO_{2FI} = Total annual CO_2 mass emitted (metric tons) from equipment leaks and vented emissions of CO_2 from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead

The MRV plan states that CO_{2FI} will be calculated in accordance with subpart W reporting of GHGs. Because no venting is expected to occur, the calculations would be based on the unusual event that a blowdown is required, and those emissions sent to flares and reported as part of the required GHG reporting for the gas plant.

O'Neal No. 4 well provides an acceptable approach for calculating the mass of CO₂ sequestered in accordance with subpart RR requirements.

6 Summary of Findings

The subpart RR MRV plan for the O'Neal Gas Unit Well No. 4 meets the requirements of 40 CFR 98.448. The regulatory provisions of 40 CFR 98.448(a), which specifies the requirements for MRV plans, are summarized below along with a summary of relevant provisions in the MRV plan.

Subpart RR MRV Plan Requirement	O'Neal Gas Unit Well No. 4 MRV Plan
40 CFR 98.448(a)(1): Delineation of the maximum monitoring area (MMA) and the active monitoring areas (AMA).	Section 3 of the MRV plan describes the MMA and AMA. The AMA boundary was established by superimposing the area based on a half-mile buffer around the anticipated plume location at the end of injection (2037) with the area of the projected free-phase CO ₂ plume at five additional years (2047). Since the AMA boundary was determined to fall within the MMA boundary, the defined MMA was also used to define the effective AMA.
40 CFR 98.448(a)(2): Identification of potential surface leakage pathways for CO ₂ in the MMA and the likelihood, magnitude, and timing, of surface leakage of CO ₂ through these pathways.	Section 4 of the MRV plan identifies and evaluates potential surface leakage pathways. The MRV plan identifies the following potential pathways: leakage from surface equipment; leakage through existing and future wells within the MMA; leakage through faults and fractures; leakage through the upper confining layer; and leakage from natural or induced seismicity. The MRV plan analyzes the likelihood, magnitude, and timing of surface leakage through these pathways.
40 CFR 98.448(a)(3): A strategy for detecting and quantifying any surface leakage of CO ₂ . 40 CFR 98.448(a)(4): A strategy for	Section 5 and Section 7 of the MRV plan describe the strategy for how the facility would detect CO ₂ leakage to the surface and how the leakage would be quantified, should leakage occur. Leaks would be detecting using methods such as SCADA systems, MITs, groundwater sampling, and in-field monitors. Section 6 of the MRV plan describes the strategy for
establishing the expected baselines for monitoring CO ₂ surface leakage. 40 CFR 98.448(a)(5): A summary of the considerations you intend to use to	establishing baselines against which monitoring results will be compared to assess potential surface leakage. Section 7 of the MRV plan describes O'Neal No. 4 well's approach to determining the amount of CO ₂

calculate site-specific variables for the mass	sequestered using the subpart RR mass balance
balance equation.	equation, including as related to calculation of total
	annual mass emitted from equipment leakage.
40 CFR 98.448(a)(6): For each injection	Section 1 of the MRV plan provides the well
well, report the well identification number	identification numbers for the O'Neal No. 4 well (API
used for the UIC permit (or the permit	No. 42-025-32658, UIC No. 56819). The MRV plan
application) and the UIC permit class.	specifies that the wells are pending a UIC Class II permit
	under TRRC Rule 9 and Rule 36.
40 CFR 98.448(a)(7): Proposed date to	Section 8 of the MRV plan states that the mass of CO ₂
begin collecting data for calculating total	sequestered in subsurface geologic formations will be
amount sequestered according to equation	calculated based on Equation RR-12, assuming an
RR-11 or RR-12 of this subpart.	expected injection start date of October 1, 2024.

Appendix A: Final MRV Plan

Subpart RR Monitoring, Reporting, and Verification (MRV) Plan O'Neal Gas Unit Well No. 4

Bee County, TX

Prepared for *Ozona CCS, LLC*San Antonio, TX

By

Lonquist Sequestration, LLC
Austin, TX

Version 4.0 August 2024

INTRODUCTION

Ozona CCS, LLC (Ozona) has a pending Class II acid gas injection (AGI) permit application with the Texas Railroad Commission (TRRC), which was submitted in September of 2023 for its O'Neal Gas Unit Well No. 4 (O'Neal No. 4), API No. 42-025-32658. Granting of this application would authorize Ozona to inject up to 1.5 million standard cubic feet per day (MMscf/D) of treated acid gas (TAG) into the Sligo Formation at a depth of 15,874 feet (ft) to 16,056 ft, with a maximum allowable surface pressure of 7,920 pounds per square inch gauge (psig). The TAG for this AGI well is associated with StarTex's Pawnee Treating Facility, located in a rural area of Bee County, Texas, approximately 2.0 miles (mi) south of Pawnee, Texas, as shown in Figure 1.

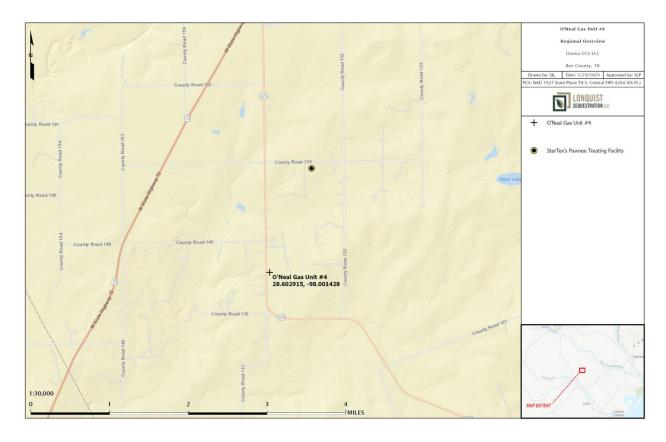


Figure 1 – Location of StarTex's Pawnee Treating Facility and the O'Neal No. 4

Ozona is submitting this Monitoring, Reporting, and Verification (MRV) plan to the EPA for approval under Title 40, U.S. Code of Federal Regulations (40 CFR) §98.440(a), Subpart RR, of the Greenhouse Gas Reporting Program (GHGRP). In addition to submitting this MRV plan to the EPA, Ozona has applied to the TRRC for the O'Neal GU No. 4's Class II permit. Ozona plans to inject TAG for approximately 12 years. Table 1 shows the expected composition of the gas stream to be sequestered from the nearby treating facility.

Table 1 – Expected TAG Composition

Component	Mol Percent
Carbon Dioxide	98.2%
Hydrocarbons	1.03%
Hydrogen Sulfide	0.4%
Nitrogen	0.37%

ACRONYMS AND ABBREVIATIONS

AMA Active Monitoring Area

BCF Billion Cubic Feet

CH₄ Methane

CMG Computer Modelling Group, Ltd.

Carbon Dioxide (may also refer to other carbon

CO₂ oxides)

E East

EOS Equation of State

EPA Environmental Protection Agency

ESD Emergency Shutdown

FG Fracture Gradient

ft Foot (Feet)

GAPI Gamma Units of the American Petroleum Institute

GAU Groundwater Advisory Unit

GEM Computer Modelling Group's GEM 2023.2

GHG Greenhouse Gas

GHGRP Greenhouse Gas Reporting Program

GL Ground Level Elevation

H₂S Hydrogen Sulfide

JPHIE Effective Porosity (corrected for clay content)

mD Millidarcy

mi Mile(s)

MIT Mechanical Integrity Test

MM Million

MMA Maximum Monitoring Area

MCF Thousand Cubic Feet

MMcf Million Cubic Feet

MMscf Million Standard Cubic Feet

Mscf/D Thousand Standard Cubic Feet per Day

MMscf/D Million Standard Cubic Feet per Day

MRV Monitoring, Reporting, and Verification

v Poisson's Ratio

N North

NW Northwest

OBG Overburden Gradient

PG Pore Gradient

pH Scale of Acidity

ppm Parts per Million

psi Pounds per Square Inch

psig Pounds per Square Inch Gauge

S South

SE Southeast

SF Safety Factor

SWD Saltwater Disposal

TAC Texas Administrative Code

TAG Treated Acid Gas

TOC Total Organic Carbon

TRRC Texas Railroad Commission

UIC Underground Injection Control

USDW Underground Source of Drinking Water

W West

TABLE OF CONTENTS

INTRO	DUCTIO	N	2
ACRO	NYMS AN	ND ABBREVIATIONS	4
SECTIO	ON 1 – U	IC INFORMATION	10
1.1	Unde	rground Injection Control Permit Class: Class II	10
1.2	UIC W	/ell Identification Number	10
1.3	Facilit	y Address	10
SECTIO	ON 2 – PI	ROJECT DESCRIPTION	11
2.1	Regio	nal Geology	
	2.1.1	Geologic Setting and Depositional Environment	
	2.1.2	Regional Structure and Faulting	
2.2	Site C	haracterization	
	2.2.1	Stratigraphy and Lithologic Characteristics	
	2.2.2	Upper Confining Interval – Pearsall Formation	19
	2.2.3	Injection Interval – Upper Sligo Formation	
	2.2.4	Formation Fluid	
	2.2.5	Fracture Pressure Gradient	
	2.2.6	Lower Confining Interval – Lower Sligo and Hosston Formations	
2.3		Structure	
2.4	-	ion and Confinement Summary	
2.5		ndwater Hydrology	
2.6		ences	
2.7		iption of the Injection Process	
	2.7.1	Current Operations	
2.8	Reser	voir Characterization Modeling	
	2.8.1	Simulation Modeling	
SECTIO		ELINEATION OF MONITORING AREA	
3.1		num Monitoring Area	
3.2		e Monitoring Area	
		OTENTIAL PATHWAYS FOR LEAKAGE	
4.1		ge from Surface Equipment	
4.2		ge Through Existing Wells Within the MMA	
	4.2.1	Future Drilling	
	4.2.2	Groundwater Wells	
4.3		ge Through Faults and Fractures	
4.4		ge Through the Upper Confining Zone	
4.5		ge from Natural or Induced Seismicity	
		IONITORING FOR LEAKAGE	
5.1		ge from Surface Equipment	
5.2		ge Through Existing and Future Wells Within the MMA	
	5.2.1	Groundwater Quality Monitoring	
5.3	Leaka	ge Through Faults, Fractures, or Confining Seals	70

5.4	Leakage Through Natural or Induced Seismicity	70
SECTION	6 – BASELINE DETERMINATIONS	72
6.1	Visual Inspections	72
6.2	H ₂ S/ CO ₂ Monitoring	72
6.3	Operational Data	72
6.4	Continuous Monitoring	72
6.5	Groundwater Monitoring	73
SECTION	7 – SITE-SPECIFIC CONSIDERATIONS FOR MASS BALANCE EQUATION	74
7.1	Mass of CO ₂ Received	74
7.2	Mass of CO ₂ Injected	74
7.3	Mass of CO ₂ Produced	75
7.4	Mass of CO ₂ Emitted by Surface Leakage	75
7.5	Mass of CO ₂ Sequestered	76
SECTION	8 – IMPLEMENTATION SCHEDULE FOR MRV PLAN	77
SECTION	9 – QUALITY ASSURANCE	78
9.1	Monitoring QA/QC	78
9.2	Missing Data	78
9.3	MRV Plan Revisions	79
SECTION	I 10 – RECORDS RETENTION	30
Figures		
Figure 1	 Location of StarTex's Pawnee Treating Facility and the O'Neal No. 4 	2
	- Structural Features of the Gulf of Mexico and Locator Map (modified from Robert	
_	t al., 2012)	
Figure 3	- Stratigraphic column of the U.S. Gulf Coast signifying proposed injection and confini	ηg
_	. Offset productive intervals are noted with a green star (modified from Roberts-Ashl	_
)12)	•
Figure 4	 Detailed stratigraphic column of Lower Cretaceous formations of south Texas. 	ıе
propose	d injection interval is shaded light blue and proposed confining intervals are shaded lig	ht
	modified from Bebout et al., 1981)	
-	- Paleogeography of the Lower Cretaceous of south Texas. The red star represents the	
_	nate location of the O'Neal No. 4 (modified from Bebout et al., 1981)	
Figure 6	– Generalized northwest to southeast schematic cross section of the Trinity Group, sou	th
Texas (tl	ne line of section depicted in Figure 5). The red star and line represent the approxima	te
location	of the O'Neal No. 4 (modified from Kirkland et al., 1987)	15
	- Depositional model for the Lower Cretaceous carbonate platform with estimate	
_	and permeability values of typical facies (modified from Talbert and Atchley, 2000)	
Figure 8	- Structural features and fault zones near the proposed injection site. The red st	ar
_	nts the approximate location of the O'Neal No. 4 (modified from Swanson et al., 2016	
		16
Figure 9	– Northwest to southeast schematic interpretation of the Edwards shelf margin throug	ξh
Word fie	eld, northeast of the O'Neal No. 4 project area (modified from Swanson et al., 2016) :	17

Figure 10 – Type Log with Tops, Confining, and Injection Intervals Depicted	18
Figure 11 - Porosity-Permeability Crossplot of Pearsall Formation Crushed Rock Co	re Data
(Swanson et al., 2016)	
Figure 12 – Seismic line across the Stuart City (Edwards/Buda) shelf margin and locator m	ap. The
red star represents the approximate location of the O'Neal No. 4 (modified from Bebou	
1981)	
Figure 13 – Environmental Setting of Lower Cretaceous Platform (Bebout et al., 1981)	21
Figure 14 – Openhole log from O'Neal No. 4 (API No. 42-025-32658), with porosity curves	shaded
green >0%, permeability curve in blue >0 mD, and resistivity in red >5 ohms	22
Figure 15 – Offset Wells Used for Formation Fluid Characterization	24
Figure 16 – Environmental Setting of Lower Cretaceous Tidal Flat Deposits (Bebout et a	l., 1981)
	25
Figure 17 – Subsea Structure Map: Top of Sligo (injection interval). The red star sign	ifies the
location of the O'Neal No. 4.	
Figure 18 – Northwest to southeast structural cross section: A-A' Oriented along region	-
The red star signifies the location of the O'Neal No. 4, with the section line depicted in re-	
locator map	
Figure 19 – Southwest to northeast structural cross section: B-B' oriented along regions	
The red star signifies the location of the O'Neal No. 4, with the section line depicted in	
the locator map	
Figure 20 – Extent of the Gulf Coast Aquifer. The red star represents the approximate loc	
the O'Neal No. 4 (modified from Bruun, B., et al., 2016)	
Figure 21 – Stratigraphic Column of the Gulf Coast Aquifer (Chowdhury and Turco, 2006)	
Figure 22 – Cross Section S-S' Across the Gulf Coast Aquifer. The red star represe	
approximate location of the O'Neal No. 4 (modified from Bruun et al., 2016)	
Figure 23 – Total Dissolved Solids (TDS) in the Gulf Coast Aquifer. The red star representations of the Coast Aquifer.	
approximate location of the O'Neal No. 4 (modified from Bruun et al., 2016)	
Figure 24 – Two-Phase Relative Permeability Curves Used in the GEM Model	
Figure 25 – Areal View of Saturation Plume at Shut-in (End of Injection)	
Figure 26 – Areal View of Gas Saturation Plume 10 Years After Shut-in (End of Simulation	•
Figure 27 – East-West Cross-Sectional View of Gas Saturation Plume at Shut-in (End of Ir	
Figure 28 –East-West Cross-Sectional View of Gas Saturation Plume 10 Years After Shut	
of Simulation)	
Figure 29 – Well Injection Rate and Bottomhole and Surface Pressures Over Time	
Figure 30 – Plume Boundary at End of Injection, Stabilized Plume Boundary, and M	
Monitoring Area	
Figure 31 – Active Monitoring Area	
Figure 32 – O'Neal No. 4 Wellbore Schematic	
Figure 33 – All Oil and Gas Wells Within the MMA	
Figure 34 – Oil and Gas Wells Penetrating the Gross Injection Interval Within the MMA	
Figure 35 – Groundwater Wells Within the MMA	
Figure 36 – 25-km Seismicity Review	
Figure 37 – O'Neal No. 4 Process Flow Diagram	66

Figure 38 – Groundwater Wells Figure 39 – Seismic Events and Monitoring Station	
Tables	
Table 1 – Expected TAG Composition	
Table 2 – Analysis of Lower Cretaceous (Aptian) age formation fluids from the closest offset Sli	_
oil-field brine samples	
Table 3 – Gas Composition	35
Table 4 – Modeled Injectate Composition	36
Table 5 – GEM Model Layer Package Properties	38
Table 6 – Bottomhole and Wellhead Pressures from the Start of Injection	47
Table 7 – Potential Leakage Pathway Risk Assessment	
Table 8 – Summary of TAG Monitors and Equipment	
Table 9 – Summary of Leakage Monitoring Methods	
Table 10 – Baseline Sampling Schedule	

Appendices

Appendix A – TRRC O'Neal Gas Unit Well No. 4 Forms

Appendix A-1 – GAU Groundwater Protection Determination

Appendix A-2 – Drilling Permit

Appendix A-3 – Completion Report

Appendix A-4 – Plugging Records

Appendix B – Area of Review

Appendix B-1 – Oil and Gas Wells Within the MMA List

Appendix B-2 – Water Wells Within the MMA List

SECTION 1 – UIC INFORMATION

This section contains key information regarding the Underground Injection Control (UIC) Permit.

1.1 Underground Injection Control Permit Class: Class II

The TRRC regulates oil and gas activities in Texas and has primacy to implement the Underground Injection Control (UIC) Class II program. The TRRC classifies the O'Neal No. 4 as a UIC Class II well. Ozona has applied for a Class II permit for the O'Neal No. 4 under TRRC Rules 36 (Oil, Gas, or Geothermal Resource Operation in Hydrogen Sulfide Areas) and 46 (Fluid Injection into Productive Reservoirs).

1.2 <u>UIC Well Identification Number</u>

O'Neal No. 4, API No. 42-025-32658, UIC No. 56819

1.3 Facility Address

- Facility Name: StarTex Pawnee Treating Facility
- Operator: StarTex Field Services, LLC
- Facility ID No. 568661
- Coordinates in North American Datum for 1983 (NAD 83) for this facility:
 - Latitude: 28.622211Longitude: -97.992772
- Greenhouse Gas Reporting Program ID Information:
 - Ozona will report under GHGRP ID No. 587021 for this Monitoring, Reporting and Verification plan

SECTION 2 – PROJECT DESCRIPTION

This section discusses the geologic setting, planned injection process and volumes, and reservoir and plume modeling performed for the O'Neal No. 4 well.

The O'Neal No. 4 will inject the TAG stream into the Sligo Formation at a depth of 15,874 ft to 16,056 ft, and approximately 14,924 ft below the base of the Underground Source of Drinking Water (USDW). Therefore, the well and the facility are designed to protect against the leakage out of the injection interval, to protect against contaminating other subsurface formations, and—most critically—to prevent surface releases.

2.1 Regional Geology

The O'Neal No. 4 (API No. 42-025-32658) is located in south Texas within the Gulf of Mexico Basin. The onshore portion of the Gulf of Mexico basin spans approximately 148,049,000 acres and encompasses portions of Texas, Louisiana, Mississippi, Alabama, Arkansas, Missouri, Kentucky, Tennessee, Florida, and Georgia to the state-waters boundary of the United States (Roberts-Ashby et al., 2012). The location of the O'Neal No. 4 is designated by the red star in Figure 2, relative to the present coastal extent and major structural features of the basin.

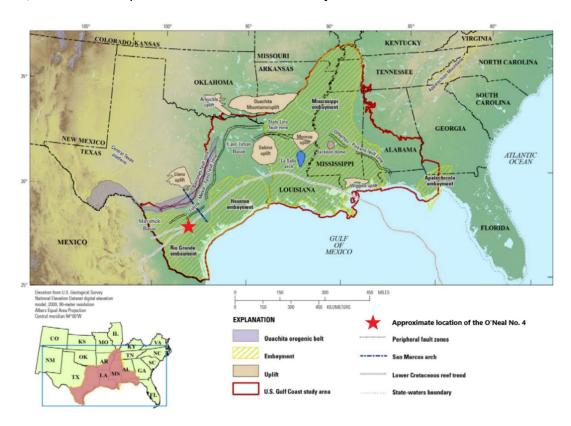


Figure 2 – Structural Features of the Gulf of Mexico and Locator Map (modified from Roberts-Ashby et al., 2012)

Figure 3 depicts a generalized stratigraphic column of the U.S. Gulf Coast, with light blue shading signifying the proposed injection interval and green stars indicating productive formations identified within 5 miles of the O'Neal No. 4. The injection interval is found within the Sligo Formation, with confinement provided by the overlying Pearsall Formation and tight underlying facies of the Lower Sligo and Hosston Formations.

	ratigraphic Chronostrationits Units	graphic Stratigraphic Unit
rnary Holo.		
<u></u>	ıbrian	Undifferentiated
	enzian clean	Undifferentiated
N Serra Serra Lan Burd	sinian onian ıvallian ghian igalian tanian	Upper Mioc. Middle Mioc. Lower Mioc. Fleming Fm
	nttian Chickasaw	hayan Catahoula Anahuac Fm / Ss Frio Formation
e io Rup	elian Vicksbur	gian Vicksburg Formation
Prial Barr	oonian Jacksor	odokoon Group
Bar Bar Lut	conian Claiborn	ian Claiborne Group Sparta Sand Cane River Fm Carrizo Sand
	esian Sabinia	m Wilcox Group ★
Sela Sela	netian Indian Midway Inian	an Midway Group
Maas	richtian Navarro	oan Navarro Group
Cam	panian Taylora	n Taylor Group
음	tonian Austini	Austin Group / Tokio Formation / Eutaw Formation
Tur	onian Eaglefor	
	manian Woodbir	
Seous	Washita	Washita Group (Buda Ls)
Cretaceous	Fredericksb	
		Glen Rose Ls (Rusk / Rodessa Fms)
Mesozoic Lower	Trinitia	Pearsail Formation OPPER CONFINING INTERVAL
Meso:	tian	Slig o INJECTION INTERVAL
	Nuevoled	nian Hosston Lower Confining
	emian	Formation
	erivian nginian Durango	
	iasian Durango	Vali

Figure 3 – Stratigraphic column of the U.S. Gulf Coast signifying proposed injection and confining intervals. Offset productive intervals are noted with a green star (modified from Roberts-Ashby et al., 2012).

The targeted formations of this study are located entirely within the Trinity Group, as clarified by the detailed stratigraphic column provided in Figure 4. During this time the area of interest was located along a broad, shallow marine carbonate platform that extended along the northern rim of the ancestral Gulf of Mexico. The Lower Cretaceous platform spanned approximately 870 mi from western Florida to northeastern Mexico, with a shoreline-to-basin margin that ranged between 45 to 125 mi wide (Yurewicz et al., 1993).

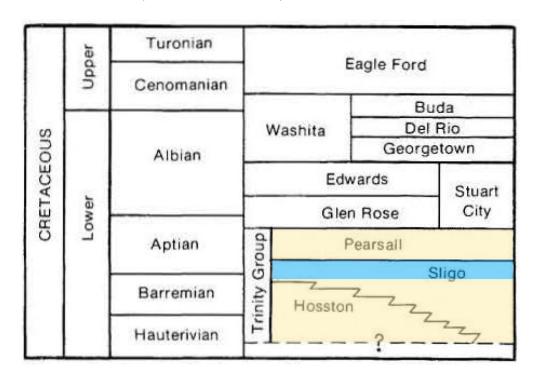


Figure 4 – Detailed stratigraphic column of Lower Cretaceous formations of south Texas. The proposed injection interval is shaded light blue and proposed confining intervals are shaded light yellow (modified from Bebout et al., 1981).

2.1.1 Geologic Setting and Depositional Environment

The depositional environment during the Lower Cretaceous generally consisted of a well-defined platform margin with a shallow marine platform interior or lagoon to the north, a shallow marine outer platform to the south, and a foreslope that gradually dipped southward towards the basin center. The platform margin remained stable for tens of millions of years during the Cretaceous but experienced episodic changes in sea level that resulted in cyclic deposition of several key facies that vary both spatially and within the geologic section. Facies distributions were heavily impacted by positioning relative to the margin, the height of the water column at any given time, and the degree of energy or wave action within the system (Galloway, 2008; Yurewicz et al., 1993).

In general, long stands of reef development and ooid shoaling developed primary porosity and permeability along the shallow, high-energy carbonate platform and represent reservoir quality

rock found within Cretaceous reef deposits. Deeper, basinward deposits tend to result in tighter petrophysical properties due to a relative increase in the amount of entrained clay associated with the heightening of the water column while moving downslope. Backreef deposits have the potential for porosity development but tend to have low permeability due to a general lack of wave action caused by restricted access to open water by the platform margin. Facies and petrophysical properties of the Lower Cretaceous section are anticipated to be relatively homogenous moving southwest-northwest along reef trend, with increased heterogeneity moving northwest-southeast due to the orientation of the carbonate rim and its effect on deposition and facies distributions (Yurewicz et al., 1993).

Figure 5 displays the paleogeography during deposition of the Lower Cretaceous section to visually demonstrate the position of the O'Neal No. 4 relative to the Sligo shelf margin and updip extents of Sligo deposition. A generalized schematic cross section of the Trinity Group is provided in Figure 6, which nearly intersects the project area from the northwest. The schematic illustrates the gross section thickening basinward, with primary reservoir development improving with proximity to the reef margin. Figure 7 displays a depositional model of the Lower Cretaceous carbonate platform to visually conceptualize depositional environments and anticipated petrophysical properties of facies introduced above.

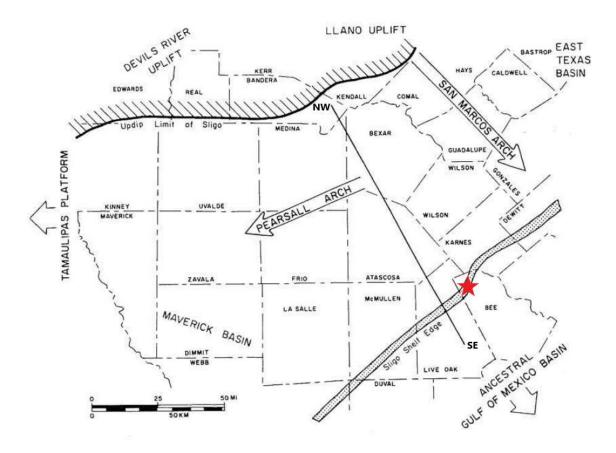


Figure 5 – Paleogeography of the Lower Cretaceous of south Texas. The red star represents the approximate location of the O'Neal No. 4 (modified from Bebout et al., 1981).

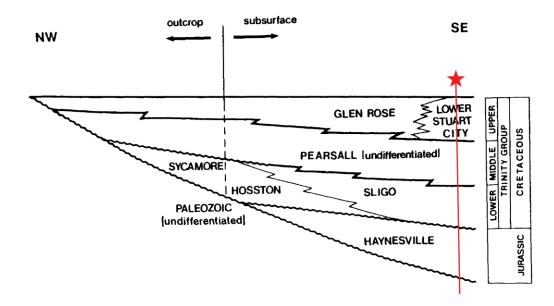


Figure 6 – Generalized northwest to southeast schematic cross section of the Trinity Group, south Texas (the line of section depicted in Figure 5). The red star and line represent the approximate location of the O'Neal No. 4 (modified from Kirkland et al., 1987)

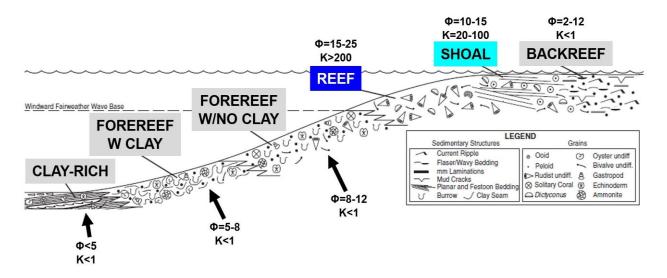


Figure 7 – Depositional model for the Lower Cretaceous carbonate platform with estimated porosity and permeability values of typical facies (modified from Talbert and Atchley, 2000).

2.1.2 Regional Structure and Faulting

The Gulf of Mexico basin was formed by crustal extension and sea-floor spreading associated with the Mesozoic breakup of Pangea. Rifting of northwest to southeast trending transfer faults during the Middle Jurassic lasted approximately 25 million years and resulted in variable thickness of the transcontinental crust underlying the region. By the Lower Cretaceous time, the general outline and morphology of the Gulf were similar to that of present-day (Galloway, 2008;

Yurewicz et al., 1993). Lower Cretaceous tectonic activity was limited to regional subsidence associated with areas of variable crustal thickness and local structuring caused by movement of Louann Salt (Yurewicz et al., 1993). The combination of these processes resulted in the structural development of regional arches, grabens, uplifts, embayments, salt domes, and salt basins around the northern edge of the basin (Dennen and Hackley, 2012; Galloway, 2008). The location of these structural features can be referenced in Figures 2 and 8 relative to the location of the O'Neal No. 4.

The schematic dip-oriented cross section displayed in Figure 9 presents a common interpretation of the current structural setting. Most of the published literature suggests that faulting near the project area is restricted to the shallower, overlying Cenozoic section, as displayed in Figure 9, with shallow faulting dying out before reaching the Pearsall Formation. However, one source did interpret the potential for faulting to the south (Swanson et al., 2016). The closest potential fault is depicted in Figure 8 relative to the location of the O'Neal No. 4. According to the map, the interpreted fault lies approximately 4.25 miles south-southeast of the well and approximately 3.9 miles south-southeast of the stabilized plume extent in the year 2047.

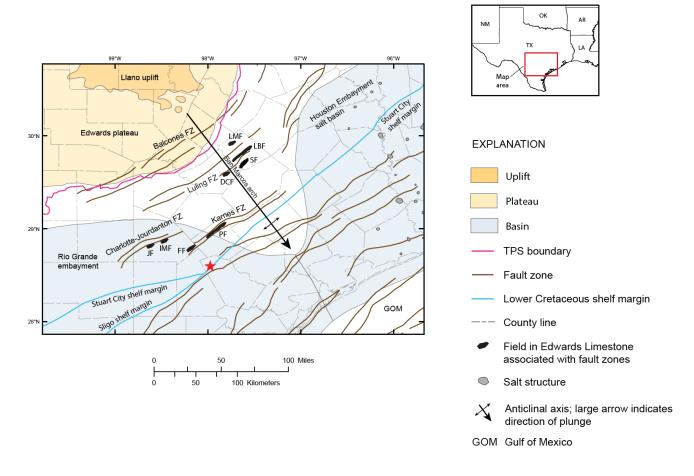


Figure 8 – Structural features and fault zones near the proposed injection site. The red star represents the approximate location of the O'Neal No. 4 (modified from Swanson et al., 2016).

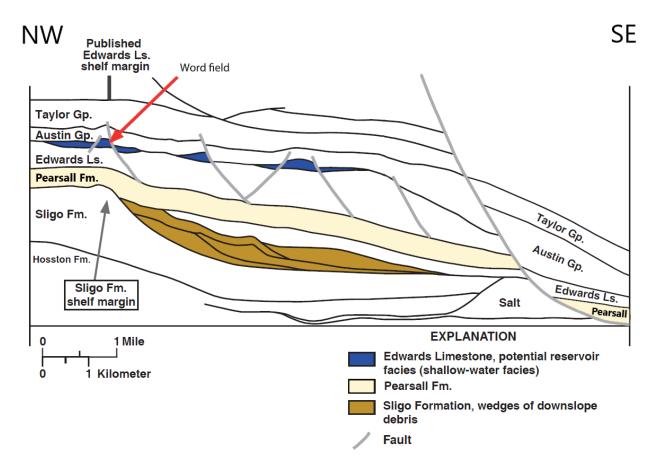


Figure 9 – Northwest to southeast schematic interpretation of the Edwards shelf margin through Word field, northeast of the O'Neal No. 4 project area (modified from Swanson et al., 2016).

2.2 <u>Site Characterization</u>

The following section discusses site-specific geological characteristics of the O'Neal No. 4 well.

2.2.1 Stratigraphy and Lithologic Characteristics

Figure 10 depicts openhole logs from two offset wells (API No. 42-025-00473 and API No. 42-025-31892) to the O'Neal No. 4, indicating the injection and primary upper confining zones. The Tomasek No. 1 (API No. 42-025-00473) is located approximately 1 mi northeast of the O'Neal No. 4 and displays the shallow section from 0–8,200 ft. The Gordon No. 3 (API No. 42-025-31892) is located approximately 1.6 mi northeast of the O'Neal No. 4 and displays a shallow section from 8,200–16,400 ft.

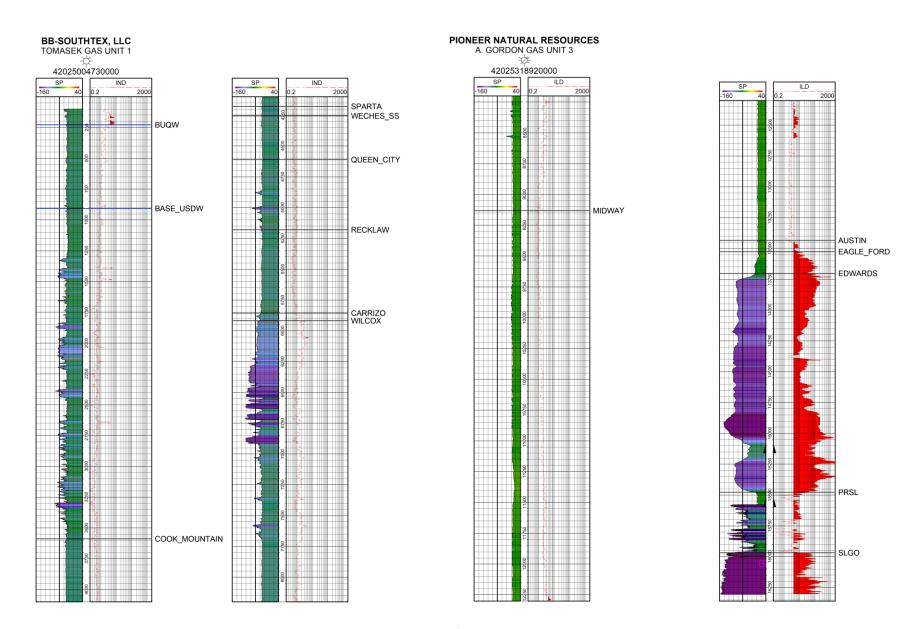


Figure 10 – Type Log with Tops, Confining, and Injection Intervals Depicted

2.2.2 <u>Upper Confining Interval – Pearsall Formation</u>

Following the deposition of the Sligo Formation, the Lower Cretaceous shelf was drowned by eustatic sea-level rise and deposition of the deep-water Pine Island Shale Member of the Pearsall Formation throughout the region (Roberts-Ashby et al., 2012). The Pine Island Shale consists of alternating beds of pelagic mudstone, hemipelagic mudstone, and Fe-rich dolomitic mudstone interpreted to have been deposited along the outer ramp. This is in agreement with core data published by Bebout and others (1981), and later by Swanson and others (2016), who identified the presence of C. Margerelli, a nannofossil indicative of anoxic conditions. The core-derived porosity-permeability relationship displayed in Figure 11 suggests that the permeability of the Pine Island Shale is incredibly low and stays below 0.0001 mD, regardless of porosity (Figure 11; Hull, 2011). This is further supported by the 2012 U.S. Geological Survey (USGS) CO2 Storage Resource Assessment, which suggests that the Pine Island Shale contains the physical properties required to act as a regional seal and was chosen as the upward confining interval for their C50490108 Storage Assessment Unit (SAU) assessment of the Gulf Coast. The 2012 USGS report also noted that the Pine Island Shale is a sufficient regional seal with as little as 50 ft of contiguous shale development. The top of the Pearsall is encountered at a depth of 15,339 ft in the O'Neal No. 4, with a gross thickness of 535 ft (Figure 14). The Pine Island Shale member is approximately 130 ft thick at the O'Neal No. 4 location, with deposition of additional members of the overlying Pearsall Formation, which include the Cow Creek Limestone, Cow Creek shale, and Bexar Shale Members (Roberts-Ashby et al., 2012; Swanson et al., 2016).

The seismic line displayed in Figure 12 runs northwest to southeast across the Stuart City reef trend southwest of the project area. The top of the Buda, Pearsall, and Sligo Formation markers are depicted in color to demonstrate the lateral continuity of the section near the O'Neal No. 4. Seismic reflectors within the Pearsall Formation appear to lack deformation, suggesting consistent deposition over the reef margin. This is in agreement with reviewed published literature, which suggests deposition of the Pine Island Shale occurred during widespread marine transgression (Bebout et al., 1981; Hull, 2011.; Roberts-Ashby et al., 2012, Swanson et al., 2016).

Permeability and Porosity-Crushed Rock Data

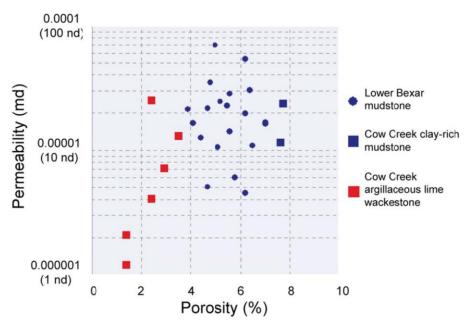


Figure 11 – Porosity-Permeability Crossplot of Pearsall Formation Crushed Rock Core Data (Swanson et al., 2016)

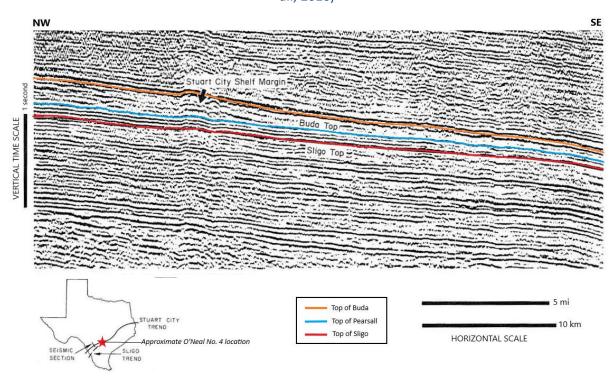


Figure 12 – Seismic line across the Stuart City (Edwards/Buda) shelf margin and locator map. The red star represents the approximate location of the O'Neal No. 4 (modified from Bebout et al., 1981).

2.2.3 Injection Interval – Upper Sligo Formation

The Sligo Formation underlies the Pearsall Formation and is predominately composed of shelf-edge limestones that were deposited along the Lower Cretaceous platform (Roberts-Ashby et al., 2012). However, the Cretaceous also experienced episodic changes in sea level that resulted in the deposition of cyclic Sligo facies that vary both spatially and within the geologic section. The overall Sligo interval is interpreted to be a transgressive sequence occasionally interrupted by progradational cycles that consists of porous shoaling-upward sequences that represent primary reservoir potential within the system (Bebout et al., 1981). Facies distributions of these reef complexes are heavily impacted by positioning relative to the margin, the height of the water column at any given time, and the degree of energy or wave action within the system (Galloway, 2008). Figure 13 depicts an idealized environmental setting of the Lower Cretaceous platform during deposition. Primary porosity and permeability of the upper Sligo Formation tends to develop in high-energy sequences with normal marine conditions that are dominated by the deposition of oolitic and skeletal grainstones.

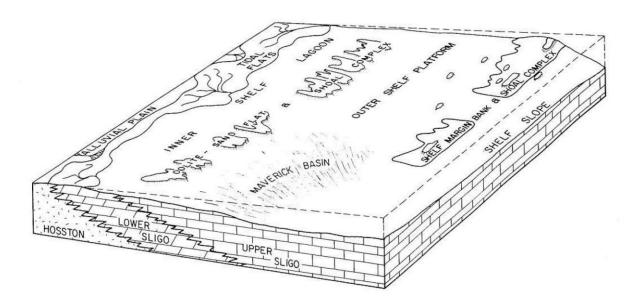


Figure 13 – Environmental Setting of Lower Cretaceous Platform (Bebout et al., 1981)

According to the 2012 USGS CO_2 Storage Resource Assessment, "the average porosity in the porous intervals of the storage reservoir decreases with depth from 9 to 16 percent" for their C50490108 DEEP SAU assessment of the Gulf Coast (>13,000 ft). The study also reported that "the average permeability in the storage reservoirs decreases with depth from 0.05 to 200 mD, with a most-likely value of 8 mD" for their C50490108 DEEP SAU assessment of the Gulf Coast (Roberts-Ashby et al., 2012).

The top of the upper Sligo is encountered at a depth of 15,874 ft in the O'Neal No. 4 with a gross thickness of 183 ft (Figure 14). The type log displayed in Figure 14 plots effective porosity for the confining interval and the total porosity of the injection interval, to account for the increased

volume of shale (Vshale) seen in the Pearsall Formation. The porosity data was compared to the analysis performed by Nutech to generate a permeability curve with a reasonable porosity-permeability relationship. The permeability curve was generated utilizing the Coates permeability equation, incorporated with a 20% irreducible brine saturation to match analysis provided by Nutech. Petrophysical analysis of the O'Neal No. 4 indicates an average porosity of 4.6%, a maximum porosity of 15%, an average permeability of 0.16 mD, and a maximum permeability of 3.3 mD. These curves have been extrapolated to the injection site and used to establish reservoir characteristics in the plume model.

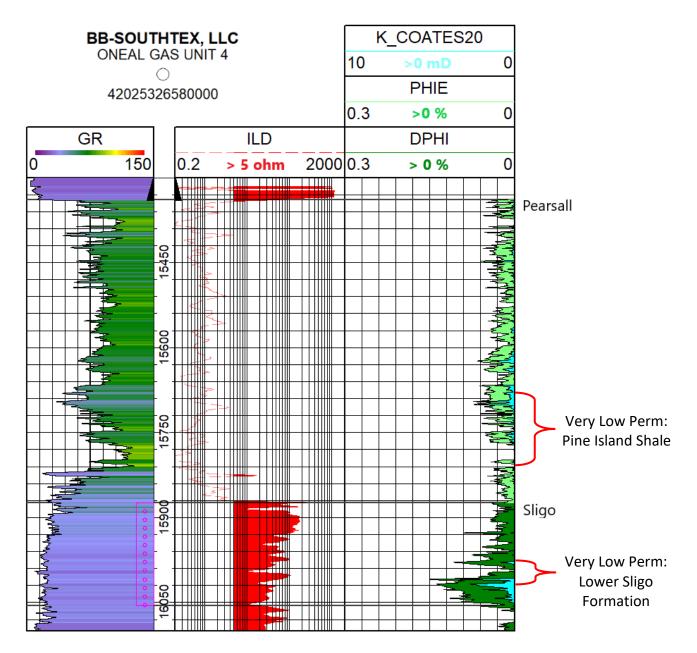


Figure 14 – Openhole log from O'Neal No. 4 (API No. 42-025-32658), with porosity curves shaded green >0%, permeability curve in blue >0 mD, and resistivity in red >5 ohms.

2.2.4 Formation Fluid

The USGS National Produced Waters Geochemical Database version 3.0 was reviewed for chemical analyses of Sligo oil-field brines within the state of Texas (Blondes et al., 2023). Only two samples were identified from the Sligo Formation: one located approximately 29 mi north-northeast in Karnes County and one located approximately 72 mi northeast in Gonzales County. The locations of these wells are shown in Figure 15 relative to the O'Neal No. 4. A summary of water chemistry analyses conducted on the two Texas Sligo oil-field brine samples is provided in Table 2 (page 25).

Averages from the samples were utilized for model assumptions due to the minimal Sligo sample availability and wide geographic spread of Sligo analysis. Total Dissolved Solids (TDS) of the samples contain a wide range of reported values but averaged 176,470 parts per million (ppm). Model sensitivities were established by running iterations with varying TDS values to understand the effect of brine concentrations on plume extents. The results suggested higher density brine values lead to smaller plumes; therefore, a value of 150,000 ppm was established in the model for a conservative approach. If the actual formation fluid sample that will be tested during the recompletion work produces a material difference in the plume, Ozona will submit an updated MRV plan.

Based on the results of the investigation, *in situ* Sligo reservoir fluid is anticipated to contain greater than 20,000 ppm TDS near the O'Neal No. 4, qualifying the aquifer as saline. These analyses indicate the *in situ* reservoir fluid of the Sligo Formation is compatible with the proposed injection fluids.

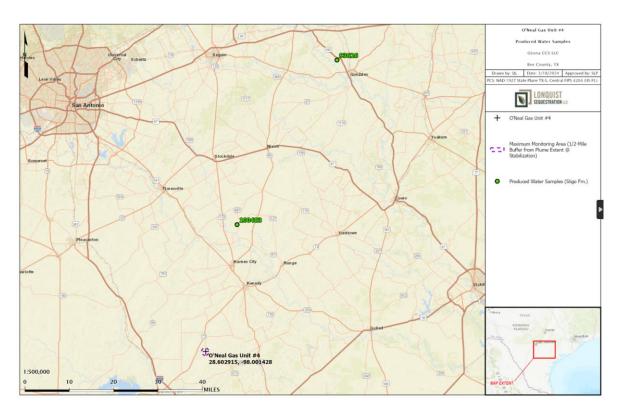


Figure 15 – Offset Wells Used for Formation Fluid Characterization

Table 2 – Analysis of Lower Cretaceous (Aptian) age formation fluids from the closest offset Sligo oil-field brine samples.

Measurement	Karnes County Sample	Gonzales County Sample	Average
Total Dissolved Solids (mg/L)	234,646	117,470	176,058
Sodium (mg/L)	51,168	27,909	39,539
Calcium (mg/L)	34,335	8,684	21,510
Chloride (mg/L)	146,500	57,811	102,156
Sample Depth (ft)	13,580 to 13,660	8,290-8,305	-
рН	5.9	8.2	7.05

2.2.5 Fracture Pressure Gradient

The fracture pressure gradient was obtained from a fracture report taken during the April 1993 completion of the Sligo interval in the O'Neal No. 4. The Sligo was perforated between the depths of 15,874 ft and 16,056 ft, with continuous monitoring during the minifrac job. The report noted a calculated fracture gradient of 0.954 psi/ft based on an initial shut-in pressure (ISIP) of 8,312

psi. A 10% safety factor was then applied to the calculated gradient, resulting in a maximum allowed bottomhole pressure of 0.86 psi/ft. This was done to ensure that the injection pressure would never exceed the fracture pressure of the injection zone.

2.2.6 <u>Lower Confining Interval – Lower Sligo and Hosston Formations</u>

The O'Neal No. 4 reaches its total depth in the lower Sligo Formation, directly below the upper Sligo proposed injection interval. The lower Sligo is interpreted by Bebout and others (1981) to represent the seaward extension of the low-energy lagoon and tidal-flat system of the underlying Hosston Formation, a sequence of siliciclastics, evaporites, and dolomitic mudstone (Figure 16). The Hosston to lower Sligo "contact" represents a gradational package with a decrease in terrigenous sediments, an increase in carbonate sediments, and an increase in burrows of marine organisms working up-section into the lower Sligo. The lower Sligo consists of numerous cycles of subtidal to supratidal carbonates deposited in a low-energy lagoon and tidal-flat system (Bebout et al., 1981). These low permeability facies of the lower Sligo and underlying Hosston Formation will provide lower confinement to the upper Sligo injection interval. Figure 16 illustrates the typical environmental setting for the deposition of tidal flat facies along the Lower Cretaceous margin. The type log displayed in Figure 14 (Section 2.2.3) illustrates that the porosity of the lower Sligo ranges between 0-2% with permeability staying close to 0 mD. Therefore, the petrophysical characteristics of the lower Sligo and Hosston are ideal for prohibiting the migration of the injection stream outside of the injection interval.

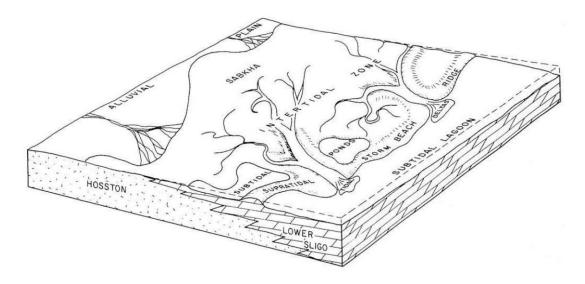


Figure 16 – Environmental Setting of Lower Cretaceous Tidal Flat Deposits (Bebout et al., 1981)

2.3 Local Structure

Structures surrounding the proposed sequestration site were influenced by regional arches, grabens, uplifts, embayments, movement of Louann Salt, and the development of carbonate reef complexes around the northern edge of the basin. However, one potential fault was identified in the literature within proximity and lies approximately 4.25 mi south-southeast of the well and

approximately 3.9 mi south-southeast of the stabilized plume extent in the year 2062 (Swanson et al., 2016). The location of these structural features can be referenced in Figures 2 and 8 relative to the location of the O'Neal No. 4.

A subsea true vertical depth (SSTVD) structure map on the top of the Sligo Formation is provided in Figure 17. The map illustrates the gentle basinward dip of the Sligo from the northwest to the southeast. The structural cross sections provided in Figures 18 and 19 (pages 28 and 29, respectively) illustrate the structural changes encountered in moving away from the O'Neal No. 4 site. The figures also demonstrate the laterally continuous nature of the Pearsall Formation that overlies the injection interval, with sufficient thickness and modeled petrophysical properties to alleviate the risk of upward migration of injected fluids. *Section 2.1.2*, discussing regional structure and faulting, presents a regional discussion pertinent to this topic.

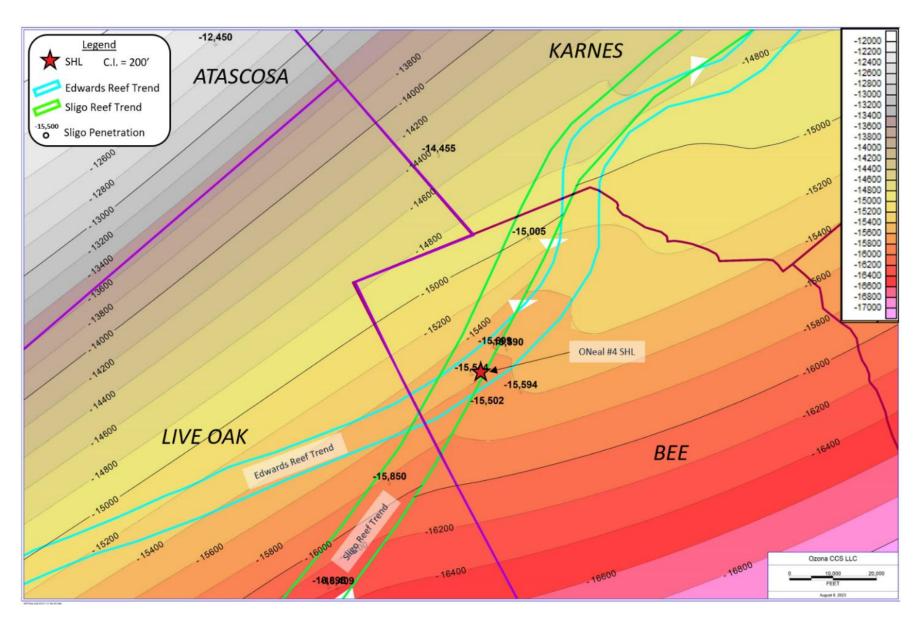


Figure 17 – Subsea Structure Map: Top of Sligo (injection interval). The red star signifies the location of the O'Neal No. 4.

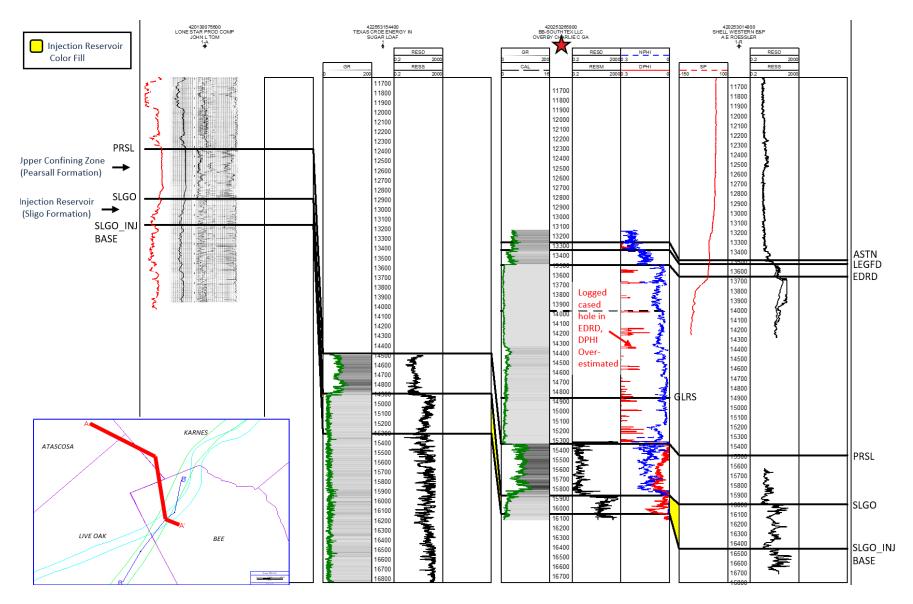


Figure 18 – Northwest to southeast structural cross section: A-A' Oriented along regional dip.

The red star signifies the location of the O'Neal No. 4, with the section line depicted in red on the locator map.

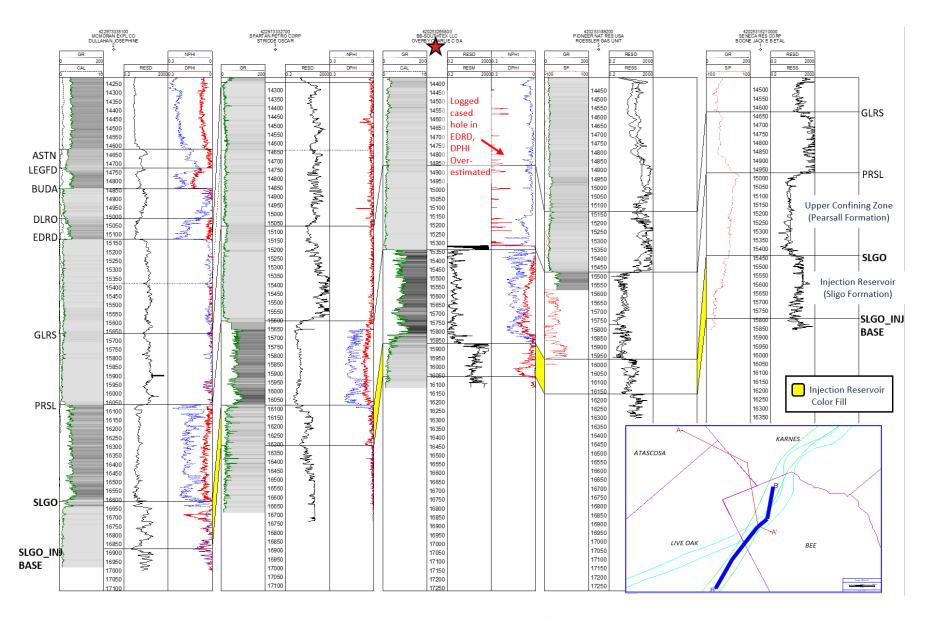


Figure 19 – Southwest to northeast structural cross section: B-B' oriented along regional strike. The red star signifies the location of the O'Neal No. 4, with the section line depicted in blue on the locator map.

2.4 Injection and Confinement Summary

The lithologic and petrophysical characteristics of the Sligo Formation at the O'Neal No. 4 well location indicate that the reservoir contains the necessary thickness, porosity, and permeability to receive the proposed injection stream. The overlying Pearsall Formation is regionally extensive at the O'Neal No. 4 with low permeability and sufficient thickness to serve as the upper confining interval. Beneath the injection interval, the low permeability, low porosity facies tidal flat, and lagoonal facies of the lower Sligo and underlying Hosston Formation are unsuitable for fluid migration and serve as the lower confining interval.

2.5 **Groundwater Hydrology**

Bee County falls within the boundary of the Bee Groundwater Conservation District. Only one aquifer is identified by the Texas Water Development Board's Texas Aquifers Study near the O'Neal No. 4 well location, the unconfined to semi-confined Gulf Coast aquifer. The Gulf Coast aquifer parallels the Gulf of Mexico and extends across the state of Texas from the Mexican border to the border of Louisiana (Bruun et al., 2016). The extents of the Gulf Coast aquifer are provided in Figure 20 for reference.

The Gulf Coast aquifer is a major aquifer system comprised of several individual aquifers: the Jasper, Evangeline, and Chicot. These aquifers are composed of discontinuous clay, silt, sand, and gravel beds that range from Miocene to Holocene in age (Figure 21, page 32). Numerous interbedded lenses and layers of silt and clay are present within the aquifers, which can confine individual aquifers locally. The underlying Oligocene Catahoula tuff represents the lower confining interval, but it should be noted that the formation is prone to leaking along the base of the aquifer. However, the Burkeville confining interval provides isolation between Jasper and Evangeline aquifers which helps protect the shallower Evangeline and Chicot Aquifers (Bruun et al., 2016).

The schematic cross section provided in Figure 22 (page 32) runs south of the O'Neal No. 4, illustrating the structure and stratigraphy of the aquifer system. The thickness of individual sedimentary units within the Cenozoic section tends to thicken towards the Gulf of Mexico due to the presence of growth faults that allow additional loading of unconsolidated sediment. The total net sand thickness of the aquifer system ranges between 700 ft of sand in the south, to over 1,300 ft in the north, with the saturated freshwater thickness averaging 1,000 ft.

The water quality of the aquifer system varies with depth and locality but water quality generally improves towards the central to northeastern portions of the aquifer where TDS values are less than 500 milligrams per liter (mg/L). The salinity of the Gulf Coast aquifer increases to the south, where TDS ranges between 1,000 mg/L to more than 10,000 mg/L. The Texas Water Development Board's Texas Aquifers Study (2016) suggests that areas associated with higher salinities are possibly associated with saltwater intrusion likely "resulting from groundwater pumping or to brine migration in response to oil field operations and natural flows from salt domes intruding into the aquifer" (Bruun et al., 2016).

According to the TDS map of the Gulf Coast aquifer (Figure 23), the TDS in northern Bee County range between 500–3,000 mg/L near the O'Neal No. 4, categorizing the aquifer as fresh to slightly saline.

The TRRC's Groundwater Advisory Unit (GAU) identified the Base of Useable Quality water (BUQW) at a depth of 250 ft and the base of the USDW at a depth of 950 ft at the location of the O'Neal No. 4. Approximately 14,924 ft is therefore separating the base of the USDW and the injection interval. (A copy of the GAU's Groundwater Protection Determination letter issued by the TRRC as part of the Class II permitting process for the O'Neal No. 4 is provided in Exhibit A-1.) The base of the deepest aquifer is separated from the injection interval by more than 14,924 ft of rock, including 4,200 feet of Midway shale. Though unlikely for reasons outlined in the sections here on confinement and potential leaks, if the migration of injected fluid did occur above the Pearsall Formation, thousands of feet of tight sandstone, limestone, shale, and anhydrite beds occur between the injection interval and the lowest water-bearing aquifer.

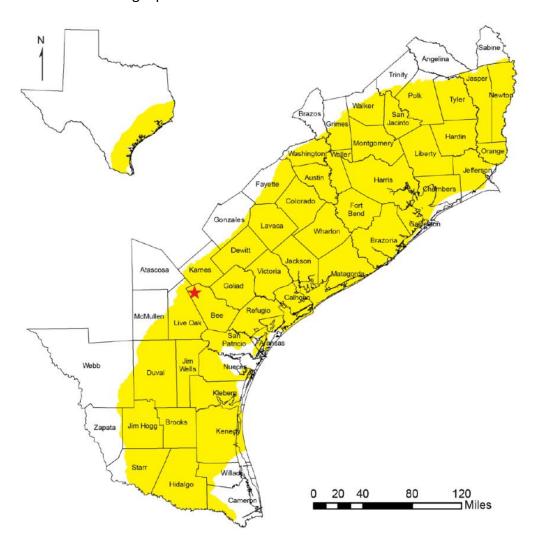


Figure 20 – Extent of the Gulf Coast Aquifer. The red star represents the approximate location of the O'Neal No. 4 (modified from Bruun, B., et al., 2016)

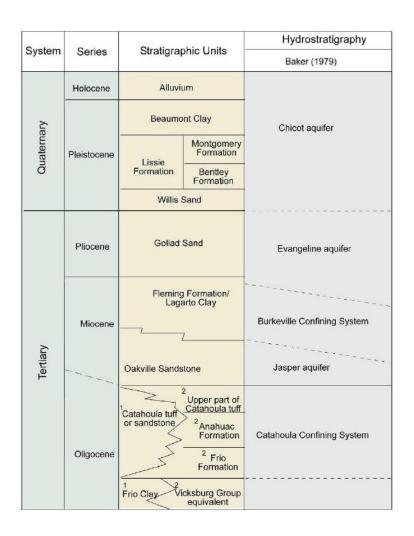


Figure 21 – Stratigraphic Column of the Gulf Coast Aquifer (Chowdhury and Turco, 2006)

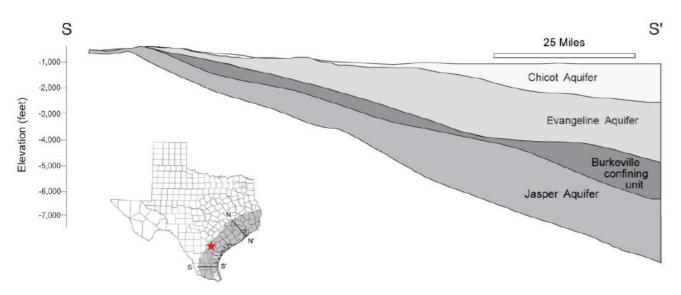


Figure 22 – Cross Section S-S' Across the Gulf Coast Aquifer. The red star represents the approximate location of the O'Neal No. 4 (modified from Bruun et al., 2016)

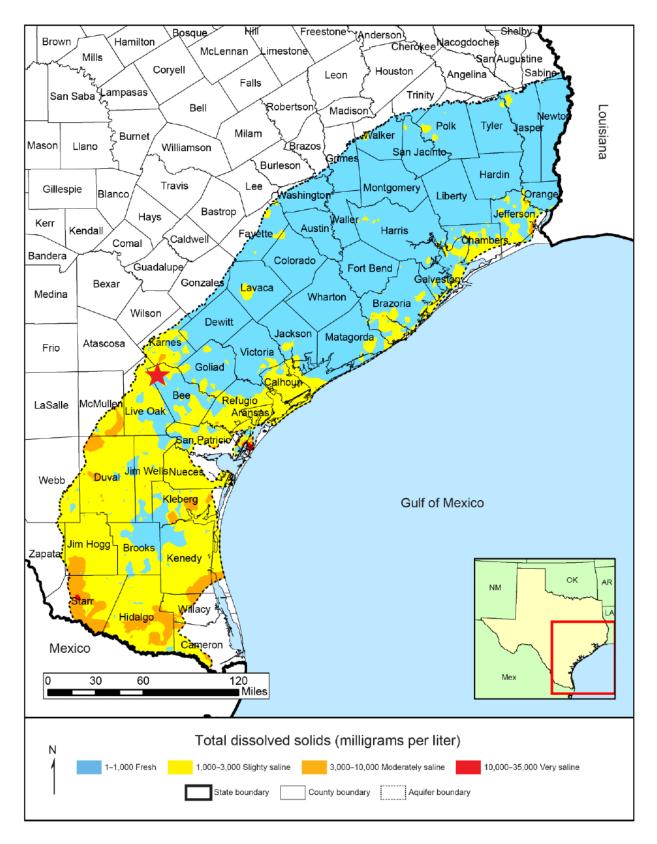


Figure 23 – Total Dissolved Solids (TDS) in the Gulf Coast Aquifer. The red star represents the approximate location of the O'Neal No. 4 (modified from Bruun et al., 2016).

2.6 References

- Bebout, D.G., Budd, D.A., and Schatzinger, R.A. (1981). Depositional and Diagenetic History of the Sligo and Hosston Formations (Lower Cretaceous) in South Texas: The University of Texas at Austin, Bureau of Economic Geology, Report of Investigations No. 109.
- Blondes, M.S., Gans, K.D., Engle, M.A. et al. (2018). U.S. Geological Survey National Produced Waters Geochemical Database (Ver. 2.3, January 2018): U.S. Geological Survey data release, https://doi.org/10.5066/F7J964W8.
- Bruun, B., Anaya, R., Boghici, R. et al. (2016). Texas Aquifers Study: Chapter 6, Gulf Coast Aquifers.
- Chowdhury, A.H. and Turco, M.J. (2006). Geology of the Gulf Coast Aquifer, Texas. In: Mace, R.E., et al., Eds., Aquifers of the Gulf Coast of Texas: Texas Water Development Board Report.
- Dennen, K.O. and Hackley, P.C. (2012). Definition of Greater Gulf Basin Lower Cretaceous and Upper Cretaceous lower Cenomanian Shale Gas Assessment Unit, United States Gulf of Mexico basin onshore and state waters: https://pubs.usgs.gov/publication/70176229.
- Galloway, W.E. (2008). Sedimentary Basins of the World, Chapter 15: Depositional Evolution of the Gulf of Mexico Sedimentary Basin, 505-549.
- Hull, D.C. (2011). Stratigraphic Architecture, Depositional Systems, and Reservoir Characteristics of the Pearsall Shale-Gas System, Lower Cretaceous, South Texas: Thesis for M.S. of Science in Geology, University of Texas, Austin.
- Kirkland, B.L., Lighty, R.G., Rezak, R., and Tieh, T.T. (1987). Lower Cretaceous barrier reef and outer shelf facies, Sligo Formation, south Texas, United States.
- Roberts-Ashby, T.L., Brennan, S.T., Buursink, M.L. et al. (2012). Geologic framework for the national assessment of carbon dioxide storage resources: U.S. Gulf Coast. *USGS*.
- Swanson, S.M., Enomoto, C.B., Dennen, K.O. et al. (2017). Geologic assessment of undiscovered oil and gas resources—Lower Cretaceous Albian to Upper Cretaceous Cenomanian carbonate rocks of the Fredericksburg and Washita Groups, United States Gulf of Mexico Coastal Plain and State Waters: U.S. Geological Survey Open-File Report 2016–1199, 69 p., https://doi.org/10.3133/ofr20161199.
- Talbert, S.J. and Atchley, S.J. (2000). Sequence Stratigraphy of the Lower Cretaceous (Albian) Fredericksburg Group, Central and North Texas: Department of Geology, Baylor University, Waco, Texas 76798.
- Yurewicz, D.A., Marler, T.B., Meyerholtz, K.A., and Siroky, F.X. (1993). Early Cretaceous Carbonate Platform, North Rim of the Gulf of Mexico, Mississippi, and Louisiana.

2.7 <u>Description of the Injection Process</u>

2.7.1 Current Operations

The Pawnee Treating Facility and the O'Neal No. 4 are existing operating assets. The O'Neal No. 4 will be recompleted for acid gas injection service under the Class II permit process. Under the Class II application, the maximum injection rate is $28 \, \text{MT/yr}$ (1.5 MMscf/d). The TAG is $98.2\% \, \text{CO}_2$, which equates to $27.5 \, \text{MT/yr}$ of CO_2 each year. The current composition of the TAG stream is displayed in Table 3.

Component	Mol Percent
Carbon Dioxide	98.2%
Hydrocarbons	1.03%
Hydrogen Sulfide	0.4%
Nitrogen	0.37%

Table 3 – Gas Composition

The facility is designed to treat, dehydrate, and compress the natural gas produced from the surrounding acreage in Bee County. The facility uses an amine unit to remove the CO₂ and other constituents from the gas stream. The TAG stream is then dehydrated, compressed, and routed directly to the O'Neal No. 4 for injection. The remaining gas stream is processed to separate the natural gas liquids from the natural gas. The facility is monitored 24 hours per day, 7 days per week.

2.8 Reservoir Characterization Modeling

The modeling software used to evaluate this project was Computer Modelling Group, Ltd.'s GEM 2023.2 (GEM) simulator, one of the most comprehensive reservoir simulation software packages for conventional, unconventional, and secondary recovery. The GEM utilizes equation-of-state (EOS) algorithms in conjunction with some of the most advanced computational methods to evaluate compositional, chemical, and geochemical processes and characteristics. This results in the creation of exceedingly precise and dependable simulation models for carbon injection and storage. The GEM model holds recognition from the EPA for its application in the delineation modeling aspect of the area of review, as outlined in the Class VI Well Area of Review Evaluation and Corrective Action Guidance document.

The Sligo Formation serves as the target formation for the O'Neal No. 4 (API No. 42-025-32658). The Petra software package was utilized to construct the geological model for this target formation. Within Petra, formation top contours were generated and subsequently brought into GEM to outline the geological structure.

Porosity and permeability estimates were determined using the porosity log from the O'Neal No. 4. A petrophysical analysis was then conducted to establish a correlation between porosity values and permeability, employing the Coates equation. Both the porosity and permeability estimates from

the O'Neal No. 4 were incorporated into the model, with the assumption that they exhibit lateral homogeneity throughout the reservoir.

The reservoir is assumed to be at hydrostatic equilibrium. Given the geological formation in which this well is located and its previous history as a gas producer, the model is assumed to be primarily saturated with gas. More precisely, the reservoir is assumed to be 80% gas saturated and 20% brine saturated, as deduced from the well log data. The modeled injection interval exhibits an average permeability of 0.23 mD and an average porosity of 5%. All layers within the model have been perforated. An infinite-acting reservoir has been created to simulate the boundary conditions.

The gas injectate is composed predominantly of CO_2 as shown in Table 4. The modeled composition takes into consideration the carbon dioxide and other constituents of the total stream. As the facility has been in operation for many years, the gas composition for the proposed injection period is expected to remain constant.

Table 4 – Modeled Injectate Composition			

Component	Expected Composition (mol %)	Modeled Composition (mol %)
Carbon Dioxide (CO ₂)	98.2	98.2
Hydrocarbons	1.03	Hydrocarbons
Hydrogen Sulfide	0.4	Hydrogen Sulfide
Nitrogen	0.37	Nitrogen

Core data from the literature review was used to determine residual gas saturation (Keelan and Pugh, 1975) and relative permeability curves between carbon dioxide and the connate brine within the Sligo carbonates (Bennion and Bachu, 2010). A maximum residual gas saturation of 35% was assigned to the model based on core from the literature review. The Corey-Brooks method was used to create relative permeability curves. The key inputs used to create the relative permeability curves in the model include a Corey exponent for brine of 1.8, a Corey exponent for gas of 2.5, brine and gas relative permeability endpoints of 0.8 and 0.5, respectively, and an irreducible brine saturation of 20%. The relative permeability curves used for the GEM model are shown in Figure 24.

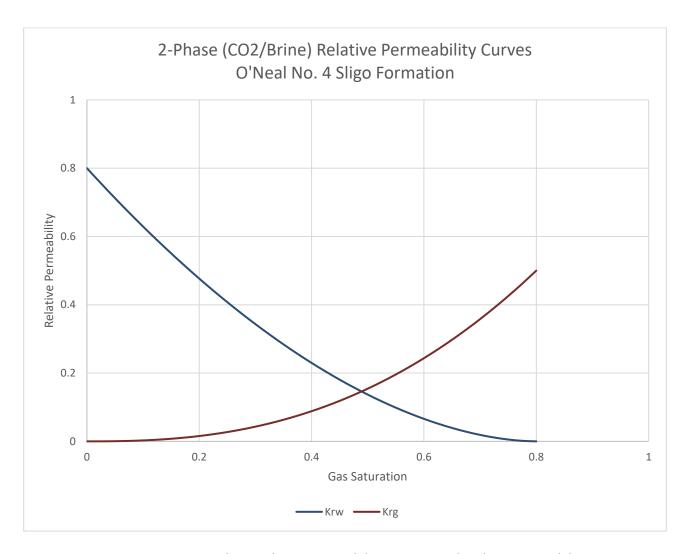


Figure 24 – Two-Phase Relative Permeability Curves Used in the GEM Model

The grid contains 81 blocks in the x-direction (east-west) and 81 blocks in the y-direction (north-south), resulting in a total of 6,561 grid blocks per layer. Each grid block spans dimensions of 250 ft x 250 ft. This configuration yields a grid size measuring 20,250 ft x 20,250 ft, equating to just under 15 square miles in area. The grid cells in the vicinity of the O'Neal No. 4, within a radius of 0.5 mi, have been refined to dimensions of 83.333 ft x 83.333 ft in all layers. This refinement is employed to ensure a more accurate representation of the plume and pressure effects near the wellbore.

In the model, each layer is characterized by homogeneous permeability and porosity values. These values are derived from the porosity log of the O'Neal No. 4. The model encompasses a total of 61 layers, each featuring a thickness of approximately 3 ft per layer. As previously mentioned, the model is perforated in each layer, with the top layer being the top of the injection interval and the bottom layer being the lowest portion of the injection interval. The summarized property values for each of these packages are displayed in Table 5.

Table 5 – GEM Model Layer Package Properties

Layer	Тор	Thickness	Perm.	Porosity
No.	(TVD ft)	THICKIESS	(mD)	(%)
1	15,874	3	0.004	3.75%
2	15,877	3	0.002	2.98%
3	15,880	3	0.001	1.62%
4	15,883	3	0.001	1.78%
5	15,886	3	0.002	2.32%
6	15,889	3	0.001	1.96%
7	15,892	3	0.002	3.10%
8	15,895	3	0.002	2.99%
9	15,898	3	0.003	3.52%
10	15,901	3	0.006	4.00%
11	15,904	3	0.005	3.93%
12	15,907	3	0.001	2.15%
13	15,910	3	0.001	1.99%
14	15,913	3	0.002	2.97%
15	15,916	3	0.001	2.22%
16	15,919	3	0.002	2.88%
17	15,922	3	0.001	2.38%
18	15,925	3	0.093	6.68%
19	15,928	3	0.005	2.62%
20	15,931	3	0.002	2.58%
21	15,934	3	0.003	3.07%
22	15,937	3	0.006	3.62%
23	15,940	3	0.002	2.68%
24	15,943	3	0.001	1.08%
25	15,946	3	0.002	1.87%
26	15,949	3	0.025	4.70%
27	15,952	3	0.024	4.37%
28	15,955	3	0.001	1.97%
29	15,958	3	0.003	2.27%
30	15,961	3	0.007	3.09%
31	15,964	3	0.110	6.75%
32	15,967	3	0.037	5.62%
33	15,970	3	0.011	4.41%
34	15,973	3	0.022	4.59%
35	15,976	3	0.297	7.88%
36	15,979	3	0.440	9.21%
37	15,982	3	0.060	5.90%
38	15,985	3	0.001	2.22%
39	15,988	3	0.001	2.21%

Layer No.	Top (TVD ft)	Thickness	Perm. (mD)	Porosity (%)
40	15,991	3	0.001	1.12%
41	15,994	3	0.003	2.05%
42	15,997	3	0.014	4.56%
43	16,000	3	0.007	4.15%
44	16,003	3	0.033	5.95%
45	16,006	3	1.233	10.25%
46	16,009	3	1.476	12.04%
47	16,012	3	0.566	10.08%
48	16,015	3	1.679	12.18%
49	16,018	3	2.194	13.08%
50	16,021	3	1.235	12.02%
51	16,024	3	0.788	11.22%
52	16,027	3	0.944	10.48%
53	16,030	3	0.424	9.05%
54	16,033	3	0.378	8.85%
55	16,036	3	0.378	8.81%
56	16,039	3	0.378	8.84%
57	16,042	3	0.736	9.91%
58	16,045	3	0.232	7.94%
59	16,048	3	0.238	7.97%
60	16,051	3	0.012	3.01%
61	16,054	3	0.038	4.30%

2.8.1 <u>Simulation Modeling</u>

The primary objectives of the model simulation were as follows:

- 1. Estimate the maximum areal extent and density drift of the injectate plume after injection.
- 2. Determine the ability of the target formation to handle the required injection rate without fracturing the injection zone.
- 3. Assess the likelihood of the injectate plume migrating into potential leak pathways.

The reservoir is assumed to have an irreducible brine saturation of 20%. The salinity of the brine within the formation is estimated to be 150,000 ppm (USGS National Produced Waters Geochemical Database, Ver. 2.3), typical for the region and formation. The injectate stream is primarily composed of CO_2 and H_2S as stated previously. Core data from the literature was used to help generate relative permeability curves. From the literature review, also as previously discussed, cores that most closely represent the carbonate rock formation of the Sligo seen in this region were identified, and the Corey-Brooks equations were used to develop the curves (Bennion and Bachu, 2010). A low, conservative residual gas saturation based on the cores from the literature review was then used to estimate the size of the plume (Keelan and Pugh, 1975).

The model is initialized with a reference pressure of 10,995 psig at a subsea depth of 15,740 ft. This, when a Kelly Bushing "KB" elevation of 334 ft is considered, correlates to a gradient of 0.684 psi/ft. This pressure gradient was determined from production data of the O'Neal No. 4. An initial reservoir pressure of 0.76 psi/ft was calculated before initial production. However, in 1997, after producing approximately 0.5 billion cubic feet (Bcf) of gas, the well was shut in. The last bottomhole pressure reading was calculated to be 0.480 psi/ft. This assumes the reservoir repressurizes after production ceases, but not fully back to in situ conditions. Therefore, a 10% safety factor was given to the initial reservoir pressure gradient of 0.76 psi/ft, and a gradient of 0.684 psi/ft was implemented into the model as a conservative estimate. A skin factor of -2 was applied to the well to simulate the stimulation of the O'Neal No. 4 for gas production from the Sligo Formation, which is based on the acid fracture report, provided in *Appendix A-3*.

The fracture gradient of the injection zone was estimated to be 0.954 psi/ft, which was determined from the acid fracture report. A 10% safety factor was then applied to this number, putting the maximum bottomhole pressure allowed in the model at 0.86 psi/ft, which is equivalent to 13,652 psig at the top of the Sligo injection interval.

The model, which begins in January 2025, runs for a total of 22 years, comprising 12 years of active injection, and is then succeeded by 10 years of density drift. Throughout the entire 12-year injection period, an injection rate of 1.5 MMscf/D is used to model the maximum available rate, yielding the largest estimate of the plume size. After the 12-year injection period, when the O'Neal No. 4 ceases injection, the density drift of the plume continues until the plume stabilizes 10 years later. The maximum plume extent during the 12-year injection period is shown in Figure 25. The final extent after 10 years of density drift after injection ceases is shown in Figure 26 (page 42).

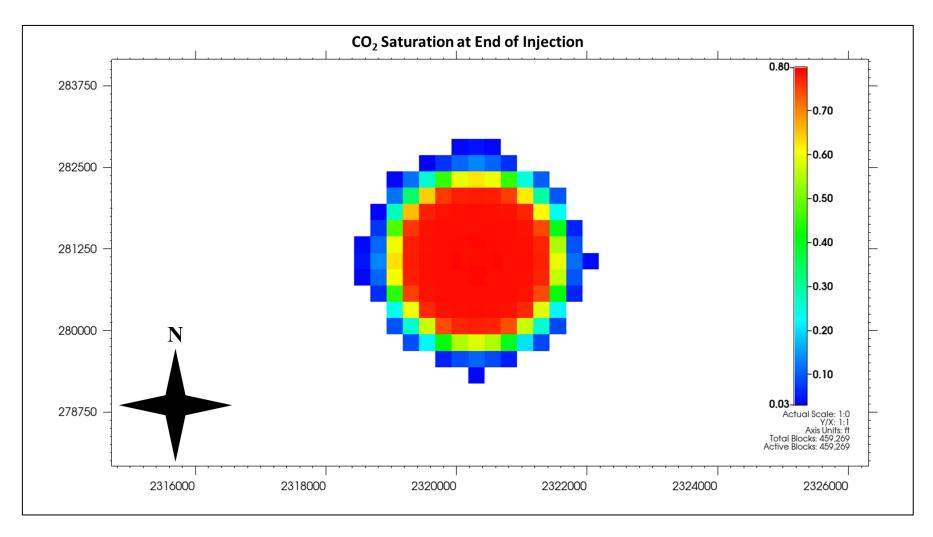


Figure 25 – Areal View of Saturation Plume at Shut-in (End of Injection)

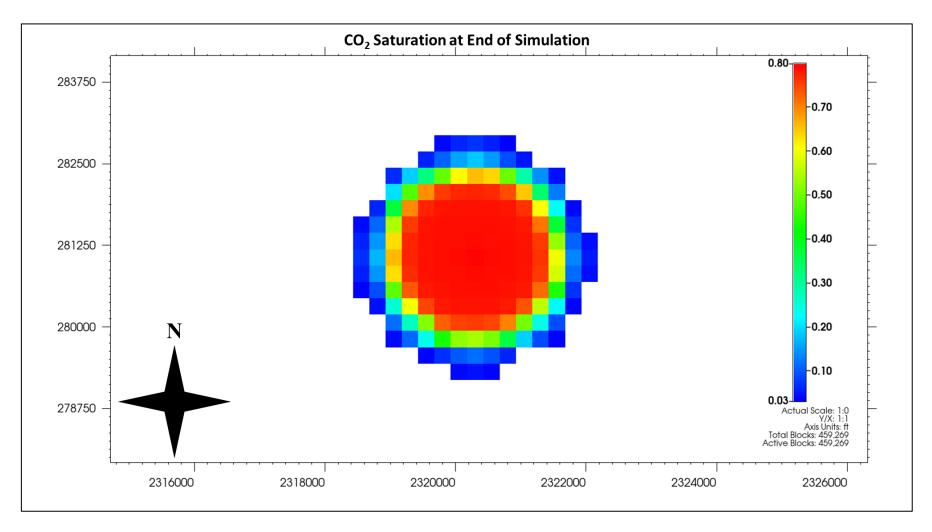


Figure 26 – Areal View of Gas Saturation Plume 10 Years After Shut-in (End of Simulation)

The cross-sectional view of the O'Neal No. 4 shows the extent of the plume from a side-view angle, cutting through the formation at the wellbore. Figure 27 shows the maximum plume extent during the 12-year injection period. During this time, gas from the injection well is injected into the permeable layers of the formation and predominantly travels laterally. Figure 28 (page 45) shows the final extent of the plume after 10 years of migration. Then, the effects of residual gas saturation and migration due to density drift are clearly shown. At least 35% of injected gas that travels into each grid cell is trapped, as the gas travels mostly vertically—as it is less dense than the formation brine—until an impermeable layer is reached. Both figures are shown in an east-to-west view.

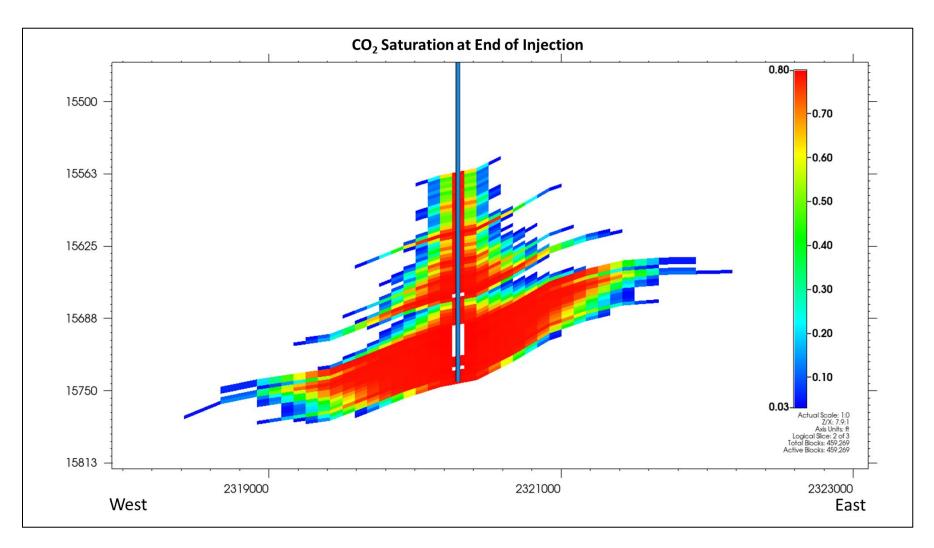


Figure 27 – East-West Cross-Sectional View of Gas Saturation Plume at Shut-in (End of Injection)

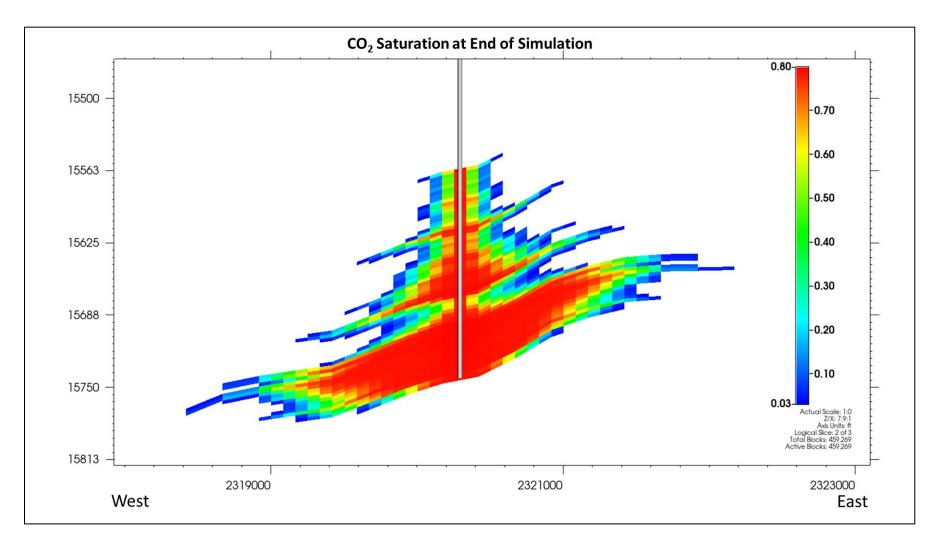


Figure 28 –East-West Cross-Sectional View of Gas Saturation Plume 10 Years After Shut-in (End of Simulation)

Figure 29 shows the surface injection rate, bottom hole pressures, and surface pressures over the injection period—and the period of density drift after injection ceases. The bottomhole pressure increases the most as the injection rate ends, reaching a maximum pressure of 13,337 psig, at the end of injection. This buildup of 2,362 psig keeps the bottomhole pressure below the fracture pressure of 13,652 psig. The maximum surface pressure associated with the maximum bottomhole pressure reached is 6,095 psig, well below the maximum allowable 7,937 psig per the TRRC UIC permit application for this well. Bottomhole and wellhead pressures are provided in Table 6.

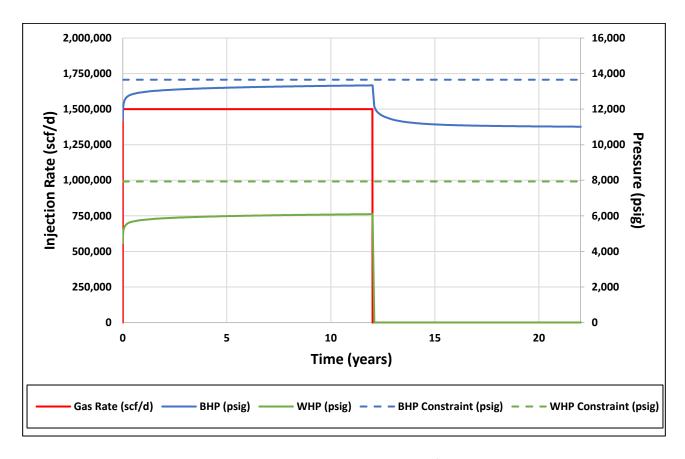


Figure 29 – Well Injection Rate and Bottomhole and Surface Pressures Over Time

Table 6 – Bottomhole and Wellhead Pressures from the Start of Injection

Time from Start of Injection (years)	BHP (psig)	WHP (psig)
0	10,975	-
10	13,311	6,073
12 (End of Inj.)	13,337	6,095
20	11,029	-
22 (End of Model)	11,013	-

SECTION 3 – DELINEATION OF MONITORING AREA

This section discusses the delineation of both the maximum monitoring area (MMA) and active monitoring area (AMA) as described in 40 CFR §98.448(a)(1).

3.1 Maximum Monitoring Area

The MMA is defined as equal to or greater than the area expected to contain the free-phase CO₂ plume until the plume has stabilized, plus an all-around buffer zone of at least one half mile. Numerical simulation was used to predict the size and drift of the plume. With CMG's GEM software package, reservoir modeling was used to determine the areal extent and density drift of the plume. The model considers the following:

- Offset well logs to estimate geologic properties
- Petrophysical analysis to calculate the heterogeneity of the rock
- Geological interpretations to determine faulting and geologic structure
- Offset injection history to predict the density drift of the plume adequately

Ozona's expected gas composition was used in the model. The injectate is estimated at a molar composition of 98.2% CO₂ and 1.8% of other constituents. The StarTex Pawnee Treating Facility has been in stable operations for many years. Ozona believes the gas analysis provided in Table 1 is an accurate representation of the injectate. In the future, if the actual gas analysis varies materially from the injectate composition herein, an update to this MRV plan will be submitted to the GHGRP. As discussed in *Section 2*, the gas will be injected into the Sligo Formation. The geomodel was created based on the rock properties of the Sligo.

The plume boundary was defined by the weighted average gas saturation in the aquifer. A value of 3% gas saturation was used to determine the boundary of the plume. When injection ceases in Year 12, the area expanse of the plume will be approximately 270 acres. The maximum distance between the wellbore and the edge of the plume is approximately 0.42 mi to the west. After 10 additional years of density drift, the areal extent of the plume is 303 acres with a maximum distance to the edge of the plume of approximately 0.45 mi to the west. Since the plume shape is relatively circular, the maximum distance from the injection well after density drift was used to define the circular boundary of the MMA. The AMA and the MMA have similar areas of influence, with the AMA being only marginally smaller than the MMA. Therefore, Ozona will set the AMA equal to the MMA as the basis for the area extent of the monitoring program.

This is shown in Figure 30 with the plume boundary at the end of injection, the stabilized plume boundary, and the MMA. The MMA boundary represents the stabilized plume boundary after 10 years of density drift plus an all-around buffer zone of one half mile.

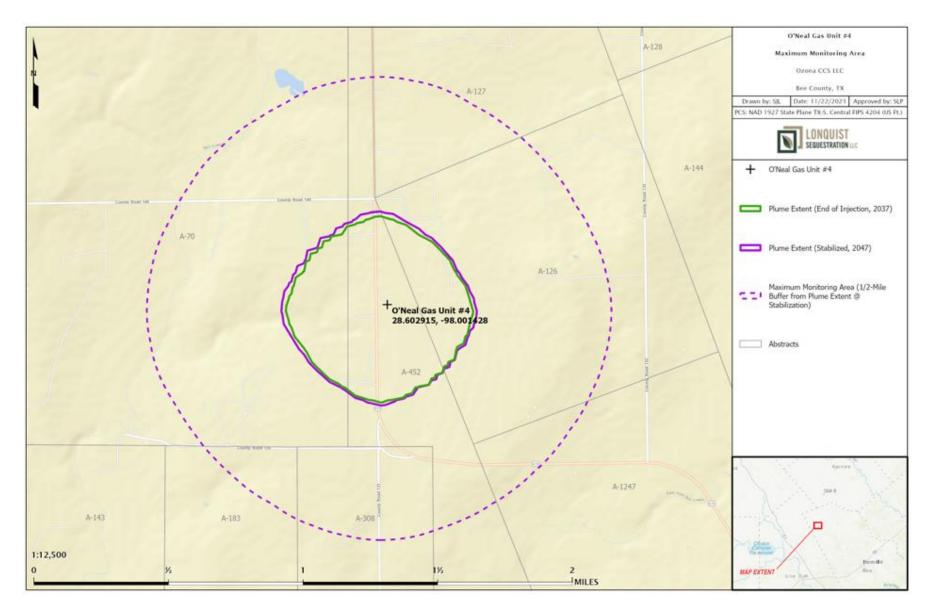


Figure 30 – Plume Boundary at End of Injection, Stabilized Plume Boundary, and Maximum Monitoring Area

3.2 Active Monitoring Area

The AMA was initially set equal to the expected total injection period of 12-years. The AMA was analyzed by superimposing the area based on a one-half mile buffer around the anticipated plume location after 12 years of injection (2037), with the area of the projected free-phase CO₂ plume at five additional years (2042). In this case, as shown in Figure 31, the plume boundary in 2042 is within the plume in 2037 plus the one-half mile buffer. Since the AMA boundary is only slightly smaller than the MMA boundary, Ozona will define the AMA to be equal to the MMA. By 2037, Ozona will submit a revised MRV plan to provide an updated AMA and MMA.

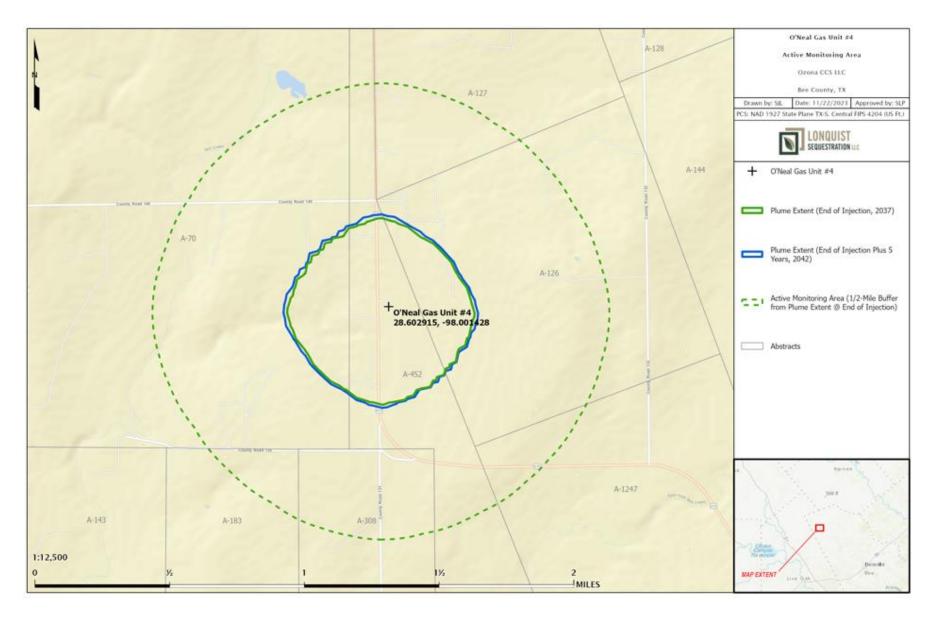


Figure 31 – Active Monitoring Area

SECTION 4 – POTENTIAL PATHWAYS FOR LEAKAGE

This section identifies and discusses the potential pathways within the MMA for CO_2 to reach the surface and is summarized in Table 7. Also included are the likelihood, magnitude, and timing of such potential leakage. The potential leakage pathways are:

- Surface equipment
- Existing wells within the MMA
- Faults and fractures
- Upper confining layer
- Natural or induced seismicity

Table 7 – Potential Leakage Pathway Risk Assessment

Potential Leakage Pathway	Likelihood	,	Magnitude	Timing
Surface Equipment	Possible during injection operations.	Low	Low. Automated systems will detect leaks and execute shut-down procedures.	During active injection period. Thereafter the well will be plugged.
Existing wells within the MMA	Unlikely. One artificial penetration was drilled into the injection interval. This well has been properly plugged and abandoned.	Low	Low. Vertical migration of CO ₂ would likely enter a shallower hydrocarbon production zone.	During active injection.
Faults and fractures	Unlikely. There is over 14,000 ft of impermeable rock between the injection zone and the base of the USDW.	Low	Low. Vertical migration of CO ₂ would likely enter a shallower hydrocarbon production zone.	During active injection.
Upper confining zone	Unlikely. The lateral continuity of the UCZ consisting primarily of the Pearsall Formation which is over 500 ft thick is recognized as a very competent seal.	Low	Low. Vertical migration of CO ₂ would likely enter a shallower hydrocarbon production zone.	During active injection.
Natural or induced seismicity	Unlikely. There is over 14,000 ft of impermeable rock between the injection zone and the base of the USDW.	Low	Low. Vertical migration of CO ₂ would likely enter a shallower hydrocarbon production zone.	During active injection.

^{1 -} UCZ is defined as the upper confining zone.

Magnitude Assessment Description

Low - catergorized as little to no impact to safety, health and the environment and the costs to mitigate are minimal.

Medium - potential risks to the USDW and for surface releases does exist, but circumstances can be easily remediated.

High - danger to the USDW and significant surface release may exist, and if occurs this would require significant costs to remediate.

4.1 Leakage from Surface Equipment

The Pawnee Treating Facility and O'Neal No. 4 are designed for separating, transporting, and injecting TAG, primarily consisting of CO₂, in a manner to ensure safety to the public, the employees, and the environment. The mechanical aspects of this are noted in Table 8 and Figure 32. The facilities have been designed to minimize leakage and failure points, following applicable National Association of Corrosion Engineers (NACE) and American Petroleum Institute (API) applicable standards and practices. As the TAG stream contains H₂S, monitors installed for H₂S detection will also indicate the presence of CO₂. These monitors will be installed at key locations around the facility and the O'Neal No. 4 location. These devices will be continuously monitored by the Supervisory Control and Data Acquisition (SCADA) system and will alarm at set points determined by the facility's Health, Safety and Environment (HS&E) Director, consistent with Occupational Safety and Health Administration (OSHA) requirements. The facility will set the detection and alarm states for personnel at 10 ppm and at 40 ppm for initiating Emergency Shutdown. Key monitoring points and parameters are also provided in Table 8.

The facilities will incorporate important safety equipment to ensure reliable and safe operations. In addition to the H_2S monitors, emergency shutdown (ESD) valves, with high- and low-pressure shutoff settings to isolate the facility, the O'Neal No. 4, and other components, StarTex has a flare stack to safely handle the TAG when a depressuring event occurs. These facilities will be constructed in the coming months. The exact location of this equipment is not yet known, but it will be installed in accordance with applicable engineering and safety standards.

Table 8 – Summary of TAG Monitors and Equipment

Device	Location	Set Point	
H₂S Monitors (1-4)	O'Neal No. 4 wellsite	10 ppm High Alarm 40 ppm Emergency Shutdown	
H₂S Monitors (5-8)	In-Plant Monitors	10 ppm High Alarm 40 ppm Emergency Shutdown	
Flare Stack	Plant Site Perimeter	N/A	
AGI Flowmeter	In-Plant (downstream of the Amine Unit)	Calibrated per API specifications	
Emergency Shutdown	In-Plant Monitors	40 ppm Facility Shutdown	
Emergency Shutdown	O'Neal No. 4 wellsite	40 ppm Facility Shutdown	

With the continuous air monitoring at the facility and the well site, a release of CO_2 would be quickly identified, and the safety systems and protocols would effectuate an orderly shutdown to ensure safety and minimize the release volume. The CO_2 injected into the O'Neal No. 4 is from the amine unit at the Pawnee Treating Facility. If any leakage were to be detected, the volume of CO_2 released would be quantified based on the operating conditions at the time of release, as stated in *Section 7*, in accordance with 40 CFR §98.448(a)(5). Ozona concludes that the leakage of CO_2 through the surface equipment is unlikely.

4.2 Leakage Through Existing Wells Within the MMA

The O'Neal No. 4 is engineered to prevent migration from the injection interval to the surface through a special casing and cementing design as depicted in the schematic provided in Figure 32. Mechanical integrity tests (MITs), required under Statewide Rule (SWR) §3.46 [40 CFR §146.23 (b)(3)], will take place every 5 years to verify that the well and wellhead can contain the appropriate operating pressures. If the MIT were to indicate a leak, the well would be isolated and the leak mitigated to prevent leakage of the injectate to the atmosphere.

A map of all oil and gas wells within the MMA is shown in Figure 33. Figure 34 is a map of all the oil and gas wells that penetrate the MMA's gross injection zone. Only one well penetrated the MMA's gross injection zone. This well was non-productive and has been plugged and abandoned in accordance with TRRC requirements. A summary table of all oil and gas wells within the MMA is provided in *Appendix B-1*.

This table in *Appendix B-1* provides the total depth (TD) of all wells within the MMA. The wells that are shallower and do not penetrate the injection zone are separated by the Pearsall Formation with a gross thickness of 535 ft. The Pine Island Shale comprises approximately 130 ft of this interval as discussed in *Section 2.2.2* and provides a competent regional seal—making vertical migration of fluids above the injection zone unlikely.

The shallower offset hydrocarbon wells within the MMA will also serve as above zone monitoring wells. Should any of the sequestered volumes migrate vertically, they would potentially enter the shallower hydrocarbon reservoir. Regular sampling and analysis is performed on the produced hydrocarbons. If a material difference in the quantity of CO_2 in the sample occurs indicating a potential migration of injectate from the Sligo Formation, Ozona would investigate and develop a mitigation plan. This may include reducing the injection rate or shutting in the well. Based on the investigation, the appropriate equation in *Section 7* would be used to make any adjustments to the reported volumes.

