Development of Emissions Estimating Methodologies for Dairy Operations

Draft

Prepared by:

U.S. Environmental Protection Agency

Office of Air and Radiation Office of Air Quality Planning and Standards 109 T.W. Alexander Drive Research Triangle Park, N.C. 27709

June 2022

This document is a preliminary draft. It has not been formally released by the U.S. Environmental Protection Agency (EPA) and should not at this stage be construed to represent Agency policy. It is being circulated for comments on its technical merit.

Table of Contents

1	INTRODUCTION	1-1
	1.1 Confinement Site Descriptions	1-1
	1.1.1 CA5B 1.1.2 IN5B 1.1.3 NY5B 1.1.4 WA5B	1-1 1-2 1-3 1-4
	1.1.5 WI5B	1-6
	1.2 Open Source Site Descriptions	1-6
	1.2.1 IN5A 1.2.2 TX5A 1.2.3 WA5A 1.2.4 WI5A	1-7 1-8 1-9 1-10
	1.3 Data Sampled	1-11
	1.3.1 Particulate Matter1.3.2 Animal Husbandry1.3.3 Biomaterials Sampling Methods and Schedule	1-11 1-12 1-12
2	REVISIONS TO DATA SET AND EMISSIONS DATA SUMMARY	2-1
	 2.1 Revisions to the 2010 Data Set 2.2 Comparison between the 2010 and Revised Barn Data Sets 	2-1 2-2
	2.2.1 Mechanically Ventilated Barns2.2.2 Naturally Ventilated Barns2.2.3 Milking Centers	2-2 2-3 2-4
	 2.3 Data Completeness Criteria for the Revised Data Set 2.4 Comparison Between the Revised Data Sets and NAEMS Datasets Used in Peerreviewed Published Papers	2-5
	2.4.1 Naturally Ventilated Barns	2-7
	2.4.2 Open sources	2-8
3	RELATIONSHIPS ESTABLISHED IN LITERATURE	3-1
	 3.1 NH₃ and H₂S from Confinement Sources	3-1 3-4 3-5
4	SITE COMPARISON, TRENDS, AND ANALYSIS	4-1
	4.1 Mechanically Ventilated Dairy Barns (IN5B-B1, IN5B-B2, NY5-B1, WI5B-B1 and WI5B-B2)	4-2
	4.1.1 Emissions data	4-2
	4.1.2 Environmental data	
	4.1.5 Ambient Data	
	4.2 Milking Centers (INSB-MC and NYSB-MC)	
	4.2.1 Emissions Data	

	4.2.2 Environmental data4.2.3 Ambient Data	
	4.3 Naturally Ventilated Barns (CA5B-B1, CA5B-B2, WA5B-B2 and WA5B-B4)	
	 4.3.1 Emissions Data	4-10 4-11 4-13
	4.4 Open Sources (IN5A, WI5A and TX5A)	4-14
	4.4.1 Emissions Data4.4.2 Environmental Data4.4.3 Ambient Data	4-14 4-15 4-15
5	DEVELOPMENT AND SELECTION OF MODELS FOR DAILY EMISSIONS	
	 5.1 Mechanically Ventilated Barns	
-	5.5 Corrals	
6	MODEL COEFFICIENT EVALUATION	
	6.1 Mechanically Ventilated Barns Model	6-1
	6.1.1 NH ₃ Model Evaluation	6-1
	6.1.3 Particulate Matter Models	
	6.2 Milking Centers	
	6.2.1 NH ₃ Model Evaluation	6-5
	6.2.2 H ₂ S Model Evaluation	6-6
	6.2.3 Particulate Matter Model Evaluation	6-7
	6.3 Naturally Ventilated Barn Model	6-8
	6.3.1 NH ₃ Model Evaluation	
	6.3.2 H ₂ S Model Evaluation	
	6.3.4 PM _{2.5} Model Evaluation	
	6.3.5 TSP Model Evaluation	6-16
	6.4 Open Sources	
	6.4.1 NH ₃ Model Evaluation	
	6.4.2 H ₂ S Model Evaluation	
7	ANNUAL EMISSION ESTIMATES AND MODEL UNCERTAINTY	
8	MODEL APPLICATION AND ADDITIONAL TESTING	8-1
	8.1 Model Application Example	
	8.1.1 Mechanically Ventilated Barn Example	
	8.1.2 Milking Center Example	
	8.1.5 Naturally Ventilated Barn Example	8-4 8 5
	8.1.5 Corral Example	8-6
	1	

Deliberative, draft document – Do not cite, quote, or distribute

8.1.6	Combining Structures	
8.2 Mod	lel Sensitivity Testing	
8.2.1 8.2.2 8.2.3	Sensitivity to Inventory Sensitivity to Climate	
8.3 Con	parison to Literature	
8.3.1 8.3.2 8.3.3 8.3.4	Mechanically Ventilated Barn Naturally Ventilated Barn Lagoon	
8.4 Rep	lication of Independent Measurements	
8.4.1 8.4.2	Lagoon Corral	
9 CONC 10 REFEI	LUSIONS	9-1 10-1

List Of Appendices

U

Appendix A – PM Sampling
Appendix B – Data Processing
Appendix C – Data Completeness
Appendix D – Summary Statistics
Appendix E – Time Series Plots
Appendix F – Scatter Plots
Appendix G – Modeling Results

List of Tables

Table 1-1: Dairy Confinement Sites Monitored Under NAEMS	1-1
Table 1-2: Dairy Open Source Sites Monitored Under NAEMS	1-7
Table 2-1. Percent difference in NH ₃ summary statistics between the 2010 and revised dataset (at	t 75%
data completeness)	2-3
Table 2-2. Percent difference in H ₂ S summary statistics between the 2010 and revised dataset (at	75%
data completeness)	2-3
Table 2-3. Percent difference in PM summary statistics between the 2010 and revised dataset (at	75% data
completeness).	2-3
Table 2-4. Percent difference in PM_{10} summary statistics between the 2010 and revised dataset (a	it 75%
data completeness).	
Table 2-5. Percent difference in TSP summary statistics between the 2010 and revised dataset (at	[/3%) 2.4
Table 2 (Demonst differences in NUL summers statistics between the 2010 and revised dataset (a)	
Table 2-0. Percent difference in NH3 summary statistics between the 2010 and revised dataset (at	2 5 70
Table 2.7 Demonst difference in U.S. summers statistics between the 2010 and revised detect (at	
data completeness)	7570
Table 2-8 Percent difference in PM summary statistics between the 2010 and revised dataset (at	75% data
completeness)	7570 data 2-5
Table 2-9 Comparison of naturally ventilated NH ₃ emissions in the model dataset to published d	atasets 2-
7	
Table 2-10. Comparison of naturally ventilated H ₂ S emissions in the model dataset to published	datasets.
	2-7
Table 2-11. Comparison of lagoon and basin NH3 emissions in the model dataset to published da	tasets.2-8
Table 2-12. Comparison of corral (TX5A) NH3 emissions in the model dataset to published dataset	sets2-8
Table 4-1: Relationship classification based on R ² values	4-2
Table 4-2. Year mechanically ventilated barns were constructed	4-4
Table 4-3. Mechanically ventilated environmental parameter regression analyses	4-5
Table 4-4. Mechanically ventilated ambient parameter regression analyses	4-6
Table 4-5. Milking center environmental parameter regression analyses	4-9
Table 4-6. Milking center ambient parameters regression analyses	4-10
Table 4-7. Naturally ventilated environmental parameter regression analyses	4-12
Table 4-8. Naturally ventilated ambient parameters regression analyses	
Table 4-9. Open source environmental parameter regression analyses Table 4-10.02	4-15
Table 4-10. Open source ambient parameters regression analyses	4-16
Table 4-11. Corral ambient parameters regression analyses. Table 5.1 D	4-16
Table 5-1. Parameter combinations tested as mechanically ventilated barn models for NH_3 and H	.28
Emissions	
Table 5-2. Parameter combinations tested as mechanically ventilated barn models for PM_{10} , PM_2	.5, and
Table 5.2 Selected doily models for mechanically ventilated harns	
Table 5-3. Selected daily models for mechanically ventilated barns.	
Table 5-5. Parameter combinations tested as milking center models	5-5 5_4
Table 5-6. Selected daily models for milking centers	
Table 5-7. Parameter combinations tested as naturally ventilated barns models	
Table 5-8 Selected daily models for naturally ventilated barns	
Table 5-9. Parameter combinations tested as onen source models for NH ₂ and H ₂ S emissions	5_9
Table 5-10. Selected daily models for lagoons sources.	
Table 5-11. Parameter combinations tested as corral models for NH ₃ and H ₂ S emissions	
Table 5-12. Selected daily models for corrals	5-12

Table 6-1. Model coefficients developed using the jackknife approach for NH ₃ emissions from
mechanically ventilated barns
Table 6-2. Model fit statistics for the mechanically ventilated barns NH3 jackknife
Table 6-3. Model coefficients developed using the jackknife approach for H ₂ S emissions from
mechanically ventilated barns
Table 6-4. Model fit statistics for the mechanically ventilated barns H ₂ S jackknife6-4
Table 6-5. Model coefficients developed using the jackknife approach for NH ₃ emissions from milking
centers6-6
Table 6-6. Model fit statistics for the milking center NH ₃ jackknife
Table 6-7. Model coefficients developed using the jackknife approach for H ₂ S emissions from milking
centers
Table 6-8. Model fit statistics for the milking center H ₂ S jackknife
Table 6-9. Model coefficients developed using the jackknife approach for NH ₃ emissions from naturally
ventilated barns
Table 6-10. Model fit statistics for the naturally ventilated barns NH ₃ jackknife
Table 6-11. Model coefficients developed using the jackknife approach for H ₂ S emissions from naturally
ventilated barns
Table 6-12. Model fit statistics for the naturally ventilated barns H ₂ S jackknife
Table 6-13. Model coefficients developed using the jackknife approach for PM ₁₀ emissions from naturally
ventilated barns
Table 6-14. Model fit statistics for the naturally ventilated barns PM ₁₀ jackknife
Table 6-15. Model coefficients developed using the jackknife approach for PM _{2.5} emissions from
naturally ventilated barns
Table 6-16. Model fit statistics for the naturally ventilated barns PM _{2.5} jackknife
Table 6-17. Model coefficients developed using the jackknife approach for TSP emissions from naturally
ventilated barns
Table 6-18. Model fit statistics for the naturally ventilated barns TSP jackknife
Table 6-19. Model coefficients developed using the jackknife approach for NH ₃ emissions from open
sources
Table 6-20. Model fit statistics for the open sources NH ₃ jackknife
Table 6-21. Model coefficients developed using the jackknife approach for H2S emissions from open
sources 6-20
Table 6-22 Model fit statistics for the open source H_2S jackknife 6-20
Table 7-1. Back transformation parameters 7-1
Table 7-2. Annual Uncertainty Model Details 7-2
Table 8-1 Daily calculation parameter values
Table 8-2 Comparison of confinement source NH_2 emissions (kg) on January 1 2021 for different
inventory levels at a theoretical Brown County farm
Table 8-3 Comparison of confinement source total 2021 NH ₂ emissions (kg) for different inventory
levels at a theoretical Brown County farm
Table 8-4 Comparison of Jagoon NH ₂ emissions (kg) for different surface areas for theoretical Brown
County farm
Table 8.5 Comparison of estimated correl NH ₂ emissions (kg) for different inventory levels for
Table 6-5. Comparison of estimated contai 1013 emissions (kg) for unreferr inventory levels for
theoretical Brown County form
theoretical Brown County farm
theoretical Brown County farm
theoretical Brown County farm. 8-8 Table 8-6. Summary of average daily temperature at the two meteorological sites. 8-10 Table 8-7. Summary of average daily relative humidity at the two meteorological sites. 8-11 Table 8-8 Summary of average daily wind speeds at the two meteorological sites. 8-11
theoretical Brown County farm. 8-8 Table 8-6. Summary of average daily temperature at the two meteorological sites. 7 Table 8-7. Summary of average daily relative humidity at the two meteorological sites. 8-11 Table 8-8. Summary of average daily wind speeds at the two meteorological sites. 8-11 Table 8-9. Total annual emission from a theoretical mechanically ventilated here in WI and CA
theoretical Brown County farm. 8-8 Table 8-6. Summary of average daily temperature at the two meteorological sites. 8-10 Table 8-7. Summary of average daily relative humidity at the two meteorological sites. 8-11 Table 8-8. Summary of average daily wind speeds at the two meteorological sites. 8-11 Table 8-9. Total annual emission from a theoretical mechanically ventilated barn in WI and CA. 8-12 Table 8-10 Table
theoretical Brown County farm. 8-8 Table 8-6. Summary of average daily temperature at the two meteorological sites. 8-10 Table 8-7. Summary of average daily relative humidity at the two meteorological sites. 8-11 Table 8-8. Summary of average daily wind speeds at the two meteorological sites. 8-11 Table 8-9. Total annual emission from a theoretical mechanically ventilated barn in WI and CA. 8-13 Table 8-11. Total annual emission from a theoretical milking center in WI and CA. 8-13 Table 8-14. 8-15 8-16 8-17 8-18 8-19 8-19 8-19 8-10 8-11 8-10 8-11 8-10 8-10 8-11 8-10
theoretical Brown County farm