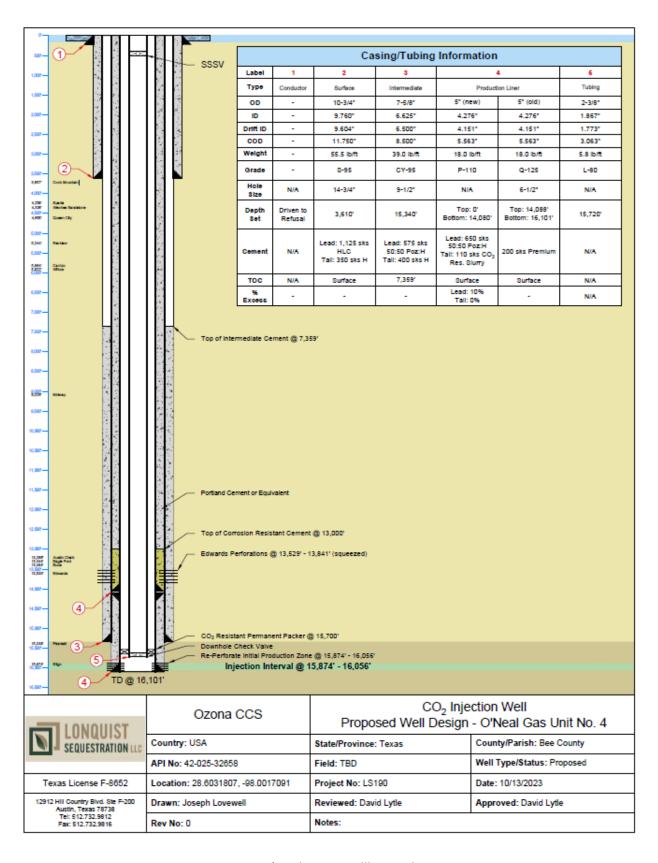


Figure 32 – O'Neal No. 4 Wellbore Schematic

Figure 33 – All Oil and Gas Wells Within the MMA

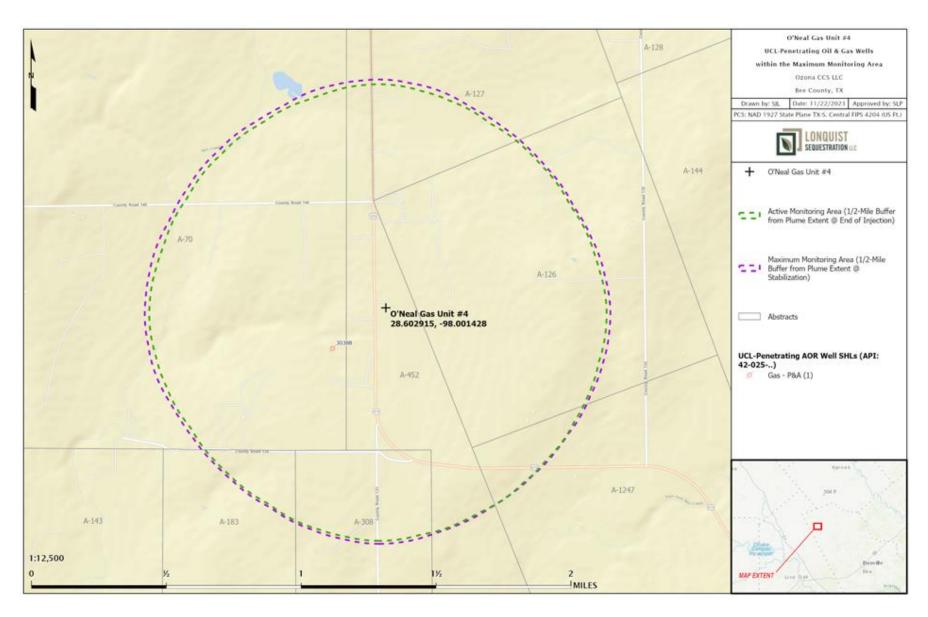


Figure 34 – Oil and Gas Wells Penetrating the Gross Injection Interval Within the MMA

4.2.1 Future Drilling

Potential leak pathways caused by future drilling in the area are not expected to occur. The deeper formations have proven to date to be nonproductive in this area, and therefore Ozona does not see this as a risk. This is supported by a review of the TRRC Rule 13 (Casing, Cementing, Drilling, Well Control, and Completion Requirements), 16 TAC §3.13. The Sligo is not among the formations listed for which operators in Bee County and District 2 (where the O'Neal No. 4 is located) are required to comply with TRCC Rule 13; therefore, the TRRC does not believe there are productive horizons below the Sligo. The O'Neal No. 4 drilling permit is provided in *Appendix A-2*.

4.2.2 <u>Groundwater Wells</u>

The results of a groundwater well search found five wells within the MMA, as identified by the Texas Water Development Board as shown in Figure 35 and in tabular form in *Appendix B-2*.

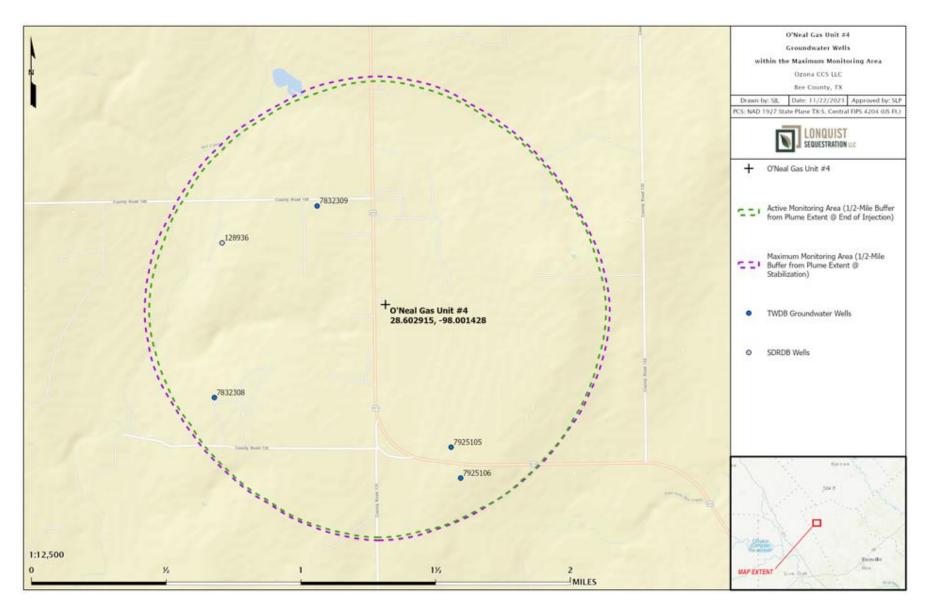


Figure 35 – Groundwater Wells Within the MMA

The surface, intermediate, and production casings of the O'Neal No. 4, as shown in Figure 32, are designed to protect the shallow freshwater aquifers, consistent with applicable TRRC regulations, and the GAU letter issued for this location is provided in *Appendix A-1*. The wellbore casings and compatible cements prevent CO_2 leakage to the surface along the borehole. Ozona concludes that leakage of the sequestered CO_2 to the groundwater wells is unlikely.

4.3 <u>Leakage Through Faults and Fractures</u>

Detailed mapping of openhole logs surrounding the O'Neal No. 4 did not identify any faulting within either the Pearsall or Sligo sections. However, there is a general lack of deep penetrators within the area that limits the amount of openhole coverage available.

The majority of the published literature suggests that faulting near the project area is restricted to the shallower, overlying Cenozoic section, as shown in Figure 9, with shallow faults dying out before reaching the Pearsall Formation. One source interpreted the potential for faulting to the south (Swanson et al., 2016). The potential fault is depicted in Figure 8 relative to the location of the O'Neal No. 4. According to the map, the interpreted fault lies approximately 4.25 mi south-southeast of the well and approximately 3.9 mi south-southeast of the stabilized plume extent in the year 2047. In the unlikely scenario in which the injection plume or pressure front reaches the potential fault, and the potential fault was to act as a transmissive pathway, the upper confining Pearsall shale contains sufficient thickness and petrophysical properties required to confine and protect injectates from leaking outside of the permitted injection zone.

Section 2.1.2 discusses regional structure and faulting, and Section 2.3 covers local structure, for additional material relevant to this topic.

4.4 Leakage Through the Upper Confining Zone

The Sligo injection zone has competent sealing intervals present above and below the targeted carbonate sequence of the Sligo section. The overlying Pine Island shale member of the Pearsall Formation is approximately 130 ft thick at the O'Neal No. 4. Above this confining unit, the Cow Creek Limestone, Cow Creek shale, and Bexar Shale Members of the Pearsall Formation will act as additional confinement between the injection interval and the USDW. The USDW lies well above the sealing properties of the formations outlined above, making stratigraphic migration of fluids into the USDW highly unlikely. The petrophysical properties of the lower Sligo and Hosston Formations make these ideal for lower confinement. The low porosity and permeability of these underlying formations minimizes the likelihood of downward migration of injected fluids. The relative buoyancy of injectate to the in situ reservoir fluid makes migration below the lower confining layer unlikely.

4.5 <u>Leakage from Natural or Induced Seismicity</u>

The O'Neal No. 4 is located in an area of the Gulf of Mexico considered to be active from a seismic perspective. Therefore, the Bureau of Economic Geology's TexNet (from 2017 to present) and USGS's Advanced National Seismic System (from 1971 to present) databases were reviewed to

identify any recorded seismic events within 25 kilometer (km) of the O'Neal No. 4.

The investigation identified a multitude of seismic events within the 25 km search radius; however, the magnitude of most of the events was below 2.5. The nearest seismic event with a recorded magnitude of 3.0 or greater was measured approximately 5.6 km northwest of the O'Neal No. 4 at a depth of 5 km. The results of the investigation are plotted on the map provided in Figure 36 relative to the O'Neal No. 4 and the 25-km search radius.

The Facility will have operating procedures and set points programmed into the control and SCADA systems to ensure operating pressures are maintained below the fracture gradient of the injection and confining intervals, thus avoiding the potential for inducing seismicity.

Given the seismic activity in the area, Ozona will closely monitor nearby TexNet station EF71 for activity and any corresponding irregularities in the operating pressures of O'Neal No. 4. If a seismic event of 3.0 or greater is recorded at Station EF71 or if anomalies are identified in the operating data, Ozona will review the data and determine if any changes occurred that indicate potential leakage. Ozona would take appropriate measures based on their findings, including limiting the injection pressure and reducing the injection rate.

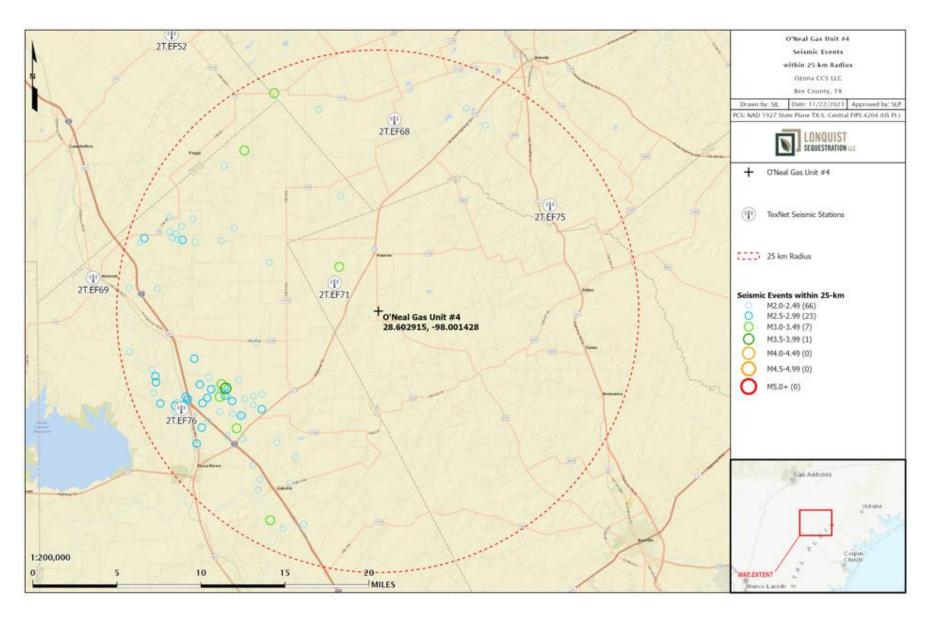


Figure 36 – 25-km Seismicity Review

SECTION 5 – MONITORING FOR LEAKAGE

This section discusses the strategy that Ozona will employ for detecting and quantifying surface leakage of CO₂ through the pathways identified in *Section 4*, to meet the requirements of 40 CFR **§98.448(a)(3)**. As the injectate stream contains both H₂S and CO₂, the H₂S will be a proxy for CO₂ leakage and therefore the monitoring systems in place to detect H₂S will also indicate a release of CO₂. Table 9 summarizes the monitoring of the following potential leakage pathways to the surface. Monitoring will occur during the planned 12-year injection period or cessation of injection operations, plus a proposed 10-year post-injection period until the plume has stabilized.

- Leakage from surface equipment
- · Leakage through existing and future wells within the MMA
- Leakage through faults or fractures
- Leakage through confining seals
- Leakage through natural or induced seismicity

Table 9 – Summary of Leakage Monitoring Methods

Leakage Pathway	Monitoring Method	
	Fixed H ₂ S monitors at the Plant and well site	
Surface equipment	Visual inspections	
	Monitor SCADA systems for the Plant and well site	
	Monitor CO ₂ levels in above zone producing wells	
	Mechanical Integrity Tests (MIT) of the AGI Well every 5 years	
Existing wells within the MMA	Visual inspections	
	Annual soil gas sampling near well locations that penetrate the Upper Confining Zone within the AMA	
 Leakage through groundwater wells 	Annual groundwater samples from existing water well(s)	
Leakage from future wells	Monitor drilling activity and compliance with TRRC Rule 13 Regulations	
Faults and Fractures	SCADA continuous monitoring at the well site (volumes and pressures)	
	Monitor CO ₂ levels in Above Zone producing wells	
Upper confining zone	SCADA continuous monitoring at the well site (volumes and pressures)	
0	Monitor CO ₂ levels in Above Zone producing wells	
Natural or induced aciomicity	Monitor CO ₂ levels in Above Zone producing wells	
Natural or induced seismicity	Monitor existing TexNet station	

5.1 Leakage from Surface Equipment

The facility depicted in Figure 37 and the O'Neal No. 4 were designed to operate in a safe manner to minimize the risk of an escape of CO_2 and H_2S . Leakage from surface equipment is unlikely and would quickly be detected and addressed. The facility design minimizes leak points through the equipment used, and key areas are constructed with materials that are NACE and API compliant. A baseline atmospheric CO_2 concentration will be established prior to commencing operation once facility construction has been completed. Ambient H_2S monitors will be located at the facility and near the O'Neal No. 4 site for local alarm and are connected to the SCADA system for continuous monitoring.

The facility and the O'Neal No. 4 are continuously monitored through automated control systems. These monitoring points were discussed in *Section 4.1*. In addition, field personnel conduct routine visual field inspections of gauges, and gas monitoring equipment. The effectiveness of the internal and external corrosion control program is monitored through the periodic inspection of the corrosion coupons and inspection of the cathodic protection system. These inspections and the automated systems allow Ozona to detect and respond to any leakage situation quickly. The surface equipment will be monitored for the injection and post-injection period. Should leakage be detected during active injection operations, the volume of CO_2 released will be calculated based on operating conditions at the time of the event, per 40 CFR §98.448(a)(5) and §98.444(d).

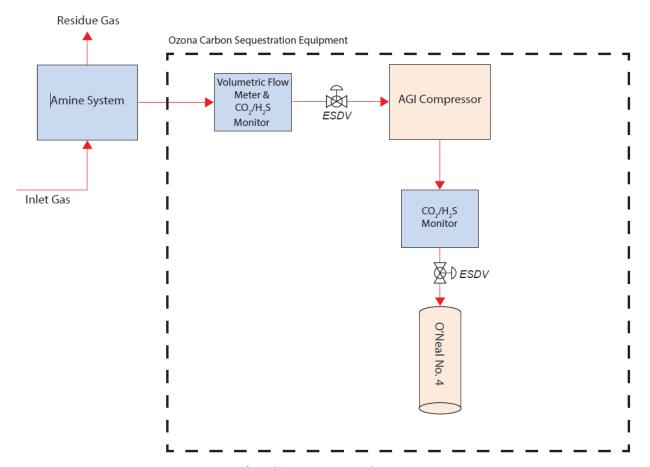


Figure 37 – O'Neal No. 4 Process Flow Diagram

Pressures, temperatures, and flow rates through the surface equipment are continuously monitored during operations. If a release occurred from surface equipment, the amount of CO_2 released would be quantified based on the operating conditions, including pressure, flow rate, percentage of CO_2 in the injectate, size of the leak-point opening, and duration of the leak. In the unlikely event a leak occurs, Ozona will quantify the leak per the strategies discussed in *Section 7*.

5.2 Leakage Through Existing and Future Wells Within the MMA

Ozona continuously monitors and collects injection volumes, pressures, and temperatures through their SCADA systems, for the O'Neal No. 4. This data is reviewed by qualified personnel and will follow response and reporting procedures when data exceeds acceptable performance limits. A change of injection or annular pressure would indicate the presence of a possible leak and be thoroughly investigated. In addition, MITs performed every 5 years, as expected by the TRRC and UIC, would also indicate the presence of a leak. Upon a negative MIT, the well would be isolated and investigated to develop a leak mitigation plan.

As discussed previously, TRRC Rule 13 ensures that new wells in the field are constructed with proper materials and practices to prevent migration from the injection interval.

In addition to the fixed monitors described previously, Ozona will also establish and operate an infield monitoring program to detect CO_2 leakage within the AMA. This would include H_2S monitoring as a proxy for CO_2 at the well site and annual soil gas samples taken near any identified wells that penetrate the injection interval within the AMA. These samples will be analyzed by a qualified third party. Prior to commencing operation, and through the post-injection monitoring period, Ozona will have these monitoring systems in place.

Currently, there is only one well in the MMA identified that penetrates the injection interval. This well was plugged and abandoned in 2007. The TRRC records are provided in *Appendix A-4*. Ozona will take an annual soil gas sample from this area, which will be analyzed by a third-party lab. Additional monitoring will be added as the AMA is updated over time. In the unlikely event a leak occurs, Ozona will quantify the leak volumes by the methodologies discussed in *Section 7* and present these results and related activities in the annual report.

Ozona will also utilize shallower producing gas wells as proxies for above-zone monitoring wells. Production data from these wells is analyzed for monthly production statements, and therefore would be an early indicator of any possible subsurface issues. Should any material change from historical trends in the CO₂ concentration occur, Ozona would investigate and develop a corrective action plan. Should any CO₂ migrate vertically from the Sligo, the magnitude risk of this event is very low, as the producing reservoir provides an ideal containment given the upper confining zone of this reservoir has proven competent. In the unlikely event a leak occurs, Ozona would quantify the leak per the strategies discussed in *Section 7*, or as may be applicable provided in 40 CFR §98.443 based on the actual circumstances and include these results in the annual report.

5.2.1 Groundwater Quality Monitoring

Ozona will monitor the groundwater quality above the confining interval by sampling from groundwater wells near the O'Neal No. 4 and analyzing the samples with a third-party laboratory on an annual basis. In the case of the O'Neal No. 4, 5 existing groundwater wells have been identified within the AMA (Figure 38). Initial groundwater quality tests will be performed to establish a baseline prior to commencing operations.

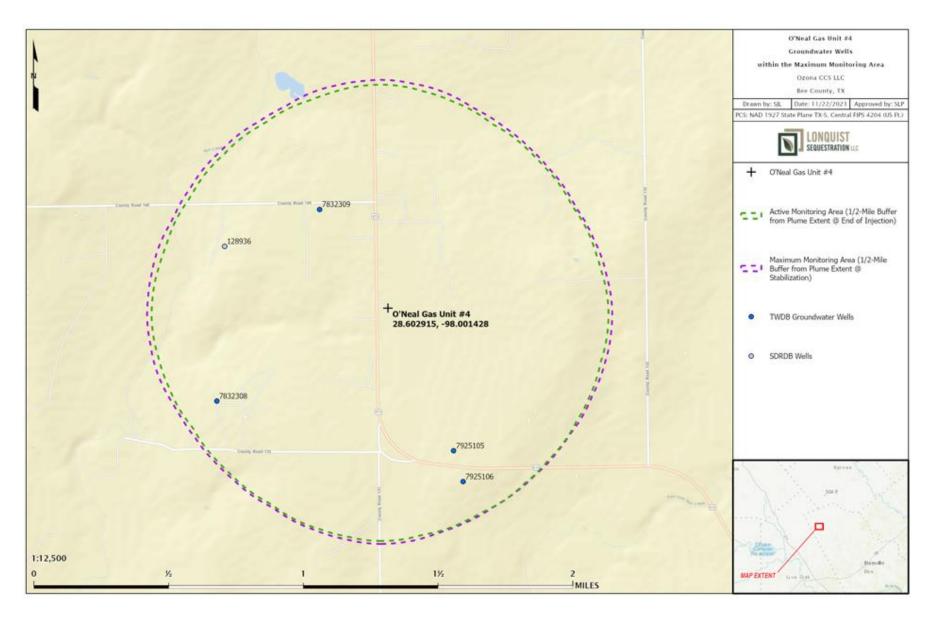


Figure 38 – Groundwater Wells

5.3 <u>Leakage Through Faults, Fractures, or Confining Seals</u>

Ozona will continuously monitor the operations of the O'Neal No. 4 through the automated controls and SCADA systems. Any deviation from normal operating volume and corresponding injection pressure could indicate movement into a potential leak pathway, such as a fault or breakthrough of the confining seal and would trigger an alert due to a change in the injection pressure. Any such alert would be reviewed by field personnel and appropriate action would be taken, including shutting in the well, if necessary.

Ozona will also utilize shallower producing wells as proxies for above-zone monitoring wells. Production data is analyzed regularly for monthly production statements and therefore would be an early indicator of any possible subsurface issues. Should any material change from historical trends in the CO₂ concentration occur, Ozona would investigate and develop a corrective action plan. Should any CO₂ migrate vertically from the Sligo Formation, the magnitude risk of this event is very low, as the producing reservoir provides an ideal containment given the upper confining zone has proven competent. In the unlikely event a leak occurs, Ozona would quantify the leak per the strategies discussed in *Section 7*, or as may be applicable provided in 40 CFR §98.443 based on the actual circumstances.

5.4 <u>Leakage Through Natural or Induced Seismicity</u>

While the likelihood of a natural or induced seismicity event is low, Ozona plans to use the nearest TexNet seismic monitoring station, EF71, to monitor the area around the O'Neal No. 4. This station is approximately 3 mi to the northwest, as shown in Figure 38. This is sufficient distance to allow for accurate and detailed monitoring of the seismic activity in the area. Ozona will monitor this station for any seismic activity, and if a seismic event of 3.0 magnitude or greater is detected, Ozona will review the injection volumes and pressures of the O'Neal No. 4 to determine if any significant changes have occurred that would indicate potential leakage.

Ozona will also continuously monitor operations through the SCADA system. Any deviation from normal operating pressure and volume set points would trigger an alarm for investigation by operations staff. Such a variance could indicate movement into a potential leak pathway, such as a fault or breakthrough of the confining seal. Any such alert would be reviewed by field personnel and appropriate action would be taken, including shutting in the well, if necessary

These are the two primary strategies for mitigating risks for induced seismicity. In the unlikely event a leak occurs, Ozona will quantify the leak per the strategies discussed in *Section 7*, or as may be applicable provided in 40 CFR **§98.443** based on the actual circumstances.

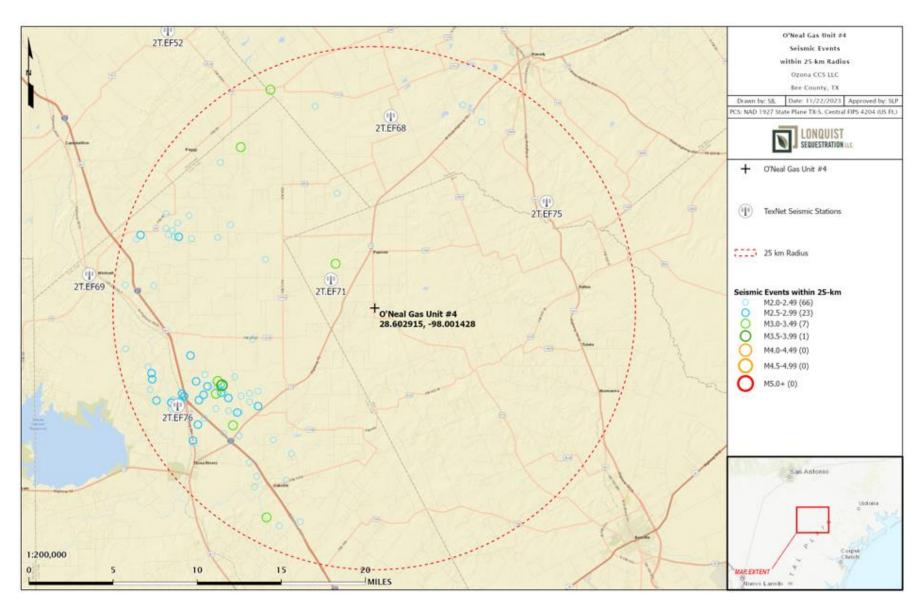


Figure 39 – Seismic Events and Monitoring Station

SECTION 6 – BASELINE DETERMINATIONS

This section identifies the strategies Ozona will undertake to establish the expected baselines for monitoring CO₂ surface leakage per 40 CFR **§98.448(a)(4)**. Ozona will use the existing SCADA monitoring systems to identify changes from the expected performance that may indicate leakage of injectate and calculate a corresponding amount of CO₂.

6.1 **Visual Inspections**

Regular inspections will be conducted by field personnel at the facility and O'Neal No. 4 site. These inspections will aid in identifying and addressing possible issues to minimize the risk of leakage. If any issues are identified, such as vapor clouds or ice formations, corrective actions will be taken prudently and safely to address such issues.

6.2 H₂S/CO₂ Monitoring

In addition to the fixed monitors in the facility and at the wellsite, Ozona will establish and perform an annual in-field sampling program to monitor and detect any CO₂ leakage within the AMA. This will consist of soil gas sampling near any artificial penetrations of the injection zone and sampling of water wells. These probes have special membrane inserts that collect the gas samples over a 21-day period. These will be analyzed by a third-party lab to be analyzed for CO₂, H₂S, and trace contaminants typically found in a hydrocarbon gas stream. The lab results will be provided in the annual report should they indicate a material variance from the baseline. Initial samples will be taken and analyzed before the commencement of operations and will establish the baseline reference levels.

6.3 Operational Data

Upon starting injection operations, baseline measurements of injection volumes and pressures will be recorded. Any significant deviations over time will be analyzed for indication of leakage of injectate and the corresponding component of CO₂.

6.4 Continuous Monitoring

The total mass of CO_2 emitted by surface leakage and equipment leaks will not be measured directly, as the injection stream for this project is near the OSHA Permissible Exposure Limit (PEL) 8-hour Time Weighted Average (TWA) of 5,000 ppm. Direct leak surveys present a hazard to personnel due to the presence of H_2S in the gas stream. Continuous monitoring systems will trigger alarms if there is a release. The mass of the CO_2 released would be calculated based on the operating conditions, including pressure, flow rate, percentage of CO_2 , size of the leak-point opening, and duration. This method is consistent with 40 CFR §98.448(a)(5) and §98.444(d), allowing the operator to calculate site-specific variables used in the mass balance equation.

In the case of a depressuring event, the acid gas stream will be sent to a flare stack to be safely processed and will be reported under reporting requirements for the facility. Any such events will be accounted for in the sequestered reporting volumes consistent with *Section 7*.

6.5 **Groundwater Monitoring**

Initial samples will be taken from groundwater wells in the area of the O'Neal No. 4 upon approval of the MRV plan, and before commencement of CO_2 injection. These samples will be analyzed and reports prepared by a third-party laboratory testing for pH, total dissolved solids (TDS), CO_2 , and volatile organic compounds (VOC). Initial samples will be taken and analyzed before the commencement of operations and will establish the baseline reference levels. Sampling select wells will be performed annually. In the event a material deviation in the sample analysis occurs, the results will be provided in the annual report.

SECTION 7 – SITE-SPECIFIC CONSIDERATIONS FOR MASS BALANCE EQUATION

This section identifies how Ozona will calculate the mass of CO_2 injected, emitted, and sequestered. This also includes site-specific variables for calculating the CO_2 emissions from equipment leaks and vented emissions of CO_2 between the injection flow meter and the injection well, per 40 CFR §98.448(a)(5).

7.1 Mass of CO₂ Received

Per 40 CFR §98.443, the mass of CO_2 received must be calculated using the specified CO_2 received equations "unless you follow the procedures in 40 CFR §98.444(a)(4)." The 40 CFR §98.444(a)(4) states that "if the CO_2 you receive is wholly injected and is not mixed with any other supply of CO_2 , you may report the annual mass of CO_2 injected that you determined following the requirements under paragraph (b) of this section as the total annual mass of CO_2 received instead of using Equation RR-1 or RR-2 of this subpart to calculate CO_2 received." The CO_2 received for this injection well is injected and not mixed with any other supply; the annual mass of CO_2 injected will equal the amount received less any amounts calculated in accordance with the equations of this section. Any future streams would be metered separately before being combined into the calculated stream.

7.2 Mass of CO₂ Injected

Per 40 CFR §98.444(b), since the flow rate of CO_2 injected will be measured with a volumetric flow meter, the total annual mass of CO_2 , in metric tons, will be calculated by multiplying the mass flow by the CO_2 concentration in the flow according to Equation RR-5:

$$CO_{2,u} = \sum_{p=1}^{4} Q_{p,u} * D * C_{CO_{2,p,u}}$$

Where:

CO_{2,u} = Annual CO₂ mass injected (metric tons) as measured by flow meter u

 $Q_{p,u}$ = Quarterly volumetric flow rate measurement for flow meter u in quarter p at standard conditions (standard cubic meters per quarter)

D = Density of CO₂ at standard conditions (metric tons per standard cubic meter): 0.0018682

 $C_{CO2,p,u} = CO_2$ concentration measurement in flow for flow meter u in quarter p (vol. percent CO_2 , expressed as a decimal fraction)

p = Quarter of the year

u = Flow meter

7.3 Mass of CO₂ Produced

The O'Neal No. 4 is not part of an enhanced oil recovery project; therefore, no CO₂ will be produced.

7.4 Mass of CO₂ Emitted by Surface Leakage

The mass of CO₂ emitted by surface leakage and equipment leaks will not be measured directly due to the H₂S concentration in the injection stream. Direct leak surveys are dangerous and present a hazard to personnel. Because no venting is expected to occur, the calculations would be based on the unusual event that a blowdown is required and those emissions would be sent to a flare stack and reported as a part of the required GHG reporting for the facility. Any leakage would be detected and managed as an upset event. Continuous monitoring systems should trigger an alarm upon a release of H₂S and CO₂. The mass of the CO₂ released would be calculated for the operating conditions, including pressure, flow rate, size of the leak-point opening, and duration of the leak. This method is consistent with 40 CFR §98.448(a)(5), allowing the operator to calculate site-specific variables used in the mass balance equation.

In the unlikely event that CO₂ was released because of surface leakage, the mass emitted would be calculated for each surface pathway according to methods outlined in the plan and totaled using Equation RR-10 as follows:

$$CO_{2E} = \sum_{x=1}^{X} CO_{2,x}$$

Where:

CO_{2E} = Total annual CO₂ mass emitted by surface leakage (metric tons) in the reporting year

CO_{2,x} = Annual CO₂ mass emitted (metric tons) at leakage pathway x in the reporting year

X = Leakage pathway

Calculation methods using equations from Subpart W will be used to calculate CO₂ emissions due to any surface leakage between the flow meter used to measure injection quantity and the injection wellhead.

As discussed previously, the potential for pathways for all previously mentioned forms of leakage is unlikely. Given the possibility of uncertainty around the cause of a leakage pathway that is mentioned above, Ozona believes the most appropriate method to quantify the mass of CO₂ released will be determined on a case-by-case basis. Any mass of CO₂ detected leaking to the surface will be quantified by using industry proven engineering methods including, but not limited to, engineering analysis on surface and subsurface measurement data, dynamic reservoir modeling, and history-matching of the sequestering reservoir performance, among others. In the unlikely Subpart RR MRV Plan – O'Neal Gas Unit No. 4

event that a leak occurs, it will be addressed, quantified, and documented within the appropriate timeline. Any records of leakage events will be kept and stored as provided in *Section 10*.

7.5 Mass of CO₂ Sequestered

The mass of CO_2 sequestered in subsurface geologic formations will be calculated based on Equation RR-12. Data collection for calculating the amount of CO_2 sequestered in the O'Neal No. 4 will begin once the subsurface recompletion work, and the surface facilities construction has been completed, and subject to approval of the MRV plan. The calculation of sequestered volumes utilizes the following equation as the O'Neal No. 4 will not actively produce oil, natural gas, or any other fluids:

$$CO_2 = CO_{2I} - CO_{2E} - CO_{2FI}$$

Where:

 CO_2 = Total annual CO_2 mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year

 CO_{2l} = Total annual CO_2 mass injected (metric tons) in the well or group of wells covered by this source category in the reporting year

CO_{2E} = Total annual CO₂ mass emitted (metric tons) by surface leakage in the reporting year

 CO_{2FI} = Total annual CO_2 mass emitted (metric tons) from equipment leaks and vented emissions of CO_2 from equipment located on the surface, between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of this part.

 CO_{2FI} will be calculated in accordance with Subpart W for reporting of GHGs. Because no venting is expected to occur, the calculations would be based on the unusual event that a system blowdown event occurs. Those emissions would be sent to a flare stack and reported as part of the GHG reporting for the facility.

 Calculation methods from Subpart W will be used to calculate CO₂ emissions from equipment located on the surface, between the flow meter used to measure injection quantity and the injection wellhead.

SECTION 8 – IMPLEMENTATION SCHEDULE FOR MRV PLAN

The O'Neal Gas Unit No. 4 is an existing natural gas well that will be recompleted as a Class II well with corrosion-resistant materials. The Class II permit is still in process with the TRRC. Until this permit is issued, Ozona cannot specify a date to acquire the baseline testing data. Ozona is submitting this MRV application to the GHGRP to comply with the requirements of Subpart RR. The MRV plan, including acquisition of baseline data, will be implemented upon receiving EPA approval. The Annual Subpart RR Report will be filed on March 31 of the year following the reporting year.

Table 10 – Baseline Sampling Schedule

Sampling Location	Estimated Date	Comments
		Baseline readings will be
Fixed H ₂ S/CO ₂ Monitors	Oct. 1, 2024	established during
		commissioning activities.
		Baseline samples will be taken
Soil gas sampling	Oct. 1, 2024	prior to commencement of
		injection.
		Baseline samples will be taken
Water well sampling	Oct. 1, 2024	prior to commencement of
		injection.

Notes:

- Above dates are estimates subject to adjustment based on actual regulatory approval dates and facilities construction timelines.
- All baseline sampling will be performed prior to the start of recording data for reporting under this MRV.
- Commissioning activities include installation of surface facilities, including flowline, compressors, manifolds, etc.

SECTION 9 – QUALITY ASSURANCE

This section identifies how Ozona plans to manage quality assurance and control to meet the requirements of 40 CFR §98.444.

9.1 Monitoring QA/QC

CO₂ Injected

- The flow rate of the CO₂ being injected will be measured with a volumetric flow meter, consistent with API standards. These flow rates will be compiled quarterly.
- The composition of the injectate stream will be measured upstream of the volumetric flow meter with a continuous gas composition analyzer or representative sampling consistent with API standards.
- The gas composition measurements of the injected stream will be averaged quarterly.
- The CO₂ measurement equipment will be calibrated per the requirements of 40 CFR §98.444(e) and §98.3(i).

CO₂ Emissions from Leaks and Vented Emissions

- Gas monitors at the facility and O'Neal No. 4 will be operated continuously, except for maintenance and calibration.
- Gas monitors will be calibrated according to the requirements of 40 CFR §98.444(e) and §98.3(i).
- Calculation methods from Subpart W will be used to calculate CO₂ emissions from equipment located on the surface, between the flow meter used to measure injection quantity and the injection wellhead.

Measurement Devices

- Flow meters will be continuously operated except for maintenance and calibration.
- Flow meters will be calibrated according to 40 CFR §98.3(i).
- Flow meters will be operated and maintained in accordance with applicable standards as published by a consensus-based standards organization.

All measured volumes of CO₂ will be converted to standard cubic meters at a temperature of 60°F and an absolute pressure of 1 atmosphere.

9.2 Missing Data

In accordance with 40 CFR **§98.445**, Ozona will use the following procedures to estimate missing data if unable to collect the data needed for the mass balance calculations:

• If a quarterly quantity of CO₂ injected is missing, the amount will be estimated using a representative quantity of CO₂ injected from the nearest previous period at a similar injection pressure.

• Fugitive CO₂ emissions from equipment leaks from facility surface equipment will be estimated and reported per the procedures specified in Subpart W of 40 CFR **§98**.

9.3 MRV Plan Revisions

If any changes outlined in 40 CFR **§98.448(d)** occur, Ozona will revise and submit an amended MRV plan within 180 days to the Administrator for approval.

SECTION 10 – RECORDS RETENTION

Ozona will retain records as required by 40 CFR **§98.3(g)**. These records will be retained for at least 3 years and include the following:

- Quarterly records of the CO₂ injected
 - Volumetric flow at standard conditions
 - Volumetric flow at operating conditions
 - Operating temperature and pressure
 - Concentration of the CO₂ stream
- Annual records of the information used to calculate the CO₂ emitted by surface leakage from leakage pathways.
- Annual records of the information used to calculate CO₂ emitted from equipment leaks and vented emissions of CO₂ from equipment located on the surface, between the flow meter used to measure injection quantity and the injection wellhead.

APPENDICES

APPENDIX A – O'Neal No. 4 TRRC FORMS

APPENDIX A-1: GAU GROUNDWATER PROTECTION DETERMINATION

APPENDIX A-2: DRILLING PERMIT

- CHARLIE C. OVERBY API 42-025-32658
- O'NEAL GAS UNIT NO. 4 API 42-025-32658

APPENDIX A-3: COMPLETION REPORT

- CHARLIE C. OVERBY API 42-025-32658
- O'NEAL GAS UNIT NO. 4 API 42-025-32658
- MINI FRACTURE REPORT

APPENDIX A-4: API 42-025-30388 CHARLIE C. OVERBY GU PLUGGING RECORDS

<u>APPENDIX B – AREA OF REVIEW</u>

APPENDIX B-1: OIL AND GAS WELLS WITHIN THE MMA LIST

APPENDIX B-2: WATER WELLS WITHIN THE MMA LIST

Appendix B: Submissions and Responses to Requests for Additional Information

Subpart RR Monitoring, Reporting, and Verification (MRV) Plan O'Neal Gas Unit Well No. 4

Bee County, TX

Prepared for *Ozona CCS, LLC*San Antonio, TX

By

Lonquist Sequestration, LLC
Austin, TX

Version 4.0 August 2024

INTRODUCTION

Ozona CCS, LLC (Ozona) has a pending Class II acid gas injection (AGI) permit application with the Texas Railroad Commission (TRRC), which was submitted in September of 2023 for its O'Neal Gas Unit Well No. 4 (O'Neal No. 4), API No. 42-025-32658. Granting of this application would authorize Ozona to inject up to 1.5 million standard cubic feet per day (MMscf/D) of treated acid gas (TAG) into the Sligo Formation at a depth of 15,874 feet (ft) to 16,056 ft, with a maximum allowable surface pressure of 7,920 pounds per square inch gauge (psig). The TAG for this AGI well is associated with StarTex's Pawnee Treating Facility, located in a rural area of Bee County, Texas, approximately 2.0 miles (mi) south of Pawnee, Texas, as shown in Figure 1.

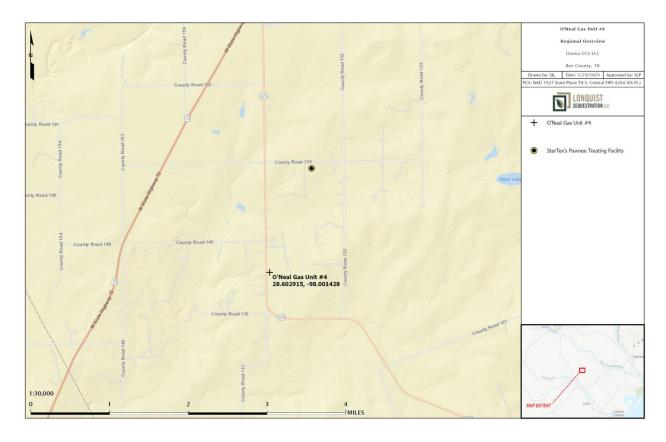


Figure 1 – Location of StarTex's Pawnee Treating Facility and the O'Neal No. 4

Ozona is submitting this Monitoring, Reporting, and Verification (MRV) plan to the EPA for approval under Title 40, U.S. Code of Federal Regulations (40 CFR) §98.440(a), Subpart RR, of the Greenhouse Gas Reporting Program (GHGRP). In addition to submitting this MRV plan to the EPA, Ozona has applied to the TRRC for the O'Neal GU No. 4's Class II permit. Ozona plans to inject TAG for approximately 12 years. Table 1 shows the expected composition of the gas stream to be sequestered from the nearby treating facility.

Table 1 – Expected TAG Composition

Component	Mol Percent
Carbon Dioxide	98.2%
Hydrocarbons	1.03%
Hydrogen Sulfide	0.4%
Nitrogen	0.37%

ACRONYMS AND ABBREVIATIONS

AMA Active Monitoring Area

BCF Billion Cubic Feet

CH₄ Methane

CMG Computer Modelling Group, Ltd.

Carbon Dioxide (may also refer to other carbon

CO₂ oxides)

E East

EOS Equation of State

EPA Environmental Protection Agency

ESD Emergency Shutdown

FG Fracture Gradient

ft Foot (Feet)

GAPI Gamma Units of the American Petroleum Institute

GAU Groundwater Advisory Unit

GEM Computer Modelling Group's GEM 2023.2

GHG Greenhouse Gas

GHGRP Greenhouse Gas Reporting Program

GL Ground Level Elevation

H₂S Hydrogen Sulfide

JPHIE Effective Porosity (corrected for clay content)

mD Millidarcy

mi Mile(s)

MIT Mechanical Integrity Test

MM Million

MMA Maximum Monitoring Area

MCF Thousand Cubic Feet

MMcf Million Cubic Feet

MMscf Million Standard Cubic Feet

Mscf/D Thousand Standard Cubic Feet per Day

MMscf/D Million Standard Cubic Feet per Day

MRV Monitoring, Reporting, and Verification

v Poisson's Ratio

N North

NW Northwest

OBG Overburden Gradient

PG Pore Gradient

pH Scale of Acidity

ppm Parts per Million

psi Pounds per Square Inch

psig Pounds per Square Inch Gauge

S South

SE Southeast

SF Safety Factor

SWD Saltwater Disposal

TAC Texas Administrative Code

TAG Treated Acid Gas

TOC Total Organic Carbon

TRRC Texas Railroad Commission

UIC Underground Injection Control

USDW Underground Source of Drinking Water

W West

TABLE OF CONTENTS

INTRO	DUCTIO	N	2
ACRO	NYMS AN	ND ABBREVIATIONS	4
SECTIO	ON 1 – U	IC INFORMATION	10
1.1	Unde	rground Injection Control Permit Class: Class II	10
1.2	UIC W	/ell Identification Number	10
1.3	Facilit	y Address	10
SECTIO	ON 2 – PI	ROJECT DESCRIPTION	11
2.1	Regio	nal Geology	
	2.1.1	Geologic Setting and Depositional Environment	
	2.1.2	Regional Structure and Faulting	
2.2	Site C	haracterization	
	2.2.1	Stratigraphy and Lithologic Characteristics	
	2.2.2	Upper Confining Interval – Pearsall Formation	19
	2.2.3	Injection Interval – Upper Sligo Formation	
	2.2.4	Formation Fluid	
	2.2.5	Fracture Pressure Gradient	
	2.2.6	Lower Confining Interval – Lower Sligo and Hosston Formations	
2.3		Structure	
2.4	-	ion and Confinement Summary	
2.5		ndwater Hydrology	
2.6		ences	
2.7		iption of the Injection Process	
	2.7.1	Current Operations	
2.8		voir Characterization Modeling	
	2.8.1	Simulation Modeling	
		ELINEATION OF MONITORING AREA	
3.1		num Monitoring Area	
3.2		Monitoring Area	
		OTENTIAL PATHWAYS FOR LEAKAGE	
4.1		ge from Surface Equipment	
4.2		ge Through Existing Wells Within the MMA	
	4.2.1	Future Drilling	
4.0	4.2.2	Groundwater Wells	
4.3		ge Through Faults and Fractures	
4.4		ge Through the Upper Confining Zone	
4.5		ge from Natural or Induced Seismicity	
		IONITORING FOR LEAKAGE	
5.1		ge from Surface Equipment	
5.2		ge Through Existing and Future Wells Within the MMA	
F 2	5.2.1	Groundwater Quality Monitoring	
5.3	Leaka	ge Through Faults, Fractures, or Confining Seals	70

5.4	Leakage Through Natural or Induced Seismicity	0
SECTION	6 – BASELINE DETERMINATIONS	2
6.1	Visual Inspections	2
6.2	H ₂ S/ CO ₂ Monitoring	2
6.3	Operational Data	2
6.4	Continuous Monitoring	2
6.5	Groundwater Monitoring	3
SECTION	7 – SITE-SPECIFIC CONSIDERATIONS FOR MASS BALANCE EQUATION	4
7.1	Mass of CO ₂ Received	4
7.2	Mass of CO ₂ Injected	4
7.3	Mass of CO ₂ Produced	'5
7.4	Mass of CO ₂ Emitted by Surface Leakage	'5
7.5	Mass of CO ₂ Sequestered	6
SECTION	8 – IMPLEMENTATION SCHEDULE FOR MRV PLAN	7
SECTION	9 – QUALITY ASSURANCE	8'
9.1	Monitoring QA/QC	8'
9.2	Missing Data	8'
9.3	MRV Plan Revisions	9
SECTION	10 – RECORDS RETENTION	0
Figures		
Figure 1	 Location of StarTex's Pawnee Treating Facility and the O'Neal No. 4 	2
	- Structural Features of the Gulf of Mexico and Locator Map (modified from Robert	
_	al., 2012)	
•	 Stratigraphic column of the U.S. Gulf Coast signifying proposed injection and confinir 	
_	. Offset productive intervals are noted with a green star (modified from Roberts-Ashl	_
	12)	•
•	 Detailed stratigraphic column of Lower Cretaceous formations of south Texas. 	
•	d injection interval is shaded light blue and proposed confining intervals are shaded ligh	
	modified from Bebout et al., 1981) 1	
-	 Paleogeography of the Lower Cretaceous of south Texas. The red star represents the 	
_	nate location of the O'Neal No. 4 (modified from Bebout et al., 1981)	
	- Generalized northwest to southeast schematic cross section of the Trinity Group, sou	
_	ne line of section depicted in Figure 5). The red star and line represent the approximate	
	of the O'Neal No. 4 (modified from Kirkland et al., 1987)	
	- Depositional model for the Lower Cretaceous carbonate platform with estimate	
_	and permeability values of typical facies (modified from Talbert and Atchley, 2000) 1	
	 Structural features and fault zones near the proposed injection site. The red state 	
_	its the approximate location of the O'Neal No. 4 (modified from Swanson et al., 2016	
-		-
	– Northwest to southeast schematic interpretation of the Edwards shelf margin throug	
_	ld, northeast of the O'Neal No. 4 project area (modified from Swanson et al., 2016). 1	

Figure 10 – Type Log with Tops, Confining, and Injection Intervals Depicted	18
Figure 11 - Porosity-Permeability Crossplot of Pearsall Formation Crushed Rock (Core Data
(Swanson et al., 2016)	20
Figure 12 – Seismic line across the Stuart City (Edwards/Buda) shelf margin and locator	map. The
red star represents the approximate location of the O'Neal No. 4 (modified from Beb	out et al.,
1981)	20
Figure 13 – Environmental Setting of Lower Cretaceous Platform (Bebout et al., 1981).	21
Figure 14 - Openhole log from O'Neal No. 4 (API No. 42-025-32658), with porosity curv	es shaded
green >0%, permeability curve in blue >0 mD, and resistivity in red >5 ohms	22
Figure 15 – Offset Wells Used for Formation Fluid Characterization	24
Figure 16 – Environmental Setting of Lower Cretaceous Tidal Flat Deposits (Bebout et	al., 1981)
	25
Figure 17 – Subsea Structure Map: Top of Sligo (injection interval). The red star sig	nifies the
location of the O'Neal No. 4.	27
Figure 18 - Northwest to southeast structural cross section: A-A' Oriented along reg	gional dip.
The red star signifies the location of the O'Neal No. 4, with the section line depicted in	red on the
locator map	28
Figure 19 – Southwest to northeast structural cross section: B-B' oriented along regio	nal strike.
The red star signifies the location of the O'Neal No. 4, with the section line depicted i	i <mark>n blue on</mark>
the locator map	29
Figure 20 – Extent of the Gulf Coast Aquifer. The red star represents the approximate le	ocation of
the O'Neal No. 4 (modified from Bruun, B., et al., 2016)	31
Figure 21 – Stratigraphic Column of the Gulf Coast Aquifer (Chowdhury and Turco, 200	6) 32
Figure 22 - Cross Section S-S' Across the Gulf Coast Aquifer. The red star repre	sents the
approximate location of the O'Neal No. 4 (modified from Bruun et al., 2016)	32
Figure 23 – Total Dissolved Solids (TDS) in the Gulf Coast Aquifer. The red star repre	esents the
approximate location of the O'Neal No. 4 (modified from Bruun et al., 2016)	33
Figure 24 – Two-Phase Relative Permeability Curves Used in the GEM Model	37
Figure 25 – Areal View of Saturation Plume at Shut-in (End of Injection)	41
Figure 26 – Areal View of Gas Saturation Plume 10 Years After Shut-in (End of Simulation	on) 42
Figure 27 – East-West Cross-Sectional View of Gas Saturation Plume at Shut-in (End of	Injection)
	44
Figure 28 –East-West Cross-Sectional View of Gas Saturation Plume 10 Years After Sh	ut-in (End
of Simulation)	45
Figure 29 – Well Injection Rate and Bottomhole and Surface Pressures Over Time	46
Figure 30 - Plume Boundary at End of Injection, Stabilized Plume Boundary, and	Maximum
Monitoring Area	49
Figure 31 – Active Monitoring Area	
Figure 32 – O'Neal No. 4 Wellbore Schematic	
Figure 33 – All Oil and Gas Wells Within the MMA	
Figure 34 – Oil and Gas Wells Penetrating the Gross Injection Interval Within the MMA	
Figure 35 – Groundwater Wells Within the MMA	
Figure 36 – 25-km Seismicity Review	
Figure 37 – O'Neal No. 4 Process Flow Diagram	

Figure 38 – Groundwater Wells	
Tables	
Table 1 – Expected TAG Composition	
Table 2 – Analysis of Lower Cretaceous (Aptian) age formation fluids from the closest of	_
oil-field brine samples	
Table 3 – Gas Composition	35
Table 4 – Modeled Injectate Composition	36
Table 5 – GEM Model Layer Package Properties	38
Table 6 – Bottomhole and Wellhead Pressures from the Start of Injection	47
Table 7 – Potential Leakage Pathway Risk Assessment	
Table 8 – Summary of TAG Monitors and Equipment	
Table 9 – Summary of Leakage Monitoring Methods	
Table 10 – Baseline Sampling Schedule	

Appendices

Appendix A – TRRC O'Neal Gas Unit Well No. 4 Forms

Appendix A-1 – GAU Groundwater Protection Determination

Appendix A-2 – Drilling Permit

Appendix A-3 – Completion Report

Appendix A-4 – Plugging Records

Appendix B – Area of Review

Appendix B-1 – Oil and Gas Wells Within the MMA List

Appendix B-2 – Water Wells Within the MMA List

SECTION 1 – UIC INFORMATION

This section contains key information regarding the Underground Injection Control (UIC) Permit.

1.1 Underground Injection Control Permit Class: Class II

The TRRC regulates oil and gas activities in Texas and has primacy to implement the Underground Injection Control (UIC) Class II program. The TRRC classifies the O'Neal No. 4 as a UIC Class II well. Ozona has applied for a Class II permit for the O'Neal No. 4 under TRRC Rules 36 (Oil, Gas, or Geothermal Resource Operation in Hydrogen Sulfide Areas) and 46 (Fluid Injection into Productive Reservoirs).

1.2 <u>UIC Well Identification Number</u>

O'Neal No. 4, API No. 42-025-32658, UIC No. 56819

1.3 Facility Address

- Facility Name: StarTex Pawnee Treating Facility
- Operator: StarTex Field Services, LLC
- Facility ID No. 568661
- Coordinates in North American Datum for 1983 (NAD 83) for this facility:
 - Latitude: 28.622211Longitude: -97.992772
- Greenhouse Gas Reporting Program ID Information:
 - Ozona will report under GHGRP ID No. 587021 for this Monitoring, Reporting and Verification plan

SECTION 2 – PROJECT DESCRIPTION

This section discusses the geologic setting, planned injection process and volumes, and reservoir and plume modeling performed for the O'Neal No. 4 well.

The O'Neal No. 4 will inject the TAG stream into the Sligo Formation at a depth of 15,874 ft to 16,056 ft, and approximately 14,924 ft below the base of the Underground Source of Drinking Water (USDW). Therefore, the well and the facility are designed to protect against the leakage out of the injection interval, to protect against contaminating other subsurface formations, and—most critically—to prevent surface releases.

2.1 Regional Geology

The O'Neal No. 4 (API No. 42-025-32658) is located in south Texas within the Gulf of Mexico Basin. The onshore portion of the Gulf of Mexico basin spans approximately 148,049,000 acres and encompasses portions of Texas, Louisiana, Mississippi, Alabama, Arkansas, Missouri, Kentucky, Tennessee, Florida, and Georgia to the state-waters boundary of the United States (Roberts-Ashby et al., 2012). The location of the O'Neal No. 4 is designated by the red star in Figure 2, relative to the present coastal extent and major structural features of the basin.

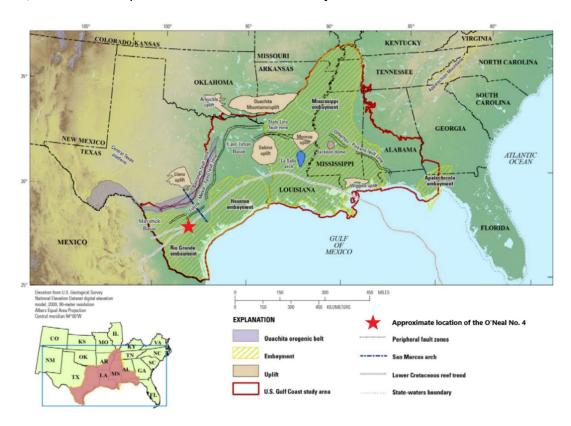


Figure 2 – Structural Features of the Gulf of Mexico and Locator Map (modified from Roberts-Ashby et al., 2012)

Figure 3 depicts a generalized stratigraphic column of the U.S. Gulf Coast, with light blue shading signifying the proposed injection interval and green stars indicating productive formations identified within 5 miles of the O'Neal No. 4. The injection interval is found within the Sligo Formation, with confinement provided by the overlying Pearsall Formation and tight underlying facies of the Lower Sligo and Hosston Formations.

Calabrian Undifferentiated	
Calabrian Undifferentiated	
Piacenzian Undifferentiated	
Serravallian Serravallian Langhian Burdigalian Aquitanian Aquitanian Aquitanian Anahu	
Chattian Chickasawhayan Catahoula Anahu Fm / Ss Frio Formation Rupelian Vicksburgian Vicksburg Formation	ec m
Rupelian Vicksburgian Vicksburg Formation	
Priabonian Jacksonian Jackson Group Bartonian Claibornian Claiborne Group Cane River	
Bartonian Claibornian Claiborne Group Sparta Sa Cane River Carrizo Sa Carrizo Sa	Fm
Ypresian Sabinian Wilcox Group	★
Thanetian Selandian Midwayan Midway Group	
Maastrichtian Navarroan Navarro Group	*
Campanian Tayloran Taylor Group	
Santonian Coniacian Santonian Austinian Austinian Austinian Eutaw Formation	
Turonian Eaglefordian Eagle Ford Shale	*
Cenomanian Woodbinian Woodbine / Tuscaloosa Fms	-
₩ashita Group (Buda Ls)	
Washita Group (Buda Ls) Washitan- Fredericksburgian Fredericksburg Group (Edwards Ls / Paluxy Fm.)	*
Glen Rose Ls (Rusk / Rodessa Fms)	
Trinitian Pearsall Formation Sligge	UPPER CONFINING INTERVAL
Aptian Sligo	INJECTION INTERVAL
Nuevoleonian Hosston	LOWER CONFINING
Barremian	INTERVAL
Hauterivian Valanginian Durangoan	>
Berriasian Burangoan	~

Figure 3 – Stratigraphic column of the U.S. Gulf Coast signifying proposed injection and confining intervals. Offset productive intervals are noted with a green star (modified from Roberts-Ashby et al., 2012).

The targeted formations of this study are located entirely within the Trinity Group, as clarified by the detailed stratigraphic column provided in Figure 4. During this time the area of interest was located along a broad, shallow marine carbonate platform that extended along the northern rim of the ancestral Gulf of Mexico. The Lower Cretaceous platform spanned approximately 870 mi from western Florida to northeastern Mexico, with a shoreline-to-basin margin that ranged between 45 to 125 mi wide (Yurewicz et al., 1993).

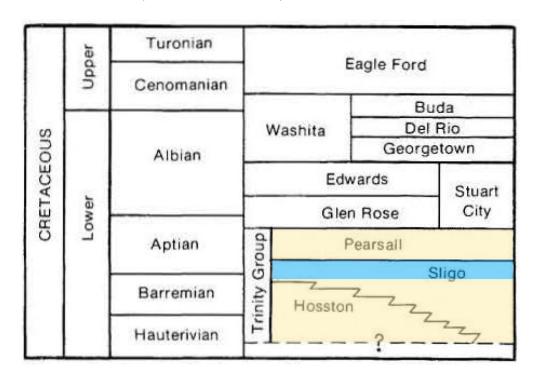


Figure 4 – Detailed stratigraphic column of Lower Cretaceous formations of south Texas. The proposed injection interval is shaded light blue and proposed confining intervals are shaded light yellow (modified from Bebout et al., 1981).

2.1.1 Geologic Setting and Depositional Environment

The depositional environment during the Lower Cretaceous generally consisted of a well-defined platform margin with a shallow marine platform interior or lagoon to the north, a shallow marine outer platform to the south, and a foreslope that gradually dipped southward towards the basin center. The platform margin remained stable for tens of millions of years during the Cretaceous but experienced episodic changes in sea level that resulted in cyclic deposition of several key facies that vary both spatially and within the geologic section. Facies distributions were heavily impacted by positioning relative to the margin, the height of the water column at any given time, and the degree of energy or wave action within the system (Galloway, 2008; Yurewicz et al., 1993).

In general, long stands of reef development and ooid shoaling developed primary porosity and permeability along the shallow, high-energy carbonate platform and represent reservoir quality

rock found within Cretaceous reef deposits. Deeper, basinward deposits tend to result in tighter petrophysical properties due to a relative increase in the amount of entrained clay associated with the heightening of the water column while moving downslope. Backreef deposits have the potential for porosity development but tend to have low permeability due to a general lack of wave action caused by restricted access to open water by the platform margin. Facies and petrophysical properties of the Lower Cretaceous section are anticipated to be relatively homogenous moving southwest-northwest along reef trend, with increased heterogeneity moving northwest-southeast due to the orientation of the carbonate rim and its effect on deposition and facies distributions (Yurewicz et al., 1993).

Figure 5 displays the paleogeography during deposition of the Lower Cretaceous section to visually demonstrate the position of the O'Neal No. 4 relative to the Sligo shelf margin and updip extents of Sligo deposition. A generalized schematic cross section of the Trinity Group is provided in Figure 6, which nearly intersects the project area from the northwest. The schematic illustrates the gross section thickening basinward, with primary reservoir development improving with proximity to the reef margin. Figure 7 displays a depositional model of the Lower Cretaceous carbonate platform to visually conceptualize depositional environments and anticipated petrophysical properties of facies introduced above.

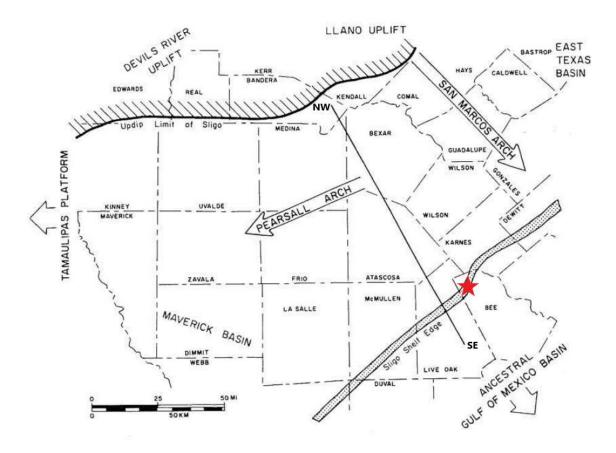


Figure 5 – Paleogeography of the Lower Cretaceous of south Texas. The red star represents the approximate location of the O'Neal No. 4 (modified from Bebout et al., 1981).

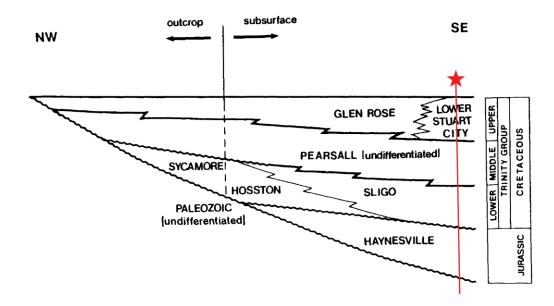


Figure 6 – Generalized northwest to southeast schematic cross section of the Trinity Group, south Texas (the line of section depicted in Figure 5). The red star and line represent the approximate location of the O'Neal No. 4 (modified from Kirkland et al., 1987)

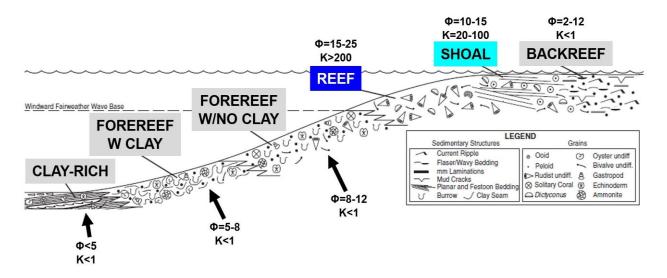


Figure 7 – Depositional model for the Lower Cretaceous carbonate platform with estimated porosity and permeability values of typical facies (modified from Talbert and Atchley, 2000).

2.1.2 Regional Structure and Faulting

The Gulf of Mexico basin was formed by crustal extension and sea-floor spreading associated with the Mesozoic breakup of Pangea. Rifting of northwest to southeast trending transfer faults during the Middle Jurassic lasted approximately 25 million years and resulted in variable thickness of the transcontinental crust underlying the region. By the Lower Cretaceous time, the general outline and morphology of the Gulf were similar to that of present-day (Galloway, 2008;

Yurewicz et al., 1993). Lower Cretaceous tectonic activity was limited to regional subsidence associated with areas of variable crustal thickness and local structuring caused by movement of Louann Salt (Yurewicz et al., 1993). The combination of these processes resulted in the structural development of regional arches, grabens, uplifts, embayments, salt domes, and salt basins around the northern edge of the basin (Dennen and Hackley, 2012; Galloway, 2008). The location of these structural features can be referenced in Figures 2 and 8 relative to the location of the O'Neal No. 4.

The schematic dip-oriented cross section displayed in Figure 9 presents a common interpretation of the current structural setting. Most of the published literature suggests that faulting near the project area is restricted to the shallower, overlying Cenozoic section, as displayed in Figure 9, with shallow faulting dying out before reaching the Pearsall Formation. However, one source did interpret the potential for faulting to the south (Swanson et al., 2016). The closest potential fault is depicted in Figure 8 relative to the location of the O'Neal No. 4. According to the map, the interpreted fault lies approximately 4.25 miles south-southeast of the well and approximately 3.9 miles south-southeast of the stabilized plume extent in the year 2047.

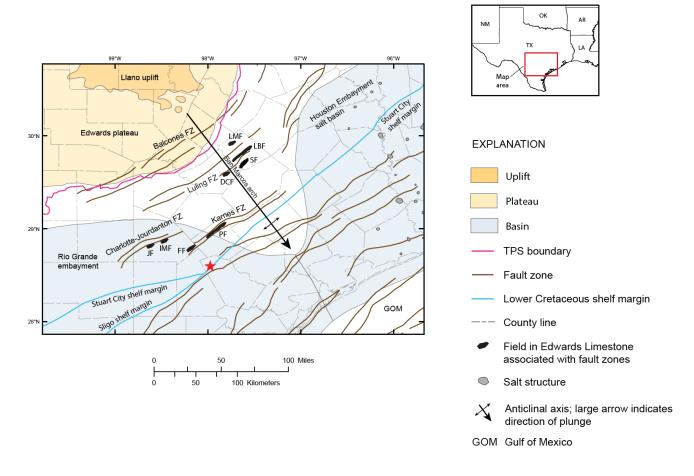


Figure 8 – Structural features and fault zones near the proposed injection site. The red star represents the approximate location of the O'Neal No. 4 (modified from Swanson et al., 2016).

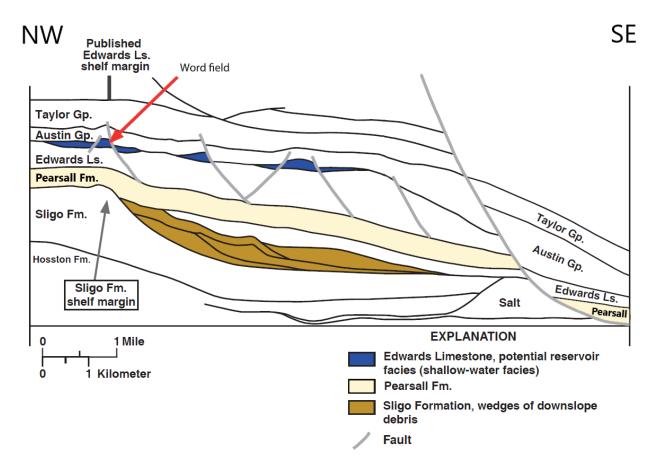


Figure 9 – Northwest to southeast schematic interpretation of the Edwards shelf margin through Word field, northeast of the O'Neal No. 4 project area (modified from Swanson et al., 2016).

2.2 <u>Site Characterization</u>

The following section discusses site-specific geological characteristics of the O'Neal No. 4 well.

2.2.1 Stratigraphy and Lithologic Characteristics

Figure 10 depicts openhole logs from two offset wells (API No. 42-025-00473 and API No. 42-025-31892) to the O'Neal No. 4, indicating the injection and primary upper confining zones. The Tomasek No. 1 (API No. 42-025-00473) is located approximately 1 mi northeast of the O'Neal No. 4 and displays the shallow section from 0–8,200 ft. The Gordon No. 3 (API No. 42-025-31892) is located approximately 1.6 mi northeast of the O'Neal No. 4 and displays a shallow section from 8,200–16,400 ft.

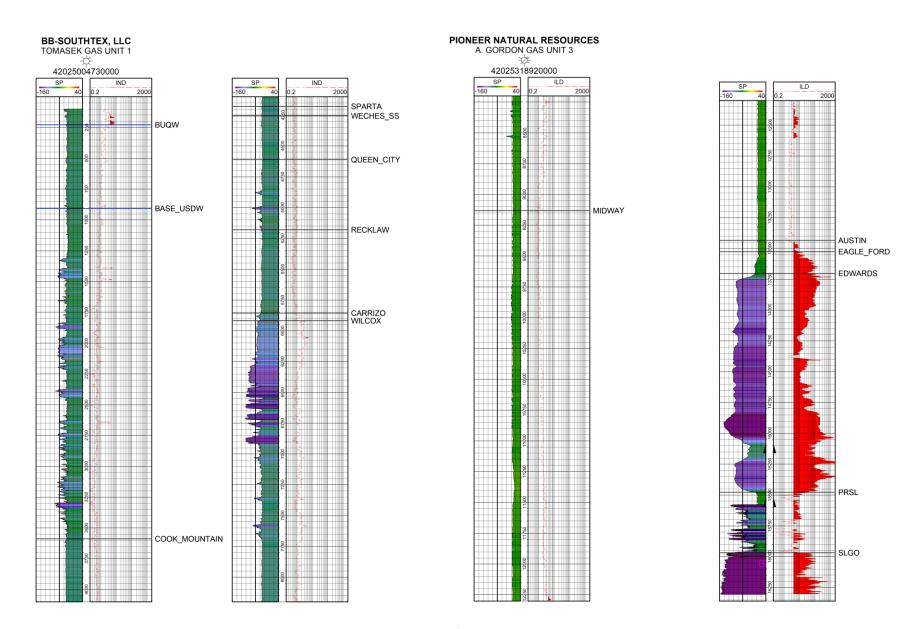


Figure 10 – Type Log with Tops, Confining, and Injection Intervals Depicted

2.2.2 Upper Confining Interval – Pearsall Formation

Following the deposition of the Sligo Formation, the Lower Cretaceous shelf was drowned by eustatic sea-level rise and deposition of the deep-water Pine Island Shale Member of the Pearsall Formation throughout the region (Roberts-Ashby et al., 2012). The Pine Island Shale consists of alternating beds of pelagic mudstone, hemipelagic mudstone, and Fe-rich dolomitic mudstone interpreted to have been deposited along the outer ramp. This is in agreement with core data published by Bebout and others (1981), and later by Swanson and others (2016), who identified the presence of C. Margerelli, a nannofossil indicative of anoxic conditions. The core-derived porosity-permeability relationship displayed in Figure 11 suggests that the permeability of the Pine Island Shale is incredibly low and stays below 0.0001 mD, regardless of porosity (Figure 11; Hull, 2011). This is further supported by the 2012 U.S. Geological Survey (USGS) CO2 Storage Resource Assessment, which suggests that the Pine Island Shale contains the physical properties required to act as a regional seal and was chosen as the upward confining interval for their C50490108 Storage Assessment Unit (SAU) assessment of the Gulf Coast. The 2012 USGS report also noted that the Pine Island Shale is a sufficient regional seal with as little as 50 ft of contiguous shale development. The top of the Pearsall is encountered at a depth of 15,339 ft in the O'Neal No. 4, with a gross thickness of 535 ft (Figure 14). The Pine Island Shale member is approximately 130 ft thick at the O'Neal No. 4 location, with deposition of additional members of the overlying Pearsall Formation, which include the Cow Creek Limestone, Cow Creek shale, and Bexar Shale Members (Roberts-Ashby et al., 2012; Swanson et al., 2016).

The seismic line displayed in Figure 12 runs northwest to southeast across the Stuart City reef trend southwest of the project area. The top of the Buda, Pearsall, and Sligo Formation markers are depicted in color to demonstrate the lateral continuity of the section near the O'Neal No. 4. Seismic reflectors within the Pearsall Formation appear to lack deformation, suggesting consistent deposition over the reef margin. This is in agreement with reviewed published literature, which suggests deposition of the Pine Island Shale occurred during widespread marine transgression (Bebout et al., 1981; Hull, 2011.; Roberts-Ashby et al., 2012, Swanson et al., 2016).

Permeability and Porosity-Crushed Rock Data

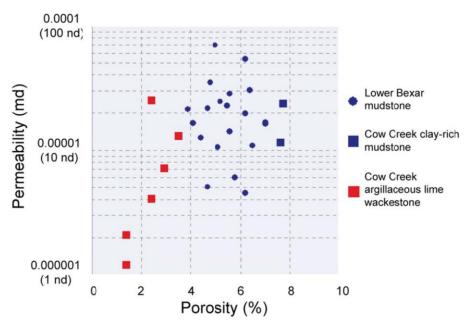


Figure 11 – Porosity-Permeability Crossplot of Pearsall Formation Crushed Rock Core Data (Swanson et al., 2016)

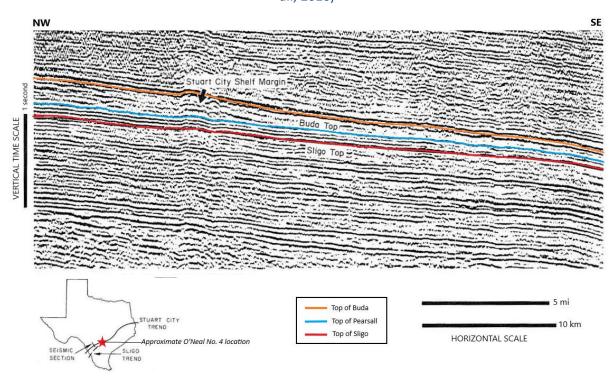


Figure 12 – Seismic line across the Stuart City (Edwards/Buda) shelf margin and locator map. The red star represents the approximate location of the O'Neal No. 4 (modified from Bebout et al., 1981).

2.2.3 <u>Injection Interval – Upper Sligo Formation</u>

The Sligo Formation underlies the Pearsall Formation and is predominately composed of shelf-edge limestones that were deposited along the Lower Cretaceous platform (Roberts-Ashby et al., 2012). However, the Cretaceous also experienced episodic changes in sea level that resulted in the deposition of cyclic Sligo facies that vary both spatially and within the geologic section. The overall Sligo interval is interpreted to be a transgressive sequence occasionally interrupted by progradational cycles that consists of porous shoaling-upward sequences that represent primary reservoir potential within the system (Bebout et al., 1981). Facies distributions of these reef complexes are heavily impacted by positioning relative to the margin, the height of the water column at any given time, and the degree of energy or wave action within the system (Galloway, 2008). Figure 13 depicts an idealized environmental setting of the Lower Cretaceous platform during deposition. Primary porosity and permeability of the upper Sligo Formation tends to develop in high-energy sequences with normal marine conditions that are dominated by the deposition of oolitic and skeletal grainstones.

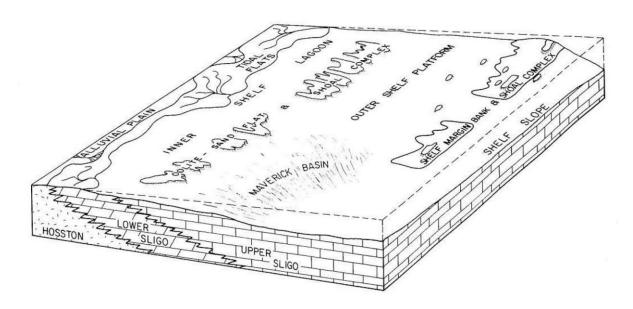


Figure 13 – Environmental Setting of Lower Cretaceous Platform (Bebout et al., 1981)

According to the 2012 USGS CO_2 Storage Resource Assessment, "the average porosity in the porous intervals of the storage reservoir decreases with depth from 9 to 16 percent" for their C50490108 DEEP SAU assessment of the Gulf Coast (>13,000 ft). The study also reported that "the average permeability in the storage reservoirs decreases with depth from 0.05 to 200 mD, with a most-likely value of 8 mD" for their C50490108 DEEP SAU assessment of the Gulf Coast (Roberts-Ashby et al., 2012).

The top of the upper Sligo is encountered at a depth of 15,874 ft in the O'Neal No. 4 with a gross thickness of 183 ft (Figure 14). The type log displayed in Figure 14 plots effective porosity for the confining interval and the total porosity of the injection interval, to account for the increased

volume of shale (Vshale) seen in the Pearsall Formation. The porosity data was compared to the analysis performed by Nutech to generate a permeability curve with a reasonable porosity-permeability relationship. The permeability curve was generated utilizing the Coates permeability equation, incorporated with a 20% irreducible brine saturation to match analysis provided by Nutech. Petrophysical analysis of the O'Neal No. 4 indicates an average porosity of 4.6%, a maximum porosity of 15%, an average permeability of 0.16 mD, and a maximum permeability of 3.3 mD. These curves have been extrapolated to the injection site and used to establish reservoir characteristics in the plume model.

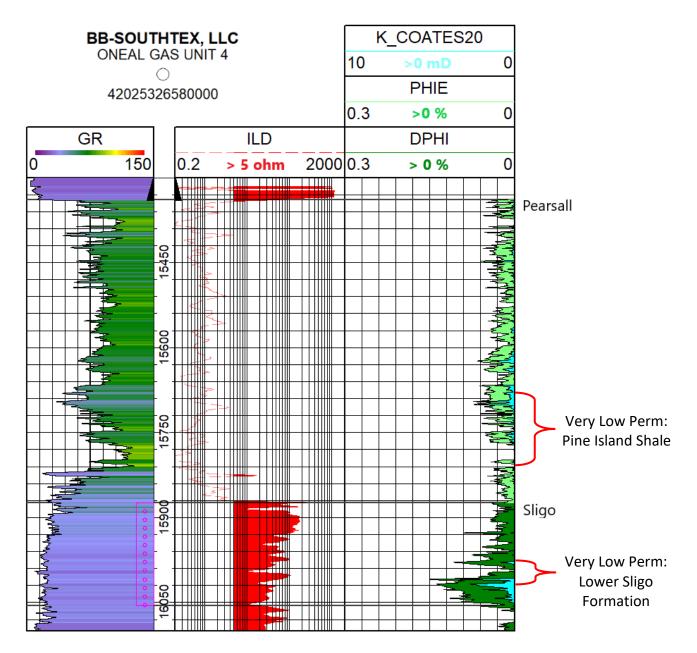


Figure 14 – Openhole log from O'Neal No. 4 (API No. 42-025-32658), with porosity curves shaded green >0%, permeability curve in blue >0 mD, and resistivity in red >5 ohms.

2.2.4 Formation Fluid

The USGS National Produced Waters Geochemical Database version 3.0 was reviewed for chemical analyses of Sligo oil-field brines within the state of Texas (Blondes et al., 2023). Only two samples were identified from the Sligo Formation: one located approximately 29 mi north-northeast in Karnes County and one located approximately 72 mi northeast in Gonzales County. The locations of these wells are shown in Figure 15 relative to the O'Neal No. 4. A summary of water chemistry analyses conducted on the two Texas Sligo oil-field brine samples is provided in Table 2 (page 25).

Averages from the samples were utilized for model assumptions due to the minimal Sligo sample availability and wide geographic spread of Sligo analysis. Total Dissolved Solids (TDS) of the samples contain a wide range of reported values but averaged 176,470 parts per million (ppm). Model sensitivities were established by running iterations with varying TDS values to understand the effect of brine concentrations on plume extents. The results suggested higher density brine values lead to smaller plumes; therefore, a value of 150,000 ppm was established in the model for a conservative approach. If the actual formation fluid sample that will be tested during the recompletion work produces a material difference in the plume, Ozona will submit an updated MRV plan.

Based on the results of the investigation, *in situ* Sligo reservoir fluid is anticipated to contain greater than 20,000 ppm TDS near the O'Neal No. 4, qualifying the aquifer as saline. These analyses indicate the *in situ* reservoir fluid of the Sligo Formation is compatible with the proposed injection fluids.

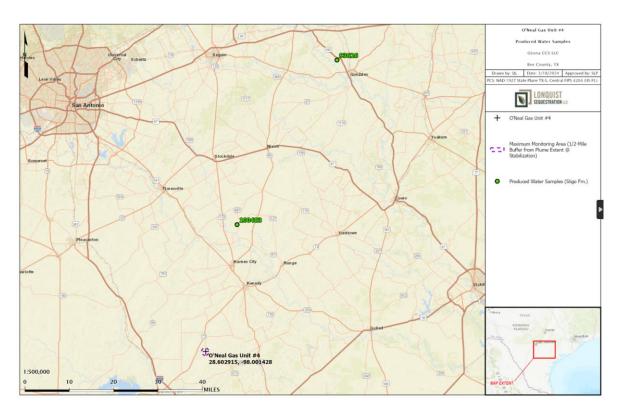


Figure 15 – Offset Wells Used for Formation Fluid Characterization

Table 2 – Analysis of Lower Cretaceous (Aptian) age formation fluids from the closest offset Sligo oil-field brine samples.

Measurement	Karnes County Sample	Gonzales County Sample	Average
Total Dissolved Solids (mg/L)	234,646	117,470	176,058
Sodium (mg/L)	51,168	27,909	39,539
Calcium (mg/L)	34,335	8,684	21,510
Chloride (mg/L)	146,500	57,811	102,156
Sample Depth (ft)	13,580 to 13,660	8,290-8,305	-
рН	5.9	8.2	7.05

2.2.5 Fracture Pressure Gradient

The fracture pressure gradient was obtained from a fracture report taken during the April 1993 completion of the Sligo interval in the O'Neal No. 4. The Sligo was perforated between the depths of 15,874 ft and 16,056 ft, with continuous monitoring during the minifrac job. The report noted a calculated fracture gradient of 0.954 psi/ft based on an initial shut-in pressure (ISIP) of 8,312

psi. A 10% safety factor was then applied to the calculated gradient, resulting in a maximum allowed bottomhole pressure of 0.86 psi/ft. This was done to ensure that the injection pressure would never exceed the fracture pressure of the injection zone.

2.2.6 <u>Lower Confining Interval – Lower Sligo and Hosston Formations</u>

The O'Neal No. 4 reaches its total depth in the lower Sligo Formation, directly below the upper Sligo proposed injection interval. The lower Sligo is interpreted by Bebout and others (1981) to represent the seaward extension of the low-energy lagoon and tidal-flat system of the underlying Hosston Formation, a sequence of siliciclastics, evaporites, and dolomitic mudstone (Figure 16). The Hosston to lower Sligo "contact" represents a gradational package with a decrease in terrigenous sediments, an increase in carbonate sediments, and an increase in burrows of marine organisms working up-section into the lower Sligo. The lower Sligo consists of numerous cycles of subtidal to supratidal carbonates deposited in a low-energy lagoon and tidal-flat system (Bebout et al., 1981). These low permeability facies of the lower Sligo and underlying Hosston Formation will provide lower confinement to the upper Sligo injection interval. Figure 16 illustrates the typical environmental setting for the deposition of tidal flat facies along the Lower Cretaceous margin. The type log displayed in Figure 14 (Section 2.2.3) illustrates that the porosity of the lower Sligo ranges between 0-2% with permeability staying close to 0 mD. Therefore, the petrophysical characteristics of the lower Sligo and Hosston are ideal for prohibiting the migration of the injection stream outside of the injection interval.

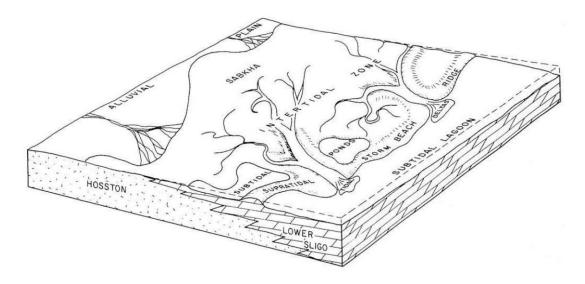


Figure 16 – Environmental Setting of Lower Cretaceous Tidal Flat Deposits (Bebout et al., 1981)

2.3 Local Structure

Structures surrounding the proposed sequestration site were influenced by regional arches, grabens, uplifts, embayments, movement of Louann Salt, and the development of carbonate reef complexes around the northern edge of the basin. However, one potential fault was identified in the literature within proximity and lies approximately 4.25 mi south-southeast of the well and

approximately 3.9 mi south-southeast of the stabilized plume extent in the year 2062 (Swanson et al., 2016). The location of these structural features can be referenced in Figures 2 and 8 relative to the location of the O'Neal No. 4.

A subsea true vertical depth (SSTVD) structure map on the top of the Sligo Formation is provided in Figure 17. The map illustrates the gentle basinward dip of the Sligo from the northwest to the southeast. The structural cross sections provided in Figures 18 and 19 (pages 28 and 29, respectively) illustrate the structural changes encountered in moving away from the O'Neal No. 4 site. The figures also demonstrate the laterally continuous nature of the Pearsall Formation that overlies the injection interval, with sufficient thickness and modeled petrophysical properties to alleviate the risk of upward migration of injected fluids. *Section 2.1.2*, discussing regional structure and faulting, presents a regional discussion pertinent to this topic.

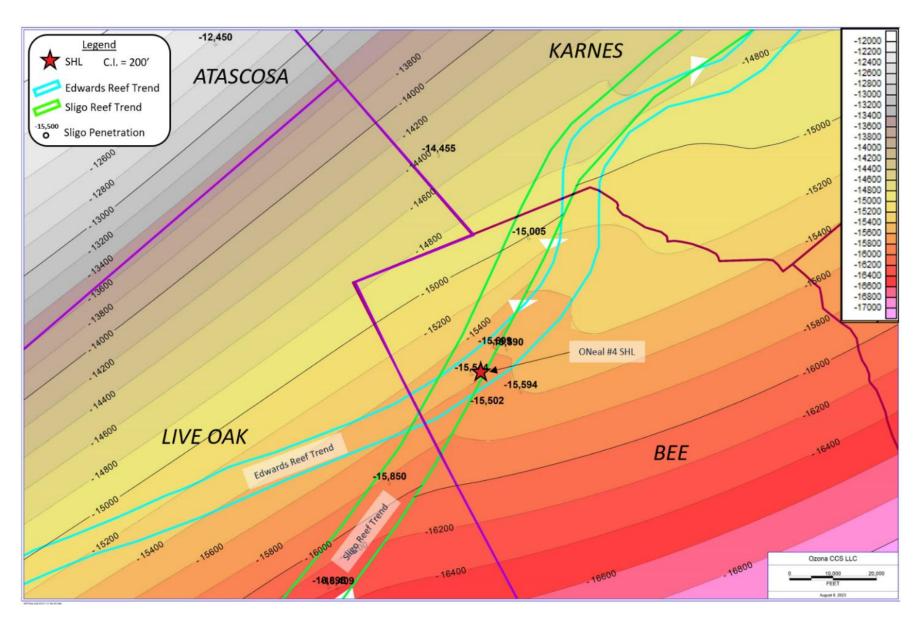


Figure 17 – Subsea Structure Map: Top of Sligo (injection interval). The red star signifies the location of the O'Neal No. 4.

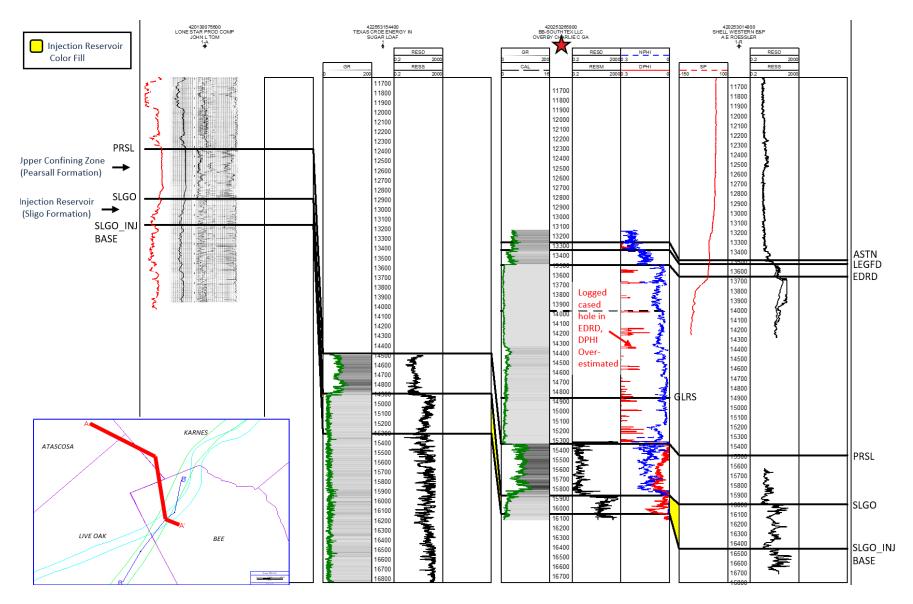


Figure 18 – Northwest to southeast structural cross section: A-A' Oriented along regional dip.

The red star signifies the location of the O'Neal No. 4, with the section line depicted in red on the locator map.

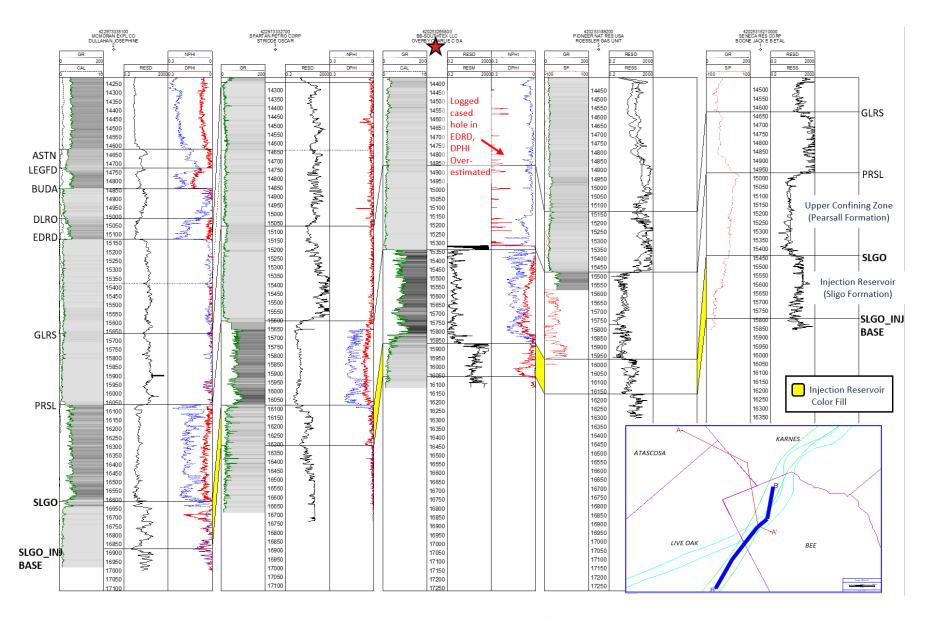


Figure 19 – Southwest to northeast structural cross section: B-B' oriented along regional strike. The red star signifies the location of the O'Neal No. 4, with the section line depicted in blue on the locator map.

2.4 Injection and Confinement Summary

The lithologic and petrophysical characteristics of the Sligo Formation at the O'Neal No. 4 well location indicate that the reservoir contains the necessary thickness, porosity, and permeability to receive the proposed injection stream. The overlying Pearsall Formation is regionally extensive at the O'Neal No. 4 with low permeability and sufficient thickness to serve as the upper confining interval. Beneath the injection interval, the low permeability, low porosity facies tidal flat, and lagoonal facies of the lower Sligo and underlying Hosston Formation are unsuitable for fluid migration and serve as the lower confining interval.

2.5 **Groundwater Hydrology**

Bee County falls within the boundary of the Bee Groundwater Conservation District. Only one aquifer is identified by the Texas Water Development Board's Texas Aquifers Study near the O'Neal No. 4 well location, the unconfined to semi-confined Gulf Coast aquifer. The Gulf Coast aquifer parallels the Gulf of Mexico and extends across the state of Texas from the Mexican border to the border of Louisiana (Bruun et al., 2016). The extents of the Gulf Coast aquifer are provided in Figure 20 for reference.

The Gulf Coast aquifer is a major aquifer system comprised of several individual aquifers: the Jasper, Evangeline, and Chicot. These aquifers are composed of discontinuous clay, silt, sand, and gravel beds that range from Miocene to Holocene in age (Figure 21, page 32). Numerous interbedded lenses and layers of silt and clay are present within the aquifers, which can confine individual aquifers locally. The underlying Oligocene Catahoula tuff represents the lower confining interval, but it should be noted that the formation is prone to leaking along the base of the aquifer. However, the Burkeville confining interval provides isolation between Jasper and Evangeline aquifers which helps protect the shallower Evangeline and Chicot Aquifers (Bruun et al., 2016).

The schematic cross section provided in Figure 22 (page 32) runs south of the O'Neal No. 4, illustrating the structure and stratigraphy of the aquifer system. The thickness of individual sedimentary units within the Cenozoic section tends to thicken towards the Gulf of Mexico due to the presence of growth faults that allow additional loading of unconsolidated sediment. The total net sand thickness of the aquifer system ranges between 700 ft of sand in the south, to over 1,300 ft in the north, with the saturated freshwater thickness averaging 1,000 ft.

The water quality of the aquifer system varies with depth and locality but water quality generally improves towards the central to northeastern portions of the aquifer where TDS values are less than 500 milligrams per liter (mg/L). The salinity of the Gulf Coast aquifer increases to the south, where TDS ranges between 1,000 mg/L to more than 10,000 mg/L. The Texas Water Development Board's Texas Aquifers Study (2016) suggests that areas associated with higher salinities are possibly associated with saltwater intrusion likely "resulting from groundwater pumping or to brine migration in response to oil field operations and natural flows from salt domes intruding into the aquifer" (Bruun et al., 2016).

According to the TDS map of the Gulf Coast aquifer (Figure 23), the TDS in northern Bee County range between 500–3,000 mg/L near the O'Neal No. 4, categorizing the aquifer as fresh to slightly saline.

The TRRC's Groundwater Advisory Unit (GAU) identified the Base of Useable Quality water (BUQW) at a depth of 250 ft and the base of the USDW at a depth of 950 ft at the location of the O'Neal No. 4. Approximately 14,924 ft is therefore separating the base of the USDW and the injection interval. (A copy of the GAU's Groundwater Protection Determination letter issued by the TRRC as part of the Class II permitting process for the O'Neal No. 4 is provided in Exhibit A-1.) The base of the deepest aquifer is separated from the injection interval by more than 14,924 ft of rock, including 4,200 feet of Midway shale. Though unlikely for reasons outlined in the sections here on confinement and potential leaks, if the migration of injected fluid did occur above the Pearsall Formation, thousands of feet of tight sandstone, limestone, shale, and anhydrite beds occur between the injection interval and the lowest water-bearing aquifer.

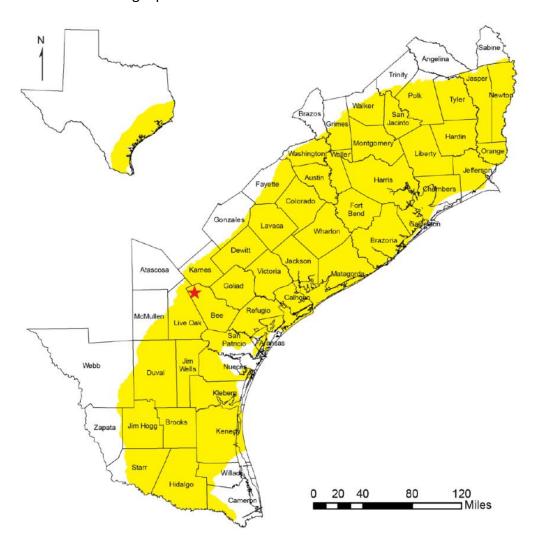


Figure 20 – Extent of the Gulf Coast Aquifer. The red star represents the approximate location of the O'Neal No. 4 (modified from Bruun, B., et al., 2016)

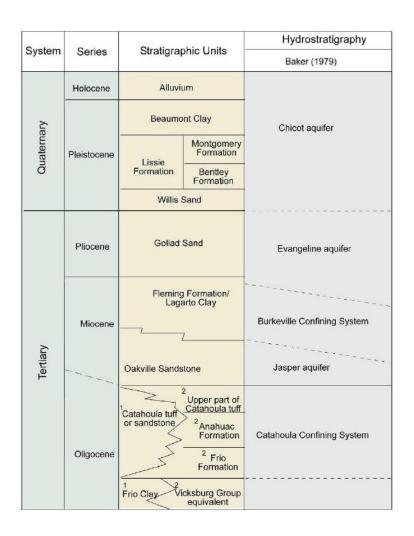


Figure 21 – Stratigraphic Column of the Gulf Coast Aquifer (Chowdhury and Turco, 2006)

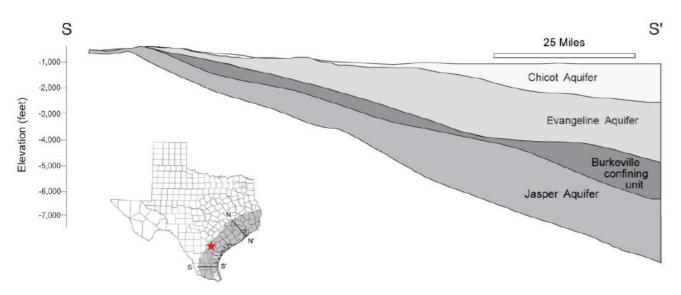


Figure 22 – Cross Section S-S' Across the Gulf Coast Aquifer. The red star represents the approximate location of the O'Neal No. 4 (modified from Bruun et al., 2016)

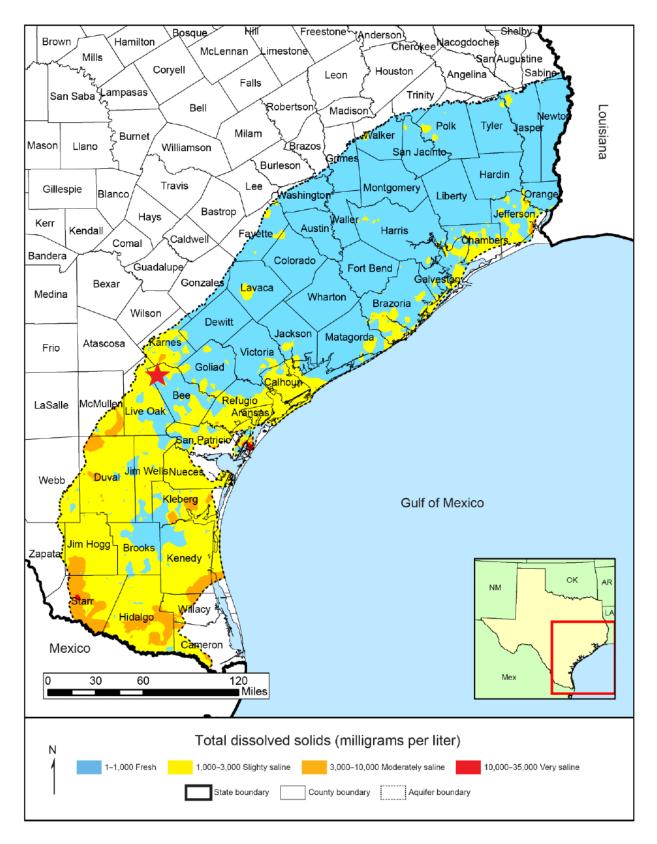


Figure 23 – Total Dissolved Solids (TDS) in the Gulf Coast Aquifer. The red star represents the approximate location of the O'Neal No. 4 (modified from Bruun et al., 2016).

2.6 References

- Bebout, D.G., Budd, D.A., and Schatzinger, R.A. (1981). Depositional and Diagenetic History of the Sligo and Hosston Formations (Lower Cretaceous) in South Texas: The University of Texas at Austin, Bureau of Economic Geology, Report of Investigations No. 109.
- Blondes, M.S., Gans, K.D., Engle, M.A. et al. (2018). U.S. Geological Survey National Produced Waters Geochemical Database (Ver. 2.3, January 2018): U.S. Geological Survey data release, https://doi.org/10.5066/F7J964W8.
- Bruun, B., Anaya, R., Boghici, R. et al. (2016). Texas Aquifers Study: Chapter 6, Gulf Coast Aquifers.
- Chowdhury, A.H. and Turco, M.J. (2006). Geology of the Gulf Coast Aquifer, Texas. In: Mace, R.E., et al., Eds., Aquifers of the Gulf Coast of Texas: Texas Water Development Board Report.
- Dennen, K.O. and Hackley, P.C. (2012). Definition of Greater Gulf Basin Lower Cretaceous and Upper Cretaceous lower Cenomanian Shale Gas Assessment Unit, United States Gulf of Mexico basin onshore and state waters: https://pubs.usgs.gov/publication/70176229.
- Galloway, W.E. (2008). Sedimentary Basins of the World, Chapter 15: Depositional Evolution of the Gulf of Mexico Sedimentary Basin, 505-549.
- Hull, D.C. (2011). Stratigraphic Architecture, Depositional Systems, and Reservoir Characteristics of the Pearsall Shale-Gas System, Lower Cretaceous, South Texas: Thesis for M.S. of Science in Geology, University of Texas, Austin.
- Kirkland, B.L., Lighty, R.G., Rezak, R., and Tieh, T.T. (1987). Lower Cretaceous barrier reef and outer shelf facies, Sligo Formation, south Texas, United States.
- Roberts-Ashby, T.L., Brennan, S.T., Buursink, M.L. et al. (2012). Geologic framework for the national assessment of carbon dioxide storage resources: U.S. Gulf Coast. *USGS*.
- Swanson, S.M., Enomoto, C.B., Dennen, K.O. et al. (2017). Geologic assessment of undiscovered oil and gas resources—Lower Cretaceous Albian to Upper Cretaceous Cenomanian carbonate rocks of the Fredericksburg and Washita Groups, United States Gulf of Mexico Coastal Plain and State Waters: U.S. Geological Survey Open-File Report 2016–1199, 69 p., https://doi.org/10.3133/ofr20161199.
- Talbert, S.J. and Atchley, S.J. (2000). Sequence Stratigraphy of the Lower Cretaceous (Albian) Fredericksburg Group, Central and North Texas: Department of Geology, Baylor University, Waco, Texas 76798.
- Yurewicz, D.A., Marler, T.B., Meyerholtz, K.A., and Siroky, F.X. (1993). Early Cretaceous Carbonate Platform, North Rim of the Gulf of Mexico, Mississippi, and Louisiana.

2.7 <u>Description of the Injection Process</u>

2.7.1 Current Operations

The Pawnee Treating Facility and the O'Neal No. 4 are existing operating assets. The O'Neal No. 4 will be recompleted for acid gas injection service under the Class II permit process. Under the Class II application, the maximum injection rate is $28 \, \text{MT/yr}$ (1.5 MMscf/d). The TAG is $98.2\% \, \text{CO}_2$, which equates to $27.5 \, \text{MT/yr}$ of CO_2 each year. The current composition of the TAG stream is displayed in Table 3.

Component	Mol Percent
Carbon Dioxide	98.2%
Hydrocarbons	1.03%
Hydrogen Sulfide	0.4%
Nitrogen	0.37%

Table 3 – Gas Composition

The facility is designed to treat, dehydrate, and compress the natural gas produced from the surrounding acreage in Bee County. The facility uses an amine unit to remove the CO₂ and other constituents from the gas stream. The TAG stream is then dehydrated, compressed, and routed directly to the O'Neal No. 4 for injection. The remaining gas stream is processed to separate the natural gas liquids from the natural gas. The facility is monitored 24 hours per day, 7 days per week.

2.8 Reservoir Characterization Modeling

The modeling software used to evaluate this project was Computer Modelling Group, Ltd.'s GEM 2023.2 (GEM) simulator, one of the most comprehensive reservoir simulation software packages for conventional, unconventional, and secondary recovery. The GEM utilizes equation-of-state (EOS) algorithms in conjunction with some of the most advanced computational methods to evaluate compositional, chemical, and geochemical processes and characteristics. This results in the creation of exceedingly precise and dependable simulation models for carbon injection and storage. The GEM model holds recognition from the EPA for its application in the delineation modeling aspect of the area of review, as outlined in the Class VI Well Area of Review Evaluation and Corrective Action Guidance document.

The Sligo Formation serves as the target formation for the O'Neal No. 4 (API No. 42-025-32658). The Petra software package was utilized to construct the geological model for this target formation. Within Petra, formation top contours were generated and subsequently brought into GEM to outline the geological structure.

Porosity and permeability estimates were determined using the porosity log from the O'Neal No. 4. A petrophysical analysis was then conducted to establish a correlation between porosity values and permeability, employing the Coates equation. Both the porosity and permeability estimates from

the O'Neal No. 4 were incorporated into the model, with the assumption that they exhibit lateral homogeneity throughout the reservoir.

The reservoir is assumed to be at hydrostatic equilibrium. Given the geological formation in which this well is located and its previous history as a gas producer, the model is assumed to be primarily saturated with gas. More precisely, the reservoir is assumed to be 80% gas saturated and 20% brine saturated, as deduced from the well log data. The modeled injection interval exhibits an average permeability of 0.23 mD and an average porosity of 5%. All layers within the model have been perforated. An infinite-acting reservoir has been created to simulate the boundary conditions.

The gas injectate is composed predominantly of CO_2 as shown in Table 4. The modeled composition takes into consideration the carbon dioxide and other constituents of the total stream. As the facility has been in operation for many years, the gas composition for the proposed injection period is expected to remain constant.

Table	4 – Modeled Injecta	ate Compo	sition

Component	Expected Composition (mol %)	Modeled Composition (mol %)	
Carbon Dioxide (CO ₂)	98.2	98.2	
Hydrocarbons	1.03	Hydrocarbons	
Hydrogen Sulfide	0.4	Hydrogen Sulfide	
Nitrogen	0.37	Nitrogen	

Core data from the literature review was used to determine residual gas saturation (Keelan and Pugh, 1975) and relative permeability curves between carbon dioxide and the connate brine within the Sligo carbonates (Bennion and Bachu, 2010). A maximum residual gas saturation of 35% was assigned to the model based on core from the literature review. The Corey-Brooks method was used to create relative permeability curves. The key inputs used to create the relative permeability curves in the model include a Corey exponent for brine of 1.8, a Corey exponent for gas of 2.5, brine and gas relative permeability endpoints of 0.8 and 0.5, respectively, and an irreducible brine saturation of 20%. The relative permeability curves used for the GEM model are shown in Figure 24.

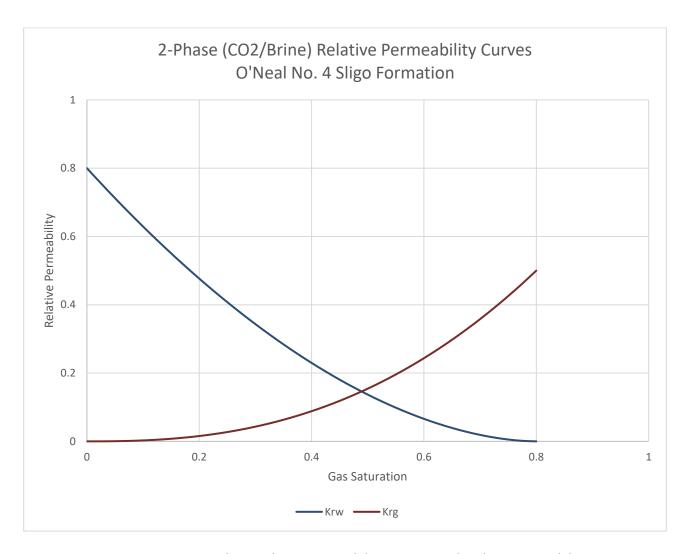


Figure 24 – Two-Phase Relative Permeability Curves Used in the GEM Model

The grid contains 81 blocks in the x-direction (east-west) and 81 blocks in the y-direction (north-south), resulting in a total of 6,561 grid blocks per layer. Each grid block spans dimensions of 250 ft x 250 ft. This configuration yields a grid size measuring 20,250 ft x 20,250 ft, equating to just under 15 square miles in area. The grid cells in the vicinity of the O'Neal No. 4, within a radius of 0.5 mi, have been refined to dimensions of 83.333 ft x 83.333 ft in all layers. This refinement is employed to ensure a more accurate representation of the plume and pressure effects near the wellbore.

In the model, each layer is characterized by homogeneous permeability and porosity values. These values are derived from the porosity log of the O'Neal No. 4. The model encompasses a total of 61 layers, each featuring a thickness of approximately 3 ft per layer. As previously mentioned, the model is perforated in each layer, with the top layer being the top of the injection interval and the bottom layer being the lowest portion of the injection interval. The summarized property values for each of these packages are displayed in Table 5.

Table 5 – GEM Model Layer Package Properties

Layer	Тор	Thickness	Perm.	Porosity
No.	(TVD ft)	THICKIESS	(mD)	(%)
1	15,874	3	0.004	3.75%
2	15,877	3	0.002	2.98%
3	15,880	3	0.001	1.62%
4	15,883	3	0.001	1.78%
5	15,886	3	0.002	2.32%
6	15,889	3	0.001	1.96%
7	15,892	3	0.002	3.10%
8	15,895	3	0.002	2.99%
9	15,898	3	0.003	3.52%
10	15,901	3	0.006	4.00%
11	15,904	3	0.005	3.93%
12	15,907	3	0.001	2.15%
13	15,910	3	0.001	1.99%
14	15,913	3	0.002	2.97%
15	15,916	3	0.001	2.22%
16	15,919	3	0.002	2.88%
17	15,922	3	0.001	2.38%
18	15,925	3	0.093	6.68%
19	15,928	3	0.005	2.62%
20	15,931	3	0.002	2.58%
21	15,934	3	0.003	3.07%
22	15,937	3	0.006	3.62%
23	15,940	3	0.002	2.68%
24	15,943	3	0.001	1.08%
25	15,946	3	0.002	1.87%
26	15,949	3	0.025	4.70%
27	15,952	3	0.024	4.37%
28	15,955	3	0.001	1.97%
29	15,958	3	0.003	2.27%
30	15,961	3	0.007	3.09%
31	15,964	3	0.110	6.75%
32	15,967	3	0.037	5.62%
33	15,970	3	0.011	4.41%
34	15,973	3	0.022	4.59%
35	15,976	3	0.297	7.88%
36	15,979	3	0.440	9.21%
37	15,982	3	0.060	5.90%
38	15,985	3	0.001	2.22%
39	15,988	3	0.001	2.21%

Layer No.	Top (TVD ft)	Thickness	Perm. (mD)	Porosity (%)
40	15,991	3	0.001	1.12%
41	15,994	3	0.003	2.05%
42	15,997	3	0.014	4.56%
43	16,000	3	0.007	4.15%
44	16,003	3	0.033	5.95%
45	16,006	3	1.233	10.25%
46	16,009	3	1.476	12.04%
47	16,012	3	0.566	10.08%
48	16,015	3	1.679	12.18%
49	16,018	3	2.194	13.08%
50	16,021	3	1.235	12.02%
51	16,024	3	0.788	11.22%
52	16,027	3	0.944	10.48%
53	16,030	3	0.424	9.05%
54	16,033	3	0.378	8.85%
55	16,036	3	0.378	8.81%
56	16,039	3	0.378	8.84%
57	16,042	3	0.736	9.91%
58	16,045	3	0.232	7.94%
59	16,048	3	0.238	7.97%
60	16,051	3	0.012	3.01%
61	16,054	3	0.038	4.30%

2.8.1 <u>Simulation Modeling</u>

The primary objectives of the model simulation were as follows:

- 1. Estimate the maximum areal extent and density drift of the injectate plume after injection.
- 2. Determine the ability of the target formation to handle the required injection rate without fracturing the injection zone.
- 3. Assess the likelihood of the injectate plume migrating into potential leak pathways.

The reservoir is assumed to have an irreducible brine saturation of 20%. The salinity of the brine within the formation is estimated to be 150,000 ppm (USGS National Produced Waters Geochemical Database, Ver. 2.3), typical for the region and formation. The injectate stream is primarily composed of CO_2 and H_2S as stated previously. Core data from the literature was used to help generate relative permeability curves. From the literature review, also as previously discussed, cores that most closely represent the carbonate rock formation of the Sligo seen in this region were identified, and the Corey-Brooks equations were used to develop the curves (Bennion and Bachu, 2010). A low, conservative residual gas saturation based on the cores from the literature review was then used to estimate the size of the plume (Keelan and Pugh, 1975).

The model is initialized with a reference pressure of 10,995 psig at a subsea depth of 15,740 ft. This, when a Kelly Bushing "KB" elevation of 334 ft is considered, correlates to a gradient of 0.684 psi/ft. This pressure gradient was determined from production data of the O'Neal No. 4. An initial reservoir pressure of 0.76 psi/ft was calculated before initial production. However, in 1997, after producing approximately 0.5 billion cubic feet (Bcf) of gas, the well was shut in. The last bottomhole pressure reading was calculated to be 0.480 psi/ft. This assumes the reservoir repressurizes after production ceases, but not fully back to in situ conditions. Therefore, a 10% safety factor was given to the initial reservoir pressure gradient of 0.76 psi/ft, and a gradient of 0.684 psi/ft was implemented into the model as a conservative estimate. A skin factor of -2 was applied to the well to simulate the stimulation of the O'Neal No. 4 for gas production from the Sligo Formation, which is based on the acid fracture report, provided in *Appendix A-3*.

The fracture gradient of the injection zone was estimated to be 0.954 psi/ft, which was determined from the acid fracture report. A 10% safety factor was then applied to this number, putting the maximum bottomhole pressure allowed in the model at 0.86 psi/ft, which is equivalent to 13,652 psig at the top of the Sligo injection interval.

The model, which begins in January 2025, runs for a total of 22 years, comprising 12 years of active injection, and is then succeeded by 10 years of density drift. Throughout the entire 12-year injection period, an injection rate of 1.5 MMscf/D is used to model the maximum available rate, yielding the largest estimate of the plume size. After the 12-year injection period, when the O'Neal No. 4 ceases injection, the density drift of the plume continues until the plume stabilizes 10 years later. The maximum plume extent during the 12-year injection period is shown in Figure 25. The final extent after 10 years of density drift after injection ceases is shown in Figure 26 (page 42).

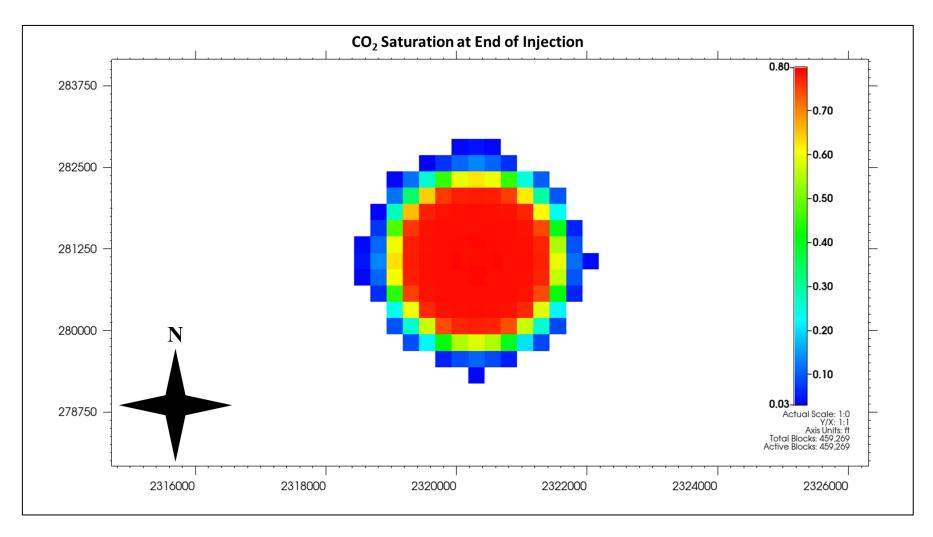


Figure 25 – Areal View of Saturation Plume at Shut-in (End of Injection)

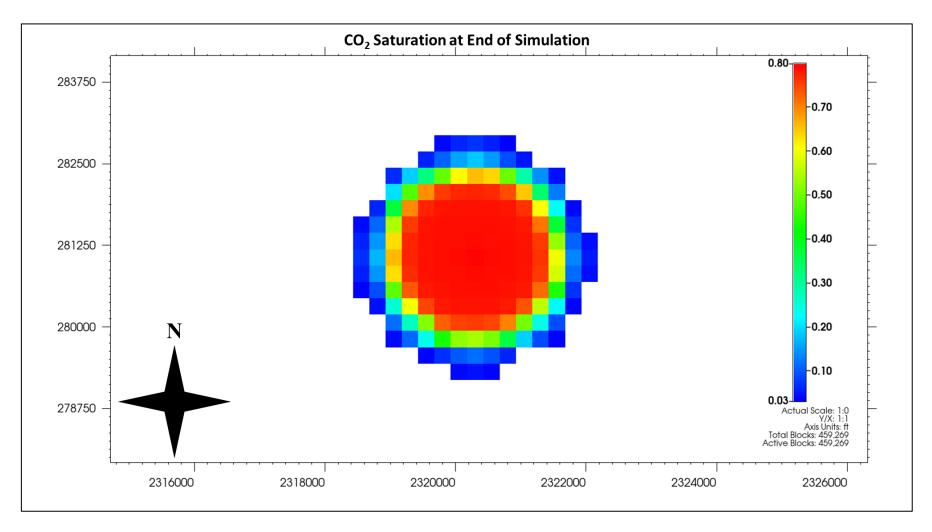


Figure 26 – Areal View of Gas Saturation Plume 10 Years After Shut-in (End of Simulation)

The cross-sectional view of the O'Neal No. 4 shows the extent of the plume from a side-view angle, cutting through the formation at the wellbore. Figure 27 shows the maximum plume extent during the 12-year injection period. During this time, gas from the injection well is injected into the permeable layers of the formation and predominantly travels laterally. Figure 28 (page 45) shows the final extent of the plume after 10 years of migration. Then, the effects of residual gas saturation and migration due to density drift are clearly shown. At least 35% of injected gas that travels into each grid cell is trapped, as the gas travels mostly vertically—as it is less dense than the formation brine—until an impermeable layer is reached. Both figures are shown in an east-to-west view.

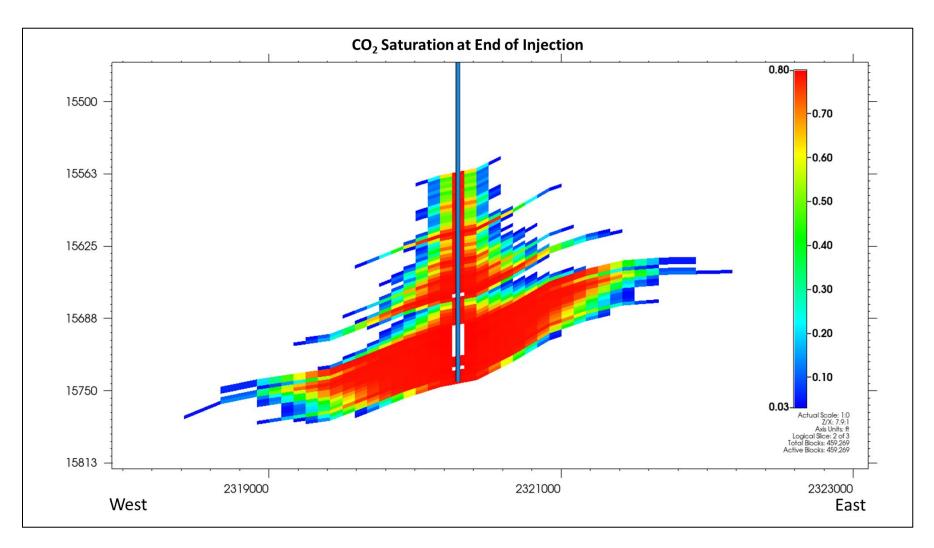


Figure 27 – East-West Cross-Sectional View of Gas Saturation Plume at Shut-in (End of Injection)

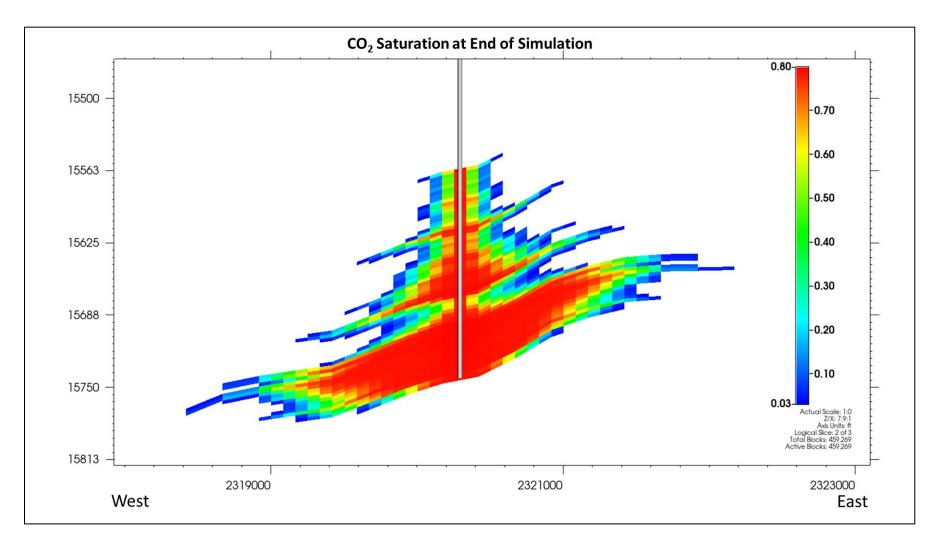


Figure 28 –East-West Cross-Sectional View of Gas Saturation Plume 10 Years After Shut-in (End of Simulation)

Figure 29 shows the surface injection rate, bottom hole pressures, and surface pressures over the injection period—and the period of density drift after injection ceases. The bottomhole pressure increases the most as the injection rate ends, reaching a maximum pressure of 13,337 psig, at the end of injection. This buildup of 2,362 psig keeps the bottomhole pressure below the fracture pressure of 13,652 psig. The maximum surface pressure associated with the maximum bottomhole pressure reached is 6,095 psig, well below the maximum allowable 7,937 psig per the TRRC UIC permit application for this well. Bottomhole and wellhead pressures are provided in Table 6.

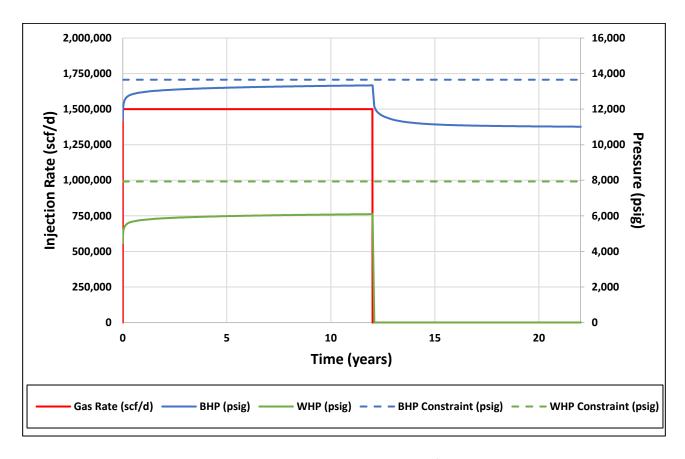


Figure 29 – Well Injection Rate and Bottomhole and Surface Pressures Over Time

Table 6 – Bottomhole and Wellhead Pressures from the Start of Injection

Time from Start of Injection (years)	BHP (psig)	WHP (psig)
0	10,975	-
10	13,311	6,073
12 (End of Inj.)	13,337	6,095
20	11,029	-
22 (End of Model)	11,013	-

SECTION 3 – DELINEATION OF MONITORING AREA

This section discusses the delineation of both the maximum monitoring area (MMA) and active monitoring area (AMA) as described in 40 CFR §98.448(a)(1).

3.1 Maximum Monitoring Area

The MMA is defined as equal to or greater than the area expected to contain the free-phase CO₂ plume until the plume has stabilized, plus an all-around buffer zone of at least one half mile. Numerical simulation was used to predict the size and drift of the plume. With CMG's GEM software package, reservoir modeling was used to determine the areal extent and density drift of the plume. The model considers the following:

- Offset well logs to estimate geologic properties
- Petrophysical analysis to calculate the heterogeneity of the rock
- Geological interpretations to determine faulting and geologic structure
- Offset injection history to predict the density drift of the plume adequately

Ozona's expected gas composition was used in the model. The injectate is estimated at a molar composition of 98.2% CO₂ and 1.8% of other constituents. The StarTex Pawnee Treating Facility has been in stable operations for many years. Ozona believes the gas analysis provided in Table 1 is an accurate representation of the injectate. In the future, if the actual gas analysis varies materially from the injectate composition herein, an update to this MRV plan will be submitted to the GHGRP. As discussed in *Section 2*, the gas will be injected into the Sligo Formation. The geomodel was created based on the rock properties of the Sligo.

The plume boundary was defined by the weighted average gas saturation in the aquifer. A value of 3% gas saturation was used to determine the boundary of the plume. When injection ceases in Year 12, the area expanse of the plume will be approximately 270 acres. The maximum distance between the wellbore and the edge of the plume is approximately 0.42 mi to the west. After 10 additional years of density drift, the areal extent of the plume is 303 acres with a maximum distance to the edge of the plume of approximately 0.45 mi to the west. Since the plume shape is relatively circular, the maximum distance from the injection well after density drift was used to define the circular boundary of the MMA. The AMA and the MMA have similar areas of influence, with the AMA being only marginally smaller than the MMA. Therefore, Ozona will set the AMA equal to the MMA as the basis for the area extent of the monitoring program.

This is shown in Figure 30 with the plume boundary at the end of injection, the stabilized plume boundary, and the MMA. The MMA boundary represents the stabilized plume boundary after 10 years of density drift plus an all-around buffer zone of one half mile.

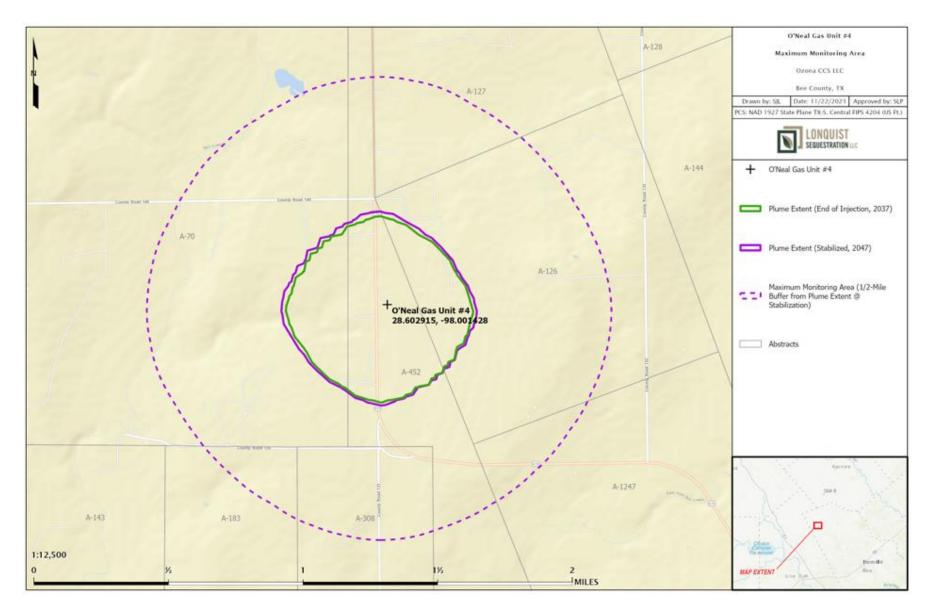


Figure 30 – Plume Boundary at End of Injection, Stabilized Plume Boundary, and Maximum Monitoring Area

3.2 Active Monitoring Area

The AMA was initially set equal to the expected total injection period of 12-years. The AMA was analyzed by superimposing the area based on a one-half mile buffer around the anticipated plume location after 12 years of injection (2037), with the area of the projected free-phase CO₂ plume at five additional years (2042). In this case, as shown in Figure 31, the plume boundary in 2042 is within the plume in 2037 plus the one-half mile buffer. Since the AMA boundary is only slightly smaller than the MMA boundary, Ozona will define the AMA to be equal to the MMA. By 2037, Ozona will submit a revised MRV plan to provide an updated AMA and MMA.

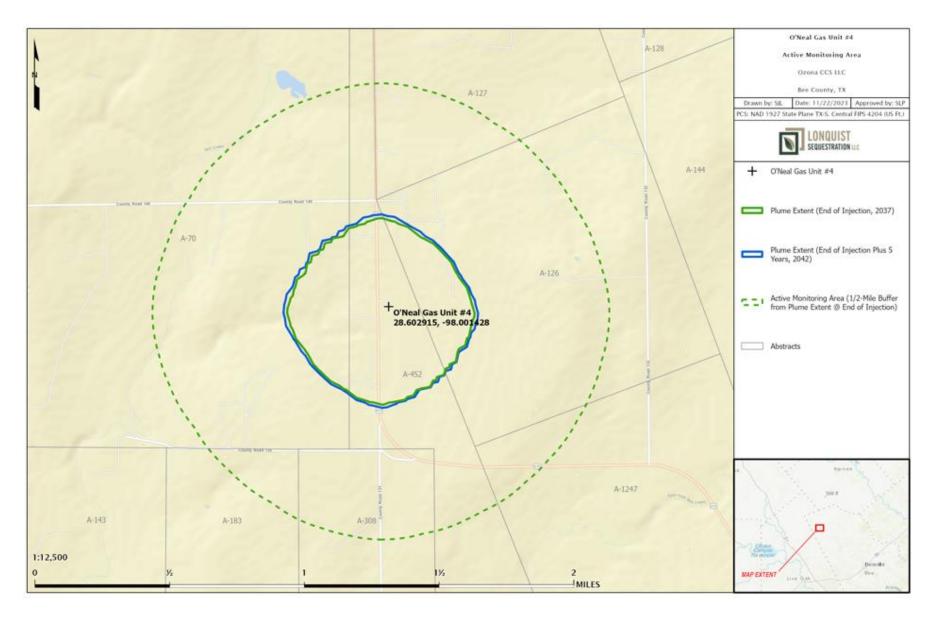


Figure 31 – Active Monitoring Area

SECTION 4 – POTENTIAL PATHWAYS FOR LEAKAGE

This section identifies and discusses the potential pathways within the MMA for CO_2 to reach the surface and is summarized in Table 7. Also included are the likelihood, magnitude, and timing of such potential leakage. The potential leakage pathways are:

- Surface equipment
- Existing wells within the MMA
- Faults and fractures
- Upper confining layer
- Natural or induced seismicity

Table 7 – Potential Leakage Pathway Risk Assessment

Potential Leakage Pathway	Likelihood	,	Magnitude	Timing
Surface Equipment	Possible during injection operations.	Low	Low. Automated systems will detect leaks and execute shut-down procedures.	During active injection period. Thereafter the well will be plugged.
Existing wells within the MMA	Unlikely. One artificial penetration was drilled into the injection interval. This well has been properly plugged and abandoned.	Low	Low. Vertical migration of CO ₂ would likely enter a shallower hydrocarbon production zone.	During active injection.
Faults and fractures	Unlikely. There is over 14,000 ft of impermeable rock between the injection zone and the base of the USDW.	Low	Low. Vertical migration of CO ₂ would likely enter a shallower hydrocarbon production zone.	During active injection.
Upper confining zone	Unlikely. The lateral continuity of the UCZ consisting primarily of the Pearsall Formation which is over 500 ft thick is recognized as a very competent seal.	Low	Low. Vertical migration of CO ₂ would likely enter a shallower hydrocarbon production zone.	During active injection.
Natural or induced seismicity	Unlikely. There is over 14,000 ft of impermeable rock between the injection zone and the base of the USDW.	Low	Low. Vertical migration of CO ₂ would likely enter a shallower hydrocarbon production zone.	During active injection.

^{1 -} UCZ is defined as the upper confining zone.

Magnitude Assessment Description

Low - catergorized as little to no impact to safety, health and the environment and the costs to mitigate are minimal.

Medium - potential risks to the USDW and for surface releases does exist, but circumstances can be easily remediated.

High - danger to the USDW and significant surface release may exist, and if occurs this would require significant costs to remediate.

4.1 Leakage from Surface Equipment

The Pawnee Treating Facility and O'Neal No. 4 are designed for separating, transporting, and injecting TAG, primarily consisting of CO₂, in a manner to ensure safety to the public, the employees, and the environment. The mechanical aspects of this are noted in Table 8 and Figure 32. The facilities have been designed to minimize leakage and failure points, following applicable National Association of Corrosion Engineers (NACE) and American Petroleum Institute (API) applicable standards and practices. As the TAG stream contains H₂S, monitors installed for H₂S detection will also indicate the presence of CO₂. These monitors will be installed at key locations around the facility and the O'Neal No. 4 location. These devices will be continuously monitored by the Supervisory Control and Data Acquisition (SCADA) system and will alarm at set points determined by the facility's Health, Safety and Environment (HS&E) Director, consistent with Occupational Safety and Health Administration (OSHA) requirements. The facility will set the detection and alarm states for personnel at 10 ppm and at 40 ppm for initiating Emergency Shutdown. Key monitoring points and parameters are also provided in Table 8.

The facilities will incorporate important safety equipment to ensure reliable and safe operations. In addition to the H_2S monitors, emergency shutdown (ESD) valves, with high- and low-pressure shutoff settings to isolate the facility, the O'Neal No. 4, and other components, StarTex has a flare stack to safely handle the TAG when a depressuring event occurs. These facilities will be constructed in the coming months. The exact location of this equipment is not yet known, but it will be installed in accordance with applicable engineering and safety standards.

Table 8 – Summary of TAG Monitors and Equipment

Device	Location	Set Point
H₂S Monitors (1-4)	O'Neal No. 4 wellsite	10 ppm High Alarm 40 ppm Emergency Shutdown
H₂S Monitors (5-8)	In-Plant Monitors	10 ppm High Alarm 40 ppm Emergency Shutdown
Flare Stack	Plant Site Perimeter	N/A
AGI Flowmeter	In-Plant (downstream of the Amine Unit)	Calibrated per API specifications
Emergency Shutdown	In-Plant Monitors	40 ppm Facility Shutdown
Emergency Shutdown	O'Neal No. 4 wellsite	40 ppm Facility Shutdown

With the continuous air monitoring at the facility and the well site, a release of CO_2 would be quickly identified, and the safety systems and protocols would effectuate an orderly shutdown to ensure safety and minimize the release volume. The CO_2 injected into the O'Neal No. 4 is from the amine unit at the Pawnee Treating Facility. If any leakage were to be detected, the volume of CO_2 released would be quantified based on the operating conditions at the time of release, as stated in *Section 7*, in accordance with 40 CFR §98.448(a)(5). Ozona concludes that the leakage of CO_2 through the surface equipment is unlikely.

4.2 Leakage Through Existing Wells Within the MMA

The O'Neal No. 4 is engineered to prevent migration from the injection interval to the surface through a special casing and cementing design as depicted in the schematic provided in Figure 32. Mechanical integrity tests (MITs), required under Statewide Rule (SWR) §3.46 [40 CFR §146.23 (b)(3)], will take place every 5 years to verify that the well and wellhead can contain the appropriate operating pressures. If the MIT were to indicate a leak, the well would be isolated and the leak mitigated to prevent leakage of the injectate to the atmosphere.

A map of all oil and gas wells within the MMA is shown in Figure 33. Figure 34 is a map of all the oil and gas wells that penetrate the MMA's gross injection zone. Only one well penetrated the MMA's gross injection zone. This well was non-productive and has been plugged and abandoned in accordance with TRRC requirements. A summary table of all oil and gas wells within the MMA is provided in *Appendix B-1*.

This table in *Appendix B-1* provides the total depth (TD) of all wells within the MMA. The wells that are shallower and do not penetrate the injection zone are separated by the Pearsall Formation with a gross thickness of 535 ft. The Pine Island Shale comprises approximately 130 ft of this interval as discussed in *Section 2.2.2* and provides a competent regional seal—making vertical migration of fluids above the injection zone unlikely.

The shallower offset hydrocarbon wells within the MMA will also serve as above zone monitoring wells. Should any of the sequestered volumes migrate vertically, they would potentially enter the shallower hydrocarbon reservoir. Regular sampling and analysis is performed on the produced hydrocarbons. If a material difference in the quantity of CO_2 in the sample occurs indicating a potential migration of injectate from the Sligo Formation, Ozona would investigate and develop a mitigation plan. This may include reducing the injection rate or shutting in the well. Based on the investigation, the appropriate equation in *Section 7* would be used to make any adjustments to the reported volumes.

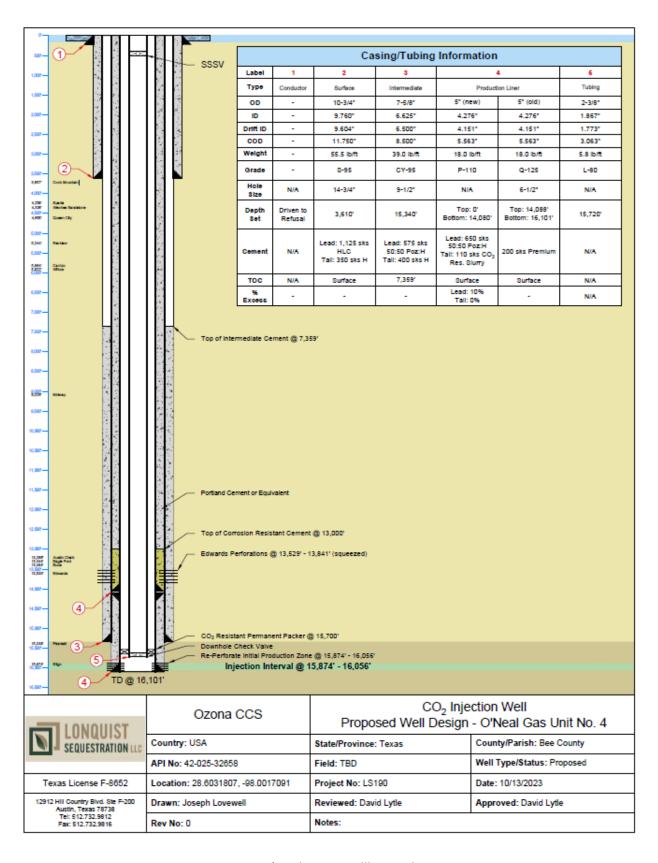


Figure 32 – O'Neal No. 4 Wellbore Schematic

Figure 33 – All Oil and Gas Wells Within the MMA

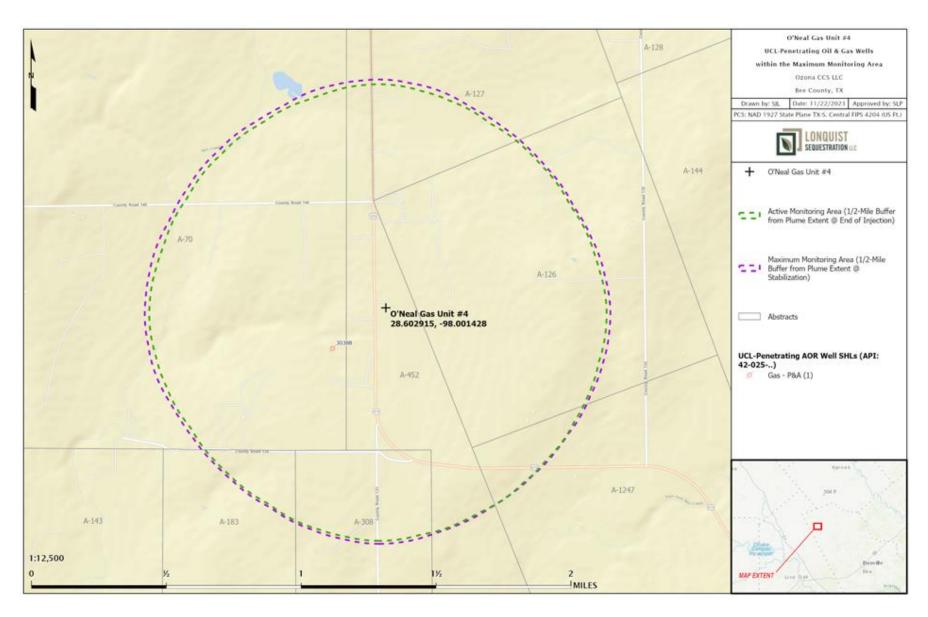


Figure 34 – Oil and Gas Wells Penetrating the Gross Injection Interval Within the MMA

4.2.1 Future Drilling

Potential leak pathways caused by future drilling in the area are not expected to occur. The deeper formations have proven to date to be nonproductive in this area, and therefore Ozona does not see this as a risk. This is supported by a review of the TRRC Rule 13 (Casing, Cementing, Drilling, Well Control, and Completion Requirements), 16 TAC §3.13. The Sligo is not among the formations listed for which operators in Bee County and District 2 (where the O'Neal No. 4 is located) are required to comply with TRCC Rule 13; therefore, the TRRC does not believe there are productive horizons below the Sligo. The O'Neal No. 4 drilling permit is provided in *Appendix A-2*.

4.2.2 <u>Groundwater Wells</u>

The results of a groundwater well search found five wells within the MMA, as identified by the Texas Water Development Board as shown in Figure 35 and in tabular form in *Appendix B-2*.

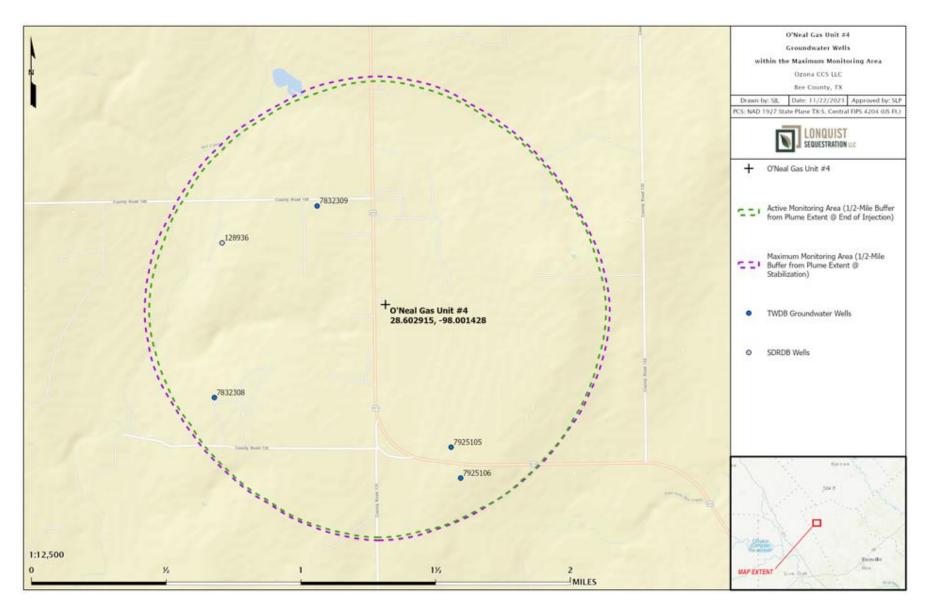


Figure 35 – Groundwater Wells Within the MMA

The surface, intermediate, and production casings of the O'Neal No. 4, as shown in Figure 32, are designed to protect the shallow freshwater aquifers, consistent with applicable TRRC regulations, and the GAU letter issued for this location is provided in *Appendix A-1*. The wellbore casings and compatible cements prevent CO_2 leakage to the surface along the borehole. Ozona concludes that leakage of the sequestered CO_2 to the groundwater wells is unlikely.

4.3 <u>Leakage Through Faults and Fractures</u>

Detailed mapping of openhole logs surrounding the O'Neal No. 4 did not identify any faulting within either the Pearsall or Sligo sections. However, there is a general lack of deep penetrators within the area that limits the amount of openhole coverage available.

The majority of the published literature suggests that faulting near the project area is restricted to the shallower, overlying Cenozoic section, as shown in Figure 9, with shallow faults dying out before reaching the Pearsall Formation. One source interpreted the potential for faulting to the south (Swanson et al., 2016). The potential fault is depicted in Figure 8 relative to the location of the O'Neal No. 4. According to the map, the interpreted fault lies approximately 4.25 mi south-southeast of the well and approximately 3.9 mi south-southeast of the stabilized plume extent in the year 2047. In the unlikely scenario in which the injection plume or pressure front reaches the potential fault, and the potential fault was to act as a transmissive pathway, the upper confining Pearsall shale contains sufficient thickness and petrophysical properties required to confine and protect injectates from leaking outside of the permitted injection zone.

Section 2.1.2 discusses regional structure and faulting, and Section 2.3 covers local structure, for additional material relevant to this topic.

4.4 Leakage Through the Upper Confining Zone

The Sligo injection zone has competent sealing intervals present above and below the targeted carbonate sequence of the Sligo section. The overlying Pine Island shale member of the Pearsall Formation is approximately 130 ft thick at the O'Neal No. 4. Above this confining unit, the Cow Creek Limestone, Cow Creek shale, and Bexar Shale Members of the Pearsall Formation will act as additional confinement between the injection interval and the USDW. The USDW lies well above the sealing properties of the formations outlined above, making stratigraphic migration of fluids into the USDW highly unlikely. The petrophysical properties of the lower Sligo and Hosston Formations make these ideal for lower confinement. The low porosity and permeability of these underlying formations minimizes the likelihood of downward migration of injected fluids. The relative buoyancy of injectate to the in situ reservoir fluid makes migration below the lower confining layer unlikely.

4.5 Leakage from Natural or Induced Seismicity

The O'Neal No. 4 is located in an area of the Gulf of Mexico considered to be active from a seismic perspective. Therefore, the Bureau of Economic Geology's TexNet (from 2017 to present) and USGS's Advanced National Seismic System (from 1971 to present) databases were reviewed to

identify any recorded seismic events within 25 kilometer (km) of the O'Neal No. 4.

The investigation identified a multitude of seismic events within the 25 km search radius; however, the magnitude of most of the events was below 2.5. The nearest seismic event with a recorded magnitude of 3.0 or greater was measured approximately 5.6 km northwest of the O'Neal No. 4 at a depth of 5 km. The results of the investigation are plotted on the map provided in Figure 36 relative to the O'Neal No. 4 and the 25-km search radius.

The Facility will have operating procedures and set points programmed into the control and SCADA systems to ensure operating pressures are maintained below the fracture gradient of the injection and confining intervals, thus avoiding the potential for inducing seismicity.

Given the seismic activity in the area, Ozona will closely monitor nearby TexNet station EF71 for activity and any corresponding irregularities in the operating pressures of O'Neal No. 4. If a seismic event of 3.0 or greater is recorded at Station EF71 or if anomalies are identified in the operating data, Ozona will review the data and determine if any changes occurred that indicate potential leakage. Ozona would take appropriate measures based on their findings, including limiting the injection pressure and reducing the injection rate.

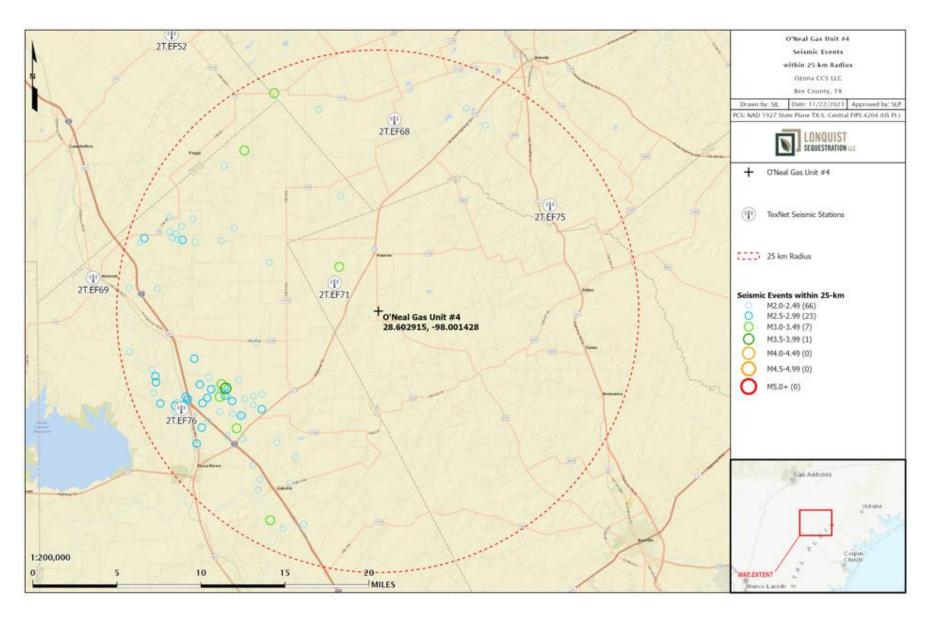


Figure 36 – 25-km Seismicity Review

SECTION 5 – MONITORING FOR LEAKAGE

This section discusses the strategy that Ozona will employ for detecting and quantifying surface leakage of CO₂ through the pathways identified in *Section 4*, to meet the requirements of 40 CFR **§98.448(a)(3)**. As the injectate stream contains both H₂S and CO₂, the H₂S will be a proxy for CO₂ leakage and therefore the monitoring systems in place to detect H₂S will also indicate a release of CO₂. Table 9 summarizes the monitoring of the following potential leakage pathways to the surface. Monitoring will occur during the planned 12-year injection period or cessation of injection operations, plus a proposed 10-year post-injection period until the plume has stabilized.

- Leakage from surface equipment
- · Leakage through existing and future wells within the MMA
- Leakage through faults or fractures
- Leakage through confining seals
- Leakage through natural or induced seismicity

Table 9 – Summary of Leakage Monitoring Methods

Leakage Pathway	Monitoring Method
	Fixed H ₂ S monitors at the Plant and well site
Surface equipment	Visual inspections
	Monitor SCADA systems for the Plant and well site
Existing wells within the MMA	Monitor CO ₂ levels in above zone producing wells
	Mechanical Integrity Tests (MIT) of the AGI Well every 5 years
	Visual inspections
	Annual soil gas sampling near well locations that penetrate the Upper Confining Zone within the AMA
 Leakage through groundwater wells 	Annual groundwater samples from existing water well(s)
Leakage from future wells	Monitor drilling activity and compliance with TRRC Rule 13 Regulations
Faults and Fractures	SCADA continuous monitoring at the well site (volumes and pressures)
	Monitor CO ₂ levels in Above Zone producing wells
Upper confining zone	SCADA continuous monitoring at the well site (volumes and pressures)
	Monitor CO ₂ levels in Above Zone producing wells
Natural or induced seismicity	Monitor CO ₂ levels in Above Zone producing wells
	Monitor existing TexNet station

5.1 Leakage from Surface Equipment

The facility depicted in Figure 37 and the O'Neal No. 4 were designed to operate in a safe manner to minimize the risk of an escape of CO_2 and H_2S . Leakage from surface equipment is unlikely and would quickly be detected and addressed. The facility design minimizes leak points through the equipment used, and key areas are constructed with materials that are NACE and API compliant. A baseline atmospheric CO_2 concentration will be established prior to commencing operation once facility construction has been completed. Ambient H_2S monitors will be located at the facility and near the O'Neal No. 4 site for local alarm and are connected to the SCADA system for continuous monitoring.

The facility and the O'Neal No. 4 are continuously monitored through automated control systems. These monitoring points were discussed in *Section 4.1*. In addition, field personnel conduct routine visual field inspections of gauges, and gas monitoring equipment. The effectiveness of the internal and external corrosion control program is monitored through the periodic inspection of the corrosion coupons and inspection of the cathodic protection system. These inspections and the automated systems allow Ozona to detect and respond to any leakage situation quickly. The surface equipment will be monitored for the injection and post-injection period. Should leakage be detected during active injection operations, the volume of CO_2 released will be calculated based on operating conditions at the time of the event, per 40 CFR §98.448(a)(5) and §98.444(d).

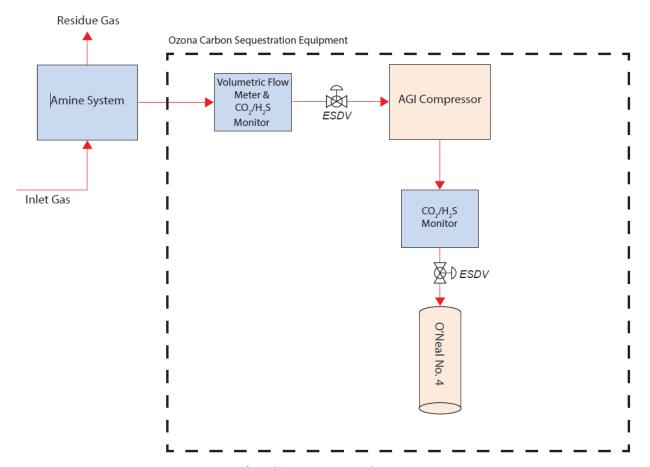


Figure 37 – O'Neal No. 4 Process Flow Diagram

Pressures, temperatures, and flow rates through the surface equipment are continuously monitored during operations. If a release occurred from surface equipment, the amount of CO_2 released would be quantified based on the operating conditions, including pressure, flow rate, percentage of CO_2 in the injectate, size of the leak-point opening, and duration of the leak. In the unlikely event a leak occurs, Ozona will quantify the leak per the strategies discussed in *Section 7*.

5.2 Leakage Through Existing and Future Wells Within the MMA

Ozona continuously monitors and collects injection volumes, pressures, and temperatures through their SCADA systems, for the O'Neal No. 4. This data is reviewed by qualified personnel and will follow response and reporting procedures when data exceeds acceptable performance limits. A change of injection or annular pressure would indicate the presence of a possible leak and be thoroughly investigated. In addition, MITs performed every 5 years, as expected by the TRRC and UIC, would also indicate the presence of a leak. Upon a negative MIT, the well would be isolated and investigated to develop a leak mitigation plan.

As discussed previously, TRRC Rule 13 ensures that new wells in the field are constructed with proper materials and practices to prevent migration from the injection interval.

In addition to the fixed monitors described previously, Ozona will also establish and operate an infield monitoring program to detect CO_2 leakage within the AMA. This would include H_2S monitoring as a proxy for CO_2 at the well site and annual soil gas samples taken near any identified wells that penetrate the injection interval within the AMA. These samples will be analyzed by a qualified third party. Prior to commencing operation, and through the post-injection monitoring period, Ozona will have these monitoring systems in place.

Currently, there is only one well in the MMA identified that penetrates the injection interval. This well was plugged and abandoned in 2007. The TRRC records are provided in *Appendix A-4*. Ozona will take an annual soil gas sample from this area, which will be analyzed by a third-party lab. Additional monitoring will be added as the AMA is updated over time. In the unlikely event a leak occurs, Ozona will quantify the leak volumes by the methodologies discussed in *Section 7* and present these results and related activities in the annual report.

Ozona will also utilize shallower producing gas wells as proxies for above-zone monitoring wells. Production data from these wells is analyzed for monthly production statements, and therefore would be an early indicator of any possible subsurface issues. Should any material change from historical trends in the CO₂ concentration occur, Ozona would investigate and develop a corrective action plan. Should any CO₂ migrate vertically from the Sligo, the magnitude risk of this event is very low, as the producing reservoir provides an ideal containment given the upper confining zone of this reservoir has proven competent. In the unlikely event a leak occurs, Ozona would quantify the leak per the strategies discussed in *Section 7*, or as may be applicable provided in 40 CFR §98.443 based on the actual circumstances and include these results in the annual report.

5.2.1 Groundwater Quality Monitoring

Ozona will monitor the groundwater quality above the confining interval by sampling from groundwater wells near the O'Neal No. 4 and analyzing the samples with a third-party laboratory on an annual basis. In the case of the O'Neal No. 4, 5 existing groundwater wells have been identified within the AMA (Figure 38). Initial groundwater quality tests will be performed to establish a baseline prior to commencing operations.

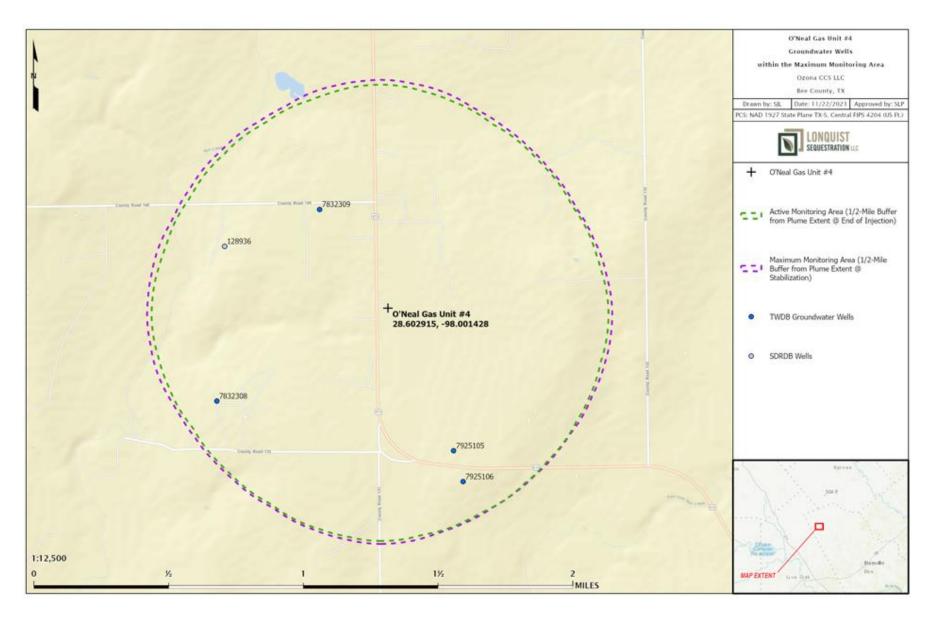


Figure 38 – Groundwater Wells

5.3 <u>Leakage Through Faults, Fractures, or Confining Seals</u>

Ozona will continuously monitor the operations of the O'Neal No. 4 through the automated controls and SCADA systems. Any deviation from normal operating volume and corresponding injection pressure could indicate movement into a potential leak pathway, such as a fault or breakthrough of the confining seal and would trigger an alert due to a change in the injection pressure. Any such alert would be reviewed by field personnel and appropriate action would be taken, including shutting in the well, if necessary.

Ozona will also utilize shallower producing wells as proxies for above-zone monitoring wells. Production data is analyzed regularly for monthly production statements and therefore would be an early indicator of any possible subsurface issues. Should any material change from historical trends in the CO₂ concentration occur, Ozona would investigate and develop a corrective action plan. Should any CO₂ migrate vertically from the Sligo Formation, the magnitude risk of this event is very low, as the producing reservoir provides an ideal containment given the upper confining zone has proven competent. In the unlikely event a leak occurs, Ozona would quantify the leak per the strategies discussed in *Section 7*, or as may be applicable provided in 40 CFR §98.443 based on the actual circumstances.

5.4 <u>Leakage Through Natural or Induced Seismicity</u>

While the likelihood of a natural or induced seismicity event is low, Ozona plans to use the nearest TexNet seismic monitoring station, EF71, to monitor the area around the O'Neal No. 4. This station is approximately 3 mi to the northwest, as shown in Figure 38. This is sufficient distance to allow for accurate and detailed monitoring of the seismic activity in the area. Ozona will monitor this station for any seismic activity, and if a seismic event of 3.0 magnitude or greater is detected, Ozona will review the injection volumes and pressures of the O'Neal No. 4 to determine if any significant changes have occurred that would indicate potential leakage.

Ozona will also continuously monitor operations through the SCADA system. Any deviation from normal operating pressure and volume set points would trigger an alarm for investigation by operations staff. Such a variance could indicate movement into a potential leak pathway, such as a fault or breakthrough of the confining seal. Any such alert would be reviewed by field personnel and appropriate action would be taken, including shutting in the well, if necessary

These are the two primary strategies for mitigating risks for induced seismicity. In the unlikely event a leak occurs, Ozona will quantify the leak per the strategies discussed in *Section 7*, or as may be applicable provided in 40 CFR **§98.443** based on the actual circumstances.

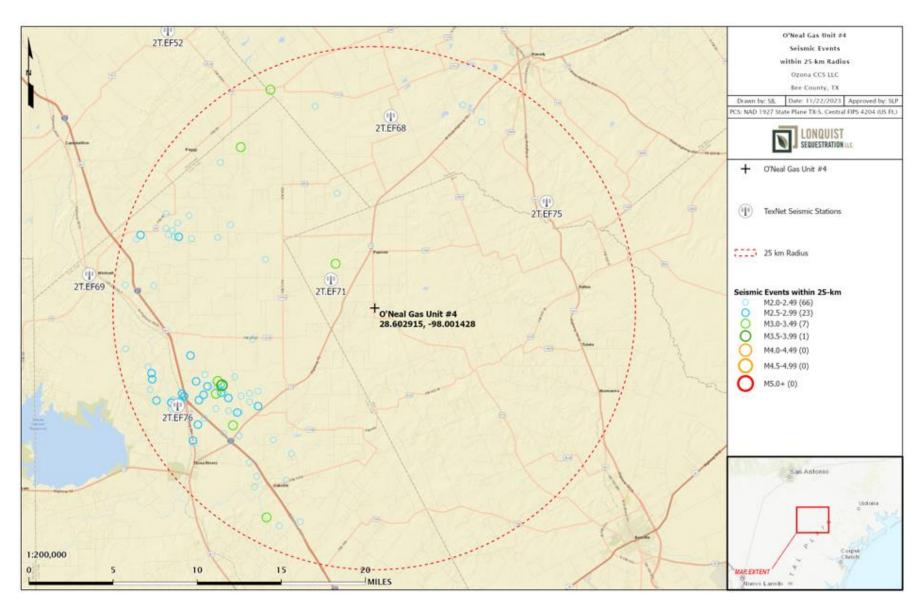


Figure 39 – Seismic Events and Monitoring Station

SECTION 6 – BASELINE DETERMINATIONS

This section identifies the strategies Ozona will undertake to establish the expected baselines for monitoring CO₂ surface leakage per 40 CFR **§98.448(a)(4)**. Ozona will use the existing SCADA monitoring systems to identify changes from the expected performance that may indicate leakage of injectate and calculate a corresponding amount of CO₂.

6.1 **Visual Inspections**

Regular inspections will be conducted by field personnel at the facility and O'Neal No. 4 site. These inspections will aid in identifying and addressing possible issues to minimize the risk of leakage. If any issues are identified, such as vapor clouds or ice formations, corrective actions will be taken prudently and safely to address such issues.

6.2 H₂S/CO₂ Monitoring

In addition to the fixed monitors in the facility and at the wellsite, Ozona will establish and perform an annual in-field sampling program to monitor and detect any CO₂ leakage within the AMA. This will consist of soil gas sampling near any artificial penetrations of the injection zone and sampling of water wells. These probes have special membrane inserts that collect the gas samples over a 21-day period. These will be analyzed by a third-party lab to be analyzed for CO₂, H₂S, and trace contaminants typically found in a hydrocarbon gas stream. The lab results will be provided in the annual report should they indicate a material variance from the baseline. Initial samples will be taken and analyzed before the commencement of operations and will establish the baseline reference levels.

6.3 Operational Data

Upon starting injection operations, baseline measurements of injection volumes and pressures will be recorded. Any significant deviations over time will be analyzed for indication of leakage of injectate and the corresponding component of CO₂.

6.4 Continuous Monitoring

The total mass of CO_2 emitted by surface leakage and equipment leaks will not be measured directly, as the injection stream for this project is near the OSHA Permissible Exposure Limit (PEL) 8-hour Time Weighted Average (TWA) of 5,000 ppm. Direct leak surveys present a hazard to personnel due to the presence of H_2S in the gas stream. Continuous monitoring systems will trigger alarms if there is a release. The mass of the CO_2 released would be calculated based on the operating conditions, including pressure, flow rate, percentage of CO_2 , size of the leak-point opening, and duration. This method is consistent with 40 CFR §98.448(a)(5) and §98.444(d), allowing the operator to calculate site-specific variables used in the mass balance equation.

In the case of a depressuring event, the acid gas stream will be sent to a flare stack to be safely processed and will be reported under reporting requirements for the facility. Any such events will be accounted for in the sequestered reporting volumes consistent with *Section 7*.

6.5 **Groundwater Monitoring**

Initial samples will be taken from groundwater wells in the area of the O'Neal No. 4 upon approval of the MRV plan, and before commencement of CO_2 injection. These samples will be analyzed and reports prepared by a third-party laboratory testing for pH, total dissolved solids (TDS), CO_2 , and volatile organic compounds (VOC). Initial samples will be taken and analyzed before the commencement of operations and will establish the baseline reference levels. Sampling select wells will be performed annually. In the event a material deviation in the sample analysis occurs, the results will be provided in the annual report.

SECTION 7 – SITE-SPECIFIC CONSIDERATIONS FOR MASS BALANCE EQUATION

This section identifies how Ozona will calculate the mass of CO_2 injected, emitted, and sequestered. This also includes site-specific variables for calculating the CO_2 emissions from equipment leaks and vented emissions of CO_2 between the injection flow meter and the injection well, per 40 CFR §98.448(a)(5).

7.1 Mass of CO₂ Received

Per 40 CFR §98.443, the mass of CO_2 received must be calculated using the specified CO_2 received equations "unless you follow the procedures in 40 CFR §98.444(a)(4)." The 40 CFR §98.444(a)(4) states that "if the CO_2 you receive is wholly injected and is not mixed with any other supply of CO_2 , you may report the annual mass of CO_2 injected that you determined following the requirements under paragraph (b) of this section as the total annual mass of CO_2 received instead of using Equation RR-1 or RR-2 of this subpart to calculate CO_2 received." The CO_2 received for this injection well is injected and not mixed with any other supply; the annual mass of CO_2 injected will equal the amount received less any amounts calculated in accordance with the equations of this section. Any future streams would be metered separately before being combined into the calculated stream.

7.2 Mass of CO₂ Injected

Per 40 CFR §98.444(b), since the flow rate of CO_2 injected will be measured with a volumetric flow meter, the total annual mass of CO_2 , in metric tons, will be calculated by multiplying the mass flow by the CO_2 concentration in the flow according to Equation RR-5:

$$CO_{2,u} = \sum_{p=1}^{4} Q_{p,u} * D * C_{CO_{2,p,u}}$$

Where:

CO_{2,u} = Annual CO₂ mass injected (metric tons) as measured by flow meter u

 $Q_{p,u}$ = Quarterly volumetric flow rate measurement for flow meter u in quarter p at standard conditions (standard cubic meters per quarter)

D = Density of CO₂ at standard conditions (metric tons per standard cubic meter): 0.0018682

 $C_{CO2,p,u} = CO_2$ concentration measurement in flow for flow meter u in quarter p (vol. percent CO_2 , expressed as a decimal fraction)

p = Quarter of the year

u = Flow meter

7.3 Mass of CO₂ Produced

The O'Neal No. 4 is not part of an enhanced oil recovery project; therefore, no CO₂ will be produced.

7.4 Mass of CO₂ Emitted by Surface Leakage

The mass of CO₂ emitted by surface leakage and equipment leaks will not be measured directly due to the H₂S concentration in the injection stream. Direct leak surveys are dangerous and present a hazard to personnel. Because no venting is expected to occur, the calculations would be based on the unusual event that a blowdown is required and those emissions would be sent to a flare stack and reported as a part of the required GHG reporting for the facility. Any leakage would be detected and managed as an upset event. Continuous monitoring systems should trigger an alarm upon a release of H₂S and CO₂. The mass of the CO₂ released would be calculated for the operating conditions, including pressure, flow rate, size of the leak-point opening, and duration of the leak. This method is consistent with 40 CFR §98.448(a)(5), allowing the operator to calculate site-specific variables used in the mass balance equation.

In the unlikely event that CO₂ was released because of surface leakage, the mass emitted would be calculated for each surface pathway according to methods outlined in the plan and totaled using Equation RR-10 as follows:

$$CO_{2E} = \sum_{x=1}^{X} CO_{2,x}$$

Where:

CO_{2E} = Total annual CO₂ mass emitted by surface leakage (metric tons) in the reporting year

CO_{2,x} = Annual CO₂ mass emitted (metric tons) at leakage pathway x in the reporting year

X = Leakage pathway

Calculation methods using equations from Subpart W will be used to calculate CO₂ emissions due to any surface leakage between the flow meter used to measure injection quantity and the injection wellhead.

As discussed previously, the potential for pathways for all previously mentioned forms of leakage is unlikely. Given the possibility of uncertainty around the cause of a leakage pathway that is mentioned above, Ozona believes the most appropriate method to quantify the mass of CO₂ released will be determined on a case-by-case basis. Any mass of CO₂ detected leaking to the surface will be quantified by using industry proven engineering methods including, but not limited to, engineering analysis on surface and subsurface measurement data, dynamic reservoir modeling, and history-matching of the sequestering reservoir performance, among others. In the unlikely Subpart RR MRV Plan – O'Neal Gas Unit No. 4

event that a leak occurs, it will be addressed, quantified, and documented within the appropriate timeline. Any records of leakage events will be kept and stored as provided in *Section 10*.

7.5 Mass of CO₂ Sequestered

The mass of CO_2 sequestered in subsurface geologic formations will be calculated based on Equation RR-12. Data collection for calculating the amount of CO_2 sequestered in the O'Neal No. 4 will begin once the subsurface recompletion work, and the surface facilities construction has been completed, and subject to approval of the MRV plan. The calculation of sequestered volumes utilizes the following equation as the O'Neal No. 4 will not actively produce oil, natural gas, or any other fluids:

$$CO_2 = CO_{2I} - CO_{2E} - CO_{2FI}$$

Where:

 CO_2 = Total annual CO_2 mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year

 CO_{2l} = Total annual CO_2 mass injected (metric tons) in the well or group of wells covered by this source category in the reporting year

CO_{2E} = Total annual CO₂ mass emitted (metric tons) by surface leakage in the reporting year

 CO_{2FI} = Total annual CO_2 mass emitted (metric tons) from equipment leaks and vented emissions of CO_2 from equipment located on the surface, between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of this part.

 CO_{2FI} will be calculated in accordance with Subpart W for reporting of GHGs. Because no venting is expected to occur, the calculations would be based on the unusual event that a system blowdown event occurs. Those emissions would be sent to a flare stack and reported as part of the GHG reporting for the facility.

 Calculation methods from Subpart W will be used to calculate CO₂ emissions from equipment located on the surface, between the flow meter used to measure injection quantity and the injection wellhead.

SECTION 8 – IMPLEMENTATION SCHEDULE FOR MRV PLAN

The O'Neal Gas Unit No. 4 is an existing natural gas well that will be recompleted as a Class II well with corrosion-resistant materials. The Class II permit is still in process with the TRRC. Until this permit is issued, Ozona cannot specify a date to acquire the baseline testing data. Ozona is submitting this MRV application to the GHGRP to comply with the requirements of Subpart RR. The MRV plan, including acquisition of baseline data, will be implemented upon receiving EPA approval. The Annual Subpart RR Report will be filed on March 31 of the year following the reporting year.

Table 10 – Baseline Sampling Schedule

Sampling Location	Estimated Date Comments			
		Baseline readings will be		
Fixed H ₂ S/CO ₂ Monitors	Oct. 1, 2024	established during		
	commissioning activities.			
		Baseline samples will be taken		
Soil gas sampling	Oct. 1, 2024	prior to commencement of		
		injection.		
		Baseline samples will be taken		
Water well sampling	Oct. 1, 2024	prior to commencement of		
		injection.		

Notes:

- Above dates are estimates subject to adjustment based on actual regulatory approval dates and facilities construction timelines.
- All baseline sampling will be performed prior to the start of recording data for reporting under this MRV.
- Commissioning activities include installation of surface facilities, including flowline, compressors, manifolds, etc.

SECTION 9 – QUALITY ASSURANCE

This section identifies how Ozona plans to manage quality assurance and control to meet the requirements of 40 CFR §98.444.

9.1 Monitoring QA/QC

CO₂ Injected

- The flow rate of the CO₂ being injected will be measured with a volumetric flow meter, consistent with API standards. These flow rates will be compiled quarterly.
- The composition of the injectate stream will be measured upstream of the volumetric flow meter with a continuous gas composition analyzer or representative sampling consistent with API standards.
- The gas composition measurements of the injected stream will be averaged quarterly.
- The CO₂ measurement equipment will be calibrated per the requirements of 40 CFR §98.444(e) and §98.3(i).

CO₂ Emissions from Leaks and Vented Emissions

- Gas monitors at the facility and O'Neal No. 4 will be operated continuously, except for maintenance and calibration.
- Gas monitors will be calibrated according to the requirements of 40 CFR §98.444(e) and §98.3(i).
- Calculation methods from Subpart W will be used to calculate CO₂ emissions from equipment located on the surface, between the flow meter used to measure injection quantity and the injection wellhead.

Measurement Devices

- Flow meters will be continuously operated except for maintenance and calibration.
- Flow meters will be calibrated according to 40 CFR §98.3(i).
- Flow meters will be operated and maintained in accordance with applicable standards as published by a consensus-based standards organization.

All measured volumes of CO₂ will be converted to standard cubic meters at a temperature of 60°F and an absolute pressure of 1 atmosphere.

9.2 Missing Data

In accordance with 40 CFR **§98.445**, Ozona will use the following procedures to estimate missing data if unable to collect the data needed for the mass balance calculations:

• If a quarterly quantity of CO₂ injected is missing, the amount will be estimated using a representative quantity of CO₂ injected from the nearest previous period at a similar injection pressure.

• Fugitive CO₂ emissions from equipment leaks from facility surface equipment will be estimated and reported per the procedures specified in Subpart W of 40 CFR **§98**.

9.3 MRV Plan Revisions

If any changes outlined in 40 CFR **§98.448(d)** occur, Ozona will revise and submit an amended MRV plan within 180 days to the Administrator for approval.

SECTION 10 – RECORDS RETENTION

Ozona will retain records as required by 40 CFR **§98.3(g)**. These records will be retained for at least 3 years and include the following:

- Quarterly records of the CO₂ injected
 - Volumetric flow at standard conditions
 - Volumetric flow at operating conditions
 - Operating temperature and pressure
 - Concentration of the CO₂ stream
- Annual records of the information used to calculate the CO₂ emitted by surface leakage from leakage pathways.
- Annual records of the information used to calculate CO₂ emitted from equipment leaks and vented emissions of CO₂ from equipment located on the surface, between the flow meter used to measure injection quantity and the injection wellhead.

APPENDICES

APPENDIX A – O'Neal No. 4 TRRC FORMS

APPENDIX A-1: GAU GROUNDWATER PROTECTION DETERMINATION

APPENDIX A-2: DRILLING PERMIT

- CHARLIE C. OVERBY API 42-025-32658
- O'NEAL GAS UNIT NO. 4 API 42-025-32658

APPENDIX A-3: COMPLETION REPORT

- CHARLIE C. OVERBY API 42-025-32658
- O'NEAL GAS UNIT NO. 4 API 42-025-32658
- MINI FRACTURE REPORT

APPENDIX A-4: API 42-025-30388 CHARLIE C. OVERBY GU PLUGGING RECORDS

<u>APPENDIX B – AREA OF REVIEW</u>

APPENDIX B-1: OIL AND GAS WELLS WITHIN THE MMA LIST

APPENDIX B-2: WATER WELLS WITHIN THE MMA LIST

Request for Additional Information: O'Neal Gas Unit Well No. 4 August 7, 2024

Instructions: Please enter responses into this table and make corresponding revisions to the MRV Plan as necessary. Any long responses, references, or supplemental information may be attached to the end of the table as an appendix. This table may be uploaded to the Electronic Greenhouse Gas Reporting Tool (e-GGRT) in addition to any MRV Plan resubmissions.

No.	o. MRV Plan		EPA Questions	Responses	
	Section	Page			
1.	N/A	N/A	We recommend adding a process flow diagram (with locations of flow meters that will be used for subpart RR) to illustrate the path of CO_2 at the facility.	A process flow diagram has been added in Section 5.1.	
2.	10		"Ozona will file an application for a separate Facility ID No. under Subpart RR for its sequestration assets." Please clarify this statement. E.g., does Ozona intend to change the facility ID number associated with this MRV plan, or is this referring to other sequestration?	This MRV plan is reporting under GHGRP ID No. 587021.	
3.	7.2	72	"CO $_{CO2,p,u}$ = Quarterly CO $_2$ concentration measurement in flow for flow meter u in quarter p (vol. percent CO $_2$, expressed as a decimal fraction)" Per 40 CFR 98.443(C)(2), this variable should be "CO $_{CO2,p,u}$ = CO $_2$ concentration measurement in flow for flow meter u in quarter p (vol. percent CO $_2$, expressed as a decimal fraction)." Equations and variables cannot be modified from the regulations. Please revise this section and ensure that all equations listed are consistent with the text in 40 CFR 98.443.	The definition has been edited to be consistent with 40 CFR 98.443(C)(2).	

Subpart RR Monitoring, Reporting, and Verification (MRV) Plan O'Neal Gas Unit Well No. 4

Bee County, TX

Prepared for *Ozona CCS, LLC*San Antonio, TX

Ву

Lonquist Sequestration, LLC
Austin, TX

Version 2.0 January 2024

INTRODUCTION

Ozona CCS, LLC (Ozona) has a pending Class II acid gas injection (AGI) permit application with the Texas Railroad Commission (TRRC), which was submitted in September of 2023 for its O'Neal Gas Unit Well No. 4 (O'Neal No. 4), API No. 42-025-32658. Granting of this application would authorize Ozona to inject up to 1.5 million standard cubic feet per day (MMscf/D) of treated acid gas (TAG) into the Sligo Formation at a depth of 15,874 feet (ft) to 16,056 ft, with a maximum allowable surface pressure of 7,920 pounds per square inch gauge (psig). The TAG for this AGI well is associated with StarTex's Pawnee Treating Facility, located in a rural area of Bee County, Texas, approximately 2.0 miles (mi) south of Pawnee, Texas, as shown in Figure 1.

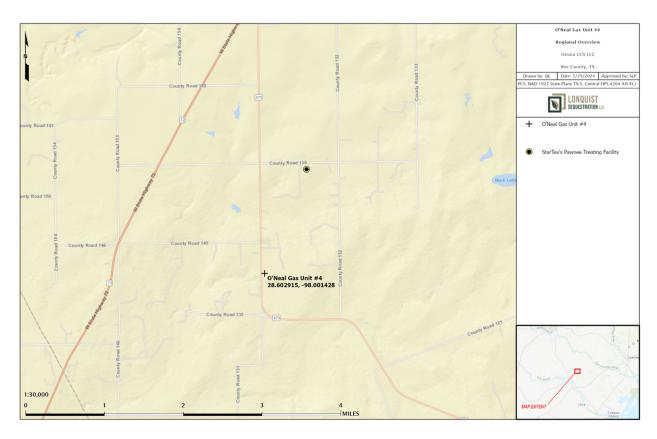


Figure 1 – Location of StarTex's Pawnee Treating Facility and the O'Neal No. 4

Ozona is submitting this Monitoring, Reporting, and Verification (MRV) plan to the EPA for approval under Title 40, U.S. Code of Federal Regulations (40 CFR) **98.440(a)**, Subpart RR, of the Greenhouse Gas Reporting Program (GHGRP). In addition to submitting this MRV plan to the EPA, Ozona has applied to the TRRC for the O'Neal GU No. 4's Class II permit. Ozona plans to inject TAG for approximately 12 years. Table 1 shows the expected composition of the gas stream to be sequestered from the nearby treating facility.

Table 1 – Expected TAG Composition

Component	Mol Percent
Carbon Dioxide	98.2%
Hydrocarbons	1.03%
Hydrogen Sulfide	0.4%
Nitrogen	0.37%

ACRONYMS AND ABBREVIATIONS

AMA Active Monitoring Area

BCF Billion Cubic Feet

CH₄ Methane

CMG Computer Modelling Group, Ltd.

Carbon Dioxide (may also refer to other carbon

CO₂ oxides)

E East

EOS Equation of State

EPA Environmental Protection Agency

ESD Emergency Shutdown

FG Fracture Gradient

ft Foot (Feet)

GAPI Gamma Units of the American Petroleum Institute

GAU Groundwater Advisory Unit

GEM Computer Modelling Group's GEM 2023.2

GHG Greenhouse Gas

GHGRP Greenhouse Gas Reporting Program

GL Ground Level Elevation

H₂S Hydrogen Sulfide

JPHIE Effective Porosity (corrected for clay content)

mD Millidarcy

mi Mile(s)

MIT Mechanical Integrity Test

MM Million

MMA Maximum Monitoring Area

MCF Thousand Cubic Feet

MMcf Million Cubic Feet

MMscf Million Standard Cubic Feet

Mscf/D Thousand Standard Cubic Feet per Day

MMscf/D Million Standard Cubic Feet per Day

MRV Monitoring, Reporting, and Verification

v Poisson's Ratio

N North

NW Northwest

OBG Overburden Gradient

PG Pore Gradient

pH Scale of Acidity

ppm Parts per Million

psi Pounds per Square Inch

psig Pounds per Square Inch Gauge

S South

SE Southeast

SF Safety Factor

SWD Saltwater Disposal

TAC Texas Administrative Code

TAG Treated Acid Gas

TOC Total Organic Carbon

TRRC Texas Railroad Commission

UIC Underground Injection Control

USDW Underground Source of Drinking Water

W West

TABLE OF CONTENTS

INTRO	DUCTIO	N	2
ACRO	NYMS AN	ND ABBREVIATIONS	4
SECTIO)N 1 – U	IC INFORMATION	10
1.1	Unde	rground Injection Control Permit Class: Class II	10
1.2	UIC W	/ell Identification Number	10
1.3	Facilit	y Address	10
SECTIO)N 2 – PI	ROJECT DESCRIPTION	11
2.1	Regio	nal Geology	
	2.1.1	Geologic Setting and Depositional Environment	
	2.1.2	Regional Structure and Faulting	
2.2	Site C	haracterization	
	2.2.1	Stratigraphy and Lithologic Characteristics	
	2.2.2	Upper Confining Interval – Pearsall Formation	19
	2.2.3	Injection Interval – Upper Sligo Formation	
	2.2.4	Formation Fluid	
	2.2.5	Fracture Pressure Gradient	
	2.2.6	Lower Confining Interval – Lower Sligo and Hosston Formations	
2.3		Structure	
2.4	-	ion and Confinement Summary	
2.5		ndwater Hydrology	
2.6		ences	
2.7		iption of the Injection Process	
	2.7.1	Current Operations	
2.8		voir Characterization Modeling	
	2.8.1	Simulation Modeling	
		ELINEATION OF MONITORING AREA	
3.1		num Monitoring Area	
3.2		Monitoring Area	
		OTENTIAL PATHWAYS FOR LEAKAGE	
4.1		ge from Surface Equipment	
4.2		ge Through Existing Wells Within the MMA	
	4.2.1	Future Drilling	
4.2	4.2.2	Groundwater Wells	
4.3		ge Through Faults and Fractures	
4.4		ge Through the Upper Confining Zone	
4.5		ge from Natural or Induced Seismicity	
		IONITORING FOR LEAKAGE	
5.1		ge from Surface Equipment	
5.2		ge Through Existing and Future Wells Within the MMA	
гэ	5.2.1	Groundwater Quality Monitoring	
5.3	ьеака	ge Through Faults, Fractures, or Confining Seals	68

5.4	Leakage Through Natural or Induced Seismicity	58
SECTION	6 – BASELINE DETERMINATIONS	70
6.1	Visual Inspections	70
6.2	H ₂ S/ CO ₂ Monitoring	70
6.3	Operational Data	70
6.4	Continuous Monitoring	70
6.5	Groundwater Monitoring	71
SECTION	7 – SITE-SPECIFIC CONSIDERATIONS FOR MASS BALANCE EQUATION	72
7.1	Mass of CO ₂ Received	72
7.2	Mass of CO ₂ Injected	72
7.3	Mass of CO ₂ Produced	73
7.4	Mass of CO ₂ Emitted by Surface Leakage	73
7.5	Mass of CO ₂ Sequestered	74
SECTION	8 – IMPLEMENTATION SCHEDULE FOR MRV PLAN	75
SECTION	9 – QUALITY ASSURANCE	76
9.1	Monitoring QA/QC	76
9.2	Missing Data	76
9.3	MRV Plan Revisions	77
SECTION	10 – RECORDS RETENTION	78
Figures		
Figure 1	 Location of StarTex's Pawnee Treating Facility and the O'Neal No. 4 	2
	- Structural Features of the Gulf of Mexico and Locator Map (modified from Robert	
Ashby et	al., 2012)	11
Figure 3	 Stratigraphic column of the U.S. Gulf Coast signifying proposed injection and confinit 	ng
_	. Offset productive intervals are noted with a green star (modified from Roberts-Ashl	_
	12)	-
Figure 4	- Detailed stratigraphic column of Lower Cretaceous formations of south Texas. The	ne
propose	d injection interval is shaded light blue and proposed confining intervals are shaded lig	ht
	nodified from Bebout et al., 1981)	
	– Paleogeography of the Lower Cretaceous of south Texas. The red star represents the	
approxin	nate location of the O'Neal No. 4 (modified from Bebout et al., 1981)	L4
Figure 6	 Generalized northwest to southeast schematic cross section of the Trinity Group, sou 	th
Texas (th	ne line of section depicted in Figure 5). The red star and line represent the approxima	te
location	of the O'Neal No. 4 (modified from Kirkland et al., 1987)	L5
Figure 7	- Depositional model for the Lower Cretaceous carbonate platform with estimate	ed
porosity	and permeability values of typical facies (modified from Talbert and Atchley, 2000)	L5
Figure 8	- Structural features and fault zones near the proposed injection site. The red st	ar
represer	its the approximate location of the O'Neal No. 4 (modified from Swanson et al., 2016	5).
_	 Northwest to southeast schematic interpretation of the Edwards shelf margin through 	_
Word fie	eld, northeast of the O'Neal No. 4 project area (modified from Swanson et al., 2016)	17

Figure 10 – Type Log with Tops, Confining, and Injection Intervals Depicted	18
Figure 11 – Porosity-Permeability Crossplot of Pearsall Formation Crushed Rock	Core Data
(Swanson et al., 2016)	
Figure 12 – Seismic line across the Stuart City (Edwards/Buda) shelf margin and locator	map. The
red star represents the approximate location of the O'Neal No. 4 (modified from Bel 1981).	
Figure 13 – Environmental Setting of Lower Cretaceous Platform (Bebout et al., 1981)	
Figure 14 – Openhole log from O'Neal No. 4 (API No. 42-025-32658), with porosity curv	
green >0%, permeability curve in blue >0 mD, and resistivity in red >5 ohms	
Figure 15 – Offset Wells Used for Formation Fluid Characterization	
Figure 16 – Environmental Setting of Lower Cretaceous Tidal Flat Deposits (Bebout e	
	-
Figure 17 – Subsea Structure Map: Top of Sligo (injection interval). The red star si location of the O'Neal No. 4.	gnifies the
Figure 18 - Northwest to southeast structural cross section: A-A' Oriented along re	gional dip.
The red star signifies the location of the O'Neal No. 4, with the section line depicted in	red on the
locator map	
Figure 19 – Southwest to northeast structural cross section: B-B' oriented along region	
The red star signifies the location of the O'Neal No. 4, with the section line depicted	
the locator map	
Figure 20 – Extent of the Gulf Coast Aquifer. The red star represents the approximate	location of
the O'Neal No. 4 (modified from Bruun, B., et al., 2016)	31
Figure 21 – Stratigraphic Column of the Gulf Coast Aquifer (Chowdhury and Turco, 200	o6) 32
Figure 22 - Cross Section S-S' Across the Gulf Coast Aquifer. The red star repre	esents the
approximate location of the O'Neal No. 4 (modified from Bruun et al., 2016)	32
Figure 23 – Total Dissolved Solids (TDS) in the Gulf Coast Aquifer. The red star repr	esents the
approximate location of the O'Neal No. 4 (modified from Bruun et al., 2016)	33
Figure 24 – Two-Phase Relative Permeability Curves Used in the GEM Model	37
Figure 25 – Areal View of Saturation Plume at Shut-in (End of Injection)	41
Figure 26 – Areal View of Gas Saturation Plume 10 Years After Shut-in (End of Simulat	ion) 42
Figure 27 – East-West Cross-Sectional View of Gas Saturation Plume at Shut-in (End o	f Injection)
	44
Figure 28 –East-West Cross-Sectional View of Gas Saturation Plume 10 Years After Sh	าut-in (End
of Simulation)	45
Figure 29 – Well Injection Rate and Bottomhole and Surface Pressures Over Time	46
Figure 30 - Plume Boundary at End of Injection, Stabilized Plume Boundary, and	Maximum
Monitoring Area	
Figure 31 – Active Monitoring Area	51
Figure 32 – O'Neal No. 4 Wellbore Schematic	
Figure 33 – All Oil and Gas Wells Within the MMA	57
Figure 34 – Oil and Gas Wells Penetrating the Gross Injection Interval Within the MM/	58
Figure 35 – Groundwater Wells Within the MMA	
Figure 36 – 25-km Seismicity Review	63
Figure 37 – Groundwater Wells	67

Figure 38 – Seismic Events and Monitoring Station69
Tables
Table 1 – Expected TAG Composition
Table 2 – Analysis of Lower Cretaceous (Aptian) age formation fluids from the closest offset Sligo
oil-field brine samples24
Table 3 – Gas Composition
Table 4 – Modeled Injectate Composition
Table 5 – GEM Model Layer Package Properties38
Table 6 – Bottomhole and Wellhead Pressures from the Start of Injection47
Table 7 – Potential Leakage Pathway Risk Assessment52
Table 8 – Summary of TAG Monitors and Equipment54
Table 9 – Summary of Leakage Monitoring Methods64
Table 10 – Baseline Sampling Schedule
Appendices

Appendix A – TRRC O'Neal Gas Unit Well No. 4 Forms

Appendix A-1 – GAU Groundwater Protection Determination

Appendix A-2 – Drilling Permit

Appendix A-3 – Completion Report

Appendix A-4 – Plugging Records

Appendix B – Area of Review

Appendix B-1 – Oil and Gas Wells Within the MMA List

Appendix B-2 – Water Wells Within the MMA List

<u>SECTION 1 – UIC INFORMATION</u>

This section contains key information regarding the Underground Injection Control (UIC) Permit.

1.1 Underground Injection Control Permit Class: Class II

The TRRC regulates oil and gas activities in Texas and has primacy to implement the Underground Injection Control (UIC) Class II program. The TRRC classifies the O'Neal No. 4 as a UIC Class II well. Ozona has applied for a Class II permit for the O'Neal No. 4 under TRRC Rules 36 (Oil, Gas, or Geothermal Resource Operation in Hydrogen Sulfide Areas) and 46 (Fluid Injection into Productive Reservoirs).

1.2 <u>UIC Well Identification Number</u>

• O'Neal No. 4, API No. 42-025-32658, UIC No. 56819

1.3 Facility Address

- Facility Name: StarTex Pawnee Treating Facility
- Operator: StarTex Field Services, LLC
- Coordinates in North American Datum for 1983 (NAD 83) for this facility:

Latitude: 28.622211Longitude: -97.992772

- Greenhouse Gas Reporting Program ID Information:
 - StarTex's gathering and boosting assets are currently reporting under Subpart W via Facility ID No. 568661.
 - Upon sequestration of CO₂ StarTex will also report in accordance with Subpart PP requirements using the same Facility ID No.
 - Ozona will file an application for a separate Facility ID No. under Subpart RR for its sequestration assets.

SECTION 2 – PROJECT DESCRIPTION

This section discusses the geologic setting, planned injection process and volumes, and reservoir and plume modeling performed for the O'Neal No. 4 well.

The O'Neal No. 4 will inject the TAG stream into the Sligo Formation at a depth of 15,874 ft to 16,056 ft, and approximately 14,924 ft below the base of the Underground Source of Drinking Water (USDW). Therefore, the well and the facility are designed to protect against the leakage out of the injection interval, to protect against contaminating other subsurface formations, and—most critically—to prevent surface releases.

2.1 Regional Geology

The O'Neal No. 4 (API No. 42-025-32658) is located in south Texas within the Gulf of Mexico Basin. The onshore portion of the Gulf of Mexico basin spans approximately 148,049,000 acres and encompasses portions of Texas, Louisiana, Mississippi, Alabama, Arkansas, Missouri, Kentucky, Tennessee, Florida, and Georgia to the state-waters boundary of the United States (Roberts-Ashby et al., 2012). The location of the O'Neal No. 4 is designated by the red star in Figure 2, relative to the present coastal extent and major structural features of the basin.

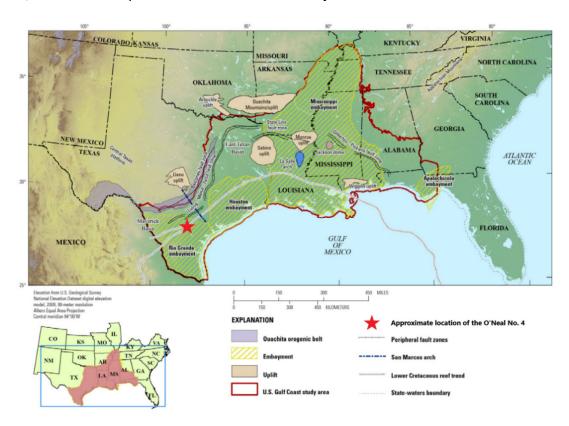


Figure 2 – Structural Features of the Gulf of Mexico and Locator Map (modified from Roberts-Ashby et al., 2012)

Figure 3 depicts a generalized stratigraphic column of the U.S. Gulf Coast, with light blue shading signifying the proposed injection interval and green stars indicating productive formations identified within 5 miles of the O'Neal No. 4. The injection interval is found within the Sligo Formation, with confinement provided by the overlying Pearsall Formation and tight underlying facies of the Lower Sligo and Hosston Formations.

Era	s	ster erie		Global Chronostratigraphic Units	North American Chronostratigraphic Units	Stratigraphic Unit												
	- Quaternary Plei. Holo.		1010.															
				Calabrian		Undifferentiated												
		Pliocene		Piacenzian Zanclean		Undifferentiated												
Cenozoic	Tertiary	Neogene	Miocene	Messinian Tortonian Serravallian Langhian Burdigalian Aquitanian		Upper Mioc. Middle Mioc. Fleming Fm Lower Mioc.												
	Ter		Oligocene	Chattian	Chickasawhayan	★Catahoula Anahuac Fm / Ss Anahuac Frio Formation												
		ne	<u>=</u>	Rupelian	Vicksburgian	Vicksburg Formation												
		Paleogene	Eocene	Priabonian	Jacksonian	Jackson Group												
		Pal		Bartonian Lutetian	Claibornian	Claiborne Group Sparta Sand Cane River Fm Carrizo Sand												
				Ypresian	Sabinian	Wilcox Group												
			Pal.	Thanetian Selandian Danian	Midwayan	Midway Group												
				Maastrichtian	Navarroan	Navarro Group												
			Upper	Campanian	Tayloran	Taylor Group												
				Santonian Coniacian	Austinian	Austin Group / Tokio Formation / Eutaw Formation												
				Turonian	Eaglefordian	Eagle Ford Shale												
				Cretaceous		Cenomanian	Woodbinian	Woodbine / Tuscaloosa Fms										
	91106	100	eons			Cretaceous		snoa		snoa		snoac		+	Washitan-	Washita Group (Buda Ls)		
	2040	Cretac						Cretac	Cretac						Albian	Fredericksburgian	Fredericksburg Group (Edwards Ls / Paluxy Fm)	
												Glen Rose Ls (Rusk / Rodessa Fms)						
Mesozoic			- E	=	Trinitian	Trinitian	Pearsall Formation	UPPER CONFINING INTERVAL										
Mes			Low	Aptian		Sligo Fm	INJECTION INTERVAL											
					Nuevoleonian	Hosston	LOWER CONFINING											
				Barremian		Formation	INTERVAL											
				Hauterivian Valanginian	Durangoan													
				Berriasian	3													

Figure 3 – Stratigraphic column of the U.S. Gulf Coast signifying proposed injection and confining intervals. Offset productive intervals are noted with a green star (modified from Roberts-Ashby et al., 2012).

The targeted formations of this study are located entirely within the Trinity Group, as clarified by the detailed stratigraphic column provided in Figure 4. During this time the area of interest was located along a broad, shallow marine carbonate platform that extended along the northern rim of the ancestral Gulf of Mexico. The Lower Cretaceous platform spanned approximately 870 mi from western Florida to northeastern Mexico, with a shoreline-to-basin margin that ranged between 45 to 125 mi wide (Yurewicz et al., 1993).

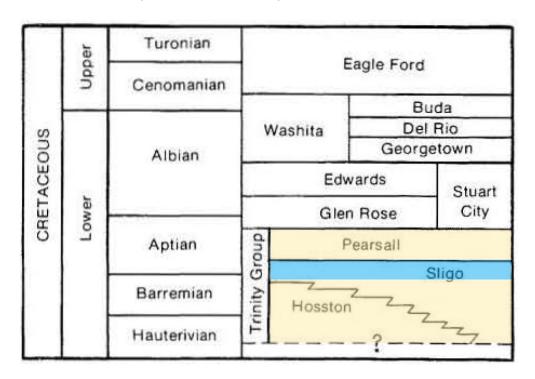


Figure 4 – Detailed stratigraphic column of Lower Cretaceous formations of south Texas. The proposed injection interval is shaded light blue and proposed confining intervals are shaded light yellow (modified from Bebout et al., 1981).

2.1.1 Geologic Setting and Depositional Environment

The depositional environment during the Lower Cretaceous generally consisted of a well-defined platform margin with a shallow marine platform interior or lagoon to the north, a shallow marine outer platform to the south, and a foreslope that gradually dipped southward towards the basin center. The platform margin remained stable for tens of millions of years during the Cretaceous but experienced episodic changes in sea level that resulted in cyclic deposition of several key facies that vary both spatially and within the geologic section. Facies distributions were heavily impacted by positioning relative to the margin, the height of the water column at any given time, and the degree of energy or wave action within the system (Galloway, 2008; Yurewicz et al., 1993).

In general, long stands of reef development and ooid shoaling developed primary porosity and permeability along the shallow, high-energy carbonate platform and represent reservoir quality

rock found within Cretaceous reef deposits. Deeper, basinward deposits tend to result in tighter petrophysical properties due to a relative increase in the amount of entrained clay associated with the heightening of the water column while moving downslope. Backreef deposits have the potential for porosity development but tend to have low permeability due to a general lack of wave action caused by restricted access to open water by the platform margin. Facies and petrophysical properties of the Lower Cretaceous section are anticipated to be relatively homogenous moving southwest-northwest along reef trend, with increased heterogeneity moving northwest-southeast due to the orientation of the carbonate rim and its effect on deposition and facies distributions (Yurewicz et al., 1993).

Figure 5 displays the paleogeography during deposition of the Lower Cretaceous section to visually demonstrate the position of the O'Neal No. 4 relative to the Sligo shelf margin and updip extents of Sligo deposition. A generalized schematic cross section of the Trinity Group is provided in Figure 6, which nearly intersects the project area from the northwest. The schematic illustrates the gross section thickening basinward, with primary reservoir development improving with proximity to the reef margin. Figure 7 displays a depositional model of the Lower Cretaceous carbonate platform to visually conceptualize depositional environments and anticipated petrophysical properties of facies introduced above.

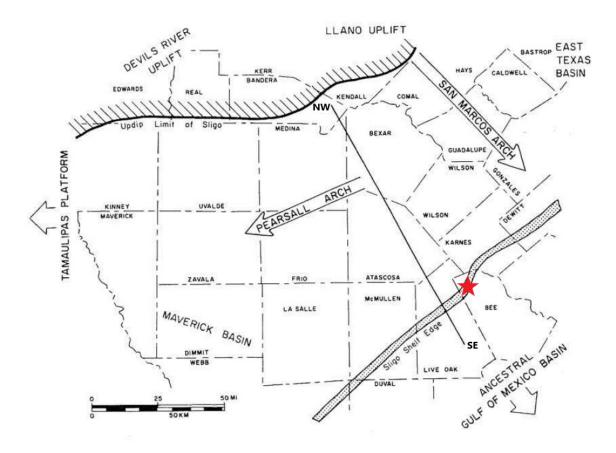


Figure 5 – Paleogeography of the Lower Cretaceous of south Texas. The red star represents the approximate location of the O'Neal No. 4 (modified from Bebout et al., 1981).

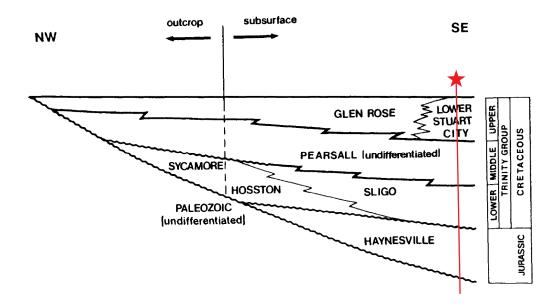


Figure 6 – Generalized northwest to southeast schematic cross section of the Trinity Group, south Texas (the line of section depicted in Figure 5). The red star and line represent the approximate location of the O'Neal No. 4 (modified from Kirkland et al., 1987)

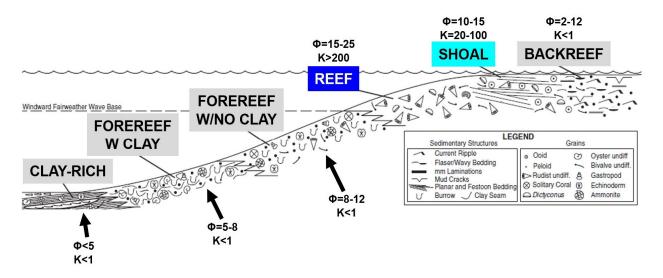


Figure 7 – Depositional model for the Lower Cretaceous carbonate platform with estimated porosity and permeability values of typical facies (modified from Talbert and Atchley, 2000).

2.1.2 Regional Structure and Faulting

The Gulf of Mexico basin was formed by crustal extension and sea-floor spreading associated with the Mesozoic breakup of Pangea. Rifting of northwest to southeast trending transfer faults during the Middle Jurassic lasted approximately 25 million years and resulted in variable thickness of the transcontinental crust underlying the region. By the Lower Cretaceous time, the general outline and morphology of the Gulf were similar to that of present-day (Galloway, 2008;

Yurewicz et al., 1993). Lower Cretaceous tectonic activity was limited to regional subsidence associated with areas of variable crustal thickness and local structuring caused by movement of Louann Salt (Yurewicz et al., 1993). The combination of these processes resulted in the structural development of regional arches, grabens, uplifts, embayments, salt domes, and salt basins around the northern edge of the basin (Dennen and Hackley, 2012; Galloway, 2008). The location of these structural features can be referenced in Figures 2 and 8 relative to the location of the O'Neal No. 4.

The schematic dip-oriented cross section displayed in Figure 9 presents a common interpretation of the current structural setting. Most of the published literature suggests that faulting near the project area is restricted to the shallower, overlying Cenozoic section, as displayed in Figure 9, with shallow faulting dying out before reaching the Pearsall Formation. However, one source did interpret the potential for faulting to the south (Swanson et al., 2016). The closest potential fault is depicted in Figure 8 relative to the location of the O'Neal No. 4. According to the map, the interpreted fault lies approximately 4.25 miles south-southeast of the well and approximately 3.9 miles south-southeast of the stabilized plume extent in the year 2047.

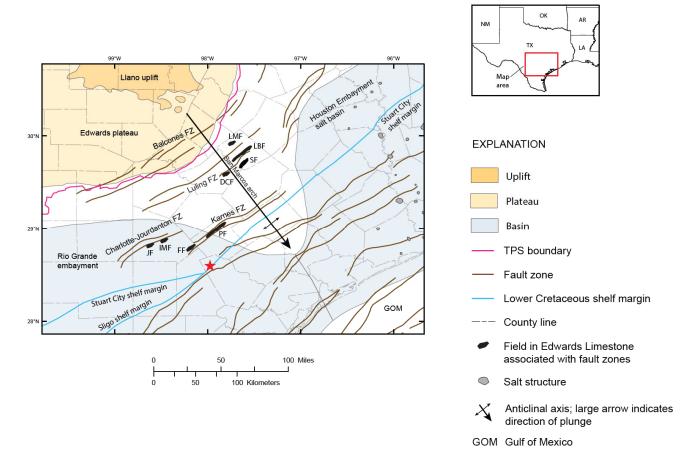


Figure 8 – Structural features and fault zones near the proposed injection site. The red star represents the approximate location of the O'Neal No. 4 (modified from Swanson et al., 2016).

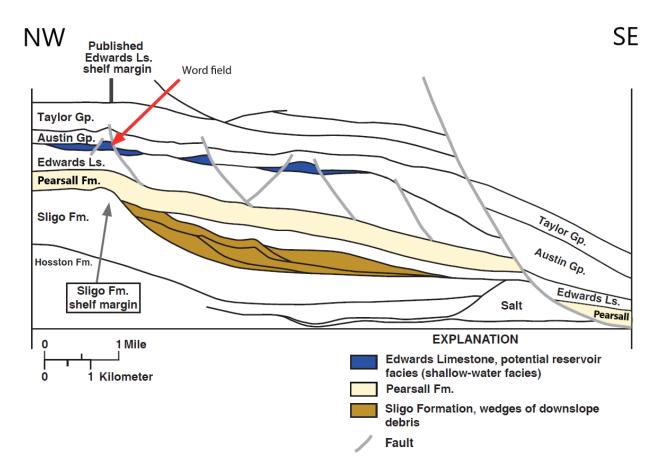


Figure 9 – Northwest to southeast schematic interpretation of the Edwards shelf margin through Word field, northeast of the O'Neal No. 4 project area (modified from Swanson et al., 2016).

2.2 <u>Site Characterization</u>

The following section discusses site-specific geological characteristics of the O'Neal No. 4 well.

2.2.1 Stratigraphy and Lithologic Characteristics

Figure 10 depicts openhole logs from two offset wells (API No. 42-025-00473 and API No. 42-025-31892) to the O'Neal No. 4, indicating the injection and primary upper confining zones. The Tomasek No. 1 (API No. 42-025-00473) is located approximately 1 mi northeast of the O'Neal No. 4 and displays the shallow section from 0–8,200 ft. The Gordon No. 3 (API No. 42-025-31892) is located approximately 1.6 mi northeast of the O'Neal No. 4 and displays a shallow section from 8,200–16,400 ft.