Table 8-13. Total annual emission from a theoretical milking center in WI and CA8-16
Table 8-8-14. Parameter ranges tested for the dairy models
Table 8-15. Emission factors for dairy barns from literature
Table 8-16. Emission factors for dairy lagoons from literature
Table 8-17. Emission factors for dairy corrals from literature
Table 8-18. Comparison of resulting mechanically ventilated scrape barn NH ₃ emission from various
estimation methods
Table 8-19. Comparison of resulting mechanically ventilated flush barn NH ₃ emission from various
estimation methods
Table 8-20. Comparison of resulting naturally ventilated barn NH ₃ emission from various estimation
methods
Table 8-21. Comparison of resulting naturally ventilated barn H ₂ S emission from various estimation
methods
Table 8-22. Comparison of resulting dairy lagoon NH ₃ emission from various estimation methods8-34
Table 8-23. Comparison of resulting dairy corral NH ₃ emission from various estimation methods8-34
Table 8-24. Model performance evaluation statistics for lagoon NH ₃ estimates
Table 8-25. Model performance evaluation statistics for corral NH ₃ estimates8-36
List of Figures

List of Figures

Figure 1-1: CA5B farm layout.	1-2
Figure 1-2. IN5B farm layout.	1-3
Figure 1-3. NY5B farm layout.	1-4
Figure 1-4. WA5B farm layout.	1-5
Figure 1-5. WI5B farm layout	1-6
Figure 1-6:Aerial view of IN5A	1-8
Figure 1-7. Aerial view of TX5A	1-9
Figure 1-8. Aerial view of WA5A1	-10
Figure 1-9. Aerial view of WI5A1	-11
Figure 2-1. Ratio of mean predicted emissions for portion of day with valid emissions measurements to)
mean predicted emissions for the complete day at the finishing (A) and sow (B) farm. Error	
plotted against number of valid 30-minute measurements (from Grant et al., 2013b)	2-6
Figure 6-1. Comparison of variation in coefficients and standard errors for NH ₃ mechanically ventilated	d
barn model.	6-3
Figure 6-2. Comparison of variation in coefficients and standard errors for H ₂ S mechanically ventilated	1
barn model.	6-5
Figure 6-3. Comparison of variation in coefficients and standard errors for NH ₃ milking center model.	6-6
Figure 6-4. Comparison of variation in coefficients and standard errors for H2S milking center model	6-7
Figure 6-5. Comparison of variation in coefficients and standard errors for NH3 naturally ventilated bar	n
model6	-10
Figure 6-6. Comparison of variation in coefficients and standard errors for H ₂ S naturally ventilated bar	n
model6	-12
Figure 6-7. Comparison of variation in coefficients and standard errors for PM ₁₀ naturally ventilated ba	ırn
model6	-14
Figure 6-8. Comparison of variation in coefficients and standard errors for PM2.5 naturally ventilated ba	arn
model6	-16
Figure 6-9. Comparison of variation in coefficients and standard errors for TSP naturally ventilated bar	n
model6	-18
Figure 6-10. Comparison of variation in coefficients and standard errors for NH ₃ open source model6	-19

Figure 6-11. Comparison of variation in coefficients and standard errors for H ₂ S open source model6-21
Figure 8-1. 2017 Census of Agriculture plot indicating dairy inventory
Figure 8-2. Comparison on average daily temperatures at test locations in Wisconsin (WI) and California
(CA)
Figure 8-3. Comparison of average daily relative humidities at test locations in Wisconsin (WI) and
California (CA)
Figure 8-4. Comparison of average daily wind speeds at test locations in Wisconsin (WI) and California
(CA)
Figure 8-5. Comparison of daily mechanically ventilated barn emission at test dairy in locations WI and
CA
Figure 8-6. Comparison of daily milking center emission at test dairy locations in WI and CA
Figure 8-7. Comparison of daily naturally ventilated barn emission at test dairy locations in WI and CA.8-
14
Figure 8-8. Comparison of daily lagoon emission at test dairy locations in WI and CA
Figure 8-9. Comparison of daily milking center emission at test dairy locations in WI and CA
Figure 8-10. Mechanically ventilated barn limitation tests for H ₂ S
Figure 8-11. Mechanically ventilated barn limitation tests for NH ₃
Figure 8-12. Milking center limitation tests for gaseous pollutants
Figure 8-13. Milking center limitation tests for particulate matter
Figure 8-14. Maximum values of relative humidity for each temperature at which the PM10 equation
yields negative emissions
Figure 8-15. Naturally ventilated barn limitation tests for gaseous pollutants
Figure 8-16. Maximum values of inventory for each wind speed at which the NH ₃ equation yields
negative emissions
Figure 8-17. Naturally ventilated barn limitation tests for PM ₁₀
Figure 8-18. Naturally ventilated barn limitation tests for TSP
Figure 8-19. Naturally ventilated barn limitation tests for PM _{2.5}
Figure 8-20. Maximum values of wind speed and temperature for each inventory level at which the
particulate matter equations yields negative emissions
Figure 8-21. Lagoon limitation tests for gaseous pollutants
Figure 8-22. Corral limitation tests for H ₂ S8-30
Figure 8-23. Corral limitation tests for NH ₃
Figure 8-24. Maximum values of wind speed and relative humidity for each temperature at which the
particulate matter equations yields negative emissions
Figure 8-25. Scatter plot of the observed lagoon NH ₃ emissions versus the emission model estimates. 8-35
Figure 8-26. Scatter plot of the observed corral NH ₃ emissions versus the emission model estimates8-36
$\overline{\mathbf{v}}$

GLOSSARY / ACRONYMS

Acronyms	Defintion				
-2LogL	negative twice the likelihood				
ACI	Akaike information criterion				
ACIc	Adjusted Akaike information criterion				
ADMs	average daily means				
AFO	animal feeding operation				
BIC	Schwarz Bayesian Information Criterion				
bLS	backward Lagrangian Stochastics				
d	day				
dsm ³	Dry standard cubic meter				
EEMs	Emissions estimating methodologies				
EPA	Environmental Protection Agency				
FANS	Fan Assessment Numeration System				
g	gram				
g/d	grams/day				
H₂S	hydrogen sulfide				
hd	head – inventory of cows				
hPa	hectopascal				
kg	kilogram				
LAW	live animal weight				
LNME	Normalized mean bias of natural log data				
m	meter				
MB	mean bias				
MC	milking center				
ME	Mean error				
MS	Manure solids				
MUN	Milk urea nitrogen				
NAEMS	National Air Emissions Monitoring Study				
NCEI	National Centers for Environmental Information				
NH₃	ammonia				
NMB	normalized mean bias				
NME	normalized mean error				
PI	Principal Investigator				
PM	particulate matter				
PM ₁₀	particulate matter with aerodynamic diameters less than 10 micrometers				
PM _{2.5}	PM with aerodynamic diameters less than 2.5 micrometers				
QAPP	quality assurance project plan				
QC	quality control				
S	second				
SAB	science advisory board				
SDS	Separated digested solids				
SP	Settling ponds				
SS	Solid separation				
SS	separated solids				

Std Dev	Standard deviation					
TAN	total ammoniacal nitrogen					
TEOM	DM tapered element oscillating microbalance					
TKN	TKN total Kjeldahl nitrogen					
TSP	total suspended particulate					
USDA	U.S. Department of Agriculture					
VOCs	volatile organic compounds					
VRPM	vertical radial plume mapping					

1 INTRODUCTION

1.1 Confinement Site Descriptions

Five milk production facilities (dairy operations) had barns monitored under NAEMS. The locations were selected based on site-specific factors including representativeness of facility age, size, design and management, and herd diet and genetics. Three free stall and two open free stall dairy facilities were monitored as a part of NAEMS. Table 1-1 summarizes the sites and their characteristics.

				Number			
	Monitoring		Ventilation	of barns	Manure	Manure	Bedding
Site	Period	Site Type	type	measured	Collection	Storage ⁴	Type⁵
	10/24/07 –	Froo stall	Mechanically	1 ³	Scrane	Digester/	SDS
NIJD	10/23/09	Thee stan	Ventilated		i Scrape	SS/SSP	303
	8/24/07 –	Eroo stall	Mechanically	n ³	Scrapo	Digester/	SDS
INJU	8/23/09	TTEE Stall	Ventilated	2	Scrape	SS/Lagoon	303
	9/12/07 –	Eroo stall	Mechanically	2	Fluch		Mattress/
VVISD	10/31/09	Free Stall	Ventilated		FIUSII	SP/Laguon	shavings
	9/26/07 –	Open	Naturally	2	Fluch		Soil/MS/
САЗБ	2/1/10	free stall ²	Ventilated		Z Flush	Flush	SP/Lagoon
	9/28/07 –	- Open	Naturally	2	Fluch	SP/SS/	MC
WA2R-	9/27/09.	free stall ²	Ventilated	2	Flush	SSP/Basin	IVIS

Table 1-1: Dairy Confinement Sites Monitored Under NAEMS

¹Barn sites that also have measured area sources.

²Cows are free to walk from open free stall barn into dry lots between the barns.

³Monitored units include the milking center.

⁴Labeled consistent with the site reports, where: SP = Settling Pond; SS = solid separation; SSP= Solid Storage Pad

⁵MS = Manure solids; SDS = Separated digested solids

1.1.1 CA5B

In 2010, the California site (CA5B) was a 1,200-cow Holstein dairy farm. The farm has two naturally ventilated free stall barns, a milking center, and a lagoon and settling ponds (Figure 1-1). The farm also included exercise lots, which were located adjacent to each barn. Lactating cows were milked two times daily in the centrally located milking center. The on-site heifer program (i.e., activities to raise their own heifer calves until they can join the milking herd) was held on the north end of the farm, separated from the study area.

The two naturally ventilated free stall barns, barn 1 (B1) and barn 2 (B2), were monitored as part of NAEMS (Zhao, et al., 2010). Each barn had four free stall rows, two on each side of a central feed lane, housing 600 cows each. Barn 1 had the fresher cows (i.e., cows that recently gave birth) and served as the breeder barn, while barn 2 had pregnant lactating cows and the hard breeders (i.e., cows that have a hard time getting pregnant). The cows were generally inside the barns, particularly on hot days to provide shade.

The manure handling system included a barn flushing system, three settling ponds and a lagoon. Manure solids taken from the settling ponds were spread on nearby fields in the spring and fall.

Figure 1-1: CA5B farm layout. Source: Zhao, et al. (2010)

1.1.2 IN5B

The dairy farm in Indiana (IN5B) had 3,400-head capacity of Holstein cows. The dairy consisted of two free stall barns, a holding barn, milking parlor, and a dry cow barn (Figure 1-2). NAEMS gathered measurements from the two freestall barns, barn 1 (B1) and barn 2 (B2), and the milking center (MC), which consisted of the holding barn (area where cows waited approximately 45 minutes prior to milking) and milking parlor (Lim, et al., 2010). Each barn

used a bank of exhaust fans to pull air through the barns. Each barn housed typically housed up to 1,700 cows, with approximately 3,400 Holstein cows were milked three times a day in the 72-stall rotary parlor. For the NAEMS, measurements of airflow and emissions focused on the western half of each of the barns.

The manure was removed from both freestall barns by scraper, while the manure from the holding barn and milking parlor was flushed. The manure removed from the freestall barn and milking center are held in a reception pit, and then then directed to a digester that produced methane gas which was used in generators on the farm. Digester effluent was separated, with the digested solids moved a storage area and the liquid stored in a two-stage pond/lagoon system. The liquid was then either irrigated onto or injected into land in the surrounding area. The separated digested solids were used as bedding in the free stall barns.

Figure 1-2. IN5B farm layout. Source: Lim et al. (2010)

1.1.3 NY5B

The dairy facility monitored in New York (NY5B) had a capacity of 1,000 Holstein cows and consisted of a mechanically ventilated free stall barn and a milking center, a naturally ventilated free stall barn, along with housing facilities for dry cows, steers, and calves on the same site (Figure 1-3). Measurements were collected from the mechanically ventilated 6 row free stall barn (barn 1 or B1) and the MC during the study (Bogan, et al., 2010). The MC included a double-20 milking parlor, 31 free stalls and four bedded-pack box stalls for special-needs cows. Cows were brought in for milking three times per day.

The manure was removed from both the B1 and MC by scraper and deposited in a belowgrade gravity flow channel that led to a centralized agitation and pumping station located in the covered connecting alley between the structures. From the alley, the manure was transferred to an anaerobic digester. The digester effluent was processed with a screw-press solid-liquid separator. The separated solids were stockpiled as bedding, land-applied to far-off fields, or sold. The liquid was pumped to long-term storage that was about 2.3 km away to the northeast.