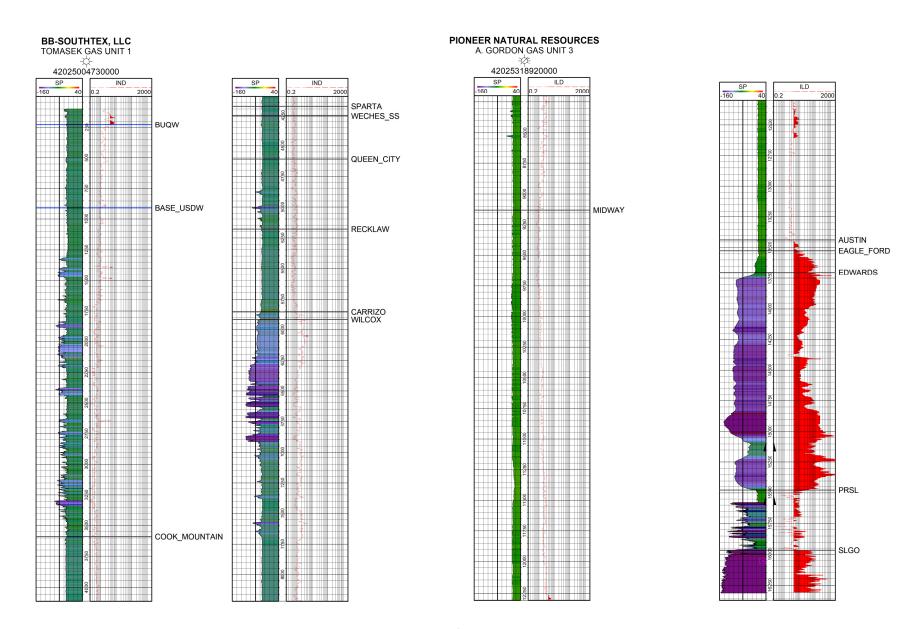


Figure 10 – Type Log with Tops, Confining, and Injection Intervals Depicted

2.2.2 <u>Upper Confining Interval – Pearsall Formation</u>

Following the deposition of the Sligo Formation, the Lower Cretaceous shelf was drowned by eustatic sea-level rise and deposition of the deep-water Pine Island Shale Member of the Pearsall Formation throughout the region (Roberts-Ashby et al., 2012). The Pine Island Shale consists of alternating beds of pelagic mudstone, hemipelagic mudstone, and Fe-rich dolomitic mudstone interpreted to have been deposited along the outer ramp. This is in agreement with core data published by Bebout and others (1981), and later by Swanson and others (2016), who identified the presence of C. Margerelli, a nannofossil indicative of anoxic conditions. The core-derived porosity-permeability relationship displayed in Figure 11 suggests that the permeability of the Pine Island Shale is incredibly low and stays below 0.0001 mD, regardless of porosity (Figure 11; Hull, 2011). This is further supported by the 2012 U.S. Geological Survey (USGS) CO2 Storage Resource Assessment, which suggests that the Pine Island Shale contains the physical properties required to act as a regional seal and was chosen as the upward confining interval for their C50490108 Storage Assessment Unit (SAU) assessment of the Gulf Coast. The 2012 USGS report also noted that the Pine Island Shale is a sufficient regional seal with as little as 50 ft of contiguous shale development. The top of the Pearsall is encountered at a depth of 15,339 ft in the O'Neal No. 4, with a gross thickness of 535 ft (Figure 14). The Pine Island Shale member is approximately 130 ft thick at the O'Neal No. 4 location, with deposition of additional members of the overlying Pearsall Formation, which include the Cow Creek Limestone, Cow Creek shale, and Bexar Shale Members (Roberts-Ashby et al., 2012; Swanson et al., 2016).

The seismic line displayed in Figure 12 runs northwest to southeast across the Stuart City reef trend southwest of the project area. The top of the Buda, Pearsall, and Sligo Formation markers are depicted in color to demonstrate the lateral continuity of the section near the O'Neal No. 4. Seismic reflectors within the Pearsall Formation appear to lack deformation, suggesting consistent deposition over the reef margin. This is in agreement with reviewed published literature, which suggests deposition of the Pine Island Shale occurred during widespread marine transgression (Bebout et al., 1981; Hull, 2011.; Roberts-Ashby et al., 2012, Swanson et al., 2016).

Permeability and Porosity-Crushed Rock Data

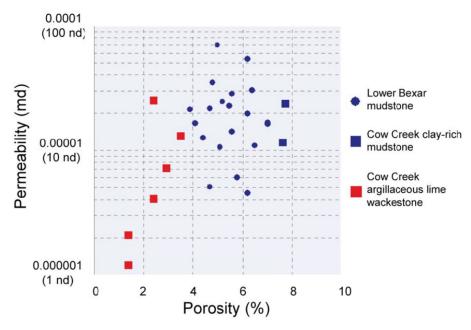


Figure 11 – Porosity-Permeability Crossplot of Pearsall Formation Crushed Rock Core Data (Swanson et al., 2016)

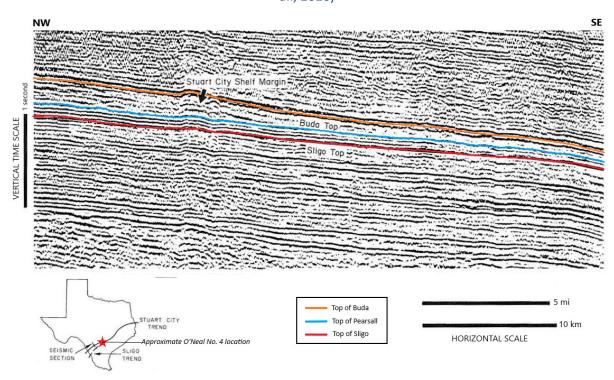


Figure 12 – Seismic line across the Stuart City (Edwards/Buda) shelf margin and locator map. The red star represents the approximate location of the O'Neal No. 4 (modified from Bebout et al., 1981).

2.2.3 Injection Interval – Upper Sligo Formation

The Sligo Formation underlies the Pearsall Formation and is predominately composed of shelf-edge limestones that were deposited along the Lower Cretaceous platform (Roberts-Ashby et al., 2012). However, the Cretaceous also experienced episodic changes in sea level that resulted in the deposition of cyclic Sligo facies that vary both spatially and within the geologic section. The overall Sligo interval is interpreted to be a transgressive sequence occasionally interrupted by progradational cycles that consists of porous shoaling-upward sequences that represent primary reservoir potential within the system (Bebout et al., 1981). Facies distributions of these reef complexes are heavily impacted by positioning relative to the margin, the height of the water column at any given time, and the degree of energy or wave action within the system (Galloway, 2008). Figure 13 depicts an idealized environmental setting of the Lower Cretaceous platform during deposition. Primary porosity and permeability of the upper Sligo Formation tends to develop in high-energy sequences with normal marine conditions that are dominated by the deposition of oolitic and skeletal grainstones.

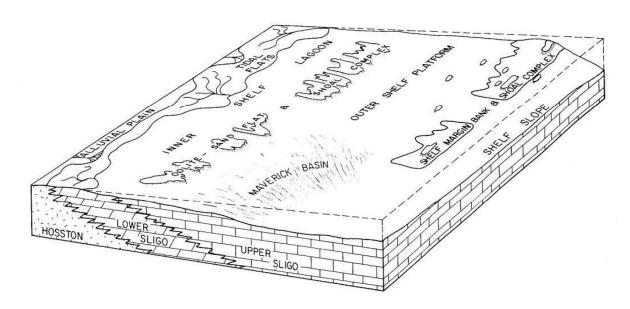


Figure 13 - Environmental Setting of Lower Cretaceous Platform (Bebout et al., 1981)

According to the 2012 USGS CO_2 Storage Resource Assessment, "the average porosity in the porous intervals of the storage reservoir decreases with depth from 9 to 16 percent" for their C50490108 DEEP SAU assessment of the Gulf Coast (>13,000 ft). The study also reported that "the average permeability in the storage reservoirs decreases with depth from 0.05 to 200 mD, with a most-likely value of 8 mD" for their C50490108 DEEP SAU assessment of the Gulf Coast (Roberts-Ashby et al., 2012).

The top of the upper Sligo is encountered at a depth of 15,874 ft in the O'Neal No. 4 with a gross thickness of 183 ft (Figure 14). The type log displayed in Figure 14 plots effective porosity for the confining interval and the total porosity of the injection interval, to account for the increased

volume of shale (Vshale) seen in the Pearsall Formation. The porosity data was compared to the analysis performed by Nutech to generate a permeability curve with a reasonable porosity-permeability relationship. The permeability curve was generated utilizing the Coates permeability equation, incorporated with a 20% irreducible brine saturation to match analysis provided by Nutech. Petrophysical analysis of the O'Neal No. 4 indicates an average porosity of 4.6%, a maximum porosity of 15%, an average permeability of 0.16 mD, and a maximum permeability of 3.3 mD. These curves have been extrapolated to the injection site and used to establish reservoir characteristics in the plume model.

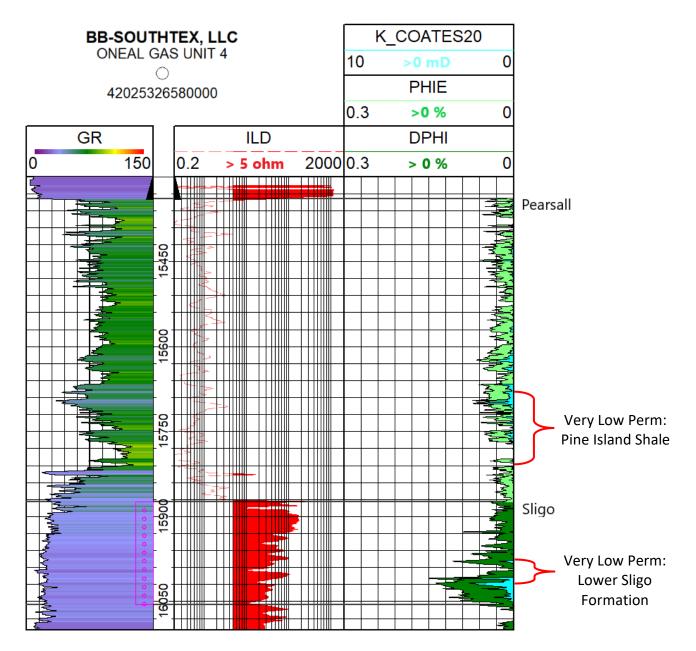


Figure 14 – Openhole log from O'Neal No. 4 (API No. 42-025-32658), with porosity curves shaded green >0%, permeability curve in blue >0 mD, and resistivity in red >5 ohms.

2.2.4 Formation Fluid

The USGS National Produced Waters Geochemical Database version 3.0 was reviewed for chemical analyses of Sligo oil-field brines within the state of Texas (Blondes et al., 2023). Only two samples were identified from the Sligo Formation: one located approximately 29 mi north-northeast in Karnes County and one located approximately 72 mi northeast in Gonzales County. The locations of these wells are shown in Figure 15 relative to the O'Neal No. 4. A summary of water chemistry analyses conducted on the two Texas Sligo oil-field brine samples is provided in Table 2 (page 25).

Averages from the samples were utilized for model assumptions due to the minimal Sligo sample availability and wide geographic spread of Sligo analysis. Total Dissolved Solids (TDS) of the samples contain a wide range of reported values but averaged 176,470 parts per million (ppm). Model sensitivities were established by running iterations with varying TDS values to understand the effect of brine concentrations on plume extents. The results suggested higher density brine values lead to smaller plumes; therefore, a value of 150,000 ppm was established in the model for a conservative approach. If the actual formation fluid sample that will be tested during the recompletion work produces a material difference in the plume, Ozona will submit an updated MRV plan.

Based on the results of the investigation, *in situ* Sligo reservoir fluid is anticipated to contain greater than 20,000 ppm TDS near the O'Neal No. 4, qualifying the aquifer as saline. These analyses indicate the *in situ* reservoir fluid of the Sligo Formation is compatible with the proposed injection fluids.

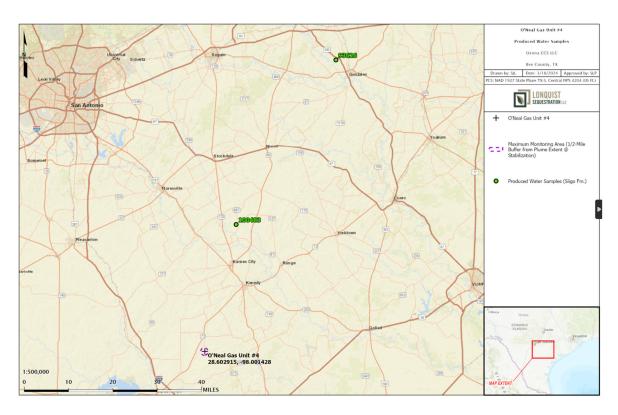


Figure 15 – Offset Wells Used for Formation Fluid Characterization

Table 2 – Analysis of Lower Cretaceous (Aptian) age formation fluids from the closest offset Sligo oil-field brine samples.

Measurement	Karnes County Sample	Gonzales County Sample	Average
Total Dissolved Solids (mg/L)	234,646	117,470	176,058
Sodium (mg/L)	51,168	27,909	39,539
Calcium (mg/L)	34,335	8,684	21,510
Chloride (mg/L)	146,500	57,811	102,156
Sample Depth (ft)	13,580 to 13,660	8,290-8,305	-
рН	5.9	8.2	7.05

2.2.5 Fracture Pressure Gradient

The fracture pressure gradient was obtained from a fracture report taken during the April 1993 Icompletion of the Sligo interval in the O'Neal No. 4. The Sligo was perforated between the depths of 15,874 ft and 16,056 ft, with continuous monitoring during the minifrac job. The report noted a calculated fracture gradient of 0.954 psi/ft based on an initial shut-in pressure (ISIP) of

8,312 psi. A 10% safety factor was then applied to the calculated gradient, resulting in a maximum allowed bottomhole pressure of 0.86 psi/ft. This was done to ensure that the injection pressure would never exceed the fracture pressure of the injection zone.

2.2.6 <u>Lower Confining Interval – Lower Sligo and Hosston Formations</u>

The O'Neal No. 4 reaches its total depth in the lower Sligo Formation, directly below the upper Sligo proposed injection interval. The lower Sligo is interpreted by Bebout and others (1981) to represent the seaward extension of the low-energy lagoon and tidal-flat system of the underlying Hosston Formation, a sequence of siliciclastics, evaporites, and dolomitic mudstone (Figure 16). The Hosston to lower Sligo "contact" represents a gradational package with a decrease in terrigenous sediments, an increase in carbonate sediments, and an increase in burrows of marine organisms working up-section into the lower Sligo. The lower Sligo consists of numerous cycles of subtidal to supratidal carbonates deposited in a low-energy lagoon and tidal-flat system (Bebout et al., 1981). These low permeability facies of the lower Sligo and underlying Hosston Formation will provide lower confinement to the upper Sligo injection interval. Figure 16 illustrates the typical environmental setting for the deposition of tidal flat facies along the Lower Cretaceous margin. The type log displayed in Figure 14 (Section 2.2.3) illustrates that the porosity of the lower Sligo ranges between 0-2% with permeability staying close to 0 mD. Therefore, the petrophysical characteristics of the lower Sligo and Hosston are ideal for prohibiting the migration of the injection stream outside of the injection interval.

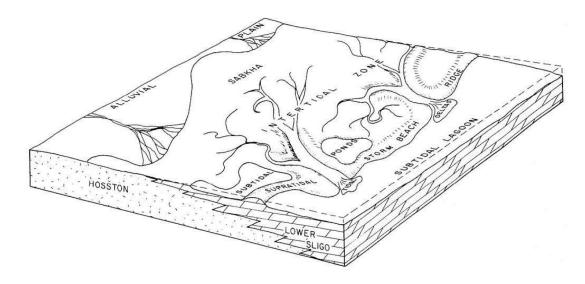


Figure 16 – Environmental Setting of Lower Cretaceous Tidal Flat Deposits (Bebout et al., 1981)

2.3 Local Structure

Structures surrounding the proposed sequestration site were influenced by regional arches, grabens, uplifts, embayments, movement of Louann Salt, and the development of carbonate reef complexes around the northern edge of the basin. However, one potential fault was identified in the literature within proximity and lies approximately 4.25 mi south-southeast of the well and

approximately 3.9 mi south-southeast of the stabilized plume extent in the year 2062 (Swanson et al., 2016). The location of these structural features can be referenced in Figures 2 and 8 relative to the location of the O'Neal No. 4.

A subsea true vertical depth (SSTVD) structure map on the top of the Sligo Formation is provided in Figure 17. The map illustrates the gentle basinward dip of the Sligo from the northwest to the southeast. The structural cross sections provided in Figures 18 and 19 (pages 28 and 29, respectively) illustrate the structural changes encountered in moving away from the O'Neal No. 4 site. The figures also demonstrate the laterally continuous nature of the Pearsall Formation that overlies the injection interval, with sufficient thickness and modeled petrophysical properties to alleviate the risk of upward migration of injected fluids. *Section 2.1.2*, discussing regional structure and faulting, presents a regional discussion pertinent to this topic.

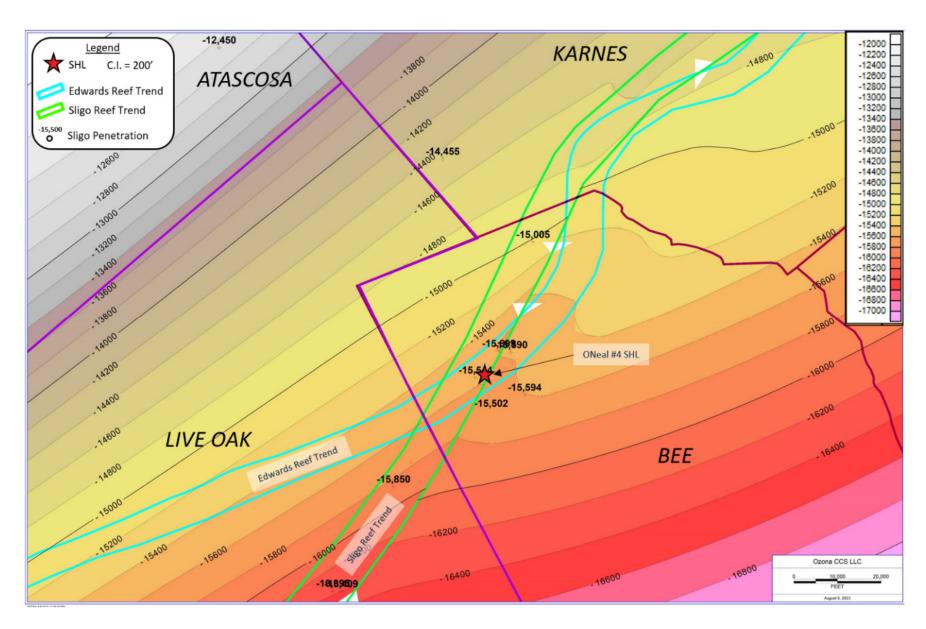


Figure 17 – Subsea Structure Map: Top of Sligo (injection interval). The red star signifies the location of the O'Neal No. 4.

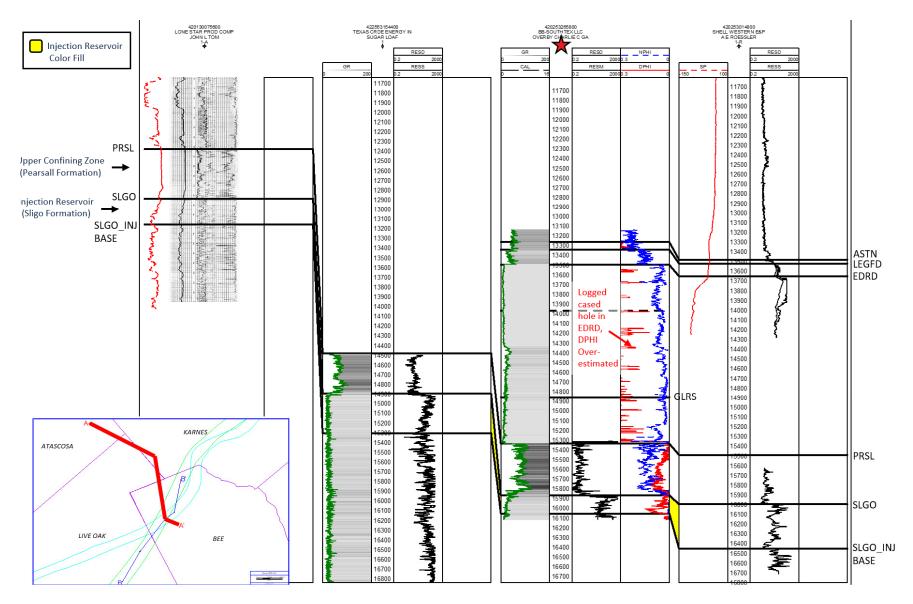


Figure 18 – Northwest to southeast structural cross section: A-A' Oriented along regional dip.

The red star signifies the location of the O'Neal No. 4, with the section line depicted in red on the locator map.

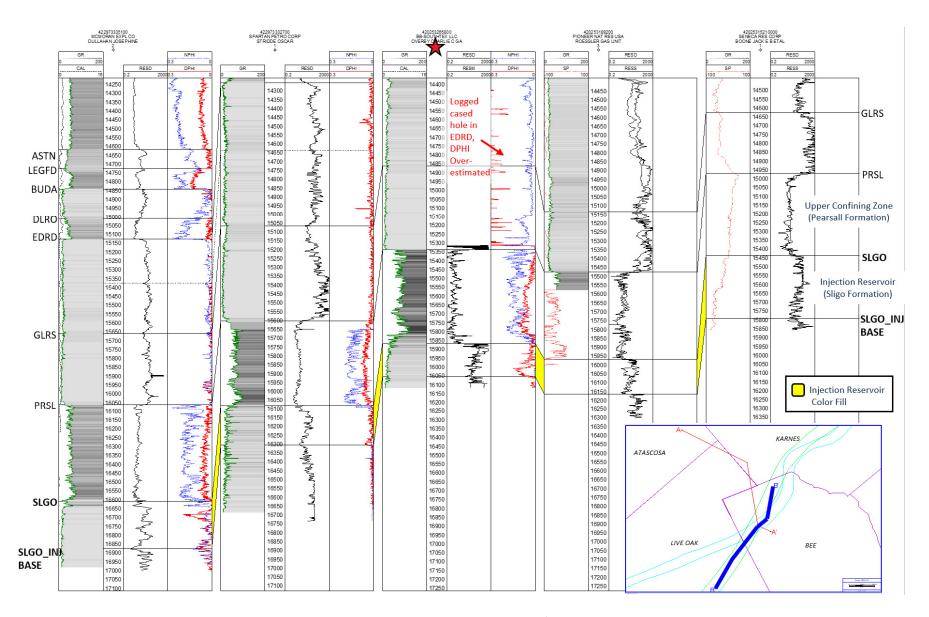


Figure 19 – Southwest to northeast structural cross section: B-B' oriented along regional strike.

The red star signifies the location of the O'Neal No. 4, with the section line depicted in blue on the locator map.

2.4 Injection and Confinement Summary

The lithologic and petrophysical characteristics of the Sligo Formation at the O'Neal No. 4 well location indicate that the reservoir contains the necessary thickness, porosity, and permeability to receive the proposed injection stream. The overlying Pearsall Formation is regionally extensive at the O'Neal No. 4 with low permeability and sufficient thickness to serve as the upper confining interval. Beneath the injection interval, the low permeability, low porosity facies tidal flat, and lagoonal facies of the lower Sligo and underlying Hosston Formation are unsuitable for fluid migration and serve as the lower confining interval.

2.5 **Groundwater Hydrology**

Bee County falls within the boundary of the Bee Groundwater Conservation District. Only one aquifer is identified by the Texas Water Development Board's Texas Aquifers Study near the O'Neal No. 4 well location, the unconfined to semi-confined Gulf Coast aquifer. The Gulf Coast aquifer parallels the Gulf of Mexico and extends across the state of Texas from the Mexican border to the border of Louisiana (Bruun et al., 2016). The extents of the Gulf Coast aquifer are provided in Figure 20 for reference.

The Gulf Coast aquifer is a major aquifer system comprised of several individual aquifers: the Jasper, Evangeline, and Chicot. These aquifers are composed of discontinuous clay, silt, sand, and gravel beds that range from Miocene to Holocene in age (Figure 21, page 32). Numerous interbedded lenses and layers of silt and clay are present within the aquifers, which can confine individual aquifers locally. The underlying Oligocene Catahoula tuff represents the lower confining interval, but it should be noted that the formation is prone to leaking along the base of the aquifer. However, the Burkeville confining interval provides isolation between Jasper and Evangeline aquifers which helps protect the shallower Evangeline and Chicot Aquifers (Bruun et al., 2016).

The schematic cross section provided in Figure 22 (page 32) runs south of the O'Neal No. 4, illustrating the structure and stratigraphy of the aquifer system. The thickness of individual sedimentary units within the Cenozoic section tends to thicken towards the Gulf of Mexico due to the presence of growth faults that allow additional loading of unconsolidated sediment. The total net sand thickness of the aquifer system ranges between 700 ft of sand in the south, to over 1,300 ft in the north, with the saturated freshwater thickness averaging 1,000 ft.

The water quality of the aquifer system varies with depth and locality but water quality generally improves towards the central to northeastern portions of the aquifer where TDS values are less than 500 milligrams per liter (mg/L). The salinity of the Gulf Coast aquifer increases to the south, where TDS ranges between 1,000 mg/L to more than 10,000 mg/L. The Texas Water Development Board's Texas Aquifers Study (2016) suggests that areas associated with higher salinities are possibly associated with saltwater intrusion likely "resulting from groundwater pumping or to brine migration in response to oil field operations and natural flows from salt domes intruding into the aquifer" (Bruun et al., 2016).

According to the TDS map of the Gulf Coast aquifer (Figure 23), the TDS in northern Bee County range between 500–3,000 mg/L near the O'Neal No. 4, categorizing the aquifer as fresh to slightly saline.

The TRRC's Groundwater Advisory Unit (GAU) identified the Base of Useable Quality water (BUQW) at a depth of 250 ft and the base of the USDW at a depth of 950 ft at the location of the O'Neal No. 4. Approximately 14,924 ft is therefore separating the base of the USDW and the injection interval. (A copy of the GAU's Groundwater Protection Determination letter issued by the TRRC as part of the Class II permitting process for the O'Neal No. 4 is provided in Exhibit A-1.) The base of the deepest aquifer is separated from the injection interval by more than 14,924 ft of rock, including 4,200 feet of Midway shale. Though unlikely for reasons outlined in the sections here on confinement and potential leaks, if the migration of injected fluid did occur above the Pearsall Formation, thousands of feet of tight sandstone, limestone, shale, and anhydrite beds occur between the injection interval and the lowest water-bearing aquifer.

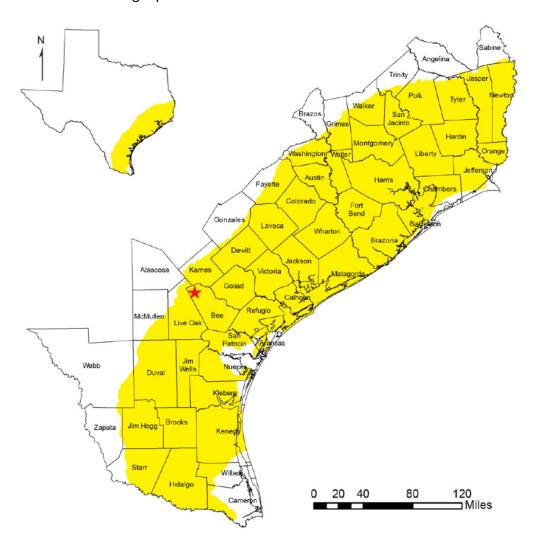


Figure 20 – Extent of the Gulf Coast Aquifer. The red star represents the approximate location of the O'Neal No. 4 (modified from Bruun, B., et al., 2016)

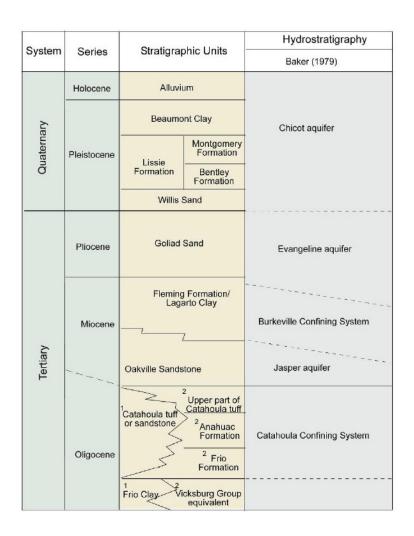


Figure 21 – Stratigraphic Column of the Gulf Coast Aquifer (Chowdhury and Turco, 2006)



Figure 22 – Cross Section S-S' Across the Gulf Coast Aquifer. The red star represents the approximate location of the O'Neal No. 4 (modified from Bruun et al., 2016)

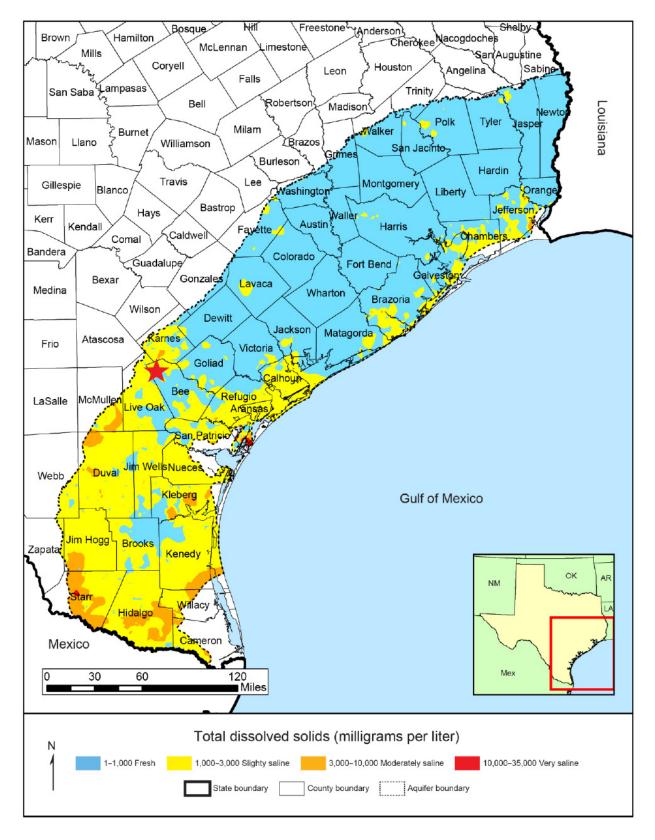


Figure 23 – Total Dissolved Solids (TDS) in the Gulf Coast Aquifer. The red star represents the approximate location of the O'Neal No. 4 (modified from Bruun et al., 2016).

2.6 References

- Bebout, D.G., Budd, D.A., and Schatzinger, R.A. (1981). Depositional and Diagenetic History of the Sligo and Hosston Formations (Lower Cretaceous) in South Texas: The University of Texas at Austin, Bureau of Economic Geology, Report of Investigations No. 109.
- Blondes, M.S., Gans, K.D., Engle, M.A. et al. (2018). U.S. Geological Survey National Produced Waters Geochemical Database (Ver. 2.3, January 2018): U.S. Geological Survey data release, https://doi.org/10.5066/F7J964W8.
- Bruun, B., Anaya, R., Boghici, R. et al. (2016). Texas Aquifers Study: Chapter 6, Gulf Coast Aquifers.
- Chowdhury, A.H. and Turco, M.J. (2006). Geology of the Gulf Coast Aquifer, Texas. In: Mace, R.E., et al., Eds., Aquifers of the Gulf Coast of Texas: Texas Water Development Board Report.
- Dennen, K.O. and Hackley, P.C. (2012). Definition of Greater Gulf Basin Lower Cretaceous and Upper Cretaceous lower Cenomanian Shale Gas Assessment Unit, United States Gulf of Mexico basin onshore and state waters: https://pubs.usgs.gov/publication/70176229.
- Galloway, W.E. (2008). Sedimentary Basins of the World, Chapter 15: Depositional Evolution of the Gulf of Mexico Sedimentary Basin, 505-549.
- Hull, D.C. (2011). Stratigraphic Architecture, Depositional Systems, and Reservoir Characteristics of the Pearsall Shale-Gas System, Lower Cretaceous, South Texas: Thesis for M.S. of Science in Geology, University of Texas, Austin.
- Kirkland, B.L., Lighty, R.G., Rezak, R., and Tieh, T.T. (1987). Lower Cretaceous barrier reef and outer shelf facies, Sligo Formation, south Texas, United States.
- Roberts-Ashby, T.L., Brennan, S.T., Buursink, M.L. et al. (2012). Geologic framework for the national assessment of carbon dioxide storage resources: U.S. Gulf Coast. *USGS*.
- Swanson, S.M., Enomoto, C.B., Dennen, K.O. et al. (2017). Geologic assessment of undiscovered oil and gas resources—Lower Cretaceous Albian to Upper Cretaceous Cenomanian carbonate rocks of the Fredericksburg and Washita Groups, United States Gulf of Mexico Coastal Plain and State Waters: U.S. Geological Survey Open-File Report 2016–1199, 69 p., https://doi.org/10.3133/ofr20161199.
- Talbert, S.J. and Atchley, S.J. (2000). Sequence Stratigraphy of the Lower Cretaceous (Albian) Fredericksburg Group, Central and North Texas: Department of Geology, Baylor University, Waco, Texas 76798.
- Yurewicz, D.A., Marler, T.B., Meyerholtz, K.A., and Siroky, F.X. (1993). Early Cretaceous Carbonate Platform, North Rim of the Gulf of Mexico, Mississippi, and Louisiana.

2.7 Description of the Injection Process

2.7.1 Current Operations

The Pawnee Treating Facility and the O'Neal No. 4 are existing operating assets. The O'Neal No. 4 will be recompleted for acid gas injection service under the Class II permit process. Under the Class II application, the maximum injection rate is $28 \, \text{MT/yr}$ (1.5 MMscf/d). The TAG is $98.2\% \, \text{CO}_2$, which equates to $27.5 \, \text{MT/yr}$ of CO_2 each year. The current composition of the TAG stream is displayed in Table 3.

Component	Mol Percent
Carbon Dioxide	98.2%
Hydrocarbons	1.03%
Hydrogen Sulfide	0.4%
Nitrogen	0.37%

Table 3 – Gas Composition

The facility is designed to treat, dehydrate, and compress the natural gas produced from the surrounding acreage in Bee County. The facility uses an amine unit to remove the CO₂ and other constituents from the gas stream. The TAG stream is then dehydrated, compressed, and routed directly to the O'Neal No. 4 for injection. The remaining gas stream is processed to separate the natural gas liquids from the natural gas. The facility is monitored 24 hours per day, 7 days per week.

2.8 Reservoir Characterization Modeling

The modeling software used to evaluate this project was Computer Modelling Group, Ltd.'s GEM 2023.2 (GEM) simulator, one of the most comprehensive reservoir simulation software packages for conventional, unconventional, and secondary recovery. The GEM utilizes equation-of-state (EOS) algorithms in conjunction with some of the most advanced computational methods to evaluate compositional, chemical, and geochemical processes and characteristics. This results in the creation of exceedingly precise and dependable simulation models for carbon injection and storage. The GEM model holds recognition from the EPA for its application in the delineation modeling aspect of the area of review, as outlined in the Class VI Well Area of Review Evaluation and Corrective Action Guidance document.

The Sligo Formation serves as the target formation for the O'Neal No. 4 (API No. 42-025-32658). The Petra software package was utilized to construct the geological model for this target formation. Within Petra, formation top contours were generated and subsequently brought into GEM to outline the geological structure.

Porosity and permeability estimates were determined using the porosity log from the O'Neal No. 4. A petrophysical analysis was then conducted to establish a correlation between porosity values and permeability, employing the Coates equation. Both the porosity and permeability estimates from

the O'Neal No. 4 were incorporated into the model, with the assumption that they exhibit lateral homogeneity throughout the reservoir.

The reservoir is assumed to be at hydrostatic equilibrium. Given the geological formation in which this well is located and its previous history as a gas producer, the model is assumed to be primarily saturated with gas. More precisely, the reservoir is assumed to be 80% gas saturated and 20% brine saturated, as deduced from the well log data. The modeled injection interval exhibits an average permeability of 0.23 mD and an average porosity of 5%. All layers within the model have been perforated. An infinite-acting reservoir has been created to simulate the boundary conditions.

The gas injectate is composed predominantly of CO_2 as shown in Table 4. The modeled composition takes into consideration the carbon dioxide and other constituents of the total stream. As the facility has been in operation for many years, the gas composition for the proposed injection period is expected to remain constant.

Component	Expected Composition (mol %)	Modeled Composition (mol %)
Carbon Dioxide (CO ₂)	98.2	98.2
Hydrocarbons	1.03	Hydrocarbons
Hydrogen Sulfide	0.4	Hydrogen Sulfide
Nitrogen	0.37	Nitrogen

Core data from the literature review was used to determine residual gas saturation (Keelan and Pugh, 1975) and relative permeability curves between carbon dioxide and the connate brine within the Sligo carbonates (Bennion and Bachu, 2010). A maximum residual gas saturation of 35% was assigned to the model based on core from the literature review. The Corey-Brooks method was used to create relative permeability curves. The key inputs used to create the relative permeability curves in the model include a Corey exponent for brine of 1.8, a Corey exponent for gas of 2.5, brine and gas relative permeability endpoints of 0.8 and 0.5, respectively, and an irreducible brine saturation of 20%. The relative permeability curves used for the GEM model are shown in Figure 24.

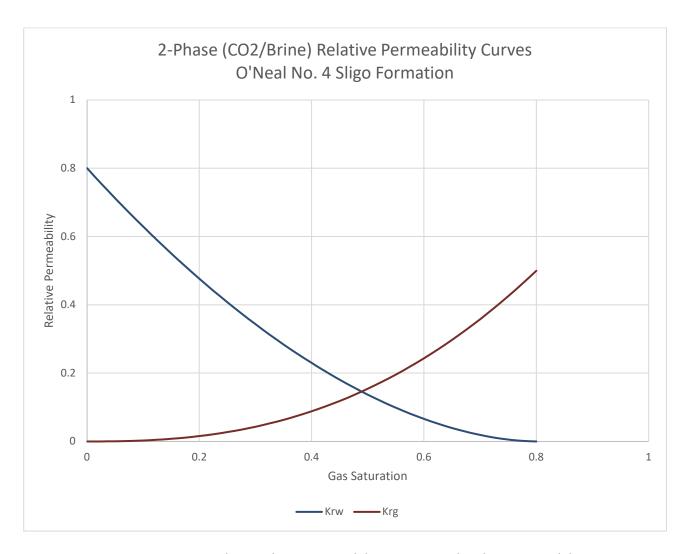


Figure 24 – Two-Phase Relative Permeability Curves Used in the GEM Model

The grid contains 81 blocks in the x-direction (east-west) and 81 blocks in the y-direction (north-south), resulting in a total of 6,561 grid blocks per layer. Each grid block spans dimensions of 250 ft x 250 ft. This configuration yields a grid size measuring 20,250 ft x 20,250 ft, equating to just under 15 square miles in area. The grid cells in the vicinity of the O'Neal No. 4, within a radius of 0.5 mi, have been refined to dimensions of 83.333 ft x 83.333 ft in all layers. This refinement is employed to ensure a more accurate representation of the plume and pressure effects near the wellbore.

In the model, each layer is characterized by homogeneous permeability and porosity values. These values are derived from the porosity log of the O'Neal No. 4. The model encompasses a total of 61 layers, each featuring a thickness of approximately 3 ft per layer. As previously mentioned, the model is perforated in each layer, with the top layer being the top of the injection interval and the bottom layer being the lowest portion of the injection interval. The summarized property values for each of these packages are displayed in Table 5.

Table 5 – GEM Model Layer Package Properties

Layer	Тор	Thickness	Perm.	Porosity
No.	(TVD ft)	THICKHESS	(mD)	(%)
1	15,874	3	0.004	3.75%
2	15,877	3	0.002	2.98%
3	15,880	3	0.001	1.62%
4	15,883	3	0.001	1.78%
5	15,886	3	0.002	2.32%
6	15,889	3	0.001	1.96%
7	15,892	3	0.002	3.10%
8	15,895	3	0.002	2.99%
9	15,898	3	0.003	3.52%
10	15,901	3	0.006	4.00%
11	15,904	3	0.005	3.93%
12	15,907	3	0.001	2.15%
13	15,910	3	0.001	1.99%
14	15,913	3	0.002	2.97%
15	15,916	3	0.001	2.22%
16	15,919	3	0.002	2.88%
17	15,922	3	0.001	2.38%
18	15,925	3	0.093	6.68%
19	15,928	3	0.005	2.62%
20	15,931	3	0.002	2.58%
21	15,934	3	0.003	3.07%
22	15,937	3	0.006	3.62%
23	15,940	3	0.002	2.68%
24	15,943	3	0.001	1.08%
25	15,946	3	0.002	1.87%
26	15,949	3	0.025	4.70%
27	15,952	3	0.024	4.37%
28	15,955	3	0.001	1.97%
29	15,958	3	0.003	2.27%
30	15,961	3	0.007	3.09%
31	15,964	3	0.110	6.75%
32	15,967	3	0.037	5.62%
33	15,970	3	0.011	4.41%
34	15,973	3	0.022	4.59%
35	15,976	3	0.297	7.88%
36	15,979	3	0.440	9.21%
37	15,982	3	0.060	5.90%
38	15,985	3	0.001	2.22%
39	15,988	3	0.001	2.21%

Layer No.	Top (TVD ft)	Thickness	Perm. (mD)	Porosity (%)
40	15,991	3	0.001	1.12%
41	15,994	3	0.003	2.05%
42	15,997	3	0.014	4.56%
43	16,000	3	0.007	4.15%
44	16,003	3	0.033	5.95%
45	16,006	3	1.233	10.25%
46	16,009	3	1.476	12.04%
47	16,012	3	0.566	10.08%
48	16,015	3	1.679	12.18%
49	16,018	3	2.194	13.08%
50	16,021	3	1.235	12.02%
51	16,024	3	0.788	11.22%
52	16,027	3	0.944	10.48%
53	16,030	3	0.424	9.05%
54	16,033	3	0.378	8.85%
55	16,036	3	0.378	8.81%
56	16,039	3	0.378	8.84%
57	16,042	3	0.736	9.91%
58	16,045	3	0.232	7.94%
59	16,048	3	0.238	7.97%
60	16,051	3	0.012	3.01%
61	16,054	3	0.038	4.30%

2.8.1 Simulation Modeling

The primary objectives of the model simulation were as follows:

- 1. Estimate the maximum areal extent and density drift of the injectate plume after injection.
- 2. Determine the ability of the target formation to handle the required injection rate without fracturing the injection zone.
- 3. Assess the likelihood of the injectate plume migrating into potential leak pathways.

The reservoir is assumed to have an irreducible brine saturation of 20%. The salinity of the brine within the formation is estimated to be 150,000 ppm (USGS National Produced Waters Geochemical Database, Ver. 2.3), typical for the region and formation. The injectate stream is primarily composed of CO_2 and H_2S as stated previously. Core data from the literature was used to help generate relative permeability curves. From the literature review, also as previously discussed, cores that most closely represent the carbonate rock formation of the Sligo seen in this region were identified, and the Corey-Brooks equations were used to develop the curves (Bennion and Bachu, 2010). A low, conservative residual gas saturation based on the cores from the literature review was then used to estimate the size of the plume (Keelan and Pugh, 1975).

The model is initialized with a reference pressure of 10,995 psig at a subsea depth of 15,740 ft. This, when a Kelly Bushing "KB" elevation of 334 ft is considered, correlates to a gradient of 0.684 psi/ft. This pressure gradient was determined from production data of the O'Neal No. 4. An initial reservoir pressure of 0.76 psi/ft was calculated before initial production. However, in 1997, after producing approximately 0.5 billion cubic feet (Bcf) of gas, the well was shut in. The last bottomhole pressure reading was calculated to be 0.480 psi/ft. This assumes the reservoir repressurizes after production ceases, but not fully back to in situ conditions. Therefore, a 10% safety factor was given to the initial reservoir pressure gradient of 0.76 psi/ft, and a gradient of 0.684 psi/ft was implemented into the model as a conservative estimate. A skin factor of -2 was applied to the well to simulate the stimulation of the O'Neal No. 4 for gas production from the Sligo Formation, which is based on the acid fracture report, provided in *Appendix A-3*.

The fracture gradient of the injection zone was estimated to be 0.954 psi/ft, which was determined from the acid fracture report. A 10% safety factor was then applied to this number, putting the maximum bottomhole pressure allowed in the model at 0.86 psi/ft, which is equivalent to 13,652 psig at the top of the Sligo injection interval.

The model, which begins in January 2025, runs for a total of 22 years, comprising 12 years of active injection, and is then succeeded by 10 years of density drift. Throughout the entire 12-year injection period, an injection rate of 1.5 MMscf/D is used to model the maximum available rate, yielding the largest estimate of the plume size. After the 12-year injection period, when the O'Neal No. 4 ceases injection, the density drift of the plume continues until the plume stabilizes 10 years later. The maximum plume extent during the 12-year injection period is shown in Figure 25. The final extent after 10 years of density drift after injection ceases is shown in Figure 26 (page 42).

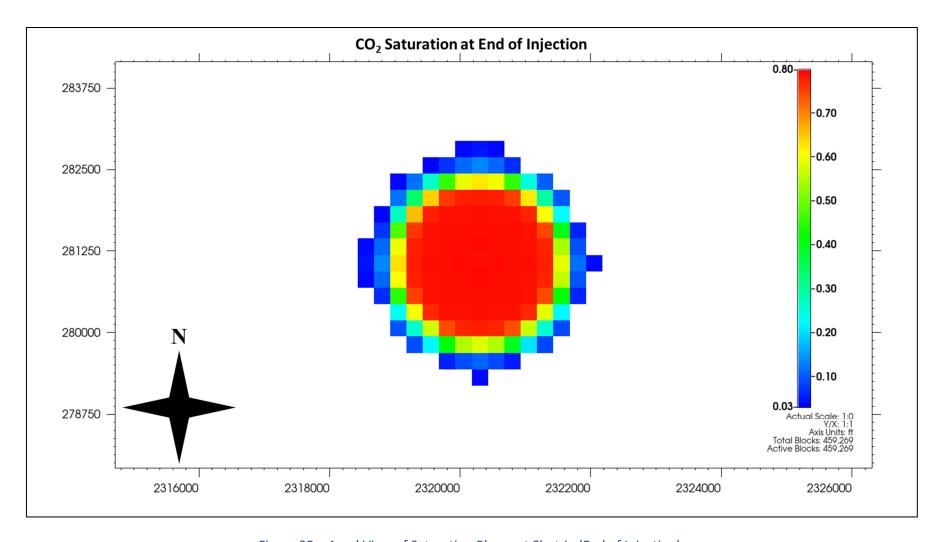


Figure 25 – Areal View of Saturation Plume at Shut-in (End of Injection)

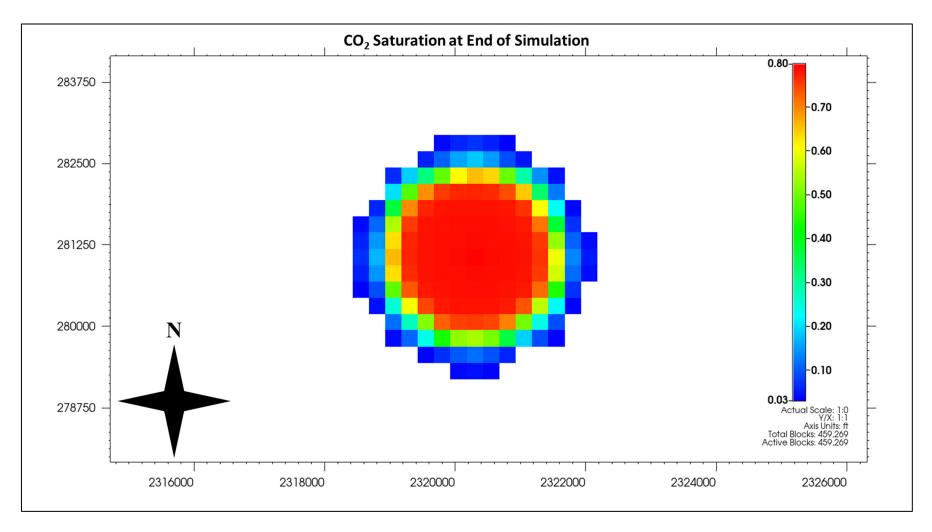


Figure 26 – Areal View of Gas Saturation Plume 10 Years After Shut-in (End of Simulation)

The cross-sectional view of the O'Neal No. 4 shows the extent of the plume from a side-view angle, cutting through the formation at the wellbore. Figure 27 shows the maximum plume extent during the 12-year injection period. During this time, gas from the injection well is injected into the permeable layers of the formation and predominantly travels laterally. Figure 28 (page 45) shows the final extent of the plume after 10 years of migration. Then, the effects of residual gas saturation and migration due to density drift are clearly shown. At least 35% of injected gas that travels into each grid cell is trapped, as the gas travels mostly vertically—as it is less dense than the formation brine—until an impermeable layer is reached. Both figures are shown in an east-to-west view.

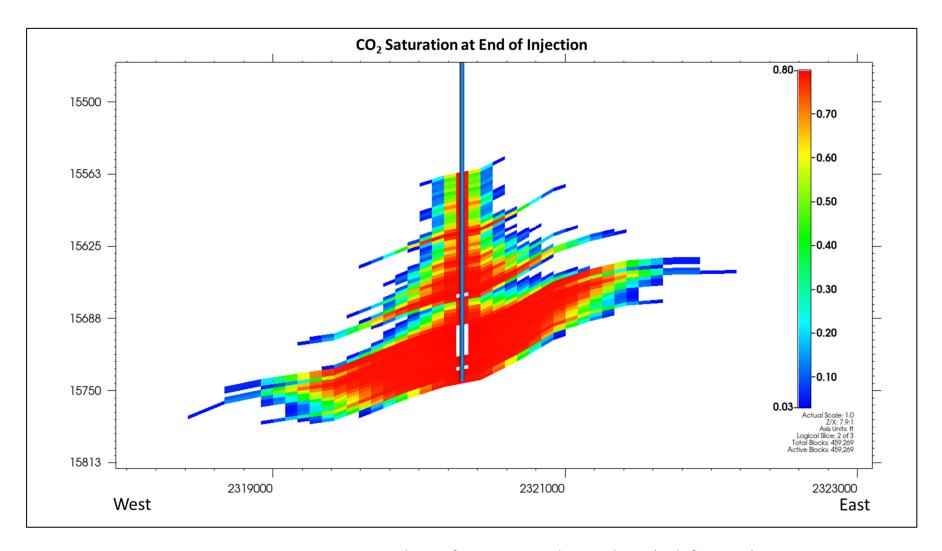


Figure 27 – East-West Cross-Sectional View of Gas Saturation Plume at Shut-in (End of Injection)

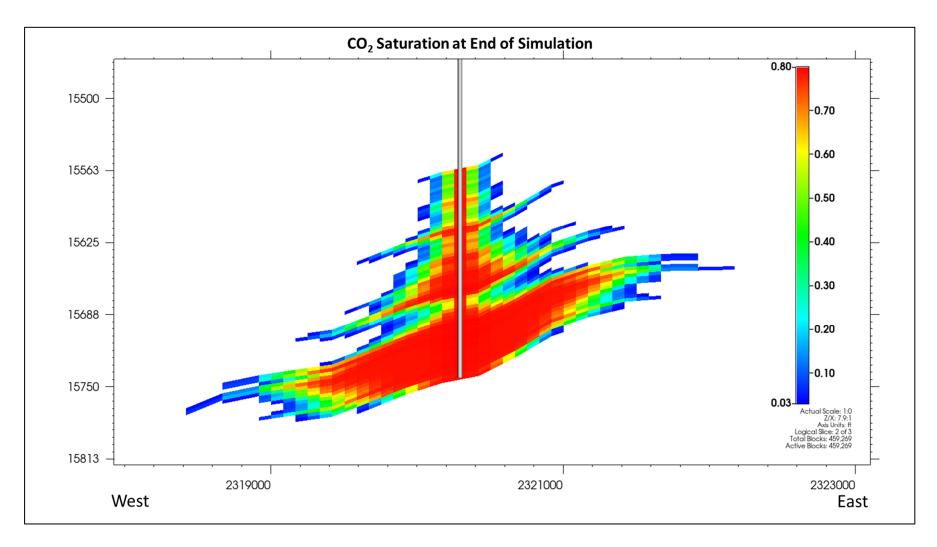


Figure 28 –East-West Cross-Sectional View of Gas Saturation Plume 10 Years After Shut-in (End of Simulation)

Figure 29 shows the surface injection rate, bottom hole pressures, and surface pressures over the injection period—and the period of density drift after injection ceases. The bottomhole pressure increases the most as the injection rate ends, reaching a maximum pressure of 13,337 psig, at the end of injection. This buildup of 2,362 psig keeps the bottomhole pressure below the fracture pressure of 13,652 psig. The maximum surface pressure associated with the maximum bottomhole pressure reached is 6,095 psig, well below the maximum allowable 7,937 psig per the TRRC UIC permit application for this well. Bottomhole and wellhead pressures are provided in Table 6.

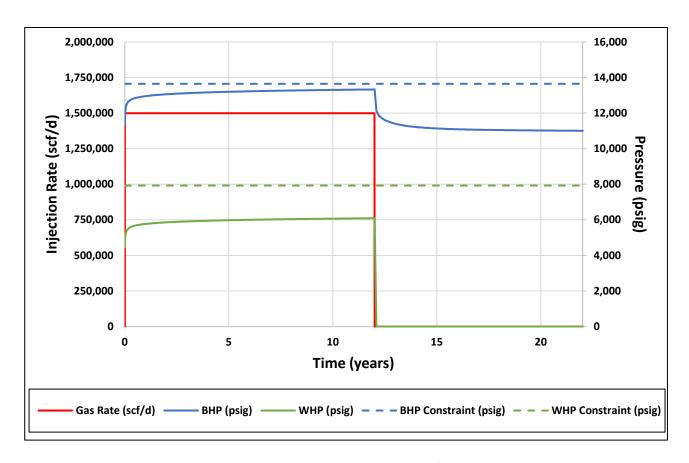


Figure 29 – Well Injection Rate and Bottomhole and Surface Pressures Over Time

Table 6 – Bottomhole and Wellhead Pressures from the Start of Injection

Time from Start of Injection (years)	BHP (psig)	WHP (psig)
0	10,975	-
10	13,311	6,073
12 (End of Inj.)	13,337	6,095
20	11,029	-
22 (End of Model)	11,013	-

SECTION 3 – DELINEATION OF MONITORING AREA

This section discusses the delineation of both the maximum monitoring area (MMA) and active monitoring area (AMA) as described in 40 CFR §98.448(a)(1).

3.1 Maximum Monitoring Area

The MMA is defined as equal to or greater than the area expected to contain the free-phase CO₂ plume until the plume has stabilized, plus an all-around buffer zone of at least one half mile. Numerical simulation was used to predict the size and drift of the plume. With CMG's GEM software package, reservoir modeling was used to determine the areal extent and density drift of the plume. The model considers the following:

- Offset well logs to estimate geologic properties
- Petrophysical analysis to calculate the heterogeneity of the rock
- Geological interpretations to determine faulting and geologic structure
- Offset injection history to predict the density drift of the plume adequately

Ozona's expected gas composition was used in the model. The injectate is estimated at a molar composition of 98.2% CO₂ and 1.8% of other constituents. The StarTex Pawnee Treating Facility has been in stable operations for many years. Ozona believes the gas analysis provided in Table 1 is an accurate representation of the injectate. In the future, if the actual gas analysis varies materially from the injectate composition herein, an update to this MRV plan will be submitted to the GHGRP. As discussed in *Section 2*, the gas will be injected into the Sligo Formation. The geomodel was created based on the rock properties of the Sligo.

The plume boundary was defined by the weighted average gas saturation in the aquifer. A value of 3% gas saturation was used to determine the boundary of the plume. When injection ceases in Year 12, the area expanse of the plume will be approximately 270 acres. The maximum distance between the wellbore and the edge of the plume is approximately 0.42 mi to the west. After 10 additional years of density drift, the areal extent of the plume is 303 acres with a maximum distance to the edge of the plume of approximately 0.45 mi to the west. Since the plume shape is relatively circular, the maximum distance from the injection well after density drift was used to define the circular boundary of the MMA. The AMA and the MMA have similar areas of influence, with the AMA being only marginally smaller than the MMA. Therefore, Ozona will set the AMA equal to the MMA as the basis for the area extent of the monitoring program.

This is shown in Figure 30 with the plume boundary at the end of injection, the stabilized plume boundary, and the MMA. The MMA boundary represents the stabilized plume boundary after 10 years of density drift plus an all-around buffer zone of one half mile.

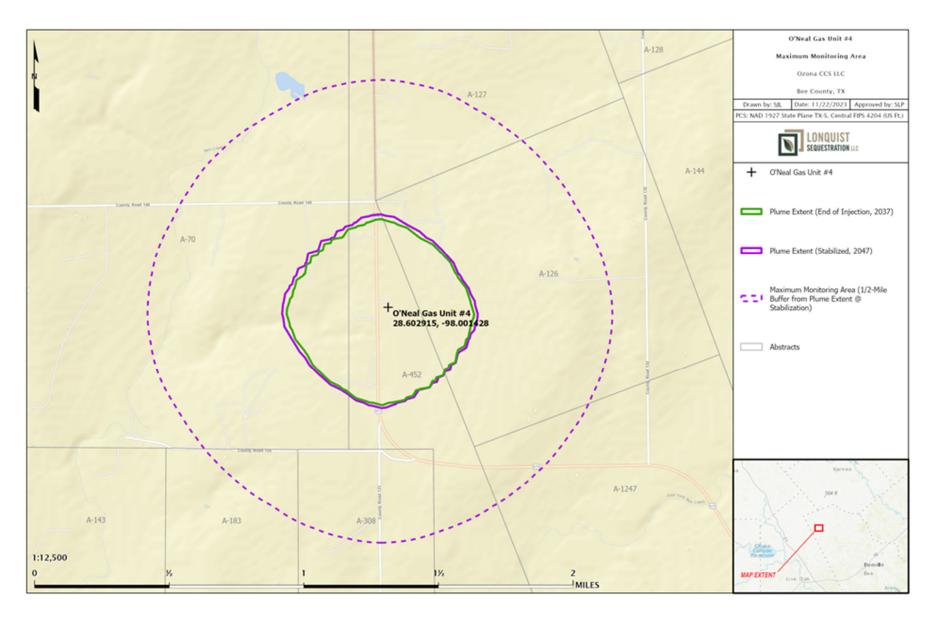


Figure 30 – Plume Boundary at End of Injection, Stabilized Plume Boundary, and Maximum Monitoring Area

3.2 Active Monitoring Area

The AMA was initially set equal to the expected total injection period of 12-years. The AMA was analyzed by superimposing the area based on a one-half mile buffer around the anticipated plume location after 12 years of injection (2037), with the area of the projected free-phase CO₂ plume at five additional years (2042). In this case, as shown in Figure 31, the plume boundary in 2042 is within the plume in 2037 plus the one-half mile buffer. Since the AMA boundary is only slightly smaller than the MMA boundary, Ozona will define the AMA to be equal to the MMA. By 2037, Ozona will submit a revised MRV plan to provide an updated AMA and MMA.

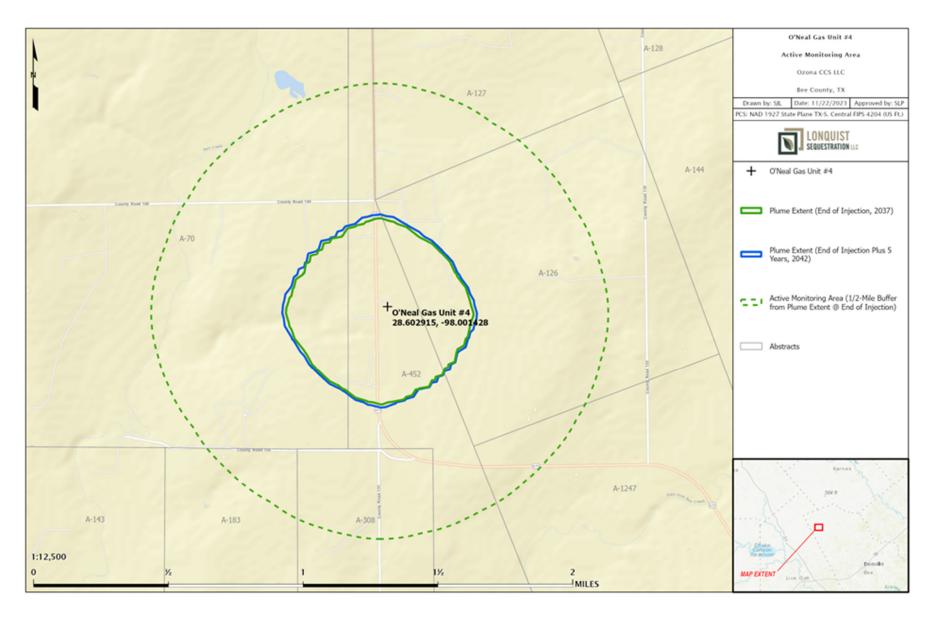


Figure 31 – Active Monitoring Area

<u>SECTION 4 – POTENTIAL PATHWAYS FOR LEAKAGE</u>

This section identifies and discusses the potential pathways within the MMA for CO_2 to reach the surface and is summarized in Table 7. Also included are the likelihood, magnitude, and timing of such potential leakage. The potential leakage pathways are:

- Surface equipment
- Existing wells within the MMA
- Faults and fractures
- Upper confining layer
- Natural or induced seismicity

Table 7 – Potential Leakage Pathway Risk Assessment

Potential Leakage Pathway	Likelihood	Í	Magnitude	Timing
Surface Equipment	Possible during injection operations.	Low	Low. Automated systems will detect leaks and execute shut-down procedures.	During active injection period. Thereafter the well will be plugged.
Existing wells within the MMA	Unlikely. One artificial penetration was drilled into the injection interval. This well has been properly plugged and abandoned.	Low	Low. Vertical migration of CO ₂ would likely enter a shallower hydrocarbon production zone.	During active injection.
Faults and fractures	Unlikely. There is over 14,000 ft of impermeable rock between the injection zone and the base of the USDW.	Low	Low. Vertical migration of CO ₂ would likely enter a shallower hydrocarbon production zone.	During active injection.
Upper confining zone	Unlikely. The lateral continuity of the UCZ consisting primarily of the Pearsall Formation which is over 500 ft thick is recognized as a very competent seal.	Low	Low. Vertical migration of CO ₂ would likely enter a shallower hydrocarbon production zone.	During active injection.
Natural or induced seismicity	Unlikely. There is over 14,000 ft of impermeable rock between the injection zone and the base of the USDW.	Low	Low. Vertical migration of CO ₂ would likely enter a shallower hydrocarbon production zone.	During active injection.

^{1 -} UCZ is defined as the upper confining zone.

Magnitude Assessment Description

Low - catergorized as little to no impact to safety, health and the environment and the costs to mitigate are minimal.

Medium - potential risks to the USDW and for surface releases does exist, but circumstances can be easily remediated.

High - danger to the USDW and significant surface release may exist, and if occurs this would require significant costs to remediate.

4.1 Leakage from Surface Equipment

The Pawnee Treating Facility and O'Neal No. 4 are designed for separating, transporting, and injecting TAG, primarily consisting of CO₂, in a manner to ensure safety to the public, the employees, and the environment. The mechanical aspects of this are noted in Table 8 and Figure 32. The facilities have been designed to minimize leakage and failure points, following applicable National Association of Corrosion Engineers (NACE) and American Petroleum Institute (API) applicable standards and practices. As the TAG stream contains H₂S, monitors installed for H₂S detection will also indicate the presence of CO₂. These monitors will be installed at key locations around the facility and the O'Neal No. 4 location. These devices will be continuously monitored by the Supervisory Control and Data Acquisition (SCADA) system and will alarm at set points determined by the facility's Health, Safety and Environment (HS&E) Director, consistent with Occupational Safety and Health Administration (OSHA) requirements. The facility will set the detection and alarm states for personnel at 10 ppm and at 40 ppm for initiating Emergency Shutdown. Key monitoring points and parameters are also provided in Table 8.

The facilities will incorporate important safety equipment to ensure reliable and safe operations. In addition to the H_2S monitors, emergency shutdown (ESD) valves, with high- and low-pressure shutoff settings to isolate the facility, the O'Neal No. 4, and other components, StarTex has a flare stack to safely handle the TAG when a depressuring event occurs. These facilities will be constructed in the coming months. The exact location of this equipment is not yet known, but it will be installed in accordance with applicable engineering and safety standards.

Table 8 – Summary of TAG Monitors and Equipment

Device	Location	Set Point
H₂S Monitors (1-4)	O'Neal No. 4 wellsite	10 ppm High Alarm 40 ppm Emergency Shutdown
H₂S Monitors (5-8)	In-Plant Monitors	10 ppm High Alarm 40 ppm Emergency Shutdown
Flare Stack	Plant Site Perimeter	N/A
AGI Flowmeter	In-Plant (downstream of the Amine Unit)	Calibrated per API specifications
Emergency Shutdown	In-Plant Monitors	40 ppm Facility Shutdown
Emergency Shutdown	O'Neal No. 4 wellsite	40 ppm Facility Shutdown

With the continuous air monitoring at the facility and the well site, a release of CO_2 would be quickly identified, and the safety systems and protocols would effectuate an orderly shutdown to ensure safety and minimize the release volume. The CO_2 injected into the O'Neal No. 4 is from the amine unit at the Pawnee Treating Facility. If any leakage were to be detected, the volume of CO_2 released would be quantified based on the operating conditions at the time of release, as stated in *Section 7*, in accordance with 40 CFR §98.448(a)(5). Ozona concludes that the leakage of CO_2 through the surface equipment is unlikely.

4.2 Leakage Through Existing Wells Within the MMA

The O'Neal No. 4 is engineered to prevent migration from the injection interval to the surface through a special casing and cementing design as depicted in the schematic provided in Figure 32. Mechanical integrity tests (MITs), required under Statewide Rule (SWR) §3.46 [40 CFR §146.23 (b)(3)], will take place every 5 years to verify that the well and wellhead can contain the appropriate operating pressures. If the MIT were to indicate a leak, the well would be isolated and the leak mitigated to prevent leakage of the injectate to the atmosphere.

A map of all oil and gas wells within the MMA is shown in Figure 33. Figure 34 is a map of all the oil and gas wells that penetrate the MMA's gross injection zone. Only one well penetrated the MMA's gross injection zone. This well was non-productive and has been plugged and abandoned in accordance with TRRC requirements. A summary table of all oil and gas wells within the MMA is provided in *Appendix B-1*.

This table in *Appendix B-1* provides the total depth (TD) of all wells within the MMA. The wells that are shallower and do not penetrate the injection zone are separated by the Pearsall Formation with a gross thickness of 535 ft. The Pine Island Shale comprises approximately 130 ft of this interval as discussed in *Section 2.2.2* and provides a competent regional seal—making vertical migration of fluids above the injection zone unlikely.

The shallower offset hydrocarbon wells within the MMA will also serve as above zone monitoring wells. Should any of the sequestered volumes migrate vertically, they would potentially enter the shallower hydrocarbon reservoir. Regular sampling and analysis is performed on the produced hydrocarbons. If a material difference in the quantity of CO₂ in the sample occurs indicating a potential migration of injectate from the Sligo Formation, Ozona would investigate and develop a mitigation plan. This may include reducing the injection rate or shutting in the well. Based on the investigation, the appropriate equation in *Section 7* would be used to make any adjustments to the reported volumes.

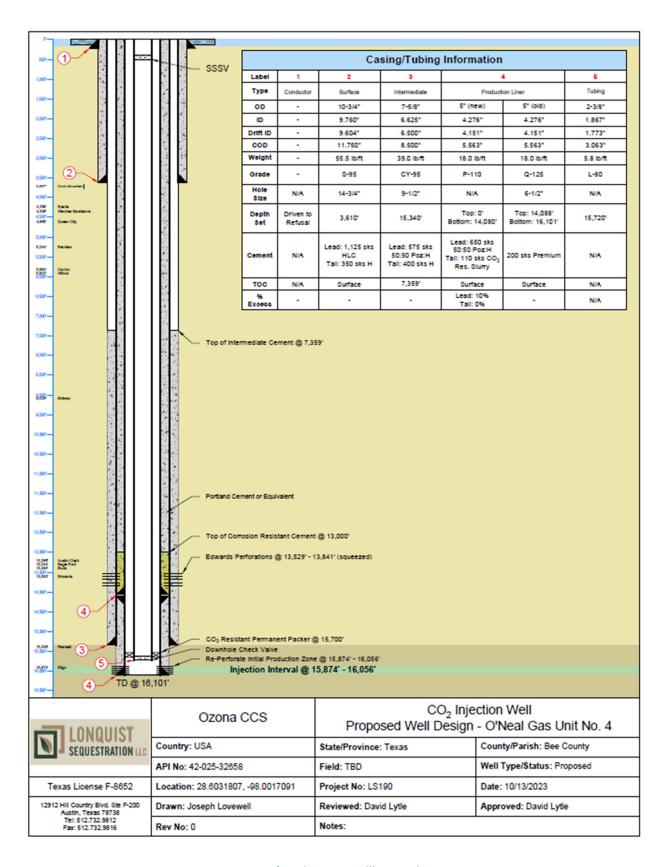


Figure 32 – O'Neal No. 4 Wellbore Schematic

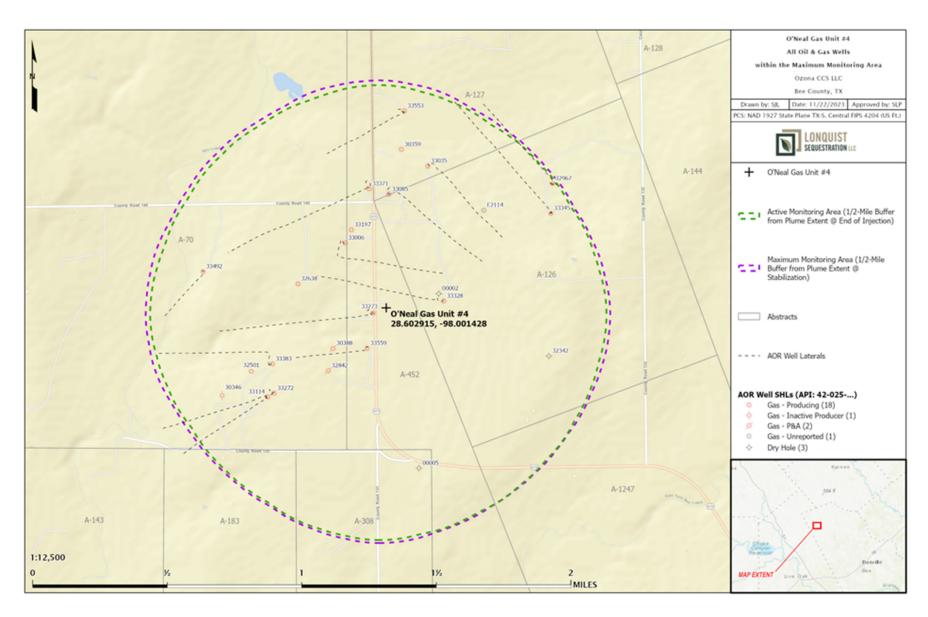


Figure 33 – All Oil and Gas Wells Within the MMA

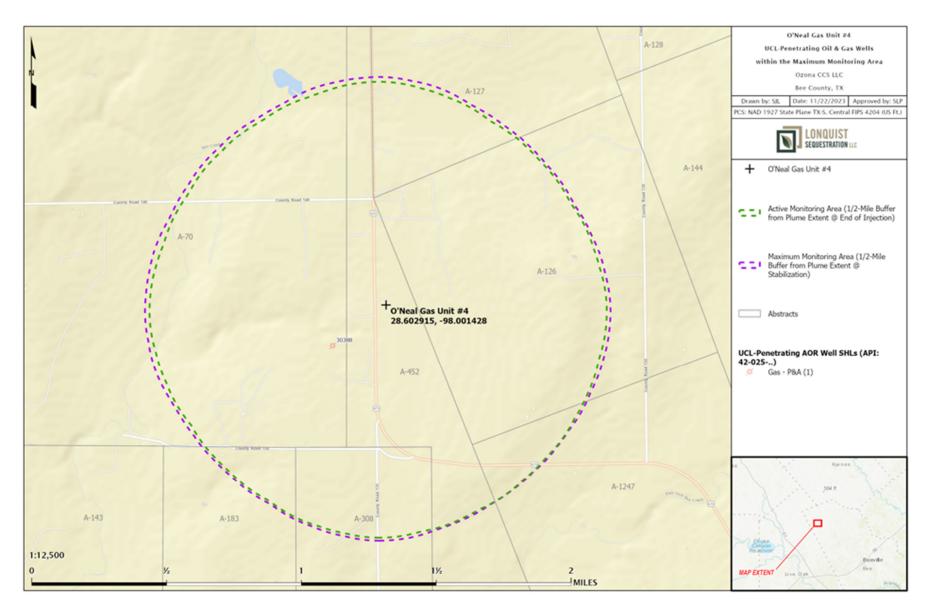


Figure 34 – Oil and Gas Wells Penetrating the Gross Injection Interval Within the MMA

4.2.1 Future Drilling

Potential leak pathways caused by future drilling in the area are not expected to occur. The deeper formations have proven to date to be nonproductive in this area, and therefore Ozona does not see this as a risk. This is supported by a review of the TRRC Rule 13 (Casing, Cementing, Drilling, Well Control, and Completion Requirements), 16 TAC §3.13. The Sligo is not among the formations listed for which operators in Bee County and District 2 (where the O'Neal No. 4 is located) are required to comply with TRCC Rule 13; therefore, the TRRC does not believe there are productive horizons below the Sligo. The O'Neal No. 4 drilling permit is provided in *Appendix A-2*.

4.2.2 <u>Groundwater Wells</u>

The results of a groundwater well search found five wells within the MMA, as identified by the Texas Water Development Board as shown in Figure 35 and in tabular form in *Appendix B-2*.

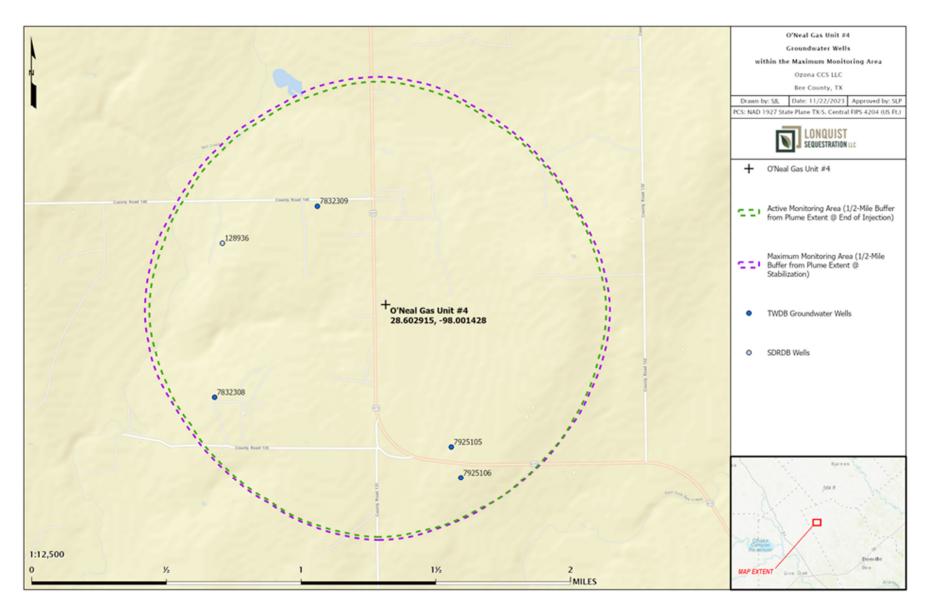


Figure 35 – Groundwater Wells Within the MMA

The surface, intermediate, and production casings of the O'Neal No. 4, as shown in Figure 32, are designed to protect the shallow freshwater aquifers, consistent with applicable TRRC regulations, and the GAU letter issued for this location is provided in *Appendix A-1*. The wellbore casings and compatible cements prevent CO_2 leakage to the surface along the borehole. Ozona concludes that leakage of the sequestered CO_2 to the groundwater wells is unlikely.

4.3 <u>Leakage Through Faults and Fractures</u>

Detailed mapping of openhole logs surrounding the O'Neal No. 4 did not identify any faulting within either the Pearsall or Sligo sections. However, there is a general lack of deep penetrators within the area that limits the amount of openhole coverage available.

The majority of the published literature suggests that faulting near the project area is restricted to the shallower, overlying Cenozoic section, as shown in Figure 9, with shallow faults dying out before reaching the Pearsall Formation. One source interpreted the potential for faulting to the south (Swanson et al., 2016). The potential fault is depicted in Figure 8 relative to the location of the O'Neal No. 4. According to the map, the interpreted fault lies approximately 4.25 mi south-southeast of the well and approximately 3.9 mi south-southeast of the stabilized plume extent in the year 2047. In the unlikely scenario in which the injection plume or pressure front reaches the potential fault, and the potential fault was to act as a transmissive pathway, the upper confining Pearsall shale contains sufficient thickness and petrophysical properties required to confine and protect injectates from leaking outside of the permitted injection zone.

Section 2.1.2 discusses regional structure and faulting, and Section 2.3 covers local structure, for additional material relevant to this topic.

4.4 Leakage Through the Upper Confining Zone

The Sligo injection zone has competent sealing intervals present above and below the targeted carbonate sequence of the Sligo section. The overlying Pine Island shale member of the Pearsall Formation is approximately 130 ft thick at the O'Neal No. 4. Above this confining unit, the Cow Creek Limestone, Cow Creek shale, and Bexar Shale Members of the Pearsall Formation will act as additional confinement between the injection interval and the USDW. The USDW lies well above the sealing properties of the formations outlined above, making stratigraphic migration of fluids into the USDW highly unlikely. The petrophysical properties of the lower Sligo and Hosston Formations make these ideal for lower confinement. The low porosity and permeability of these underlying formations minimizes the likelihood of downward migration of injected fluids. The relative buoyancy of injectate to the in situ reservoir fluid makes migration below the lower confining layer unlikely.

4.5 <u>Leakage from Natural or Induced Seismicity</u>

The O'Neal No. 4 is located in an area of the Gulf of Mexico considered to be active from a seismic perspective. Therefore, the Bureau of Economic Geology's TexNet (from 2017 to present) and USGS's Advanced National Seismic System (from 1971 to present) databases were reviewed to

identify any recorded seismic events within 25 kilometer (km) of the O'Neal No. 4.

The investigation identified a multitude of seismic events within the 25 km search radius; however, the magnitude of most of the events was below 2.5. The nearest seismic event with a recorded magnitude of 3.0 or greater was measured approximately 5.6 km northwest of the O'Neal No. 4 at a depth of 5 km. The results of the investigation are plotted on the map provided in Figure 36 relative to the O'Neal No. 4 and the 25-km search radius.

The Facility will have operating procedures and set points programmed into the control and SCADA systems to ensure operating pressures are maintained below the fracture gradient of the injection and confining intervals, thus avoiding the potential for inducing seismicity.

Given the seismic activity in the area, Ozona will closely monitor nearby TexNet station EF71 for activity and any corresponding irregularities in the operating pressures of O'Neal No. 4. If a seismic event of 3.0 or greater is recorded at Station EF71 or if anomalies are identified in the operating data, Ozona will review the data and determine if any changes occurred that indicate potential leakage. Ozona would take appropriate measures based on their findings, including limiting the injection pressure and reducing the injection rate.

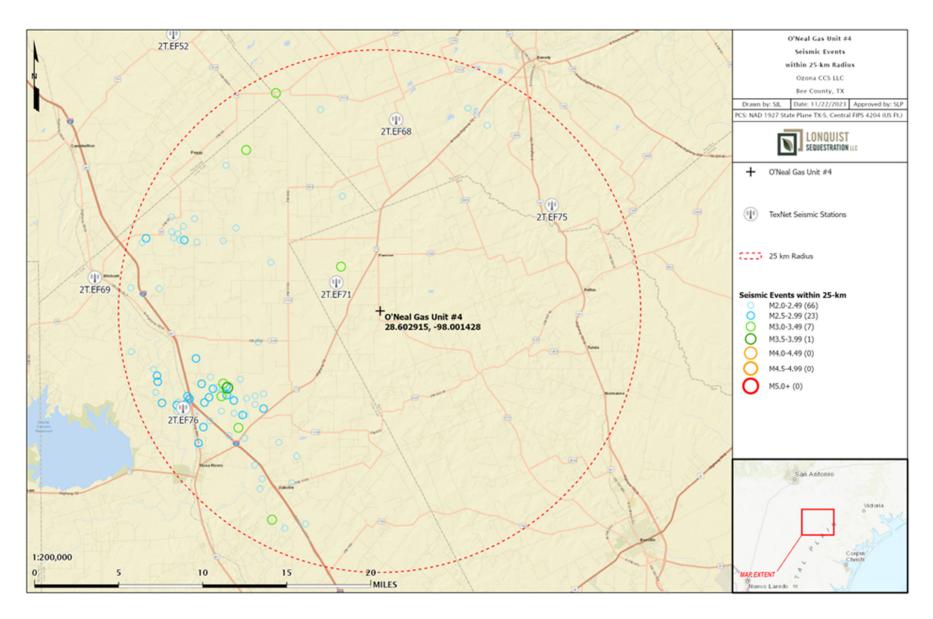


Figure 36 – 25-km Seismicity Review

SECTION 5 – MONITORING FOR LEAKAGE

This section discusses the strategy that Ozona will employ for detecting and quantifying surface leakage of CO₂ through the pathways identified in *Section 4*, to meet the requirements of 40 CFR **§98.448(a)(3)**. As the injectate stream contains both H₂S and CO₂, the H₂S will be a proxy for CO₂ leakage and therefore the monitoring systems in place to detect H₂S will also indicate a release of CO₂. Table 9 summarizes the monitoring of the following potential leakage pathways to the surface. Monitoring will occur during the planned 12-year injection period or cessation of injection operations, plus a proposed 10-year post-injection period until the plume has stabilized.

- Leakage from surface equipment
- · Leakage through existing and future wells within the MMA
- Leakage through faults or fractures
- Leakage through confining seals
- Leakage through natural or induced seismicity

Table 9 – Summary of Leakage Monitoring Methods

Leakage Pathway	Monitoring Method	
	Fixed H ₂ S monitors at the Plant and well site	
Surface equipment	Visual inspections	
	Monitor SCADA systems for the Plant and well site	
	Monitor CO ₂ levels in above zone producing wells	
	Mechanical Integrity Tests (MIT) of the AGI Well every 5 years	
Existing wells within the MMA	Visual inspections	
	Annual soil gas sampling near well locations that penetrate the Upper Confining Zone within the AMA	
 Leakage through groundwater wells 	Annual groundwater samples from existing water well(s)	
Leakage from future wells	Monitor drilling activity and compliance with TRRC Rule 13 Regulations	
Faults and Fractures	SCADA continuous monitoring at the well site (volumes and pressures)	
	Monitor CO ₂ levels in Above Zone producing wells	
Upper confining zone	SCADA continuous monitoring at the well site (volumes and pressures)	
	Monitor CO ₂ levels in Above Zone producing wells	
Natural or induced seismicity	Monitor CO ₂ levels in Above Zone producing wells	
	Monitor existing TexNet station	

5.1 Leakage from Surface Equipment

The facility and the O'Neal No. 4 were designed to operate in a safe manner to minimize the risk of an escape of CO₂ and H₂S. Leakage from surface equipment is unlikely and would quickly be detected and addressed. The facility design minimizes leak points through the equipment used, and key areas are constructed with materials that are NACE and API compliant. A baseline atmospheric CO₂ concentration will be established prior to commencing operation once facility construction has been completed. Ambient H₂S monitors will be located at the facility and near the O'Neal No. 4 site for local alarm and are connected to the SCADA system for continuous monitoring.

The facility and the O'Neal No. 4 are continuously monitored through automated control systems. These monitoring points were discussed in *Section 4.1*. In addition, field personnel conduct routine visual field inspections of gauges, and gas monitoring equipment. The effectiveness of the internal and external corrosion control program is monitored through the periodic inspection of the corrosion coupons and inspection of the cathodic protection system. These inspections and the automated systems allow Ozona to detect and respond to any leakage situation quickly. The surface equipment will be monitored for the injection and post-injection period. Should leakage be detected during active injection operations, the volume of CO_2 released will be calculated based on operating conditions at the time of the event, per 40 CFR §98.448(a)(5) and §98.444(d).

Pressures, temperatures, and flow rates through the surface equipment are continuously monitored during operations. If a release occurred from surface equipment, the amount of CO_2 released would be quantified based on the operating conditions, including pressure, flow rate, percentage of CO_2 in the injectate, size of the leak-point opening, and duration of the leak. In the unlikely event a leak occurs, Ozona will quantify the leak per the strategies discussed in *Section 7*.

5.2 Leakage Through Existing and Future Wells Within the MMA

Ozona continuously monitors and collects injection volumes, pressures, and temperatures through their SCADA systems, for the O'Neal No. 4. This data is reviewed by qualified personnel and will follow response and reporting procedures when data exceeds acceptable performance limits. A change of injection or annular pressure would indicate the presence of a possible leak and be thoroughly investigated. In addition, MITs performed every 5 years, as expected by the TRRC and UIC, would also indicate the presence of a leak. Upon a negative MIT, the well would be isolated and investigated to develop a leak mitigation plan.

As discussed previously, TRRC Rule 13 ensures that new wells in the field are constructed with proper materials and practices to prevent migration from the injection interval.

In addition to the fixed monitors described previously, Ozona will also establish and operate an infield monitoring program to detect CO₂ leakage within the AMA. This would include H₂S monitoring as a proxy for CO₂ at the well site and annual soil gas samples taken near any identified wells that penetrate the injection interval within the AMA. These samples will be analyzed by a qualified third

party. Prior to commencing operation, and through the post-injection monitoring period, Ozona will have these monitoring systems in place.

Currently, there is only one well in the MMA identified that penetrates the injection interval. This well was plugged and abandoned in 2007. The TRRC records are provided in *Appendix A-4*. Ozona will take an annual soil gas sample from this area, which will be analyzed by a third-party lab. Additional monitoring will be added as the AMA is updated over time. In the unlikely event a leak occurs, Ozona will quantify the leak volumes by the methodologies discussed in *Section 7* and present these results and related activities in the annual report.

Ozona will also utilize shallower producing gas wells as proxies for above-zone monitoring wells. Production data from these wells is analyzed for monthly production statements, and therefore would be an early indicator of any possible subsurface issues. Should any material change from historical trends in the CO₂ concentration occur, Ozona would investigate and develop a corrective action plan. Should any CO₂ migrate vertically from the Sligo, the magnitude risk of this event is very low, as the producing reservoir provides an ideal containment given the upper confining zone of this reservoir has proven competent. In the unlikely event a leak occurs, Ozona would quantify the leak per the strategies discussed in *Section 7*, or as may be applicable provided in 40 CFR §98.443 based on the actual circumstances and include these results in the annual report.

5.2.1 Groundwater Quality Monitoring

Ozona will monitor the groundwater quality above the confining interval by sampling from groundwater wells near the O'Neal No. 4 and analyzing the samples with a third-party laboratory on an annual basis. In the case of the O'Neal No. 4, 5 existing groundwater wells have been identified within the AMA (Figure 38). Initial groundwater quality tests will be performed to establish a baseline prior to commencing operations.

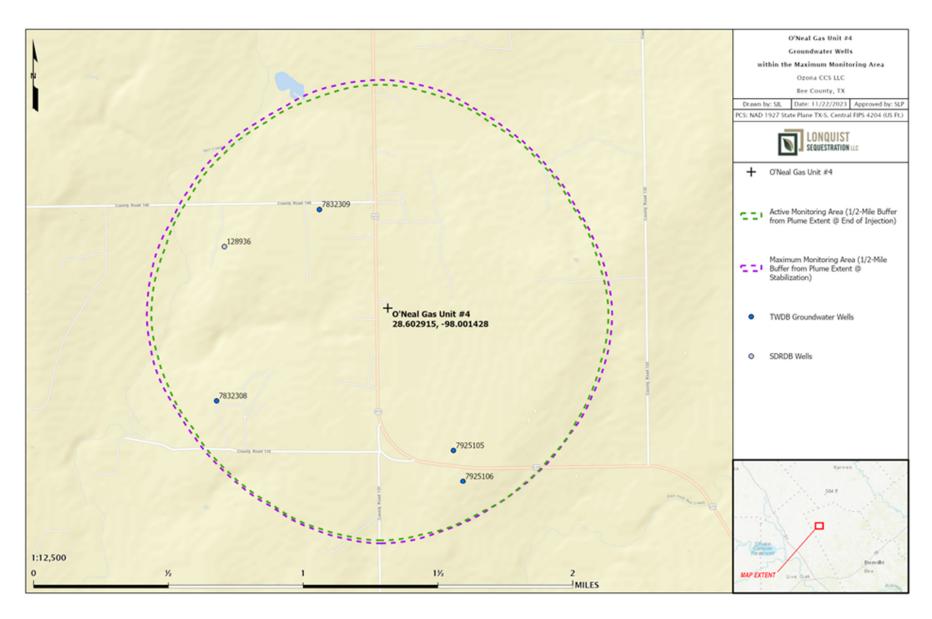


Figure 37 – Groundwater Wells

5.3 <u>Leakage Through Faults, Fractures, or Confining Seals</u>

Ozona will continuously monitor the operations of the O'Neal No. 4 through the automated controls and SCADA systems. Any deviation from normal operating volume and corresponding injection pressure could indicate movement into a potential leak pathway, such as a fault or breakthrough of the confining seal and would trigger an alert due to a change in the injection pressure. Any such alert would be reviewed by field personnel and appropriate action would be taken, including shutting in the well, if necessary.

Ozona will also utilize shallower producing wells as proxies for above-zone monitoring wells. Production data is analyzed regularly for monthly production statements and therefore would be an early indicator of any possible subsurface issues. Should any material change from historical trends in the CO₂ concentration occur, Ozona would investigate and develop a corrective action plan. Should any CO₂ migrate vertically from the Sligo Formation, the magnitude risk of this event is very low, as the producing reservoir provides an ideal containment given the upper confining zone has proven competent. In the unlikely event a leak occurs, Ozona would quantify the leak per the strategies discussed in *Section 7*, or as may be applicable provided in 40 CFR §98.443 based on the actual circumstances.

5.4 <u>Leakage Through Natural or Induced Seismicity</u>

While the likelihood of a natural or induced seismicity event is low, Ozona plans to use the nearest TexNet seismic monitoring station, EF71, to monitor the area around the O'Neal No. 4. This station is approximately 3 mi to the northwest, as shown in Figure 38. This is sufficient distance to allow for accurate and detailed monitoring of the seismic activity in the area. Ozona will monitor this station for any seismic activity, and if a seismic event of 3.0 magnitude or greater is detected, Ozona will review the injection volumes and pressures of the O'Neal No. 4 to determine if any significant changes have occurred that would indicate potential leakage.

Ozona will also continuously monitor operations through the SCADA system. Any deviation from normal operating pressure and volume set points would trigger an alarm for investigation by operations staff. Such a variance could indicate movement into a potential leak pathway, such as a fault or breakthrough of the confining seal. Any such alert would be reviewed by field personnel and appropriate action would be taken, including shutting in the well, if necessary

These are the two primary strategies for mitigating risks for induced seismicity. In the unlikely event a leak occurs, Ozona will quantify the leak per the strategies discussed in *Section 7*, or as may be applicable provided in 40 CFR **§98.443** based on the actual circumstances.

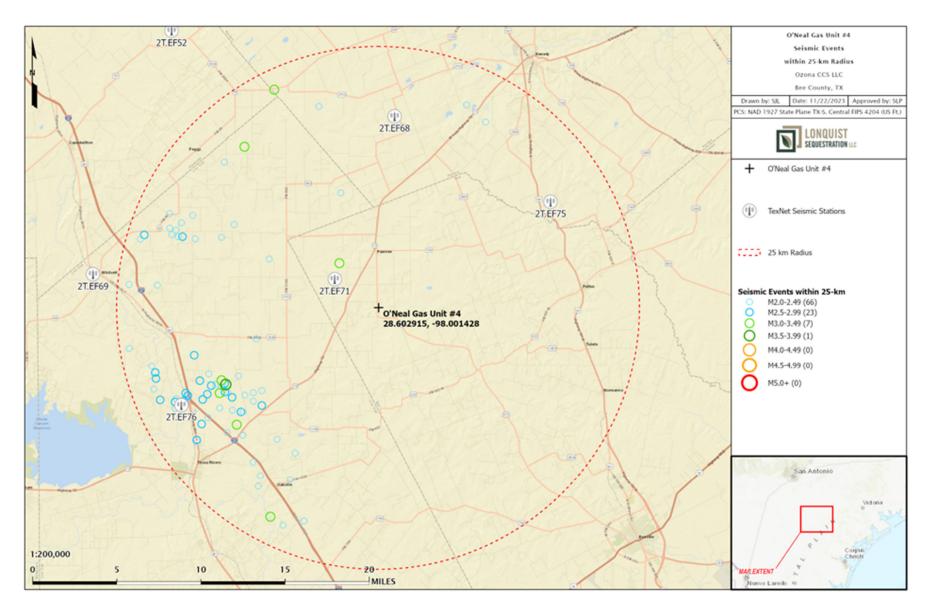


Figure 38 – Seismic Events and Monitoring Station

SECTION 6 – BASELINE DETERMINATIONS

This section identifies the strategies Ozona will undertake to establish the expected baselines for monitoring CO₂ surface leakage per 40 CFR **§98.448(a)(4)**. Ozona will use the existing SCADA monitoring systems to identify changes from the expected performance that may indicate leakage of injectate and calculate a corresponding amount of CO₂.

6.1 **Visual Inspections**

Regular inspections will be conducted by field personnel at the facility and O'Neal No. 4 site. These inspections will aid in identifying and addressing possible issues to minimize the risk of leakage. If any issues are identified, such as vapor clouds or ice formations, corrective actions will be taken prudently and safely to address such issues.

6.2 H₂S/CO₂ Monitoring

In addition to the fixed monitors in the facility and at the wellsite, Ozona will establish and perform an annual in-field sampling program to monitor and detect any CO₂ leakage within the AMA. This will consist of soil gas sampling near any artificial penetrations of the injection zone and sampling of water wells. These probes have special membrane inserts that collect the gas samples over a 21-day period. These will be analyzed by a third-party lab to be analyzed for CO₂, H₂S, and trace contaminants typically found in a hydrocarbon gas stream. The lab results will be provided in the annual report should they indicate a material variance from the baseline. Initial samples will be taken and analyzed before the commencement of operations and will establish the baseline reference levels.

6.3 **Operational Data**

Upon starting injection operations, baseline measurements of injection volumes and pressures will be recorded. Any significant deviations over time will be analyzed for indication of leakage of injectate and the corresponding component of CO₂.

6.4 Continuous Monitoring

The total mass of CO_2 emitted by surface leakage and equipment leaks will not be measured directly, as the injection stream for this project is near the OSHA Permissible Exposure Limit (PEL) 8-hour Time Weighted Average (TWA) of 5,000 ppm. Direct leak surveys present a hazard to personnel due to the presence of H_2S in the gas stream. Continuous monitoring systems will trigger alarms if there is a release. The mass of the CO_2 released would be calculated based on the operating conditions, including pressure, flow rate, percentage of CO_2 , size of the leak-point opening, and duration. This method is consistent with 40 CFR §98.448(a)(5) and §98.444(d), allowing the operator to calculate site-specific variables used in the mass balance equation.

In the case of a depressuring event, the acid gas stream will be sent to a flare stack to be safely processed and will be reported under reporting requirements for the facility. Any such events will be accounted for in the sequestered reporting volumes consistent with *Section 7*.

6.5 **Groundwater Monitoring**

Initial samples will be taken from groundwater wells in the area of the O'Neal No. 4 upon approval of the MRV plan, and before commencement of CO_2 injection. These samples will be analyzed and reports prepared by a third-party laboratory testing for pH, total dissolved solids (TDS), CO_2 , and volatile organic compounds (VOC). Initial samples will be taken and analyzed before the commencement of operations and will establish the baseline reference levels. Sampling select wells will be performed annually. In the event a material deviation in the sample analysis occurs, the results will be provided in the annual report.

SECTION 7 – SITE-SPECIFIC CONSIDERATIONS FOR MASS BALANCE EQUATION

This section identifies how Ozona will calculate the mass of CO_2 injected, emitted, and sequestered. This also includes site-specific variables for calculating the CO_2 emissions from equipment leaks and vented emissions of CO_2 between the injection flow meter and the injection well, per 40 CFR §98.448(a)(5).

7.1 Mass of CO₂ Received

Per 40 CFR §98.443, the mass of CO₂ received must be calculated using the specified CO₂ received equations "unless you follow the procedures in 40 CFR §98.444(a)(4)." The 40 CFR §98.444(a)(4) states that "if the CO₂ you receive is wholly injected and is not mixed with any other supply of CO₂, you may report the annual mass of CO₂ injected that you determined following the requirements under paragraph (b) of this section as the total annual mass of CO₂ received instead of using Equation RR-1 or RR-2 of this subpart to calculate CO₂ received." The CO₂ received for this injection well is injected and not mixed with any other supply; the annual mass of CO₂ injected will equal the amount received less any amounts calculated in accordance with the equations of this section. Any future streams would be metered separately before being combined into the calculated stream.

7.2 Mass of CO₂ Injected

Per 40 CFR **§98.444(b)**, since the flow rate of CO₂ injected will be measured with a volumetric flow meter, the total annual mass of CO₂, in metric tons, will be calculated by multiplying the mass flow by the CO₂ concentration in the flow according to Equation RR-5:

$$CO_{2,u} = \sum_{p=1}^{4} Q_{p,u} * D * C_{CO_{2,p,u}}$$

Where:

CO_{2,u} = Annual CO₂ mass injected (metric tons) as measured by flow meter u

 $Q_{p,u}$ = Quarterly volumetric flow rate measurement for flow meter u in quarter p at standard conditions (standard cubic meters per quarter)

D = Density of CO₂ at standard conditions (metric tons per standard cubic meter): 0.0018682

 $C_{CO2,p,u}$ = Quarterly CO_2 concentration measurement in flow for flow meter u in quarter p (vol. percent CO_2 , expressed as a decimal fraction)

p = Quarter of the year

u = Flow meter

7.3 Mass of CO₂ Produced

The O'Neal No. 4 is not part of an enhanced oil recovery project; therefore, no CO₂ will be produced.

7.4 Mass of CO₂ Emitted by Surface Leakage

The mass of CO₂ emitted by surface leakage and equipment leaks will not be measured directly due to the H₂S concentration in the injection stream. Direct leak surveys are dangerous and present a hazard to personnel. Because no venting is expected to occur, the calculations would be based on the unusual event that a blowdown is required and those emissions would be sent to a flare stack and reported as a part of the required GHG reporting for the facility. Any leakage would be detected and managed as an upset event. Continuous monitoring systems should trigger an alarm upon a release of H₂S and CO₂. The mass of the CO₂ released would be calculated for the operating conditions, including pressure, flow rate, size of the leak-point opening, and duration of the leak. This method is consistent with 40 CFR §98.448(a)(5), allowing the operator to calculate site-specific variables used in the mass balance equation.

In the unlikely event that CO₂ was released because of surface leakage, the mass emitted would be calculated for each surface pathway according to methods outlined in the plan and totaled using Equation RR-10 as follows:

$$CO_{2E} = \sum_{x=1}^{X} CO_{2,x}$$

Where:

CO_{2E} = Total annual CO₂ mass emitted by surface leakage (metric tons) in the reporting year

CO_{2,x} = Annual CO₂ mass emitted (metric tons) at leakage pathway x in the reporting year

X = Leakage pathway

Calculation methods using equations from Subpart W will be used to calculate CO₂ emissions due to any surface leakage between the flow meter used to measure injection quantity and the injection wellhead.

As discussed previously, the potential for pathways for all previously mentioned forms of leakage is unlikely. Given the possibility of uncertainty around the cause of a leakage pathway that is mentioned above, Ozona believes the most appropriate method to quantify the mass of CO₂ released will be determined on a case-by-case basis. Any mass of CO₂ detected leaking to the surface will be quantified by using industry proven engineering methods including, but not limited to, engineering analysis on surface and subsurface measurement data, dynamic reservoir modeling, and history-matching of the sequestering reservoir performance, among others. In the unlikely Subpart RR MRV Plan – O'Neal Gas Unit No. 4

event that a leak occurs, it will be addressed, quantified, and documented within the appropriate timeline. Any records of leakage events will be kept and stored as provided in *Section 10*.

7.5 Mass of CO₂ Sequestered

The mass of CO₂ sequestered in subsurface geologic formations will be calculated based on Equation RR-12. Data collection for calculating the amount of CO₂ sequestered in the O'Neal No. 4 will begin once the subsurface recompletion work, and the surface facilities construction has been completed, and subject to approval of the MRV plan. The calculation of sequestered volumes utilizes the following equation as the O'Neal No. 4 will not actively produce oil, natural gas, or any other fluids:

$$CO_2 = CO_{2I} - CO_{2E} - CO_{2FI}$$

Where:

 CO_2 = Total annual CO_2 mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year

 CO_{2l} = Total annual CO_2 mass injected (metric tons) in the well or group of wells covered by this source category in the reporting year

CO_{2E} = Total annual CO₂ mass emitted (metric tons) by surface leakage in the reporting year

 CO_{2FI} = Total annual CO_2 mass emitted (metric tons) from equipment leaks and vented emissions of CO_2 from equipment located on the surface, between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of this part.

 CO_{2FI} will be calculated in accordance with Subpart W for reporting of GHGs. Because no venting is expected to occur, the calculations would be based on the unusual event that a system blowdown event occurs. Those emissions would be sent to a flare stack and reported as part of the GHG reporting for the facility.

 Calculation methods from Subpart W will be used to calculate CO₂ emissions from equipment located on the surface, between the flow meter used to measure injection quantity and the injection wellhead.

SECTION 8 – IMPLEMENTATION SCHEDULE FOR MRV PLAN

The O'Neal Gas Unit No. 4 is an existing natural gas well that will be recompleted as a Class II well with corrosion-resistant materials. The Class II permit is still in process with the TRRC. Until this permit is issued, Ozona cannot specify a date to acquire the baseline testing data. Ozona is submitting this MRV application to the GHGRP to comply with the requirements of Subpart RR. The MRV plan, including acquisition of baseline data, will be implemented upon receiving EPA approval. The Annual Subpart RR Report will be filed on March 31 of the year following the reporting year.

Table 10 – Baseline Sampling Schedule

Sampling Location	Estimated Date	Comments
		Baseline readings will be
Fixed H ₂ S/CO ₂ Monitors	Oct. 1, 2024	established during
		commissioning activities.
		Baseline samples will be taken
Soil gas sampling	Oct. 1, 2024	prior to commencement of
		injection.
		Baseline samples will be taken
Water well sampling	Oct. 1, 2024	prior to commencement of
		injection.

Notes:

- Above dates are estimates subject to adjustment based on actual regulatory approval dates and facilities construction timelines.
- All baseline sampling will be performed prior to the start of recording data for reporting under this MRV.
- Commissioning activities include installation of surface facilities, including flowline, compressors, manifolds, etc.

SECTION 9 – QUALITY ASSURANCE

This section identifies how Ozona plans to manage quality assurance and control to meet the requirements of 40 CFR §98.444.

9.1 Monitoring QA/QC

CO₂ Injected

- The flow rate of the CO₂ being injected will be measured with a volumetric flow meter, consistent with API standards. These flow rates will be compiled quarterly.
- The composition of the injectate stream will be measured upstream of the volumetric flow meter with a continuous gas composition analyzer or representative sampling consistent with API standards.
- The gas composition measurements of the injected stream will be averaged quarterly.
- The CO₂ measurement equipment will be calibrated per the requirements of 40 CFR §98.444(e) and §98.3(i).

CO₂ Emissions from Leaks and Vented Emissions

- Gas monitors at the facility and O'Neal No. 4 will be operated continuously, except for maintenance and calibration.
- Gas monitors will be calibrated according to the requirements of 40 CFR §98.444(e) and §98.3(i).
- Calculation methods from Subpart W will be used to calculate CO₂ emissions from equipment located on the surface, between the flow meter used to measure injection quantity and the injection wellhead.

Measurement Devices

- Flow meters will be continuously operated except for maintenance and calibration.
- Flow meters will be calibrated according to 40 CFR §98.3(i).
- Flow meters will be operated and maintained in accordance with applicable standards as published by a consensus-based standards organization.

All measured volumes of CO₂ will be converted to standard cubic meters at a temperature of 60°F and an absolute pressure of 1 atmosphere.

9.2 Missing Data

In accordance with 40 CFR **§98.445**, Ozona will use the following procedures to estimate missing data if unable to collect the data needed for the mass balance calculations:

• If a quarterly quantity of CO₂ injected is missing, the amount will be estimated using a representative quantity of CO₂ injected from the nearest previous period at a similar injection pressure.

• Fugitive CO₂ emissions from equipment leaks from facility surface equipment will be estimated and reported per the procedures specified in Subpart W of 40 CFR §98.

9.3 MRV Plan Revisions

If any changes outlined in 40 CFR **§98.448(d)** occur, Ozona will revise and submit an amended MRV plan within 180 days to the Administrator for approval.

SECTION 10 – RECORDS RETENTION

Ozona will retain records as required by 40 CFR **§98.3(g)**. These records will be retained for at least 3 years and include the following:

- Quarterly records of the CO₂ injected
 - Volumetric flow at standard conditions
 - Volumetric flow at operating conditions
 - Operating temperature and pressure
 - Concentration of the CO₂ stream
- Annual records of the information used to calculate the CO₂ emitted by surface leakage from leakage pathways.
- Annual records of the information used to calculate CO₂ emitted from equipment leaks and vented emissions of CO₂ from equipment located on the surface, between the flow meter used to measure injection quantity and the injection wellhead.

APPENDICES

APPENDIX A – O'Neal No. 4 TRRC FORMS

APPENDIX A-1: GAU GROUNDWATER PROTECTION DETERMINATION

APPENDIX A-2: DRILLING PERMIT

- CHARLIE C. OVERBY API 42-025-32658
- O'NEAL GAS UNIT NO. 4 API 42-025-32658

APPENDIX A-3: COMPLETION REPORT

- CHARLIE C. OVERBY API 42-025-32658
- O'NEAL GAS UNIT NO. 4 API 42-025-32658
- MINI FRACTURE REPORT

APPENDIX A-4: API 42-025-30388 CHARLIE C. OVERBY GU PLUGGING RECORDS

<u>APPENDIX B – AREA OF REVIEW</u>

APPENDIX B-1: OIL AND GAS WELLS WITHIN THE MMA LIST

APPENDIX B-2: WATER WELLS WITHIN THE MMA LIST

GROUNDWATER PROTECTION DETERMINATION

Groundwater Advisory Unit

Form GW-2

Date Issued: 26 May 2023 **GAU Number:** 367912

Attention: **OZONA CCS LLC API Number:** 02532658

> BEE County: 19026 RIDGEWOOD

O'Neal Gas Unit Lease Name: SAN ANTONIO, TX 78259

Lease Number: 162214 100116 **Operator No.:**

Well Number:

16101 **Total Vertical**

Latitude: 28.602914

4

Longitude: -98.001428

Datum: NAD27

Purpose: Injection into Producing Zone (H1)

Survey-EL&RR RR CO; Abstract-452; Section-1 Location:

To protect usable-quality groundwater at this location, the Groundwater Advisory Unit of the Railroad Commission of Texas recommends:

The base of usable-quality water-bearing strata is estimated to occur at a depth of 250 feet at the site of the referenced well.

The BASE OF UNDERGROUND SOURCES OF DRINKING WATER (USDW) is estimated to occur at a depth of 950 feet at the site of the referenced well.

Note: Unless stated otherwise, this recommendation is intended to apply to all wells drilled within 200 feet of the subject well. Unless stated otherwise, this recommendation is for normal drilling, production, and plugging operations only.

This determination is based on information provided when the application was submitted on 05/26/2023. If the location information has changed, you must contact the Groundwater Advisory Unit, and submit a new application if necessary. If you have questions, please contact us at 512-463-2741 or gau@rrc.texas.gov.

Groundwater Advisory Unit, Oil and Gas Division

Form GW-2 P.O. Box 12967 Austin, Texas 78771-2967 Internet address: www.rrc.texas. 512-463-2741

Rev. 02/2014

Oil & Gas Data Query

Query Menu Help

Drilling Permit (W-1) Query Results

Search Criteria: API No.: 02532658 Return													
2 results			Page	: 1 of 1							Pag	ge Size: V	Tiew All ❤
API NO.	District	<u>Lease</u>	Well Number	Permitted Operator	County	<u>Status</u> <u>Date</u>	<u>Status</u> <u>Number</u>	Wellbore Profiles	<u>Filing</u> <u>Purpose</u>	Amend	Total Depth	Stacked Lateral Parent Well DP #	<u>Status</u>
02532658 Links 🕶	02	CHARLIE C. OVERBY GAS UNIT	2	PARKER & PARSLEY DEVELOPMENT CO.(640889)	BEE	Submitted: 11/30/1992 Approved: 11/30/1992	406655	Vertical	New Drill	N	16700		APPROVED
02532658 Links 🕶	02	O'NEAL GAS UNIT (162214)	4	PARKER & PARSLEY DEVELOPMENT L.P(640886)	BEE	Submitted: 11/20/1996 Approved: 12/16/1996	455434	Vertical	Recompletion	N	14040		APPROVED
Download	·										•		Return

<u>Disclaimer</u> | <u>RRC Home</u> | <u>Contact</u>

NOTE: THE CHARLIE C. OVERBY GU AND THE O'NEAL GU ARE THE SAME WELL. THE OVERBY WELL WAS DRILLED IN 1993 INTO THE SLIGO. IN 1997 THE WELL WAS RECOMPLETED IN THE EDWARDS FORMATION. THIS WAS DONE UNDER A NEW LEASE, AS THE O'NEAL GU NO. 4.

11/28/23, 4:52 PM Form W-1: Field List

Log In

Form W-1: Review

Status # 406655 API # 025-32658		CHARLIE C. OVERBY GAS UNIT - Well # 2 02 - BEE County	New Drill Vertical				
NEAREST WELL COMMENT: 1607.8 (11/30/1992 12:00:00 AM)							

Status:

Back to Public Query Search Results

Completion Information										
Well Status Code	Spud Date	Drilling	Completed	Sur	face Casing Date					
W - Final Completion	01/01/1993	02/11/1993		01/01/1993						
Field Name Completed Well Type Completed Date Validated Da					Validated Date					
PAWNEE (SLIGO)	Gas	Gas		93	06/18/1993					

General / Location Information

Basic Information:

	Welbore Profiles	Lease Name	Well #	SWR	Total Depth	 Stacked Lateral Parent Well DP #
New Drill	Vertical	CHARLIE C. OVERBY GAS UNIT	2	SWR 36	16700	

Surface Location Information:

ADI #	Distance from Nearest Town	Direction from Nearest Town	Nearest Town	Surface Location Type
025-32658	4.0 miles	S	PAWNEE	Land

Survey/Legal Location Information:

	Section	Block	Survey	Abstract #	County
l			EL&RR RR CO	452	BEE

Township	League	Labor	Porcion	Share	Tract	Lot

Perpendicular surface location from two nearest designated reference lines:

Perpendiculars	Distance	Direction	Distance	Direction
Survey Lines	2784.0 feet	from the S line and	1045.5 feet	from the W line

Permit Restrictions:

Code	Description								
11.30	REGULAR PROVIDED THAT UPON SUCCESSFUL COMPLETION OF THIS WELL IN THE SAME RESERVOIR AS ANY OTHER WELL PREVIOUSLY ASSIGNED THIS ACREAGE, A P-15 AND REVISED PRORATION PLATS MUST BE SUBMITTED WITH NO								
30	DOUBLE ASSIGNMENT OF ACREAGE.								
11.30	REGULAR PROVIDED THIS WELL IS NEVER COMPLETED IN THE SAME RESERVOIR AS ANY OTHER WELL CLOSER THAN 2640 FEET ON THIS SAME LEASE.								
30	REGULAR PROVIDED THIS WELL IS DRILLED IN COMPLIANCE WITH RULE 36.								

11/28/23, 4:52 PM Form W-1: Field List

30 O'NEAL GU #3, O'NEAL #1, OVERBY #120 & NEAL #1. **Fields** Distance to Distance to Field Completion Lease Well Well Pooled/ **SWR District** Field # Nearest Acres Nearest Unitized Name Depth Name Type Well **Lease Line PAWNEE** 02 CHARLIE C. Oil or (SLIGO) SWR 2 69845800 16700 **OVERBY GAS** Gas 704.0 Υ 36 **Primary** UNIT Well Field **Perpendiculars** Direction **Distance** Direction **Distance Surface Lease Lines** 2390.0 feet from the E line and 3446.0 feet from the N line Comments Remark **Date Entered Entered By** NEAREST WELL COMMENT: 1607.8 11/30/1992 12:00:00 AM **SYSTEM Attachments File Path** Associated Fields and/or Plats **Attachment Type**

<u>Disclaimer</u> | <u>RRC Online Home</u> | <u>RRC Home</u> | <u>Contact</u>

Form W-1: Review

Status # 455434 OP # 640886 - PARKER & PARSLEY DEVELOPMENT L.P API # 025-32658 Approved ,Issued: 12/16/1996 ,Filed: Hardcopy O'NEAL GAS UNIT - Well # 4 Recompletion 02 - BEE County Vertical NEAREST WELL COMMENT: 1787 (11/20/1996 12:00:00 AM)

Status:

Back to Public Query Search Results

Completion Information	1
------------------------	---

н					
l	Well Status Code	Spud Date	Spud Date Drilling Completed 02/04/1997 02/13/1997 Completed Well Type Completed Date Gas 02/13/1997		Surface Casing Date
	W - Final Completion	02/04/1997			
	Field Name	Completed Well			Validated Date
l	PAWNEE (EDWARDS)	Gas			02/26/1997

General / Location Information

Basic Information:

Filing Purpose	Welbore Profiles	Lease Name	Well #	SWR	Total Depth	Horizontal Wellbore	Stacked Lateral Parent Well DP #
Recompletion	Vertical	O'NEAL GAS UNIT	4	SWR 36, SWR 37H	14040		

Surface Location Information:

API#	Distance from Nearest Town	Direction from Nearest Town	Nearest Town	Surface Location Type
025-32658	3.5 miles	s	PAWNEE	Land

Survey/Legal Location Information:

Section	Block	Survey	Abstract #	County
		E.L.&R.R. RR CO. #1	452	BEE

II	Township	League	Labor	Porcion	Share	Tract	Lot
Ш							

Perpendicular surface location from two nearest designated reference lines:

Perpendiculars	Distance	Direction	Distance	Direction
Survey Lines	825.0 feet	from the W line and	2784.0 feet	from the S line

Permit Restrictions:

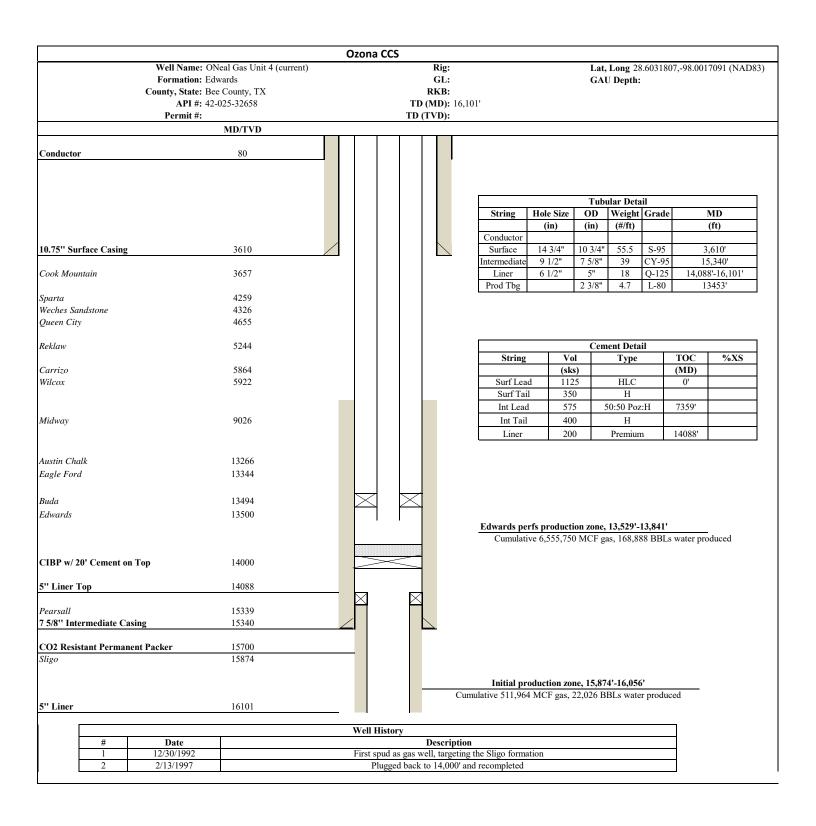
Code	Description
30	WILDCAT ABOVE 14040 FEET.
30	ANY WELLBORE DRILLED UNDER THIS PERMIT MUST BE COMPLETED, OPERATED, AND PRODUCED IN COMPLIANCE WITH STATEWIDE RULE 32.
30	REGULAR PROVIDED THIS WELL IS DRILLED IN COMPLIANCE WITH RULE 36.

Fields

District	Field Name	Field #	Completion Depth	Lease Name	Well #	Well Type	Acres	Distance to Nearest Well	Distance to Neares	st Lease Line	SWR	Pooled/ Unitiz
02	WILDCAT Primary Field	00004001	14040	O'NEAL GAS UNIT	4	Oil or Gas Well	704.0				37H	Y
	Perpendicula	rs		Distance		Direction		Dis	tance	Direction		
	Surface Leas	e Lines		4900.0 feet		from the W li	ne and	278	34.0 feet	from the S	line	

District	Field Name	Field # Completion Depth Leas		Lease Name	Well #	Vell # Well Type Acres Distance		Distance to Nearest Well	Distance to Nearest Lease Lin	e SWR	Pooled/ Unitized
02	PAWNEE (EDWARDS)	PAWNEE (EDWARDS) 69845200 14040 O'NEAL GAS		O'NEAL GAS UNIT	4	Gas Well	704.0			SWR 36, 37H	Υ
	Perpendiculars		Dist	tance		Direction			Distance Di	rection	
	Surface Lease Lines		490	0.0 feet	f	rom the W lir	ne and		2784.0 feet fro	m the S line	

Exceptions


l	Field	Exception	Case Docket Number	Resolution
l	WILDCAT	SWR 37 [Historical]	0214349	
	PAWNEE (EDWARDS)	SWR 37 [Historical]	0214349	

Comments

Remark	Date Entered	Entered By
NEAREST WELL COMMENT: 1787	11/20/1996 12:00:00 AM	SYSTEM

Attachments

Attachment Type File Path	Associated Fields and/or Plats
---------------------------	--------------------------------

#2 stomer: PARKER & PARSLEY DEV. CO. Well Desc: CHARLI OVERBY #2 Formation: SLIGO

Date:

4-22-93

Ti⁴ tet #: 30841600 Job Type: THERMAGEL 80/70

EVENT REPORT

	3 8	Eve	nt	i	Time	2 1			
	stage :	mne	um.	1	HH: MM: SS	i	Event Description		
e							Operator Stage Advance	>	TREATED WATER W/ 70#/MGAL WLC-4
0	2 1	stg	ad	ŀ	10:27:30	į	Operator Stage Advance	>	SHUTDOWN - MONITOR FOR LEAK OFF
6								***	ISIP = 8068 PSI
е							Operator Stage Advance		TREATED WATER W/ 70#/MGAL WLC-4
6							Operator Stage Advance	>	FLUSH MINIFRAC - TREATED WATER
6		-					Operator Stage Advance	>	SHUTDOWN - MONITOR PRESSURE DECLINE
e									ISIP = 8312 PSI FG = .954
e								***	CLOSURE = 8000 CORRECTED F EFF. = 26%
e							Operator Stage Advance	>	PAD 70# LINEAR GEL
e							and the second s	* * *	START SAND AT .25#/G
6								***	START XLINKER AT .2 G/M
e								***	SHUT OFF SAND
e								***	START METHANOL
6							2	>	PAD 80# THERMAGEL
€							Operator Stage Advance	>	1# - 4# 30/60 CARBO-PROP
6							Operator Stage Advance	>	4# 30/60 CARBO-PROP
6							The state of the s	***	INCREASED SAND TO 4.5 #/6
9								***	SAND OFF BY APPROX5#/G
6									FLUSH - TREATED WATER
6							Operator Stage Advance	>	SHUTDOWN - MONITOR PRESSURE
9								* * *	ISIP=9169
6	11 1	NOT	S	ě	19:37:22	2	Operator's Notes	***	STARTED FLOW BACK

Plugging Record

RAILROAD COMMISSION OF TEXAS OIL AND GAS DIVISION

FORM W-3 Rev. 12/92 EAG0897

		· · · · · · · · · · · · · · · · · · ·													
								1	API No) lable) 42- 0	025-30	388	1.	RRC District	:
	FILE	IN DUPLIC	CATE	WITH DISTRICT	OFFIC	`F O	E DIST	RICT	INI VA	/HICH	*****		1	0	2
WELL IS LOCATED WITHIN THIRT														RRC Lease o	or Id.
VVLLE IS LOCATED VVICENIN THIRT						1 DATS AFTER PLUGGING							Ì	Number 064112	
2 FIELD NAME (as per RRC Records)						3. Lease Name						5.	Well Numbe	r	
Pawn	Pawnee (Sligo)						erby, Cl	arlie	∍ C.	Gas Unit			Ì	1	
6. OPEI	RATOR		at in the same		6a.	Origin	ıal Form V	/-1 File	d in N	ame of			10.	County	
Pio	neer Nat	ural Resou	rces	USA, Inc.										Bee	2
7. ADD		155		75039-373	6 6b.	Any S	Subsequent	W-1's I	Filed in	n Name of.			11.	Date Drilling	
5205	N. O'Con	nor Blvd.,	Ste	900 Irving, 1	-									Permit Issue	ed
8. Loca	tion of Well	Relative to Ne	arest L	ease Boundaries	1625	Feet	From V	<u> </u>	L	ine and 17	50	Feet From	12	Permit Num	ber
of Le	ase on which	h this Well is Lo	ocated		5		of the 5	urve				Lease	1	-	
9a SEC	TION, BLO	CK, AND SUR	VEY		9b.	Distan	ice and Di			Vearest Town	ın this		13.	Date Drilling	
Mar	celo Al	carte		A-70	Ì	Coun		mile	s Sot	ath of Pa	awnee		1	Commence	1
16. Type	Well	Total Depth	17. If	Multiple Completion La	st All Fiel	d Nam	es and Oil	Lease o					14.	Date Drilling	
	Gas, Dry)	16,300								GAS ID or LEASE#	Oıl-O Gas-G	WELL #		Completed	_
	s, Amt. of C								OIL BLAISE #				15.	Date Well P	lugged
Han	l'at time of	Plugging											3-6-07		
	EMENTING	TO PLUG AND	A D A NI	ON DATA.	PLUG	44	PLUG #2	PLUC	~ 40	DI 110 #4	PLUG #	5 PLUG			BLUG #0
	enting Date	TO FLUG AND	ABANI	JON DATA:	2-2		2-27			PLUG #4				PLUG #7	PLUG #8
		Pine in which Pl	no Plac	ced (inches)					-2 3-5		3-6		<u>-6</u>		
		of Tubing or E			3 1		3 1/2			7	7		7	}	
				e(112), '= 1,	931	\longrightarrow	9200			3563	300			<u> </u>	ļ
	····	Used (each plu	ıg)		1 1			1 35		55			5	<u> </u>	<u> </u>
		umped (cu ft)		<u> </u>	1.0		1.06			58.30			36	 	ļ
	ulated Top o		1) (A.)		928	30	9180	36	50	3428	200		5	 	
	y Wt. #/Gal	Plug (if tagged									187			 	ļ
*27. Type	<u> </u>	·		ر برساد بالمخطية بارد و	16.		16.4		.4	16.4	16.			 	ļ
		IDINO DECOD		'n n 1100mo	<u>H</u>		<u>H</u> 129. V		I Non-l	H Orillable Ma	H terial (Ot	l I	1		
		JBING RECOR					t1	ian Cas	ing) L	eft in This W	ell `			Yes Yes	
SIZE	WT.#/FT.	PUT IN WELL	_ (ft.)	LEFT IN WELL (ft.)	HOLE SI	<u> </u>	·) 29a.	If answe	er to a efly de	bove is "Yes scribe non-d	" state de rillable m	pth to top (aterial, (U	of "ju Jse Re	nk" left in ho everse Side o	le f
16	49.50	61		61	UN			Form if	more	space is need	led)				
10 3/4	45.50	3513		3508		5"				_				' to 15,0	
7	49.50	15,52		15,524	8.3	3/4			_		1/4" t	ubing f	rom	9340' to	16,143
4"	UNK	<u> 15055-16</u>		14247		····	al	so le	ft i	n well.				· · · · · · · · · · · · · · · · · · ·	
	ALL OPEN	HOLE AND/OR		DRATED INTERVALS											
FROM	15,9	911	TO) <u>16,072</u>		_	FI	ROM				TO			
FROM TO						FI	ROM				TO				
FROM TO							FI	ROM				TO			
FROM TO						_	FI	ROM			**	TO			
FROM			TO)			FI	ROM				TO			
I have kn	owledge tha	t the cementing	operat	ions, as reflected by the	ınformati	on fou	nd on this	form, w	ere pe	rformed as 1	ndicated l	y such in	356	EIVED	
Designa	tes items to	be completed by	y Ceme	nting Company. Items	not so des	ignate	d shall be	comple	ted by	Operator.		CENT	RA	L RECO	RDS

Pat's P & A, Inc.

JUN 01 2007

Signature of Cementer or Authorized Representative

Name of Cementing Company

I declare under penalties prescribed in Sec. 91.143, Texas Natural Resources Code, that I am authorized to make this report, that this report, that this report was prepared by me or under my supervision and direction, and that data and facts stated therein are true, correct and complete, to the best of my knowledge

 PROD SUPT.
 3-22-07
 Phone 36/364-1732

 TITLE
 DATE
 A/C
 NUMBER

Depth of Deepest Fresh Water 250 36. If NO, Explain 36. If NO, Explain Date RRC District Office potential of Part of the RRC District Office potential of Part of the RRC District Office potential of Part of the RRC District Office potential of plugging potenti	LBS/GA Yes No 23-07
16,300 Depth of Deepest Fresh Water 250 36. If NO, Explain 37. Name and Address of Cementing or Service company who mixed and pumped cement plugs in this well Pat's P & A, Inc. P.O. Box 0126, Bishop 'TX 78343 38. Name(s) and Addresse(s) of Surface Owners of Well Site	Yes No
Depth of Deepest Fresh Water 250 36. If NO, Explain 36. If NO, Explain 37. Name and Address of Cementing or Service company who mixed and pumped cement plugs in this well Pat's P & A, Inc. P.O. Box 0126, Bishop 'IX 78343 38. Name(s) and Addresse(s) of Surface Owners of Well Site	
Depth of Deepest Fresh Water 250 37. Name and Address of Cementing or Service company who mixed and pumped cement plugs in this well Pat's P & A, Inc. P.O. Box 0126, Bishop TX 78343 38. Name(s) and Addresse(s) of Surface Owners of Well Site	23-07
250 37. Name and Address of Cementing or Service company who mixed and pumped cement plugs in this well Pat's P & A, Inc. P.O. Box 0126, Bishop 'TX 78343 B. Name(s) and Addresse(s) of Surface Owners of Well Site Date RRC District Office notified of plugging 2-2	23-07
Pat's P & A, Inc. P.O. Box 0126, Bishop TX 78343 Name(s) and Addresse(s) of Surface Owners of Well Site Date RRC District Office notified of plugging 2-2	23-07
Pat's P & A, Inc. P.O. Box 0126, Bishop 'IX 78343 notified of plugging 2-2 8. Name(s) and Addresse(s) of Surface Owners of Well Site	23-07
8. Name(s) and Addresse(s) of Surface Owners of Well Site	23-07
	
9. Was Notice Given Before Plugging to the Above?	
ILL IN BELOW FOR DRY HOLES ONLY	
 For Dry Holes, this Form must be accompanied by either a Driller's, Electric, Radioactivity or Acoustical/Sonic Log or such Log must be released to a Commercial Log Service. 	
Log Attached Log released to	
Log Attached Log released to Date	
Type Logs:	
Driller's Electric Radioactivity Acoustical/Sonic	
1. Date FORM P-8 (Special Clearance) Filed?	
A. DAIG FUNIVI FEA LODGGIII CHEADAICE I FIIEGA	
1. Date FORM F-8 (Special Clearance) Filed?	
Amount of Oil produced prior to Plugging	
2. Amount of Oil produced prior to Plugging	
2. Amount of Oil produced prior to Plugging bbls* * Field FORM P-1 (Oil Production Report) for month this oil was produced	
2. Amount of Oil produced prior to Plugging bbls* * Field FORM P-1 (Oil Production Report) for month this oil was produced RRC USE ONLY.	
2. Amount of Oil produced prior to Plugging bbls* * Field FORM P-1 (Oil Production Report) for month this oil was produced RRC USE ONLY.	
2. Amount of Oil produced prior to Pluggingbbls* * Field FORM P-1 (Oil Production Report) for month this oil was produced RRC USE ONLY Nearest Field	ī
Amount of Oil produced prior to Pluggingbbls* * Field FORM P-1 (Oil Production Report) for month this oil was produced RRC USE ONLY Nearest Field Nearest Field Nearest Field Nearest Field Nearest Field 1	1/2
Amount of Oil produced prior to Pluggingbbls* * Field FORM P-1 (Oil Production Report) for month this oil was produced RRC USE ONLY Nearest Field	1/2 ow and
Amount of Oil produced prior to Plugging * Field FORM P-1 (Oil Production Report) for month this oil was produced * RRC USE ONLY. Nearest Field * Nearest F	1/2 ow and orated
Amount of Oil produced prior to Plugging * Field FORM P-1 (Oil Production Report) for month this oil was produced * RRC USE ONLY Nearest Field * Nearest Field * Nearest Field * Unable to recover 3 1/2" tbg. as anticipated above existing 1 1/4" fish @ 9340'. Jet cut 3 1/2" 9302' & 9243'. Unable to pull or establish circulation up 3 1/2 x 7" @ 3500 P.S.I. Freepoint on 3 1 reg. at 4750 * Notified and received approval from Kevin Shamette W/RRC to set CIBP's + 20' cmt beloebove cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance of the control of	1/2 ow and orated
Amount of Oil produced prior to Plugging * Field FORM P-1 (Oil Production Report) for month this oil was produced * RRC USE ONLY. Nearest Field * Nearest F	1/2 ow and orated
* Field FORM P-1 (Oil Production Report) for month this oil was produced **RRC USE ONLY* Nearest Field ** ** ** ** ** ** ** ** **	1/2 ow and orated amette
Amount of Oil produced prior to Plugging * Field FORM P-I (Oil Production Report) for month this oil was produced * RRC USE ONLY Nearest Field * Nearest Field * Notified and received approval from Kevin Shamette W/RRC to set CIBP's + 20' cmt below cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance of the pull or circulate. Re-cut @ 3800'. Received verbal approval from Kevin Shamette V/RRC to set Dlug from 3800' tp 3650' Cut & perforated 7" casing @ 3563'. Casing not free. Unable to stablish circulation but established injection into 7" x 8 3/4" @ 2000	1/2 ow and orated amette
Amount of Oil produced prior to Plugging * Field FORM P-1 (Oil Production Report) for month this oil was produced * RRC USE ONLY Nearest Field * Notified and received approval from Kevin Shamette W/RRC to set CIBP's + 20' cmt belower cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3	1/2 ow and orated amette
Amount of Oil produced prior to Plugging * Field FORM P-I (Oil Production Report) for month this oil was produced * RRC USE ONLY Nearest Field * Nearest Field * Notified and received approval from Kevin Shamette W/RRC to set CIBP's + 20' cmt below cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance of the pull or circulate. Re-cut @ 3800'. Received verbal approval from Kevin Shamette V/RRC to set Dlug from 3800' tp 3650' Cut & perforated 7" casing @ 3563'. Casing not free. Unable to stablish circulation but established injection into 7" x 8 3/4" @ 2000	1/2 ow and orated amette P.S. sks.

	Area of Review: Oil & Gas Wells List									
API	WELL NAME	WELL NO.	CURRENT OPERATOR	ABSTRACT	LATITUDE (WGS84)	LONGITUDE (WGS84)	WELL STATUS	TOTAL DEPTH (TVD FT.)	PERFORATED INTERVAL (MD FT.)	DATE DRILLED
4202500002	ONEAL, A.	1	ROWAN & HOPE	126	28.603017	-98.000911	DRILLED	7010	NO RECORD	8/9/1949
4202500005	RUSSELL, S.	1	PAN AMERICAN PETROLEUM CORP.	308	28.594587	-97.999841	DRILLED	7515	NO RECORD	5/12/1947
4202530346	HENRY BUES	1	PIONEER NATURAL RES. USA, INC.	70	28.5986210	-98.0118480	INACTIVE PRODUCER	13842	7554-7558; 7612-7624; 13526-13760	11/10/1974
4202530359	ONEAL GAS UNIT	2	BB-SOUTHTEX, LLC	127	28.61178	-98.000661	PRODUCING	13961	13349-15821	4/5/1975
4202530388	OVERBY, CHARLIE C. GAS UNIT	1	PIONEER NATURAL RES. USA, INC.	70	28.601086	-98.005037	P & A	16300	15911-16072	6/6/1975
4202532342	DE LEON	1	T D EXPLORATION, INC.	126	28.6006330	-97.9917520	P & A	6512	NO RECORD	12/31/1985
4202532501	HENRY BUES GAS UNIT	2	BB-SOUTHTEX, LLC	70	28.599863	-98.009994	PRODUCING	13896	13504-15637	11/15/1988
4202532638	ONEAL GAS UNIT	3	BB-SOUTHTEX, LLC	70	28.604583	-98.007079	PRODUCING	13834	13508-13668	3/12/1992
4202532842	OVERBY, CHARLIE C.	1E	PIONEER NATURAL RES. USA, INC.	70	28.5998760	-98.0053330	P & A	14000	13514-13838	10/9/1995
4202532967	TOMASEK GAS UNIT	5	BB-SOUTHTEX, LLC	126	28.609862	-97.991519	PRODUCING	13875	13434-15693	6/12/1999
4202533006	ONEAL GAS UNIT	5	BB-SOUTHTEX, LLC	70	28.6067950	-98.0042210	PRODUCING	13772	13463-13764	7/15/2000
4202533035	ONEAL GAS UNIT	6	BB-SOUTHTEX, LLC	127	28.61091	-97.999073	PRODUCING	13835	13310-13833	9/14/2000
4202533085	ONEAL GAS UNIT	7	BB-SOUTHTEX, LLC	127	28.609397	-98.001471	PRODUCING	13868	13314-16072	5/4/2001
4202533114	HENRY BUES GAS UNIT	8	BB-SOUTHTEX, LLC	70	28.5984810	-98.0090260	PRODUCING	13732	13348-13732	6/11/2001
4202533197	ONEAL GAS UNIT	8	BB-SOUTHTEX, LLC	452	28.6075430	-98.0037990	PRODUCING	15638	13565-13820	2/5/2003

O'Neal Gas Unit No. 4

4202533272	HENRY BUES GAS UNIT	11	BB-SOUTHTEX, LLC	70	28.598737	-98.008615	PRODUCING	13856	13291-15853	6/23/2004
4202533273	ONEAL GAS UNIT	9	BB-SOUTHTEX, LLC	452	28.6029540	-98.0025090	PRODUCING	13872	13311-16585	6/3/2004
4202533328	ONEAL GAS UNIT	11	BB-SOUTHTEX, LLC	126	28.6036340	-97.9982100	PRODUCING	13787	13318-15928	4/19/2005
4202533345	TOMASEK GAS UNIT	8	BB-SOUTHTEX, LLC	126	28.608282	-97.991595	PRODUCING	13692	13293-16378	8/14/2004
4202533371	ONEAL GAS UNIT	12	BB-SOUTHTEX, LLC	452	28.6097460	-98.0027040	PRODUCING	13819	13313-16635	8/15/2006
4202533383	HENRY BUES GAS UNIT	15	BB-SOUTHTEX, LLC	70	28.600322	-98.00874	PRODUCING	13811	13302-15768	10/8/2006
4202533492	ONEAL GAS UNIT	13	BB-SOUTHTEX, LLC	70	28.605326	-98.012928	PRODUCING	13859	13382-14761	7/7/2007
4202533553	ONEAL GAS UNIT	14	BB-SOUTHTEX, LLC	127	28.613869	-98.000504	PRODUCING	13674	13450-15424	2/11/2008
4202533559	OVERBY GAS UNIT	2E	BB-SOUTHTEX, LLC	452	28.6011410	-98.0028580	PRODUCING	13734	13372-13734	3/23/2008
42025E2114	NO RECORD	NR	NO RECORD	126	28.608457	-97.995683	NO RECORD	NR	NO RECORD	NR

*Note: Well entries in red penetrate the upper confining layer.

	Area of Review: Freshwater Wells List											
WELL REPORT/ID NO.	OWNER'S NAME	OWNER ADDRESS	CITY/STATE/ZIP	LAT. WGS 84	LONG. WGS 84	WELL USE	WATER LEVEL (FT.)	TOTAL DEPTH (FT.)	DATE DRILLED			
128936	JOHN DAVIDSON	12761 FM 673	KENEDY, TX 78119	28.606667	-98.011667	DOMESTIC	48	114	11/19/2007			
7832308	HENRY BUES	NO RECORD	NO RECORD	28.598334	-98.012223	STOCK	-	150	1960			
7925105	T. M. PLUMER	NO RECORD	NO RECORD	28.595556	-97.997778	STOCK	77	275	1931			
7832309	W. A. MUELLER	NO RECORD	NO RECORD	28.608612	-98.005834	UNUSED	63	90	1925			
7925106	R.C. HUNT ESTATE	NO RECORD	NO RECORD	28.593889	-97.997222	UNUSED	137	172	1925			

Request for Additional Information: O'Neal Gas Unit Well No. 4 May 16, 2024

Instructions: Please enter responses into this table and make corresponding revisions to the MRV Plan as necessary. Any long responses, references, or supplemental information may be attached to the end of the table as an appendix. This table may be uploaded to the Electronic Greenhouse Gas Reporting Tool (e-GGRT) in addition to any MRV Plan resubmissions.

No.	MRV Plan		EPA Questions	Responses
	Section	Page		
1.	N/A	N/A	Please clarify whether the referenced Startex Pawnee Gas Plant has previously reported any data under the GHGRP (e.g., subparts W, UU, PP). If so, please include the related facility ID number in the MRV plan.	The Pawnee Treating Facility is part of Startex's gas gathering and boosting assets, which are currently reporting under subpart W; (Facility ID No. 568661). Section 1.3 has been revised to include this Facility ID No., with references to the Pawnee Treating Facility and additional reporting information.
2.	2.2.3	22	"The permeability curve was generated utilizing the Coates permeability equation, incorporated with a 20% irreducible to match analysis provided by Nutech." Please clarify what "irreducible" means in this context.	Section 2.2.3 has been edited to clarify and now reads "20% irreducible brine saturation".
3.	Table 7	52	"The lateral continuity of the UCZ is recognized as a very competent seal."	Table 7 has been updated to better characterize the Likelihood of certain Leakage Pathways.
			This statement appears in the likelihood section of most potential leakage pathways shown in Table 7. Please specify how the UCZ being a competent seal relates to the likelihood of leakage for each of these pathways. Also, please ensure that potential leakage pathways are consistent between Table 7 and Table 9.	Table 9 has been updated to ensure the pathways discussed are consistent between Tables 7 and 9. Leakage through groundwater/future wells are subsets of the existing wells discussion.
4.	4.5	61	Please include additional characterization related specifically to induced seismicity in this section. Additionally, please clarify whether the facility will take steps (such as limiting injection pressures) to avoid inducing seismicity.	Section 4.5 has been updated to address potential induced seismicity and clarify the steps to be taken to avoid inducing seismicity.

No.	. MRV Plan		EPA Questions	Responses
	Section	Page		
5.	7.5	74	" CO_{2FI} = Total annual CO_2 mass emitted (metric tons) from equipment leaks and vented emissions from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead"	The definitions of variables for the equation in Sections 7.2 and 7.5 has been updated to reflect the precise language used in 40 CFR 98.443.
			Per 40 CFR 98.443(F)(2), this variable should be " CO_{2FI} = Total annual CO_2 mass emitted (metric tons) from equipment leaks and vented emissions from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of this part." Equations and variables cannot be modified from the regulations. Please revise this section and ensure that all equations listed are consistent with the text in 40 CFR 98.443.	
6.	8	75	"The MRV plan will be implemented upon receiving EPA approval."	Section 8 has been updated with a table to formalize the baseline sampling activities described in Section 6.
			Per 40 CFR 98.448(a)(7), the proposed MRV plan must include a "proposed date to begin collecting data for calculating total amount sequestered according to equation RR-11 or RR-12 of this subpart. This date must be after expected baselines as required by paragraph (a)(4) of this section are established and the leakage detection and quantification strategy as required by paragraph (a) (3) of this section is implemented in the initial AMA."	
			Please clarify in the MRV plan when baselines would be established and when data would start to be collected for calculating CO ₂ sequestered. If this timeline is dependent on the status of the Class II permit, we recommend specifying this in the MRV plan. In the response to our previous request for additional information, you provided additional context that would be relevant in Section 8 of the MRV plan.	

No.	MRV Plan		EPA Questions	Responses
	Section	Page		
7.				The term "plant" was changed to "facility" through the proposed MRV plan to better represent the activities of the StarTex assets.
8.	2.2.5			An internal review of the MRV plan identified that the fracture pressure gradient discussion included information from an earlier test. The values have been updated and now match the values used in the plume model.
9.	2.8			Additional language was added to clarify how the relative permeability was determined.
10.	Table 8			Table 8 has been updated for consistent use of monitors.

Subpart RR Monitoring, Reporting, and Verification (MRV) Plan O'Neal Gas Unit Well No. 4

Bee County, TX

Prepared for *Ozona CCS, LLC*San Antonio, TX

By

Lonquist Sequestration, LLC
Austin, TX

Version 2.0 January 2024

INTRODUCTION

Ozona CCS, LLC (Ozona) has a pending Class II acid gas injection (AGI) permit application with the Texas Railroad Commission (TRRC), which was submitted in September of 2023 for its O'Neal Gas Unit Well No. 4 (O'Neal No. 4), API No. 42-025-32658. Granting of this application would authorize Ozona to inject up to 1.5 million standard cubic feet per day (MMscf/D) of treated acid gas (TAG) into the Sligo Formation at a depth of 15,874 feet (ft) to 16,056 ft, with a maximum allowable surface pressure of 7,920 pounds per square inch gauge (psig). The TAG for this AGI well is associated with StarTex's Pawnee Gas Plant, located in a rural area of Bee County, Texas, approximately 2.0 miles (mi) south of Pawnee, Texas, as shown in Figure 1.

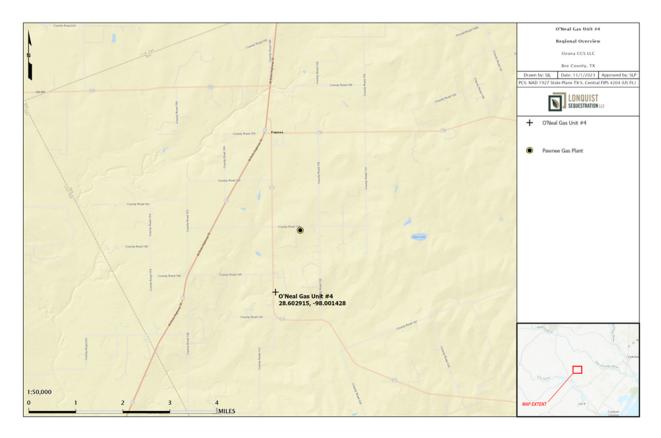


Figure 1 – Location of StarTex Gas Plant and the O'Neal No. 4

Ozona is submitting this Monitoring, Reporting, and Verification (MRV) plan to the EPA for approval under Title 40, U.S. Code of Federal Regulations (40 CFR) §98.440(a), Subpart RR, of the Greenhouse Gas Reporting Program (GHGRP). In addition to submitting this MRV plan to the EPA, Ozona has applied to the TRRC for the O'Neal GU No. 4's Class II permit. Ozona plans to inject TAG for approximately 12 years. Table 1 shows the expected composition of the gas stream to be sequestered from the nearby plant.

Table 1 – Expected TAG Composition

Component	Mol Percent
Carbon Dioxide	98.2%
Hydrocarbons	1.03%
Hydrogen Sulfide	0.4%
Nitrogen	0.37%

ACRONYMS AND ABBREVIATIONS

AMA Active Monitoring Area

BCF Billion Cubic Feet

CH₄ Methane

CMG Computer Modelling Group, Ltd.

Carbon Dioxide (may also refer to other carbon

CO₂ oxides)

E East

EOS Equation of State

EPA Environmental Protection Agency

ESD Emergency Shutdown

FG Fracture Gradient

ft Foot (Feet)

GAPI Gamma Units of the American Petroleum Institute

GAU Groundwater Advisory Unit

GEM Computer Modelling Group's GEM 2023.2

GHG Greenhouse Gas

GHGRP Greenhouse Gas Reporting Program

GL Ground Level Elevation

H₂S Hydrogen Sulfide

JPHIE Effective Porosity (corrected for clay content)

mD Millidarcy

mi Mile(s)

MIT Mechanical Integrity Test

MM Million

MMA Maximum Monitoring Area

MCF Thousand Cubic Feet

MMcf Million Cubic Feet

MMscf Million Standard Cubic Feet

Mscf/D Thousand Standard Cubic Feet per Day

MMscf/D Million Standard Cubic Feet per Day

MRV Monitoring, Reporting, and Verification

v Poisson's Ratio

N North

NW Northwest

OBG Overburden Gradient

PG Pore Gradient

pH Scale of Acidity

ppm Parts per Million

psi Pounds per Square Inch

psig Pounds per Square Inch Gauge

S South

SE Southeast

SF Safety Factor

SWD Saltwater Disposal

TAC Texas Administrative Code

TAG Treated Acid Gas

TOC Total Organic Carbon

TRRC Texas Railroad Commission

UIC Underground Injection Control

USDW Underground Source of Drinking Water

W West

TABLE OF CONTENTS

INTRO	DUCTIO	N	2
ACRO	NYMS AN	ND ABBREVIATIONS	4
SECTIO	ON 1 – U	IC INFORMATION	10
1.1	Unde	rground Injection Control Permit Class: Class II	10
1.2	UIC W	Vell Identification Number	10
1.3	Facilit	ty Address	10
SECTIO	ON 2 – PI	ROJECT DESCRIPTION	11
2.1	Regio	nal Geology	
	2.1.1	Geologic Setting and Depositional Environment	
	2.1.2	Regional Structure and Faulting	
2.2	Site C	haracterization	
	2.2.1	Stratigraphy and Lithologic Characteristics	
	2.2.2	Upper Confining Interval – Pearsall Formation	19
	2.2.3	Injection Interval – Upper Sligo Formation	
	2.2.4	Formation Fluid	
	2.2.5	Fracture Pressure Gradient	
	2.2.6	Lower Confining Interval – Lower Sligo and Hosston Formations	
2.3		Structure	
2.4	-	ion and Confinement Summary	
2.5		ndwater Hydrology	
2.6		ences	
2.7		iption of the Injection Process	
	2.7.1	Current Operations	
2.8		voir Characterization Modeling	
	2.8.1	Simulation Modeling	
SECTIO		ELINEATION OF MONITORING AREA	
3.1		mum Monitoring Area	
3.2		e Monitoring Area	
		OTENTIAL PATHWAYS FOR LEAKAGE	_
4.1		ge from Surface Equipment	
4.2		ge Through Existing Wells Within the MMA	
	4.2.1	Future Drilling	
	4.2.2	Groundwater Wells	
4.3		ge Through Faults and Fractures	
4.4		ge Through the Confining Layer	
4.5		ge from Natural or Induced Seismicity	
		IONITORING FOR LEAKAGE	
5.1		ge from Surface Equipment	
5.2		ge Through Existing and Future Wells Within the MMA	
5.3		ge Through Faults, Fractures, or Confining Seals	
5.4	Leaka	ge Through Natural or Induced Seismicity	68

SECTION	6 – BASELINE DETERMINATIONS	70
6.1	Visual Inspections	70
6.2	CO ₂ /H ₂ S Detection	70
6.3	Operational Data	70
6.4	Continuous Monitoring	70
6.5	Groundwater Monitoring	71
SECTION	7 – SITE-SPECIFIC CONSIDERATIONS FOR MASS BALANCE EQUATION	72
7.1	Mass of CO ₂ Received	72
7.2	Mass of CO ₂ Injected	72
7.3	Mass of CO ₂ Produced	73
7.4	Mass of CO ₂ Emitted by Surface Leakage	73
7.5	Mass of CO ₂ Sequestered	74
SECTION	8 – IMPLEMENTATION SCHEDULE FOR MRV PLAN	75
SECTION	9 – QUALITY ASSURANCE	76
9.1	Monitoring QA/QC	76
9.2	Missing Data	76
9.3	MRV Plan Revisions	77
SECTION	10 – RECORDS RETENTION	78
Figure 2	 Location of StarTex Gas Plant and the O'Neal No. 4 Structural Features of the Gulf of Mexico and Locator Map (modified from Rober 	ts-
•	al., 2012)	
intervals	 Stratigraphic column of the U.S. Gulf Coast signifying proposed injection and confini Offset productive intervals are noted with a green star (modified from Roberts-Ash 12). 	by
Figure 4 propose	 Detailed stratigraphic column of Lower Cretaceous formations of south Texas. T d injection interval is shaded light blue and proposed confining intervals are shaded light 	he
approxir Figure 6 Texas (th	 Paleogeography of the Lower Cretaceous of south Texas. The red star represents the nate location of the O'Neal No. 4 (modified from Bebout et al., 1981). Generalized northwest to southeast schematic cross section of the Trinity Group, southeast schematic cross section of the Trinity Group, southeast schematic cross section of the Trinity Group, southeast line of section depicted in Figure 5). The red star and line represent the approximation. 	14 Ith
Figure 7 porosity Figure 8 represer	of the O'Neal No. 4 (modified from Kirkland et al., 1987)	ed 15 tar 6).
Figure 9 Word fie	– Northwest to southeast schematic interpretation of the Edwards shelf margin throu eld, northeast of the O'Neal No. 4 project area (modified from Swanson et al., 2016) D – Type Log with Tops, Confining, and Injection Intervals Depicted	gh 17

Figure 11 – Porosity-Permeability Crossplot of Pearsall Formation Crushed Rock Cord (Swanson et al., 2016)	
Figure 12 – Seismic line across the Stuart City (Edwards/Buda) shelf margin and locator ma red star represents the approximate location of the O'Neal No. 4 (modified from Bebout 1981).	p. The t et al.,
Figure 13 – Environmental Setting of Lower Cretaceous Platform (Bebout et al., 1981) Figure 14 – Openhole log from O'Neal No. 4 (API No. 42-025-32658), with porosity curves s	shaded
green >0%, permeability curve in blue >0 mD, and resistivity in red >5 ohms	
Figure 16 – Environmental Setting of Lower Cretaceous Tidal Flat Deposits (Bebout et al.,	, 1981)
Figure 17 – Subsea Structure Map: Top of Sligo (injection interval). The red star signification of the O'Neal No. 4.	
Figure 18 – Northwest to southeast structural cross section: A-A' Oriented along region The red star signifies the location of the O'Neal No. 4, with the section line depicted in red locator map.	on the
Figure 19 – Southwest to northeast structural cross section: B-B' oriented along regional The red star signifies the location of the O'Neal No. 4, with the section line depicted in bethe locator map	lue on
Figure 20 – Extent of the Gulf Coast Aquifer. The red star represents the approximate loca the O'Neal No. 4 (modified from Bruun, B., et al., 2016)	ition of
Figure 21 – Stratigraphic Column of the Gulf Coast Aquifer (Chowdhury and Turco, 2006). Figure 22 – Cross Section S-S' Across the Gulf Coast Aquifer. The red star represer approximate location of the O'Neal No. 4 (modified from Bruun et al., 2016)	32 nts the
Figure 23 – Total Dissolved Solids (TDS) in the Gulf Coast Aquifer. The red star represent approximate location of the O'Neal No. 4 (modified from Bruun et al., 2016)	nts the
Figure 24 – Two-Phase Relative Permeability Curves Used in the GEM Model Figure 25 – Areal View of Saturation Plume at Shut-in (End of Injection)	
Figure 26 – Areal View of Gas Saturation Plume 10 Years After Shut-in (End of Simulation) Figure 27 – East-West Cross-Sectional View of Gas Saturation Plume at Shut-in (End of Injune)	42 ection)
Figure 28 –East-West Cross-Sectional View of Gas Saturation Plume 10 Years After Shut-i of Simulation)	in (End
Figure 29 – Well Injection Rate and Bottomhole and Surface Pressures Over Time	46
Monitoring Area	
Figure 31 – Active Monitoring Area	
Figure 32 – O'Neal No. 4 Wellbore Schematic	
Figure 33 – All Oil and Gas Wells Within the MMA	
Figure 34 – Oil and Gas Wells Penetrating the Gross Injection Interval Within the MMA	
Figure 35 – Groundwater Wells Within the MMA Figure 36 – 25-km Seismicity Review	
Figure 37 – Groundwater Wells	
Figure 38 – Seismic Events and Monitoring Station	

Tables

Table 1 – Expected TAG Composition	3
Table 2 – Analysis of Lower Cretaceous (Aptian) age formation fluids from the close	st offset Sligo
oil-field brine samples	24
Table 3 – Gas Composition	35
Table 5 – Modeled Injectate Composition	36
Table 6 – GEM Model Layer Package Properties	38
Table 7 – Bottomhole and Wellhead Pressures from the Start of Injection	47
Table 8 – Potential Leakage Pathway Risk Assessment	52
Table 9 – Summary of TAG Detectors and Equipment	53
Table 10 – Summary of Leakage Monitoring Methods	64

Appendices

Appendix A – TRRC O'Neal Gas Unit Well No. 4 Forms

Appendix A-1 – GAU Groundwater Protection Determination

Appendix A-2 – Drilling Permit

Appendix A-3 – Completion Report

Appendix A-4 – Plugging Records

Appendix B – Area of Review

Appendix B-1 – Oil and Gas Wells Within the MMA List

Appendix B-2 – Water Wells Within the MMA List

SECTION 1 – UIC INFORMATION

This section contains key information regarding the Underground Injection Control (UIC) Permit.

1.1 Underground Injection Control Permit Class: Class II

The TRRC regulates oil and gas activities in Texas and has primacy to implement the Underground Injection Control (UIC) Class II program. The TRRC classifies the O'Neal No. 4 as a UIC Class II well. Ozona has applied for a Class II permit for the O'Neal No. 4 under TRRC Rules 36 (Oil, Gas, or Geothermal Resource Operation in Hydrogen Sulfide Areas) and 46 (Fluid Injection into Productive Reservoirs).

1.2 <u>UIC Well Identification Number</u>

• O'Neal No. 4, API No. 42-025-32658, UIC No. 56819

1.3 Facility Address

• Gas Plant Facility Name: StarTex Pawnee Gas Plant

Operator: StarTex Field Services, LLC

• Coordinates in North American Datum for 1983 (NAD 83) for this facility:

Latitude: 28.622211Longitude: -97.992772

SECTION 2 – PROJECT DESCRIPTION

This section discusses the geologic setting, planned injection process and volumes, and reservoir and plume modeling performed for the O'Neal No. 4 well.

The O'Neal No. 4 will inject the TAG stream into the Sligo Formation at a depth of 15,874 ft to 16,056 ft, and approximately 14,924 ft below the base of the Underground Source of Drinking Water (USDW). Therefore, the well and the facility are designed to protect against the leakage out of the injection interval, to protect against contaminating other subsurface formations, and—most critically—to prevent surface releases.

2.1 Regional Geology

The O'Neal No. 4 (API No. 42-025-32658) is located in south Texas within the Gulf of Mexico Basin. The onshore portion of the Gulf of Mexico basin spans approximately 148,049,000 acres and encompasses portions of Texas, Louisiana, Mississippi, Alabama, Arkansas, Missouri, Kentucky, Tennessee, Florida, and Georgia to the state-waters boundary of the United States (Roberts-Ashby et al., 2012). The location of the O'Neal No. 4 is designated by the red star in Figure 2, relative to the present coastal extent and major structural features of the basin.

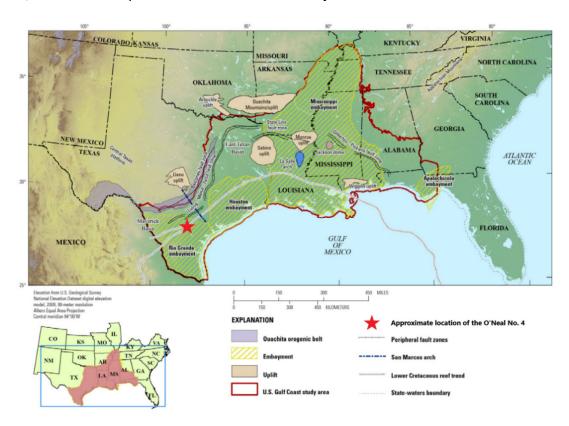


Figure 2 – Structural Features of the Gulf of Mexico and Locator Map (modified from Roberts-Ashby et al., 2012)

Figure 3 depicts a generalized stratigraphic column of the U.S. Gulf Coast, with light blue shading signifying the proposed injection interval and green stars indicating productive formations identified within 5 miles of the O'Neal No. 4. The injection interval is found within the Sligo Formation, with confinement provided by the overlying Pearsall Formation and tight underlying facies of the Lower Sligo and Hosston Formations.

Era	Odilos			Global Chronostratigraphic Units	North American Chronostratigraphic Units	Stratigraphic Unit									
	- Quaternary Plei. Holo.		1010.												
				Calabrian		Undifferentiated									
			ane	Pliocene	Piacenzian Zanclean		Undifferentiated								
Cenozoic	Tertiary	Neogene	Miocene	Messinian Tortonian Serravallian Langhian Burdigalian Aquitanian		Upper Mioc. Middle Mioc. Fleming Fm Lower Mioc.									
	Ter		Oligocene	Chattian	Chickasawhayan	★Catahoula Anahuac Fm / Ss Anahuac Frio Formation									
		ne	<u>=</u>	Rupelian	Vicksburgian	Vicksburg Formation									
		Paleogene	ne	Priabonian	Jacksonian	Jackson Group									
			Pale	Eocene	Bartonian Lutetian	Claibornian	Claiborne Group Sparta Sand Cane River Fm Carrizo Sand								
				Ypresian	Sabinian	Wilcox Group									
			Pal.	Thanetian Selandian Danian	Midwayan	Midway Group									
						Maastrichtian	Navarroan	Navarro Group							
				Campanian	Tayloran	Taylor Group									
				Upper		Upper	Upper	Upper	Upper	Upper	Upper	Santonian Coniacian	Austinian	Austin Group / Tokio Formation / Eutaw Formation	
									Turonian	Eaglefordian	Eagle Ford Shale				
				Cenomanian	Woodbinian	Woodbine / Tuscaloosa Fms									
	9100	snoa		Cretaceous		Cretaceous		Cretaceous		Cretaceous			Washitan-	Washita Group (Buda Ls)	
	Protor	2	Cretac									Cretao		Albian	Fredericksburgian
						Glen Rose Ls (Rusk / Rodessa Fms)									
Mesozoic		<u> </u>		er		Trinitian	Pearsall Formation	UPPER CONFINING INTERVAL							
Mes			Lower	Aptian		Sligo Fm	INJECTION INTERVAL								
					Nuevoleonian	Hosston	LOWER CONFINING								
				Barremian		Formation	INTERVAL								
				Hauterivian Valanginian	Durangoan										
				Berriasian	3										

Figure 3 – Stratigraphic column of the U.S. Gulf Coast signifying proposed injection and confining intervals. Offset productive intervals are noted with a green star (modified from Roberts-Ashby et al., 2012).

The targeted formations of this study are located entirely within the Trinity Group, as clarified by the detailed stratigraphic column provided in Figure 4. During this time the area of interest was located along a broad, shallow marine carbonate platform that extended along the northern rim of the ancestral Gulf of Mexico. The Lower Cretaceous platform spanned approximately 870 mi from western Florida to northeastern Mexico, with a shoreline-to-basin margin that ranged between 45 to 125 mi wide (Yurewicz et al., 1993).

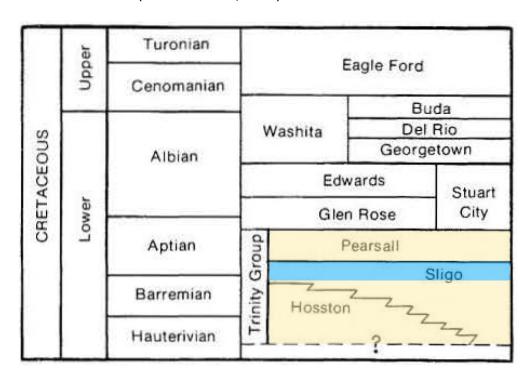


Figure 4 – Detailed stratigraphic column of Lower Cretaceous formations of south Texas. The proposed injection interval is shaded light blue and proposed confining intervals are shaded light yellow (modified from Bebout et al., 1981).

2.1.1 Geologic Setting and Depositional Environment

The depositional environment during the Lower Cretaceous generally consisted of a well-defined platform margin with a shallow marine platform interior or lagoon to the north, a shallow marine outer platform to the south, and a foreslope that gradually dipped southward towards the basin center. The platform margin remained stable for tens of millions of years during the Cretaceous but experienced episodic changes in sea level that resulted in cyclic deposition of several key facies that vary both spatially and within the geologic section. Facies distributions were heavily impacted by positioning relative to the margin, the height of the water column at any given time, and the degree of energy or wave action within the system (Galloway, 2008; Yurewicz et al., 1993).

In general, long stands of reef development and ooid shoaling developed primary porosity and permeability along the shallow, high-energy carbonate platform and represent reservoir quality

rock found within Cretaceous reef deposits. Deeper, basinward deposits tend to result in tighter petrophysical properties due to a relative increase in the amount of entrained clay associated with the heightening of the water column while moving downslope. Backreef deposits have the potential for porosity development but tend to have low permeability due to a general lack of wave action caused by restricted access to open water by the platform margin. Facies and petrophysical properties of the Lower Cretaceous section are anticipated to be relatively homogenous moving southwest-northwest along reef trend, with increased heterogeneity moving northwest-southeast due to the orientation of the carbonate rim and its effect on deposition and facies distributions (Yurewicz et al., 1993).

Figure 5 displays the paleogeography during deposition of the Lower Cretaceous section to visually demonstrate the position of the O'Neal No. 4 relative to the Sligo shelf margin and updip extents of Sligo deposition. A generalized schematic cross section of the Trinity Group is provided in Figure 6, which nearly intersects the project area from the northwest. The schematic illustrates the gross section thickening basinward, with primary reservoir development improving with proximity to the reef margin. Figure 7 displays a depositional model of the Lower Cretaceous carbonate platform to visually conceptualize depositional environments and anticipated petrophysical properties of facies introduced above.

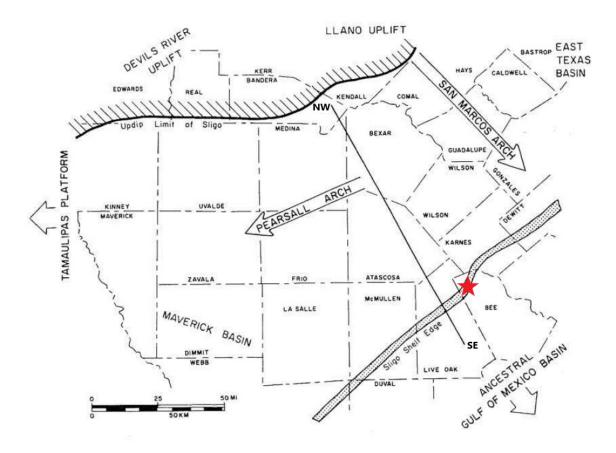


Figure 5 – Paleogeography of the Lower Cretaceous of south Texas. The red star represents the approximate location of the O'Neal No. 4 (modified from Bebout et al., 1981).

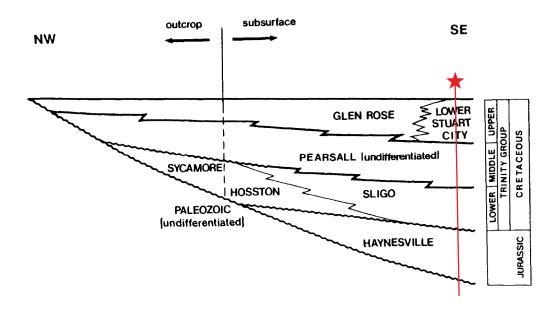


Figure 6 – Generalized northwest to southeast schematic cross section of the Trinity Group, south Texas (the line of section depicted in Figure 5). The red star and line represent the approximate location of the O'Neal No. 4 (modified from Kirkland et al., 1987)

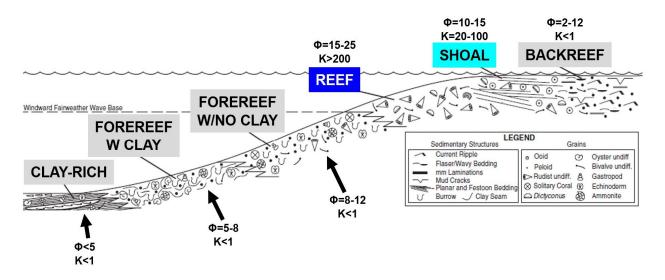


Figure 7 – Depositional model for the Lower Cretaceous carbonate platform with estimated porosity and permeability values of typical facies (modified from Talbert and Atchley, 2000).

2.1.2 Regional Structure and Faulting

The Gulf of Mexico basin was formed by crustal extension and sea-floor spreading associated with the Mesozoic breakup of Pangea. Rifting of northwest to southeast trending transfer faults during the Middle Jurassic lasted approximately 25 million years and resulted in variable thickness of the transcontinental crust underlying the region. By the Lower Cretaceous time, the general outline and morphology of the Gulf were similar to that of present-day (Galloway, 2008;

Yurewicz et al., 1993). Lower Cretaceous tectonic activity was limited to regional subsidence associated with areas of variable crustal thickness and local structuring caused by movement of Louann Salt (Yurewicz et al., 1993). The combination of these processes resulted in the structural development of regional arches, grabens, uplifts, embayments, salt domes, and salt basins around the northern edge of the basin (Dennen and Hackley, 2012; Galloway, 2008). The location of these structural features can be referenced in Figures 2 and 8 relative to the location of the O'Neal No. 4.

The schematic dip-oriented cross section displayed in Figure 9 presents a common interpretation of the current structural setting. Most of the published literature suggests that faulting near the project area is restricted to the shallower, overlying Cenozoic section, as displayed in Figure 9, with shallow faulting dying out before reaching the Pearsall Formation. However, one source did interpret the potential for faulting to the south (Swanson et al., 2016). The closest potential fault is depicted in Figure 8 relative to the location of the O'Neal No. 4. According to the map, the interpreted fault lies approximately 4.25 miles south-southeast of the well and approximately 3.9 miles south-southeast of the stabilized plume extent in the year 2047.

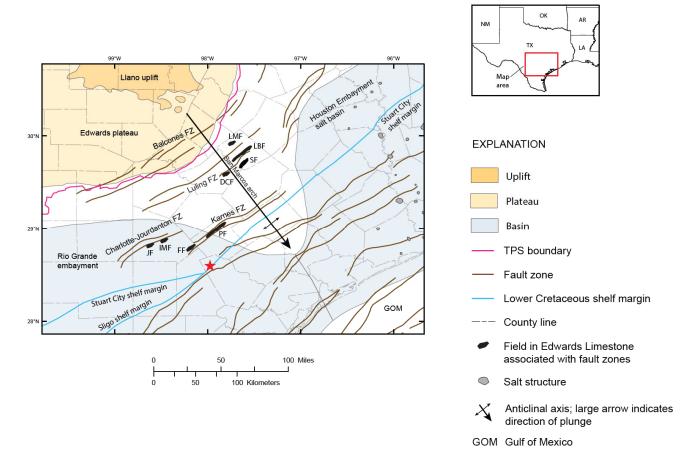


Figure 8 – Structural features and fault zones near the proposed injection site. The red star represents the approximate location of the O'Neal No. 4 (modified from Swanson et al., 2016).

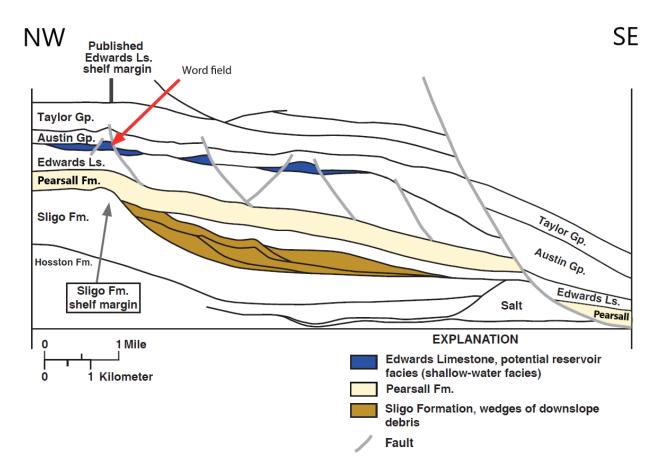


Figure 9 – Northwest to southeast schematic interpretation of the Edwards shelf margin through Word field, northeast of the O'Neal No. 4 project area (modified from Swanson et al., 2016).

2.2 <u>Site Characterization</u>

The following section discusses site-specific geological characteristics of the O'Neal No. 4 well.

2.2.1 Stratigraphy and Lithologic Characteristics

Figure 10 depicts openhole logs from two offset wells (API No. 42-025-00473 and API No. 42-025-31892) to the O'Neal No. 4, indicating the injection and primary upper confining zones. The Tomasek No. 1 (API No. 42-025-00473) is located approximately 1 mi northeast of the O'Neal No. 4 and displays the shallow section from 0–8,200 ft. The Gordon No. 3 (API No. 42-025-31892) is located approximately 1.6 mil northeast of the O'Neal No. 4 and displays a shallow section from 8,200–16,400 ft.

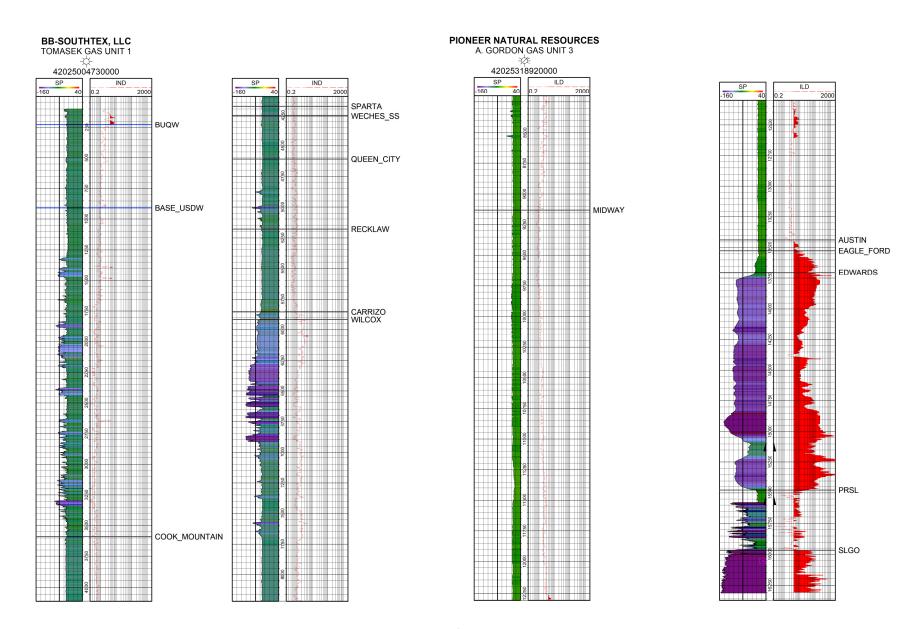


Figure 10 – Type Log with Tops, Confining, and Injection Intervals Depicted

2.2.2 <u>Upper Confining Interval – Pearsall Formation</u>

Following the deposition of the Sligo Formation, the Lower Cretaceous shelf was drowned by eustatic sea-level rise and deposition of the deep-water Pine Island Shale Member of the Pearsall Formation throughout the region (Roberts-Ashby et al., 2012). The Pine Island Shale consists of alternating beds of pelagic mudstone, hemipelagic mudstone, and Fe-rich dolomitic mudstone interpreted to have been deposited along the outer ramp. This is in agreement with core data published by Bebout and others (1981), and later by Swanson and others (2016), who identified the presence of C. Margerelli, a nannofossil indicative of anoxic conditions. The core-derived porosity-permeability relationship displayed in Figure 11 suggests that the permeability of the Pine Island Shale is incredibly low and stays below 0.0001 mD, regardless of porosity (Figure 11; Hull, 2011). This is further supported by the 2012 U.S. Geological Survey (USGS) CO₂ Storage Resource Assessment, which suggests that the Pine Island Shale contains the physical properties required to act as a regional seal and was chosen as the upward confining interval for their C50490108 Storage Assessment Unit (SAU) assessment of the Gulf Coast. The 2012 USGS report also noted that the Pine Island Shale is a sufficient regional seal with as little as 50 feet of contiguous shale development. The top of the Pearsall is encountered at a depth of 15,339 ft in the O'Neal No. 4, with a gross thickness of 535 ft (Figure 14). The Pine Island Shale member is approximately 130 ft thick at the O'Neal No. 4 location, with deposition of additional members of the overlying Pearsall Formation, which include the Cow Creek Limestone, Cow Creek shale, and Bexar Shale Members (Roberts-Ashby et al., 2012; Swanson et al., 2016).

The seismic line displayed in Figure 12 runs northwest to southeast across the Stuart City reef trend southwest of the project area. The top of the Buda, Pearsall, and Sligo Formation markers are depicted in color to demonstrate the lateral continuity of the section near the O'Neal No. 4. Seismic reflectors within the Pearsall Formation appear to lack deformation, suggesting consistent deposition over the reef margin. This is in agreement with reviewed published literature, which suggests deposition of the Pine Island Shale occurred during widespread marine transgression (Bebout et al., 1981; Hull, 2011.; Roberts-Ashby et al., 2012, Swanson et al., 2016).

Permeability and Porosity-Crushed Rock Data

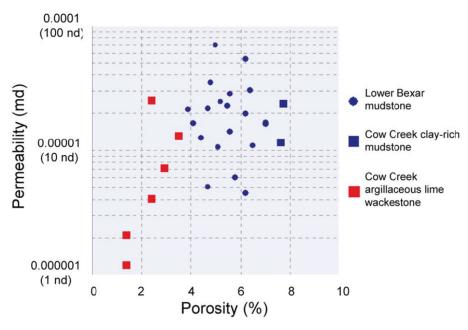


Figure 11 – Porosity-Permeability Crossplot of Pearsall Formation Crushed Rock Core Data (Swanson et al., 2016)

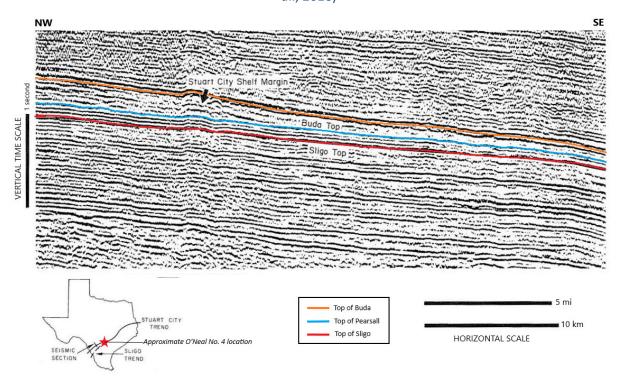


Figure 12 – Seismic line across the Stuart City (Edwards/Buda) shelf margin and locator map. The red star represents the approximate location of the O'Neal No. 4 (modified from Bebout et al., 1981).

2.2.3 <u>Injection Interval – Upper Sligo Formation</u>

The Sligo Formation underlies the Pearsall Formation and is predominately composed of shelf-edge limestones that were deposited along the Lower Cretaceous platform (Roberts-Ashby et al., 2012). However, the Cretaceous also experienced episodic changes in sea level that resulted in the deposition of cyclic Sligo facies that vary both spatially and within the geologic section. The overall Sligo interval is interpreted to be a transgressive sequence occasionally interrupted by progradational cycles that consists of porous shoaling-upward sequences that represent primary reservoir potential within the system (Bebout et al., 1981). Facies distributions of these reef complexes are heavily impacted by positioning relative to the margin, the height of the water column at any given time, and the degree of energy or wave action within the system (Galloway, 2008). Figure 13 depicts an idealized environmental setting of the Lower Cretaceous platform during deposition. Primary porosity and permeability of the upper Sligo Formation tends to develop in high-energy sequences with normal marine conditions that are dominated by the deposition of oolitic and skeletal grainstones.

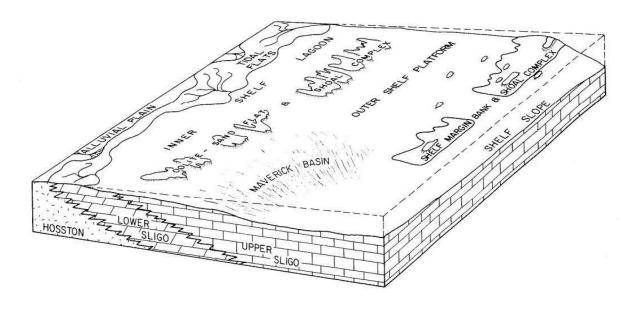


Figure 13 – Environmental Setting of Lower Cretaceous Platform (Bebout et al., 1981)

According to the 2012 USGS CO_2 Storage Resource Assessment, "the average porosity in the porous intervals of the storage reservoir decreases with depth from 9 to 16 percent" for their C50490108 DEEP SAU assessment of the Gulf Coast (>13,000 feet). The study also reported that "the average permeability in the storage reservoirs decreases with depth from 0.05 to 200 mD, with a most-likely value of 8 mD" for their C50490108 DEEP SAU assessment of the Gulf Coast (Roberts-Ashby et al., 2012).

The top of the upper Sligo is encountered at a depth of 15,874 ft in the O'Neal No. 4 with a gross thickness of 183 ft (Figure 14). The type log displayed in Figure 14 plots effective porosity for the confining interval and the total porosity of the injection interval, to account for the increased volume of shale (Vshale) seen in the Pearsall Formation. The porosity data was compared to the

analysis performed by Nutech to generate a permeability curve with a reasonable porosity-permeability relationship. The permeability curve was generated utilizing the Coates permeability equation, incorporated with a 20% irreducible to match analysis provided by Nutech. Petrophysical analysis of the O'Neal No. 4 indicates an average porosity of 4.6%, a maximum porosity of 15%, an average permeability of 0.16 mD, and a maximum permeability of 3.3 mD. These curves have been extrapolated to the injection site and used to establish reservoir characteristics in the plume model.

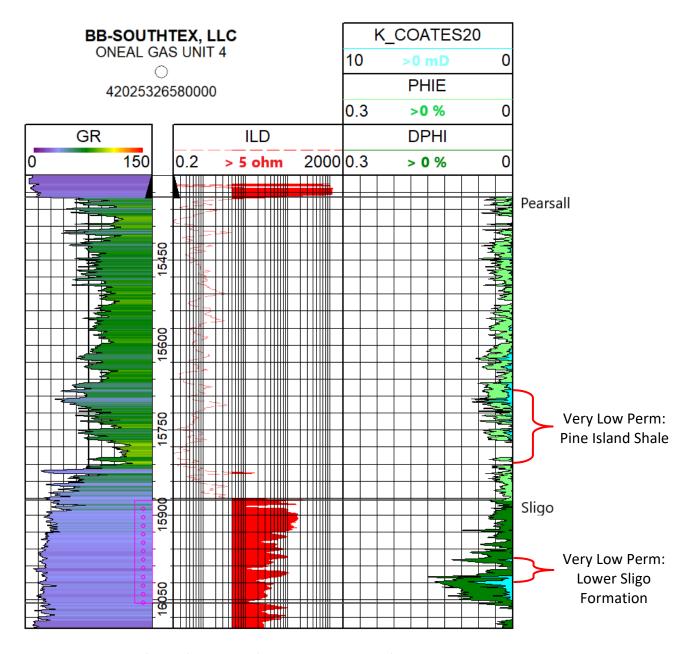


Figure 14 – Openhole log from O'Neal No. 4 (API No. 42-025-32658), with porosity curves shaded green >0%, permeability curve in blue >0 mD, and resistivity in red >5 ohms.

2.2.4 Formation Fluid

The USGS National Produced Waters Geochemical Database version 3.0 was reviewed for chemical analyses of Sligo oil-field brines within the state of Texas (Blondes et al., 2023). Only two samples were identified from the Sligo Formation: one located approximately 29 mi north-northeast in Karnes County and one located approximately 72 mi northeast in Gonzales County. The locations of these wells are shown in Figure 15 relative to the O'Neal No. 4. A summary of water chemistry analyses conducted on the two Texas Sligo oil-field brine samples is provided in Table 2 (page 25).

Averages from the samples were utilized for model assumptions due to the minimal Sligo sample availability and wide geographic spread of Sligo analysis. Total Dissolved Solids (TDS) of the samples contain a wide range of reported values but averaged 176,470 parts per million (ppm). Model sensitivities were established by running iterations with varying TDS values to understand the effect of brine concentrations on plume extents. The results suggested higher density brine values lead to smaller plumes; therefore, a value of 150,000 ppm was established in the model for a conservative approach. If the actual formation fluid sample that will be tested during the recompletion work produces a material difference in the plume, Ozona will submit an updated MRV plan.

Based on the results of the investigation, *in situ* Sligo reservoir fluid is anticipated to contain greater than 20,000 ppm TDS near the O'Neal No. 4, qualifying the aquifer as saline. These analyses indicate the *in situ* reservoir fluid of the Sligo Formation is compatible with the proposed injection fluids.

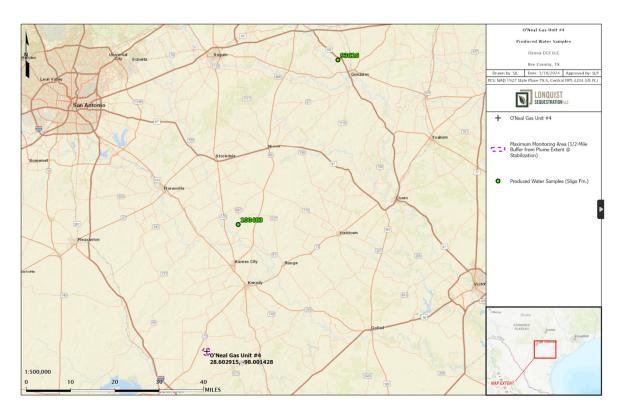


Figure 15 – Offset Wells Used for Formation Fluid Characterization

Table 2 – Analysis of Lower Cretaceous (Aptian) age formation fluids from the closest offset Sligo oil-field brine samples.

Measurement	Karnes County Sample	Gonzales County Sample	Average
Total Dissolved Solids (mg/L)	234,646	117,470	176,058
Sodium (mg/L)	51,168	27,909	39,539
Calcium (mg/L)	34,335	8,684	21,510
Chloride (mg/L)	146,500	57,811	102,156
Sample Depth (ft)	13,580 to 13,660	8,290-8,305	-
рН	5.9	8.2	7.05

2.2.5 Fracture Pressure Gradient

The fracture pressure gradient was obtained from an acid fracture report taken during the April 1993 completion of the Sligo interval in the O'Neal No. 4. The Sligo was perforated between the depths of 15,874 ft and 16,056 ft, with continuous monitoring during pumping of the acid job. The report noted a pressure break experienced at approximately 9,000 pounds per square inch

(psi) and calculated a fracture gradient of 0.889 psi/ft based on an initial shut-in pressure (ISIP) of 7,275 psi. A 10% safety factor was then applied to the calculated gradient, resulting in a maximum allowed bottomhole pressure of 0.8 psi/ft. This was done to ensure that the injection pressure would never exceed the fracture pressure of the injection zone.

2.2.6 <u>Lower Confining Interval – Lower Sligo and Hosston Formations</u>

The O'Neal No. 4 reaches its total depth in the lower Sligo Formation, directly below the upper Sligo proposed injection interval. The lower Sligo is interpreted by Bebout and others (1981) to represent the seaward extension of the low-energy lagoon and tidal-flat system of the underlying Hosston Formation, a sequence of siliciclastics, evaporites, and dolomitic mudstone (Figure 16). The Hosston to lower Sligo "contact" represents a gradational package with a decrease in terrigenous sediments, an increase in carbonate sediments, and an increase in burrows of marine organisms working up-section into the lower Sligo. The lower Sligo consists of numerous cycles of subtidal to supratidal carbonates deposited in a low-energy lagoon and tidal-flat system (Bebout et al., 1981). These low permeability facies of the lower Sligo and underlying Hosston Formation will provide lower confinement to the upper Sligo injection interval. Figure 16 illustrates the typical environmental setting for the deposition of tidal flat facies along the Lower The type log displayed in Figure 14 (Section 2.2.3) illustrates that the Cretaceous margin. porosity of the lower Sligo ranges between 0-2% with permeability staying close to 0 mD. Therefore, the petrophysical characteristics of the lower Sligo and Hosston are ideal for prohibiting the migration of the injection stream outside of the injection interval.

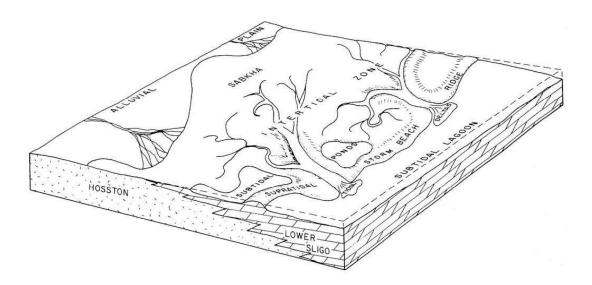


Figure 16 - Environmental Setting of Lower Cretaceous Tidal Flat Deposits (Bebout et al., 1981)

2.3 Local Structure

Structures surrounding the proposed sequestration site were influenced by regional arches, grabens, uplifts, embayments, movement of Louann Salt, and the development of carbonate reef complexes around the northern edge of the basin. However, one potential fault was identified

in the literature within proximity and lies approximately 4.25 mi south-southeast of the well and approximately 3.9 mi south-southeast of the stabilized plume extent in the year 2062 (Swanson et al., 2016). The location of these structural features can be referenced in Figures 2 and 8 relative to the location of the O'Neal No. 4.

A subsea true vertical depth (SSTVD) structure map on the top of the Sligo Formation is provided in Figure 17. The map illustrates the gentle basinward dip of the Sligo from the northwest to the southeast. The structural cross sections provided in Figures 18 and 19 (pages 28 and 29, respectively) illustrate the structural changes encountered in moving away from the O'Neal No. 4 site. The figures also demonstrate the laterally continuous nature of the Pearsall Formation that overlies the injection interval, with sufficient thickness and modeled petrophysical properties to alleviate the risk of upward migration of injected fluids. *Section 2.1.2*, discussing regional structure and faulting, presents a regional discussion pertinent to this topic.

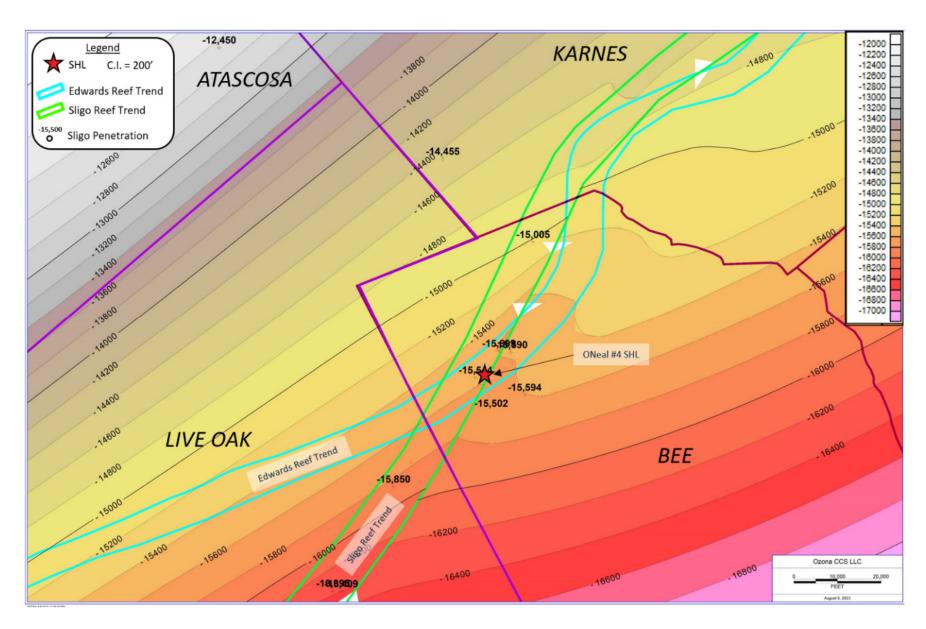


Figure 17 – Subsea Structure Map: Top of Sligo (injection interval). The red star signifies the location of the O'Neal No. 4.

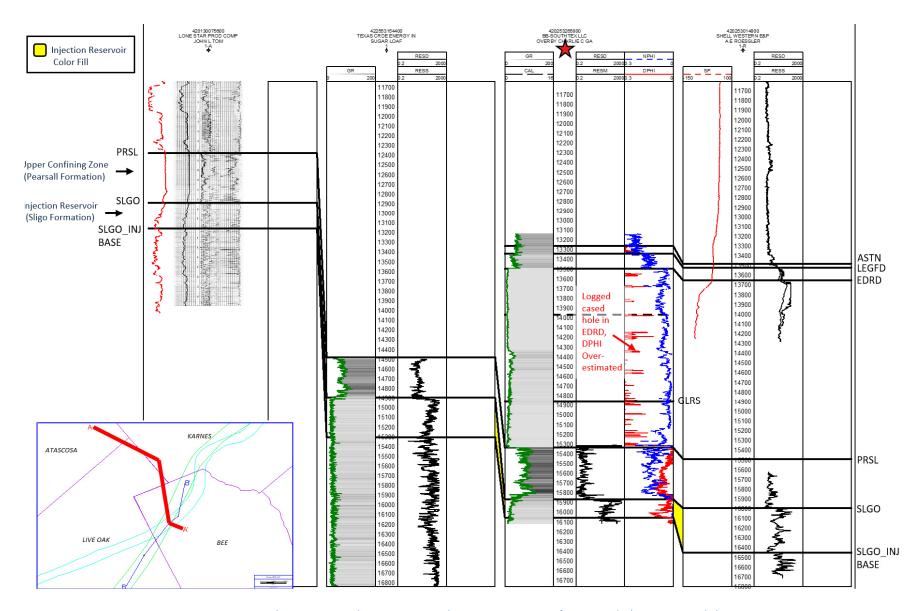


Figure 18 – Northwest to southeast structural cross section: A-A' Oriented along regional dip.

The red star signifies the location of the O'Neal No. 4, with the section line depicted in red on the locator map.

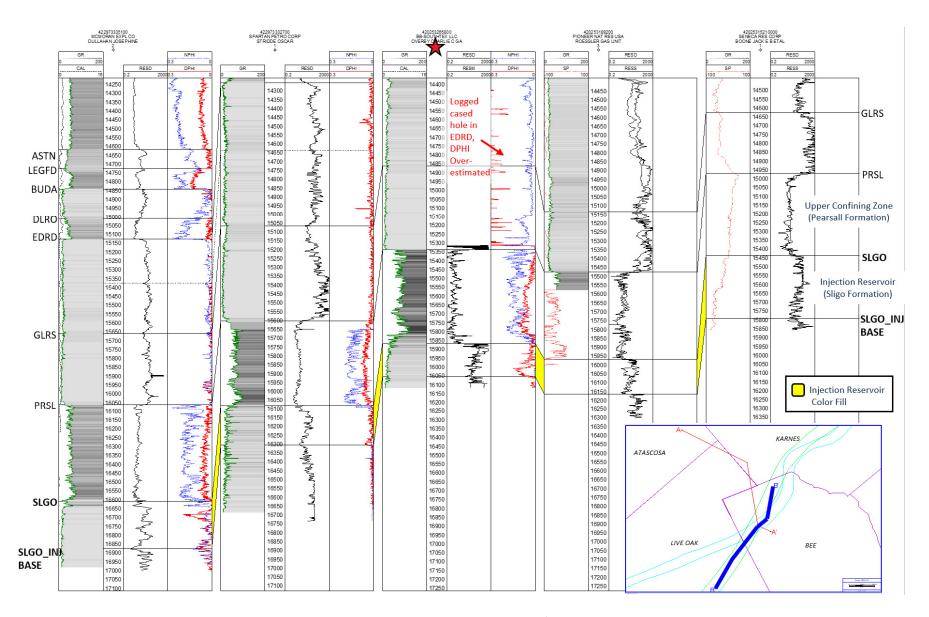


Figure 19 – Southwest to northeast structural cross section: B-B' oriented along regional strike.

The red star signifies the location of the O'Neal No. 4, with the section line depicted in blue on the locator map.

2.4 Injection and Confinement Summary

The lithologic and petrophysical characteristics of the Sligo Formation at the O'Neal No. 4 well location indicate that the reservoir contains the necessary thickness, porosity, and permeability to receive the proposed injection stream. The overlying Pearsall Formation is regionally extensive at the O'Neal No. 4 with low permeability and sufficient thickness to serve as the upper confining interval. Beneath the injection interval, the low permeability, low porosity facies tidal flat, and lagoonal facies of the lower Sligo and underlying Hosston Formation are unsuitable for fluid migration and serve as the lower confining interval.

2.5 **Groundwater Hydrology**

Bee County falls within the boundary of the Bee Groundwater Conservation District. Only one aquifer is identified by the Texas Water Development Board's Texas Aquifers Study near the O'Neal No. 4 well location, the unconfined to semi-confined Gulf Coast aquifer. The Gulf Coast aquifer parallels the Gulf of Mexico and extends across the state of Texas from the Mexican border to the border of Louisiana (Bruun et al., 2016). The extents of the Gulf Coast aquifer are provided in Figure 20 for reference.

The Gulf Coast aquifer is a major aquifer system comprised of several individual aquifers: the Jasper, Evangeline, and Chicot. These aquifers are composed of discontinuous clay, silt, sand, and gravel beds that range from Miocene to Holocene in age (Figure 21, page 32). Numerous interbedded lenses and layers of silt and clay are present within the aquifers, which can confine individual aquifers locally. The underlying Oligocene Catahoula tuff represents the lower confining interval, but it should be noted that the formation is prone to leaking along the base of the aquifer. However, the Burkeville confining interval provides isolation between Jasper and Evangeline aquifers which helps protect the shallower Evangeline and Chicot Aquifers (Bruun et al., 2016).

The schematic cross section provided in Figure 22 (page 32) runs south of the O'Neal No. 4, illustrating the structure and stratigraphy of the aquifer system. The thickness of individual sedimentary units within the Cenozoic section tends to thicken towards the Gulf of Mexico due to the presence of growth faults that allow additional loading of unconsolidated sediment. The total net sand thickness of the aquifer system ranges between 700 ft of sand in the south, to over 1,300 ft in the north, with the saturated freshwater thickness averaging 1,000 ft.

The water quality of the aquifer system varies with depth and locality but water quality generally improves towards the central to northeastern portions of the aquifer where TDS values are less than 500 milligrams per liter (mg/L). The salinity of the Gulf Coast aquifer increases to the south, where TDS ranges between 1,000 mg/L to more than 10,000 mg/L. The Texas Water Development Board's Texas Aquifers Study (2016) suggests that areas associated with higher salinities are possibly associated with saltwater intrusion likely "resulting from groundwater pumping or to brine migration in response to oil field operations and natural flows from salt domes intruding into the aquifer" (Bruun et al., 2016).

According to the TDS map of the Gulf Coast aquifer (Figure 23), the TDS in northern Bee County range between 500–3,000 mg/L near the O'Neal No. 4, categorizing the aquifer as fresh to slightly saline.

The TRRC's Groundwater Advisory Unit (GAU) identified the Base of Useable Quality water (BUQW) at a depth of 250 ft and the base of the USDW at a depth of 950 ft at the location of the O'Neal No. 4. Approximately 14,924 ft is therefore separating the base of the USDW and the injection interval. (A copy of the GAU's Groundwater Protection Determination letter issued by the TRRC as part of the Class II permitting process for the O'Neal No. 4 is provided in Exhibit A-1.) The base of the deepest aquifer is separated from the injection interval by more than 14,924 ft of rock, including 4,200 feet of Midway shale. Though unlikely for reasons outlined in the sections here on confinement and potential leaks, if the migration of injected fluid did occur above the Pearsall Formation, thousands of feet of tight sandstone, limestone, shale, and anhydrite beds occur between the injection interval and the lowest water-bearing aquifer.

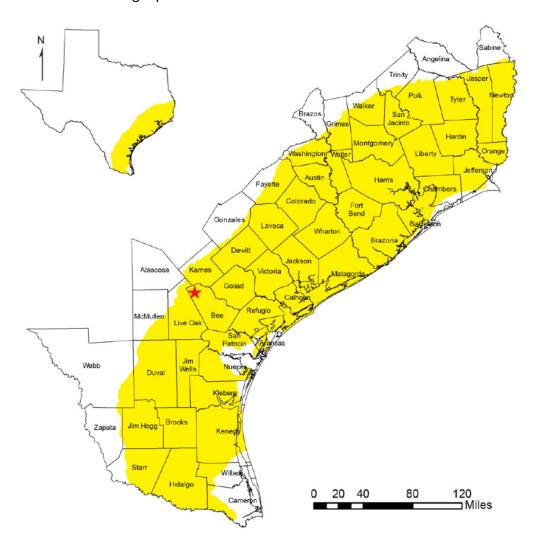


Figure 20 – Extent of the Gulf Coast Aquifer. The red star represents the approximate location of the O'Neal No. 4 (modified from Bruun, B., et al., 2016)

Ct		Stratigraphic Units		Hydrostratigraphy	
System	Series			Baker (1979)	
	Holocene	Alluvium			
ary		Beaumont Clay		Chicot aquifer	
Quaternary	Pleistocene	Lissie	Montgomery Formation		
ð		Formation	Bentley Formation		
		Willis	Sand		
	Pliocene	Goliad Sand		Evangeline aquifer	
		Fleming Formation/ Lagarto Clay			
	Miocene			Burkeville Confining System	
Tertiary	,,,,	Oakville Sandstone		Jasper aquifer	
	Catahoula tuff or sandstone Oligocene		Upper part of Catahoula tuff Anahuac Formation Formation	Catahoula Confining System	
		Frio Clay Vicksburg Group equivalent			

Figure 21 – Stratigraphic Column of the Gulf Coast Aquifer (Chowdhury and Turco, 2006)

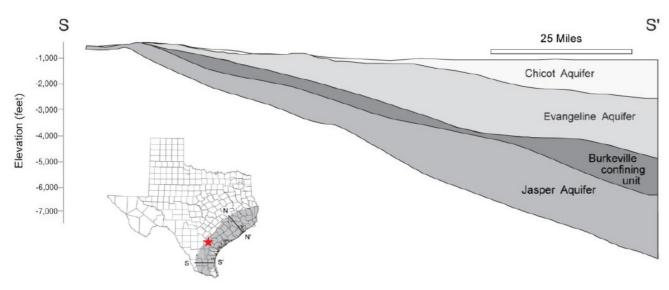


Figure 22 – Cross Section S-S' Across the Gulf Coast Aquifer. The red star represents the approximate location of the O'Neal No. 4 (modified from Bruun et al., 2016)

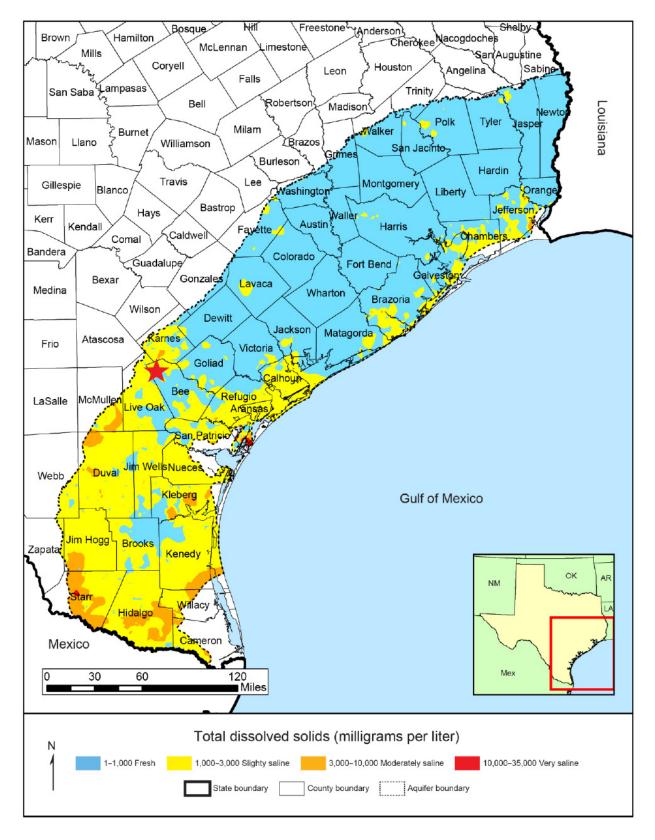


Figure 23 – Total Dissolved Solids (TDS) in the Gulf Coast Aquifer. The red star represents the approximate location of the O'Neal No. 4 (modified from Bruun et al., 2016).

2.6 References

- Bebout, D.G., Budd, D.A., and Schatzinger, R.A. (1981). Depositional and Diagenetic History of the Sligo and Hosston Formations (Lower Cretaceous) in South Texas: The University of Texas at Austin, Bureau of Economic Geology, Report of Investigations No. 109.
- Blondes, M.S., Gans, K.D., Engle, M.A. et al. (2018). U.S. Geological Survey National Produced Waters Geochemical Database (Ver. 2.3, January 2018): U.S. Geological Survey data release, https://doi.org/10.5066/F7J964W8.
- Bruun, B., Anaya, R., Boghici, R. et al. (2016). Texas Aquifers Study: Chapter 6, Gulf Coast Aquifers.
- Chowdhury, A.H. and Turco, M.J. (2006). Geology of the Gulf Coast Aquifer, Texas. In: Mace, R.E., et al., Eds., Aquifers of the Gulf Coast of Texas: Texas Water Development Board Report.
- Dennen, K.O. and Hackley, P.C. (2012). Definition of Greater Gulf Basin Lower Cretaceous and Upper Cretaceous lower Cenomanian Shale Gas Assessment Unit, United States Gulf of Mexico basin onshore and state waters: https://pubs.usgs.gov/publication/70176229.
- Galloway, W.E. (2008). Sedimentary Basins of the World, Chapter 15: Depositional Evolution of the Gulf of Mexico Sedimentary Basin, 505-549.
- Hull, D.C. (2011). Stratigraphic Architecture, Depositional Systems, and Reservoir Characteristics of the Pearsall Shale-Gas System, Lower Cretaceous, South Texas: Thesis for M.S. of Science in Geology, University of Texas, Austin.
- Kirkland, B.L., Lighty, R.G., Rezak, R., and Tieh, T.T. (1987). Lower Cretaceous barrier reef and outer shelf facies, Sligo Formation, south Texas, United States.
- Roberts-Ashby, T.L., Brennan, S.T., Buursink, M.L. et al. (2012). Geologic framework for the national assessment of carbon dioxide storage resources: U.S. Gulf Coast. *USGS*.
- Swanson, S.M., Enomoto, C.B., Dennen, K.O. et al. (2017). Geologic assessment of undiscovered oil and gas resources—Lower Cretaceous Albian to Upper Cretaceous Cenomanian carbonate rocks of the Fredericksburg and Washita Groups, United States Gulf of Mexico Coastal Plain and State Waters: U.S. Geological Survey Open-File Report 2016–1199, 69 p., https://doi.org/10.3133/ofr20161199.
- Talbert, S.J. and Atchley, S.J. (2000). Sequence Stratigraphy of the Lower Cretaceous (Albian) Fredericksburg Group, Central and North Texas: Department of Geology, Baylor University, Waco, Texas 76798.
- Yurewicz, D.A., Marler, T.B., Meyerholtz, K.A., and Siroky, F.X. (1993). Early Cretaceous Carbonate Platform, North Rim of the Gulf of Mexico, Mississippi, and Louisiana.

2.7 Description of the Injection Process

2.7.1 Current Operations

The Pawnee Gas Plant and the O'Neal No. 4 are existing operating assets. The O'Neal No. 4 will be recompleted for acid gas injection service under the Class II permit process. Under the Class II application, the maximum injection rate is 28 MT/yr (1.5 MMscf/d). The TAG is 98.2% CO_2 , which equates to 27.5 MT/yr of CO_2 each year. The current composition of the TAG stream is displayed in Table 3:

Component	Mol Percent
Carbon Dioxide	98.2%
Hydrocarbons	1.03%
Hydrogen Sulfide	0.4%
Nitrogen	0.37%

Table 3 – Gas Composition

The plant is designed to treat, dehydrate, and compress the natural gas produced from the surrounding acreage in Bee County. The plant uses an amine unit to remove the CO₂ and other constituents from the gas stream. The TAG stream is then dehydrated, compressed, and routed directly to the O'Neal No. 4 for injection. The remaining gas stream is processed to separate the natural gas liquids from the natural gas. The plant is monitored 24 hours per day, 7 days per week.