Figure 1-3. NY5B farm layout. Source: Bogan, et al. (2010)

1.1.4 WA5B

The dairy facility located in Washington State (WA5B) was a 5,600-head Holstein dairy farm. The farm buildings included the milking parlor and six naturally ventilated symmetrically-distributed free stall barns (Figure 1-4). The farm also includes a total of ten corrals/exercise pens that are distributed around the barns. Two of the free stall barns, barn 2 (B2) and barn 4 (B4), were monitored as part of NAEMS (Ramirez-Dorronsoro, et al., 2010). Barn 2 housed 600 cows in four rows of free stalls and Barn 4 housed 700 cows in six free stall rows.

Manure from the free stall barns was flushed automatically three times daily and scraped as needed. The effluent was directed, via pipes, to the waste handling and treatment system that included a sand separation pit, two primary settling ponds, a manure separation pad (which includes screen separators and centrifugal solid separators), and a pair of serpentine settling systems, in which each one had five sequential settling cells. Both serpentine cells then discharged into a central cell. The liquid effluent from the central cell was directed to the storage lagoon. The solid effluent from the sand separation pit, depending on the season and temperature, also was directed to two manure drying ponds, located south of the manure separator pad. The dried manure was used for bedding and land application, and the liquid was applied to surrounding fields. The site's lagoon was also monitored as a part of NAEMS (Section 1.2.3).

Figure 1-4. WA5B farm layout. Source: Ramirez-Dorronsoro, et al. (2010)

1.1.5 WI5B

The dairy facility monitored in Wisconsin (WI5B) had a total capacity of 1,700 Holstein dairy cows, and consisted of four free stall barns, a holding barn, and sixth barn that is divided into the calving pen for 2-year-olds and a hospital barn (Figure 1-5). Two of the free stall barns, barns 1 (B1) and 2 (B2), located on the north side of the farm, were monitored as a part of NAEMS (Cortus et al., 2010). Barn 1 (B1) had capacity of 275 cows in four rows of free stalls, and barn 2 (B2) had a capacity of 375 cows housed in five rows of free stalls.

Approximately halfway through the study, the manure removal system was changed in the barns. Initially, manure was removed by flushing three time per day. The manure flushed from the parlor, holding pens, and free stall barns was directed to a solid separator. Solids were directed to pads to wait for land application, while the liquid portion was pumped back into the vertical tanks to flush the barns. After September 19, 2008, the flush system was replaced with a tractor scrape system, which was already in use in barns 5 and 6.

Figure 1-5. WI5B farm layout. Source: Cortus et al. (2010).

1.2 Open Source Site Descriptions

Three dairy lagoons and a dairy corral (TX5A) were monitored under NAEMS (Table 1-2). Sites were selected to capture different stages and manure practices typical of the industry. The sites selected also represent the broad geographical extent of dairy production to also

represent different climatological settings for farm and any regional differences in farm practices.

Dairy lagoon emissions were measured continuously at one farm (IN5A) for one year and for up to 21 days each season for two years at the two other farms (WA5A and WI5A). The dairy corral (TX5A) was also monitored for up to 21 days each season for two years.).

Site	Source	Manure	Manure
	ivionitored	Collection	Storage
IN5A	Lagoon	Flush	Lagoon
WA5A ¹	Lagoon	Flush	Lagoon
WI5A ¹	Lagoon ²	Flush	Lagoon
TX5A	Open Corral	Scrape	SB/Lagoon

Table 1-2: Dairy Open Source Sites Monitored Under NAEMS

¹ Site that also had barn monitoring sites during NAEMS ² Lagoon can be single or double stage. ³SB= Settling Basin

1.2.1 IN5A

The Indiana open source site consisted of three barns, a feed storage area, special needs barn, milking parlor, and an office and tool and repair shops (Figure 1-6). The facility had a capacity of 2,600 cows (Grant and Boehm, 2010a).

The monitored lagoon received effluent from the parlor and holding area. Manure was flushed from the holding area and milking parlor every half hour. A small fraction of waste was held in a slurry tank. The wastewater (flush) from the holding area and milking parlor was transferred to a settling basin before being transferred to the clay-lined lagoon. The clay-lined waste lagoon was 85m (280 ft) wide and 116m (380 ft) long, with a surface area of 9,884 m² (106,400 ft²). Sludge had never been removed from the lagoon (Grant and Boehm, 2010a).

Figure 1-6:Aerial view of IN5A Source: Grant and Boehm (2010a)

1.2.2 TX5A

The Texas dairy (TX5A) consisted of ten corrals, milking parlor, office, hay shed, commodities barn, calving/fresh cow barn and truck scale (Figure 1-7). The facility had a capacity of 3,400 Holstein cows (Grant and Boehm, 2010b). Wastewater from the dairy drains to two earthen sludge/settling basins before entering a retention/treatment structure. Runoff from the corrals drains to the larger of two retention structures which are connected in series.

Manure was scraped twice a week from the corral surface with some scrapings used as bedding and the remainder was pushed to the south into ditches, which drained into the runoff pond. Manure was vacuumed instead of scraped if persistent wet conditions occurred.

Figure 1-7. Aerial view of TX5A Source: Grant and Boehm (2010b)

1.2.3 WA5A

The Washington farm (WA5A) consisted of six barns, a milking parlor, and an office (Figure 1-8). The facility has a capacity of 4,400 milking cows and 1,200 dry cows in three units (Grant and Boehm, 2010c). The farm has free stall style barns, with automated flushing that occurred four times daily. Manure was transferred to an upper settling basin from a sand separation pit. Liquids were skim separated and then returned as flush to the barns. One lagoon was actively filled while the other was drying or sludge was being entirely removed. The settled solids (sludge) were completely removed within a year by front end loader. The settled solids (sludge) were removed annually by a front-end loader. These remaining solids were then strained through screens and centrifugal/screw presses, and the liquid transferred to large serpentine concrete basins for secondary settling. These solids are then dried for bedding. The water removed from the settled solids is stored in a large, clarified water storage basin for dilution of barn flush water from the lagoons.

The two upper lagoon/settling basins were measured as part of NAEMS, as well as two free stall barns described as in Section 1.1.4. Gaseous emissions occur both during lagoon filling and during sludge removal. The east lagoon was rectangular with dimensions of 183m (600 ft) by 72 m (235 ft). The west lagoon was five-sided with dimensions of approximately 183 m (600 ft) long and 83m (271 ft) wide with the southwest corner of the lagoon cut off. The east lagoon

was measured for gaseous emissions. At maximum capacity this lagoon had a liquid depth of 5 m (18 ft), surface area of 13,098 m² (141,000 ft²) and a volume of 186,300 m³ (2,005,500 ft³).

Figure 1-8. Aerial view of WA5A Source: Grant and Boehm (2010c)

1.2.4 WI5A

In 2010, the Wisconsin farm (WI5A) had a total of six barns, a milking parlor with holding pen, and a special needs area (Figure 1-9). The farm had a capacity of 1,700 Holstein cows (Grant and Boehm, 2010d). Manure from the free stall barns and the milking parlor complex was removed by flushing three times daily. The manure flushed from the parlor, holding pen, and free stall barns flows to a solids separator, from which the solids are removed and stacked on a pad until they were spread on fields. The liquid effluent from the solids separator was pumped back into vertical tanks for reuse to flush the barns. Once a week, enough water was removed from the third stage of the three-stage lagoon and added to the flush tanks to make up for water lost in the recycled flush system. The three-stage lagoon receives effluent from the two free stall barns and milking parlor. The lagoons are pumped out into trucks twice yearly. The first and second stages of the three-stage lagoon system were monitored, as well as two free stall barns as described in Section 1.1.5.

The first lagoon had a width of 52 m (170 ft) and length of 82 m (270 ft). At maximum capacity, the first lagoon had a surface area of 4,264 m2 (45,900 ft²) and a volume of 10,561 m³ (373,000 ft³). The second lagoon had a width of 37 m (120 ft) and length of 79 m (260 ft). At maximum capacity, the second lagoon had a surface area of 2,898 m² (31,200 ft²) and a volume of 6,420 m³ (226,700 ft³). Both lagoons had liquid depths of 3 m (11 ft) and sludge was last removed from the second lagoon in 2006.

Figure 1-9. Aerial view of WI5A Source: Grant and Boehm (2010d)

1.3 Data Sampled

NAEMS collected a host of data from the sites. Data collected included gaseous pollutant samples, particulate matter samples, meteorological data, confinement parameters, and biomaterial samples. All procedures for barn sites were outlined in the project Quality Assurance Project Plan (QAPP) (Heber et al., 2008) and open sources were summarized in open source project QAPP (Grant, 2008), and are summarized in Section 4 of the main report. The following section outlines any collection specific to the dairy sites.

1.3.1 Particulate Matter

At any one time, the sampled filterable particulate matter (PM) size class was either equal to or less than a nominal aerodynamic diameter of 10 micrometers (PM₁₀), and 2.5 micrometers (PM_{2.5}) or total suspended particulate (TSP). Appendix A contains summary tables, which note

the particulate matter sampling schedules for the confinement sites. Particulate matter emissions data were not collected specific to the open sources.

1.3.2 Animal Husbandry

In general, the producer provided pen inventories and information about changes to site operational procedures like bedding, on a weekly basis. For NY5B, the producer also provided daily milk production.

1.3.3 Biomaterials Sampling Methods and Schedule

All analyses of biomaterials were performed by an independent laboratory (Midwest Laboratories, Omaha, NE). Samples were collected based on procedures outlined in the QAPP (Heber, 2008). Specific sampling details for each site are summarized below. There were no lagoon samples collected for content analysis.

1.3.3.1 CA5B

Manure sampling was conducted approximately bimonthly during the second year of the study, with samples collected from the reception lane for the flushed manure in B1 and B2. The samples were analyzed for solids content, total nitrogen, ammoniacal nitrogen, and ash content to provide data for the nitrogen balance of the barns.

At the same time as manure sampling, samples of feed and fresh bedding (scraped soil and manure solids blended with almond shells or rice hulls) were taken from each barn. The samples were analyzed for solids content, total nitrogen, and ash. Sampling was added late in the study and only cover the second year of the study (Zhao, et al., 2010).

1.3.3.2 IN5B

Manure in the barns was sampled quarterly between 11/26/07 and 1/20/10. For each collection, at least four samples were collected from each of the two barns and analyzed for ammoniacal nitrogen, total nitrogen, pH, total solids, and ash (added later in the study). Samples of feed were also taken quarterly from each barn and analyzed for total nitrogen, total solids, and ash. Sampling was added late in the study and only cover the second year of the study (Lim, et al., 2010).

Bedding and milk tank samples were collected semiannually. Bedding samples were analyzed for total nitrogen and total solids, while the milk tank samples were only analyzed for total nitrogen.

1.3.3.3 NY5B

The daily volume of milk shipped (total milk less non-saleable milk) from the farm was copied manually from the yearly calendar where milk production was recorded daily by farm staff. Milk production data from B1 included the cows housed in the MC. Additionally, the farm reported milk urea nitrogen (MUN) and protein content nearly every day.

Bedding (post-digested separated manure solids) was sampled from each pen on approximately a monthly basis during the study's second year. The samples were analyzed for pH, solids content, total nitrogen, and ammoniacal nitrogen, and ash content. A single sample of the feed and water were taken at the end of the study. The feed was analyzed for solids content, total nitrogen, and ammoniacal nitrogen, and ash content, while the water sample was analyzed for total nitrogen, and ammoniacal nitrogen, and sulfur content.

Representative manure samples were collected in B1 from each the four pens, and the two manure alleys between the outside row of free stalls and the adjacent row of the head-tohead free stalls. Sampling was conducted approximately monthly during the second year. The samples were analyzed for pH, solids content, total nitrogen, and ammoniacal nitrogen.

1.3.3.4 WA5B

Sampling was conducted approximately bimonthly during the second year of the study. Samples of feed, bedding, and manure were taken from each barn. Bedding and feed samples were analyzed for total solids and total nitrogen content. Manure samples were analyzed for pH, total solids, total nitrogen, and ammonia content. Milk samples were taken from the holding tank and analyzed for total nitrogen only.

1.3.3.5 WI5B

Manure in the barns was sampled quarterly for the last year of the study. Each collection was composed of four samples from each of the two barns. Samples were analyzed for ammoniacal nitrogen, pH, and total solids.

2 REVISIONS TO DATA SET AND EMISSIONS DATA SUMMARY

The section catalogs the changes made to the dairy dataset prior to model development (Section 2.1), considers further changes to the data completeness criteria (Section 2.2), and finally compares the model development dataset to the initial dataset received in 2010 (Section 2.3) and published literature (Section 2.4) to determine the effect of the data revisions.

2.1 Revisions to the 2010 Data Set

As described in Section 4.2 of the main report, the NAEMS monitoring data were submitted to EPA in 2010, with revisions submitted in 2015. Revisions included modifying the approach used to determine the inlet concentrations of ammonia (NH₃) and hydrogen sulfide (H₂S) to align time used to determine valid concentrations at the barn inlet and outlet, using a 10-day running average of inlet concentrations rather than interpolation, and invalidating air flow rates for periods when the ventilation system was not operating. Corrections were submitted for IN5B, NY5B, WA5B, and WI5B. A revised file for CA5B was not submitted by the NAEMS principal investigator (PI).