2.8 Reservoir Characterization Modeling

The modeling software used to evaluate this project was Computer Modelling Group, Ltd.'s GEM 2023.2 (GEM) simulator, one of the most comprehensive reservoir simulation software packages for conventional, unconventional, and secondary recovery. The GEM utilizes equation-of-state (EOS) algorithms in conjunction with some of the most advanced computational methods to evaluate compositional, chemical, and geochemical processes and characteristics. This results in the creation of exceedingly precise and dependable simulation models for carbon injection and storage. The GEM model holds recognition from the EPA for its application in the delineation modeling aspect of the area of review, as outlined in the Class VI Well Area of Review Evaluation and Corrective Action Guidance document.

The Sligo Formation serves as the target formation for the O'Neal No. 4 (API No. 42-025-32658). The Petra software package was utilized to construct the geological model for this target formation. Within Petra, formation top contours were generated and subsequently brought into GEM to outline the geological structure.

Porosity and permeability estimates were determined using the porosity log from the O'Neal No. 4. A petrophysical analysis was then conducted to establish a correlation between porosity values and permeability, employing the Coates equation. Both the porosity and permeability estimates from the O'Neal No. 4 were incorporated into the model, with the assumption that they exhibit lateral homogeneity throughout the reservoir.

The reservoir is assumed to be at hydrostatic equilibrium. Given the geological formation in which this well is located and its previous history as a gas producer, the model is assumed to be primarily saturated with gas. More precisely, the reservoir is assumed to be 80% gas saturated and 20% brine saturated, as deduced from the well log data. The modeled injection interval exhibits an average permeability of 0.23 mD and an average porosity of 5%. All layers within the model have been perforated. An infinite-acting reservoir has been created to simulate the boundary conditions.

The gas injectate is composed predominantly of CO_2 as shown in Table 4. The modeled composition takes into consideration the carbon dioxide and other constituents of the total stream. As the plant has been in operation for many years, the gas composition for the proposed injection period is expected to remain constant.

Table 4 – Modeled Injectate Composition

Component	Expected Composition (mol %)	Modeled Composition (mol %)	
Carbon Dioxide (CO ₂)	98.2	98.2	
Hydrocarbons	1.03%	Hydrocarbons	
Hydrogen Sulfide	0.4%	Hydrogen Sulfide	
Nitrogen	0.37%	Nitrogen	

Core data from the literature review was used to determine residual gas saturation (Keelan and Pugh, 1975) and relative permeability curves between carbon dioxide and the connate brine within the Sligo carbonates (Bennion and Bachu, 2010). The Corey-Brooks method was used to create relative permeability curves. The key inputs used in the model include a Corey exponent for brine of 1.8, a Corey exponent for gas of 2.5, gas permeability at irreducible brine saturation of 50%, irreducible water saturation of 20%, and a maximum residual gas saturation of 35%. The relative permeability curves used for the GEM model are shown in Figure 24.

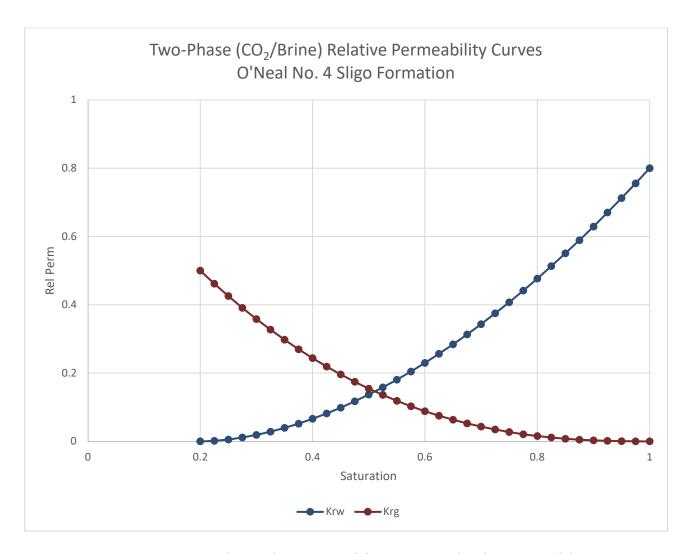


Figure 24 – Two-Phase Relative Permeability Curves Used in the GEM Model

The grid contains 81 blocks in the x-direction (east-west) and 81 blocks in the y-direction (north-south), resulting in a total of 6,561 grid blocks per layer. Each grid block spans dimensions of 250 ft x 250 ft. This configuration yields a grid size measuring 20,250 ft x 20,250 ft, equating to just under 15 square miles in area. The grid cells in the vicinity of the O'Neal No. 4, within a radius of 0.5 mi, have been refined to dimensions of 83.333 ft x 83.333 ft in all layers. This refinement is employed to ensure a more accurate representation of the plume and pressure effects near the wellbore.

In the model, each layer is characterized by homogeneous permeability and porosity values. These values are derived from the porosity log of the O'Neal No. 4. The model encompasses a total of 61 layers, each featuring a thickness of approximately 3 ft per layer. As previously mentioned, the model is perforated in each layer, with the top layer being the top of the injection interval and the bottom layer being the lowest portion of the injection interval. The summarized property values for each of these packages are displayed in Table 5.

Table 5 – GEM Model Layer Package Properties

Layer#	Top (TVD ft)	Thickness	Perm. (mD)	Porosity (%)
1	15,874	3	0.004	3.75%
2	15,877	3	0.002	2.98%
3	15,880	3	0.001	1.62%
4	15,883	3	0.001	1.78%
5	15,886	3	0.002	2.32%
6	15,889	3	0.001	1.96%
7	15,892	3	0.002	3.10%
8	15,895	3	0.002	2.99%
9	15,898	3	0.003	3.52%
10	15,901	3	0.006	4.00%
11	15,904	3	0.005	3.93%
12	15,907	3	0.001	2.15%
13	15,910	3	0.001	1.99%
14	15,913	3	0.002	2.97%
15	15,916	3	0.001	2.22%
16	15,919	3	0.002	2.88%
17	15,922	3	0.001	2.38%
18	15,925	3	0.093	6.68%
19	15,928	3	0.005	2.62%
20	15,931	3	0.002	2.58%
21	15,934	3	0.003	3.07%
22	15,937	3	0.006	3.62%
23	15,940	3	0.002	2.68%
24	15,943	3	0.001	1.08%
25	15,946	3	0.002	1.87%
26	15,949	3	0.025	4.70%
27	15,952	3	0.024	4.37%
28	15,955	3	0.001	1.97%
29	15,958	3	0.003	2.27%
30	15,961	3	0.007	3.09%
31	15,964	3	0.110	6.75%
32	15,967	3	0.037	5.62%
33	15,970	3	0.011	4.41%
34	15,973	3	0.022	4.59%
35	15,976	3	0.297	7.88%
36	15,979	3	0.440	9.21%
37	15,982	3	0.060	5.90%
38	15,985	3	0.001	2.22%

39	15,988	3	0.001	2.21%
40	15,991	3	0.001	1.12%
41	15,994	3	0.003	2.05%
42	15,997	3	0.014	4.56%
43	16,000	3	0.007	4.15%
44	16,003	3	0.033	5.95%
45	16,006	3	1.233	10.25%
46	16,009	3	1.476	12.04%
47	16,012	3	0.566	10.08%
48	16,015	3	1.679	12.18%
49	16,018	3	2.194	13.08%
50	16,021	3	1.235	12.02%
51	16,024	3	0.788	11.22%
52	16,027	3	0.944	10.48%
53	16,030	3	0.424	9.05%
54	16,033	3	0.378	8.85%
55	16,036	3	0.378	8.81%
56	16,039	3	0.378	8.84%
57	16,042	3	0.736	9.91%
58	16,045	3	0.232	7.94%
59	16,048	3	0.238	7.97%
60	16,051	3	0.012	3.01%
61	16,054	3	0.038	4.30%

2.8.1 Simulation Modeling

The primary objectives of the model simulation were as follows:

- 1. Estimate the maximum areal extent and density drift of the injectate plume after injection.
- 2. Determine the ability of the target formation to handle the required injection rate without fracturing the injection zone.
- 3. Assess the likelihood of the injectate plume migrating into potential leak pathways.

The reservoir is assumed to have an irreducible brine saturation of 20%. The salinity of the brine within the formation is estimated to be 150,000 ppm (USGS National Produced Waters Geochemical Database, Ver. 2.3), typical for the region and formation. The injectate stream is primarily composed of CO₂ and H₂S as stated previously. Core data from the literature was used to help generate relative permeability curves. From the literature review, also as previously discussed, cores that most closely represent the carbonate rock formation of the Sligo seen in this region were identified, and the Corey-Brooks equations were used to develop the curves (Bennion and Bachu, 2010). A low, conservative residual gas saturation based on the cores from the literature review was then used to estimate the size of the plume (Keelan and Pugh, 1975).

The model is initialized with a reference pressure of 10,995 psig at a subsea depth of 15,740 ft. This, when a Kelly Bushing "KB" elevation of 334 ft is considered, correlates to a gradient of 0.684 psi/ft. This pressure gradient was determined from production data of the O'Neal No. 4. An initial reservoir pressure of 0.76 psi/ft was calculated before initial production. However, in 1997, after producing approximately 0.5 billion cubic feet (Bcf) of gas, the well was shut in. The last bottomhole pressure reading was calculated to be 0.480 psi/ft. This assumes the reservoir repressurizes after production ceases, but not fully back to in situ conditions. Therefore, a 10% safety factor was given to the initial reservoir pressure gradient of 0.76 psi/ft, and a gradient of 0.684 psi/ft was implemented into the model as a conservative estimate. A skin factor of -2 was applied to the well to simulate the stimulation of the O'Neal No. 4 for gas production from the Sligo Formation, which is based on the acid fracture report, provided in *Appendix A-3*.

The fracture gradient of the injection zone was estimated to be 0.954 psi/ft, which was determined from the acid fracture report. A 10% safety factor was then applied to this number, putting the maximum bottomhole pressure allowed in the model at 0.86 psi/ft, which is equivalent to 13,652 psig at the top of the Sligo injection interval.

The model, which begins in January 2025, runs for a total of 22 years, comprising 12 years of active injection, and is then succeeded by 10 years of density drift. Throughout the entire 12-year injection period, an injection rate of 1.5 MMscf/D is used to model the maximum available rate, yielding the largest estimate of the plume size. After the 12-year injection period, when the O'Neal No. 4 ceases injection, the density drift of the plume continues until the plume stabilizes 10 years later. The maximum plume extent during the 12-year injection period is shown in Figure 25. The final extent after 10 years of density drift after injection ceases is shown in Figure 26 (page 42).

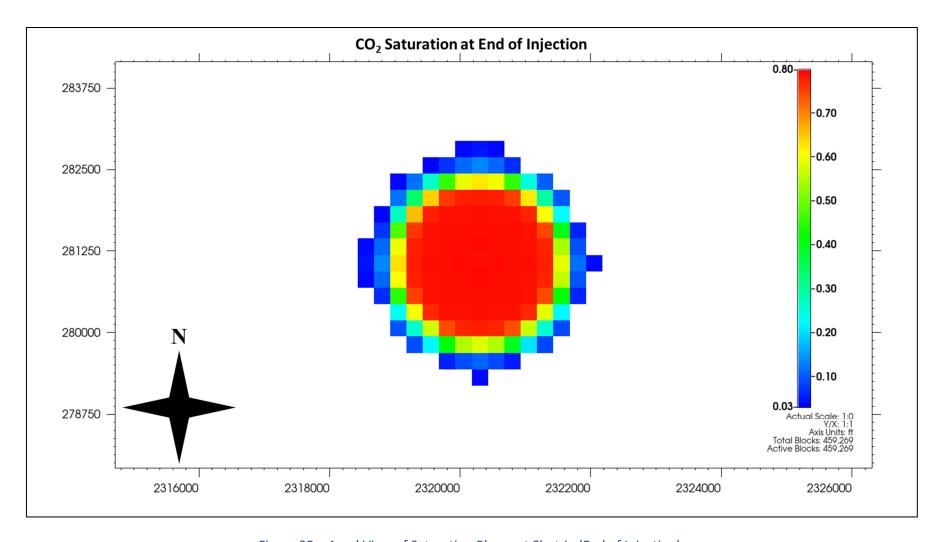


Figure 25 – Areal View of Saturation Plume at Shut-in (End of Injection)

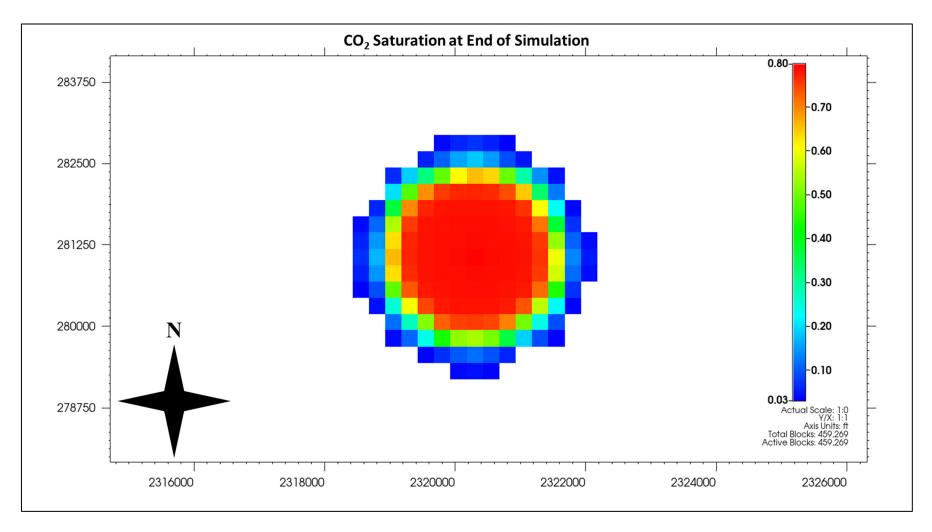


Figure 26 – Areal View of Gas Saturation Plume 10 Years After Shut-in (End of Simulation)

The cross-sectional view of the O'Neal No. 4 shows the extent of the plume from a side-view angle, cutting through the formation at the wellbore. Figure 27 shows the maximum plume extent during the 12-year injection period. During this time, gas from the injection well is injected into the permeable layers of the formation and predominantly travels laterally. Figure 28 (page 45) shows the final extent of the plume after 10 years of migration. Then, the effects of residual gas saturation and migration due to density drift are clearly shown. At least 35% of injected gas that travels into each grid cell is trapped, as the gas travels mostly vertically—as it is less dense than the formation brine—until an impermeable layer is reached. Both figures are shown in an east-to-west view.

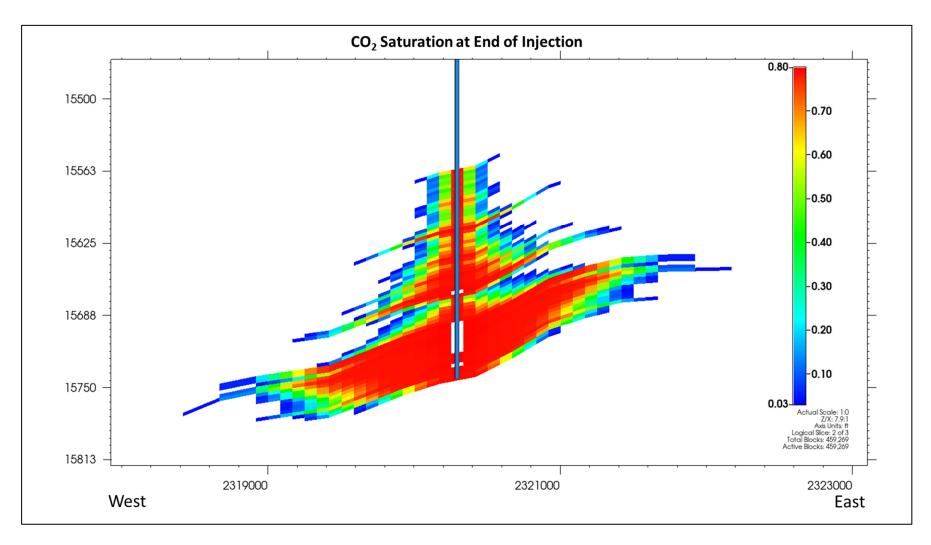


Figure 27 – East-West Cross-Sectional View of Gas Saturation Plume at Shut-in (End of Injection)

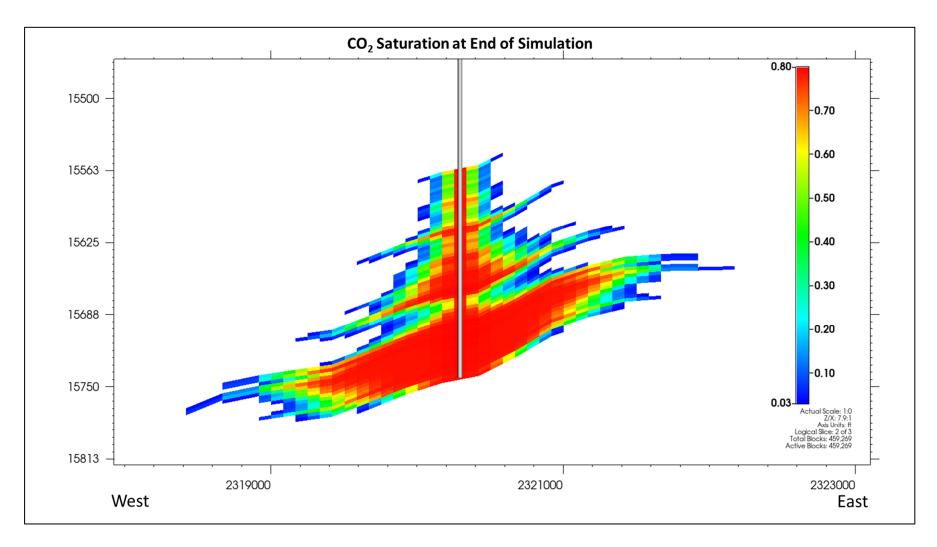


Figure 28 –East-West Cross-Sectional View of Gas Saturation Plume 10 Years After Shut-in (End of Simulation)

Figure 29 shows the surface injection rate, bottom hole pressures, and surface pressures over the injection period—and the period of density drift after injection ceases. The bottomhole pressure increases the most as the injection rate ends, reaching a maximum pressure of 13,337 psig, at the end of injection. This buildup of 2,362 psig keeps the bottomhole pressure below the fracture pressure of 13,652 psig. The maximum surface pressure associated with the maximum bottomhole pressure reached is 6,095 psig, well below the maximum allowable 7,937 psig per the TRRC UIC permit application for this well. Bottomhole and wellhead pressures are provided in Table 6.

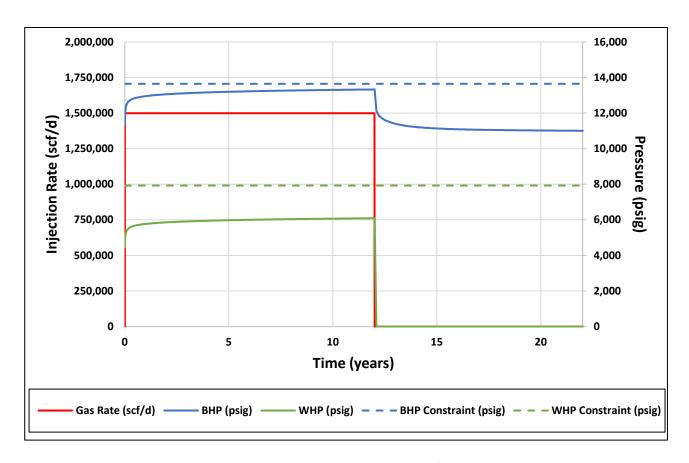


Figure 29 – Well Injection Rate and Bottomhole and Surface Pressures Over Time

Table 6 – Bottomhole and Wellhead Pressures from the Start of Injection

Time from Start of Injection (years)	BHP (psig)	WHP (psig)
0	10,975	-
10	13,311	6,073
12 (End of Inj.)	13,337	6,095
20	11,029	-
22 (End of Model)	11,013	-

SECTION 3 – DELINEATION OF MONITORING AREA

This section discusses the delineation of both the maximum monitoring area (MMA) and active monitoring area (AMA) as described in 40 CFR §98.448(a)(1).

3.1 Maximum Monitoring Area

The MMA is defined as equal to or greater than the area expected to contain the free-phase CO₂ plume until the plume has stabilized, plus an all-around buffer zone of at least one half mile. Numerical simulation was used to predict the size and drift of the plume. With CMG's GEM software package, reservoir modeling was used to determine the areal extent and density drift of the plume. The model considers the following:

- Offset well logs to estimate geologic properties
- Petrophysical analysis to calculate the heterogeneity of the rock
- Geological interpretations to determine faulting and geologic structure
- Offset injection history to predict the density drift of the plume adequately

Ozona's expected gas composition was used in the model. The injectate is estimated at a molar composition of 98.2% CO₂ and 1.8% of other constituents. The StarTex Plant has been in stable operations for many years. Ozona believes the gas analysis provided in Table 1 is an accurate representation of the injectate. In the future, if the actual gas analysis varies materially from the injectate composition herein, an update to this MRV plan will be submitted to the GHGRP. As discussed in *Section 2*, the gas will be injected into the Sligo Formation. The geomodel was created based on the rock properties of the Sligo.

The plume boundary was defined by the weighted average gas saturation in the aquifer. A value of 3% gas saturation was used to determine the boundary of the plume. When injection ceases in Year 12, the area expanse of the plume will be approximately 270 acres. The maximum distance between the wellbore and the edge of the plume is approximately 0.42 mi to the west. After 10 additional years of density drift, the areal extent of the plume is 303 acres with a maximum distance to the edge of the plume of approximately 0.45 mi to the west. Since the plume shape is relatively circular, the maximum distance from the injection well after density drift was used to define the circular boundary of the MMA. The AMA and the MMA have similar areas of influence, with the AMA being only marginally smaller than the MMA. Therefore, Ozona will set the AMA equal to the MMA as the basis for the area extent of the monitoring program.

This is shown in Figure 30 with the plume boundary at the end of injection, the stabilized plume boundary, and the MMA. The MMA boundary represents the stabilized plume boundary after 10 years of density drift plus an all-around buffer zone of one half mile.

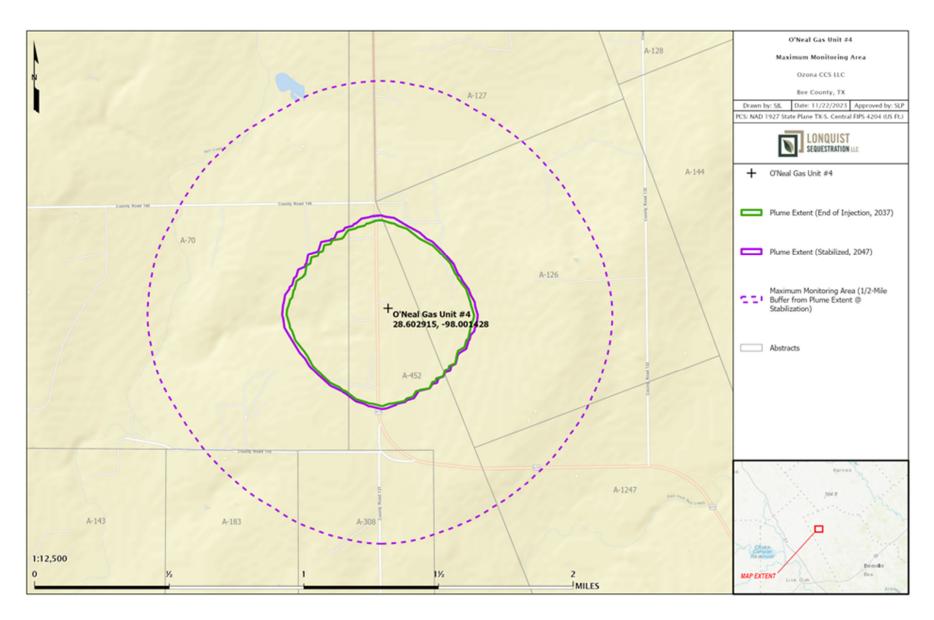


Figure 30 – Plume Boundary at End of Injection, Stabilized Plume Boundary, and Maximum Monitoring Area

3.2 Active Monitoring Area

The AMA was initially set equal to the expected total injection period of 12-years. The AMA was analyzed by superimposing the area based on a one-half mile buffer around the anticipated plume location after 12 years of injection (2037), with the area of the projected free-phase CO₂ plume at five additional years (2042). In this case, as shown in Figure 31, the plume boundary in 2042 is within the plume in 2037 plus the one-half mile buffer. Since the AMA boundary is only slightly smaller than the MMA boundary, Ozona will define the AMA to be equal to the MMA. By 2037, Ozona will submit a revised MRV plan to provide an updated AMA and MMA.

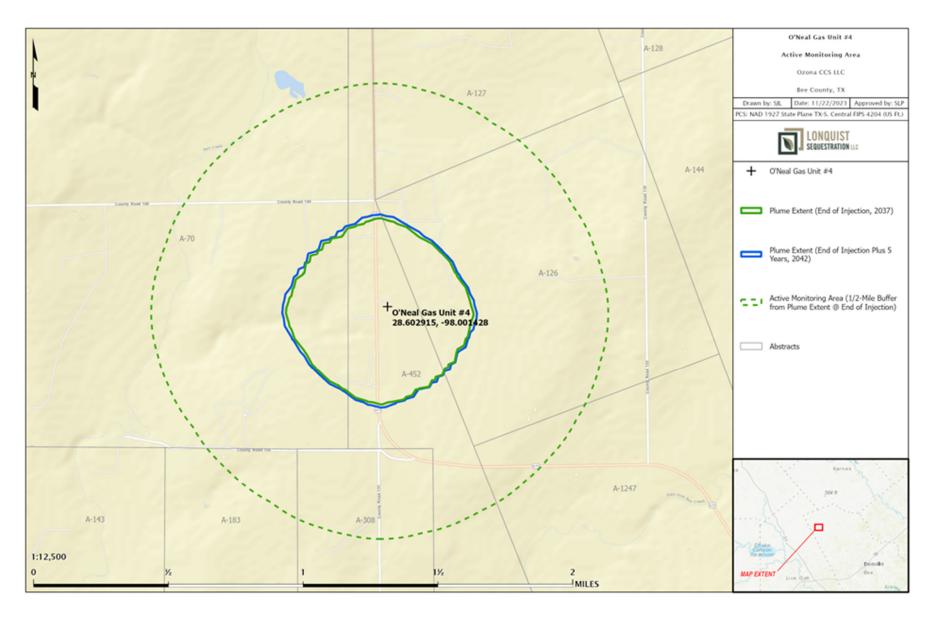


Figure 31 – Active Monitoring Area

SECTION 4 – POTENTIAL PATHWAYS FOR LEAKAGE

This section identifies and discusses the potential pathways within the MMA for CO_2 to reach the surface and is summarized in Table 7. Also included are the likelihood, magnitude, and timing of such potential leakage. The potential leakage pathways are:

- Surface equipment
- Existing wells within the MMA
- Faults and fractures
- Upper confining layer
- Natural or induced seismicity

Table 7 – Potential Leakage Pathway Risk Assessment

Potential Leakage Pathway	Likelihood	Magnitude	Timing
Surface Equipment		Low. Automated systems will detect leaks and	During active injection
Surface Equipment	Possible during injection	execute shut-down	period. Thereafter the
	operations.	procedures.	well will be plugged.
Existing wells within the MMA	Unlikely. One artificial penetration was drilled	Low. Vertical migration of	
	into the injection interval.	CO ₂ would likely enter a	During active injection
	This well has been plugged	shallower hydrocarbon	and post Injection site
	and abandoned.	production zone.	care ² period.
Faults and fractures	Possible. The lateral	Low. Vertical migration of	
	continuity of UCZ ¹ is	CO ₂ would likely enter a	During active injection
	recognized as a very	shallower hydrocarbon	and post Injection site
	competent seal.	production zone.	care ² period.
Upper confining layer	Unlikely. The lateral	Low. Vertical migration of	
	continuity of the UCZ is	CO₂ would likely enter a	During active injection
	recognized as a very	shallower hydrocarbon	and post Injection site
	competent seal.	production zone.	care ² period.
Natural or induced seismicity	Possible. The lateral	Low. Vertical migration of	
	continuity of the UCZ is	CO ₂ would likely enter a	During active injection
	recognized as a very	shallower hydrocarbon	and post Injection site
	competent seal.	production zone.	care ² period.

^{1 -} UCZ is defined as the upper confining zone.

^{2 -} Post injection site care is the period of time from the end of injection throught plume stabilization and site closure.

Magnitude Assessment Description

Low - catergorized as little to no impact to safety, health and the environment and the costs to mitigate are minimal.

Medium - potential risks to the USDW and for surface releases does exist, but circumstances can be easily remediated.

High - danger to the USDW and significant surface release may exist, and if occurs this would require significant costs to remediate.

4.1 Leakage from Surface Equipment

The Pawnee Gas Plant and O'Neal No. 4 are designed for separating, transporting, and injecting TAG, primarily consisting of CO₂, in a manner to ensure safety to the public, the employees, and the environment. The mechanical aspects of this are noted in Table 8 and Figure 32. The facilities have been designed to minimize leakage and failure points, following applicable National Association of Corrosion Engineers (NACE) and American Petroleum Institute (API) applicable standards and practices. As the TAG stream contains H₂S, monitors installed for H₂S detection will also indicate the presence of CO₂. These monitors will be installed at key locations around the Plant and the O'Neal No. 4 location. These devices will be continuously monitored by the Supervisory Control and Data Acquisition (SCADA) system and will alarm at set points determined by the plant's Health, Safety and Environment (HS&E) Director, consistent with Occupational Safety and Health Administration (OSHA) requirements. The plant will set the detection and alarm states for personnel at 10 ppm and at 40 ppm for initiating Emergency Shutdown. Key monitoring points and parameters are also provided in Table 8.

The facilities will incorporate important safety equipment to ensure reliable and safe operations. In addition to the H_2S monitors, emergency shutdown (ESD) valves, with high- and low-pressure shutoff settings to isolate the plant, the O'Neal No. 4, and other components, StarTex has a flare stack to safely handle the TAG when a depressuring event occurs. These facilities will be constructed in the coming months. The exact location of this equipment is not yet known, but it will be installed in accordance with applicable engineering and safety standards.

Table 8 — Summary of TAG Detectors and Equipment

Device	Location	Set Point
H ₂ S Detectors (1 – 4)	O'Neal No. 4 wellsite	10 ppm High Alarm 40 ppm Emergency Shutdown
H₂S Detectors (5 − 8)	In-Plant Detectors	10 ppm High Alarm 40 ppm Emergency Shutdown
Flare Stack	Plant Site Perimeter	N/A
AGI Flowmeter	In-Plant (downstream of the Amine Unit)	Calibrated per API specifications
Emergency Shutdown	In-Plant Detectors	40 ppm Emergency Shutdown
Emergency Shutdown	O'Neal No. 4 wellsite	40 ppm Emergency Shutdown

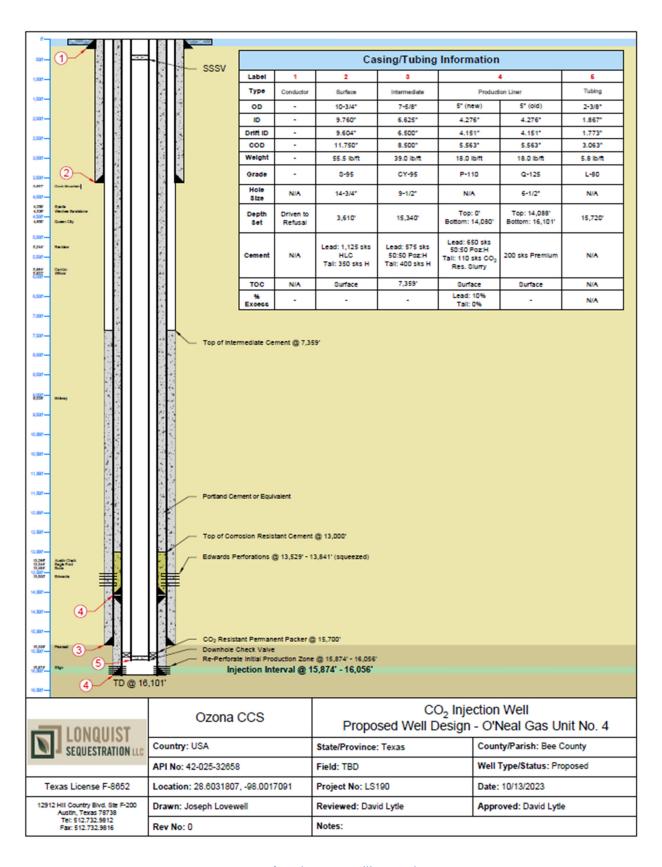


Figure 32 – O'Neal No. 4 Wellbore Schematic

With the continuous air monitoring at the plant and the well site, a release of CO_2 would be quickly identified, and the safety systems and protocols would effectuate an orderly shutdown to ensure safety and minimize the release volume. The CO_2 injected into the O'Neal No. 4 is from the amine unit at the Pawnee Gas Plant. If any leakage were to be detected, the volume of CO_2 released would be quantified based on the operating conditions at the time of release, as stated in *Section 7*, in accordance with 40 CFR §98.448(a)(5). Ozona concludes that the leakage of CO_2 through the surface equipment is unlikely.

4.2 Leakage Through Existing Wells Within the MMA

The O'Neal No. 4 is engineered to prevent migration from the injection interval to the surface through a special casing and cementing design as depicted in the schematic provided in Figure 32. Mechanical integrity tests (MITs), required under Statewide Rule (SWR) §3.46 [40 CFR §146.23 (b)(3)], will take place every 5 years to verify that the well and wellhead can contain the appropriate operating pressures. If the MIT were to indicate a leak, the well would be isolated and the leak mitigated to prevent leakage of the injectate to the atmosphere.

A map of all oil and gas wells within the MMA is shown in Figure 33. Figure 34 is a map of all the oil and gas wells that penetrate the MMA's gross injection zone. Only one well penetrated the MMA's gross injection zone. This well was non-productive and has been plugged and abandoned in accordance with TRRC requirements. A summary table of all oil and gas wells within the MMA is provided in *Appendix B-1*.

This table in *Appendix B-1* provides the total depth (TD) of all wells within the MMA. The wells that are shallower and do not penetrate the injection zone are separated by the Pearsall Formation with a gross thickness of 535 ft. The Pine Island Shale comprises approximately 130 ft of this interval as discussed in *Section 2.2.2*, and provides a competent regional seal—making vertical migration of fluids above the injection zone unlikely.

The shallower offset hydrocarbon wells within the MMA will also serve as above zone monitoring wells. Should any of the sequestered volumes migrate vertically, they would potentially enter the shallower hydrocarbon reservoir. Regular sampling and analysis is performed on the produced hydrocarbons. If a material difference in the quantity of CO₂ in the sample occurs indicating a potential migration of injectate from the Sligo Formation, Ozona would investigate and develop a mitigation plan. This may include reducing the injection rate or shutting in the well. Based on the investigation, the appropriate equation in *Section 7* would be used to make any adjustments to the reported volumes.

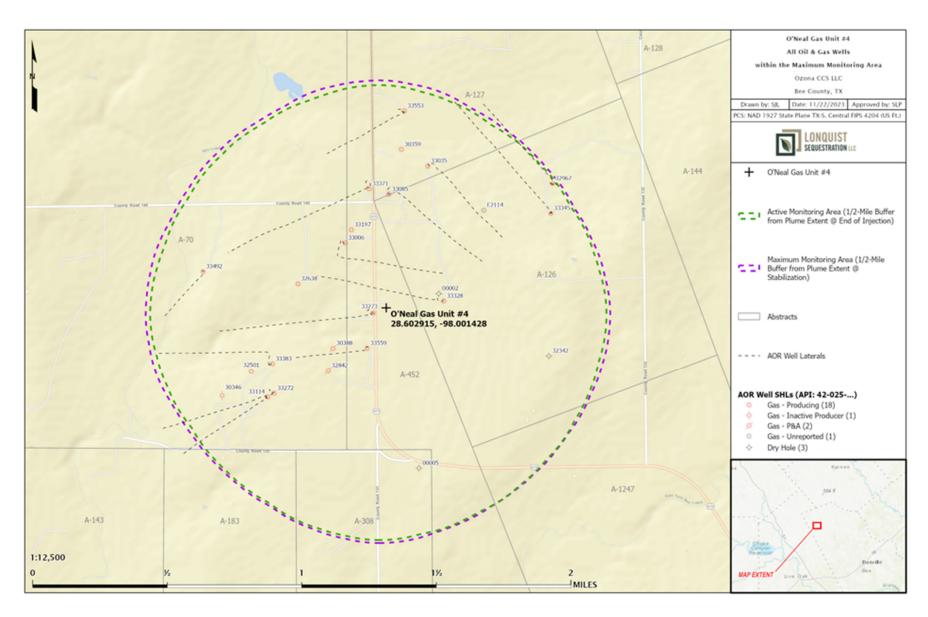


Figure 33 – All Oil and Gas Wells Within the MMA

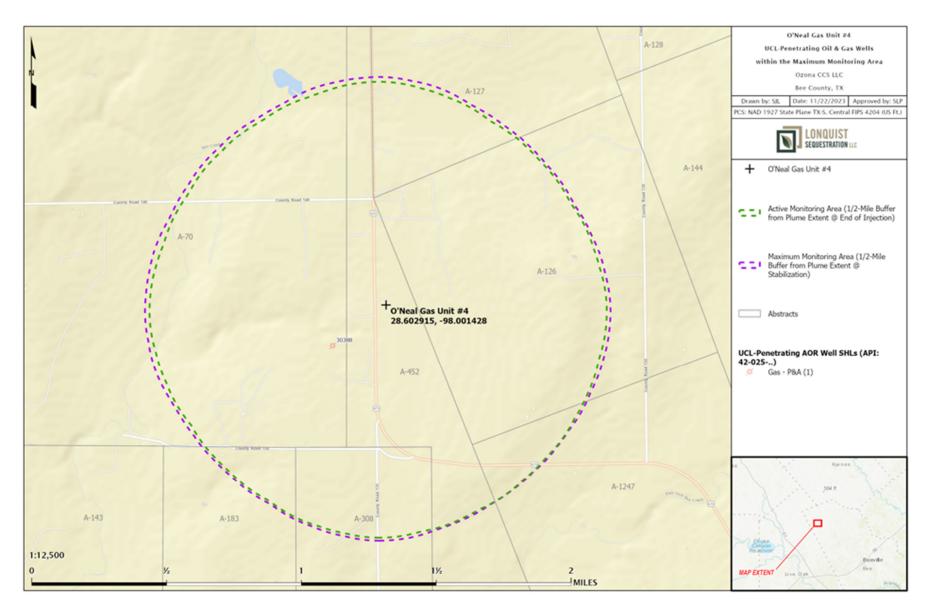


Figure 34 – Oil and Gas Wells Penetrating the Gross Injection Interval Within the MMA

4.2.1 Future Drilling

Potential leak pathways caused by future drilling in the area are not expected to occur. The deeper formations have proven to date to be nonproductive in this area, and therefore Ozona does not see this as a risk. This is supported by a review of the TRRC Rule 13 (Casing, Cementing, Drilling, Well Control, and Completion Requirements), 16 TAC §3.13. The Sligo is not among the formations listed for which operators in Bee County and District 2 (where the O'Neal No. 4 is located) are required to comply with TRCC Rule 13; therefore, the TRRC does not believe there are productive horizons below the Sligo. The O'Neal No. 4 drilling permit is provided in *Appendix A-2*.

4.2.2 **Groundwater Wells**

The results of a groundwater well search found five wells within the MMA, as identified by the Texas Water Development Board as shown in Figure 35 and in tabular form in *Appendix B-2*.

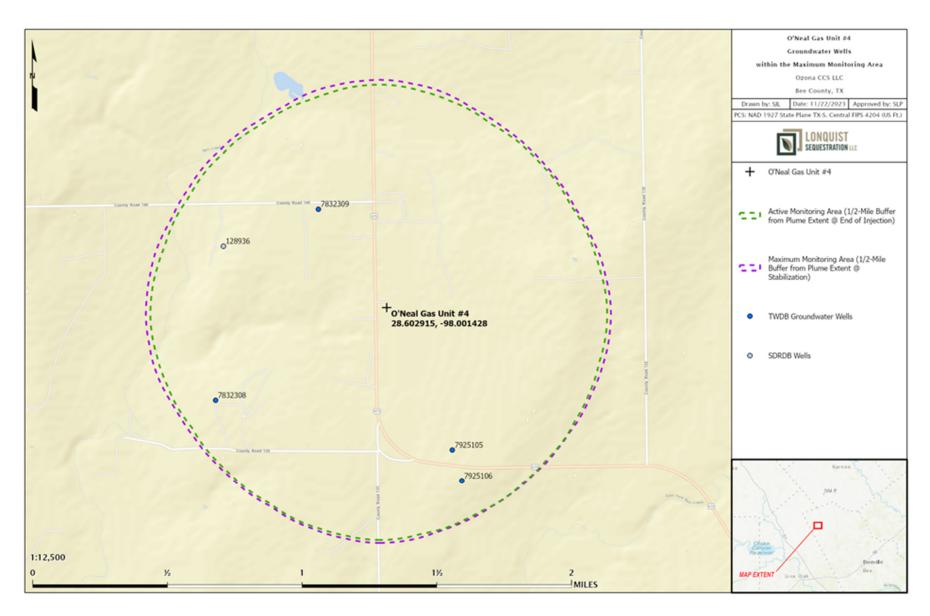


Figure 35 – Groundwater Wells Within the MMA

The surface, intermediate, and production casings of the O'Neal No. 4, as shown in Figure 32, are designed to protect the shallow freshwater aquifers, consistent with applicable TRRC regulations, and the GAU letter issued for this location is provided in *Appendix A-1*. The wellbore casings and compatible cements prevent CO_2 leakage to the surface along the borehole. Ozona concludes that leakage of the sequestered CO_2 to the groundwater wells is unlikely.

4.3 <u>Leakage Through Faults and Fractures</u>

Detailed mapping of openhole logs surrounding the O'Neal No. 4 did not identify any faulting within either the Pearsall or Sligo sections. However, there is a general lack of deep penetrators within the area that limits the amount of openhole coverage available.

The majority of the published literature suggests that faulting near the project area is restricted to the shallower, overlying Cenozoic section, as shown in Figure 9, with shallow faults dying out before reaching the Pearsall Formation. One source interpreted the potential for faulting to the south (Swanson et al., 2016). The potential fault is depicted in Figure 8 relative to the location of the O'Neal No. 4. According to the map, the interpreted fault lies approximately 4.25 mi south-southeast of the well and approximately 3.9 mi south-southeast of the stabilized plume extent in the year 2047. In the unlikely scenario in which the injection plume or pressure front reaches the potential fault, and the potential fault was to act as a transmissive pathway, the upper confining Pearsall shale contains sufficient thickness and petrophysical properties required to confine and protect injectates from leaking outside of the permitted injection zone.

Section 2.1.2 discusses regional structure and faulting, and Section 2.3 covers local structure, for additional material relevant to this topic.

4.4 Leakage Through the Confining Layer

The Sligo injection zone has competent sealing intervals present above and below the targeted carbonate sequence of the Sligo section. The overlying Pine Island shale member of the Pearsall Formation is approximately 130 ft thick at the O'Neal No. 4. Above this confining unit, the Cow Creek Limestone, Cow Creek shale, and Bexar Shale Members of the Pearsall Formation will act as additional confinement between the injection interval and the USDW. The USDW lies well above the sealing properties of the formations outlined above, making stratigraphic migration of fluids into the USDW highly unlikely. The petrophysical properties of the lower Sligo and Hosston Formations make these ideal for lower confinement. The low porosity and permeability of these underlying formations minimizes the likelihood of downward migration of injected fluids. The relative buoyancy of injectate to the in situ reservoir fluid makes migration below the lower confining layer unlikely.

4.5 <u>Leakage from Natural or Induced Seismicity</u>

The O'Neal No. 4 is located in an area of the Gulf of Mexico considered to be active from a seismic perspective. Therefore, the Bureau of Economic Geology's TexNet (from 2017 to present) and USGS's Advanced National Seismic System (from 1971 to present) databases were reviewed to

identify any recorded seismic events within 25 km of the O'Neal No. 4.

The investigation identified a multitude of seismic events within the 25 kilometer (km) search radius; however, the magnitude of most of the events was below 2.5. The nearest seismic event with a recorded magnitude of 3.0 or greater was measured approximately 5.6 km northwest of the O'Neal No. 4 at a depth of 5 km. The results of the investigation are plotted on the map provided in Figure 36 relative to the O'Neal No. 4 and the 25-km search radius.

The plant will have operating procedures and set points programmed into the control and SCADA systems to ensure operating pressures are maintained within the injection and confining intervals' approved fracture gradients. Given the seismic activity in the area, Ozona will closely monitor nearby TexNet station EF71 for activity and any corresponding irregularities in the operating pressures of O'Neal No. 4.

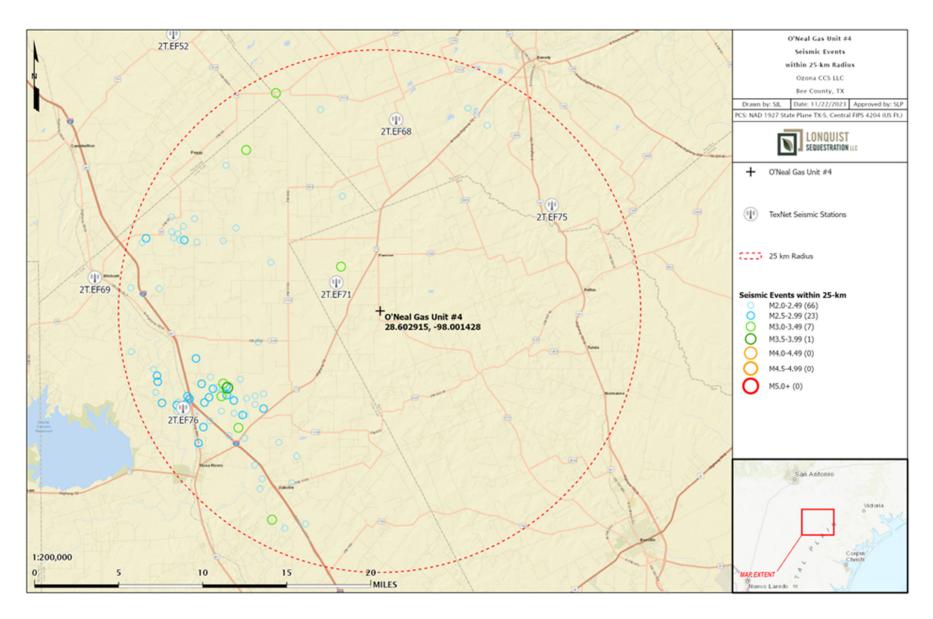


Figure 36 – 25-km Seismicity Review

SECTION 5 – MONITORING FOR LEAKAGE

This section discusses the strategy that Ozona will employ for detecting and quantifying surface leakage of CO₂ through the pathways identified in *Section 4*, to meet the requirements of 40 CFR **§98.448(a)(3)**. As the injectate stream contains both H₂S and CO₂, the H₂S will be a proxy for CO₂ leakage and therefore the monitoring systems in place to detect H₂S will also indicate a release of CO₂. Table 9 summarizes the monitoring of the following potential leakage pathways to the surface. Monitoring will occur during the planned 12-year injection period or cessation of injection operations, plus a proposed 10-year post-injection period until the plume has stabilized.

- Leakage from surface equipment
- · Leakage through existing and future wells within the MMA
- Leakage through faults, fractures, or confining seals
- Leakage through natural or induced seismicity

Table 9 – Summary of Leakage Monitoring Methods

Leakage Pathway	Monitoring Method
Leakage from surface equipment	Fixed H ₂ S monitors at the Plant and well site
	Visual inspections
	Monitor SCADA systems for the Plant and well site
Leakage through existing wells	Monitor CO ₂ levels in above zone producing wells
	Mechanical Integrity Tests (MIT) of O'Neal No. 4 every 5 years
	Visual inspections
	Annual soil gas sampling near well locations that penetrate the Upper Confining Zone within the AMA
Leakage through groundwater wells	Annual groundwater samples from existing water well(s)
Leakage from future wells	Monitor drilling activity and compliance with TRRC Rule 13 Regulations
Leakage through faults, fractures, or confining seals	SCADA continuous monitoring at the well site (volumes and pressures)
	Monitor CO ₂ levels in above zone producing wells
	Monitor CO ₂ levels in above zone producing wells
Leakage from natural or induced seismicity	Monitor existing TexNet station

5.1 <u>Leakage from Surface Equipment</u>

The Plant and the O'Neal No. 4 were designed to operate in a safe manner to minimize the risk of an escape of CO₂ and H₂S. Leakage from surface equipment is unlikely and would quickly be detected and addressed. The facility design minimizes leak points through the equipment used, and key areas are constructed with materials that are NACE and API compliant. A baseline atmospheric CO₂ concentration will be established prior to commencing operation once facility construction has been completed. Ambient H₂S monitors will be located at the plant and near the O'Neal No. 4 site for local alarm and are connected to the SCADA system for continuous monitoring.

These monitoring points were discussed in Section 4.1. In addition, field personnel conduct routine visual field inspections of gauges, and gas monitoring equipment. The effectiveness of the internal and external corrosion control program is monitored through the periodic inspection of the corrosion coupons and inspection of the cathodic protection system. These inspections and the automated systems allow Ozona to detect and respond to any leakage situation quickly. The surface equipment will be monitored for the injection and post-injection period. Should leakage be detected during active injection operations, the volume of CO_2 released will be calculated based on operating conditions at the time of the event, per 40 CFR §98.448(a)(5) and §98.444(d).

Pressures, temperatures, and flow rates through the surface equipment are continuously monitored during operations. If a release occurred from surface equipment, the amount of CO_2 released would be quantified based on the operating conditions, including pressure, flow rate, percentage of CO_2 in the injectate, size of the leak-point opening, and duration of the leak. In the unlikely event a leak occurs, Ozona will quantify the leak per the strategies discussed in *Section 7*.

5.2 Leakage Through Existing and Future Wells Within the MMA

Ozona continuously monitors and collects injection volumes, pressures, and temperatures through their SCADA systems, for the O'Neal No. 4. This data is reviewed by qualified personnel and will follow response and reporting procedures when data exceeds acceptable performance limits. A change of injection or annular pressure would indicate the presence of a possible leak and be thoroughly investigated. In addition, MITs performed every 5 years, as expected by the TRRC and UIC, would also indicate the presence of a leak. Upon a negative MIT, the well would be isolated and investigated to develop a leak mitigation plan.

As discussed previously, TRRC Rule 13 ensures that new wells in the field are constructed with proper materials and practices to prevent migration from the injection interval.

In addition to the fixed monitors described previously, Ozona will also establish and operate an infield monitoring program to detect CO₂ leakage within the AMA. This would include H₂S monitoring as a proxy for CO₂ at the well site and annual soil gas samples taken near any identified wells that penetrate the injection interval within the AMA. These samples will be analyzed by a qualified third party. Prior to commencing operation, and through the post-injection monitoring period, Ozona will have these monitoring systems in place.

Currently, there is only one well in the MMA identified that penetrates the injection interval. This well was plugged and abandoned in 2007. The TRRC records are provided in *Appendix A-4*. Ozona will take an annual soil gas sample from this area, which will be analyzed by a third-party lab. Additional monitoring will be added as the AMA is updated over time. In the unlikely event a leak occurs, Ozona will quantify the leak volumes by the methodologies discussed in *Section 7* and present these results and related activities in the annual report.

Ozona will also utilize shallower producing gas wells as proxies for above-zone monitoring wells. Production data from these wells is analyzed for monthly production statements, and therefore would be an early indicator of any possible subsurface issues. Should any material change from historical trends in the CO₂ concentration occur, Ozona would investigate and develop a corrective action plan. Should any CO₂ migrate vertically from the Sligo, the magnitude risk of this event is very low, as the producing reservoir provides an ideal containment given the upper confining zone of this reservoir has proven competent. In the unlikely event a leak occurs, Ozona would quantify the leak per the strategies discussed in *Section 7*, or as may be applicable provided in 40 CFR §98.443 based on the actual circumstances, and include these results in the annual report.

5.2.1 Groundwater Quality Monitoring

Ozona will monitor the groundwater quality above the confining interval by sampling from groundwater wells near the O'Neal No. 4 and analyzing the samples with a third-party laboratory on an annual basis. In the case of the O'Neal No. 4, 5 existing groundwater wells have been identified within the AMA (Figure 38). Initial groundwater quality tests will be performed to establish a baseline prior to commencing operations.

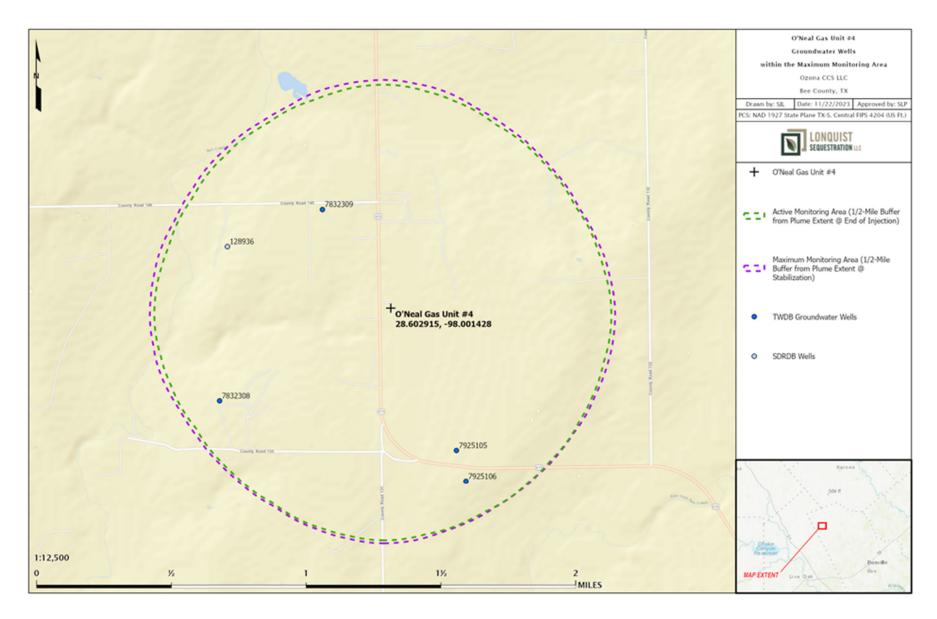


Figure 37 – Groundwater Wells

5.3 <u>Leakage Through Faults, Fractures, or Confining Seals</u>

Ozona will continuously monitor the operations of the O'Neal No. 4 through the automated controls and SCADA systems. Any deviation from normal operating volume and corresponding injection pressure could indicate movement into a potential leak pathway, such as a fault or breakthrough of the confining seal, and would trigger an alert due to a change in the injection pressure. Any such alert would be reviewed by field personnel and appropriate action would be taken, including shutting in the well, if necessary.

Ozona will also utilize shallower producing wells as proxies for above-zone monitoring wells. Production data is analyzed regularly for monthly production statements and therefore would be an early indicator of any possible subsurface issues. Should any material change from historical trends in the CO₂ concentration occur, Ozona would investigate and develop a corrective action plan. Should any CO₂ migrate vertically from the Sligo Formation, the magnitude risk of this event is very low, as the producing reservoir provides an ideal containment given the upper confining zone has proven competent. In the unlikely event a leak occurs, Ozona would quantify the leak per the strategies discussed in *Section 7*, or as may be applicable provided in 40 CFR §98.443 based on the actual circumstances.

5.4 Leakage Through Natural or Induced Seismicity

While the likelihood of a natural or induced seismicity event is low, Ozona plans to use the nearest TexNet seismic monitoring station, EF71, to monitor the area around the O'Neal No. 4. This station is approximately 3 mi to the northwest, as shown in Figure 38. This is sufficient distance to allow for accurate and detailed monitoring of the seismic activity in the area. Ozona will monitor this station for any seismic activity, and if a seismic event of 3.0 magnitude or greater is detected, Ozona will review the injection volumes and pressures of the O'Neal No. 4 to determine if any significant changes have occurred that would indicate potential leakage.

Ozona will also continuously monitor operations through the SCADA system. Any deviation from normal operating pressure and volume set points would trigger an alarm for investigation by operations staff. Such a variance could indicate movement into a potential leak pathway, such as a fault or breakthrough of the confining seal. Any such alert would be reviewed by field personnel and appropriate action would be taken, including shutting in the well, if necessary

These are the two primary strategies for mitigating risks for induced seismicity. In the unlikely event a leak occurs, Ozona will quantify the leak per the strategies discussed in *Section 7*, or as may be applicable provided in 40 CFR **§98.443** based on the actual circumstances.

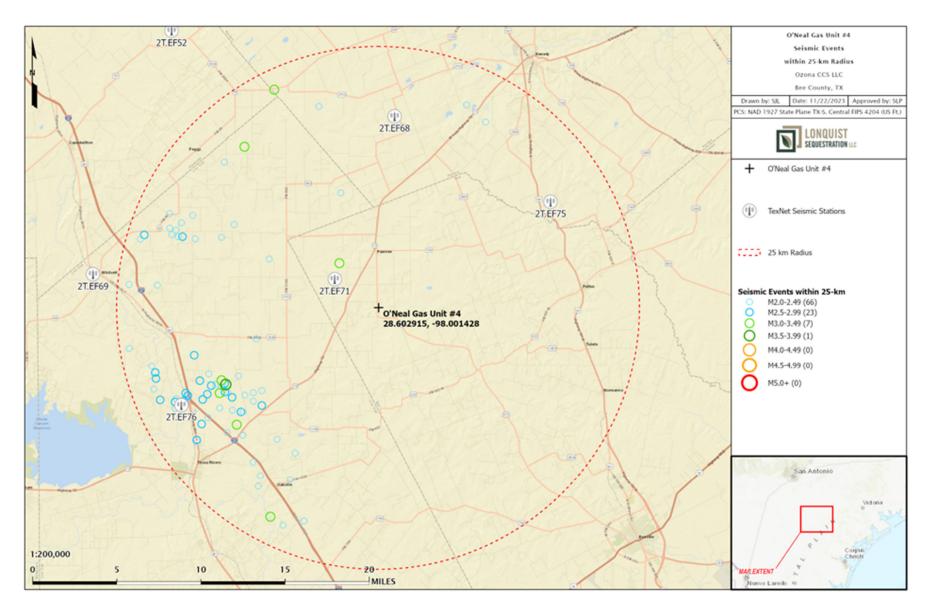


Figure 38 – Seismic Events and Monitoring Station

SECTION 6 – BASELINE DETERMINATIONS

This section identifies the strategies Ozona will undertake to establish the expected baselines for monitoring CO₂ surface leakage per 40 CFR **§98.448(a)(4).** Ozona will use the existing SCADA monitoring systems to identify changes from the expected performance that may indicate leakage of injectate and calculate a corresponding amount of CO₂.

6.1 **Visual Inspections**

Regular inspections will be conducted by field personnel at the plant and O'Neal No. 4 site. These inspections will aid in identifying and addressing possible issues to minimize the risk of leakage. If any issues are identified, such as vapor clouds or ice formations, corrective actions will be taken prudently and safely to address such issues.

6.2 CO₂/H₂S Detection

In addition to the fixed monitors in the Plant and at the wellsite, Ozona will establish and perform an annual in-field sampling program to monitor and detect any CO₂ leakage within the AMA. This will consist of soil gas sampling near any artificial penetrations of the injection zone and sampling of water wells. These probes have special membrane inserts that collect the gas samples over a 21-day period. These will be analyzed by a third-party lab to be analyzed for CO₂, H₂S, and trace contaminants typically found in a hydrocarbon gas stream. The lab results will be provided in the annual report should they indicate a material variance from the baseline. Initial samples will be taken and analyzed before the commencement of operations and will establish the baseline reference levels.

6.3 **Operational Data**

Upon starting injection operations, baseline measurements of injection volumes and pressures will be recorded. Any significant deviations over time will be analyzed for indication of leakage of injectate and the corresponding component of CO₂.

6.4 Continuous Monitoring

The total mass of CO_2 emitted by surface leakage and equipment leaks will not be measured directly, as the injection stream for this project is near the OSHA Permissible Exposure Limit (PEL) 8-hour Time Weighted Average (TWA) of 5,000 ppm. Direct leak surveys present a hazard to personnel due to the presence of H_2S in the gas stream. Continuous monitoring systems will trigger alarms if there is a release. The mass of the CO_2 released would be calculated based on the operating conditions, including pressure, flow rate, percentage of CO_2 , size of the leak-point opening, and duration. This method is consistent with 40 CFR §98.448(a)(5) and §98.444(d), allowing the operator to calculate site-specific variables used in the mass balance equation.

In the case of a depressuring event, the acid gas stream will be sent to a flare stack to be safely processed and will be reported under reporting requirements for the plant. Any such events will be accounted for in the sequestered reporting volumes consistent with *Section 7*.

6.5 **Groundwater Monitoring**

Initial samples will be taken from groundwater wells in the area of the O'Neal No. 4 upon approval of the MRV plan, and before commencement of CO_2 injection. These samples will be analyzed and reports prepared by a third-party laboratory testing for pH, total dissolved solids (TDS), CO_2 , and volatile organic compounds (VOC). Initial samples will be taken and analyzed before the commencement of operations and will establish the baseline reference levels. Sampling select wells will be performed annually. In the event a material deviation in the sample analysis occurs, the results will be provided in the annual report.

SECTION 7 – SITE-SPECIFIC CONSIDERATIONS FOR MASS BALANCE EQUATION

This section identifies how Ozona will calculate the mass of CO_2 injected, emitted, and sequestered. This also includes site-specific variables for calculating the CO_2 emissions from equipment leaks and vented emissions of CO_2 between the injection flow meter and the injection well, per 40 CFR §98.448(a)(5).

7.1 Mass of CO₂ Received

Per 40 CFR §98.443, the mass of CO₂ received must be calculated using the specified CO₂ received equations "unless you follow the procedures in 40 CFR §98.444(a)(4)." The 40 CFR §98.444(a)(4) states that "if the CO₂ you receive is wholly injected and is not mixed with any other supply of CO₂, you may report the annual mass of CO₂ injected that you determined following the requirements under paragraph (b) of this section as the total annual mass of CO₂ received instead of using Equation RR-1 or RR-2 of this subpart to calculate CO₂ received." The CO₂ received for this injection well is injected and not mixed with any other supply; the annual mass of CO₂ injected will equal the amount received less any amounts calculated in accordance with the equations of this section. Any future streams would be metered separately before being combined into the calculated stream.

7.2 Mass of CO₂ Injected

Per 40 CFR **§98.444(b)**, since the flow rate of CO₂ injected will be measured with a volumetric flow meter, the total annual mass of CO₂, in metric tons, will be calculated by multiplying the mass flow by the CO₂ concentration in the flow according to Equation RR-5:

$$CO_{2,u} = \sum_{p=1}^{4} Q_{p,u} * D * C_{CO_{2,p,u}}$$

Where:

CO_{2,u} = Annual CO₂ mass injected (metric tons) as measured by flow meter u

 $Q_{p,u}$ = Quarterly volumetric flow rate measurement for flow meter u in quarter p (standard cubic meters per quarter)

D = Density of CO₂ at standard conditions (metric tons per standard cubic meter): 0.0018682

 $C_{CO2,p,u}$ = Quarterly CO_2 concentration measurement in flow for flow meter u in quarter p (volume percent CO_2 , expressed as a decimal fraction)

p = Quarter of the year

u = Flow meter

7.3 Mass of CO₂ Produced

The O'Neal No. 4 is not part of an enhanced oil recovery project; therefore, no CO₂ will be produced.

7.4 Mass of CO₂ Emitted by Surface Leakage

The mass of CO₂ emitted by surface leakage and equipment leaks will not be measured directly due to the H₂S concentration in the injection stream. Direct leak surveys are dangerous and present a hazard to personnel. Because no venting is expected to occur, the calculations would be based on the unusual event that a blowdown is required and those emissions would be sent to a flare stack and reported as a part of the required GHG reporting for the plant. Any leakage would be detected and managed as an upset event. Continuous monitoring systems should trigger an alarm upon a release of H₂S and CO₂. The mass of the CO₂ released would be calculated for the operating conditions, including pressure, flow rate, size of the leak-point opening, and duration of the leak. This method is consistent with 40 CFR §98.448(a)(5), allowing the operator to calculate site-specific variables used in the mass balance equation.

In the unlikely event that CO₂ was released because of surface leakage, the mass emitted would be calculated for each surface pathway according to methods outlined in the plan and totaled using Equation RR-10 as follows:

$$CO_{2E} = \sum_{x=1}^{X} CO_{2,x}$$

Where:

CO_{2E} = Total annual CO₂ mass emitted by surface leakage (metric tons) in the reporting year

 $CO_{2,x}$ = Annual CO_2 mass emitted (metric tons) at leakage pathway x in the reporting year

X = Leakage pathway

Calculation methods using equations from Subpart W will be used to calculate CO₂ emissions due to any surface leakage between the flow meter used to measure injection quantity and the injection wellhead.

As discussed previously, the potential for pathways for all previously mentioned forms of leakage is unlikely. Given the possibility of uncertainty around the cause of a leakage pathway that is mentioned above, Ozona believes the most appropriate method to quantify the mass of CO₂ released will be determined on a case-by-case basis. Any mass of CO₂ detected leaking to the surface will be quantified by using industry proven engineering methods including, but not limited to, engineering analysis on surface and subsurface measurement data, dynamic reservoir modeling, and history-matching of the sequestering reservoir performance, among others. In the unlikely

event that a leak occurs, it will be addressed, quantified, and documented within the appropriate timeline. Any records of leakage events will be kept and stored as provided in *Section 10*.

7.5 Mass of CO₂ Sequestered

The mass of CO₂ sequestered in subsurface geologic formations will be calculated based on Equation RR-12. Data collection for calculating the amount of CO₂ sequestered in the O'Neal No. 4 will begin once the subsurface recompletion work, and the surface facilities construction has been completed, and subject to approval of the MRV plan. The calculation of sequestered volumes utilizes the following equation as the O'Neal No. 4 will not actively produce oil, natural gas, or any other fluids:

$$CO_2 = CO_{2I} - CO_{2E} - CO_{2FI}$$

Where:

 CO_2 = Total annual CO_2 mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year

 CO_{21} = Total annual CO_2 mass injected (metric tons) in the well covered by this source category in the reporting year

CO_{2E} = Total annual CO₂ mass emitted (metric tons) by surface leakage in the reporting year

 CO_{2FI} = Total annual CO_2 mass emitted (metric tons) from equipment leaks and vented emissions of CO_2 from equipment located on the surface, between the flow meter used to measure injection quantity and the injection wellhead

 CO_{2FI} will be calculated in accordance with Subpart W for reporting of GHGs. Because no venting is expected to occur, the calculations would be based on the unusual event that a system blowdown event occurs. Those emissions would be sent to a flare stack and reported as part of the GHG reporting for the plant.

• Calculation methods from Subpart W will be used to calculate CO₂ emissions from equipment located on the surface, between the flow meter used to measure injection quantity and the injection wellhead.

SECTION 8 – IMPLEMENTATION SCHEDULE FOR MRV PLAN

The O'Neal Gas Unit No. 4 is an existing natural gas well that will be recompleted as a Class II well with corrosion-resistant materials. Ozona is submitting this MRV application to the GHGRP to comply with the requirements of Subpart RR. The MRV plan will be implemented upon receiving EPA approval. The Annual Subpart RR Report will be filed on March 31 of the year following the reporting year.

SECTION 9 – QUALITY ASSURANCE

This section identifies how Ozona plans to manage quality assurance and control to meet the requirements of 40 CFR **§98.444.**

9.1 Monitoring QA/QC

CO₂ Injected

- The flow rate of the CO₂ being injected will be measured with a volumetric flow meter, consistent with API standards. These flow rates will be compiled quarterly.
- The composition of the injectate stream will be measured upstream of the volumetric flow meter with a continuous gas composition analyzer or representative sampling consistent with API standards.
- The gas composition measurements of the injected stream will be averaged quarterly.
- The CO₂ measurement equipment will be calibrated per the requirements of 40 CFR §98.444(e) and §98.3(i).

CO₂ Emissions from Leaks and Vented Emissions

- Gas monitors at the plant and O'Neal No. 4 will be operated continuously, except for maintenance and calibration.
- Gas monitors will be calibrated according to the requirements of 40 CFR §98.444(e) and §98.3(i).
- Calculation methods from Subpart W will be used to calculate CO₂ emissions from equipment located on the surface, between the flow meter used to measure injection quantity and the injection wellhead.

Measurement Devices

- Flow meters will be continuously operated except for maintenance and calibration.
- Flow meters will be calibrated according to 40 CFR §98.3(i).
- Flow meters will be operated and maintained in accordance with applicable standards as published by a consensus-based standards organization.

All measured volumes of CO₂ will be converted to standard cubic meters at a temperature of 60°F and an absolute pressure of 1 atmosphere.

9.2 Missing Data

In accordance with 40 CFR **§98.445**, Ozona will use the following procedures to estimate missing data if unable to collect the data needed for the mass balance calculations:

• If a quarterly quantity of CO₂ injected is missing, the amount will be estimated using a representative quantity of CO₂ injected from the nearest previous period at a similar injection pressure.

• Fugitive CO₂ emissions from equipment leaks from facility surface equipment will be estimated and reported per the procedures specified in Subpart W of 40 CFR §98.

9.3 MRV Plan Revisions

If any changes outlined in 40 CFR **§98.448(d)** occur, Ozona will revise and submit an amended MRV plan within 180 days to the Administrator for approval.

SECTION 10 – RECORDS RETENTION

Ozona will retain records as required by 40 CFR **§98.3(g)**. These records will be retained for at least 3 years and include the following:

- Quarterly records of the CO₂ injected
 - Volumetric flow at standard conditions
 - Volumetric flow at operating conditions
 - Operating temperature and pressure
 - Concentration of the CO₂ stream
- Annual records of the information used to calculate the CO₂ emitted by surface leakage from leakage pathways.
- Annual records of the information used to calculate CO₂ emitted from equipment leaks and vented emissions of CO₂ from equipment located on the surface, between the flow meter used to measure injection quantity and the injection wellhead.

APPENDICES

APPENDIX A – O'Neal No. 4 TRRC FORMS

APPENDIX A-1: GAU GROUNDWATER PROTECTION DETERMINATION

APPENDIX A-2: DRILLING PERMIT

- CHARLIE C. OVERBY API 42-025-32658
- O'NEAL GAS UNIT NO. 4 API 42-025-32658

APPENDIX A-3: COMPLETION REPORT

- CHARLIE C. OVERBY API 42-025-32658
- O'NEAL GAS UNIT NO. 4 API 42-025-32658
- ACID FRACTURE REPORT

APPENDIX A-4: API 42-025-30388 CHARLIE C. OVERBY GU PLUGGING RECORDS

<u>APPENDIX B – AREA OF REVIEW</u>

APPENDIX B-1: OIL AND GAS WELLS WITHIN THE MMA LIST

APPENDIX B-2: WATER WELLS WITHIN THE MMA LIST

GROUNDWATER PROTECTION DETERMINATION

Groundwater Advisory Unit

Form GW-2

Date Issued: 26 May 2023 **GAU Number:** 367912

Attention: **OZONA CCS LLC API Number:** 02532658

> BEE County: 19026 RIDGEWOOD

O'Neal Gas Unit Lease Name: SAN ANTONIO, TX 78259

Lease Number: 162214 100116 **Operator No.:**

Well Number:

16101 **Total Vertical**

Latitude: 28.602914

4

Longitude: -98.001428

Datum: NAD27

Purpose: Injection into Producing Zone (H1)

Survey-EL&RR RR CO; Abstract-452; Section-1 Location:

To protect usable-quality groundwater at this location, the Groundwater Advisory Unit of the Railroad Commission of Texas recommends:

The base of usable-quality water-bearing strata is estimated to occur at a depth of 250 feet at the site of the referenced well.

The BASE OF UNDERGROUND SOURCES OF DRINKING WATER (USDW) is estimated to occur at a depth of 950 feet at the site of the referenced well.

Note: Unless stated otherwise, this recommendation is intended to apply to all wells drilled within 200 feet of the subject well. Unless stated otherwise, this recommendation is for normal drilling, production, and plugging operations only.

This determination is based on information provided when the application was submitted on 05/26/2023. If the location information has changed, you must contact the Groundwater Advisory Unit, and submit a new application if necessary. If you have questions, please contact us at 512-463-2741 or gau@rrc.texas.gov.

Groundwater Advisory Unit, Oil and Gas Division

Form GW-2 P.O. Box 12967 Austin, Texas 78771-2967 Internet address: www.rrc.texas. 512-463-2741

Rev. 02/2014

Oil & Gas Data Query

Query Menu Help

Drilling Permit (W-1) Query Results

Search Criteria: API No.: 02532658													Return
2 results			Page	: 1 of 1							Pag	ge Size: v	iew All 🗸
API NO.	District	<u>Lease</u>	Well Number	Permitted Operator	County	Status Date	<u>Status</u> <u>Number</u>	Wellbore Profiles	<u>Filing</u> <u>Purpose</u>	Amend	Total Depth	Stacked Lateral Parent Well DP #	<u>Status</u>
<u>02532658</u> Links ▼	02	CHARLIE C. OVERBY GAS UNIT	2	PARKER & PARSLEY DEVELOPMENT CO.(640889)	BEE	Submitted: 11/30/1992 Approved: 11/30/1992	406655	Vertical	New Drill	N	16700		APPROVED
<u>02532658</u> Links ▼	02	O'NEAL GAS UNIT (162214)	4	PARKER & PARSLEY DEVELOPMENT L.P(640886)	BEE	Submitted: 11/20/1996 Approved: 12/16/1996	455434	Vertical	Recompletion	N	14040		APPROVED
Download													Return

<u>Disclaimer</u> | <u>RRC Home</u> | <u>Contact</u>

NOTE: THE CHARLIE C. OVERBY GU AND THE O'NEAL GU ARE THE SAME WELL. THE OVERBY WELL WAS DRILLED IN 1993 INTO THE SLIGO. IN 1997 THE WELL WAS RECOMPLETED IN THE EDWARDS FORMATION. THIS WAS DONE UNDER A NEW LEASE, AS THE O'NEAL GU NO. 4.

11/28/23, 4:52 PM Form W-1: Field List

Log In

Form W-1: Review

Status # 406655	OP # 640889 - PARKER & PARSLEY DEVELOPMENT CO.	CHARLIE C. OVERBY GAS UNIT - Well # 2	New Drill	
API # 025-32658	Approved , Issued: 11/30/1992 , Filed: Hardcopy	02 - BEE County	Vertical	
NEAREST WELL COMMENT: 1607.8 (11/30/1992 12:00:00 AM)				

Status:

Back to Public Query Search Results

Completion Info	rmation

Well Status Code	Spud Date	Drilling Completed	Surface Casing Date
W - Final Completion	01/01/1993	02/11/1993	01/01/1993

Field Name	Completed Well Type	Completed Date	Validated Date
PAWNEE (SLIGO)	Gas	02/11/1993	06/18/1993

General / Location Information

Basic Information:

Filing Purpose	Welbore Profiles	Lease Name	Well #	SWR	Total Depth	Horizontal Wellbore	Stacked Lateral Parent Well DP #
New Drill	Vertical	CHARLIE C. OVERBY GAS UNIT	2	SWR 36	16700		

Surface Location Information:

ADI #	Distance from Nearest Town	Direction from Nearest Town	Nearest Town	Surface Location Type
025-32658	4.0 miles	S	PAWNEE	Land

Survey/Legal Location Information:

Section	Block	Survey	Abstract #	County
		EL&RR RR CO	452	BEE

Township	League	Labor	Porcion	Share	Tract	Lot

Perpendicular surface location from two nearest designated reference lines:

Perpendiculars	Distance	Direction	Distance	Direction
Survey Lines	2784.0 feet	from the S line and	1045.5 feet	from the W line

Permit Restrictions:

Code	Description
30	REGULAR PROVIDED THAT UPON SUCCESSFUL COMPLETION OF THIS WELL IN THE SAME RESERVOIR AS ANY OTHER WELL PREVIOUSLY ASSIGNED THIS ACREAGE, A P-15 AND REVISED PRORATION PLATS MUST BE SUBMITTED WITH NO
30	DOUBLE ASSIGNMENT OF ACREAGE.
30	REGULAR PROVIDED THIS WELL IS NEVER COMPLETED IN THE SAME RESERVOIR AS ANY OTHER WELL CLOSER THAN 2640 FEET ON THIS SAME LEASE.
30	REGULAR PROVIDED THIS WELL IS DRILLED IN COMPLIANCE WITH RULE 36.

11/28/23, 4:52 PM Form W-1: Field List

30 O'NEAL GU #3, O'NEAL #1, OVERBY #120 & NEAL #1. **Fields** Distance to Distance to Field Completion Lease Well Well Pooled/ **SWR District** Field # Nearest Acres Nearest Unitized Name Depth Name Type Well **Lease Line PAWNEE** 02 CHARLIE C. Oil or (SLIGO) SWR 2 69845800 16700 **OVERBY GAS** Gas 704.0 Υ 36 **Primary** UNIT Well Field **Perpendiculars** Direction **Distance** Direction **Distance Surface Lease Lines** 2390.0 feet from the E line and 3446.0 feet from the N line Comments Remark **Date Entered Entered By** NEAREST WELL COMMENT: 1607.8 11/30/1992 12:00:00 AM **SYSTEM Attachments** File Path Associated Fields and/or Plats **Attachment Type**

<u>Disclaimer</u> | <u>RRC Online Home</u> | <u>RRC Home</u> | <u>Contact</u>

Form W-1: Review

Status # 455434 OP # 640886 - PARKER & PARSLEY DEVELOPMENT L.P API # 025-32658 Approved ,Issued: 12/16/1996 ,Filed: Hardcopy O'NEAL GAS UNIT - Well # 4 Recompletion 02 - BEE County Vertical

NEAREST WELL COMMENT: 1787 (11/20/1996 12:00:00 AM)

Status:

Back to Public Query Search Results

	Well Status Code	Spud Date	Dri	lling Completed	Surface Casing Date
	W - Final Completion	02/04/1997	02/04/1997 02/13/1997		
	Field Name	Completed Well	Туре	Completed Date	Validated Date
l	PAWNEE (EDWARDS)	Gas		02/13/1997	02/26/1997

General / Location Information

Basic Information:

Filing Purpose	Welbore Profiles	Lease Name	Well #	SWR	Total Depth	Horizontal Wellbore	Stacked Lateral Parent Well DP #
Recompletion	Vertical	O'NEAL GAS UNIT	4	SWR 36, SWR 37H	14040		

Surface Location Information:

API#	Distance from Nearest Town	Direction from Nearest Town	Nearest Town	Surface Location Type
025-32658	3.5 miles	s	PAWNEE	Land

Survey/Legal Location Information:

Section	Block	Survey	Abstract #	County
		E.L.&R.R. RR CO. #1	452	BEE

Ш	Township	League	Labor	Porcion	Share	Tract	Lot
Ш							

Perpendicular surface location from two nearest designated reference lines:

Perpendiculars	Distance	Direction	Distance	Direction
Survey Lines	825.0 feet	from the W line and	2784.0 feet	from the S line

Permit Restrictions:

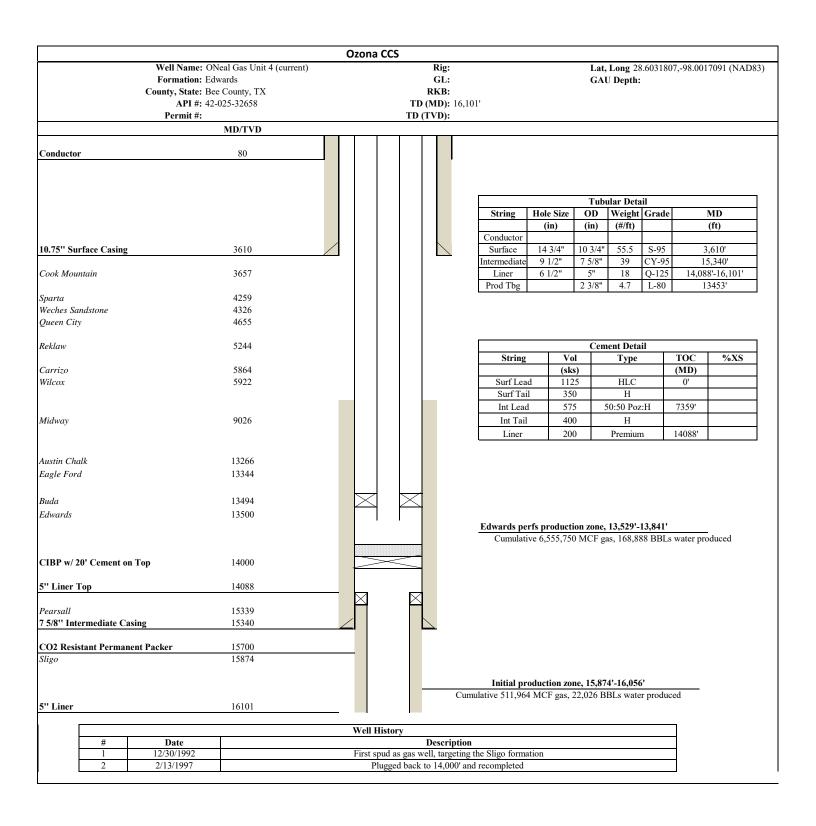
Code	Description
30	WILDCAT ABOVE 14040 FEET.
30	ANY WELLBORE DRILLED UNDER THIS PERMIT MUST BE COMPLETED, OPERATED, AND PRODUCED IN COMPLIANCE WITH STATEWIDE RULE 32.
30	REGULAR PROVIDED THIS WELL IS DRILLED IN COMPLIANCE WITH RULE 36.

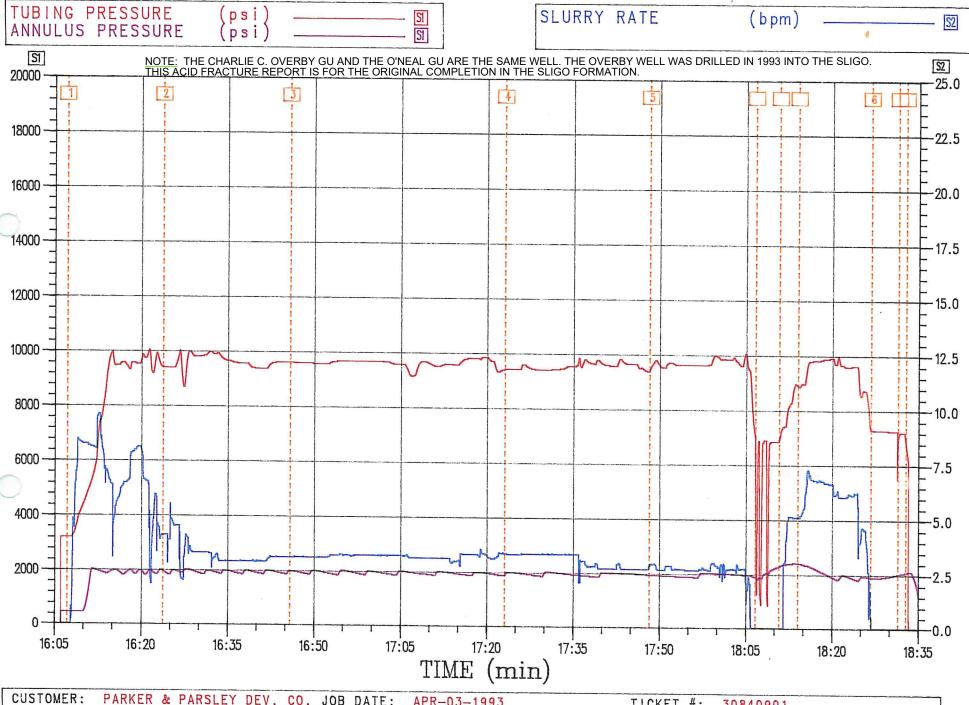
Fields

District	Field Name	Field #	Completion Depth	Lease Name	Well #	Well Type	Acres	Distance to Nearest Well	Distance to Neares	st Lease Line	SWR	Pooled/ Uniti	zed
02	WILDCAT Primary Field	00004001	14040	O'NEAL GAS UNIT	4	Oil or Gas Well	704.0				37H	Υ	
	Perpendicular	rs	-	Distance		Direction		Dis	tance	Direction			T
	Surface Lease	e Lines		4900.0 feet		from the W li	ne and	278	34.0 feet	from the S	line		

District	Field Name	Field #	Completion Depth	Lease Name	Well #	Well Type	Acres	Distance to Nearest Well	Distance to Nearest Lease Lin	e SWR	Pooled/ Unitized
02	PAWNEE (EDWARDS)	69845200	14040	O'NEAL GAS UNIT	4	Gas Well	704.0			SWR 36, 37H	Y
	Perpendiculars		Dist	tance		Direction			Distance Di	rection	
	Surface Lease Lines		490	0.0 feet	f	rom the W lir	ne and		2784.0 feet fro	m the S line	
											1

Exceptions


Field	Exception	Case Docket Number	Resolution
WILDCAT	SWR 37 [Historical]	0214349	
PAWNEE (EDWARDS)	SWR 37 [Historical]	0214349	


Comments

Remark	Date Entered	Entered By
NEAREST WELL COMMENT: 1787	11/20/1996 12:00:00 AM	SYSTEM

Attachments

Attachment Type File Path	Associated Fields and/or Plats
---------------------------	--------------------------------

CUSTOMER: PARKER & PARSLEY DEV. CO. JOB DATE: APR-03-1993 TICKET #: 30840901
WELL DECS: OVERBY #2 FORMATION: SLIGO JOB TYPE: SWIC ACID BALLOUT

Customer: PARKER & PARSLEY DEV. CO. Well Desc: OVERBY #2

Ticket #: 30840901
Formation: SLIGO

Date: Apr 3, 1993 Job Type: SWIC ACID BALLOUT

TIME	STAGE	TUBING PR	ANNULUS PR	SLURRY RT
HR:MM:SS	NO	(psi)	(psi)	(bpm)
16:06:02	0	0	0	0.00
16:07:02	0	3216	470	0.00
16:08:02	1 8	Event(Eng) Operato	r Stage Adva	
16:08:02	1	3251	470	2.65
16:09:02	1	3904	470	8.43
16:10:02	1	4471	528	8.24
16:11:02	1	5059	1612	8.17
16:12:02	1	5812	1978	8.04
16:13:02	1	7558	1906	8.62
16:14:02	1	9069	1875	7.03
16:15:02	1	9950	2004	5.82
16:16:02	1	9504	1922	5.82
16:17:02	1	9572	1863	6.51
16:18:02	1	9304	2003	6.86
16:19:02	1	9539	1870	8.03
16:20:02	1	9725	1945	7.95
16:21:02	1	9862	1920	6.52
16:22:02	1	9216	1886	4.43
16:23:02	1	9672	1992	4.43
16:24:02		vent(Eng) Operator		
16:24:02	2	9384	1906	4.15
16:25:02	2	9416	1906	5.36
16:26:02	2	9547	1964	4.56
16:27:02	2	9150	1915	2.05
16:28:02	2	9898	2032	3.96
16:29:02	2	9812	1948	3.30
16:30:02	2	9824	1876	3.30
16:31:02	2	9882	1944	3.30
16:32:02	2	10020	1967	3.26
16:33:02	2	9946	18 9 8	3.24
16:34:02	2	9733	1986	2.90
16:35:02	2	9654	1980	2.90
16:36:02	2	9590	1921	2.90
16:37:02	2	9558	1870	2.91
16:38:02	2	9552	2018	2.90
16:39:02	2	9420	1960	2.90
16:40:02	2	9377	1908	2.97
16:41:02	2	9369	1866	2.90
16:42:02	2	9485	2010	3.07
16:43:02	2	9635	1961	3.10
16:44:02	2	9647	1910	3.09
16:45:02	2	9644	1868	3.12
16:46:02		ent(Eng) Operator		
16:46:02	3	9622	2011	3.10
16:47:02	3	9601	1955	3.10
16:48:02	3	9597	1905	3.10
16:49:02	3	9596	1867	3.10
16:50:02	3	9568	2020	3.10
16:51:02	3	9553	1968	3.10
16:52:02	3	9551	1923	3.10
16:53:02	3	9667	1883	3.26
16:54:02	3	9707	1859	3.26
16:55:02	3	9708	2024	3.22
16:56:02	3	9718	1974	3.27
16:57:02	3	9720	1927	3.25

Customer: PARKER & PARSLEY DEV. CO.

Well Desc: OVERBY #2

Ticket #: 30840901 Formation: SLIGO Date: Apr 3, 1993 Job Type: SWIC ACID BALLOUT

TIME	STAG	E TUBING PR A	NNULUS PR	SLURRY RT
HR: MM: SS	NO	(psi)	(psi)	(bpm)
16:58:02	3	9705	1883	3.26
16:59:02	3	9709	1984	3.23
17:00:02	3	9686	1996	3.26
17:01:02	3	9677	1958	3.27
17:02:02	3	9671	1924	3.26
17:03:02	3	9630	1889	3.26
17:04:02	3	9563	1857	3.26
17:05:02	3	9560	2025	3.26
17:06:02	3	9417	1983	3.28
17:07:02	3	9153	1949	3.12
17:08:02	3	9569	1933	3.12
17:09:02	3	9691	1909	3.10
17:10:02	3	9592	1880	3.12
17:11:02	3	9509	1943	3.10
17:12:02	3	9568	2012	3.10
17:13:02	3	9611	1979	3.12
17:14:02	3	9576	1947	2.97
17:15:02	3	9607	1917	3.06
17:16:02	3	9805	1893	3.28
17:17:02	3	9858	1865	3.29
17:18:02	3	9827	2031	3.28
17:19:02	3	9864	1994	3.43
17:20:02	3	9872	1963	3.30
17:20:02	3	9681	1927	3.12
17:22:02	3	9325	1884	3.37
17:23:02	3	9445	1902	3.33
17:23:02		Event(Eng) Operator		
17:24:02	4	9468	2027	3.32
17:24:02	4	9436	1988	3.32
17:25:02	4	9594	1960	3.33
17:27:02	4	9502	1928	3.33
17:27:02	4	9428	1896	3.32
17:20:02	4	9425	1867	3.33
17:29:02	4	9437	2045	3.33
17:30:02	4	9439	2073	3.32
17:31:02	4	9454	1996	3.32
17:32:02	4	9492	1971	3.32
17:33:02	4	9577	1947	3.32
17:34:02	4	9585	1923	3.32
17:35:02	4	9818	1908	2.69
	4	9839		2.93
17:37:02 17:38:02	4	9661	1889 1870	2.82
17:38:02	4	9808	1862	2.90
17:39:02		9642		
	4		2047	2.67
17:41:02 17:42:02	4	9589	2027	2.69
		9583	2015	2.69
17:43:02	4	9858	2011	2.90
17:44:02 17:45:02	4 4	9662 9649	1996 1986	2.69 2.68
17:45:02	4	9624	1973	2.68
17:47:02	4	9477	1956	2.69
17:47:02	4	9360	1942	2.68
17:40:02		Event(Eng) Operator		
17:49:02	5	9770	1941	2.99
17:50:02	5	9585	1926	2.66
17:30:02	J	3,10,1	1320	4:00

Customer: PARKER & PARSLEY DEV. CO. Well Desc: OVERBY #2

Ticket #: 30840901
Formation: SLIGO

Date: Apr 3, 1993 Job Type: SWIC ACID BALLOUT

TTUE	0740	* ************************************		m (11m m 11 m m						
TIME	STAGE		ANNULUS PR	SLURRY RT						
HR: MM: SS	<u>NO</u>	(psi)	(psi)	(bpm)						
17:51:02	5	9577	1913	2.85						
17:52:02	5	9749	1908	2.78						
17:53:02	5	9627	1895	2.68						
17:54:02	5	9638	1885	2.67						
17:55:02	5	9636	1873	2,68	•					
17:56:02	5	9642	1866	2.68						
17:57:02	5	9658	2047	2.70						
17:58:02	5	9659	2047	2.68						
17:59:02	5	9789	2036	2.99						
18:00:02	5	9937	2028	2.78						
18:01:02	5	9837	2014	2.93						
18:02:02	5	9857	2003	2.72						
18:03:02	5	9874	1992	2.70						
18:04:02	5	9617	1972	2.73						
18:05:02	5	10006	1978	2.05						
18:06:02	5	8309	1925	0.00						
18:07:02		vent (Eng)			DOWN	TO	SURGE	BALLS	ISIP	9320
18:07:02	5	6123	1842	0.00						
18:08:02	5	6862	2033	0.00						
18:09:02	5	6742	2129	0.00						
18:10:02	5	6873	2278	0.00						
18:11:02		vent(Eng)		PUMPING						
18:11:02	5	7239	2367	0.00						
18:12:02	5	7694	2426	4.18						
18:13:02	5	8434	2440	5.10						
18:14:02		•	SURE BREAK A							
18:14:02	5	8891	2411	5.11						
18:15:02	5	8952	2350	5.52						
18:16:02	5	9814	2296	7.05						
18:17:02	5	9831	2203	6.76						
18:18:02	5	9875	2099	6.78						
18:19:02	5	9919	1995	6.67						
18:20:02	5	9954	1896	6.63						
18:21:02	5	10000	1852	6.15						
18:22:02	5	9622	2000	6.05						
18:23:02	5	9607	1903	6.16						
18:24:02	5	9620	1822	6.17						
18:25:02	5	8541	1978	4.22						
18:26:02	5	8562	1933	3.72						
18:27:02		<u>/ent(Eng) Operator</u>								
18:27:02	6	7285	1880	0.00						
18:28:02	6	7269	1913	0.00						
18:29:02	6 6	7259	1954	0.00						
18:30:02	6	7251	2001	0.00						
ctctttttt	cett	EEEEEEEEEEEEEEE	בכבבבבבבב	tetetetet						

Customer: PARKER PARSLEY DEV. CO. Date: APR-03-1993 Well Desc: OVERBY 30840901

Formation: SLIGO

Job Type: SWIC ACID BALLOUT

WELLBORE CONFIGURATION

Wellbore Segment	Actual Length	TVD	Casing ID	Casing OD	Tubing ID	Tubing OD
Number	(feet)	(feet)	(inch)	(inch)	(inch)	(inch)
1	14088	14088	4.276	5.000	2.441	2.875
	15874	15874	4.276	5.000	0.000	0.000

PERFORATIONS DATA

of Perforations <u>15</u> Perf. Diameter .3 Balled Out? (YES/NO) <u>ves</u>

PERFORATED INTERVALS

FROM	TO	SFF
(feet)	(feet)	
15874	16056	1

Well Desc: OVERBY Formation: SLIGO

Tickat #: 30840901

Job ype: SWIC ACID BALLOUT

ratelians inventor

Treatment Fluid:		Density 8.	<u>96</u> lb/gal	
Displacement Fluid:		Density 8.	<u>33</u> lb/gal	
Surfactant Type:		gal <u>20</u>	<u> </u>	gal/Mgal
Clay Control:	***********************************	gal <u>40</u>	<u> </u>	gal/Mgal
Friction Reducer:	***************************************	gal <u>20</u>	<u> (a 1</u>	gal/Mgal
Perfpac Balls:	30	Qty 7/8	Size 1.3	5.6.

Customer: PARKER PARSLEY DEV. CO. Date APR-03-1993
Well Desc: OVERBY Tic t #: 30840901
Formation: SLIGO Job Type: SWIC ACID BALLOUT

MATERIALS ON LOCATION

STARTING FLUID VOLUME _____20000(gal)

Well Desc: OVERBY (*)
Formation: SLIGO

Are supported in the state of the support of the su

Tic/t #: 30840901 Job ype: SWIC ACID BALLOUT

ACID DATA

Acid Type:	***************************************	% <u>11</u>	gal	100	000	
Surfactant Type:	HC-2	gal	50	<u>(a</u>	5	gal/Mgal
NE Agent Type:		gal	50	<u>(ci</u>	raj	gal/Mgal
Corrosion Inh.:	<u> HAI-85</u>	gal	200	(ä	20	gal/Mgal
Corrosion Inh.:	HII-500	gal	200		20	gal/Mgal
Cracking Inh.:	SCA-130	gal	200		20	gal/Mgal
Iron Sequester:	***************************************	1 b	1000	<u>@</u>	100	īb/Mgal
Friction Reducer:	SGA-HT	gal	30	(ë)	3	qal/Mqal
Other:	ABF	ĽВ	120		12 lb/M	

Customer: PARKER PARSLEY DEV. CO. Dat APR-03-1993 Well Desc: OVERBY #2

Formation: SLIGO

Ticket #: 30840901

Job Type: SWIC ACID BALLOUT

JOE SCHEDULE

STAGE DESCRIPTIONS

<u>Stage</u>	Description				
1	TREATED WATER - LOAD HOLE, EST. RATE				
	SWIC ACID				
3	SWIC ACID WITH 30 BALLS				
ei.	SWIC ACID				
5	TREATED WATER - FLUSH				
6	SHUTDOWN MONITOR PRESSURE				

JOE SCHEDULE

STAGE INFORMATION

	11	2	3	4	5	6
Fluid Type	FR-26LC	SGA-HT 15%	SGA-HT 15%	SGA-HT 15%	FR-26LC	FR-26LC
Planned Clean Volume (gal)	5000	3000	5000	2000	6000	0
Planned Slurry Volume (gal)	5000	3000	5000	2000	6000	0
Actual Slurry Volume (gal)	4764	2997	5002	3217	5628	2
Base Fluid Density (lb/gal)	8.33	8.96	8.96	8.96	8.33	8.33
Concentration	1.00	3.00	3.00	3.00	1.00	1.00
Proppant Size						
Proppant Type						
Abs. Proppant Volume (gal/lb)	0.04530	0.04530	0.04530	0.04530	0.04530	0.04530
Planned Fluid Rate (bpm)	8.00	10.00	10.00	10.00	10.00	0.00
Planned Prop Conc (1b/gal)	0.00	0.00	0.00	0.00	0.00	0.00

Customer: PARKER PARSLEY DEV. CO.
Well Desc: OVERBY Tic t #: 30840901
Formation: SLIGO Job Type: SWIC ACID BALLOUT

Customer: PARKER PARSLEY DEV. CO. Well Desc: OVERBY

Formation: SLIGO

Dat Apr 3, 1993 Tic t #: 30840901 Job Type: SWIC ACID BALLOUT

STAGE SUMPLEY

Stage Times

<i>2</i> ** 1	Start	End	Elapsed	Time
Stage	Time	Time	Time	at Perfs
1	16:07:05	16:23:44	00:16:39	16:25:09
2	16:23:44	16:45:47	00:22:03	16:58:54
3	16:45:47	17:23:04	00:37:17	17:21:16
c‡	17:23:04	17:48:11	00:25:07	18:01:29
Eij	17:48:11	18:26:43	00:38:32	18:22:26
6	18:26:43	18:37:38	00:10:55	?
Total			02:30:33	

	Tubing Pressure	Annulus Pressure	BHP Calc'd Pressure	Slurry Rate	Slurry Volume
Stage	(psi)	(psi)	(psi)	(mad)	(gal)
1	7748	1613	13382	6.44	4767
	9615	1940	16354	3.24	2996
3	9626	1943	16518	3.19	5002
44.	9560	1961	16495	3.05	3215
5	9005	2036	15742	3.48	5629
6	4293	1578	11097	0.01	2
Tot/Avg	8860	1906	15552	3.38	21610

Customer: PARKER PARSLEY DEV. CO. Well Desc: OVERBY

Formation: SLIGO

Datr APR-03-1993

Tic t #: 30840901

Job Type: SWIC ACID BALLOUT

	Event Time	
	stage mneum HH:MM:SS Event Description	
6	1 stgad 16:07:05 Operator Stage Advance	> TREATED WATER - LOAD HOLE, EST. RATE
6	2 stgad 16:23:44 Operator Stage Advance	> SWIC ACID
6	3 stgad 16:45:47 Operator Stage Advance	> SWIC ACID WITH 30 BALLS
e	4 stgad 17:23:04 Operator Stage Advance	> SWIC ACID
6	5 stgad 17:48:12 Operator Stage Advance	> TREATED WATER - FLUSH
e	5 NOTES 18:06:36 Operator's Notes	*** SHUT DOWN TO SURGE BALLS ISIP 9320
e	5 NOTES 18:10:44 Operator's Notes	*** RESUME PUMPING
£	5 NOTES 18:14:01 Operator's Notes	*** PRESSURE BREAK AT 9000PSI
e	6 stgad 18:26:43 Operator Stage Advance	> SHUTDOWN MONITOR PRESSURE
6	6 NOTES 18:31:25 Operator's Notes	*** ISIP = 7285 PSI FG = .889
₽	6 NOTES 18:32:46 Operator's Notes	*** 5 MIN SIP = 7238 PSI

Plugging Record

RAILROAD COMMISSION OF TEXAS OIL AND GAS DIVISION

FORM W-3 Rev. 12/92 EAG0897

		· · · · · · · · · · · · · · · · · · ·													
								1	API No) lable) 42- 0	025-30	388	1.	RRC District	:
	FILE	IN DUPLIC	CATE	WITH DISTRICT	OFFIC	`F O	E DIST	RICT	INI VA	/HICH	*****		1	0	2
	1166			TED WITHIN THI										RRC Lease o	or Id.
		VVLLL IS L	OCA	ILD VVICENIV ITI	KII DA	413	AFIER	PLU	יווטכ	16			Ì	Number 064112	
2 FIEL	D NAME (a	s per RRC Reco	ords)		3. I	Lease 1	Name						5.	Well Numbe	r
Pawn	ee			(Sligo)	, }	Ove	erby, Cl	arlie	∍ C.	Gas Unit			Ì	1	
6. OPEI	RATOR		S. C. Carlotte		6a.	Origin	ıal Form V	/-1 File	d in N	ame of			10.	County	
Pio	neer Nat	ural Resou	rces	USA, Inc.										Bee	2
7. ADD		155		75039-373	6 6b.	Any S	Subsequent	W-1's I	Filed in	n Name of.	····		11.	Date Drilling	
5205	N. O'Con	nor Blvd.,	Ste	900 Irving, 1	-									Permit Issue	ed
8. Loca	tion of Well	Relative to Ne	arest L	ease Boundaries	11625	Feet	From V	<u> </u>	L	ine and 17	50	Feet From	12	Permit Num	ber
of Le	ase on which	h this Well is Lo	ocated		5		of the 5	urve				Lease	1	-	
9a SEC	TION, BLO	CK, AND SUR	VEY		9b.	Distan	ice and Di			Vearest Town	ın this		13.	Date Drilling	
Mar	celo Al	carte		A-70	Ì	Coun		mile	s Sot	ath of Pa	awnee		1	Commence	1
16. Type	Well	Total Depth	17. If	Multiple Completion La	st All Fiel	d Nam	es and Oil	Lease o					14.	Date Drilling	
	Gas, Dry)	16,300								GAS ID or LEASE#	Oıl-O Gas-G	WELL #		Completed	_
	s, Amt. of C								<u> </u>				15.	Date Well P	lugged
Han	l'at time of	Plugging												3-6-07	
	ENENTING	TO PLUG AND	A D A NI	ON DATA.	PLUG	44	PLUG #2	PLUC	~ 40	DI 110 #4	PLUG #	5 PLUG			BLUG #0
	enting Date	TO FLUG AND	ABANI	JON DATA:	2-2		2-27		3 #3 -2	PLUG #4				PLUG #7	PLUG #8
		Pine in which Pl	no Plac	ced (inches)						3-5	3-6		<u>-6</u>		
		of Tubing or E			3 1		3 1/2		7	7	7		7	}	
				e(112), '= 1,	931	\longrightarrow	9200		00	3563	300			<u> </u>	ļ
	····	Used (each plu	ıg)		1 1		1		5	55	55		5	<u> </u>	<u> </u>
		umped (cu ft)		<u> </u>	1.0		1.06		.10	58.30	58.3		36	 	ļ
	ulated Top o		1) (A.)		928	30	9180	36	50	3428	200		5	 	
	y Wt. #/Gal	Plug (if tagged									187			 	ļ
*27. Type	<u> </u>	·		ر برساد بالمخطية بارد و	16.		16.4		.4	16.4	16.			 	
		IDINO DECOD		'n n 1100mo	<u>H</u>		<u>H</u> 129. V		I Non-l	H Orillable Ma	H terial (Ot	l I	1		
		JBING RECOR					t1	ian Cas	ing) L	eft in This W	ell `			Yes Yes	
SIZE	WT.#/FT.	PUT IN WELL	_ (ft.)	LEFT IN WELL (ft.)	HOLE SI	<u> </u>	·) 29a.	If answe	er to a efly de	bove is "Yes scribe non-d	" state de rillable m	pth to top (aterial, (U	of "ju Jse Re	nk" left in ho everse Side o	le f
16	49.50	61		61	UN			Form if	more	space is need	led)				
10 3/4	45.50	3513		3508		5"				_				' to 15,0	
7	49.50	15,52		15,524	8.3	3/4			_		1/4" t	ubing f	rom	9340' to	16,143
4"	UNK	<u> 15055-16</u>		14247		····	al	so le	ft i	n well.				· · · · · · · · · · · · · · · · · · ·	
	ALL OPEN	HOLE AND/OR		DRATED INTERVALS											
FROM	15,9	911	TO) <u>16,072</u>		_	FI	ROM				TO			
FROM			TO)			FI	ROM				TO			
FROM			TO)			FI	ROM				TO			
FROM			TO)			FI	ROM			**	TO			
FROM			TO)			FI	ROM				TO			
I have kn	owledge tha	t the cementing	operat	ions, as reflected by the	ınformati	on fou	nd on this	form, w	ere pe	rformed as 1	ndicated l	y such in	356	EIVED	
Designa	tes items to	be completed by	y Ceme	nting Company. Items	not so des	ignate	d shall be	comple	ted by	Operator.		CENT	RA	L RECO	RDS

Pat's P & A, Inc.