In addition to the revisions submitted by the PI, EPA reviewed the validity of negative emission values present in the data set. Negative calculated emission values can occur in the NAEMS data set due to a range of different scenarios as described in the SAB review of the 2012 emissions estimating methodologies (EEMs) developed by EPA (U.S. EPA SAB, 2013). These different negative emission scenarios include calculation biases for emission values that were close to the instrument's detection limit, biases due to lack of lag time corrections, or from outdoor events that increased pollutant concentration outside of the barns. EPA developed a procedure for removing negative emission values that resulted from elevated background concentrations. For this procedure, EPA determined the median emission value for each pollutant, then excluded negative emissions values that fell outside of a range based on uncertainty range established in the QAPP for each pollutant the. Appendix B describes this process in more detail. The negative emissions removed accounted for between 2% (NH₃ and TSP) and 26% (PM_{2.5}) of the total number of average daily emission values removed due to this process by barn for each pollutant.

The 2010 data sets for dairy open sources (lagoons, basins, and corrals) were provided to EPA by the NAEMS PI. The datasets contain 30-minute NH₃ values obtained using the backward Lagrangian Stochastics (bLS) model and vertical radial plume mapping (VRPM), and H₂S emissions obtained using the bLS model. The extensive data sets also include fields used to determine the quality and validity of the emissions data. Based on a literature review of papers published since NAEMS (Grant & Boehm 2020, Grant et al., 2020, Grant & Boehm 2015, Grant

et al., 2013a), EPA revised the acceptance criteria for the 30-minute data. Overall, the number of valid 30 minute bLS NH₃ values for lagoons increased and H₂S decreased. The opposite occurred for the corral site, TX5A, as the number of bLS measure estimates NH₃ and H₂S decreased and increased, respectively. Appendix B summarizes the changes in data acceptance criteria and the affects it had on the number of 30-minute values available for each site.

Literature (Grant et al., 2013a) also suggested bLS measurements could be adjusted to be comparable to VRPM results. To prepare the 2012 NAEMS data sets of 30-minute values for use in calculating daily averages, the bLS NH₃ values for sites IN5A and WI5A were adjusted by multiplying the emissions values by 1.19 (Grant & Boehm 2020) and 1.13 (Grant & Boehm 2020), respectively. After the adjustment, the bLS and VRPM data were used together to determine which day had more than 24 half hour values to meet the revised 52% completeness criteria days. In cases where 30-minute emissions flux values were available for both the bLS model and VRPM, the average of the bLS and VRPM values were used. A practical example of the calculation is provided in Appendix B. The Table B-23 presents an example calculation for two days at site IN5A, (one day with both bLS and VRPM data, and one day with only bLS data).

2.2 Comparison between the 2010 and Revised Barn Data Sets

The influence of the previous described corrections on the revised data sets can be observed by comparing the summary statistics of all the valid emission values (at 75% data completeness) between the 2010 dataset, as summarized in the final site reports, and the revised data set. The following sections summarize the differences between the 2010 data set and revised data set for each of the barn types for a set of standard summary statics (e.g., mean, standard deviation, count (N), minimum, maximum, and number less than 0 (N<0)) of the average daily emissions. For summary tables presented, the percent difference was calculated as the revised data set minus the 2010 version of the data set, divided by the 2010 version of the data set (e.g., % Diff = (Revised - Data₂₀₁₀)/Data₂₀₁₀ * 100). This calculation yields negative values when decreases were seen in the revised version of the dataset.

2.2.1 Mechanically Ventilated Barns

In general, the 2010 and revised data set vary less than 10% for the barns at IN2B for NH₃ (Table 2-1) and H₂S (Table 2-2), while the data sets for the PM size fractions (Table 2-3) were not changed. The exceptions are the increase in the number of H₂S values less than zero (N<0) at IN2B (Table 2-2). There was more of a difference in the data sets for NY5B, particularly with the minimum value of H₂S (Table 2-2), which was revised from a very large negative value (-226 g/d) to a small positive value (34.05 g/d). NY5B was the only site that had changes to the particulate matter data set (Table 2-3), most notable of which was a decrease in

the number of negative values for PM₁₀. The WI5B saw some of the biggest differences in NH₃ data, largely due to the increase in the number of valid average daily means (ADM) available for NH₃ after the revisions. The WI5B data sets for PM₁₀, PM_{2.5}, and TSP were unchanged.

Table 2-1. Percent difference in NH ₃ summary statistics between the 2010 and
revised dataset (at 75% data completeness).

Parameter	IN5B B1	IN5B B2	NY5B B1	WI5B B1	WI5B B2
Mean	3%	3%	6%	-4%	-3%
Standard Deviation	5%	5%	5%	-11%	-3%
Ν	0%	0%	-12%	19%	20%
Minimum	-6%	-6%	-1%	25%	-26%
Maximum	4%	9%	7%	-2%	-2%
N<0	0%	0%	0%	0%	0%

Table 2-2. Percent difference in H₂S summary statistics between the 2010 and revised dataset (at 75% data completeness).

Parameter	IN5B B1	IN5B B2	NY5B B1	WI5B B1	WI5B B2
Mean	1%	-2%	10%	0%	0%
Standard Deviation	0%	1%	3%	0%	-3%
N	2%	4%	-12%	-3%	-2%
Minimum	2%	2%	764%	0%	0%
Maximum	-2%	8%	-3%	4%	-5%
N<0	47%	67%	0%	33%	-88%

Table 2-3. Percent difference in PM summary statistics between the 2010 andrevised dataset (at 75% data completeness).

	NY5B B1,	NY5B B1,	NY5B B1,	IN5B,	WI5B,
Parameter	PM10	PM _{2.5}	TSP	PM	PM
Mean	5%	2%	2%	No difference	No difference
Standard Deviation	5%	1%	0%	No difference	No difference
N	0%	2%	0%	No difference	No difference
Minimum	0%	0%	0%	No difference	No difference
Maximum	7%	1%	1%	No difference	No difference
N<0	-50%	13%	0%	No difference	No difference

2.2.2 Naturally Ventilated Barns

For the naturally ventilated barns, there were no changes in the CA5B datasets for any pollutant and no changes in the WA5B datasets for NH₃, H₂S, or PM_{2.5}. For PM₁₀ (Table 2-4), both WA5B barns saw an increase in the number of valid ADM, including new maximums more than 50% larger than in the 2010 data set. The TSP data set (Table 2-5) also changed, most notably there was an 18% decrease in the number of valid ADM at both barns and an increase in the minimum value for barn 2.

Parameter	CA5B B1	CA5B B2	WA5B B1	WA5B B2
Mean	No difference	No difference	20%	12%
Standard Deviation	No difference	No difference	63%	38%
Ν	No difference	No difference	1%	1%
Minimum	No difference	No difference	0%	0%
Maximum	No difference	No difference	83%	68%
N<0	No difference	No difference	0%	0%

Table 2-4. Percent difference in PM₁₀ summary statistics between the 2010 and revised dataset (at 75% data completeness).

Table 2-5. Percent difference in TSP summary statistics between the 2010 andrevised dataset (at 75% data completeness).

Parameter	CA5B B1 CA5B B2		WA5B B1	WA5B B2
Mean	No difference No difference		3%	1%
Standard Deviation	No difference No difference		5%	6%
N	No difference	No difference	-18%	-18%
Minimum	No difference	No difference	522%	0%
Maximum	No difference	No difference	0%	0%
N<0	No difference	No difference	0%	0%

2.2.3 Milking Centers

For the IN5B MC, most changes were minor for NH_3 (Table 2-6) and H_2S (Table 2-7). The most notable change is the increase in the number of negative ADM for both gaseous pollutants due to the changes in emission calculation. There were no measurements of PM_{10} , $PM_{2.5}$ or TSP made at the IN5B milking center.

The NY5B MC had minor changes to the NH₃ dataset and mostly minor changes to the H₂S data set. One of the largest changes was an increase in the minimum value for H₂S (Table 2-7), which was the result of the removal of a large negative ADM. The data sets for the PM size fractions (Table 2-8) generally saw minor changes. The notable exception is the 33% decrease in the number of negative values for ADM. This statistic is a little misleading, as there were only four values, and one of which was dropped during the revision.

Table 2-6. Percent difference in NH₃ summary statistics between the 2010 and revised dataset (at 75% data completeness).

Parameter	IN5B	NY5B
Mean	7%	0%
Standard Deviation	8%	0%
N	0%	-7%
Minimum	0%	15%
Maximum	4%	-2%
N<0	8%	0%

Table 2-7. Percent difference in H2S summary statistics between the 2010 and
revised dataset (at 75% data completeness).

Parameter	IN5B	NY5B	
Mean	2%	-2%	
Standard Deviation	-4%	0%	
Ν	1%	1%	
Minimum	0%	764%	
Maximum	-12%	-2%	
N<0	39%	0% 🖌	

Table 2-8. Percent difference in NY5B MC PM summary statistics between the2010 and revised dataset (at 75% data completeness).

Parameter	PM ₁₀	PM _{2.5}	TSP
Mean	-1%	2%	1%
Standard Deviation	11%	1%	0%
Ν	8%	0%	0%
Minimum	0%	11%	0%
Maximum	0%	1%	1%
N<0	-33%	0%	0%

2.3 Data Completeness Criteria for the Revised Data Set

The appropriate data completeness criteria to use in a study depends on the size of the dataset and the accuracy needed. A study by Grant et al. (2013b), in which NH₃ emissions were modeled from swine lagoons based on NAEMS data, investigated data completeness and associated accuracy. The swine lagoon NH₃ emissions dataset had limited data availability at a data completeness of 75%. Grant et al. (2013b) explored how much the data completeness criteria could be relaxed but still result in data with acceptable error. The study suggested an error of $\pm 25\%$ to be acceptable and determined that a daily data completeness of 52% (or 25 out of 48 30-minute periods) gave less than $\pm 25\%$ error (see Figure 2-1). Using this revised daily completeness criteria resulted in a substantial increase in the size of the dataset.

Based on Figure 2-1 from the Grant et al. (2013b) study, it can be observed that a daily completeness criterion of 75% (36 out of 48 30-minute periods) would give an error of

approximately 10%. If it is assumed that the relationship between data completeness and error from the Grant et al. (2013b) study is representative of other NAEMS datasets, the effect of relaxed data completeness criteria can be investigated for other NAEMS sources.

The NAEMS PI provided EPA with additional analysis that examined the effect of different completeness criteria by comparing the number of valid ADM. EPA reviewed these data for the barn data site and retained the 75% completeness criterion. For the open source sites, EPA review found that adjusting the daily data completeness to 52% provided significantly more data and justified the increase in the error. The full analysis can be found in Appendix C.

Figure 2-1. Ratio of mean predicted emissions for portion of day with valid emissions measurements to mean predicted emissions for the complete day at the finishing (A) and sow (B) farm. Error plotted against number of valid 30-minute measurements (from Grant et al., 2013b).

2.4 Comparison Between the Revised Data Sets and NAEMS Datasets Used in Peer-reviewed Published Papers

Where possible, EPA compared the revised dataset developed for this report to values presented in peer reviewed journals and reports to quantify any differences due to the application of the revised calculation methods and other adjustments discussed in Section 2.1. Summaries of the gaseous emissions from naturally ventilated barns can be found in Joo et al. (2015). Lagoon and basin summaries have been presented in Grant and Boehm (2015), and corrals in Grant et al. (2020). Summaries of the mechanically ventilated barn data and particulate matter data could not be found at the time of writing.

A simple comparison of the summary statistics presented in these papers and the summary statistics of the revised dataset is presented in the following sections. Overall, the dataset used for model development and presented in the papers are different due to difference in data screening methods. For NH₃ and H₂S at naturally ventilated barns, the model development dataset contains at least twice the number of observations than used in the article due to different choices in processing the data. Similarly, the revisions to the acceptance criteria for open sources

noted in Section 2.1 also resulted in difference in differences between the published data set and the modeling data set. For the open sources, the acceptance criteria used by EPA are the culmination of several published papers aiming to improve the data quality and go beyond what was discussed in the compared work. Overall, the comparison highlights that EPA has done extensive analysis and review of the dairy data sets to obtain a robust data set for model development.

2.4.1 Naturally Ventilated Barns

Despite no difference between NH_3 and H_2S in the revised data set and the submitted 2010 data set (Section 2.2.2) for WA5B, the published data has different maximum, minimum, and average values for both (Table 2-9 and Table 2-10). A closer examination of Joo et al. (2015) reveals a more extensive outlier removal process, whereby anything outside 1.5 times the interquartile range were designated as outliers. The article also only reports on data collected in the second year of the study (November 2008 to October 2009) since there were "more and longer trouble-free periods" (Joo et al., 2015). The article further truncates the data by focusing on one-week data sets of continuously collected measurements selected every two months, for a total of 7 weeks (49 days) of data. The model data set contains at least twice as many days as the published data set, which quickly explains the differences seen.