JUN 01 2007

Signature of Cementer or Authorized Representative

Name of Cementing Company

I declare under penalties prescribed in Sec. 91.143, Texas Natural Resources Code, that I am authorized to make this report, that this report, that this report was prepared by me or under my supervision and direction, and that data and facts stated therein are true, correct and complete, to the best of my knowledge

 PROD SUPT.
 3-22-07
 Phone 36/364-1732

 TITLE
 DATE
 A/C
 NUMBER

Depth of Deepest Fresh Water 250 36. If NO, Explain 36. If NO, Explain Date RRC District Office potential of Part of the RRC District Office potential of Part of the RRC District Office potential of Part of the RRC District Office potential of plugging potenti	LBS/GA Yes No 23-07
16,300 Depth of Deepest Fresh Water 250 36. If NO, Explain 37. Name and Address of Cementing or Service company who mixed and pumped cement plugs in this well Pat's P & A, Inc. P.O. Box 0126, Bishop 'TX 78343 38. Name(s) and Addresse(s) of Surface Owners of Well Site	Yes No
Depth of Deepest Fresh Water 250 36. If NO, Explain 36. If NO, Explain 37. Name and Address of Cementing or Service company who mixed and pumped cement plugs in this well Pat's P & A, Inc. P.O. Box 0126, Bishop 'IX 78343 38. Name(s) and Addresse(s) of Surface Owners of Well Site	
Depth of Deepest Fresh Water 250 37. Name and Address of Cementing or Service company who mixed and pumped cement plugs in this well Pat's P & A, Inc. P.O. Box 0126, Bishop TX 78343 38. Name(s) and Addresse(s) of Surface Owners of Well Site	23-07
250 37. Name and Address of Cementing or Service company who mixed and pumped cement plugs in this well Pat's P & A, Inc. P.O. Box 0126, Bishop 'TX 78343 B. Name(s) and Addresse(s) of Surface Owners of Well Site Date RRC District Office notified of plugging 2-2	23-07
Pat's P & A, Inc. P.O. Box 0126, Bishop TX 78343 Name(s) and Addresse(s) of Surface Owners of Well Site Date RRC District Office notified of plugging 2-2	23-07
Pat's P & A, Inc. P.O. Box 0126, Bishop 'IX 78343 notified of plugging 2-2 8. Name(s) and Addresse(s) of Surface Owners of Well Site	23-07
8. Name(s) and Addresse(s) of Surface Owners of Well Site	23-07
	
9. Was Notice Given Before Plugging to the Above?	
ILL IN BELOW FOR DRY HOLES ONLY	
 For Dry Holes, this Form must be accompanied by either a Driller's, Electric, Radioactivity or Acoustical/Sonic Log or such Log must be released to a Commercial Log Service. 	
Log Attached Log released to	
Log Attached Log released to Date	
Type Logs:	
Driller's Electric Radioactivity Acoustical/Sonic	
1. Date FORM P-8 (Special Clearance) Filed?	
A. DAIG FUNIVI FEA LODGGII CHEADAICE I FIIEU	
1. Date FORM F-8 (Special Clearance) Filed?	
Amount of Oil produced prior to Plugging	
2. Amount of Oil produced prior to Plugging	
2. Amount of Oil produced prior to Plugging bbls* * Field FORM P-1 (Oil Production Report) for month this oil was produced	
2. Amount of Oil produced prior to Plugging bbls* * Field FORM P-1 (Oil Production Report) for month this oil was produced RRC USE ONLY.	
2. Amount of Oil produced prior to Plugging bbls* * Field FORM P-1 (Oil Production Report) for month this oil was produced RRC USE ONLY.	
2. Amount of Oil produced prior to Pluggingbbls* * Field FORM P-1 (Oil Production Report) for month this oil was produced RRC USE ONLY Nearest Field	ī
Amount of Oil produced prior to Pluggingbbls* * Field FORM P-1 (Oil Production Report) for month this oil was produced RRC USE ONLY Nearest Field Nearest Field Nearest Field Nearest Field Nearest Field 1	1/2
Amount of Oil produced prior to Pluggingbbls* * Field FORM P-1 (Oil Production Report) for month this oil was produced RRC USE ONLY Nearest Field	1/2 ow and
Amount of Oil produced prior to Plugging * Field FORM P-1 (Oil Production Report) for month this oil was produced * RRC USE ONLY. Nearest Field * Nearest F	1/2 ow and orated
Amount of Oil produced prior to Plugging * Field FORM P-1 (Oil Production Report) for month this oil was produced * RRC USE ONLY Nearest Field * Nearest Field * Nearest Field * Unable to recover 3 1/2" tbg. as anticipated above existing 1 1/4" fish @ 9340'. Jet cut 3 1/2" 9302' & 9243'. Unable to pull or establish circulation up 3 1/2 x 7" @ 3500 P.S.I. Freepoint on 3 1 reg. at 4750 * Notified and received approval from Kevin Shamette W/RRC to set CIBP's + 20' cmt beloebove cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance of the control of	1/2 ow and orated
Amount of Oil produced prior to Plugging * Field FORM P-1 (Oil Production Report) for month this oil was produced * RRC USE ONLY. Nearest Field * Nearest F	1/2 ow and orated
* Field FORM P-1 (Oil Production Report) for month this oil was produced **RRC USE ONLY* Nearest Field ** ** ** ** ** ** ** ** **	1/2 ow and orated amette
Amount of Oil produced prior to Plugging * Field FORM P-I (Oil Production Report) for month this oil was produced * RRC USE ONLY Nearest Field * Nearest Field * Notified and received approval from Kevin Shamette W/RRC to set CIBP's + 20' cmt below cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance of the pull or circulate. Re-cut @ 3800'. Received verbal approval from Kevin Shamette V/RRC to set Dlug from 3800' tp 3650' Cut & perforated 7" casing @ 3563'. Casing not free. Unable to stablish circulation but established injection into 7" x 8 3/4" @ 2000	1/2 ow and orated amette
Amount of Oil produced prior to Plugging * Field FORM P-1 (Oil Production Report) for month this oil was produced * RRC USE ONLY Nearest Field * Notified and received approval from Kevin Shamette W/RRC to set CIBP's + 20' cmt belower cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3	1/2 ow and orated amette
Amount of Oil produced prior to Plugging * Field FORM P-I (Oil Production Report) for month this oil was produced * RRC USE ONLY Nearest Field * Nearest Field * Notified and received approval from Kevin Shamette W/RRC to set CIBP's + 20' cmt below cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance of the pull or circulate. Re-cut @ 3800'. Received verbal approval from Kevin Shamette V/RRC to set Dlug from 3800' tp 3650' Cut & perforated 7" casing @ 3563'. Casing not free. Unable to stablish circulation but established injection into 7" x 8 3/4" @ 2000	1/2 ow and orated amette P.S. sks.

			Area of Revie	ew: Oil &	Gas Wells	List				
API	WELL NAME	WELL NO.	CURRENT OPERATOR	ABSTRACT	LATITUDE (WGS84)	LONGITUDE (WGS84)	WELL STATUS	TOTAL DEPTH (TVD FT.)	PERFORATED INTERVAL (MD FT.)	DATE DRILLED
4202500002	ONEAL, A.	1	ROWAN & HOPE	126	28.603017	-98.000911	DRILLED	7010	NO RECORD	8/9/1949
4202500005	RUSSELL, S.	1	PAN AMERICAN PETROLEUM CORP.	308	28.594587	-97.999841	DRILLED	7515	NO RECORD	5/12/1947
4202530346	HENRY BUES	1	PIONEER NATURAL RES. USA, INC.	70	28.5986210	-98.0118480	INACTIVE PRODUCER	13842	7554-7558; 7612-7624; 13526-13760	11/10/1974
4202530359	ONEAL GAS UNIT	2	BB-SOUTHTEX, LLC	127	28.61178	-98.000661	PRODUCING	13961	13349-15821	4/5/1975
4202530388	OVERBY, CHARLIE C. GAS UNIT	1	PIONEER NATURAL RES. USA, INC.	70	28.601086	-98.005037	P & A	16300	15911-16072	6/6/1975
4202532342	DE LEON	1	T D EXPLORATION, INC.	126	28.6006330	-97.9917520	P & A	6512	NO RECORD	12/31/1985
4202532501	HENRY BUES GAS UNIT	2	BB-SOUTHTEX, LLC	70	28.599863	-98.009994	PRODUCING	13896	13504-15637	11/15/1988
4202532638	ONEAL GAS UNIT	3	BB-SOUTHTEX, LLC	70	28.604583	-98.007079	PRODUCING	13834	13508-13668	3/12/1992
4202532842	OVERBY, CHARLIE C.	1E	PIONEER NATURAL RES. USA, INC.	70	28.5998760	-98.0053330	P & A	14000	13514-13838	10/9/1995
4202532967	TOMASEK GAS UNIT	5	BB-SOUTHTEX, LLC	126	28.609862	-97.991519	PRODUCING	13875	13434-15693	6/12/1999
4202533006	ONEAL GAS UNIT	5	BB-SOUTHTEX, LLC	70	28.6067950	-98.0042210	PRODUCING	13772	13463-13764	7/15/2000
4202533035	ONEAL GAS UNIT	6	BB-SOUTHTEX, LLC	127	28.61091	-97.999073	PRODUCING	13835	13310-13833	9/14/2000
4202533085	ONEAL GAS UNIT	7	BB-SOUTHTEX, LLC	127	28.609397	-98.001471	PRODUCING	13868	13314-16072	5/4/2001
4202533114	HENRY BUES GAS UNIT	8	BB-SOUTHTEX, LLC	70	28.5984810	-98.0090260	PRODUCING	13732	13348-13732	6/11/2001
4202533197	ONEAL GAS UNIT	8	BB-SOUTHTEX, LLC	452	28.6075430	-98.0037990	PRODUCING	15638	13565-13820	2/5/2003

O'Neal Gas Unit No. 4

4202533272	HENRY BUES GAS UNIT	11	BB-SOUTHTEX, LLC	70	28.598737	-98.008615	PRODUCING	13856	13291-15853	6/23/2004
4202533273	ONEAL GAS UNIT	9	BB-SOUTHTEX, LLC	452	28.6029540	-98.0025090	PRODUCING	13872	13311-16585	6/3/2004
4202533328	ONEAL GAS UNIT	11	BB-SOUTHTEX, LLC	126	28.6036340	-97.9982100	PRODUCING	13787	13318-15928	4/19/2005
4202533345	TOMASEK GAS UNIT	8	BB-SOUTHTEX, LLC	126	28.608282	-97.991595	PRODUCING	13692	13293-16378	8/14/2004
4202533371	ONEAL GAS UNIT	12	BB-SOUTHTEX, LLC	452	28.6097460	-98.0027040	PRODUCING	13819	13313-16635	8/15/2006
4202533383	HENRY BUES GAS UNIT	15	BB-SOUTHTEX, LLC	70	28.600322	-98.00874	PRODUCING	13811	13302-15768	10/8/2006
4202533492	ONEAL GAS UNIT	13	BB-SOUTHTEX, LLC	70	28.605326	-98.012928	PRODUCING	13859	13382-14761	7/7/2007
4202533553	ONEAL GAS UNIT	14	BB-SOUTHTEX, LLC	127	28.613869	-98.000504	PRODUCING	13674	13450-15424	2/11/2008
4202533559	OVERBY GAS UNIT	2E	BB-SOUTHTEX, LLC	452	28.6011410	-98.0028580	PRODUCING	13734	13372-13734	3/23/2008
42025E2114	NO RECORD	NR	NO RECORD	126	28.608457	-97.995683	NO RECORD	NR	NO RECORD	NR

*Note: Well entries in red penetrate the upper confining layer.

		A	rea of Review: Fres	hwater Wel	ls List				
WELL REPORT/ID NO.	OWNER'S NAME	OWNER ADDRESS	CITY/STATE/ZIP	LAT. WGS 84	LONG. WGS 84	WELL USE	WATER LEVEL (FT.)	TOTAL DEPTH (FT.)	DATE DRILLED
128936	JOHN DAVIDSON	12761 FM 673	KENEDY, TX 78119	28.606667	-98.011667	DOMESTIC	48	114	11/19/2007
7832308	HENRY BUES	NO RECORD	NO RECORD	28.598334	-98.012223	STOCK	-	150	1960
7925105	T. M. PLUMER	NO RECORD	NO RECORD	28.595556	-97.997778	STOCK	77	275	1931
7832309	W. A. MUELLER	NO RECORD	NO RECORD	28.608612	-98.005834	UNUSED	63	90	1925
7925106	R.C. HUNT ESTATE	NO RECORD	NO RECORD	28.593889	-97.997222	UNUSED	137	172	1925

Request for Additional Information: O'Neal Gas Unit Well No. 4 March 1, 2024

Instructions: Please enter responses into this table and make corresponding revisions to the MRV Plan as necessary. Any long responses, references, or supplemental information may be attached to the end of the table as an appendix. This table may be uploaded to the Electronic Greenhouse Gas Reporting Tool (e-GGRT) in addition to any MRV Plan resubmissions.

No.	MRV Plan		EPA Questions	Responses
	Section	Page		
1.	NA	NA	There is a lack of consistency with hyphens, bolding, quotation marks, spelling, and capitalization in the MRV plan. Examples include but are not limited to: Loann salt vs. Louann salt CO ₂ vs. CO2	The document has been reviewed and edited to address the issues identified. There are numerous edits made to the MRV plan: 1) in response to this RAI; 2) in grammatical edits subsequent to the RAI responses for better clarification; and 3) deletions of material no longer relevant based on these edits.
			We recommend reviewing the formatting in the MRV plan for consistency. Furthermore, we recommend doing an additional review for spelling, grammar, etc.	
2.	Multiple	Multiple	There are several references to "production" in the MRV plan, such as, "Any vertical migration from the Injection Zone would return the CO_2 to the production zone" (p. 52). However, the plan indicates that "no CO_2 will be produced" (p. 72). In the MRV plan, please provide additional explanation as to whether any CO_2 is produced at this facility and what the relationship of the facility is to any producing wells.	These references have been edited to clarify the use of "production". The intent is to utilize shallower hydrocarbon production formations as an early indicator of vertical migration of CO_2 from the Sligo. These wells would act as an above zone monitoring well in that they can provide early indication of CO_2 release and protect the USDW. No CO_2 is intended to be produced.
3.	2.2.4	23	"Based on the results of the investigation, in-situ Sligo reservoir fluid is anticipated to contain approximately 150,000 parts per million TDS" This value differs from what is listed in Table 3. Please ensure all values mentioned in the text are consistent with what is listed in the tables.	This has been edited to reference only Sligo fluid samples. In the absence of an actual sample from the O'Neal No. 4, we took a conservative approach and rounded down to 150,000 ppm. This would yield a slightly larger plume, thus being conservative

No.	MRV Plan		EPA Questions	Responses
	Section	Page		
4.	2.8.1	41-45	We recommend including units in Figures 25-28.	A scale has been added to these figures.
5.	Table 8	52	Please explain what is meant by Post Injection Site Care periods and UCZs in Table 8. These terms are not defined in the plan.	Table 7 (previously 8) has been updated to define these terms.
6.	Table 8	52	The leakage characterization for "Existing wells within the MMA" is described as "Unlikely. The lateral continuity of the UCZ is recognized as a very competent seal." Please explain why the competence of the seal would affect potential leakage through wells, and/or update this text as necessary.	Table 7 has been edited to clarify this comment.
7.	Table 8	52	The magnitude of potential leakage for each potential leakage pathway is described as "low". Please elaborate what is meant by this characterization.	A Magnitude Assessment Description has been added to Table 7.
8.	Table 10	63	Table 10 appears to have been corrupted, we recommend replacing this table.	Table 9 (previously 10) has been updated.
9.	5.1/6.4	64/69	"Should leakage be detected during active injection operations, the volume of CO_2 released will be calculated based on operating conditions at the time of the event, per 40 CFR §98.448(a)(5)". We recommend also referencing 40 CFR 98.444(d) here.	40 CFR 98.444(d) has been added to both sections.
10.		69	Please clarify what types of measurements will be taken for the soil gas and water sampling. Is this different from what is described in "6.5 Groundwater Monitoring"? Furthermore, does "fixed monitors" refer to H ₂ S monitors, CO ₂ monitors, or both?	Sections 6.2 and 6.5 have been updated. Fixed monitors and detectors refer to H_2S monitors, as H_2S is a proxy for CO_2 as it is a combined gas stream. The operating areas must have H_2S monitors for safety requirements.
11.	5.4	67	Please include additional discussion on the potential risk for induced seismicity. For example, will the facility take precautions to ensure that seismicity is not induced?	Language has been added to Section 5.4 for monitoring and mitigation of induced seismicity.

No.	MRV Plan		EPA Questions	Responses
	Section	Page		
12.	7.5	73	"CO _{2FI} = Total annual CO ₂ mass emitted (metric tons) from equipment leaks and vented emissions from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead" Per 40 CFR 98.443(F)(2), this variable should be "CO _{2FI} = Total annual CO ₂ mass emitted (metric tons) from equipment leaks and vented emissions from equipment located on the surface between the flow meter used to measure injection quantity and the injection wellhead, for which a calculation procedure is provided in subpart W of this part." Equations and variables cannot be modified from the regulations. Please revise this section and ensure that all equations listed are consistent with the text in 40 CFR 98.443.	This equation is confirmed to be consistent with 40 CFR 98.443(F)(2).
13.	8	74	Per 40 CFR 98.448(a)(7), please include a specific "proposed date to begin collecting data for calculating total amount sequestered according to equation RR-11 or RR-12 of this subpart. This date must be after expected baselines as required by paragraph (a)(4) of this section are established and the leakage detection and quantification strategy as required by paragraph (a)(3) of this section is implemented in the initial AMA."	The Class II permit is still in-process with the TRRC. Until this is issued, Ozona cannot specify a date certain. The plan provides for all baseline testing and results prior to commencing of injection. Upon approval of the MRV plan and completion of the baseline testing, Ozona will commence data collection for reporting sequestered quantities.

Subpart RR Monitoring, Reporting, and Verification (MRV) Plan O'Neal Gas Unit Well No. 4

Bee County, TX

Prepared for *Ozona CCS, LLC*San Antonio, TX

Ву

Lonquist Sequestration, LLC
Austin, TX

Version 2.0 January 2024

INTRODUCTION

Ozona CCS, LLC ("Ozona") has a pending Class II acid gas injection ("AGI") permit application with the Texas Railroad Commission ("TRRC"), which was submitted in September of 2023, for its O'Neal Gas Unit Well No. 4 ("O'Neal No. 4"), API No. 42-025-32658. Granting of this application would authorize Ozona to inject up to 1.5 million standard cubic feet per day ("MMscf/d") of treated acid gas ("TAG") into the Sligo formation at a depth of 15,874 feet to 16,056 feet with a maximum allowable surface pressure of 7,920 psig. The TAG for this AGI well is associated with StarTex's Pawnee Gas Plant (the "Plant"), located in a rural area of Bee County, Texas, approximately 2.0 miles south of Pawnee, Texas, as shown in Figure 1.

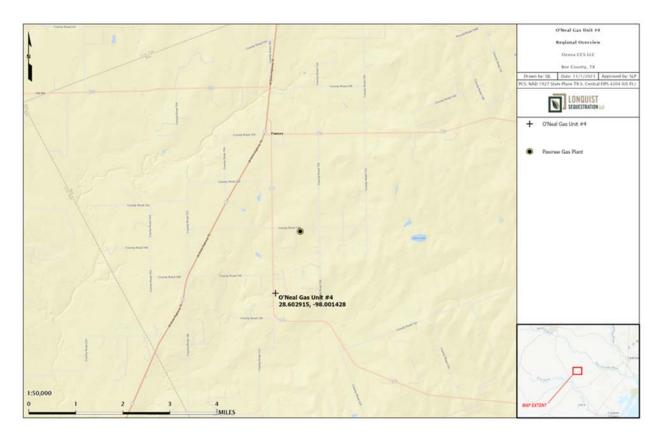


Figure 1 – Location of StarTex Gas Plant and the O'Neal No. 4

Ozona is submitting this Monitoring, Reporting, and Verification ("MRV") plan to the EPA for approval under 40 CFR **98.440(a)**, Subpart RR, of the Greenhouse Gas Reporting Program ("GHGRP"). In addition to submitting this MRV plan to the EPA, Ozona has applied to the TRRC for the O'Neal GU No. 4's Class II permit. Ozona plans to inject TAG for approximately 12 years. Table 1 shows the expected composition of the gas stream to be sequestered from the nearby StarTex Pawnee Gas Plant.

Table 1 – Expected TAG Composition

Component	Mol Percent
Carbon Dioxide	98.2%
Hydrocarbons	1.03%
Hydrogen Sulfide	0.4%
Nitrogen	0.37%

ACRONYMS AND ABBREVIATIONS

% Percent (Percentage)

°C Degrees Celsius

°F Degrees Fahrenheit

AMA Active Monitoring Area

BCF Billion Cubic Feet

CH₄ Methane

CMG Computer Modelling Group

Carbon Dioxide (may also refer to other Carbon

CO₂ Oxides)

E East

EOS Equation of State

EPA U.S. Environmental Protection Agency

ESD Emergency Shutdown

FG Fracture Gradient

ft Foot (Feet)

GAPI Gamma Units of the American Petroleum Institute

GAU Groundwater Advisory Unit

GEM Computer Modelling Group's GEM 2023.2

GHG Greenhouse Gas

GHGRP Greenhouse Gas Reporting Program

GL Ground Level Elevation

H₂S Hydrogen Sulfide

JPHIE Effective Porosity (corrected for clay content)

mD Millidarcy

mi Mile(s)

MIT Mechanical Integrity Test

MM Million

MMA Maximum Monitoring Area

MCF Thousand Cubic Feet

MMcf Million Cubic Feet

MMscf Million Standard Cubic Feet

Mscf/D Thousand Standard Cubic Feet per Day

MMscf/D Million Standard Cubic Feet per Day

MRV Monitoring, Reporting, and Verification

v Poisson's Ratio

N North

NW Northwest

OBG Overburden Gradient

PG Pore Gradient

pH Scale of Acidity

ppm Parts per Million

psi Pounds per Square Inch

psig Pounds per Square Inch Gauge

S South

SE Southeast

SF Safety Factor

SWD Saltwater Disposal

TAC Texas Administrative Code

TAG Treated Acid Gas

TOC Total Organic Carbon

TRRC Texas Railroad Commission

UIC Underground Injection Control

USDW Underground Source of Drinking Water

W West

TABLE OF CONTENTS

INTRO	DUCTIO	N	2
ACRO	NYMS AN	ID ABBREVIATIONS	4
SECTIO)N 1 – U	IC INFORMATION	10
1.1	Unde	rground Injection Control Permit Class: Class II	10
1.2	UIC W	/ell Identification Number	10
1.3	Facilit	y Address	10
SECTIO)N 2 – PF	ROJECT DESCRIPTION	11
2.1	Regio	nal Geology	11
	2.1.1	Geologic Setting and Depositional Environment	
	2.1.2	Regional Structure and Faulting	15
2.2	Site C	haracterization	17
	2.2.1	Stratigraphy and Lithologic Characteristics	17
	2.2.2	Upper Confining Interval – Pearsall Formation	19
	2.2.3	Injection Interval – Upper Sligo Formation	
	2.2.4	Formation Fluid	
	2.2.5	Fracture Pressure Gradient	
	2.2.6	Lower Confining Interval – Lower Sligo and Hosston Formations	
2.3		Structure	
2.4	_	ion and Confinement Summary	
2.5		ndwater Hydrology	
2.6		ences	
2.7		iption of the Injection Process	
	2.7.1	Current Operations	
2.8		voir Characterization Modeling	
	2.8.1	Simulation Modeling	
		ELINEATION OF MONITORING AREA	
3.1		num Monitoring Area	
3.2		Monitoring Area	
		OTENTIAL PATHWAYS FOR LEAKAGE	
4.1		ge from Surface Equipment	
4.2		ge Through Existing Wells Within the MMA	
	4.2.1	Future Drilling	
	4.2.2	Groundwater Wells	
4.3		ge Through Faults and Fractures	
4.4		ge Through the Confining Layer	
4.5		ge from Natural or Induced Seismicity	
		ONITORING FOR LEAKAGE	
5.1		ge from Surface Equipment	
5.2		ge Through Existing and Future Wells Within the MMA	
5.3		ge Through Faults, Fractures, or Confining Seals	
5.4	Leaka	ge Through Natural or Induced Seismicity	67

	I 6 – BASELINE DETERMINATIONS	69
6.1	Visual Inspections	69
6.2	CO ₂ /H ₂ S Detection	69
6.3	Operational Data	69
6.4	Continuous Monitoring	69
6.5	Groundwater Monitoring	
SECTION	I 7 – SITE-SPECIFIC CONSIDERATIONS FOR MASS BALANCE EQUATION	71
7.1	Mass of CO ₂ Received	
7.2	Mass of CO ₂ Injected	
7.3	Mass of CO ₂ Produced	
7.4	Mass of CO ₂ Emitted by Surface Leakage	72
7.5	Mass of CO ₂ Sequestered	
	I 8 – IMPLEMENTATION SCHEDULE FOR MRV PLAN	
SECTION	I 9 – QUALITY ASSURANCE	
9.1	Monitoring QA/QC	
9.2	Missing Data	
9.3	MRV Plan Revisions	
SECTION	I 10 – RECORDS RETENTION	77
	- Location of StarTex Gas Plant and the O'Neal No. 4	2
_	- Structural features of the Gulf of Mexico and locator map (modified from Ro	berts-
Ashby et	 Structural features of the Gulf of Mexico and locator map (modified from Rotal., 2012) 	berts- 11
Ashby et Figure 3 intervals	 Structural features of the Gulf of Mexico and locator map (modified from Rotal., 2012) Stratigraphic column of the U.S. Gulf Coast signifying proposed injection and cost. Offset productive intervals are noted with a green star (modified from Roberts) 	oberts- 11 nfining -Ashby
Ashby et Figure 3 intervals et al., 20 Figure 4 propose	 Structural features of the Gulf of Mexico and locator map (modified from Rotal., 2012) Stratigraphic column of the U.S. Gulf Coast signifying proposed injection and cost. Offset productive intervals are noted with a green star (modified from Roberts 12) Detailed stratigraphic column of Lower Cretaceous formations of south Texal dinjection interval is shaded light blue and proposed confining intervals are shaded 	oberts- 11 nfining -Ashby 12 s. The
Ashby et Figure 3 intervals et al., 20 Figure 4 propose yellow (r Figure 5 approxin Figure 6	Structural features of the Gulf of Mexico and locator map (modified from Rotal., 2012) Stratigraphic column of the U.S. Gulf Coast signifying proposed injection and cost. Offset productive intervals are noted with a green star (modified from Roberts 12) Detailed stratigraphic column of Lower Cretaceous formations of south Texal	oberts- 11 nfining -Ashby 12 s. The ed light 13 nts the 14 , south
Ashby et Figure 3 intervals et al., 20 Figure 4 propose yellow (r Figure 5 approxir Figure 6 Texas Figure 7 porosity Figure 8 represer 2016)	— Structural features of the Gulf of Mexico and locator map (modified from Rotal., 2012) — Stratigraphic column of the U.S. Gulf Coast signifying proposed injection and cost. Offset productive intervals are noted with a green star (modified from Roberts 12) — Detailed stratigraphic column of Lower Cretaceous formations of south Texal dinjection interval is shaded light blue and proposed confining intervals are shade modified from Bebout, D.G., et al., 1981) — Paleogeography of the Lower Cretaceous of south Texas. The red star represemate location of the O'Neal No. 4 (modified from Bebout, D.G., et al., 1981) ————————————————————————————————————	oberts- 11 nfining -Ashby 12 s. The ed light 13 nts the 14 , south 15 mated 0)15 ed star et al., 16
Ashby et Figure 3 intervals et al., 20 Figure 4 propose yellow (r Figure 5 approxir Figure 6 Texas Figure 7 porosity Figure 8 represer 2016) Figure 9 Word fie	- Structural features of the Gulf of Mexico and locator map (modified from Rotal., 2012) - Stratigraphic column of the U.S. Gulf Coast signifying proposed injection and cost. Offset productive intervals are noted with a green star (modified from Roberts 12) - Detailed stratigraphic column of Lower Cretaceous formations of south Texal dinjection interval is shaded light blue and proposed confining intervals are shaded modified from Bebout, D.G., et al., 1981) - Paleogeography of the Lower Cretaceous of south Texas. The red star represemate location of the O'Neal No. 4 (modified from Bebout, D.G., et al., 1981) - Generalized northwest to southeast schematic cross-section of the Trinity Group of the Depositional model for the Lower Cretaceous carbonate platform w/ estimated permeability values of typical facies (modified from Talbert and Atchley, 200) - Structural features and fault zones near the proposed injection site. The rests the approximate location of the O'Neal No. 4 (modified from Swanson S.M.,	oberts- 11 nfining -Ashby 12 s. The ed light 13 nts the 14 , south 15 mated 0)15 ed star et al., 16 nrough , 2016)

Figure 11 – Porosity-permeability cross-plot of Pearsall Formation crushed rock of Swanson S.M., et al., 2016)	
(Swanson S.M., et al., 2016)	20
Figure 12 – Seismic line across the Stuart City (Edwards/Buda) shelf margin and locator	
Figure 13 – Environmental setting of Lower Cretaceous Platform (Bebout, D.G., et al., 1	•
Figure 14 – Open-hole log from the O'Neal No. 4 (API No. 42-025-32658). Porosity curve	
green >0%, permeability curve shaded blue >0 mD, and resistivity shaded red > 5 ohms	
Figure 15 – Offset wells used for formation fluid characterization	
Figure 16 – Environmental setting of Lower Cretaceous tidal flat deposits (Bebout, D.	
1981)	
Figure 17 – Subsea Structure Map: top of Sligo (injection interval). The red star sig location of the O'Neal No. 4	
Figure 18 – Northwest to Southeast Structural Cross-Section: A-A' Oriented along reg	
The red star signifies the location of the O'Neal No. 4. Line of section is depicted in red of	on locator
map	
Figure 19 – Southwest to Northeast Structural Cross-Section: B-B' Oriented along region	
The red star signifies the location of the O'Neal No. 4. The Line of section is depicted i	
locator map	
Figure 20 – Extent of the Gulf Coast Aquifer. The red star represents the approximate lo	
the O'Neal No. 4 (modified from Bruun, B., et al., 2016)	
Figure 21 – Stratigraphic Column of the Gulf Coast Aquifer (Chowdhury, A.H. and Tu 2006)	
Figure 22 – Cross-Section S-S' across the Gulf Coast Aquifer. The red star repres	
approximate location of the O'Neal No. 4 (modified from Bruun, B., et al., 2016)	
Figure 23 – Total Dissolved Solids (TDS) in the Gulf Coast Aquifer. The red star repre	
approximate location of the O'Neal No. 4 (modified from Bruun, B., et al., 2016)	
Figure 24 – Two-Phase Relative Permeability Curves Used in the GEM Model	
Figure 25 – Areal View of Saturation Plume at Shut-in (End of Injection)	
Figure 26 – Areal View of Gas Saturation Plume 10 Years After Shut-in (End of Simulation	
Figure 27 – East-West Cross-Sectional View of Gas Saturation Plume at Shut-in (End of	
Figure 28 –East-West Cross-Sectional View of Gas Saturation Plume 10 Years After Shi	
of Simulation)	•
Figure 29 – Well Injection Rate and Bottomhole and Surface Pressures Over Time	
Figure 30 – Plume Boundary at End of Injection, Stabilized Plume Boundary, and N	
Monitoring Area	
Figure 31 – Active Monitoring Area	
Figure 32 – O'Neal No. 4 Wellbore Schematic	
Figure 33 – All Oil and Gas Wells Within the MMA	
Figure 34 – Oil and Gas Wells Penetrating the Gross Injection Interval Within the MMA	
Figure 35 – Groundwater Wells Within the MMA	
Figure 36 – 25 km Seismicity Review	
Figure 37 – Groundwater Wells Figure 38 – Seismic Events and Monitoring Station	
rigure 50 - Seismic events and ivionitoring Station	80

Tables

Table 1 – Expected TAG Composition	3
Table 2 – Analysis of Lower Cretaceous (Albian) age formation fluids from seven near	
oil-field brine samples	24
Table 3 – Analysis of Lower Cretaceous (Aptian) age formation fluid from the closest	offset Sligo
oil-field brine sample	24
Table 4 – Gas Composition	35
Table 5 – Modeled Injectate Composition	36
Table 6 – GEM Model Layer Package Properties	38
Table 7 – Bottomhole and Wellhead Pressures from the Start of Injection	47
Table 8 – Potential Leakage Pathway Risk Assessment	52
Table 9 – Summary of TAG Detectors and Equipment	53
Table 10 – Summary of Leakage Monitoring Methods	63

Appendices

Appendix A – TRRC O'Neal Gas Unit Well No. 4 Forms

Appendix A-1 – GAU Groundwater Protection Determination

Appendix A-2 – Drilling Permit

Appendix A-3 – Completion Report

Appendix A-4 – Plugging Records

Appendix B – Area of Review

Appendix B-1 – Oil and Gas Wells Within the MMA List

Appendix B-2 – Water Wells Within the MMA List

SECTION 1 – UIC INFORMATION

This section contains key information regarding the Underground Injection Control (UIC) Permit.

1.1 Underground Injection Control Permit Class: Class II

The TRRC regulates oil and gas activities in Texas and has primacy to implement the Underground Injection Control ("UIC") Class II program. TRRC classifies the O'Neal No. 4 as a UIC Class II well. Ozona has applied for a Class II permit for the O'Neal No. 4 under TRRC Rule 36 (entitled "Oil, Gas, or Geothermal Resource Operation in Hydrogen Sulfide Areas") and under TRRC Rule 46 (entitled "Fluid Injection into Productive Reservoirs").

1.2 **UIC Well Identification Number**

• O'Neal No. 4, API No. 42-025-32658, UIC # 56819

1.3 Facility Address

• Gas Plant Facility Name: StarTex Pawnee Gas Plant

• Operator: StarTex Field Services, LLC

• Coordinates in NAD83 for this facility:

Latitude: 28.622211Longitude: -97.992772

SECTION 2 – PROJECT DESCRIPTION

This section discusses the geologic setting, planned injection process and volumes, and the reservoir and plume modeling performed for the O'Neal No. 4.

The O'Neal No. 4 will inject the TAG stream into the Sligo formation at a depth of 15,874 feet to 16,056 feet, and approximately 14,924 feet below the base of the Underground Source of Drinking Water (USDW). Therefore, the well and the facility are designed to protect against the leakage out of the injection interval, to protect against contaminating other subsurface formations, and most critically to prevent surface releases.

2.1 Regional Geology

The O'Neal No. 4 (API No. 42-025-32658) is located in south Texas within the Gulf of Mexico Basin. The onshore portion of the Gulf of Mexico basin spans approximately 148,049,000 acres and encompasses portions of Texas, Louisiana, Mississippi, Alabama, Arkansas, Missouri, Kentucky, Tennessee, Florida, and Georgia to the state-waters boundary of the United States (Roberts-Ashby et al., 2012). The location of the O'Neal No. 4 is designated by the red star in Figure 2 relative to the present coastal extent and major structural features of the basin.

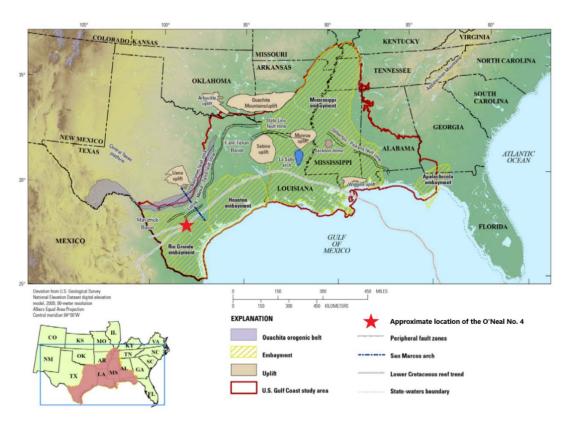


Figure 2 – Structural features of the Gulf of Mexico and locator map (modified from Roberts-Ashby et al., 2012)

Figure 3 depicts a generalized stratigraphic column of the U.S. Gulf Coast with light blue shading signifying the proposed injection interval and green stars indicating productive formations identified within five miles of the O'Neal No. 4. The injection interval is found within the Sligo formation with confinement provided by the overlying Pearsall formation and tight underlying facies of the Lower Sligo and Hosston formations.

Era	Units		North American Chronostratigraphic Units	Stratigraphic Unit			
	,400	laly	Holo.				
	Quaternary Plei. Holo.		Undifferentiated				
		Piacenzian Zanclean		Undifferentiated			
Cenozoic	Tertiary	Neogene	Miocene	Messinian Tortonian Serravallian Langhian Burdigalian Aquitanian		Upper Mioc. Middle Mioc. Fleming Fm Lower Mioc.	
	Ter		Oligocene	Chattian	Chickasawhayan	★Catahoula Anahuac Fm / Ss Anahuac Frio Formation	
		ne	6	Rupelian	Vicksburgian	Vicksburg Formation	
		Paleogene	ne	Priabonian	Jacksonian	Jackson Group	
		Pal	Eocene	Bartonian Lutetian	Claibornian	Claiborne Group Sparta Sand Cane River Fm Carrizo Sand	
				Ypresian	Sabinian	Wilcox Group	
			Pal.	Thanetian Selandian Danian	Midwayan	Midway Group	
				Maastrichtian	Navarroan	Navarro Group	
				Campanian	Tayloran	Taylor Group	
			Upper	Santonian Coniacian	Austinian	Austin Group / Tokio Formation / Eutaw Formation	
				Turonian	Eaglefordian	Eagle Ford Shale	
		,		Cenomanian	Woodbinian	Woodbine / Tuscaloosa Fms Washita Group	
	9	nos			Washitan-	(Buda Ls)	
	Crotocoolis	כופוס		Albian	Fredericksburgian	Fredericksburg Group (Edwards Ls / Paluxy Fm)	
						Glen Rose Ls (Rusk / Rodessa Fms)	
Mesozoic			er		Trinitian	Pearsall Formation	UPPER CONFINING INTERVAL
Mes			Lower	Aptian		Sligo	INJECTION INTERVAL
					Nuevoleonian	Hosston	LOWER CONFINING
			Barremian		Formation	INTERVAL	
				Hauterivian Valanginian	Durangoan	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
				Berriasian	Surangoun	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

Figure 3 – Stratigraphic column of the U.S. Gulf Coast signifying proposed injection and confining intervals. Offset productive intervals are noted with a green star (modified from Roberts-Ashby et al., 2012)

The targeted formations of this study are located entirely within the Trinity Group, as clarified by the detailed stratigraphic column provided in Figure 4. During this time the area of interest was located along a broad, shallow marine carbonate platform that extended along the northern rim of the ancestral Gulf of Mexico. The Lower Cretaceous platform spanned approximately 870 miles from western Florida to northeastern Mexico with a shoreline to basin margin that ranged between 45 to 125 miles wide (Yurewicz, D.A., et al, 1993).

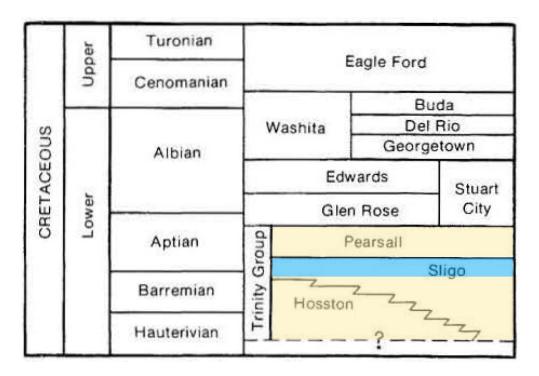


Figure 4 – Detailed stratigraphic column of Lower Cretaceous formations of south Texas. The proposed injection interval is shaded light blue and proposed confining intervals are shaded light yellow (modified from Bebout, D.G., et al., 1981)

2.1.1 Geologic Setting and Depositional Environment

The depositional environment during the Lower Cretaceous generally consisted of a well-defined platform margin with a shallow marine platform interior or lagoon to the north, a shallow marine outer platform to the south, and a foreslope that gradually dipped southward towards the basin center. The platform margin remained stable for tens of millions of years during the Cretaceous but experienced episodic changes in sea level that resulted in cyclic deposition of several key facies that vary both spatially and within the geologic section. Facies distributions were heavily impacted by positioning relative to the margin, the height of the water column at any given time, and the degree of energy or wave action within the system (Galloway, 2008; Yurewicz, D.A., et al, 1993).

In general, long stands of reef development and ooid shoaling developed primary porosity and permeability along the shallow, high-energy carbonate platform and represent reservoir quality rock found within Cretaceous reef deposits. Deeper, basinward deposits tend to result in tighter

petrophysical properties due to a relative increase in the amount of entrained clay associated with the heightening of the water column whilst moving down-slope. Backreef deposits have the potential for porosity development but tend to have low permeability due to a general lack of wave action caused by restricted access to open water by the platform margin. Facies and petrophysical properties of the Lower Cretaceous section are anticipated to be relatively homogenous moving southwest-northwest along reef trend with increased heterogeneity moving northwest-southeast due to the orientation of the carbonate rim and its effect on deposition and facies distributions (Yurewicz, D.A., et al, 1993).

Figure 5 displays the paleogeography during deposition of the Lower Cretaceous section to visually demonstrate the position of the O'Neal No. 4 relative to the Sligo shelf margin and updip extents of Sligo deposition. A generalized schematic cross-section of the Trinity Group is provided in Figure 6 which nearly intersects the project area from the northwest. The schematic illustrates the gross section thickening basinward with primary reservoir development improving with proximity to the reef margin. Figure 7 displays a depositional model of the Lower Cretaceous carbonate platform to visually conceptualize depositional environments and anticipated petrophysical properties of facies introduced above.

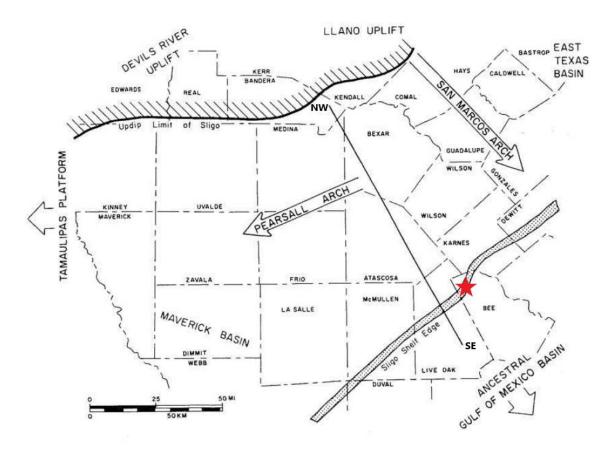


Figure 5 – Paleogeography of the Lower Cretaceous of south Texas. The red star represents the approximate location of the O'Neal No. 4 (modified from Bebout, D.G., et al., 1981)

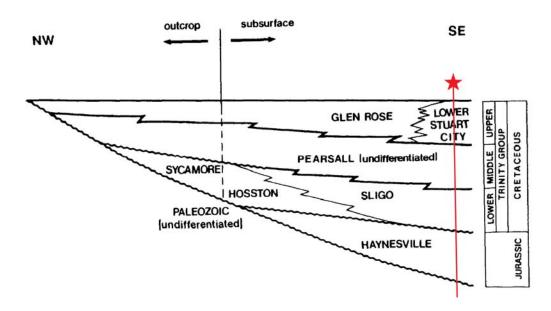


Figure 6 – Generalized northwest to southeast schematic cross-section of the Trinity Group, south Texas. The line of section depicted in Figure 5. The red star and line represent the approximate location of the O'Neal No. 4 (modified from Kirkland, B.L., et al., 1987)

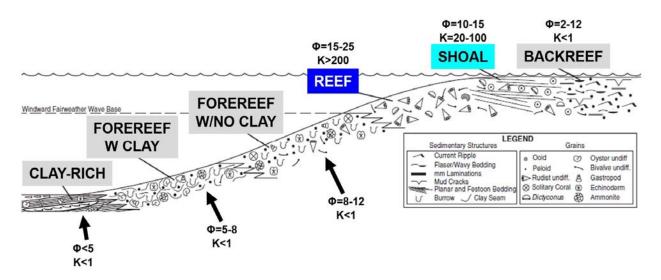


Figure 7 – Depositional model for the Lower Cretaceous carbonate platform w/ estimated porosity and permeability values of typical facies (modified from Talbert and Atchley, 2000)

2.1.2 Regional Structure and Faulting

The Gulf of Mexico basin was formed by crustal extension and sea-floor spreading associated with the Mesozoic breakup of Pangea. Rifting of northwest to southeast trending transfer faults during the Middle Jurassic lasted approximately 25 million years and resulted in variable thickness of the transcontinental crust underlying the region. By the Lower Cretaceous time, the general outline and morphology of the Gulf were similar to that of present-day (Galloway, 2008; Yurewicz, D.A., et al, 1993). Lower Cretaceous tectonic activity was limited to regional subsidence

associated with areas of variable crustal thickness and local structuring caused by movement of Louann salt (Yurewicz, D.A., et al, 1993). The combination of these processes resulted in the structural development of regional arches, grabens, uplifts, embayments, salt domes, and salt basins around the northern edge of the basin (Dennen and Hackley, 2012; Galloway, 2008). The location of these structural features can be referenced in Figures 2 and 8 relative to the location of the O'Neal No. 4.

The schematic dip-oriented cross-section displayed in Figure 9 presents a common interpretation of the current structural setting. Most of the published literature suggests faulting near the project area is restricted to the shallower, overlying Cenozoic section, as seen in Figure 9, with shallow faulting dying out before reaching the Pearsall formation. However, one source did interpret the potential for faulting to the south (Swanson S.M., et al., 2016). The closest potential fault is depicted in Figure 8 relative to the location of the O'Neal No. 4. According to the map, the interpreted fault lies approximately 4.25 miles south-southeast of the well and approximately 3.9 miles south-southeast of the stabilized plume extent in the year 2047.

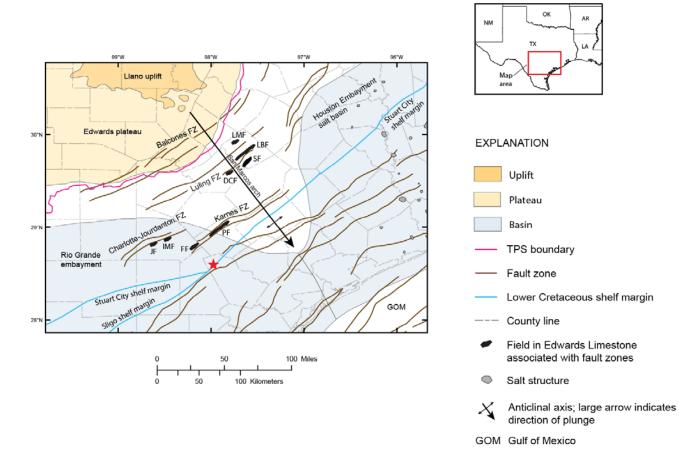


Figure 8 – Structural features and fault zones near the proposed injection site. The red star represents the approximate location of the O'Neal No. 4 (modified from Swanson S.M., et al., 2016)

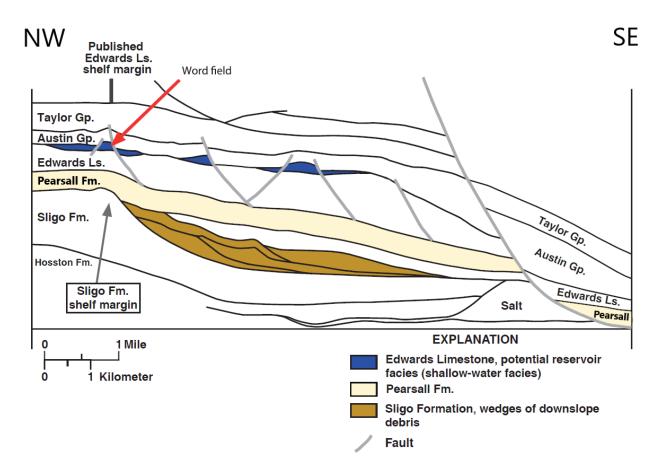


Figure 9 – Northwest to southeast schematic interpretation of the Edwards shelf margin through Word field, northeast of the O'Neal No. 4 project area (modified from Swanson S.M., et al., 2016)

2.2 Site Characterization

The following section discusses site-specific geological characteristics of the O'Neal No. 4.

2.2.1 Stratigraphy and Lithologic Characteristics

Figure 10 depicts openhole logs from two offset wells (API No. 42-025-00473 and API No. 42-025-31892) to the O'Neal No. 4 indicating the injection and primary upper confining zone. The Tomasek No. 1 (API: No. 42-025-00473) is located approximately 1 mile northeast of the O'Neal No. 4 and displays the shallow section from 0-8,200 ft. The Gordon No. 3 (API: No. 42-025-31892) is located approximately 1.6 miles northeast of the O'Neal No. 4 and displays a shallow section from 8,200-16,400 ft.

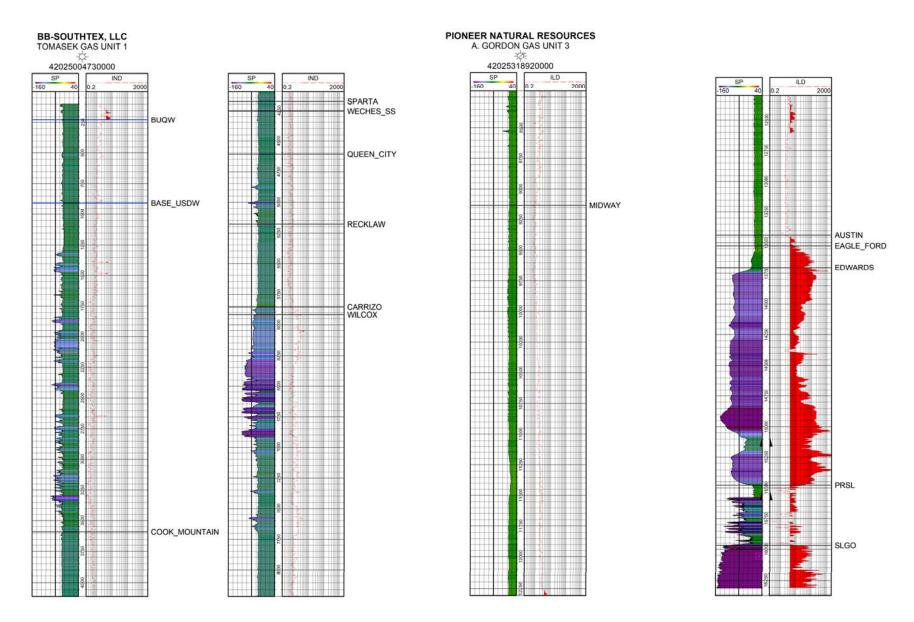


Figure 10 – Type Log with tops, confining, and injection intervals depicted

2.2.2 Upper Confining Interval – Pearsall Formation

Following the deposition of the Sligo formation, the Lower Cretaceous shelf was drowned by eustatic sea-level rise and deposition of the deep-water Pine Island Shale Member of the Pearsall formation throughout the region (Roberts-Ashby et al., 2012). The Pine Island shale consists of alternating beds of pelagic mudstone, hemipelagic mudstone, and Fe-rich dolomitic mudstone interpreted to have been deposited along the outer ramp. This is in agreement with core data published by Bebout and others (1981) and later by Swanson and others (2016) who identified the presence of C. Margerelli, a nannofossil indicative of anoxic conditions. The core-derived porosity-permeability relationship displayed in Figure 11 suggests permeability of the Pine Island Shale is incredibly low and stays below 0.0001 mD, regardless of porosity (Figure 11; Hull, D.C., 2011). This is further supported by the 2012 USGS CO2 Storage Resource Assessment, which suggests the Pine Island shale contains the physical properties required to act as a regional seal and was chosen as the upward confining interval for their C50490108 SAU assessment of the Gulf Coast. The 2012 USGS report also noted that the Pine Island shale is a sufficient regional seal with as little as 50 feet of contiguous shale development. The top of the Pearsall is encountered at a depth of 15,339 feet in the O'Neal No. 4 with a gross thickness of 535 feet (Figure 14). The Pine Island Shale member is approximately 130 feet thick at the O'Neal No. 4 location with deposition of additional members of the overlying Pearsall formation, which include the Cow Creek limestone, Cow Creek Shale, and Bexar Shale Members (Roberts-Ashby et al., 2012; Swanson S.M., et al., 2016).

The seismic line displayed in Figure 12 runs northwest to southeast across the Stuart City reef trend southwest of the project area. The top of Buda, Pearsall, and Sligo formation markers are depicted in color to demonstrate the lateral continuity of the section near the O'Neal No. 4. Seismic reflectors within the Pearsall formation appear to lack deformation suggesting consistent deposition over the reef margin. This is in agreement with reviewed published literature which suggests deposition of the Pine Island shale occurred during widespread marine transgression (Bebout, D.G., et al., 1981; Hull, D.C., 2011.; Roberts-Ashby et al., 2012, Swanson S.M., et al., 2016).

Permeability and Porosity-Crushed Rock Data

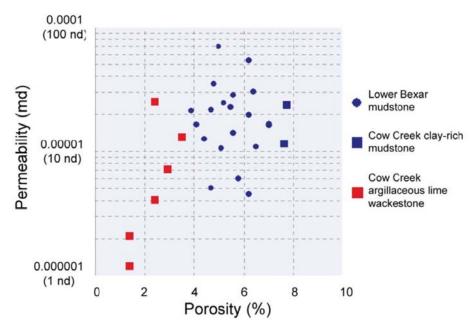


Figure 11 – Porosity-permeability cross-plot of Pearsall Formation crushed rock core data (Swanson S.M., et al., 2016)

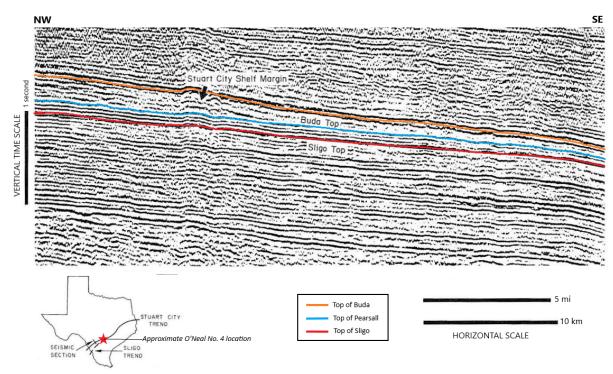


Figure 12 – Seismic line across the Stuart City (Edwards/Buda) shelf margin and locator map. The red star represents the approximate location of the O'Neal No. 4 (modified from Bebout, D.G., et al., 1981)

2.2.3 Injection Interval – Upper Sligo Formation

The Sligo Formation underlies the Pearsall Formation and is predominately composed of shelf-edge limestones that were deposited along the Lower Cretaceous platform (Roberts-Ashby et al., 2012). However, the Cretaceous also experienced episodic changes in sea level that resulted in the deposition of cyclic Sligo facies that vary both spatially and within the geologic section. The overall Sligo interval is interpreted to be a transgressive sequence occasionally interrupted by progradational cycles that consists of porous shoaling-upward sequences that represent primary reservoir potential within the system (Bebout, D.G., et al., 1981). Facies distributions of these reef complexes are heavily impacted by positioning relative to the margin, the height of the water column at any given time, and the degree of energy or wave action within the system (Galloway, 2008). Figure 13 depicts an idealized environmental setting of the Lower Cretaceous Platform during deposition. Primary porosity and permeability of the Upper Sligo formation tends to develop in high-energy sequences with normal marine conditions that are dominated by the deposition of oolitic and skeletal grainstones.

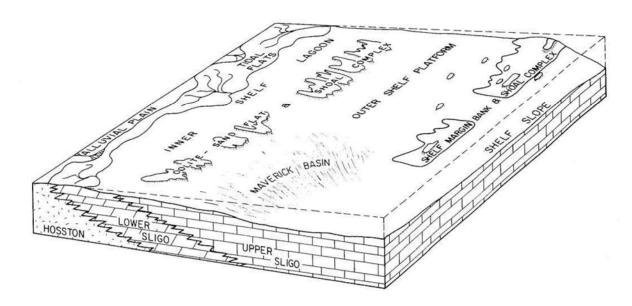


Figure 13 – Environmental setting of Lower Cretaceous Platform (Bebout, D.G., et al., 1981)

According to the 2012 USGS CO2 Storage Resource Assessment, "the average porosity in the porous intervals of the storage reservoir decreases with depth from 9 to 16 percent" for their C50490108 DEEP SAU assessment of the Gulf Coast (>13,000 feet). The study also reported that "the average permeability in the storage reservoirs decreases with depth from 0.05 to 200 mD, with a most-likely value of 8 mD" for their C50490108 DEEP SAU assessment of the Gulf Coast (Roberts-Ashby et al., 2012).

The top of the Upper Sligo is encountered at a depth of 15,874 feet in the O'Neal No. 4 with a gross thickness of 183 feet (Figure 14). The type log displayed in Figure 14 plots the Effective Porosity for the confining interval and the Total Porosity of the injection interval to account for

the increased volume of shale ("Vshale") seen in the Pearsall formation. The porosity data was compared to the analysis performed by Nutech to generate a permeability curve with a reasonable porosity-permeability relationship. The permeability curve was generated utilizing the Coates permeability equation incorporated with a 20% irreducible to match analysis provided by Nutech. Petrophysical analysis of the O'Neal No. 4 indicates an average porosity of 4.6%, a max porosity of 15%, an average permeability of 0.16 mD, and a max permeability of 3.3 mD. These curves have been extrapolated to the injection site and used to establish reservoir characteristics in the plume model.

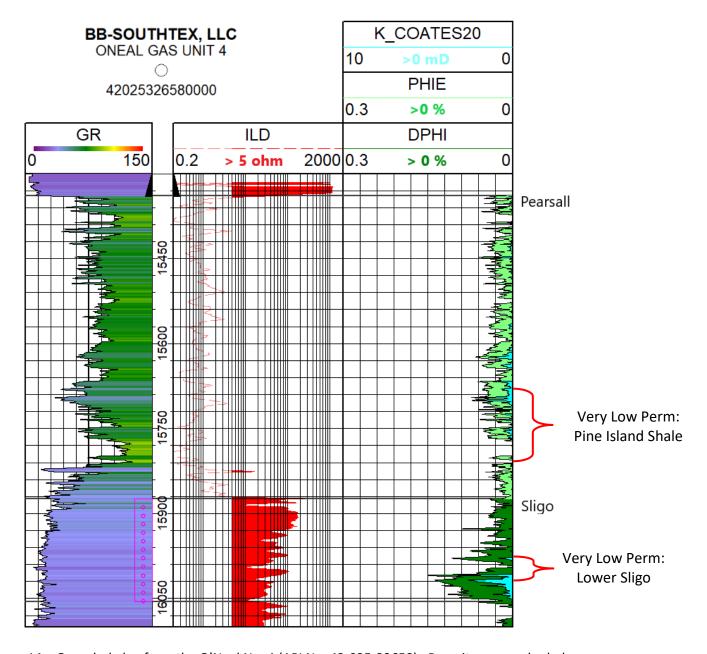


Figure 14 – Open-hole log from the O'Neal No. 4 (API No. 42-025-32658). Porosity curves shaded green >0%, permeability curve shaded blue >0 mD, and resistivity shaded red > 5 ohms.

2.2.4 Formation Fluid

Eight wells were identified through a review of chemical analyses of oil-field brines from the U.S. Geological Survey (USGS) National Produced Waters Geochemical Database v2.3 (Blondes, M.S., et al, 2018). Only one sample was taken from the Sligo formation in the region, located approximately 30 miles north of the O'Neal No. 4. Therefore, the investigation was expanded to compare Total Dissolved Solids (TDS) concentrations from other formations to improve understanding of water chemistry variation in the area. The USGS database contained chemical analysis for seven wells within three miles of the O'Neal. However, the samples were taken from the Edwards reef section that lies approximately 2,000-2,500 feet above the top of Sligo. The location of these wells is shown in Figure 15 relative to the O'Neal No. 4 and the Sligo water sample identified to the north. A summary of water chemistry analyses conducted on Edwards oil-field brines near the injection site is provided in Table 2. Chemical analysis of the identified Sligo water sample is provided in Table 3. Based on the results of the investigation, in-situ Sligo reservoir fluid is anticipated to contain approximately 150,000 parts per million ("ppm") TDS near the O'Neal No. 4 and is compatible with the proposed injection stream.

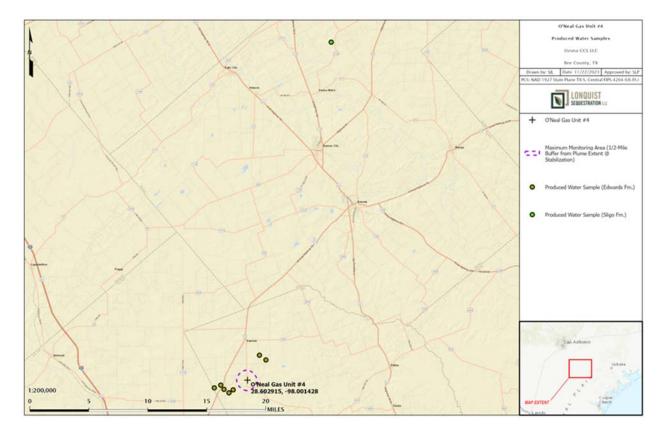


Figure 15 – Offset wells used for formation fluid characterization

Table 2 – Analysis of Lower Cretaceous (Albian) age formation fluids from seven nearby Edwards oil-field brine samples

Measurement	Average	Low	High
Total Dissolved Solids (mg/L)	79,573	60,794	110,300
Sodium (mg/L)	24,280	17,600	34,000
Calcium (mg/L)	5,137	3,320	8,320
Chloride (mg/L)	47,871	37,200	64,700
Sample Depth (ft)	13,940	13,778	14,043

Note: Edwards analysis does not contain pH values

Table 3 – Analysis of Lower Cretaceous (Aptian) age formation fluid from the closest offset Sligo oil-field brine sample

Measurement	Value
Total Dissolved Solids (mg/L)	234,646
Sodium (mg/L)	51,168
Calcium (mg/L)	34,335
Chloride (mg/L)	146,500
Sample Depth (ft)	13,580 to 13,660
рН	5.85

Note: Sligo sample located approximately 30 miles north of the O'Neal No. 4

2.2.5 Fracture Pressure Gradient

The fracture pressure gradient was obtained from an acid fracture report taken during the April 1993 completion of the Sligo interval in the O'Neal No. 4. The Sligo was perforated between the depths of 15,874 and 16,056 feet with continuous monitoring during pumping of the acid job. The report noted a pressure break experienced at approximately 9,000 psi and calculated a fracture gradient of 0.889 psi/ft based on an initial shut-in pressure ("ISIP") of 7,275 psi. A 10 percent safety factor was then applied to the calculated gradient resulting in a maximum allowed bottom hole pressure of 0.8 psi/ft. This was done to ensure that the injection pressure would never exceed the fracture pressure of the injection zone.

2.2.6 Lower Confining Interval – Lower Sligo and Hosston Formations

The O'Neal No. 4 reaches its total depth in the Lower Sligo formation, directly below the Upper Sligo proposed injection interval. The Lower Sligo is interpreted by Bebout and others (1981) to represent the seaward extension of the low-energy lagoon and tidal-flat system of the underlying Hosston formation, a sequence of siliciclastics, evaporites, and dolomitic mudstone (Figure 16). The Hosston to Lower Sligo 'contact' represents a gradational package with a decrease in

terrigenous sediments, an increase in carbonate sediments, and an increase in burrows of marine organisms working up-section into the Lower Sligo. The Lower Sligo consists of numerous cycles of subtidal to supratidal carbonates deposited in a low-energy lagoon and tidal-flat system (Bebout, D.G., et al., 1981). These low-permeability facies of the Lower Sligo and underlying Hosston formation will provide lower confinement to the Upper Sligo injection interval. Figure 16 illustrates the typical environmental setting for the deposition of tidal flat facies along the Lower Cretaceous margin. The type log displayed in Figure 14 illustrates the porosity of the Lower Sligo ranges between 0-2% with permeability staying close to 0 mD. Thus, the petrophysical characteristics of the Lower Sligo and Hosston are ideal for prohibiting the migration of the injection stream outside of the injection interval.

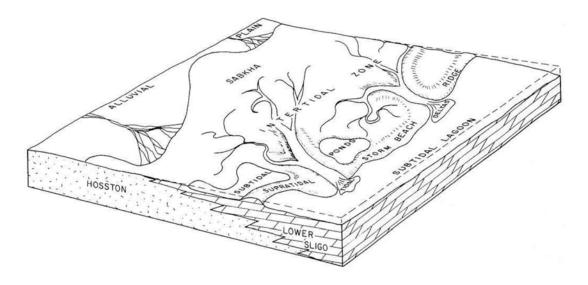


Figure 16 – Environmental setting of Lower Cretaceous tidal flat deposits (Bebout, D.G., et al., 1981)

2.3 Local Structure

Structures surrounding the proposed sequestration site were influenced by regional arches, grabens, uplifts, embayments, movement of Loann salt, and the development of carbonate reef complexes around the northern edge of the basin. However, one potential fault was identified in the literature within proximity and lies approximately 4.25 miles south-southeast of the well and approximately 3.9 miles south-southeast of the stabilized plume extent in the year 2062 (Swanson S.M., et al., 2016). The location of these structural features can be referenced in Figures 2 and 8 relative to the location of the O'Neal No. 4.

A subsea true vertical depth ("SSTVD") structure map on the top of the Sligo formation is provided in Figure 17. The map illustrates the gentle basinward dip of the Sligo formation from the northwest to the southeast. The structural cross-sections provided in Figures 18 and 19 illustrate the structural changes encountered moving away from the O'Neal No. 4 site. The figures also demonstrate the laterally continuous nature of the Pearsall formation that overlies the injection interval with sufficient thickness and modeled petrophysical properties to alleviate

the risk of upward migration of injected fluids. Please see section 2.1.2 discussing Regional	
Structure and Faulting for a regional discussion pertinent to this topic.	

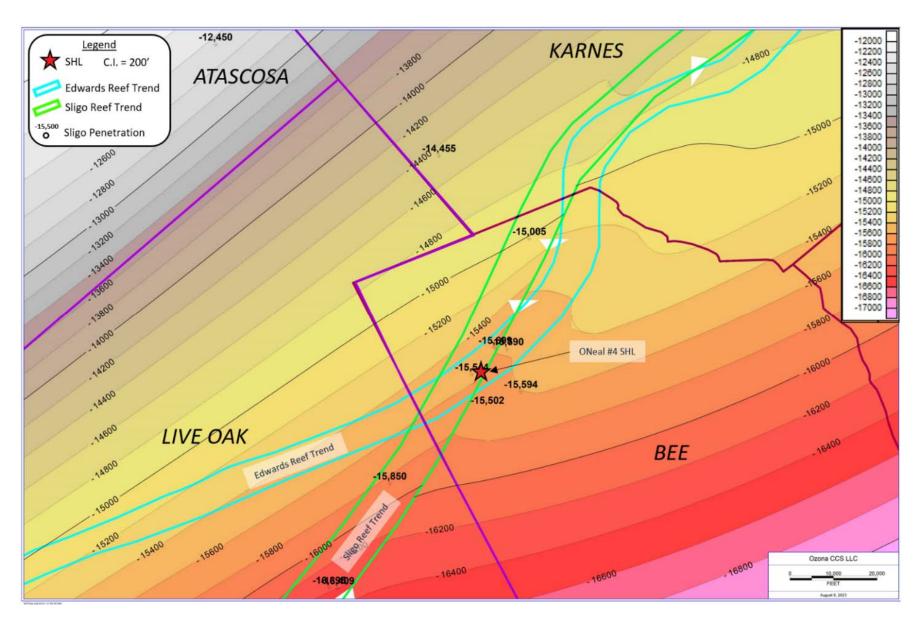


Figure 17 – Subsea Structure Map: top of Sligo (injection interval). The red star signifies the location of the O'Neal No. 4

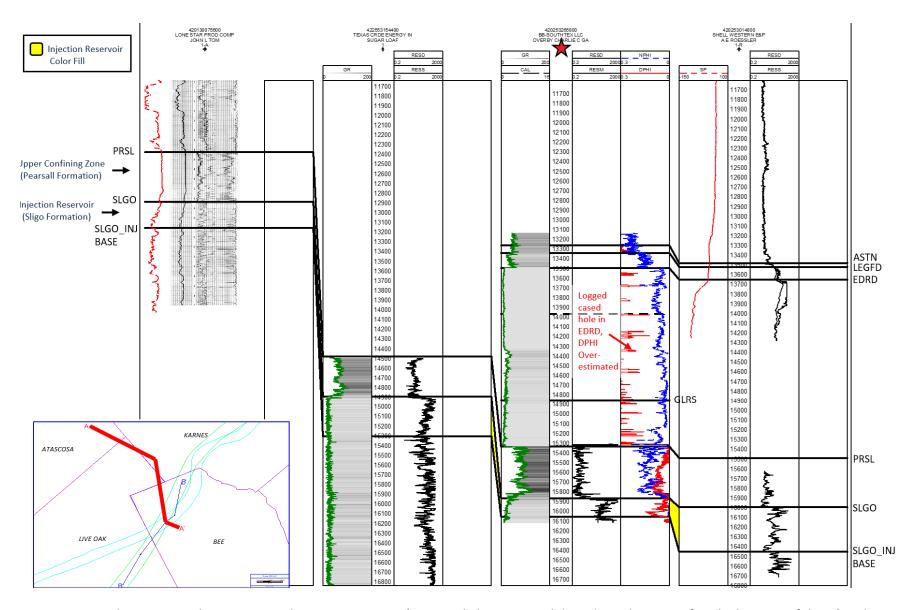


Figure 18 – Northwest to Southeast Structural Cross-Section: A-A' Oriented along regional dip. The red star signifies the location of the O'Neal No. 4. Line of section is depicted in red on locator map.

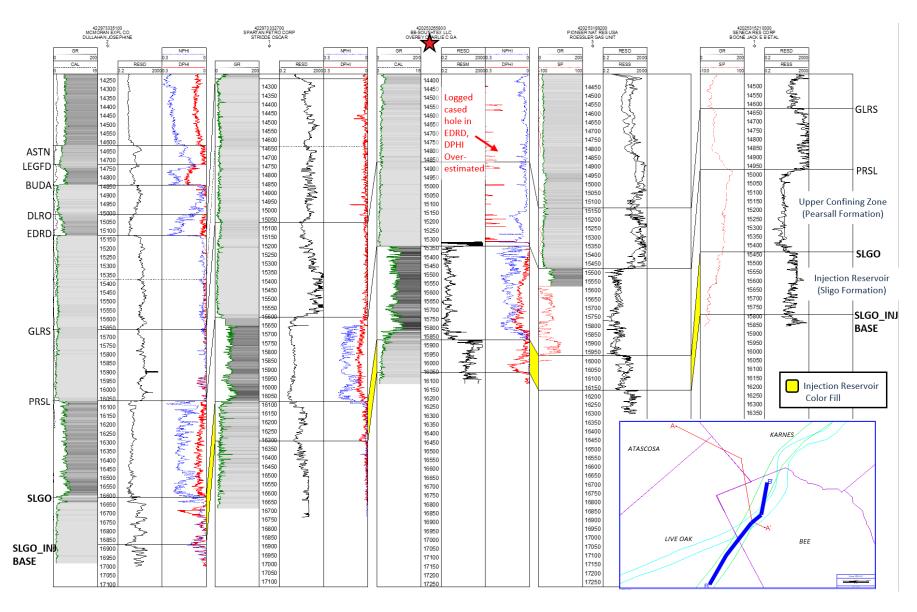


Figure 19 – Southwest to Northeast Structural Cross-Section: B-B' Oriented along regional strike. The red star signifies the location of the O'Neal No. 4. The Line of section is depicted in blue on locator map.

2.4 Injection and Confinement Summary

The lithologic and petrophysical characteristics of the Sligo formation at the O'Neal No. 4 location indicate the reservoir contains the necessary thickness, porosity, and permeability to receive the proposed injection stream. The overlying Pearsall formation is regionally extensive at the O'Neal No. 4 location with low permeability and sufficient thickness to serve as the upper confining interval. Beneath the injection interval, the low permeability, low porosity facies tidal flat and lagoonal facies of the Lower Sligo and underlying Hosston formation are unsuitable for fluid migration and serve as the lower confining interval.

2.5 **Groundwater Hydrology**

Bee County falls within the boundary of the Bee Groundwater Conservation District. Only one aquifer is identified by the Texas Water Development Board's Texas Aquifers Study near the O'Neal No. 4 location, the unconfined to semi-confined Gulf Coast Aquifer. The Gulf Coast Aquifer parallels the Gulf of Mexico and extends across the state of Texas from the Mexican border to the border of Louisiana (Bruun, B., et al., 2016). The extents of the Gulf Coast Aquifer are provided in Figure 20 below for reference.

The Gulf Coast Aquifer is a major aquifer system comprised of several individual aquifers: the Jasper, Evangeline, and Chicot. These aquifers are composed of discontinuous clay, silt, sand, and gravel beds that range from Miocene to Holocene in age (Figure 21). Numerous interbedded lenses and layers of silt and clay are present within the aquifers which can confine individual aquifers locally. The underlying Oligocene Catahoula tuff represents the lower confining interval but it should be noted the formation is prone to leaking along the base of the aquifer. However, the Burkeville confining interval provides isolation between Jasper and Evangeline aquifers which helps protect the shallower Evangeline and Chicot Aquifers (Bruun, B., et al., 2016).

The schematic cross-section provided in Figure 22 runs south of the O'Neal No. 4, illustrating the structure and stratigraphy of the aquifer system. The thickness of individual sedimentary units within the Cenozoic section tends to thicken towards the Gulf of Mexico due to the presence of growth faults that allow additional loading of unconsolidated sediment. The total net sand thickness of the aquifer system ranges between 700 feet of sand in the south, to over 1,300 in the north, with the saturated freshwater thickness averaging 1,000 feet.

Water quality of the Aquifer System varies with depth and locality but water quality generally improves towards the central to northeastern portions of the aquifer where TDS values are less than 500 milligrams per liter ("mg/L"). The salinity of the Gulf Coast Aquifer increases to the south where TDS ranges between 1,000 to over 10,000 mg/L. The Texas Water Development Board's Texas Aquifers Study (2016) suggests that areas associated with higher salinities are possibly associated with saltwater intrusion likely "resulting from groundwater pumping or to brine migration in response to oil field operations and natural flows from salt domes intruding into the aquifer" (Bruun, B., et al., 2016).

According to the Total Dissolved Solids (TDS) map of the Gulf Coast Aquifer (Figure 23), the total dissolved solids in northern Bee County range between 500-3,000 mg/L near the O'Neal No. 4, categorizing the aquifer as fresh to slightly saline.

The TRRC's Groundwater Advisory Unit ("GAU") identified the Base of Useable Quality water ("BUQW") at a depth of 250' and the Base of Underground Sources of Drinking Water ("USDW") at a depth of 950 feet at the location of the O'Neal No. 4 location. Approximately 14,924 feet is separating the base of the USDW and the injection interval. A copy of the GAU's Groundwater Protection Determination letter issued by the TRRC as part of the Class II permitting process for the O'Neal No. 4 is provided in Exhibit A-1. The base of the deepest aquifer is separated from the injection interval by more than 14,924 feet of rock, including 4,200 feet of Midway Shale. Though unlikely for reasons outlined in the confinement and potential leaks sections, if migration of injected fluid did occur above the Pearsall formation, thousands of feet of tight sandstone, limestone, shale, and anhydrite beds occur between the injection interval and the lowest water-bearing aquifer.

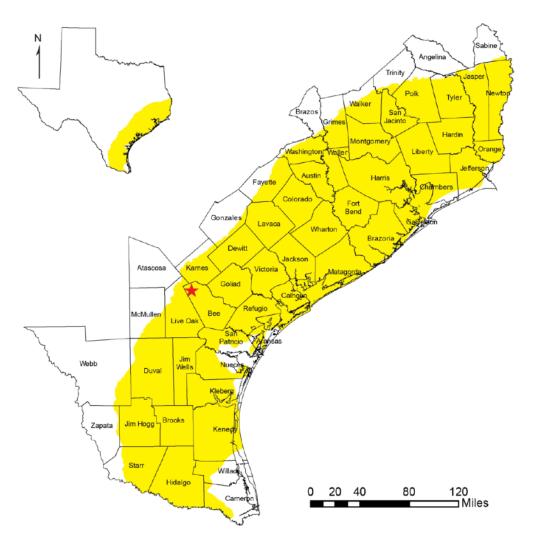


Figure 20 – Extent of the Gulf Coast Aquifer. The red star represents the approximate location of the O'Neal No. 4 (modified from Bruun, B., et al., 2016)

			Hydrostratigraphy		
System	Series	Stratigraphic Units		Baker (1979)	
	Holocene	Alluvium		Chicot aquifer	
ary		Beaumont Clay			
Quaternary	Pleistocene	Lissie	Montgomery Formation		
ð		Formation	Bentley Formation		
		Willis 9	Sand		
	Pliocene	Goliad Sand		Evangeline aquifer	
	Miocene	Fleming Formation/ Lagarto Clay		Burkeville Confining System	
Tertiary	· · · · · · · · · · · · · · · · · · ·	Oakville Sandstone		Jasper aquifer	
	Oligocene	Upper part of Catahoula tuff or sandstone 2 Anahuac Formation 2 Frio Formation 1 Clay Vicksburg Group		Catahoula Confining System	

Figure 21 – Stratigraphic Column of the Gulf Coast Aquifer (Chowdhury, A.H. and Turco, M.J., 2006)

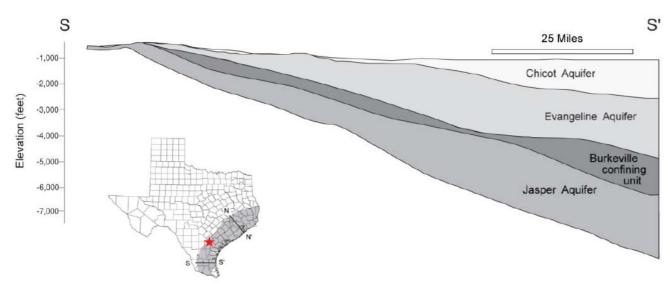


Figure 22 – Cross-Section S-S' across the Gulf Coast Aquifer. The red star represents the approximate location of the O'Neal No. 4 (modified from Bruun, B., et al., 2016)

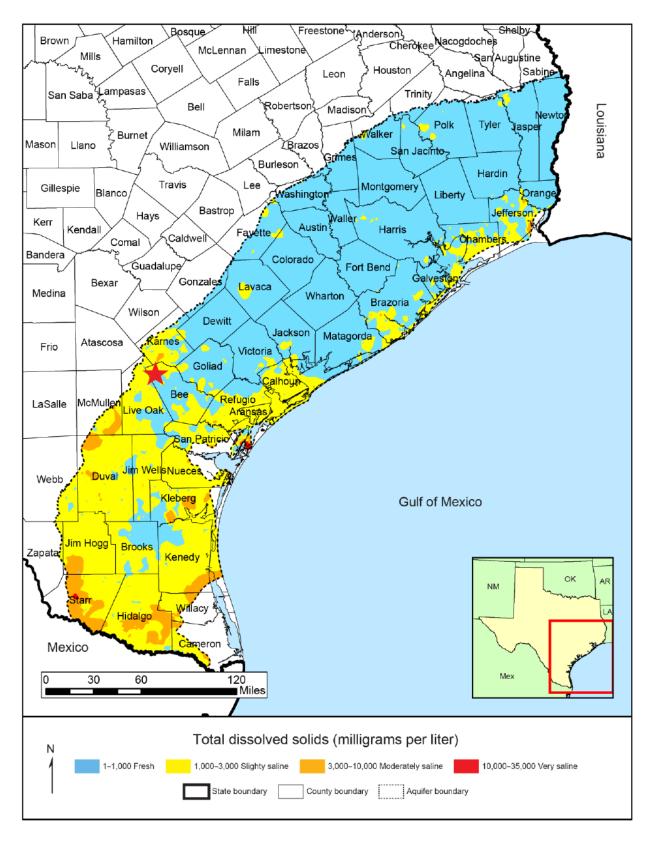


Figure 23 – Total Dissolved Solids (TDS) in the Gulf Coast Aquifer. The red star represents the approximate location of the O'Neal No. 4 (modified from Bruun, B., et al., 2016)

2.6 References

- Roberts-Ashby, T. L., Brennan, S. T., Buursink, M. L., Covault, J. A., Craddock, W. H., II, Drake R. M., Merrill, M.D., Slucher, E.R, Warwick, P.D., Blondes, M.S., Gosai, M.A., Freeman, P.A., Cahan, S.M., DeVera, C.A., and Lohr, C.D, 2012. Geologic framework for the national assessment of carbon dioxide storage resources: U.S. Gulf Coast. *USGS*.
- Bebout, D. G., Budd, D. A., and Schatzinger, R. A., 1981. Depositional and Diagenetic History of the Sligo and Hosston Formations (Lower Cretaceous) in South Texas: The University of Texas at Austin, Bureau of Economic Geology, Report of Investigations No. 109.
- Bruun, B., Anaya, R., Boghici, R., French, L.N, Jones, I., Petrossian, R., Ridgeway, C., Shi, J., Wade, S., Weinberg, A., Ballew, N., Goswami, R., Olden, M., 2016. Texas Aquifers Study: Chapter 6, Gulf Coast Aquifers.
- Blondes, M.S., Gans, K.D., Engle, M.A., Kharaka, Y.K., Reidy, M.E., Saraswathula, V., Thordsen, J.J., Rowan, E.L., and Morrissey, E.A., 2018. U.S. Geological Survey National Produced Waters Geochemical Database (ver. 2.3, January 2018): U.S. Geological Survey data release, https://doi.org/10.5066/F7J964W8.
- Chowdhury, A.H. and Turco, M.J., 2006. Geology of the Gulf Coast Aquifer, Texas. In: Mace, R.E., et al., Eds., Aquifers of the Gulf Coast of Texas: Texas Water Development Board Report.
- Dennen, K.O. and Hackley, P.C., 2012. Definition of Greater Gulf Basin Lower Cretaceous and Upper Cretaceous lower Cenomanian Shale Gas Assessment Unit, United States Gulf of Mexico basin onshore and state waters: https://pubs.usgs.gov/publication/70176229
- Galloway, W. E., 2008. Sedimentary Basins of the World, Chapter 15: Depositional Evolution of the Gulf of Mexico Sedimentary Basin. 505-549.
- Hull, D.C., 2011. Stratigraphic Architecture, Depositional Systems, and Reservoir Characteristics of the Pearsall Shale-Gas System, Lower Cretaceous, South Texas: Thesis for M.S. of Science in Geology, University of Texas, Austin.
- Kirkland, B L, Lighty, R G, Rezak, R, and Tieh, T T, 1987. Lower Cretaceous barrier reef and outer shelf facies, Sligo Formation, south Texas, United States.
- Swanson, S.M., Enomoto, C.B., Dennen, K.O., Valentine, B.J., and Cahan, S.M., 2017. Geologic assessment of undiscovered oil and gas resources—Lower Cretaceous Albian to Upper Cretaceous Cenomanian carbonate rocks of the Fredericksburg and Washita Groups, United States Gulf of Mexico Coastal Plain and State Waters: U.S. Geological Survey Open-File Report 2016–1199, 69 p., https://doi.org/10.3133/ofr20161199.
- Talbert, S.J. and Atchley, S.J., 2000. Sequence Stratigraphy of the Lower Cretaceous (Albian) Fredericksburg Group, Central and North Texas: Department of Geology, Baylor University, Waco, Texas 76798.

Yurewicz, D.A., et al, 1993, D.A., Marler, T.B., Meyerholtz, K.A., Siroky, F.X., 1993. Early Cretaceous Carbonate Platform, North Rim of the Gulf of Mexico, Mississippi, and Louisiana.

2.7 <u>Description of the Injection Process</u>

2.7.1 Current Operations

The Plant and the O'Neal No. 4 are existing operating assets. The O'Neal No. 4 will be recompleted for acid gas injection service under the Class II permit process. Under the Class II application, the maximum injection rate is 28 MT/yr (1.5 MMscf/d). The TAG is 98.2% CO₂, which equates to 27.5 MT/yr of CO₂ each year. The current composition of the TAG stream is:

Table 4 – Gas Composition

Component	Mol Percent
Carbon Dioxide	98.2%
Hydrocarbons	1.03%
Hydrogen Sulfide	0.4%
Nitrogen	0.37%

The Plant is designed to treat, dehydrate, and compress the natural gas produced from the surrounding acreage in Bee County. The Plant uses an amine unit to remove the CO₂ and other constituents from the gas stream. The TAG stream is then dehydrated, compressed, and routed directly to the O'Neal No. 4 for injection. The remaining gas stream is processed to separate the natural gas liquids, which are then sold along with the natural gas. The Plant is monitored 24 hours per day, 7 days per week.

2.8 Reservoir Characterization Modeling

The modeling software used to evaluate this project was Computer Modelling Group's GEM 2023.2 (GEM) simulator. Computer Modelling Group (CMG) has created one of the most comprehensive reservoir simulation software packages for conventional, unconventional, and secondary recovery.

advanced

computational methods to evaluate compositional, chemical, and geochemical processes and characteristics. This results in the creation of exceedingly precise and dependable simulation models for carbon injection and storage. The GEM model holds recognition from the EPA for its application in the delineation modeling aspect of the area of review, as outlined in the Class VI Well Area of Review Evaluation and Corrective Action Guidance document.

The Sligo formation serves as the target formation for the O'Neal No. 4 (API No. 42-025-32658). The Petra software package was utilized to construct the geological model for this target formation. Within Petra, formation top contours were generated and subsequently brought into GEM to outline the geological structure.

Porosity and permeability estimates were determined using the porosity log from the O'Neal No. 4. A petrophysical analysis was then conducted to establish a correlation between porosity values and permeability, employing the Coates equation. Both the porosity and permeability estimates from the O'Neal No. 4 were incorporated into the model, with the assumption that they exhibit lateral homogeneity throughout the reservoir.

The reservoir is assumed to be at hydrostatic equilibrium. Given the geological formation in which this well is located and its previous history as a gas producer, the model is assumed to be primarily saturated with gas. More precisely, the reservoir is assumed to be 80% gas saturated and 20% brine saturated, as deduced from the well log data. The modeled injection interval exhibits an average permeability of 0.23 mD and an average porosity of 5%. All layers within the model have been perforated. An infinite-acting reservoir has been created to simulate the boundary conditions.

The gas injectate is composed predominantly of CO_2 as shown in Table 5. The modeled composition takes into consideration the carbon dioxide and other constituents of the total stream. As the Plant has been in operation for many years, the gas composition for the proposed injection period is expected to remain constant.

Table 5 – Modeled Injectate Composition

Component	Expected Composition (mol %)	Modeled Composition (mol %)
Carbon Dioxide (CO ₂)	98.2	98.2
Hydrocarbons	1.03%	Hydrocarbons
Hydrogen Sulfide	0.4%	Hydrogen Sulfide
Nitrogen	0.37%	Nitrogen

Core data from the literature review was used to determine residual gas saturation (Keelan and Pugh, 1975) and relative permeability curves between carbon dioxide and the connate brine within the Sligo carbonates (Bennion and Bachu, 2010). The Corey-Brooks method was used to create relative permeability curves. The key inputs used in the model include a Corey exponent for brine of 1.8, a Corey exponent for gas of 2.5, gas permeability at irreducible brine saturation of 50%, irreducible water saturation of 20%, and a maximum residual gas saturation of 35%. The relative permeability curves used for the GEM model are shown in Figure 24.

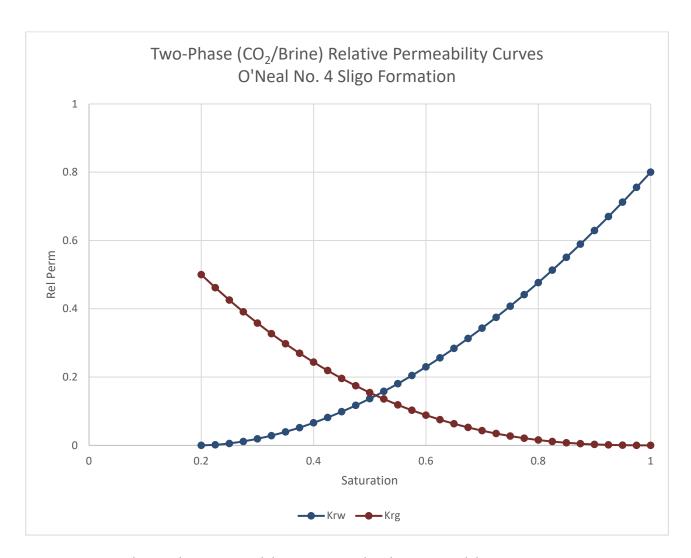


Figure 24 – Two-Phase Relative Permeability Curves Used in the GEM Model

The grid contains 81 blocks in the x-direction (east-west) and 81 blocks in the y-direction (north-south), resulting in a total of 6,561 grid blocks per layer. Each grid block spans dimensions of 250 ft x 250 ft. This configuration yields a grid size measuring 20,250 ft x 20,250 ft, equating to just under 15 square miles in area. The grid cells in the vicinity of the O'Neal No. 4, within a radius of 0.5 miles, have been refined to dimensions of 83.333 ft x 83.333 ft in all layers. This refinement is employed to ensure a more accurate representation of the plume and pressure effects near the wellbore.

In the model, each layer is characterized by homogeneous permeability and porosity values. These values are derived from the porosity log of the O'Neal No. 4. The model encompasses a total of 61 layers, each featuring a thickness of approximately 3 ft per layer. As previously mentioned, the model is perforated in each layer, with the top layer being the top of the injection interval and the bottom layer being the lowest portion of the injection interval. The summarized property values for each of these packages are displayed in Table 6.

Table 6 – GEM Model Layer Package Properties

Layer #	Тор	Thickness	Perm.	Porosity
Layer #	(TVD ft)	THICKIESS	(mD)	(%)
1	15,874	3	0.004	3.75%
2	15,877	3	0.002	2.98%
3	15,880	3	0.001	1.62%
4	15,883	3	0.001	1.78%
5	15,886	3	0.002	2.32%
6	15,889	3	0.001	1.96%
7	15,892	3	0.002	3.10%
8	15,895	3	0.002	2.99%
9	15,898	3	0.003	3.52%
10	15,901	3	0.006	4.00%
11	15,904	3	0.005	3.93%
12	15,907	3	0.001	2.15%
13	15,910	3	0.001	1.99%
14	15,913	3	0.002	2.97%
15	15,916	3	0.001	2.22%
16	15,919	3	0.002	2.88%
17	15,922	3	0.001	2.38%
18	15,925	3	0.093	6.68%
19	15,928	3	0.005	2.62%
20	15,931	3	0.002	2.58%
21	15,934	3	0.003	3.07%
22	15,937	3	0.006	3.62%
23	15,940	3	0.002	2.68%
24	15,943	3	0.001	1.08%
25	15,946	3	0.002	1.87%
26	15,949	3	0.025	4.70%
27	15,952	3	0.024	4.37%
28	15,955	3	0.001	1.97%
29	15,958	3	0.003	2.27%
30	15,961	3	0.007	3.09%
31	15,964	3	0.110	6.75%
32	15,967	3	0.037	5.62%
33	15,970	3	0.011	4.41%
34	15,973	3	0.022	4.59%
35	15,976	3	0.297	7.88%
36	15,979	3	0.440	9.21%
37	15,982	3	0.060	5.90%
38	15,985	3	0.001	2.22%

39	15,988	3	0.001	2.21%
40	15,991	3	0.001	1.12%
41	15,994	3	0.003	2.05%
42	15,997	3	0.014	4.56%
43	16,000	3	0.007	4.15%
44	16,003	3	0.033	5.95%
45	16,006	3	1.233	10.25%
46	16,009	3	1.476	12.04%
47	16,012	3	0.566	10.08%
48	16,015	3	1.679	12.18%
49	16,018	3	2.194	13.08%
50	16,021	3	1.235	12.02%
51	16,024	3	0.788	11.22%
52	16,027	3	0.944	10.48%
53	16,030	3	0.424	9.05%
54	16,033	3	0.378	8.85%
55	16,036	3	0.378	8.81%
56	16,039	3	0.378	8.84%
57	16,042	3	0.736	9.91%
58	16,045	3	0.232	7.94%
59	16,048	3	0.238	7.97%
60	16,051	3	0.012	3.01%
61	16,054	3	0.038	4.30%

2.8.1 Simulation Modeling

The primary objectives of the model simulation were as follows:

- 1. Estimate the maximum areal extent and density drift of the injectate plume after injection.
- 2. Determine the ability of the target formation to handle the required injection rate without fracturing the injection zone.
- 3. Assess the likelihood of the injectate plume migrating into potential leak pathways.

The reservoir is assumed to have an irreducible brine saturation of 20%. The salinity of the brine within the formation is estimated to be 150,000 ppm (U.S. Geological Survey National Produced Waters Geochemical Database, ver. 2.3), typical for the region and formation. The injectate stream is primarily composed of CO₂ and H₂S as stated previously. Core data from the literature was used to help generate relative permeability curves. From the literature review, also as previously discussed, cores that most closely represent the carbonate rock formation of the Sligo seen in this region were identified, and the Corey-Brooks equations were used to develop the curves (Bennion and Bachu, 2010). A low, conservative residual gas saturation based on the cores from the literature review was then used to estimate the size of the plume (Keelan and Pugh, 1975).

The model is initialized with a reference pressure of 10,995 psig at a subsea depth of 15,740 ft. This, when a Kelly Bushing "KB" elevation of 334 ft is considered, correlates to a gradient of 0.684 psi/ft. This pressure gradient was determined from production data of the O'Neal No. 4. An initial reservoir pressure of 0.76 psi/ft was calculated before initial production. However, in 1997 after producing approximately 0.5 Bcf of gas, the well was shut-in. The last bottomhole pressure reading was calculated to be 0.480 psi/ft. This assumes the reservoir repressurizes after production ceases, but not fully back to in-situ conditions. Therefore, a 10% safety factor was given to the initial reservoir pressure gradient of 0.76 psi/ft and a gradient of 0.684 psi/ft was implemented into the model as a conservative estimate. A skin factor of -2 was applied to the well to simulate the stimulation of the O'Neal No. 4 for gas production from the Sligo formation, which is based on the acid fracture report, provided in Appendix A-3.

The fracture gradient of the injection zone was estimated to be 0.954 psi/ft, which was determined from the acid fracture report. A 10% safety factor was then applied to this number, putting the maximum bottomhole pressure allowed in the model at 0.86 psi/ft, which is equivalent to 13,652 psig at the top of the Sligo injection interval.

The model, which begins in January 2025, runs for a total of 22 years, comprising of 12 years of active injection, and is then succeeded by 10 years of density drift. Throughout the entire 12-year injection period, an injection rate of 1.5 MMscf/D is used to model the maximum available rate, yielding the largest estimate of the plume size. After the 12-year injection period, when the O'Neal No. 4 ceases injection, the density drift of the plume continues until the plume stabilizes 10 years later. The maximum plume extent during the 12-year injection period is shown in Figure 25. The final extent after 10 years of density drift after injection ceases is shown in Figure 26.

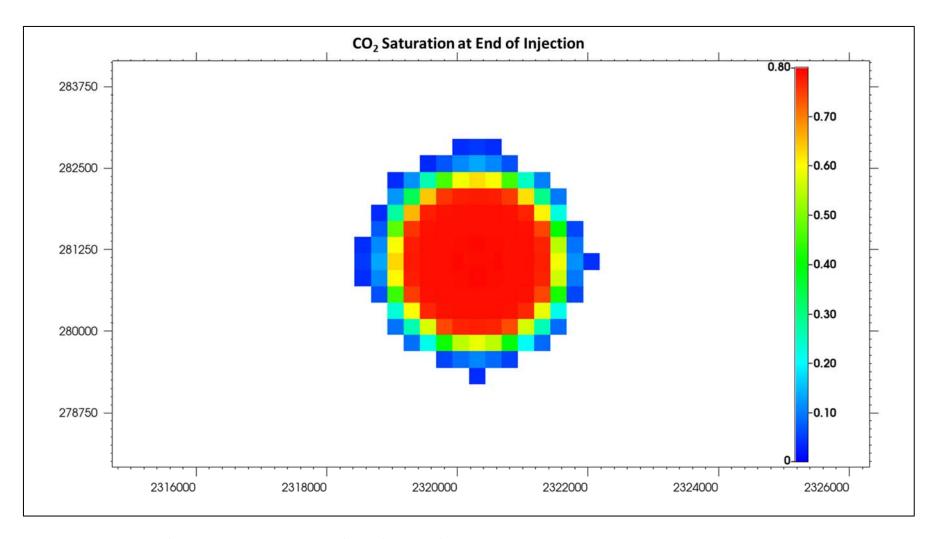


Figure 25 – Areal View of Saturation Plume at Shut-in (End of Injection)

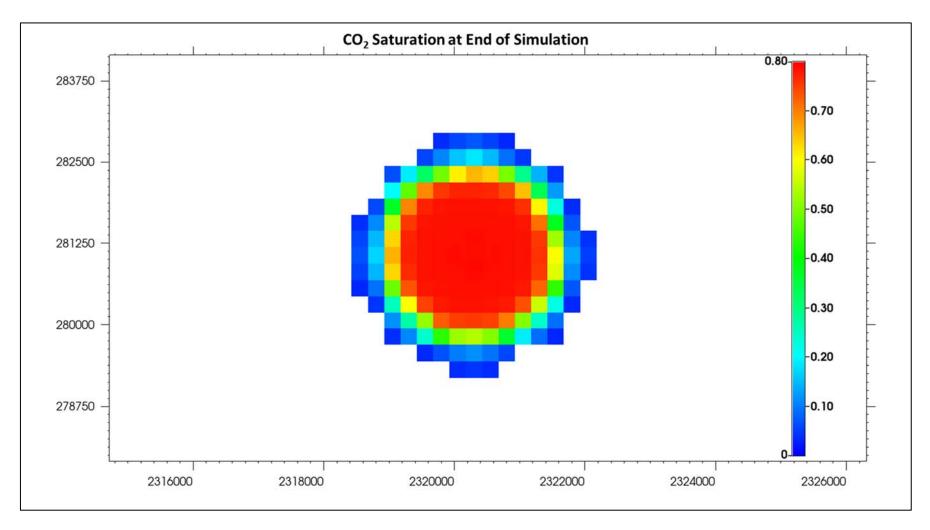


Figure 26 – Areal View of Gas Saturation Plume 10 Years After Shut-in (End of Simulation)

The cross-sectional view of the O'Neal No. 4 shows the extent of the plume from a side-view angle, cutting through the formation at the wellbore. Figure 27 shows the maximum plume extent during the 12-year injection period. During this time, gas from the injection well is injected into the permeable layers of the formation and predominantly travels laterally. Figure 28 shows the final extent of the plume after 10 years of migration. Then, the effects of residual gas saturation and migration due to density drift are clearly shown. At least 35% of injected gas that travels into each grid cell is trapped, as the gas travels mostly vertically—as it is less dense than the formation brine—until an impermeable layer is reached. Both figures are shown in an east-to-west view.