Table 2-9. Comparison of naturally ventilated NH₃ emissions in the model dataset to published datasets.

Site	Units	Statistic	Model Dataset	Published Studies	Study
WA5B B2 Emissions (kg day ⁻¹)	Mean	26.6	14.1		
	$L_{\rm rescale}$	Minimum	-156.4	10.8	Joo et al. 2015
	(kg uay)	Maximum	96.6	19.7	
	WA5B B4 Emissions (kg day ⁻¹)	Mean	54.7	19.4	
WA5B B4		Minimum	9.0	17.2	Joo et al. 2015
		Max	170.9	21.2	

Table 2-10. Comparison of naturally ventilated H ₂ S emissions in the mod	lel
dataset to published datasets.	

Site	Units	Statistic	Model Dataset	Published Studies	Study	
WA5B B2	Emissions (g day ⁻¹)	Mean	555.6	397.4		
		Minimum	-5,400.9	123.5	Joo et al. 2015	
		Maximum	6,513.6	542.4		
WA5B B4	Emissions (g day ⁻¹)	Mean	1,130.9	627.7		
		Minimum	-11,640.1	0.0	Joo et al. 2015	
		Max	17,960.3	1711.8		

2.4.2 Open sources

Section 2.1 and Appendix B outline how EPA altered the acceptance criteria for the open sources. The changes were culled from several peer reviewed journal articles (Grant & Boehm 2020, Grant et al., 2020, Grant & Boehm 2015, Grant et al., 2013a) published since the 2010 receipt of the NAEMS data. While each of the articles referenced typically focus on one site, EPA developed a list of revisions to be applied to each site that represent the state of the science for the method. As such, the lagoon NH₃ values (Table 2-11) differ from the values published in Grant & Boehm (2020) due to difference in the acceptance criteria.

Site	Units	Statistic	Model Dataset	Published Studies	Study
IN5A	Emissions (g s ⁻¹)	Mean	0.23	0.27	Grant &
		Minimum	-0.14	0.17	Boehm
		Maximum	1.07	0.39	2020
WI5A	Emissions (g s ⁻¹)	Mean	0.07	0.22	Grant &
		Minimum	-0.04	0.07	Boehm
		Maximum	0.91	0.42	2020

Table 2-11. Comparison of lagoon and basin NH₃ emissions in the model dataset to published datasets.

Similarly, NH₃ emissions from dairy corrals varied from the published work due to revisions to the acceptance criteria that EPA implemented. These revisions resulted in 6 additional daily average emission values from the Grant publication (Table 2-12). These additional days shift the average of the daily means higher than in the published work and increased the variability, as shown by the increase in the standard deviation. As noted previously, the acceptance criteria used by EPA are an attempt to apply the revisions from several published papers aiming to improve the data quality and go beyond what was discussed in the compared work. Overall, the comparison highlights that EPA has done extensive analysis and review of the dairy sets to obtain a robust data set for model development.

Table 2-12. Comparison of corral (TX5A) NH₃ emissions in the model dataset to published datasets.

Source	Ν	Mean (kgd ⁻¹)	Standard Deviation
Revised	73	755.0	317.5
Grant et al. 2020	67	287.6	144.7

3 RELATIONSHIPS ESTABLISHED IN LITERATURE

Developing EEMs for dairy AFOs is complex as many variables potentially influence emissions. Therefore, to be efficient as possible in this study, a focused approach was used. The focused approach involved developing models based on variables that could potentially have a major influence on air emissions. This assessment was made based on theoretical considerations and observations reported by previous studies that have investigated the influence of variables on emissions from dairy AFOs.

3.1 NH₃ and H₂S from Confinement Sources

Emissions from barns originate from the nitrogen and sulfur content in urine and manure deposited in pits or on the floor along with any bedding material present in the barn. The amount of NH₃ and H₂S emitted depend on the amount of manure produced and its characteristics, that is the total ammoniacal nitrogen (TAN) and sulfur content, (Sanchis, Calvet, del Prado, and Estelles (2019)). Multiple factors influence the generation and release of NH₃ and H₂S emissions, such as the type of building and its volume, flooring type, housing density, manure management, livestock management practices, milk yield, diet, animal behavior, and factors affecting the microclimate within the buildings (e.g., temperature, humidity, airflow) (Bjerg et al., 2013, Bougouin et al. 2016, Herbut and Angrecka 2014). The following section outlines the relationship between these specific parameters and emission rates, as well as whether the parameter, or suitable proxy, is available in the NAEMS data set.

Manure volume is a key factor influencing NH₃ and H₂S emissions in both mechanically ventilated and naturally ventilated barns. That is, the more manure and urine there is, the more precursor material there is for NH₃ and H₂S emissions. No estimates or measurements on the amount of manure generated were taken at any of the dairy sites. However, other parameters, such as inventory and live animal weight (LAW), can be used as proxies for fresh waste generation as more or larger animals would produce more waste. Both inventory and LAW were determined daily at each site and were selected for further investigation.

Second to volume, the compositional characteristics—that is nitrogen, ammonia, and sulfur content of the waste—provides information on the amount of NH₃ and H₂S than can form and be emitted by the barn. As noted in Section 2.3, sampling for total ammoniacal nitrogen content (TAN), total Kjeldahl nitrogen (TKN), and sulfur content occurred for various components of the barn, including bedding material and the waste collected from the floor. However, a limited number of samples were taken over the course of the study. Including them in the regression analysis would limit the number of days available for model development, and thereby the variability of other factors included in the model. EPA has looked at interpolating the data between samplings to extend the data to more days, however, this does require assumptions

about the behavior of nitrogen and sulfur content in the manure between samples. Knowing the incoming nitrogen and sulfur content of the feed, water, and bedding would inform the interpolation process, leading to better assumptions as this would indicate the maximum amount of nitrogen and sulfur introduced into the system, allowing from mass balance checks. However, data on feed and water and was not provided by the producers. As such, the limited data available on waste characteristics (i.e., TAN, TKN, sulfur content) were excluded from the model development dataset.

Manure pH has a strong correlation with both NH₃ and H₂S emissions (Rotz et al. 2014, Montes et al., 2009). The ammonia fraction of TAN is partly a function of pH, so pH would provide an indication of NH₃ available in the manure (Montes et al., 2009). For H₂S, water with an acidic pH has an increased concentration of molecular hydrogen sulfide, which increases the potential for H₂S emissions. However, like TAN and TKN measurements, only limited pH data were collected during NAEMS. As such, the limited data available were excluded from the model development dataset.

The Sanchis et al. (2019) review overwhelmingly found air temperature in the barn had a positive relationship with NH₃ emissions for both mechanically and naturally ventilated barns. The higher temperatures increase NH₃ losses by decreasing the solubility of NH₃ and increasing the proportion of TAN as NH₃ gas (Meisinger and Jokela, 2000). For a similar reason, manure temperature is highly correlated to NH₃ emissions. NAEMS collected barn exhaust temperature and ambient temperature at all sites and these factors were selected for further investigation. Ambient temperature was chosen for further investigation, as it is related to barn conditions and would provide an alternative barn based temperature monitoring for operators.

The studies cited by Sanchis et al. (2019) found, in some cases, the relationship between temperature was affected by the floor type (e.g., slatted versus solid) and manure handling system. EPA investigated the type of manure management system (i.e., flush or scrape) for the mechanical barns for further analysis. A similar analysis was not included for the naturally ventilated barns, as both sites used flush systems. Bedding type was also considered, however the study data only indicated in general the type of bedding used in the barns. In the case of CA5B, the operator used several bedding types as they were available (Zhao et al., 2010) with no reliable indication of when those changes occur or what the percentage of each bedding type was on any given day.

Schmithausen et al. (2018) also noted permanent under floor storage of slurry potentially contributed to higher NH₃ emissions. The site description of two mechanically ventilated sites, IN5B and NY5B, suggest that they utilize a reception pit to hold scraped material as part of their manure management system. While the NY5B notes the deep reception pit is in the connecting

alley between the freestall barn and milking center, the location of the pit at IN5B was not documented. It was noted that the material in the reception pits, at both sites, were transferred to a digester on a regular basis. Because the material was transferred on a regular basis and was not long term, a variable to account for under floor storage was not included at this time.

The ventilation rate of mechanically ventilated barns has been shown as having a positive correlation to NH₃ emissions across several studies (Kavolelis, 2003; Philippe, et al., 2011; Samer et al., 2012). Ventilation rates are typically driven by the temperature inside the barn, which is affected by the outside temperature. For modeling purposes, this suggests that temperature, either barn or ambient, might make a good proxy for ventilation rate.

For naturally ventilated barns, the ventilation or air flow through the barn is driven by the wind. Many studies (Arogo et al., 1999; Bjerg et al. 2013, Wu et al. 2012; Schrade et al., 2012; and Herbut and Angrecka, 2014) have found a strong correlation between emissions and wind speed, and occasionally wind direction (Feidler and Müller (2011)). However, Saha et al. (2014) did not find the clear relationship between wind speed and emissions. Saha et al. (2014) suggested that the effects of wind speed might be masked by other environmental parameters, such as temperature and relative humidity, or the presence of other buildings and slurry tanks that might influence wind entering the building. Bjerg et al. (2013) noted that the more important component to release was air velocity over the manure, which is not necessarily correlated to wind speed in the barn, as air movement could be affected by numerous things, such as animals and other obstructions in the barn. For modeling purposes, wind speed was selected for further study for naturally ventilated barns.

The literature review did not find references showing a correlation between either NH₃ or H₂S emission in mechanically ventilated barns and relative humidity. Sanchis et al. (2019) suggests that there are no significant effects due to the high variability of relative humidity in the barn environment. However, Sanchis et al. (2019) noted studies of naturally ventilated barns showed that higher relative air humidity leads to reduced NH₃ emission rates. In general, higher air humidity values are expected to yield reduced NH₃ concentrations, since NH₃ is highly water-soluble and would be absorbed by the water vapor in the air and less gaseous NH₃ would be measured. However, this is only true within a certain temperature range and the management strategies would also affect this relationship. Saha et al. (2014) also noted the effect of relative humidity might be related to the changes in animal activity and performance in response to heat stress. Because of the potential relationship between NH₃ and moisture, relative humidity was selected for further study for both mechanically and naturally ventilated barns.

Animal and management activities, such as feeding and milking, can affect emission rates (Ngwabie, et al. 2011, Hempel 2016). There was no specific daily information on management activities recorded by NAEMS.

3.2 Particulate Matter from Barns

The release of PM₁₀, TSP, and PM_{2.5} (collectively referred to as PM) into the air of dairy barns is caused by the physical suspension of a range of different materials in the barns including feed, manure, bedding, and skin or hair (Cambra-Lopez et al., 2011). Accordingly, the EPA chose live animal weight and inventory as predictor variables, as they are related to the amount of source material. One study, Garcia et al. (2013), found an inverse relationship between milking center capacity and PM_{2.5} concentration on the farm, which was attributed to the larger dairies being newer and more efficiently operated. This suggests there are different management practices at newer barn that can affect particulate emissions. Likely making the use of inventory more nuanced than with other animal types.

Physical suspension of PM from barn surfaces can be caused by air flow, animal activity, and human activity (Aarnink and Ellen, 2007); however, EPA did not receive barn activity measurements and could not explore the influence of this variable further. Airflow, or ventilation rate, was recorded for all barn sources. As mentioned in the previous section, mechanical ventilation rates are related to ambient and barn temperature, thus meaning that temperature could be a potential surrogate variable that represents airflow. For naturally ventilated buildings wind speeds may have an influence on the air flow, which in turn could potentially affect the PM emissions from the buildings. Accordingly, EPA selected the airflow for further review, as well as wind speed from naturally ventilated barns. Temperature was selected for both mechanically ventilated barns, due to the correlation with airflow, and naturally ventilated barns. While Takai et al. (1998) did not find seasonal variation with PM emission from naturally ventilated barns, Mostafa et al. (2016) did see greater emissions in summer and lower values in winter. The longer observation periods of PM during NAEMS showed some seasonality, with the highest values occurring in the summer.

Physical suspension may also be influenced by moisture conditions and relative humidity (Cambra-Lopez et al., 2010). A study by Takai et al. (1998) examined PM emissions from a variety of livestock types including dairy cattle and reported that relative humidity greater than 70% contributed to particles aggregating together and thus reducing emissions. Accordingly, for dairy barns, the variables ambient relative humidity and barn relative humidity were selected for further investigation.

3.3 NH₃ and H₂S for Open Sources

The release of NH₃ and H₂S from open sources follows similar mechanics as release from waste in the barns. That is, the amount of NH₃ and H₂S emitted will depend on some of the same factors as the barn, such as the compositional characteristics. With lagoons and basins, the amount of waste can be characterized by the lagoon surface area in addition to farm level inventory and live animal weight. For open source model development, EPA used lagoon surface area to normalize emissions, as it represents the amount of the manure that can exchange gas with the atmosphere. For corrals, the area of the corrals was selected along with the inventory for the farm since the emissions measurements covered a wider area. As with barn sources, TAN, TKN, and sulfide content of the manure has a major influence on dairy open source NH₃ and H₂S emissions (see section 3.1 for details). For NAEMS open source sites, there were no measurements of TAN, TKN, or sulfide at the three sites. As a result, EPA could not investigate these parameters further.

Like barn sources, NH₃ and H₂S emissions are a function of the pH, specifically the pH at the surface of the manure, and temperature as both parameters affect the chemistry associated with the generation and release of the pollutants (Arogo et al., 2006, Rotz et al., 2014). Ambient temperature, along with turbulence, typically represented by wind speed, affect the diffusion and dispersion of the released gases from the lagoon surface (Arogo et al., 2006, Sommer et al., 2013). There were continuous measurements of lagoon temperature, lagoon pH for lagoon/basin sites, and air temperature and wind speed for all NAEMS open sources. Accordingly, these four variables were selected for further analysis for lagoon/basin sources and air temperature and wind speed were selected for corral sources.

Like manure in barns, moisture levels can affect the volatilization of NH_3 and H_2S . In drier environments, evaporation and volatilization are going to occur more rapidly. In a lagoon, where waste is held as a slurry, it is likely less of a factor than in a corral where manure is often mixed into the soil creating a drier environment. Grant et al. (2020) suggested that the vapor pressure deficit might be a more compelling parameter than relative humidity to represent the potential for volatilization from the manure and soil mixture present in corrals. The vapor pressure deficit is the difference between how much moisture the air can hold when saturated and the actual amount of moisture in the air. Unlike relative humidity, the vapor pressure deficit is not a function of temperature, which also allows for a more consistent comparison between days. EPA chose to include both relative humidity and vapor pressure deficit to further investigate their relationship with emissions from the corral.

The presence of a crust or cover on a lagoon or basin will inhibit the transfer of NH₃ to the atmosphere, reducing emissions. Similarly, frozen lagoon surfaces will also stop emissions
from the surface of the lagoon. The NAEMS made limited observation of the state of the lagoon (e.g., color, crust) during the study. The lack of daily observations would limit the number of days available for EEMs development, as the dataset would be limited to only those days with lagoon surface observations. Due to the limited nature of the observations available, this variable was not explored further.

4 SITE COMPARISON, TRENDS, AND ANALYSIS

Before developing the EEMs, EPA evaluated NAEMS data for each pollutant to identify patterns and trends in the emissions data using a combination of summary statistics (mean, standard deviation, number of data values, median, minimum, maximum, coefficient of variation, and number of data values less than zero) and time series plots. Section 4.1 summarizes the emissions trends from the sites, while Appendix D contains the tables of summary statistics. Appendix E presents the time series plots of the site-specific emissions, environmental and production parameters, and manure data collected under NAEMS.

Based on the analysis described in Section 3.0, EPA identified the key environmental and manure parameters that potentially affect emissions from dairy barns and associated open sources. Parameters of particular interest included inventory, barn conditions (exhaust temperature, exhaust relative humidity, and airflow), ambient temperature, ambient relative humidity, and wind speed.

The next step of the analysis was to look at the key environmental and manure parameters compared to emissions trends. The exploratory data analysis was conducted to confirm that the variables were selected based on the following criteria: (1) data analysis in this study and in the literature suggested that these variables had an influence on emissions; (2) the variables should be easy to measure; and (3) the variables were already in the daily average NAEMS data and were available for most days of monitored emissions. This third selection criterion particularly applies to the manure parameters, such as moisture content and TAN concentration, which were infrequent due to the intensive collection and analysis methods. Additional time could be taken to develop an appropriate methodology for interpolating between the few data points available for these parameters in the dataset. However, these parameters are difficult to acquire as they require chemical analysis from a laboratory.

The exploratory data analysis was also used to explore whether additional parameters could be included to explain trends. To further explore the trends between the predictor variables and emissions and determine whether the parameter should be included in developing an EEM, EPA prepared scatter plots of emissions versus the process, environmental, and manure parameters and conducted least squares regression analysis to assess the influence of each variable on emissions. For the regressions, EPA classified the linear relationships based on the ranges in Table 4-1.

A summary of this analysis for environmental parameters is discussed in Section 4.2. Again, Appendix D contains summary statistics, Appendix E contains the relevant time series plots, and Appendix F contains least squares regression analyses between the identified parameters and emissions.

Range of R ²	Relationship strength
$R^2 \le 0.001$	none
$0.001 < R^2 \le 0.2$	slight or weak
$0.2 < R^2 \le 0.4$	modest
$0.4 < R^2 \le 0.6$	moderate
$0.6 < R^2 \le 0.8$	moderately strong
R ² > 0.8	strong

Table 4-1: Relationship classification based on R² values

4.1 Mechanically Ventilated Dairy Barns (IN5B-B1, IN5B-B2, NY5-B1, WI5B-B1 and WI5B-B2)

4.1.1 Emissions data

Appendix D, Table D-1 and D-2 presents the summary statistics for daily average emissions of NH₃ for the mechanically ventilated sites in kilograms per day and grams per day per head (kg d⁻¹ and g d⁻¹ hd⁻¹), respectively. Based on Table D-1, the emissions appear to vary across sites. However, when presented in a per head basis, as in Appendix D, Table D-2, the emissions are consistent across sites with average daily emissions ranging from 31.35 kg d⁻¹ hd⁻¹ at WIB5-B2 to 48.28 kg d⁻¹ hd⁻¹ at IN5B-B1. Appendix E, Figure E-1 showed that the emissions follow a seasonal cycle, with greater emissions typically occurring in the summer and decreasing to lows in winter months. Emissions from the WI5B site have a more muted seasonal cycle on the first year, with slightly increased values in the second year of the study. This appears to correlate to a changing from a flush system to a scrape system in September of 2008. As noted in Section 3, manure management systems can affect the emissions generated in the barn. Appendix E, Figure E-1 suggests it is worth pursuing modeling options that account for the manure management system.

The summary statistics for daily average H_2S emissions are presented in Appendix D, Table D-3 and D-4 for g d⁻¹ and mg d⁻¹ hd⁻¹, respectively. Unlike NH₃, the per head values in Table D-4 show emission values 2 to 4 times greater at the WI5B barns than the other sites. Appendix E, Figure E-2 showed the time series plot for H_2S emissions. The plot showed a seasonal trend in H_2S emissions for the IN5B and NY5B site, with emissions trending higher in warmer months. However, the WI5B barns show a very different trend. The H_2S emission for both barns are quite high and variable for the first half of the plot, and then fall to lower levels. Like the shift with the NH₃ emissions, this change corresponds to the switch to a scrape system in the barns.

Appendix D, Table D-5 and D-6 presents the summary statistics in g d⁻¹ and mg d⁻¹ hd⁻¹, respectively, for the daily average emissions of PM_{10} for the mechanically ventilated sites. There was variation in emissions between sites, both in the total for the day and when normalized on a

per head basis. The average daily emissions ranged from 9.73 g d⁻¹ (12.49 mg d⁻¹ hd⁻¹) at INB5-B1 to 562.91 g d⁻¹ (1,571.90 mg d⁻¹ hd⁻¹) at WI5B-B2. The time series plot (Appendix E, E-3) showed readings hovering between 0 and 500 g d⁻¹, with greater spikes typically occurring in the summer months. WI5B does experience maximum values that are twice as high as the other sites. These peaks occur both in the summer of 2008 and 2009, suggesting the change to a scrape manure management system did not contribute to the highest emission days. The dataset used for the exploratory data analysis has several negative values, which were further reviewed during the data review process described in Section 2.

Like, PM₁₀, the PM_{2.5} average daily emissions vary substantially across sites. The average daily emissions summarized in Appendix D, Table D-7, indicate that WI5B emissions are much greater than the other barns. The emissions across all sites range from 21.18 g d⁻¹ at IN5B-B1 up to 186.75 g d⁻¹ at WI5B-B2. When accounting for inventory difference (Appendix D, Table D-8), the WI5B are still more than twice any other mechanically ventilated barn monitored during NAEMS, with an average value of 662.17 mg d⁻¹ hd⁻¹ at WI5B-B1 compared to 25.89 mg d⁻¹ hd⁻¹ at IN5B-B1. Appendix E, Figure E-4 showed the temporal variability of the PM_{2.5} emissions. The plot for IN5B does show some rather large negative numbers in the exploratory data analysis, which were further reviewed during the data set review process described in Section 2. The inclusion of these points is likely reason for the lower average values at IN5B compared to the other sites. The sparse temporal nature of the daily PM_{2.5} values, due to a rotating monitoring schedule for the PM size fractions at the NAEMS sites, makes it hard to determine if there is a seasonal trend to the data. The number of negative daily averages from the sites varied greatly. The barns at IN2B had the least negative values with 28 and 29 at B1 and B2, respectively. The remaining sites had nearly twice as many negative values; NY5B-B1 had 53, while WI5B had 53 and 45 at B1 and B2, respectively.

The daily average TSP emissions followed a similar trend to PM_{10} and $PM_{2.5}$. That is WI5B had average emissions substantially greater than the other two sites (Appendix D, Table D-9), even after accounting for difference in inventory levels (Appendix D, Table D-10). Like $PM_{2.5}$, the sparse temporal nature of the daily TSP values makes it hard to determine if there is a seasonal trend to the data. The plot of WI5B does suggest some seasonality, with slightly greater emissions in the summer. However, a similar pattern is not obvious at the other sites. There were fewer negative daily TSP values, with all sites reporting less than 10 negative values.

4.1.2 Environmental data

The statistical summary of the environmental parameters associated with mechanically ventilated barns are presented in Appendix D, Table D-11. The inventory was varied across the sites, ranging from an average of 211 head at WI5B-B1 to 864 head at IN5B-B2. Appendix E,

Figure E-6 showed that the number of cows present over the course of NAEMS was consistent, with any one barn varying by less than 112 cows over the study duration. Of note, the first-year inventory data from WI5B appears to be based on average inventory of the barn and not actual inventory levels. Appendix F, Figures F-1 through F-5 show the scatter plots of inventory versus each pollutant. A summary of the findings is provided in Table 4-2. In general, there is a weak relationship with inventory across all pollutants, except that NH₃ has a moderate positive relationship. Of note, all the PM size fractions show a weak negative linear relationship with inventory, as the smaller barns have greater emissions. Further investigation showed the barns with greater inventory are newer, which is consistent with the finding from the literature review that newer barns had lower PM emissions. As noted in Section 3.2, the difference between the newer facilities is likely a management practice applied in the newer construction. It is currently unknown what leads to the decrease in emissions for larger newer farms. A possibility to somehow account for this unknown factor is to consider the age of the facility in modeling; however, the limited range in ages (Table 4-1) makes it difficult to incorporate at this time. EPA will continue to pursue identifying the physical or chemical property driving this decrease in Pm emissions in newer barns, and a way to incorporate this into the modeling.

Barn	Year Constructed
WI5B B1	1990
WI5B B2	1994
NY5B B1	1998
IN5B B1	2004
IN5B B2	2004

Table 4-2. Year mechanically ventilated barns were constructed

Average animal weight for the IN5B and WI5B barns were reported as a constant value. For NY5B, the daily value reported only vary by less than 5 kg (576 to 580 kg). This limited range of daily average animal weight is apparent in the time series (Appendix E, Figure E-7). The regression analyses in Appendix F, Figures F-6 through F-10, summarized in Table 4-2, showed only a slight or weak relationship between average animal weight and each pollutant. Trends in live animal weight (i.e., inventory * average animal weight) do not vary dramatically over the monitoring period (Appendix E, Figure E-8). The regression analyses in Appendix F, Figures F-11 through F-15 showed similar relationships as inventory, which is the most variable component of live animal weight.

Exhaust temperatures were comparable across all the sites, ranging from an average of 10.55°C at WI5B-B2 to 12.89°C at NY5B-B1. The time series in Appendix E, Figure E-9 show the typical seasonal trend, where temperatures peak in the summer, decrease to minimums around the new year, and then trend upwards during the spring. The linear regression analyses

(Appendix F, Figures F-16 through F-20) only shows a weak to modest positive relationship to temperature. However, the figure for IN5B suggests a nonlinear relationship with temperature, which might be reducing the overall strength of the correlation. The shift in manure management system at WI5B affected the strength of the relationship for those barns. For example, R² reached 0.72 with NH₃ emissions while the house was scrape and only 0.21 as scrape for NH₃. A summary of the findings is provided in Table 4-2.

A review of the exhaust relative humidity summary (Appendix D, Table D-11), were comparable across all the sites, ranging from an average of 66.8% at WI5B-B2 to 75.4% at NY5B-B1. The time series (Appendix E, Figure E-10) show the relative humidity is variable, as there is a spread in the data for any time of the year. The plots suggest dips in humidity for the spring, with IN5B also suggesting a dip in the fall. When regressed with the emissions (Figures F-21 through F-25), there are only slight or weak relationships, which are positive for gaseous pollutants and negative with particulate matter daily emissions (kg/d).