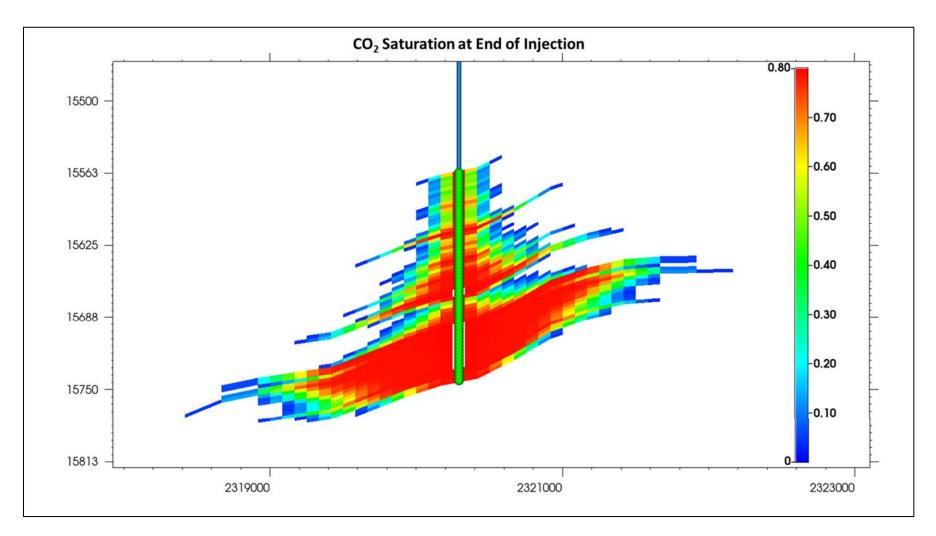


Figure 27 – East-West Cross-Sectional View of Gas Saturation Plume at Shut-in (End of Injection)

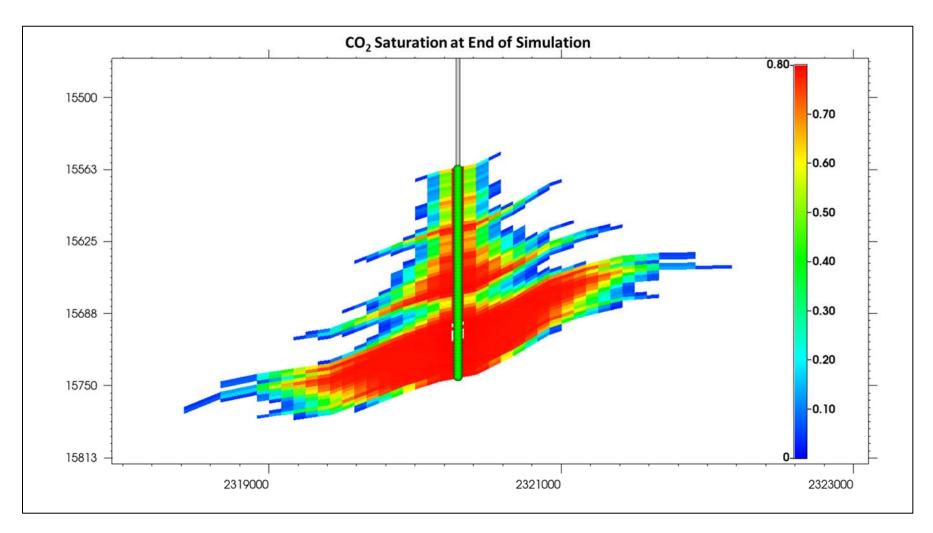


Figure 28 –East-West Cross-Sectional View of Gas Saturation Plume 10 Years After Shut-in (End of Simulation)

Figure 29 shows the surface injection rate, bottom hole pressures, and surface pressures over the injection period—and the period of density drift after injection ceases. The bottom hole pressure increases the most as the injection rate ends, reaching a maximum pressure of 13,337 psig, at the end of injection. This buildup of 2,362 psig keeps the bottom hole pressure below the fracture pressure of 13,652 psig. The maximum surface pressure associated with the maximum bottom hole pressure reached is 6,095 psig, well below the maximum allowable 7,937 psig per the TRRC UIC permit application for this well. Bottomhole and wellhead pressures are provided in Table 7.

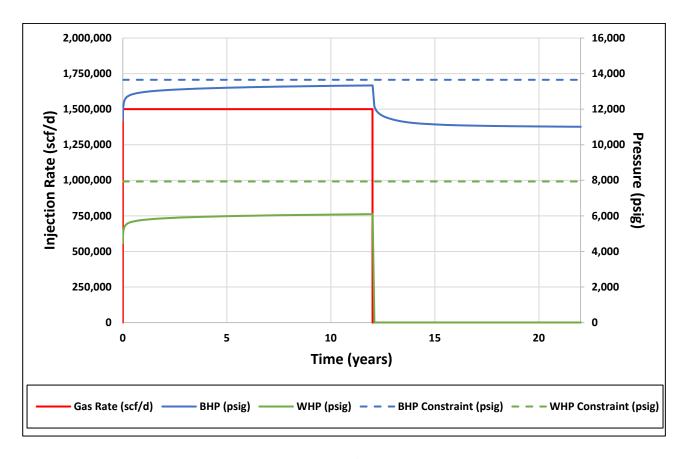


Figure 29 – Well Injection Rate and Bottomhole and Surface Pressures Over Time

Table 7 – Bottomhole and Wellhead Pressures from the Start of Injection

Time from Start of Injection (years)	BHP (psig)	WHP (psig)
0	10,975	-
10	13,311	6,073
12 (End of Inj.)	13,337	6,095
20	11,029	-
22 (End of Model)	11,013	-

SECTION 3 – DELINEATION OF MONITORING AREA

This section discusses the delineation of both the maximum monitoring area (MMA) and active monitoring area (AMA) as described in

3.1 Maximum Monitoring Area

The MMA is defined as equal to or greater than the area expected to contain the free-phase CO₂ plume until the plume has stabilized, plus an all-around buffer zone of at least half a mile. Numerical simulation was used to predict the size and drift of the plume. With CMG's GEM software package, reservoir modeling was used to determine the areal extent and density drift of the plume. The model considers the following:

- Offset well logs to estimate geologic properties
- Petrophysical analysis to calculate the heterogeneity of the rock
- Geological interpretations to determine faulting and geologic structure
- Offset injection history to predict the density drift of the plume adequately

Ozona's expected gas composition was used in the model. The injectate is estimated at a molar composition of 98.2% CO₂ and 1.8% of other constituents. The StarTex Plant has been in stable operations for many years. Ozona believes the gas analysis provided in Table 1 is an accurate representation of the injectate. In the future, if the actual gas analysis varies materially from the injectate composition herein, an update to this MRV plan will be submitted to the GHGRP. As discussed in *Section 2*, the gas will be injected into the Sligo formation. The geomodel was created based on the rock properties of the Sligo.

The plume boundary was defined by the weighted average gas saturation in the aquifer. A value of 3% gas saturation was used to determine the boundary of the plume. When injection ceases in Year 12, the area expanse of the plume will be approximately 270 acres. The maximum distance between the wellbore and the edge of the plume is approximately 0.42 miles to the west. After 10 additional years of density drift, the areal extent of the plume is 303 acres with a maximum distance to the edge of the plume of approximately 0.45 miles to the west. Since the plume shape is relatively circular, the maximum distance from the injection well after density drift was used to define the circular boundary of the MMA. The AMA and the MMA have similar areas of influence, with the AMA being only marginally smaller than the MMA. Therefore, Ozona will set the AMA equal to the MMA as the basis for the area extent of the monitoring program.

This is shown in Figure 30 with the plume boundary at the end of injection, the stabilized plume boundary, and the MMA. The MMA boundary represents the stabilized plume boundary after 10 years of density drift plus an all-around buffer zone of one half mile.

Figure 30 – Plume Boundary at End of Injection, Stabilized Plume Boundary, and Maximum Monitoring Area

3.2 Active Monitoring Area

The AMA was initially set equal to the expected total injection period of 12-years. The AMA was analyzed by superimposing the area based on a one-half mile buffer around the anticipated plume location after 12 years of injection (2037), with the area of the projected free-phase CO₂ plume at five additional years (2042). In this case, as shown in Figure 31 the plume boundary in 2042 is within the plume in 2037 plus the one-half mile buffer. Since the Active Monitoring Area boundary is only slightly smaller than the Maximum Monitoring Area boundary, Ozona will define the AMA to be equal to the MMA. By 2037, Ozona will submit a revised MRV plan to provide an updated AMA and MMA.

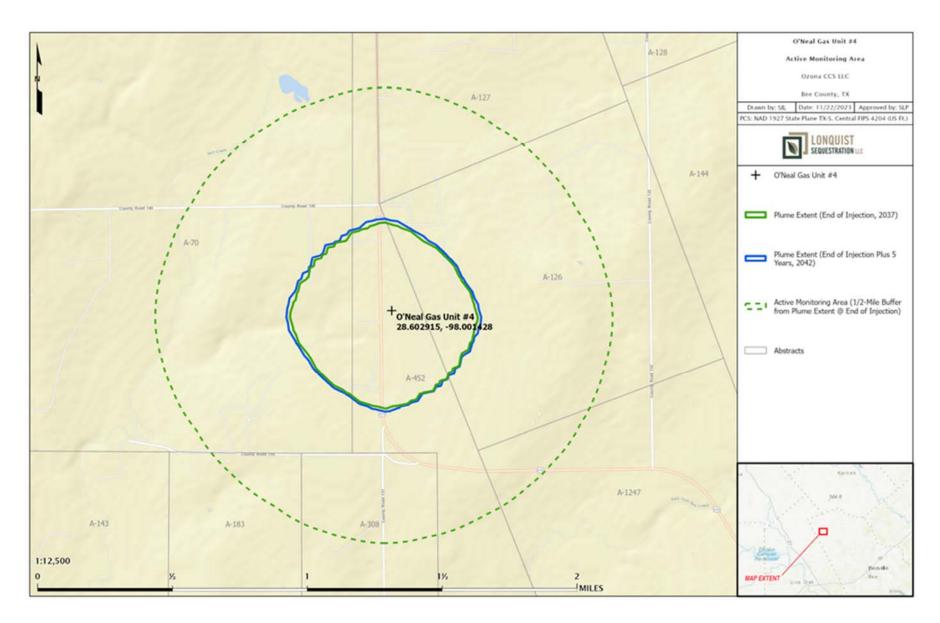


Figure 31 – Active Monitoring Area

SECTION 4 – POTENTIAL PATHWAYS FOR LEAKAGE

This section identifies and discusses the potential pathways within the MMA for CO₂ to reach the surface, and is summarized in Table 8. Also included are the likelihood, magnitude, and timing of such potential leakage. The potential leakage pathways are:

- Surface equipment
- Existing wells within the MMA
- Faults and fractures
- Upper confining layer
- Natural or induced seismicity

Table 8 – Potential Leakage Pathway Risk Assessment

Potential Leakage Pathway	Likelihood	Magnitude	Timing
Surface Equipment	Possible during injection operations.	Low. Automated systems will detect leaks and execute shut-down procedures.	During active injection period. Thereafter the well will be plugged.
Existing wells within the MMA	Unlikely. The lateral continuity of the UCZ is recognized as a very competent seal.	Low. Any vertical migration from the Injection Zone would return the CO2 to the production zone.	During active injection and Post Injection Site Care periods.
Faults and fractures	Possible. The lateral continuity of UCZ is recognized as a very competent seal.	Low. Vertical migration from the Injection Zone would return the CO2 to the production zone.	During active injection and Post Injection Site Care periods.
Upper confining layer	Unlikely. The lateral continuity of the UCZ is recognized as a very competent seal.	Low. Vertical migration from the Injection Zone would return the CO2 to the production zone.	During active injection and Post Injection Site Care periods.
Natural or induced seismicity	Possible. The lateral continuity of the UCZ is recognized as a very competent seal.	Low. Vertical migration from the Injection Zone would return the CO2 to the production zone.	During active injection and Post Injection Site Care periods.

4.1 Leakage from Surface Equipment

The Plant and O'Neal No. 4 are designed for separating, transporting, and injecting TAG primarily consisting of CO_2 in a manner to ensure safety to the public, the employees, and the environment. The mechanical aspects of this are noted in Table 9 and Figure 32. The facilities have been designed to minimize leakage and failure points, following applicable National Association of Corrosion Engineers (NACE) and American Petroleum Institute (API) applicable standards and practices. As the

TAG stream contains H₂S, monitors installed for H₂S detection will also indicate the presence of CO₂. These monitors will be installed at key locations around the Plant and the O'Neal No. 4 location. These devices will be continuously monitored by the Supervisory Control and Data Acquisition (SCADA) system and will alarm at set points determined by the Plant HS&E Director, consistent with Occupational Safety and Health Administration (OSHA) requirements. The Plant will set the detection and alarm states for personnel at 10 ppm and at 40 ppm for initiating Emergency Shutdown. Key monitoring points and parameters are provided in Table 9.

The facilities will incorporate important safety equipment to ensure reliable and safe operations. In addition to the H_2S monitors, emergency shutdown (ESD) valves, with high- and low-pressure shutoff settings to isolate the Plant, the O'Neal No. 4, and other components, StarTex has a flare stack to safely handle the TAG when a depressuring event occurs. These facilities will be constructed in the coming months. The exact location of this equipment is not yet known, but it will be installed in accordance with applicable engineering and safety standards.

Table 9 – Summary of TAG Detectors and Equipment

Device	Location	Set Point
H₂S Detectors (1 – 4)	O'Neal No. 4 wellsite	10 ppm High Alarm 40 ppm Emergency Shutdown
H₂S Detectors (5 – 8)	In-Plant Detectors	10 ppm High Alarm 40 ppm Emergency Shutdown
Flare Stack	Plant Site Perimeter	N/A
AGI Flowmeter	In-Plant (downstream of the Amine Unit)	Calibrated per API specifications
Emergency Shutdown	In-Plant Detectors	40 ppm Emergency Shutdown
Emergency Shutdown	O'Neal No. 4 wellsite	40 ppm Emergency Shutdown

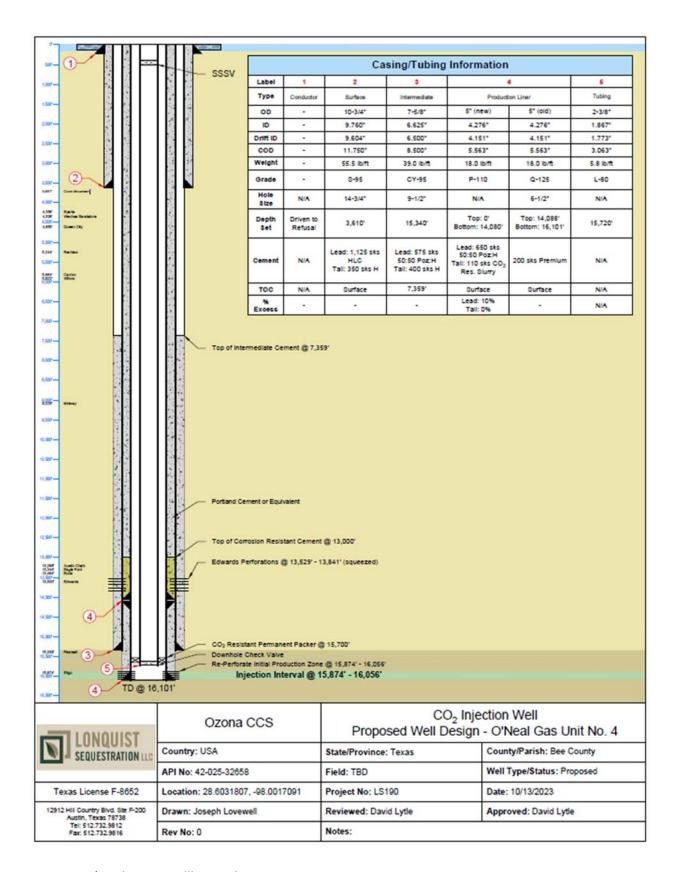


Figure 32 – O'Neal No. 4 Wellbore Schematic

With the continuous air monitoring at the Plant and the well site, a release of CO_2 would be quickly identified, and the safety systems and protocols would effectuate an orderly shutdown to ensure safety and minimize the release volume. The CO_2 injected into the O'Neal No. 4 is from the amine unit at the Pawnee Gas Plant. If any leakage were to be detected, the volume of CO_2 released would be quantified based on the operating conditions at the time of release, as stated in *Section 7* in accordance with 40 CFR §98.448(a)(5). Ozona concludes that the leakage of CO_2 through the surface equipment is unlikely.

4.2 Leakage Through Existing Wells Within the MMA

The O'Neal No. 4 is engineered to prevent migration from the injection interval to the surface through a special casing and cementing design as depicted in the schematic provided in Figure 32. Mechanical integrity tests (MITs), required under Statewide Rule (SWR) §3.46 [40 CFR §146.23 (b)(3)], will take place every 5 years to verify that the well and wellhead can contain the appropriate operating pressures. If the MIT were to indicate a leak, the well would be isolated and the leak mitigated to prevent leakage of the injectate to the atmosphere.

A map of all oil and gas wells within the MMA is shown in Figure 33. Figure 34 is a map of all the oil and gas wells that penetrate the MMA's gross injection zone. Only one well penetrated the MMA's gross injection zone. This well was non-productive and has been plugged and abandoned in accordance with TRRC requirements. A summary table of all oil and gas wells within the MMA is provided in Appendix B-1.

This table in Appendix B-1 provides the total depth (TD) of all wells within the MMA. The wells that are shallower and do not penetrate the injection zone are separated by the Pearsall Formation with a gross thickness of 535'. The Pine Island Shale comprises approximately 130 feet of this interval as discussed in *Section 2.2.2*, and provides a competent regional seal making vertical migration of fluids above the injection zone unlikely.

The shallower producing offset wells within the MMA will also serve as above zone monitoring wells. As gas analysis is routinely performed for monthly settlement statements from these wells, Ozona will be notified if a material difference in the quantity of CO₂ produced occurs, indicating a potential migration of injectate from the Sligo formation. Ozona would investigate and develop a mitigation plan, which may include reducing the injection rate or shutting the well in. Based on the investigation, the appropriate equation in *Section 7* would be used to make any adjustments to the reported volumes.

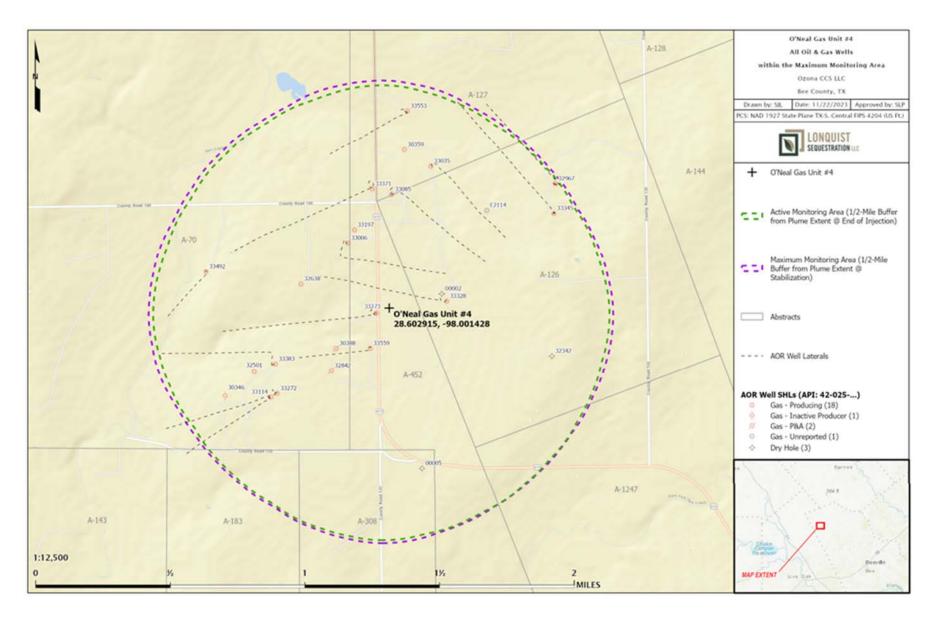


Figure 33 – All Oil and Gas Wells Within the MMA

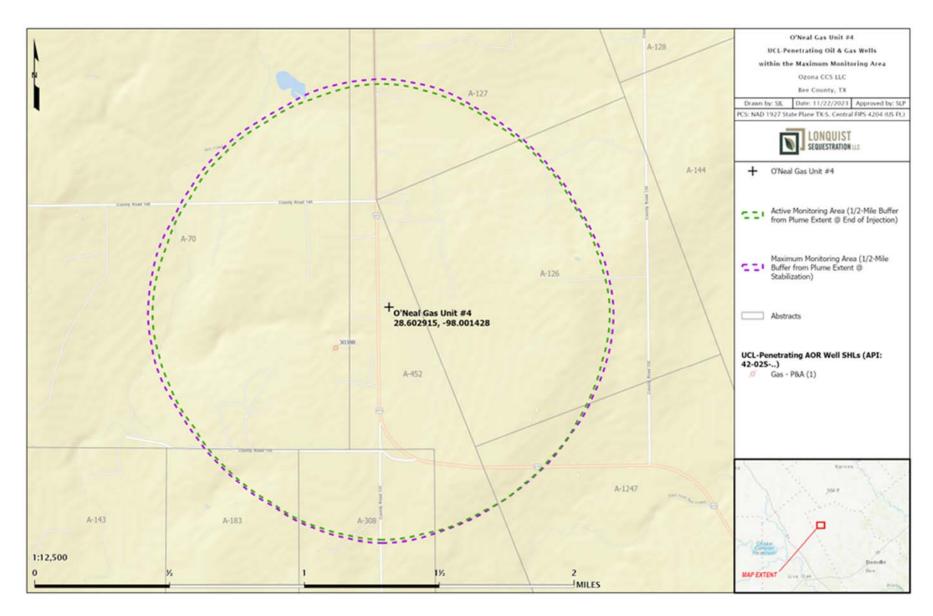


Figure 34 – Oil and Gas Wells Penetrating the Gross Injection Interval Within the MMA

4.2.1 Future Drilling

Potential leak pathways caused by future drilling in the area are not expected to occur. The deeper formations have proven to date to be nonproductive in this area and therefore Ozona does not see this as a risk. This is supported by a review of the TRRC Rule 13 (entitled Casing, Cementing, Drilling, Well Control, and Completion Requirements), 16 TAC §3.13. The Sligo is not among the formations listed for which operators in Bee County and District 2 (where the O'Neal No. 4 is located) are required to comply with TRCC Rule 13 and therefore the TRRC does not believe there are productive horizons below the Sligo. The O'Neal No. 4 drilling permit is provided in Appendix A-2.

4.2.2 Groundwater Wells

The results of a groundwater well search found 5 wells within the MMA, as identified by the Texas Water Development Board as shown in Figure 35, and in tabular form in Appendix B-2.

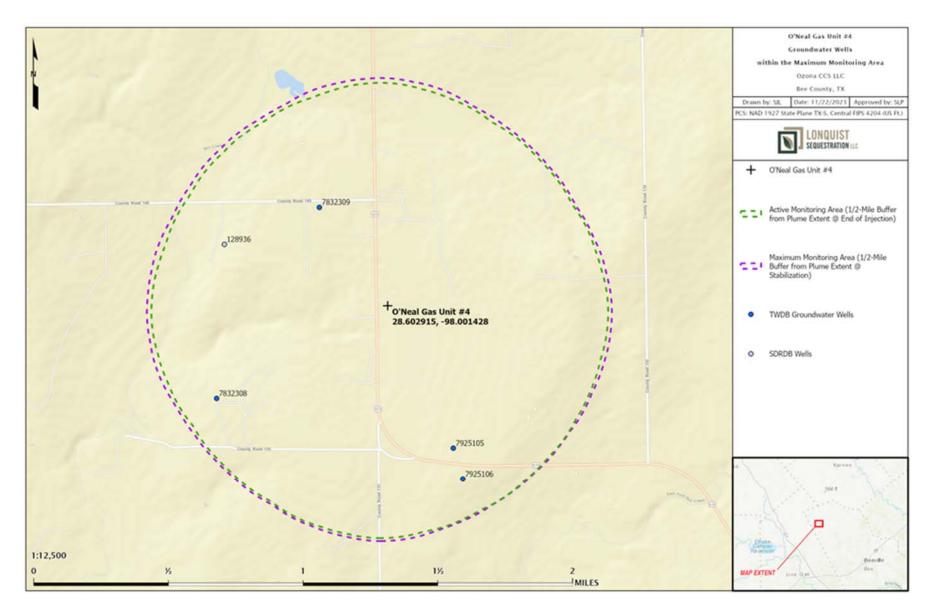


Figure 35 – Groundwater Wells Within the MMA

The surface, intermediate, and production casings of the O'Neal No. 4, as shown in Figure 32, are designed to protect the shallow freshwater aquifers, consistent with applicable TRRC regulations, and the GAU letter issued for this location is provided in Appendix A-1. The wellbore casings and compatible cements prevent CO_2 leakage to the surface along the borehole. Ozona concludes that leakage of the sequestered CO_2 to the groundwater wells is unlikely.

4.3 <u>Leakage Through Faults and Fractures</u>

Detailed mapping of openhole logs surrounding the O'Neal No. 4 did not identify any faulting within the Pearsall or Sligo section. However, there is a general lack of deep penetrators within the area which limits the amount of openhole coverage available.

The majority of the published literature suggests faulting near the project area is restricted to the shallower, overlying Cenozoic section, as seen in Figure 9, with shallow faults dying out before reaching the Pearsall formation. One source interpreted the potential for faulting to the south (Swanson S.M., et al., 2016). The potential fault is depicted in Figure 8 relative to the location of the O'Neal No. 4. According to the map, the interpreted fault lies approximately 4.25 miles south-southeast of the well and approximately 3.9 miles south-southeast of the stabilized plume extent in the year 2047. In the unlikely scenario in which the injection plume or pressure front reaches the potential fault, and the potential fault was to act as a transmissive pathway, the upper confining Pearsall shale contains sufficient thickness and petrophysical properties required to confine and protect injectates from leaking outside of the permitted injection zone.

Please see *Section 2.1.2* discussing Regional Structure and Faulting and *Section 2.3* covering Local Structure for additional material relevant to this topic.

4.4 Leakage Through the Confining Layer

The Sligo injection zone has competent sealing intervals present above and below the targeted carbonate sequence of the Sligo section. The overlying Pine Island shale member of the Pearsall formation is approximately 130 feet thick at the O'Neal No. 4. Above this confining unit, the Cow Creek limestone, Cow Creek shale, and Bexar shale members of the Pearsall formation will act as additional confinement between the injection interval and the USDW. The USDW lies well above the sealing properties of the formations outlined above, making stratigraphic migration of fluids into the USDW highly unlikely. The petrophysical properties of the Lower Sligo and Hosston formations make these ideal for lower confinement. The low porosity and permeability of these underlying formations minimizes the likelihood of downward migration of injected fluids. The relative buoyancy of injectate to the in-situ reservoir fluid makes migration below the lower confining layer unlikely.

4.5 <u>Leakage from Natural or Induced Seismicity</u>

The O'Neal No. 4 is located in an area of the Gulf of Mexico considered to be active from a seismic perspective. Therefore, the Bureau of Economic Geology's TexNet (from 2017 to present) and USGS's Advanced National Seismic System (from 1971 to present) databases were reviewed to

identify any recorded seismic events within 25 km of the O'Neal No. 4.

The investigation identified a multitude of seismic events within the 25 km search radius, however, the magnitude of most of the events was below 2.5. The nearest seismic event with a recorded magnitude of 3.0 or greater was measured approximately 5.6 km northwest of the O'Neal No. 4 at a depth of 5 km. The results of the investigation are plotted on the map provided in Figure 36 relative to the O'Neal No. 4 and 25 km search radius.

The Plant will have operating procedures and set points programmed into the control and SCADA systems to ensure operating pressures are maintained within the injection and confining intervals approved fracture gradients. Given the seismic activity in the area, Ozona will closely monitor nearby TexNet station EF71 for activity and any corresponding irregularities in the operating pressures of O'Neal No. 4.

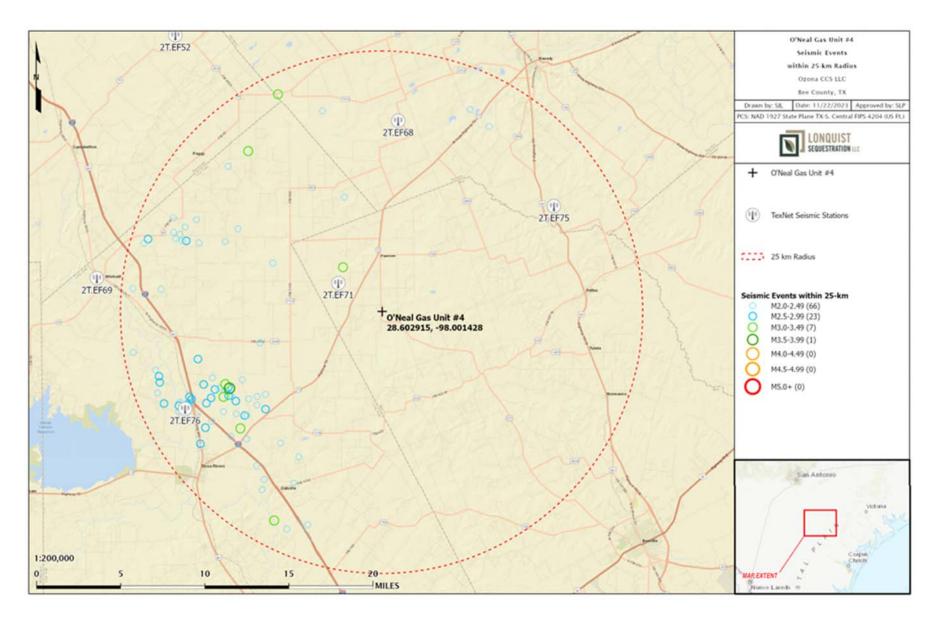


Figure 36 – 25 km Seismicity Review

SECTION 5 – MONITORING FOR LEAKAGE

This section discusses the strategy that Ozona will employ for detecting and quantifying surface leakage of CO₂ through the pathways identified in *Section 4*, to meet the requirements of 40 CFR **§98.448(a)(3)**. As the injectate stream contains both H₂S and CO₂, the H₂S will be a proxy for CO₂ leakage and therefore the monitoring systems in place to detect H₂S will also indicate a release of CO₂. Table 10 summarizes the monitoring of the following potential leakage pathways to the surface. Monitoring will occur during the planned 12-year injection period or cessation of injection operations, plus a proposed 10-year post-injection period until the plume has stabilized.

- Leakage from surface equipment
- Leakage through existing and future wells within the MMA
- Leakage through faults, fractures, or confining seals
- Leakage through natural or induced seismicity

Table 10 – Summary of Leakage Monitoring Methods

Leakage Pathway	Monitoring Method
Ohdndjh#urp #vxuidfh#ntxlsphqw	Il{hg#K₅V#prqlwrw#tw kh#sodqw#dqg#zhodwlwh
	Y lvxdd#qvshfwlrqv
	Prqlwru#VFDGD#v vwhpv##ru#wkh#sodqw#dqg#zho#vlwh
Ohdndjh#kurxjk#l{kwiqj#zhoov	Prqlwru#FR₅#hnyhov#q#deryh#)rqh#surgxflqj#zhoov
	Phfkdqlfdd#qvhjulw #Nvw##PIW,#r#RQhddQr#F#hyhu #8# hduv
	Y lvxddqvshfvlrqv
	Dqqxddwrlijdv#vdpsdqj#qhdu#zhodwrfdwlrqv#kdw#shqhwodwh#kh#ksshu# Frqilqlqj# rqh#klkklq#kh#DPD
Ohdndjh#kurxjk#jurxqgzdwhu#zhoov	Dqqxddfjurxqgzdwhuthdpsdnvthurpth{lwwlqjtzdwhutzhoev,
Ohdndjh#iurp#ixwxuh#zhoov	Prqlwrukgulodgj#lifwlylw #lqg#frpsddqfh#zlwk#WUUF#Jxdn#16#Jhjxodwlrqv
Ohdndjh#kurxjk#dxow#udfwkuhv#ru#frqilqlqj# vhdov	VFDGD#frqwlqxrxv#prqlwrulqj#bwwkh#chawlwh#yroxphv#blqg#suhvvxuhv,
	Prqlwru#FR₅#bhyhov#q#deryh#jrqh#surgxflqj#zhoov
	Prqlwruff R $_5$ #bnyhov#q#deryh#jrqh#surgxflqj#zhoov
Ohdndjh#urp#gdwxuddru#ggxfhg#vhlvplflw	Prqlwruth{lvvilqj#Nh{Qhv#vvdwirq

5.1 Leakage from Surface Equipment

The Plant and the O'Neal No. 4 were designed to operate in a safe manner to minimize the risk of an escape of CO₂ and H₂S. Leakage from surface equipment is unlikely and would quickly be detected and addressed. The facility design minimizes leak points through the equipment used, and key areas are constructed with materials that are NACE and API compliant. A baseline atmospheric CO₂ concentration will be established prior to commencing operation once facility construction has been completed. Ambient H₂S monitors will be located at the Plant and near the O'Neal No. 4 site for local alarm and are connected to the SCADA system for continuous monitoring.

The Plant and O'Neal No. 4 are continuously monitored through automated control systems. These monitoring points were discussed in Section 4.1. In addition, field personnel conduct routine visual field inspections of gauges, and gas monitoring equipment. The effectiveness of the internal and external corrosion control program is monitored through the periodic inspection of the corrosion coupons and inspection of the cathodic protection system. These inspections and the automated systems allow Ozona to detect and respond to any leakage situation quickly. The surface equipment will be monitored for the injection and post-injection period. Should leakage be detected during active injection operations, the volume of CO_2 released will be calculated based on operating conditions at the time of the event, per 40 CFR §98.448(a)(5).

Pressures, temperatures, and flow rates through the surface equipment are continuously monitored during operations. If a release occurred from surface equipment, the amount of CO_2 released would be quantified based on the operating conditions, including pressure, flow rate, percentage of CO_2 in the injectate, size of the leak-point opening, and duration of the leak. In the unlikely event a leak occurs, Ozona will quantify the leak per the strategies discussed in *Section 7*.

5.2 Leakage Through Existing and Future Wells Within the MMA

Ozona continuously monitors and collects injection volumes, pressures, and temperatures through their SCADA systems, for the O'Neal No. 4. This data is reviewed by qualified personnel and will follow response and reporting procedures when data exceeds acceptable performance limits. A change of injection or annular pressure would indicate the presence of a possible leak and be thoroughly investigated. In addition, MITs performed every 5 years, as expected by the TRRC and UIC, would also indicate the presence of a leak. Upon a negative MIT, the well would be isolated and investigated to develop a leak mitigation plan.

As discussed previously, TRRC Rule 13 ensures that new wells in the field are constructed with proper materials and practices to prevent migration from the injection interval.

In addition to the fixed monitors described previously, Ozona will also establish and operate an infield monitoring program to detect CO_2 leakage within the AMA. This would include H_2S monitoring as a proxy for CO_2 at the well site and annual soil gas samples taken near any identified wells that penetrate the injection interval within the AMA. These samples will be analyzed by a qualified third party. Prior to commencing operation, and through the post-injection monitoring period, Ozona will have these monitoring systems in place.

Currently, there is only one well in the MMA identified that penetrates the injection interval. This well was plugged and abandoned in 2007. The TRRC records are provided in Appendix A-4. Ozona will take an annual soil gas sample from this area which will be analyzed by a third-party lab. Additional monitoring will be added as the AMA is updated over time. In the unlikely event a leak occurs, Ozona will quantify the leak volumes by the methodologies discussed in *Section 7* and present these results and related activities in the annual report.

Ozona will also utilize shallower producing gas wells as proxies for above zone monitoring wells. Production data from these wells is analyzed for monthly production statements, and therefore would be an early indicator of any possible subsurface issues. Should any material change from historical trends in the CO₂ concentration occur, Ozona would investigate and develop a corrective action plan. Should any CO₂ migrate vertically from the Sligo, the magnitude risk of this event is very low, as the producing reservoir provides an ideal containment given the Upper Confining Zone of this reservoir has proven competent. In the unlikely event a leak occurs, Ozona would quantify the leak per the strategies discussed in *Section 7*, or as may be applicable provided in 40 CFR §98.443 based on the actual circumstances, and include these results in the annual report.

5.2.1.1 Groundwater Quality Monitoring

Ozona will monitor the groundwater quality above the confining interval by sampling from groundwater wells near the O'Neal No. 4 and analyzing the samples with a third-party laboratory on an annual basis. In the case of the O'Neal No. 4, 5 existing groundwater wells have been identified within the AMA (Figure 38). Initial groundwater quality tests will be performed to establish a baseline prior to commencing operations.

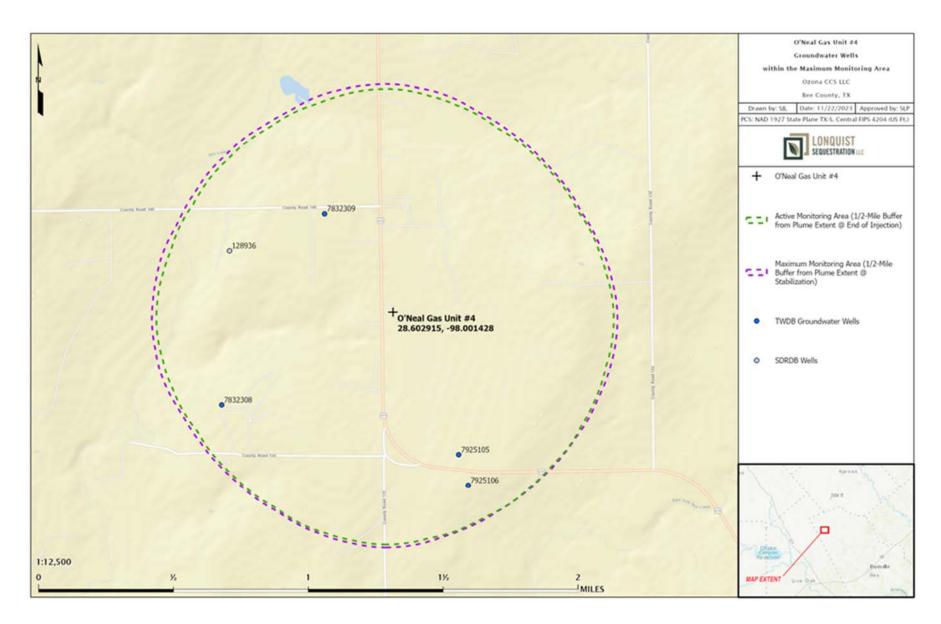


Figure 37 – Groundwater Wells

5.3 Leakage Through Faults, Fractures, or Confining Seals

Ozona will continuously monitor the operations of the O'Neal No. 4 through the automated controls and SCADA systems. Any deviation from normal operating volume and corresponding injection pressure could indicate movement into a potential leak pathway, such as a fault or breakthrough of the confining seal, and would trigger an alert due to a change in the injection pressure. Any such alert would be reviewed by field personnel and appropriate action would be taken, including shutting in the well, if necessary.

Ozona will also utilize shallower producing wells as proxies for above zone monitoring wells. Production data is analyzed regularly for monthly production statements and therefore would be an early indicator of any possible subsurface issues. Should any material change from historical trends in the CO₂ concentration occur, Ozona would investigate and develop a corrective action plan. Should any CO₂ migrate vertically from the Sligo, the magnitude risk of this event is very low, as the producing reservoir provides an ideal containment given the Upper Confining Zone has proven competent. In the unlikely event a leak occurs, Ozona would quantify the leak per the strategies discussed in *Section 7*, or as may be applicable provided in 40 CFR §98.443 based on the actual circumstances.

5.4 <u>Leakage Through Natural or Induced Seismicity</u>

While the likelihood of a natural or induced seismicity event is low, Ozona plans to use the nearest TexNet seismic monitoring station EF71 to monitor the area around the O'Neal No. 4. This station is approximately three miles to the northwest, as shown in Figure 38. This is sufficient distance to allow for accurate and detailed monitoring of the seismic activity in the area. Ozona will monitor this station for any seismic activity, and if a seismic event of 3.0 magnitude or greater is detected, Ozona will review the injection volumes and pressures of the O'Neal No. 4 to determine if any significant changes have occurred that would indicate potential leakage. In the unlikely event a leak occurs, Ozona will quantify the leak per the strategies discussed in *Section 7*, and take appropriate operational actions based on the circumstances.

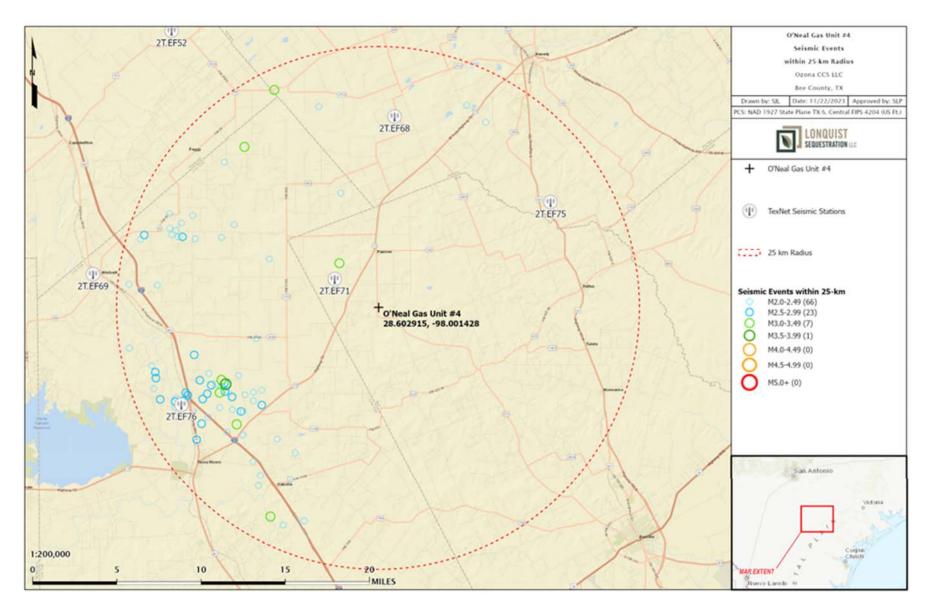


Figure 38 – Seismic Events and Monitoring Station

SECTION 6 – BASELINE DETERMINATIONS

This section identifies the strategies Ozona will undertake to establish the expected baselines for monitoring CO₂ surface leakage per 40 CFR **§98.448(a)(4)**. Ozona will use the existing SCADA monitoring systems to identify changes from the expected performance that may indicate leakage of injectate and calculate a corresponding amount of CO₂.

6.1 Visual Inspections

Regular inspections will be conducted by field personnel at the Plant and O'Neal No. 4 site. These inspections will aid in identifying and addressing possible issues to minimize the risk of leakage. If any issues are identified, such as vapor clouds or ice formations, corrective actions will be taken prudently and safely to address such issues.

6.2 CO₂/H₂S Detection

In addition to the fixed monitors in the Plant and at the wellsite, Ozona will establish and perform an annual in-field sampling program to monitor and detect any CO₂ leakage within the AMA. This will consist of soil gas sampling near any artificial penetrations of the injection zone and sampling of water wells. These samples will be analyzed by a 3rd party lab and the results provided in the annual report. Initial samples will be taken and analyzed before the commencement of operation and will establish the baseline reference levels.

6.3 **Operational Data**

Upon starting injection operations, baseline measurements of injection volumes and pressures will be recorded. Any significant deviations over time will be analyzed for indication of leakage of injectate and the corresponding component of CO₂.

6.4 Continuous Monitoring

The total mass of CO_2 emitted by surface leakage and equipment leaks will not be measured directly, as the injection stream for this project is near the Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) 8-hour Time Weighted Average (TWA) of 5,000 ppm. Direct leak surveys present a hazard to personnel due to the presence of H_2S in the gas stream. Continuous monitoring systems will trigger alarms if there is a release. The mass of the CO_2 released would be calculated based on the operating conditions, including pressure, flow rate, percentage of CO_2 , size of the leak-point opening, and duration. This method is consistent with 40 CFR §98.448(a)(5), allowing the operator to calculate site-specific variables used in the mass balance equation.

In the case of a de-pressuring event, the acid gas stream will be sent to a flare stack to be safely processed and will be reported under reporting requirements for the Plant. Any such events will be accounted for in the sequestered reporting volumes consistent with *Section 7*.

6.5 **Groundwater Monitoring**

Initial samples will be taken from groundwater wells in the area of the O'Neal No. 4 upon approval of the MRV plan, and before commencement of CO_2 injection. These samples will be analyzed and reports prepared by a third-party laboratory to establish baseline water quality parameters.

SECTION 7 – SITE-SPECIFIC CONSIDERATIONS FOR MASS BALANCE EQUATION

This section identifies how Ozona will calculate the mass of CO_2 injected, emitted, and sequestered. This also includes site-specific variables for calculating the CO_2 emissions from equipment leaks and vented emissions of CO_2 between the injection flow meter and the injection well, per 40 CFR §98.448(a)(5).

7.1 Mass of CO₂ Received

Per 40 CFR §98.443, the mass of CO₂ received must be calculated using the specified CO₂ received equations "unless you follow the procedures in 40 CFR §98.444(a)(4)." 40 CFR §98.444(a)(4) states that "if the CO₂ you receive is wholly injected and is not mixed with any other supply of CO₂, you may report the annual mass of CO₂ injected that you determined following the requirements under paragraph (b) of this section as the total annual mass of CO₂ received instead of using Equation RR-1 or RR-2 of this subpart to calculate CO₂ received." The CO₂ received for this injection well is wholly injected and not mixed with any other supply; the annual mass of CO₂ injected will equal the amount received. Any future streams would be metered separately before being combined into the calculated stream.

7.2 Mass of CO₂ Injected

Per 40 CFR §98.444(b), since the flow rate of CO_2 injected will be measured with a volumetric flow meter, the total annual mass of CO_2 , in metric tons, will be calculated by multiplying the mass flow by the CO_2 concentration in the flow according to Equation RR-5:

$$CO_{2,u} = \sum_{p=1}^{4} Q_{p,u} * D * C_{CO_{2,p,u}}$$

Where:

 $CO_{2,u}$ = Annual CO_2 mass injected (metric tons) as measured by flow meter u

 $Q_{p,u}$ = Quarterly volumetric flow rate measurement for flow meter u in quarter p (standard cubic meters per quarter)

D = Density of CO₂ at standard conditions (metric tons per standard cubic meter): 0.0018682

 $C_{CO2,p,u}$ = Quarterly CO_2 concentration measurement in flow for flow meter u in quarter p (volume percent CO_2 , expressed as a decimal fraction)

p = Quarter of the year

u = Flow meter

7.3 Mass of CO₂ Produced

The O'Neal No. 4 is not part of an enhanced oil recovery project; therefore, no CO₂ will be produced.

7.4 Mass of CO₂ Emitted by Surface Leakage

The mass of CO₂ emitted by surface leakage and equipment leaks will not be measured directly due to the H₂S concentration in the injection stream. Direct leak surveys are dangerous and present a hazard to personnel. Because no venting is expected to occur, the calculations would be based on the unusual event that a blowdown is required and those emissions would be sent to a flare stack and reported as a part of the required GHG reporting for the Plant. Any leakage would be detected and managed as an upset event. Continuous monitoring systems should trigger an alarm upon a release of H₂S and CO₂. The mass of the CO₂ released would be calculated for the operating conditions, including pressure, flow rate, size of the leak-point opening, and duration of the leak. This method is consistent with 40 CFR §98.448(a)(5), allowing the operator to calculate site-specific variables used in the mass balance equation.

In the unlikely event that CO₂ was released because of surface leakage, the mass emitted would be calculated for each surface pathway according to methods outlined in the plan and totaled using Equation RR-10 as follows:

$$CO_{2E} = \sum_{x=1}^{X} CO_{2,x}$$

Where:

CO_{2E} = Total annual CO₂ mass emitted by surface leakage (metric tons) in the reporting year

CO_{2,x} = Annual CO₂ mass emitted (metric tons) at leakage pathway x in the reporting year

X = Leakage pathway

Calculation methods using equations from Subpart W will be used to calculate CO₂ emissions due to any surface leakage between the flow meter used to measure injection quantity and the injection wellhead.

As discussed previously, the potential for pathways for all previously mentioned forms of leakage is unlikely. Given the possibility of uncertainty around the cause of a leakage pathway that is mentioned above, Ozona believes the most appropriate method to quantify the mass of CO₂ released will be determined on a case-by-case basis. Any mass of CO₂ detected leaking to the surface will be quantified by using industry proven engineering methods including, but not limited to, engineering analysis on surface and subsurface measurement data, dynamic reservoir modeling, and history-matching of the sequestering reservoir performance, among others. In the unlikely

event that a leak occurs, it will be addressed, quantified, and documented within the appropriate timeline. Any records of leakage events will be kept and stored as provided in *Section 10*.

7.5 Mass of CO₂ Sequestered

The mass of CO₂ sequestered in subsurface geologic formations will be calculated based on Equation RR-12. Data collection for calculating the amount of CO₂ sequestered in the O'Neal No. 4 will begin once the subsurface recompletion work, and the surface facilities construction has been completed, and subject to approval of the MRV plan. The calculation of sequestered volumes utilizes the following equation as the O'Neal No. 4 will not actively produce oil, natural gas, or any other fluids:

$$CO_2 = CO_{2I} - CO_{2E} - CO_{2FI}$$

Where:

 CO_2 = Total annual CO_2 mass sequestered in subsurface geologic formations (metric tons) at the facility in the reporting year

 CO_{21} = Total annual CO_2 mass injected (metric tons) in the well covered by this source category in the reporting year

CO_{2E} = Total annual CO₂ mass emitted (metric tons) by surface leakage in the reporting year

 CO_{2FI} = Total annual CO_2 mass emitted (metric tons) from equipment leaks and vented emissions of CO_2 from equipment located on the surface, between the flow meter used to measure injection quantity and the injection wellhead

 CO_{2FI} will be calculated in accordance with Subpart W for reporting of GHGs. Because no venting is expected to occur, the calculations would be based on the unusual event that a system blowdown event occurs. Those emissions would be sent to a flare stack and reported as part of the GHG reporting for the Plant.

• Calculation methods from Subpart W will be used to calculate CO₂ emissions from equipment located on the surface, between the flow meter used to measure injection quantity and the injection wellhead.

SECTION 8 – IMPLEMENTATION SCHEDULE FOR MRV PLAN

The O'Neal Gas Unit No. 4 is an existing natural gas well that will be recompleted as a Class II well with corrosion resistant materials. Ozona is submitting this MRV application to the GHGRP to comply with the requirements of Subpart RR. The MRV plan will be implemented upon receiving EPA approval. The Annual Subpart RR Report will be filed on March 31 of the year following the reporting year.

SECTION 9 – QUALITY ASSURANCE

This section identifies how Ozona plans to manage quality assurance and control to meet the requirements of 40 CFR **§98.444.**

9.1 Monitoring QA/QC

CO₂ Injected

- The flow rate of the CO₂ being injected will be measured with a volumetric flow meter, consistent with API standards. These flow rates will be compiled quarterly.
- The composition of the injectate stream will be measured upstream of the volumetric flow meter with a continuous gas composition analyzer or representative sampling consistent with API standards.
- The gas composition measurements of the injected stream will be averaged quarterly.
- The CO₂ measurement equipment will be calibrated per the requirements of 40 CFR §98.444(e) and §98.3(i).

CO₂ Emissions from Leaks and Vented Emissions

- Gas monitors at the Plant and O'Neal No. 4 will be operated continuously, except for maintenance and calibration.
- Gas monitors will be calibrated according to the requirements of 40 CFR §98.444(e) and §98.3(i).
- Calculation methods from Subpart W will be used to calculate CO₂ emissions from equipment located on the surface, between the flow meter used to measure injection quantity and the injection wellhead.

Measurement Devices

- Flow meters will be continuously operated except for maintenance and calibration.
- Flow meters will be calibrated according to 40 CFR §98.3(i).
- Flow meters will be operated and maintained in accordance with applicable standards as published by a consensus-based standards organization.

All measured volumes of CO₂ will be converted to standard cubic meters at a temperature of 60°F and an absolute pressure of 1 atmosphere.

9.2 Missing Data

In accordance with 40 CFR **§98.445**, Ozona will use the following procedures to estimate missing data if unable to collect the data needed for the mass balance calculations:

• If a quarterly quantity of CO₂ injected is missing, the amount will be estimated using a representative quantity of CO₂ injected from the nearest previous period at a similar injection pressure.

• Fugitive CO₂ emissions from equipment leaks from facility surface equipment will be estimated and reported per the procedures specified in Subpart W of 40 CFR §98.

9.3 MRV Plan Revisions

If any changes outlined in 40 CFR **§98.448(d)** occur, Ozona will revise and submit an amended MRV plan within 180 days to the Administrator for approval.

SECTION 10 – RECORDS RETENTION

Ozona will retain records as required by 40 CFR §98.3(g). These records will be retained for at least 3 years and include the following:

- Quarterly records of the CO₂ injected
 - Volumetric flow at standard conditions
 - Volumetric flow at operating conditions
 - Operating temperature and pressure
 - o Concentration of the CO₂ stream
- Annual records of the information used to calculate the CO₂ emitted by surface leakage from leakage pathways.
- Annual records of the information used to calculate CO₂ emitted from equipment leaks and vented emissions of CO₂ from equipment located on the surface, between the flow meter used to measure injection quantity and the injection wellhead.

APPENDICES

APPENDIX A - O'Neal No. 4 TRRC FORMS

APPENDIX A-1: GAU GROUNDWATER PROTECTION DETERMINATION

APPENDIX A-2: DRILLING PERMIT

- CHARLIE C. OVERBY API 42-025-32658
- O'NEAL GAS UNIT NO. 4 API 42-025-32658

APPENDIX A-3: COMPLETION REPORT

- CHARLIE C. OVERBY API 42-025-32658
- O'NEAL GAS UNIT NO. 4 API 42-025-32658
- ACID FRACTURE REPORT

APPENDIX A-4: API 42-025-30388 CHARLIE C. OVERBY GU PLUGGING RECORDS

<u>APPENDIX B – AREA OF REVIEW</u>

APPENDIX B-1: OIL AND GAS WELLS WITHIN THE MMA LIST

APPENDIX B-2: WATER WELLS WITHIN THE MMA LIST

GROUNDWATER PROTECTION DETERMINATION

Groundwater Advisory Unit

Form GW-2

Date Issued: 26 May 2023 **GAU Number:** 367912

Attention: **OZONA CCS LLC API Number:** 02532658

> BEE County: 19026 RIDGEWOOD

O'Neal Gas Unit Lease Name: SAN ANTONIO, TX 78259

Lease Number: 162214 100116 **Operator No.:**

Well Number:

16101 **Total Vertical**

Latitude: 28.602914

4

Longitude: -98.001428

Datum: NAD27

Purpose: Injection into Producing Zone (H1)

Survey-EL&RR RR CO; Abstract-452; Section-1 Location:

To protect usable-quality groundwater at this location, the Groundwater Advisory Unit of the Railroad Commission of Texas recommends:

The base of usable-quality water-bearing strata is estimated to occur at a depth of 250 feet at the site of the referenced well.

The BASE OF UNDERGROUND SOURCES OF DRINKING WATER (USDW) is estimated to occur at a depth of 950 feet at the site of the referenced well.

Note: Unless stated otherwise, this recommendation is intended to apply to all wells drilled within 200 feet of the subject well. Unless stated otherwise, this recommendation is for normal drilling, production, and plugging operations only.

This determination is based on information provided when the application was submitted on 05/26/2023. If the location information has changed, you must contact the Groundwater Advisory Unit, and submit a new application if necessary. If you have questions, please contact us at 512-463-2741 or gau@rrc.texas.gov.

Groundwater Advisory Unit, Oil and Gas Division

Form GW-2 P.O. Box 12967 Austin, Texas 78771-2967 Internet address: www.rrc.texas. 512-463-2741

Rev. 02/2014

Oil & Gas Data Query

Query Menu Help


Drilling Permit (W-1) Query Results

Search Criteria: API No.: 02532658													Return
2 results			Page	: 1 of 1							Pag	ge Size: v	iew All ❤
API NO.	District	<u>Lease</u>	Well Number	Permitted Operator	County	Status Date	<u>Status</u> <u>Number</u>	Wellbore Profiles	<u>Filing</u> <u>Purpose</u>	Amend	<u>Total</u> <u>Depth</u>	Stacked Lateral Parent Well DP #	<u>Status</u>
02532658 Links 🗸	02	CHARLIE C. OVERBY GAS UNIT	2	PARKER & PARSLEY DEVELOPMENT CO.(640889)	BEE	Submitted: 11/30/1992 Approved: 11/30/1992	406655	Vertical	New Drill	N	16700		APPROVED
02532658 Links 🗸	02	O'NEAL GAS UNIT (162214)	4	PARKER & PARSLEY DEVELOPMENT L.P(640886)	BEE	Submitted: 11/20/1996 Approved: 12/16/1996	455434	Vertical	Recompletion	N	14040		APPROVED
Download													Return

<u>Disclaimer</u> | <u>RRC Home</u> | <u>Contact</u>

NOTE: THE CHARLIE C. OVERBY GU AND THE O'NEAL GU ARE THE SAME WELL. THE OVERBY WELL WAS DRILLED IN 1993 INTO THE SLIGO. IN 1997 THE WELL WAS RECOMPLETED IN THE EDWARDS FORMATION. THIS WAS DONE UNDER A NEW LEASE, AS THE O'NEAL GU NO. 4.

11/28/23, 4:52 PM Form W-1: Field List

Log In

Form W-1: Review

Status # 406655	OP # 640889 - PARKER & PARSLEY DEVELOPMENT CO.	CHARLIE C. OVERBY GAS UNIT - Well # 2	New Drill			
API # 025-32658	Approved , Issued: 11/30/1992 , Filed: Hardcopy	02 - BEE County	Vertical			
NEAREST WELL COMMENT: 1607.8 (11/30/1992 12:00:00 AM)						

01/01/1993

Status:

Back to Public Query Search Results

Completion information							
Well Status Code	Spud Date	Drilling Completed	Surface Casing Date				
W - Final Completion	01/01/1993	02/11/1993	01/01/1993				

Field Name	Completed Well Type	Completed Date	Validated Date			
PAWNEE (SLIGO)	Gas	02/11/1993	06/18/1993			

General / Location Information

Basic Information:

	Welbore Profiles	Lease Name	Well #	SWR		Horizontal Wellbore	Stacked Lateral Parent Well DP #
New Drill	Vertical	CHARLIE C. OVERBY GAS UNIT	2	SWR 36	16700		

Surface Location Information:

API#	Distance from Nearest Town	Direction from Nearest Town	Nearest Town	Surface Location Type
025-32658	4.0 miles	S	PAWNEE	Land

Survey/Legal Location Information:

	Section	Block	Survey	Abstract #	County
l			EL&RR RR CO	452	BEE

Township	League	Labor	Porcion	Share	Tract	Lot

Perpendicular surface location from two nearest designated reference lines:

Perpendiculars	Distance	Direction	Distance	Direction
Survey Lines	2784.0 feet	from the S line and	1045.5 feet	from the W line

Permit Restrictions:

Code	Description
30	REGULAR PROVIDED THAT UPON SUCCESSFUL COMPLETION OF THIS WELL IN THE SAME RESERVOIR AS ANY OTHER WELL PREVIOUSLY ASSIGNED THIS ACREAGE, A P-15 AND REVISED PRORATION PLATS MUST BE SUBMITTED WITH NO
30	DOUBLE ASSIGNMENT OF ACREAGE.
30	REGULAR PROVIDED THIS WELL IS NEVER COMPLETED IN THE SAME RESERVOIR AS ANY OTHER WELL CLOSER THAN 2640 FEET ON THIS SAME LEASE.
30	REGULAR PROVIDED THIS WELL IS DRILLED IN COMPLIANCE WITH RULE 36.

11/28/23, 4:52 PM Form W-1: Field List

30 O'NEAL GU #3, O'NEAL #1, OVERBY #120 & NEAL #1. **Fields** Distance to Distance to Field Completion Lease Well Well Pooled/ **SWR District** Field # Nearest Acres Nearest Unitized Name Depth Name Type Well **Lease Line PAWNEE** 02 CHARLIE C. Oil or (SLIGO) SWR 2 69845800 16700 **OVERBY GAS** Gas 704.0 Υ 36 **Primary** UNIT Well Field **Perpendiculars Direction** Distance Direction **Distance Surface Lease Lines** 2390.0 feet from the E line and 3446.0 feet from the N line Comments Remark **Date Entered Entered By** NEAREST WELL COMMENT: 1607.8 11/30/1992 12:00:00 AM **SYSTEM Attachments File Path** Associated Fields and/or Plats **Attachment Type**

<u>Disclaimer</u> | <u>RRC Online Home</u> | <u>RRC Home</u> | <u>Contact</u>

Form W-1: Review

 Status # 455434
 OP # 640886 - PARKER & PARSLEY DEVELOPMENT L.P API # 025-32658
 O'NEAL GAS UNIT - Well # 4 O25-32658
 Recompletion Vertical

NEAREST WELL COMMENT: 1787 (11/20/1996 12:00:00 AM)

Status:

Back to Public Query Search Results

Completion Information	
Well Status Code	Spud

Ш	Well Status Code	Spud Date	Drilling Compl	eted Surface Casing Date
I	W - Final Completion	02/04/1997	02/13/199	7
	Field Name	Completed Well	Type Complete	d Date Validated Date
II	PAWNEE (EDWARDS)	Gas	02/13/1	997 02/26/1997

General / Location Information

Basic Information:

Filing Purpose	Welbore Profiles	Lease Name	Well #	SWR	Total Depth	Horizontal Wellbore	Stacked Lateral Parent Well DP #
Recompletion	Vertical	O'NEAL GAS UNIT	4	SWR 36, SWR 37H	14040		

Surface Location Information:

API#	PI # Distance from Nearest Town		Nearest Town	Surface Location Type	
025-32658	3.5 miles	s	PAWNEE	Land	

Survey/Legal Location Information:

Section	Block	Survey	Abstract #	County
		E.L.&R.R. RR CO. #1	452	BEE

Ш	Township	League	Labor	Porcion	Share	Tract	Lot
Ш							

Perpendicular surface location from two nearest designated reference lines:

Perpendiculars	Distance	Direction	Distance	Direction
Survey Lines	825.0 feet	from the W line and	2784.0 feet	from the S line

Permit Restrictions:

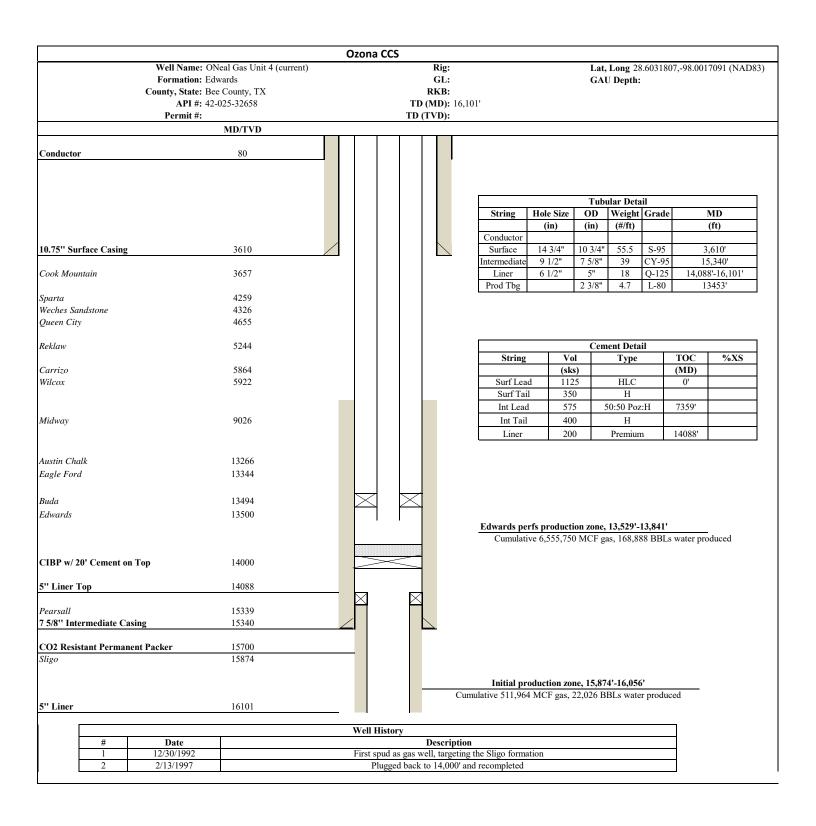
Code	Description
30	WILDCAT ABOVE 14040 FEET.
30	ANY WELLBORE DRILLED UNDER THIS PERMIT MUST BE COMPLETED, OPERATED, AND PRODUCED IN COMPLIANCE WITH STATEWIDE RULE 32.
30	REGULAR PROVIDED THIS WELL IS DRILLED IN COMPLIANCE WITH RULE 36.

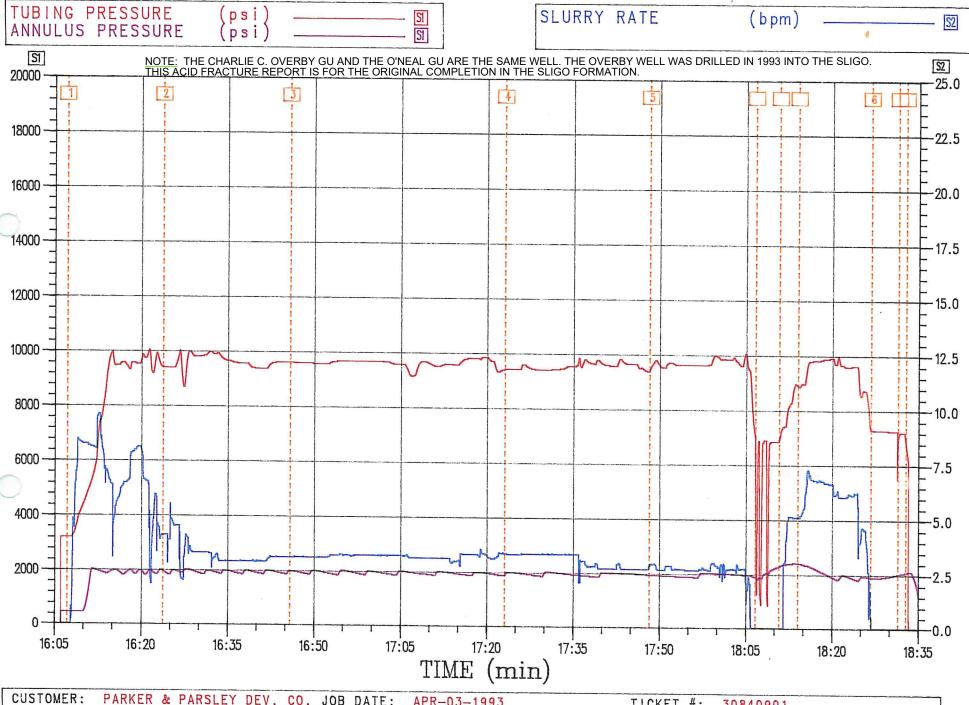
Fields

							_						=
District	Field Name	Field #	Completion Depth	Lease Name	Well#	Well Type	Acres	Distance to Nearest Well	Distance to N	earest Lease Line	SWR	Pooled/ Unitiz	ec
	WILDCAT Primary Field	00004001	14040	O'NEAL GAS UNIT	4	Oil or Gas Well	704.0				37H	Y	
	Perpendicular	rs		Distance		Direction		Dis	tance	Direction			1
	Surface Lease	e Lines		4900.0 feet		from the W lir	ne and	278	34.0 feet	from the S	line		
													_

District	Field Name	Field #	Completion Depth	Lease Name	Well #	Well Type	Acres	Distance to Nearest Well	Distance to Nearest Lease Li	e SWR	Pooled/ Unitized
02	PAWNEE (EDWARDS)	69845200	14040	O'NEAL GAS UNIT	4	Gas Well	704.0			SWR 36, 37H	Υ
	Perpendiculars		Dist	tance		Direction			Distance Di	rection	
	Surface Lease Lines		490	0.0 feet	f	rom the W lir	ne and		2784.0 feet fro	m the S line	

Exceptions


l	Field	Exception	Case Docket Number	Resolution
l	WILDCAT	SWR 37 [Historical]	0214349	
l	PAWNEE (EDWARDS)	SWR 37 [Historical]	0214349	


Comments

Remark	Date Entered	Entered By
NEAREST WELL COMMENT: 1787	11/20/1996 12:00:00 AM	SYSTEM

Attachments

Attachment Type File I	e Path	Associated Fields and/or Plats
------------------------	--------	--------------------------------

CUSTOMER: PARKER & PARSLEY DEV. CO. JOB DATE: APR-03-1993 TICKET #: 30840901
WELL DECS: OVERBY #2 FORMATION: SLIGO JOB TYPE: SWIC ACID BALLOUT

Customer: PARKER & PARSLEY DEV. CO. Well Desc: OVERBY #2

Ticket #: 30840901
Formation: SLIGO

Date: Apr 3, 1993 Job Type: SWIC ACID BALLOUT

TIME	STAGE	TUBING PR	ANNULUS PR	SLURRY RT
HR:MM:SS	NO	(psi)	(psi)	(bpm)
16:06:02	0	0	0	0.00
16:07:02	0	3216	470	0.00
16:08:02	1 8	Event(Eng) Operato	r Stage Adva	
16:08:02	1	3251	470	2.65
16:09:02	1	3904	470	8.43
16:10:02	1	4471	528	8.24
16:11:02	1	5059	1612	8.17
16:12:02	1	5812	1978	8.04
16:13:02	1	7558	1906	8.62
16:14:02	1	9069	1875	7.03
16:15:02	1	9950	2004	5.82
16:16:02	1	9504	1922	5.82
16:17:02	1	9572	1863	6.51
16:18:02	1	9304	2003	6.86
16:19:02	1	9539	1870	8.03
16:20:02	1	9725	1945	7.95
16:21:02	1	9862	1920	6.52
16:22:02	1	9216	1886	4.43
16:23:02	1	9672	1992	4.43
16:24:02		vent(Eng) Operator		
16:24:02	2	9384	1906	4.15
16:25:02	2	9416	1906	5.36
16:26:02	2	9547	1964	4.56
16:27:02	2	9150	1915	2.05
16:28:02	2	9898	2032	3.96
16:29:02	2	9812	1948	3.30
16:30:02	2	9824	1876	3.30
16:31:02	2	9882	1944	3.30
16:32:02	2	10020	1967	3.26
16:33:02	2	9946	18 9 8	3.24
16:34:02	2	9733	1986	2.90
16:35:02	2	9654	1980	2.90
16:36:02	2	9590	1921	2.90
16:37:02	2	9558	1870	2.91
16:38:02	2	9552	2018	2.90
16:39:02	2	9420	1960	2.90
16:40:02	2	9377	1908	2.97
16:41:02	2	9369	1866	2.90
16:42:02	2	9485	2010	3.07
16:43:02	2	9635	1961	3.10
16:44:02	2	9647	1910	3.09
16:45:02	2	9644	1868	3.12
16:46:02		ent(Eng) Operator		
16:46:02	3	9622	2011	3.10
16:47:02	3	9601	1955	3.10
16:48:02	3	9597	1905	3.10
16:49:02	3	9596	1867	3.10
16:50:02	3	9568	2020	3.10
16:51:02	3	9553	1968	3.10
16:52:02	3	9551	1923	3.10
16:53:02	3	9667	1883	3.26
16:54:02	3	9707	1859	3.26
16:55:02	3	9708	2024	3.22
16:56:02	3	9718	1974	3.27
16:57:02	3	9720	1927	3.25

Customer: PARKER & PARSLEY DEV. CO.

Well Desc: OVERBY #2

Ticket #: 30840901 Formation: SLIGO Date: Apr 3, 1993 Job Type: SWIC ACID BALLOUT

TIME	STAG	E TUBING PR A	NNULUS PR	SLURRY RT
HR: MM: SS	NO	(psi)	(psi)	(bpm)
16:58:02	3	9705	1883	3.26
16:59:02	3	9709	1984	3.23
17:00:02	3	9686	1996	3.26
17:01:02	3	9677	1958	3.27
17:02:02	3	9671	1924	3.26
17:03:02	3	9630	1889	3.26
17:04:02	3	9563	1857	3.26
17:05:02	3	9560	2025	3.26
17:06:02	3	9417	1983	3.28
17:07:02	3	9153	1949	3.12
17:08:02	3	9569	1933	3.12
17:09:02	3	9691	1909	3.10
17:10:02	3	9592	1880	3.12
17:11:02	3	9509	1943	3.10
17:12:02	3	9568	2012	3.10
17:13:02	3	9611	1979	3.12
17:14:02	3	9576	1947	2.97
17:15:02	3	9607	1917	3.06
17:16:02	3	9805	1893	3.28
17:17:02	3	9858	1865	3.29
17:18:02	3	9827	2031	3.28
17:19:02	3	9864	1994	3.43
17:20:02	3	9872	1963	3.30
17:20:02	3	9681	1927	3.12
17:22:02	3	9325	1884	3.37
17:23:02	3	9445	1902	3.33
17:23:02		Event(Eng) Operator		
17:24:02	4	9468	2027	3.32
17:24:02	4	9436	1988	3.32
17:25:02	4	9594	1960	3.33
17:27:02	4	9502	1928	3.33
17:27:02	4	9428	1896	3.32
17:20:02	4	9425	1867	3.33
17:29:02	4	9437	2045	3.33
17:30:02	4	9439	2073	3.32
17:31:02	4	9454	1996	3.32
17:32:02	4	9492	1971	3.32
17:33:02	4	9577	1947	3.32
17:34:02	4	9585	1923	3.32
17:35:02	4	9818	1908	2.69
	4	9839		2.93
17:37:02 17:38:02	4	9661	1889 1870	2.82
17:38:02	4	9808	1862	2.82
17:39:02		9642		
	4		2047	2.67
17:41:02 17:42:02	4	9589	2027	2.69
		9583	2015	2.69
17:43:02	4	9858	2011	2.90
17:44:02 17:45:02	4 4	9662 9649	1996 1986	2.69 2.68
17:45:02	4	9624	1973	2.68
17:47:02	4	9477	1956	2.69
17:47:02	4	9360	1942	2.68
17:40:02		Event(Eng) Operator		
17:49:02	5	9770	1941	2.99
17:50:02	5	9585	1926	2.66
17:30:02	J	3,10,1	1320	4:00

Customer: PARKER & PARSLEY DEV. CO. Well Desc: OVERBY #2

Ticket #: 30840901
Formation: SLIGO

Date: Apr 3, 1993 Job Type: SWIC ACID BALLOUT

TTUE	0740	* ************************************		m (11m m 11 m m						
TIME	STAGE		ANNULUS PR	SLURRY RT						
HR: MM: SS	<u>NO</u>	(psi)	(psi)	(bpm)						
17:51:02	5	9577	1913	2.85						
17:52:02	5	9749	1908	2.78						
17:53:02	5	9627	1895	2.68						
17:54:02	5	9638	1885	2.67						
17:55:02	5	9636	1873	2,68	•					
17:56:02	5	9642	1866	2.68						
17:57:02	5	9658	2047	2.70						
17:58:02	5	9659	2047	2.68						
17:59:02	5	9789	2036	2.99						
18:00:02	5	9937	2028	2.78						
18:01:02	5	9837	2014	2.93						
18:02:02	5	9857	2003	2.72						
18:03:02	5	9874	1992	2.70						
18:04:02	5	9617	1972	2.73						
18:05:02	5	10006	1978	2.05						
18:06:02	5	8309	1925	0.00						
18:07:02		vent (Eng)			DOWN	TO	SURGE	BALLS	ISIP	9320
18:07:02	5	6123	1842	0.00						
18:08:02	5	6862	2033	0.00						
18:09:02	5	6742	2129	0.00						
18:10:02	5	6873	2278	0.00						
18:11:02		vent(Eng)		PUMPING						
18:11:02	5	7239	2367	0.00						
18:12:02	5	7694	2426	4.18						
18:13:02	5	8434	2440	5.10						
18:14:02		•	SURE BREAK A							
18:14:02	5	8891	2411	5.11						
18:15:02	5	8952	2350	5.52						
18:16:02	5	9814	2296	7.05						
18:17:02	5	9831	2203	6.76						
18:18:02	5	9875	2099	6.78						
18:19:02	5	9919	1995	6.67						
18:20:02	5	9954	1896	6.63						
18:21:02	5	10000	1852	6.15						
18:22:02	5	9622	2000	6.05						
18:23:02	5	9607	1903	6.16						
18:24:02	5	9620	1822	6.17						
18:25:02	5	8541	1978	4.22						
18:26:02	5	8562	1933	3.72						
18:27:02		<u>/ent(Eng) Operator</u>								
18:27:02	6	7285	1880	0.00						
18:28:02	6	7269	1913	0.00						
18:29:02	6 6	7259	1954	0.00						
18:30:02	6	7251	2001	0.00						
ctctttttt	cett	EEEEEEEEEEEEEEE	בכבבבבבבב	tetetetet						

Customer: PARKER PARSLEY DEV. CO. Date: APR-03-1993 Well Desc: OVERBY 30840901

Formation: SLIGO

Job Type: SWIC ACID BALLOUT

WELLBORE CONFIGURATION

Wellbore Segment	Actual Length	TVD	Casing ID	Casing OD	Tubing ID	Tubing OD
Number	(feet)	(feet)	(inch)	(inch)	(inch)	(inch)
1	14088	14088	4.276	5.000	2.441	2.875
	15874	15874	4.276	5.000	0.000	0.000

PERFORATIONS DATA

of Perforations <u>15</u> Perf. Diameter .3 Balled Out? (YES/NO) <u>ves</u>

PERFORATED INTERVALS

FROM	TO	SFF
(feet)	(feet)	
15874	16056	1

Well Desc: OVERBY Formation: SLIGO

Tickat #: 30840901

Job ype: SWIC ACID BALLOUT

ratelians inventor

Treatment Fluid:		Density 8.	<u>96</u> lb/gal	
Displacement Fluid:		Density 8.	<u>33</u> lb/gal	
Surfactant Type:		gal <u>20</u>	<u> </u>	gal/Mgal
Clay Control:	************************************	gal <u>40</u>	<u> </u>	gal/Mgal
Friction Reducer:	***************************************	gal <u>20</u>	<u> (a 1</u>	gal/Mgal
Perfpac Balls:	30	Qty 7/8	Size 1.3	5.6.

Customer: PARKER PARSLEY DEV. CO. Date APR-03-1993
Well Desc: OVERBY Tic t #: 30840901
Formation: SLIGO Job Type: SWIC ACID BALLOUT

MATERIALS ON LOCATION

STARTING FLUID VOLUME _____20000(gal)

Well Desc: OVERBY (*)
Formation: SLIGO

Are supported in the state of the support of the su

Tic/t #: 30840901 Job ype: SWIC ACID BALLOUT

ACID DATA

Acid Type:	***************************************	% <u>11</u>	gal	100	000	
Surfactant Type:	HC-2	gal	50	<u>(a</u>	5	gal/Mgal
NE Agent Type:		gal	50	<u>(ci</u>	raj	gal/Mgal
Corrosion Inh.:	<u> HAI-85</u>	gal	200	(ë)	20	gal/Mgal
Corrosion Inh.:	HII-500	gal	200		20	gal/Mgal
Cracking Inh.:	SCA-130	gal	200		20	gal/Mgal
Iron Sequester:	***************************************	1 b	1000	<u>@</u>	100	īb/Mgal
Friction Reducer:	SGA-HT	gal	30	(ë)	3	qal/Mqal
Other:	ABF	ĽВ	120		12 lb/M	

Customer: PARKER PARSLEY DEV. CO. Dat APR-03-1993 Well Desc: OVERBY #2

Formation: SLIGO

Ticket #: 30840901

Job Type: SWIC ACID BALLOUT

JOE SCHEDULE

STAGE DESCRIPTIONS

<u>Stage</u>	Description											
1	TREATED WATER - LOAD HOLE, EST. RATE											
	SWIC ACID											
3	SWIC ACID WITH 30 BALLS											
ei.	SWIC ACID											
5	TREATED WATER - FLUSH											
6	SHUTDOWN MONITOR PRESSURE											

JOE SCHEDULE

STAGE INFORMATION

	11	2	3	4	5	6
Fluid Type	FR-26LC	SGA-HT 15%	SGA-HT 15%	SGA-HT 15%	FR-26LC	FR-26LC
Planned Clean Volume (gal)	5000	3000	5000	2000	6000	0
Planned Slurry Volume (gal)	5000	3000	5000	2000	6000	0
Actual Slurry Volume (gal)	4764	2997	5002	3217	5628	2
Base Fluid Density (lb/gal)	8.33	8.96	8.96	8.96	8.33	8.33
Concentration	1.00	3.00	3.00	3.00	1.00	1.00
Proppant Size						
Proppant Type						
Abs. Proppant Volume (gal/lb)	0.04530	0.04530	0.04530	0.04530	0.04530	0.04530
Planned Fluid Rate (bpm)	8.00	10.00	10.00	10.00	10.00	0.00
Planned Prop Conc (1b/gal)	0.00	0.00	0.00	0.00	0.00	0.00

Customer: PARKER PARSLEY DEV. CO.
Well Desc: OVERBY Tic t #: 30840901
Formation: SLIGO Job Type: SWIC ACID BALLOUT

Customer: PARKER PARSLEY DEV. CO. Well Desc: OVERBY

Formation: SLIGO

Dat Apr 3, 1993 Tic t #: 30840901 Job Type: SWIC ACID BALLOUT

STAGE SUMPLEY

Stage Times

<i>2</i> ** 1	Start	End	Elapsed	Time
Stage	Time	Time	Time	at Perfs
1	16:07:05	16:23:44	00:16:39	16:25:09
2	16:23:44	16:45:47	00:22:03	16:58:54
3	16:45:47	17:23:04	00:37:17	17:21:16
c‡	17:23:04	17:48:11	00:25:07	18:01:29
Eij	17:48:11	18:26:43	00:38:32	18:22:26
6	18:26:43	18:37:38	00:10:55	?
Total			02:30:33	

	Tubing Pressure	Annulus Pressure	BHP Calc'd Pressure	Slurry Rate	Slurry Volume
Stage	(psi)	(psi)	(psi)	(mad)	(gal)
1	7748	1613	13382	6.44	4767
	9615	1940	16354	3.24	2996
3	9626	1943	16518	3.19	5002
44.	9560	1961	16495	3.05	3215
5	9005	2036	15742	3.48	5629
6	4293	1578	11097	0.01	2
Tot/Avg	8860	1906	15552	3.38	21610

Customer: PARKER PARSLEY DEV. CO. Well Desc: OVERBY

Formation: SLIGO

Datr APR-03-1993

Tic t #: 30840901

Job Type: SWIC ACID BALLOUT

	Event Time	
	stage mneum HH:MM:SS Event Description	
6	1 stgad 16:07:05 Operator Stage Advance	> TREATED WATER - LOAD HOLE, EST. RATE
6	2 stgad 16:23:44 Operator Stage Advance	> SWIC ACID
6	3 stgad 16:45:47 Operator Stage Advance	> SWIC ACID WITH 30 BALLS
e	4 stgad 17:23:04 Operator Stage Advance	> SWIC ACID
6	5 stgad 17:48:12 Operator Stage Advance	> TREATED WATER - FLUSH
e	5 NOTES 18:06:36 Operator's Notes	*** SHUT DOWN TO SURGE BALLS ISIP 9320
e	5 NOTES 18:10:44 Operator's Notes	*** RESUME PUMPING
£	5 NOTES 18:14:01 Operator's Notes	*** PRESSURE BREAK AT 9000PSI
e	6 stgad 18:26:43 Operator Stage Advance	> SHUTDOWN MONITOR PRESSURE
6	6 NOTES 18:31:25 Operator's Notes	*** ISIP = 7285 PSI FG = .889
₽	6 NOTES 18:32:46 Operator's Notes	*** 5 MIN SIP = 7238 PSI

Plugging Record

RAILROAD COMMISSION OF TEXAS OIL AND GAS DIVISION

FORM W-3 Rev. 12/92 EAG0897

		- 1														
						API NO (if available) 42-025-30388						1.	RRC District			
	FILE	IN DUPLIC	CATE	WITH DISTRICT	OFFI	CF C)F I	DISTE	PICT	INI VA	/HICH				C	2
				TED WITHIN THI										4.	RRC Lease	or Id.
		VVLLL IS L	OCA	ILD VVICENIA I I II	KII L	AIS	АГ	· I E K	PLUC	יווטכ	16			1	Number 064112	
2 FIELD NA	ME (as	per RRC Reco	ords)		3.	Lease	Nan	ne						5.	Well Numbe	r
Pawnee				(Sligo)	,	Ova	erb	y, Ch	arlie	e C.	Gas Unit	2		ı	1	
6. OPERATO	6a.	. Origi	inal l	Form W	-1 Filed	i in Na	ame of			10.	County					
Pioneer	. Nat	ural Resou	rces	USA, Inc.										1	Bee	2
7. ADDRESS	6 6b.	. Any	Subs	sequent	W-1's F	iled ii	n Name of.	····		11.	Date Drilling					
5205 N. C	ex l										Permit Issue	ed				
				ase Boundaries	11625	Fee	t Fro	om W	/	L	me and 17.	50	Feet Fron	1 12	Permit Num	ber
of Lease or	í which	this Well is Lo	cated		S			the Si	urve	4		***	Lease	7	-	
9a SECTION,	, BLOC	K, AND SUR	VEY		9b.	Dista	nce	and Dire	ection I	rom l	Vearest Town	n ın this		13.	Date Drillin	
Marcelo	Ale	carte		A-70	ĺ	Cou	iity	3.5	miles	s Sot	uth of Pa	awnee			Commence	•
16. Type Well		Total Depth	17. If I	Multiple Completion La	st All Fie	eld Nar	nes a	and Oil	Lease c			010	West 1	14.	Date Drillin	
(Óíl, Gas, I Gas	Ury)	16,300								OIL	GAS ID or LEASE#	Oıl-O Gas-G	WELL		Completed	_
18. If Gas, Am Hand at tu	it. of Co				***									15.	Date Well P	lugged
Hand at tu	me of F	lugging													3-6-07	
CEMEN	TIME 1	O PLUG AND	A D A NIC	ON DATA:	PLUC	2 #4	ы	JG #2	PLUC	- 42	PLUG #4	PLUG #	5 PLU	C 46	PLUG #7	PLUG #8
*19. Cementing		OT LOG AND	ADAIL	ON DATA.		-27		2-27	3-		3-5	3-6		-6	FLUG #/	FLUG #6
		ine in which Pl	ng Plac	ed (inches)		3 1/2 3 1/2 7			<u> </u>	7	<u>' </u>	<u>-0</u> 7	┪┈┈┈			
21. Depth to E										+		-	<u> </u>			
*22. Sacks of C				c (la),		310	9200 3800 3563		300		<u>.5</u>		 			
*23 Slurry Vol			g)	1.0000		1	1 35			55	55		6	 		
*24 Calculated						1.06 1.06			37.		58.30	 	58.30 6.		 	
25. Measured) (ft)		92	280	<u> 9</u>	180	36	50	3428	200		5	-	
*26. Slurry Wt.					10	5.4	 	.6.4	16	4	16.4	187			 	
*27. Type Cem			• •	و ساده لم الميما له داره و		H.	├──±	H	10 10		16.4 H	16. H		5.4 H		ļ
28. CASING A		IBING PECOPI	AETE	D DI LICCING		.1	!	129. W	as any	Non-I	Orillable Ma	terial (Otl			Yes	
					Lucies	171 /13	W 1				eft in This W		-41-4-4	- 611:		□ No
		PUT IN WELL	. (11.)	LEFT IN WELL (ft.)	HOLE S	<u>`</u>	¥.)	29a. 1	nd brig	er to a	oove is "Yes scribe non-d	state de rillable m	pin to top iaterial. (oi "ju Use R	nk" left in ho everse Side o	ie f
	.50	61		61		NK.					space is nee	-		2000		\
	.50 .50	3513 15.529		3508		5"					_				' to 15,0	
				15,524		3/4				_		1/4" t	ubing :	crom	9340' to	16,143
	NK	15055-16		14247 PRATED INTERVALS	L			ars	о те	rc_1	n well.					
		···		`				777	0) (
FROM	15,9	11	TC	10,072					OM				TO			
FROM			TC						OM				ТО			
FROM TO								FR	OM		· · · · · · · · · · · · · · · · · · ·		TO			
FROM			TC)				FR	OM				TO			
FROM			TC)				FR	OM				TO			
I have knowled	ge that	the cementing	operati	ions, as reflected by the	ınformat	tion for	und (on this f	orm, w	еге ре	rformed as 1	ndicated l	by such in	REG	EIVED	
 Designates ite 	ms to b	e completed by	/ Ceme	nting Company. Items	not so de	esignat	ed sl	hall be c	omplet	ed by	Operator.		CENT	RA	L RECO	RDS

Pat's P & A, Inc.

JUN 01 2007

Signature of Cementer or Authorized Representative

Name of Cementing Company

I declare under penalties prescribed in Sec. 91.143, Texas Natural Resources Code, that I am authorized to make this report, that this report, that this report was prepared by me or under my supervision and direction, and that data and facts stated therein are true, correct and complete, to the best of my knowledge

 PROD SUPT.
 3-22-07
 Phone 36/364-1732

 TITLE
 DATE
 A/C
 NUMBER

Depth of Deepest Fresh Water 250 36. If NO, Explain 36. If NO, Explain Date RRC District Office Park In Proceeding or Service company who mixed and pumped cement plugs in this well profifed of plugging profifed profife	LBS/GA Yes No 23-07
16,300 Depth of Deepest Fresh Water 250 36. If NO, Explain Date RRC District Office notified of plugging 2-2 Date RRC District Office notified of plugging 2-2 Name(s) and Addresse(s) of Surface Owners of Well Site	Yes No
Depth of Deepest Fresh Water 250 36. If NO, Explain 36. If NO, Explain 37. Name and Address of Cementing or Service company who mixed and pumped cement plugs in this well Pat's P & A, Inc. P.O. Box 0126, Bishop 'IX 78343 38. Name(s) and Addresse(s) of Surface Owners of Well Site	
Depth of Deepest Fresh Water 250 37. Name and Address of Cementing or Service company who mixed and pumped cement plugs in this well Pat's P & A, Inc. P.O. Box 0126, Bishop TX 78343 38. Name(s) and Addresse(s) of Surface Owners of Well Site	<u>.</u> 3–07
250 37. Name and Address of Cementing or Service company who mixed and pumped cement plugs in this well Pat's P & A, Inc. P.O. Box 0126, Bishop 'TX 78343 B. Name(s) and Addresse(s) of Surface Owners of Well Site Date RRC District Office notified of plugging 2-2	23-07
Pat's P & A, Inc. P.O. Box 0126, Bishop TX 78343 Name(s) and Addresse(s) of Surface Owners of Well Site Date RRC District Office notified of plugging 2-2	23-07
Pat's P & A, Inc. P.O. Box 0126, Bishop 'IX 78343 notified of plugging 2-2 8. Name(s) and Addresse(s) of Surface Owners of Well Site	23-07
8. Name(s) and Addresse(s) of Surface Owners of Well Site	23-07
	
9. Was Notice Given Before Plugging to the Above?	
ILL IN BELOW FOR DRY HOLES ONLY	
 For Dry Holes, this Form must be accompanied by either a Driller's, Electric, Radioactivity or Acoustical/Sonic Log or such Log must be released to a Commercial Log Service. 	
Log Attached Log released to	
Log Attached Log released to Date	
Type Logs:	
Driller's Electric Radioactivity Acoustical/Sonic	
Data FORM D. R. (Caracial Classes A. P.S. 10	
V. Date PUNIVER-A INDECIAL CLEATABLE FILED?	
1. Date FORM P-8 (Special Clearance) Filed?	
Amount of Oil produced prior to Plugging	
2. Amount of Oil produced prior to Pluggingbbls*	
2. Amount of Oil produced prior to Plugging bbls* * Field FORM P-1 (Oil Production Report) for month this oil was produced	
2. Amount of Oil produced prior to Plugging bbls* * Field FORM P-1 (Oil Production Report) for month this oil was produced RRC USE ONLY.	
2. Amount of Oil produced prior to Plugging bbls* * Field FORM P-1 (Oil Production Report) for month this oil was produced RRC USE ONLY.	
2. Amount of Oil produced prior to Pluggingbbls* * Field FORM P-1 (Oil Production Report) for month this oil was produced RRC USE ONLY Nearest Field	ī
Amount of Oil produced prior to Pluggingbbls* * Field FORM P-1 (Oil Production Report) for month this oil was produced RRC USE ONLY Nearest Field Nearest Field Nearest Field Nearest Field Nearest Field 1ARKSUnable to recover 3 1/2" tbg. as anticipated above existing 1 1/4" fish @ 9340". Jet cut 3 1/2"	1/2
Amount of Oil produced prior to Plugging	1/2 ow and
Amount of Oil produced prior to Plugging * Field FORM P-1 (Oil Production Report) for month this oil was produced * RRC USE ONLY. Nearest Field * Nearest F	1/2 ow and orated
Amount of Oil produced prior to Plugging * Field FORM P-1 (Oil Production Report) for month this oil was produced * RRC USE ONLY Nearest Field * Nearest Field * Nearest Field * Unable to recover 3 1/2" tbg. as anticipated above existing 1 1/4" fish @ 9340'. Jet cut 3 1/2" 9302' & 9243'. Unable to pull or establish circulation up 3 1/2 x 7" @ 3500 P.S.I. Freepoint on 3 1 reg. at 4750 * Notified and received approval from Kevin Shamette W/RRC to set CIBP's + 20' cmt below cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance of the control of the	1/2 ow and orated
Amount of Oil produced prior to Plugging * Field FORM P-1 (Oil Production Report) for month this oil was produced * RRC USE ONLY. Nearest Field * Nearest F	1/2 ow and orated
* Field FORM P-1 (Oil Production Report) for month this oil was produced **RRC USE ONLY* Nearest Field ** ** ** ** ** ** ** ** **	1/2 ow and orated amette
Amount of Oil produced prior to Plugging * Field FORM P-I (Oil Production Report) for month this oil was produced * RRC USE ONLY Nearest Field * Nearest Field * Notified and received approval from Kevin Shamette W/RRC to set CIBP's + 20' cmt belowe cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762' and perform to 3 1/2" @ 4765' but unable to pull or circulate. Re-cut @ 3800'. Received verbal approval from Kevin Shamette V/RRC to set CIBP's + 20' cmt below to stablish circulate. Re-cut @ 3800'. Received verbal approval from Kevin Shamette V/RRC to set CIBP's + 20' cmt below to stablish circulate. Re-cut @ 3800'. Received verbal approval from Kevin Shamette V/RRC to set plug from 3800' to 3650' Cut & perforated 7" casing @ 3563'. Casing not free. Unable to stablish circulation but established injection into 7" x 8 3/4" @ 2000	1/2 ow and orated amette
Amount of Oil produced prior to Plugging * Field FORM P-1 (Oil Production Report) for month this oil was produced * RRC USE ONLY Nearest Field * Notified and received approval from Kevin Shamette W/RRC to set CIBP's + 20' cmt belower cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762'and performance of the company of the com	1/2 ow and orated amette
Amount of Oil produced prior to Plugging * Field FORM P-I (Oil Production Report) for month this oil was produced * RRC USE ONLY Nearest Field * Nearest Field * Notified and received approval from Kevin Shamette W/RRC to set CIBP's + 20' cmt belowe cut's made on 3 1/2. Plug #1 & #2 - CIBP + 20' cmt. in 3 1/2" 12.95#. Cut 3 1/2 @ 4762' and perform to 3 1/2" @ 4765' but unable to pull or circulate. Re-cut @ 3800'. Received verbal approval from Kevin Shamette V/RRC to set CIBP's + 20' cmt below to stablish circulate. Re-cut @ 3800'. Received verbal approval from Kevin Shamette V/RRC to set CIBP's + 20' cmt below to stablish circulate. Re-cut @ 3800'. Received verbal approval from Kevin Shamette V/RRC to set plug from 3800' to 3650' Cut & perforated 7" casing @ 3563'. Casing not free. Unable to stablish circulation but established injection into 7" x 8 3/4" @ 2000	1/2 ow and orated amette P.S. sks.

Area of Review: Oil & Gas Wells List										
API	WELL NAME	WELL NO.	CURRENT OPERATOR	ABSTRACT	LATITUDE (WGS84)	LONGITUDE (WGS84)	WELL STATUS	TOTAL DEPTH (TVD FT.)	PERFORATED INTERVAL (MD FT.)	DATE DRILLED
4202500002	ONEAL, A.	1	ROWAN & HOPE	126	28.603017	-98.000911	DRILLED	7010	NO RECORD	8/9/1949
4202500005	RUSSELL, S.	1	PAN AMERICAN PETROLEUM CORP.	308	28.594587	-97.999841	DRILLED	7515	NO RECORD	5/12/1947
4202530346	HENRY BUES	1	PIONEER NATURAL RES. USA, INC.	70	28.5986210	-98.0118480	INACTIVE PRODUCER	13842	7554-7558; 7612-7624; 13526-13760	11/10/1974
4202530359	ONEAL GAS UNIT	2	BB-SOUTHTEX, LLC	127	28.61178	-98.000661	PRODUCING	13961	13349-15821	4/5/1975
4202530388	OVERBY, CHARLIE C. GAS UNIT	1	PIONEER NATURAL RES. USA, INC.	70	28.601086	-98.005037	P & A	16300	15911-16072	6/6/1975
4202532342	DE LEON	1	T D EXPLORATION, INC.	126	28.6006330	-97.9917520	P & A	6512	NO RECORD	12/31/1985
4202532501	HENRY BUES GAS UNIT	2	BB-SOUTHTEX, LLC	70	28.599863	-98.009994	PRODUCING	13896	13504-15637	11/15/1988
4202532638	ONEAL GAS UNIT	3	BB-SOUTHTEX, LLC	70	28.604583	-98.007079	PRODUCING	13834	13508-13668	3/12/1992
4202532842	OVERBY, CHARLIE C.	1E	PIONEER NATURAL RES. USA, INC.	70	28.5998760	-98.0053330	P & A	14000	13514-13838	10/9/1995
4202532967	TOMASEK GAS UNIT	5	BB-SOUTHTEX, LLC	126	28.609862	-97.991519	PRODUCING	13875	13434-15693	6/12/1999
4202533006	ONEAL GAS UNIT	5	BB-SOUTHTEX, LLC	70	28.6067950	-98.0042210	PRODUCING	13772	13463-13764	7/15/2000
4202533035	ONEAL GAS UNIT	6	BB-SOUTHTEX, LLC	127	28.61091	-97.999073	PRODUCING	13835	13310-13833	9/14/2000
4202533085	ONEAL GAS UNIT	7	BB-SOUTHTEX, LLC	127	28.609397	-98.001471	PRODUCING	13868	13314-16072	5/4/2001
4202533114	HENRY BUES GAS UNIT	8	BB-SOUTHTEX, LLC	70	28.5984810	-98.0090260	PRODUCING	13732	13348-13732	6/11/2001
4202533197	ONEAL GAS UNIT	8	BB-SOUTHTEX, LLC	452	28.6075430	-98.0037990	PRODUCING	15638	13565-13820	2/5/2003

O'Neal Gas Unit No. 4

4202533272	HENRY BUES GAS UNIT	11	BB-SOUTHTEX, LLC	70	28.598737	-98.008615	PRODUCING	13856	13291-15853	6/23/2004
4202533273	ONEAL GAS UNIT	9	BB-SOUTHTEX, LLC	452	28.6029540	-98.0025090	PRODUCING	13872	13311-16585	6/3/2004
4202533328	ONEAL GAS UNIT	11	BB-SOUTHTEX, LLC	126	28.6036340	-97.9982100	PRODUCING	13787	13318-15928	4/19/2005
4202533345	TOMASEK GAS UNIT	8	BB-SOUTHTEX, LLC	126	28.608282	-97.991595	PRODUCING	13692	13293-16378	8/14/2004
4202533371	ONEAL GAS UNIT	12	BB-SOUTHTEX, LLC	452	28.6097460	-98.0027040	PRODUCING	13819	13313-16635	8/15/2006
4202533383	HENRY BUES GAS UNIT	15	BB-SOUTHTEX, LLC	70	28.600322	-98.00874	PRODUCING	13811	13302-15768	10/8/2006
4202533492	ONEAL GAS UNIT	13	BB-SOUTHTEX, LLC	70	28.605326	-98.012928	PRODUCING	13859	13382-14761	7/7/2007
4202533553	ONEAL GAS UNIT	14	BB-SOUTHTEX, LLC	127	28.613869	-98.000504	PRODUCING	13674	13450-15424	2/11/2008
4202533559	OVERBY GAS UNIT	2E	BB-SOUTHTEX, LLC	452	28.6011410	-98.0028580	PRODUCING	13734	13372-13734	3/23/2008
42025E2114	NO RECORD	NR	NO RECORD	126	28.608457	-97.995683	NO RECORD	NR	NO RECORD	NR

*Note: Well entries in red penetrate the upper confining layer.

O'Neal Gas Unit No. 4

Area of Review: Freshwater Wells List										
WELL REPORT/ID NO.	OWNER'S NAME	OWNER ADDRESS	CITY/STATE/ZIP	LAT. WGS 84	LONG. WGS 84	WELL USE	WATER LEVEL (FT.)	TOTAL DEPTH (FT.)	DATE DRILLED	
128936	JOHN DAVIDSON	12761 FM 673	KENEDY, TX 78119	28.606667	-98.011667	DOMESTIC	48	114	11/19/2007	
7832308	HENRY BUES	NO RECORD	NO RECORD	28.598334	-98.012223	STOCK	-	150	1960	
7925105	T. M. PLUMER	NO RECORD	NO RECORD	28.595556	-97.997778	STOCK	77	275	1931	
7832309	W. A. MUELLER	NO RECORD	NO RECORD	28.608612	-98.005834	UNUSED	63	90	1925	
7925106	R.C. HUNT ESTATE	NO RECORD	NO RECORD	28.593889	-97.997222	UNUSED	137	172	1925	