The measured airflow through the barn was comparable across sites and ranged from 131. dry standard cubic meter per second (dsm³s⁻¹) at WI5B-B1 to 210. dsm³s⁻¹ at IN5B-B1. The time series (Appendix E, Figure E-11) showed a seasonal pattern, as ventilation rates would increase to maintain barn temperatures during warm months. The regression analyses (Appendix F, Figures F-26 through F-30) showed weak to modest positive relationships with emissions, which is supported by literature.

Pollutant	Parameter	R	R ²	Strength	Figure
NH₃	Inventory	0.660	0.435	moderate	Appendix F, F-1
H₂S	Inventory	0.002	< 0.001	slight or weak	Appendix F, F-2
PM10	Inventory	-0.292	0.085	slight or weak	Appendix F, F-3
PM _{2.5}	Inventory	-0.319	0.102	slight or weak	Appendix F, F-4
TSP	Inventory	-0.327	0.107	slight or weak	Appendix F, F-5
NH₃	Average animal weight	-0.423	0.179	slight or weak	Appendix F, F-6
H₂S	Average animal weight	0.114	0.013	slight or weak	Appendix F, F-7
PM 10	Average animal weight	0.240	0.058	slight or weak	Appendix F, F-8
PM2.5	Average animal weight	0.384	0.148	slight or weak	Appendix F, F-9
TSP	Average animal weight	0.384	0.147	slight or weak	Appendix F, F-10
NH₃	Live animal weight	0.653	0.426	moderate	Appendix F, F-11
H₂S	Live animal weight	0.014	< 0.001	slight or weak	Appendix F, F-12
PM10	Live animal weight	-0.278	0.077	slight or weak	Appendix F, F-13
PM2.5	Live animal weight	-0.283	0.080	slight or weak	Appendix F, F-14
TSP	Live animal weight	-0.307	0.094	slight or weak	Appendix F, F-15
NH₃	Exhaust temperature	0.493	0.243	modest	Appendix F, F-16
H ₂ S	Exhaust temperature	0.323	0.104	slight or weak	Appendix F, F-17
PM10	Exhaust temperature	0.410	0.168	slight or weak	Appendix F, F-18

Table 4-3. Mechanically vent	ilated environmental	parameter regression	analyses
------------------------------	----------------------	----------------------	----------

Pollutant	Parameter	R	R ²	Strength	Figure
PM2.5	Exhaust temperature	0.484	0.234	modest	Appendix F, F-19
TSP	Exhaust temperature	0.406	0.165	slight or weak	Appendix F, F-20
NH₃	Exhaust relative humidity	0.390	0.152	slight or weak	Appendix F, F-21
H₂S	Exhaust relative humidity	0.193	0.037	slight or weak	Appendix F, F-22
PM10	Exhaust relative humidity	-0.269	0.072	slight or weak	Appendix F, F-23
PM _{2.5}	Exhaust relative humidity	-0.414	0.171	slight or weak	Appendix F, F-24
TSP	Exhaust relative humidity	-0.322	0.104	slight or weak	Appendix F, F-25
NH₃	Airflow	0.536	0.287	modest	Appendix F, F-26
H₂S	Airflow	0.232	0.054	slight or weak	Appendix F, F-27
PM ₁₀	Airflow	0.425	0.180	slight or weak	Appendix F, F-28
PM2.5	Airflow	0.449	0.202	modest	Appendix F, F-29
TSP	Airflow	0.376	0.141	slight or weak	Appendix F, F-30

4.1.3 Ambient Data

The statistical summary of the ambient parameters associated with mechanically ventilated barns are presented in Appendix D, Table D-12. The average daily temperatures were cooler at WI5B at 7.2°C, compared to 12.2°C at IN5B. The time series in Appendix E, Figure E-12 show the typical seasonal pattern to temperatures (i.e., maximum in summer and minimums in winter). Of note, data is missing starting in January 2008 at IN5B. No reason for the data loss was provided in the final site report. With the inclusion of three sites, there are ample measurements of emissions at the anticipated temperature range for model development. The scatter plots of ambient temperature (Appendix F, Figures F-31- F-35), summarized in Table 4-3, show weak-to-modest positive relationships with emissions. The NH₃ plots (Appendix F, Figures F-31) indicate emissions increased more rapidly with temperature at IN5B than the remaining sites.

Ambient relative humidity is similar between sites, ranging from an average value of 67.8% at NY5B to 68.4% at WI5B. The time series (Appendix E, Figure E-13) show the values vary by at least 20% for any given time of the year. Like the exhaust relative humidity, there is an indication that minimum values are more likely in both spring and fall, though the scatter to the data makes a seasonal pattern hard to discern. The regression analyses (Appendix F, Figures F-36 - F-40) indicate slight or weak negative relationships between ambient relative humidity and emissions, even when looking at sites individually.

Pollutant	Parameter	R	R ²	Strength	Figure
NH₃	Ambient temperature	0.537	0.289	modest	Appendix F, F-31
H₂S	Ambient temperature	0.257	0.066	slight or weak	Appendix F, F-32
PM10	Ambient temperature	0.370	0.137	slight or weak	Appendix F, F-33
PM2.5	Ambient temperature	0.398	0.159	slight or weak	Appendix F, F-34
TSP	Ambient temperature	0.348	0.121	slight or weak	Appendix F, F-35
NH₃	Ambient relative humidity	-0.110	0.012	slight or weak	Appendix F, F-36

Table 4-4. Mechanically ventilated ambient parameter regression analyses

Pollutant	Parameter	R	R ²	Strength	Figure
H ₂ S	Ambient relative humidity	<0.001	< 0.001	slight or weak	Appendix F, F-37
PM10	Ambient relative humidity	-0.129	0.017	slight or weak	Appendix F, F-38
PM _{2.5}	Ambient relative humidity	-0.331	0.109	slight or weak	Appendix F, F-39
TSP	Ambient relative humidity	-0.155	0.024	slight or weak	Appendix F, F-40

4.2 Milking Centers (IN5B-MC and NY5B-MC)

4.2.1 Emissions Data

Appendix D, Table D-13 and Table D-14 presents the summary statistics, in kg d⁻¹ and g d⁻¹ hd⁻¹, for daily average emissions of NH₃ for the MCs monitored during NAEMS. The total emissions (kg d⁻¹) are relatively similar between the barns, though IN5B has a larger standard deviation. When scaled for the capacity of the MC (Appendix D, Table D-14), NY5B, at 30.3 g d⁻¹ hd⁻¹, was nearly double the average emission of 15. 7 g d⁻¹ hd⁻¹at IN5B. The time series plot of NH₃ emissions (Appendix E, Figure E-14) showed some seasonality in the data. The plots for IN5B suggest greater emissions in the warmer months, particularly in the summers of 2008 and 2009. The data at NY5B does not have as strong of a seasonal pattern as IN5B.

In a reversal of what was seen with the NH₃ statistics, IN5B had greater overall H₂S emissions (Appendix D, Table D-15) than NY5B and greater scaled emissions (Appendix D, Table D-16). Average emissions at IN5B were 1,207 g d⁻¹ (2,148 mg d⁻¹ hd⁻¹) compared to 129g d⁻¹ (2,681 mg d⁻¹ hd⁻¹). The time series plot of H₂S emissions (Appendix E, Figure E-15) suggests some seasonality to the data, with higher readings in the summer months, which may be related to ventilation rates, and indirectly related to ambient temperature. The peaks at IN5B were much greater than NY5B, suggesting an additional difference in the site. Further review showed that IN5B used a flush system and NY5B used a scrape system for manure removal. Like the emission shift seen at WI5B, it is possible that the manure management system is influencing the emission levels.

Particulate matter emissions observations were only taken at NY5B. Appendix, Table D-17 provides the statistical summary in g d⁻¹ and Appendix D, Table D-18 provide them in mg d⁻¹ hd⁻¹. Appendix E, Figure E-16 shows the time series of PM_{10} emission estimates. The plot suggests some seasonality to the data, with higher readings in the summer months, which may relate to ventilation rates. The time series of $PM_{2.5}$ emission is in Appendix E, Figure E-17, while Appendix E, Figure E-18 showed the time series for TSP. The sparse nature of the $PM_{2.5}$ and TSP data makes it hard to determine if there is any seasonality to the data.

4.2.2 Environmental data

The statistical summary of the environmental parameters associated with MCs is presented in Appendix D, Table D-19. Daily inventory number were not reported for the MCs. The capacity of the milking center was used to represent the inventory levels. This is evident in

the time series (Appendix E, Figure E-19) and the scatter plots (Appendix F, Figures F-41-F-45). Average animal weight for the IN5B MC was reported as a constant value. For NY5B, the daily value reported only vary by less than 5 kg (576 to 580 kg), like the mechanically ventilated barn. This limited range of daily average animal weight is apparent in the time series (Appendix E, Figure E-20). The regression analyses in Appendix F, Figures F-46 through F-50, summarized in Table 4-4, showed only a slight or weak relationship between average animal weight and each pollutant. Because of the constant inventory and near constant average animal weight, trends in live animal weight (i.e., capacity * average animal weight) do not vary dramatically over the monitoring period (Appendix E, Figure E-21). The regression analyses in Appendix F, Figures F-51 through F-55 showed only slight relationships with emissions. To include size of the operation in the models as a proxy for volume of manure produced, EPA opted to test models where the emissions were normalized by the capacity of the MC. The models will yield an estimate of emissions per head capacity of the MC.

Exhaust temperature was comparable between sites (Appendix E, Figure E-22), with average daily means of 12.8°C at NY5B and 13.2°C at IN5B. The regression analyses (Appendix F, Figures F-56 - F-60) showed a weak-to-modest correlation between exhaust temperature and emissions, like the mechanically ventilated barns. Exhaust relative humidity was also comparable between sites (Appendix E, Figure E-23), with average daily values of 74.2% and 73.8% at IN5B and NY5B, respectively. Like with mechanically ventilated barns, there is a tendency for the lowest values to occur in the spring and fall. However, the wide scatter of values for any time of the year, makes any strong seasonal pattern hard to discern. The regression analyses (Appendix F, Figures F-61 - F-65), only showed slight-to-weak positive correlation with emissions.

Airflow rates were much lower at NY5B than IN5B, which is clearly demonstrated in the time series plot (Appendix E, Figure E-24). Average airflow rates were 39.90 dsm³s⁻¹ at NY5B and 183.33 dsm³s⁻¹ at IN5B. The MC at IN5B is connected to Barn 1 at the site (see Figure 1-2 in Section 1), while the MC at NY5B is connected to both Barn 1 and a naturally ventilated barn (see Figure 1-3 in Section 1). It is possible the connection to the naturally ventilated barn reduced the ventilation needs at the MC. The regression analyses (Appendix F, Figures F-66 - F-70) showed only a slight to weak correlation with emissions, except for PM₁₀, which has a modest correlation.

Pollutant	Parameter	R	R ²	Strength	Figure
NH₃	Inventory (MC Capacity)	0.279	0.078	slight or weak	Appendix F, F-41
H₂S	Inventory (MC Capacity)	0.360	0.130	slight or weak	Appendix F, F-42
PM10	Inventory (MC Capacity)			None	Appendix F, F-43
PM2.5	Inventory (MC Capacity)			None	Appendix F, F-44
TSP	Inventory (MC Capacity)			None	Appendix F, F-45
NH ₃	Average animal weight	0.279	0.078	slight or weak	Appendix F, F-46
H₂S	Average animal weight	0.360	0.130	slight or weak	Appendix F, F-47
PM ₁₀	Average animal weight	-0.005	< 0.001	slight or weak	Appendix F, F-48
PM _{2.5}	Average animal weight	-0.161	0.026	slight or weak	Appendix F, F-49
TSP	Average animal weight	0.154	0.024	slight or weak	Appendix F, F-50
NH ₃	Live animal weight	0.279	0.078	slight or weak	Appendix F, F-51
H₂S	Live animal weight	0.360	0.130	slight or weak	Appendix F, F-52
PM ₁₀	Live animal weight	-0.005	< 0.001	slight or weak	Appendix F, F-53
PM2.5	Live animal weight	-0.161	0.026	slight or weak	Appendix F, F-54
TSP	Live animal weight	0.154	0.024	slight or weak	Appendix F, F-55
NH₃	Exhaust temperature	0.518	0.268	modest	Appendix F, F-56
H₂S	Exhaust temperature	0.322	0.104	slight or weak	Appendix F, F-57
PM10	Exhaust temperature	0.550	0.303	modest	Appendix F, F-58
PM2.5	Exhaust temperature	0.401	0.160	slight or weak	Appendix F, F-59
TSP	Exhaust temperature	0.348	0.121	slight or weak	Appendix F, F-60
NH₃	Exhaust relative humidity	-0.188	0.035	slight or weak	Appendix F, F-61
H₂S	Exhaust relative humidity	-0.378	0.143	slight or weak	Appendix F, F-62
PM10	Exhaust relative humidity	-0.111	0.012	slight or weak	Appendix F, F-63
PM _{2.5}	Exhaust relative humidity	-0.241	0.058	slight or weak	Appendix F, F-64
TSP	Exhaust relative humidity	0.184	0.034	slight or weak	Appendix F, F-65
NH ₃	Airflow	0.381	0.146	slight or weak	Appendix F, F-66
H₂S	Airflow	0.332	0.110	slight or weak	Appendix F, F-67
PM ₁₀	Airflow	-0.458	0.210	modest	Appendix F, F-68
PM _{2.5}	Airflow	-0.009	< 0.001	slight or weak	Appendix F, F-69
TSP	Airflow	0.106	0.011	slight or weak	Appendix F, F-70

 Table 4-5. Milking center environmental parameter regression analyses

4.2.3 Ambient Data

The statistical summary of the ambient parameters associated with MCs are presented in Appendix D, Table D-20. The summary statistics indicate the ambient temperatures are similar for both sites, with average daily mean of 11.13°C at NY5B and 12.20°C at IN5B. Ambient temperature trends (Appendix E, Figure E-27) follow seasonal patterns, as expected, and the time series reiterates the similarity in temperatures at both sites. The regression analyses (Appendix F, Figures F-71 - F-75) summarized in Table 4-5, showed weak-to-modest positive correlation with emissions.

Ambient relative humidity was also similar between the sites with average daily mean of 67.81% at NY5B and 67.90% at IN5B. The time series (Appendix E, Figure E-28) showed variability in average daily humidity values, with the lowest values occurring in the spring. The

regression analyses (Appendix F, Figures F-76 - F-80), summarized in Table 4-5, showed only a slight-to-weak correlation with emissions.

Pollutant	Parameter	R	R ²	Strength	Figure
NH₃	Ambient temperature	0.495	0.245	modest	Appendix F, F-71
H₂S	Ambient temperature	0.296	0.088	slight or weak	Appendix F, F-72
PM10	Ambient temperature	0.568	0.323	modest	Appendix F, F-73
PM2.5	Ambient temperature	0.399	0.159	slight or weak	Appendix F, F-74
TSP	Ambient temperature	0.348	0.121	slight or weak	Appendix F, F-75
NH₃	Ambient relative humidity	-0.043	0.002	slight or weak	Appendix F, F-76
H₂S	Ambient relative humidity	0.039	0.002	slight or weak	Appendix F, F-77
PM10	Ambient relative humidity	-0.421	0.178	slight or weak	Appendix F, F-78
PM2.5	Ambient relative humidity	0.043	0.002	slight or weak	Appendix F, F-79
TSP	Ambient relative humidity	0.066	0.004	slight or weak	Appendix F, F-80

Table 4-6. Milking center ambient parameters regression analyses

4.3 Naturally Ventilated Barns (CA5B-B1, CA5B-B2, WA5B-B2 and WA5B-B4)

4.3.1 Emissions Data

Appendix D, Table D-21 and Table D-22 presents the summary statistics, in kg d⁻¹ and g d⁻¹ hd⁻¹, for daily average emissions of NH₃ for the naturally ventilated sites. The average daily emission rate is substantially different between the sites, ranging from 2.76 kg d⁻¹ (4.98 g d⁻¹ hd⁻¹) at CA5B-B1 to 54.65 kg d⁻¹ (56.51 g d⁻¹ hd⁻¹) at WA5B-B4. The time series plot (Appendix E, Figure E-29) showed the highest emissions at WA5B occurring in late spring to early summer of 2008. After a break in observations, the emission levels mostly drop to lower levels, though it is still greater than CA5B. CA5B does have quite a few negative days, 37 at B1 and 42 at B2, which are contributing to the lower overall average compared to WA5B. These negative numbers were further reviewed during the data set review process described in Section 2, prior to inclusion in the model development dataset. Appendix E, Figure E-29 also showed the emissions are variable across the year with no obvious seasonal pattern.

The summary statistics for daily average H_2S emissions are presented in Appendix D, Table D-23 and D-24 for g d⁻¹ and mg d⁻¹ hd⁻¹, respectively. Unlike the NH₃ emissions, the average of the daily emissions are more comparable across the sites. However, reviewing the time series plot (Appendix E, Figure E-30) showed more variability at WA5B, including a few very high values and extreme negative values. There were several negative values at each barn, ranging from 18 values at CA5B-B2 to 45 values at WA5B-B2. Some of the negative numbers were quite large, -609.00 g d⁻¹ at CA5B-B2 to -11,640.14 g d⁻¹ at WA5B-B2. These negative numbers were further reviewed during the dataset review process described in Section 2, prior to inclusion in the model development dataset. Appendix E, Figure E-30 also showed the emissions are variable across the year with no obvious seasonal pattern. The summary statistics for PM_{10} are presented in Appendix D, Table D-25 and D-26 for g d⁻¹ and mg d⁻¹ hd⁻¹, respectively. Like NH₃, the PM₁₀ emissions vary between the barns, even when accounting for the differences in inventory. Average daily emissions range from -325.80 g d⁻¹ (-636.79 mg d⁻¹ hd⁻¹) at CA5B-B1 to 11,391.71 g d⁻¹ (11,794.47 mg d⁻¹ hd⁻¹) at WA5B-B4. CA5B has quite a few negative days, 372 at B1 and 221 at B2, which are contributing to the lower overall average compared to WA5B, and the overall negative average for CA5B-B1. These negative numbers were further reviewed during the dataset review process described in Section 2, prior to inclusion in the model development dataset. The time series plot (Appendix E, Figure E-31) showed the frequency of the negatives at CA5B, as well as the extremely high values seen at WA5B.

PM_{2.5} was like PM₁₀ in that there is a substantial number of negative daily emission values at CA5B (Appendix D, D-27, and D-28). Specifically, at B1, 44 of the 47 values are negative and 40 of 54 are negative at B2. This results in a negative overall average value for CA5B barns. The WA5B site has fewer negative values, 0 at WA5B-B2 and 6 at WA5B-B4. These negative numbers were further reviewed during the dataset review process described in Section 2, prior to inclusion in the model development dataset. The time series plot (Appendix E, Figure E-32) showed the frequency of the negatives at CA5B, as well as the spread in values seen in at WA5B. No seasonal pattern was apparent.

Regarding the TSP summary statistics (Appendix D, D-29, and D-30), the two sites have different daily average values despite fewer negative daily emission values for CA5B than the other PM size fractions. Average TSP daily emissions ranged from 4,766g d⁻¹ (9113mg d⁻¹ hd⁻¹) at CA5B-B1 to 47,389g d⁻¹ (49,099mg d⁻¹ hd⁻¹) at WA5B-B4. The time series plot (Appendix E, Figure E-33) showed a lot of variability in readings, which makes a seasonal pattern hard to discern.

4.3.2 Environmental Data

The statistical summary of the environmental parameters associated with naturally ventilated barns are presented in Appendix D, Table D-31. The average inventory for most of the barns is between 514 at WA5B-B2 to 558 at WA5B-B2. WA5B-B4 is the exception, with an average inventory almost double the other barn of 963.20 head. The time series (Appendix E, Figure E-34) showed there is some variability in the inventory at the site, with most only varying by 100 head from the average. The regression analyses (Appendix F, Figures F-81 - F-85), summarized in Table 4-6, generally showed only slight or weak linear relationship with emissions, except for NH₃, which had a moderate positive linear relationship.

Average animal mass was provided as a single value and not reported daily. The summary table (Appendix D, Table D-31) and the time series (Appendix E, Figure E-35)

reiterate the single value. With constant values, the regression analyses (Appendix F, Figures F-86 - F-90) showed only slight or weak relationship with emissions. Combining inventory and average weight into live animal weight produces a size variable with trends (Appendix E, Figure E-36), like inventory. Like the inventory regression analyses, Appendix F, Figures F-91 - F-95 showed a light or weak relationship with all pollutants except NH₃, which had a moderate positive relationship.

Average daily mean exhaust temperatures were slightly higher at CA5B. The means ranged from 11.41°C at WA5B-B2 to 18.75°C at CA5B-B1. The time series (Appendix E, Figure E-37) show similar trends and ranges between the sites, with lower values at the WA5B barns. The regression analyses (Appendix F, Figures F-96 - F-100) indicated modest positive relationships with NH₃ and PM₁₀ emissions and slight or weak relationships with other pollutants.

The average daily exhaust relative humidity values are also slightly higher at CA5B. The mean values ranged from 45.16% at WA5B-B4 to 58.49% at CA5B-B1. The time series (Appendix E, Figure E-38) show the highest levels in the winter and lower values in the summer at both sites. There is a lack of variability at the WA5B barns around January 2008 which will be further investigated prior to finalizing the models. The regression analyses (Appendix F, Figures F-101 - F-105) showed only slight to weak relationships with emissions, which were positive for the gaseous pollutants and negative for the all the particulate matter size fractions.

Estimated airflows at the naturally ventilated barns were comparable and ranged from 882.65 dsm³s⁻¹ to 1,151.61 dsm³s⁻¹ at CA5B. The time series (Appendix E, Figure E-39) show variability across the year, with slightly enhanced airflow during the summer. However, peak values can occur at any time of year. The regression analyses (Appendix F, Figures F-106 - F-110) showed modest positive linear relationship with NH₃ and PM_{2.5} emissions. All other pollutants had a slight positive relationship with airflow.

Pollutant	Parameter	R	R ²	Strength	Figure
NH₃	Inventory	0.660	0.435	moderate	Appendix F, F-81
H₂S	Inventory	0.002	< 0.001	slight or weak	Appendix F, F-82
PM10	Inventory	-0.292	0.085	slight or weak	Appendix F, F-83
PM _{2.5}	Inventory	-0.319	0.102	slight or weak	Appendix F, F-84
TSP	Inventory	-0.327	0.107	slight or weak	Appendix F, F-85
NH₃	Average animal weight	-0.423	0.179	slight or weak	Appendix F, F-86
H₂S	Average animal weight	0.114	0.013	slight or weak	Appendix F, F-87
PM 10	Average animal weight	0.240	0.058	slight or weak	Appendix F, F-88
PM2.5	Average animal weight	0.384	0.148	slight or weak	Appendix F, F-89
TSP	Average animal weight	0.384	0.147	slight or weak	Appendix F, F-90

 Table 4-7. Naturally ventilated environmental parameter regression analyses

Pollutant	Parameter	R	R ²	Strength	Figure
NH₃	Live animal weight	0.653	0.426	moderate	Appendix F, F-91
H₂S	Live animal weight	0.014	< 0.001	slight or weak	Appendix F, F-92
PM10	Live animal weight	-0.278	0.077	slight or weak	Appendix F, F-93
PM2.5	Live animal weight	-0.283	0.080	slight or weak	Appendix F, F-94
TSP	Live animal weight	-0.307	0.094	slight or weak	Appendix F, F-95
NH₃	Exhaust temperature	0.493	0.243	modest	Appendix F, F-96
H₂S	Exhaust temperature	0.323	0.104	slight or weak	Appendix F, F-97
PM10	Exhaust temperature	0.410	0.168	slight or weak	Appendix F, F-98
PM2.5	Exhaust temperature	0.484	0.234	modest	Appendix F, F-99
TSP	Exhaust temperature	0.406	0.165	slight or weak	Appendix F, F-100
NH₃	Exhaust relative humidity	0.390	0.152	slight or weak	Appendix F, F-101
H₂S	Exhaust relative humidity	0.193	0.037	slight or weak	Appendix F, F-102
PM 10	Exhaust relative humidity	-0.269	0.072	slight or weak	Appendix F, F-103
PM2.5	Exhaust relative humidity	-0.414	0.171	slight or weak	Appendix F, F-104
TSP	Exhaust relative humidity	-0.322	0.104	slight or weak	Appendix F, F-105
NH₃	Airflow	0.536	0.287	modest	Appendix F, F-106
H ₂ S	Airflow	0.232	0.054	slight or weak	Appendix F, F-107
PM10	Airflow	0.425	0.180	slight or weak	Appendix F, F-108
PM2.5	Airflow	0.449	0.202	modest	Appendix F, F-109
TSP	Airflow	0.376	0.141	slight or weak	Appendix F, F-110

4.3.3 Ambient Data

The statistical summary of the ambient parameters associated with naturally ventilated barns are presented in Appendix D, Table D-32. Ambient temperatures were generally higher at CA5B leading to an average of the daily mean of 16.34°C compared to 10.07°C at WA5B. The time series (Appendix E, Figure E-40) showed the typical seasonal trend. Of note, the temperatures in summer 2008 were substantially lower than summer 2009. The site report noted the temperature sensor produced a "noisy signal" from late October 2007 to March of 2008. The average of the sonic anemometers was used as a substitute after analysis to confirm agreement with the remaining dates (Ramirez-Dorronsoro et al., 2010). The regression analyses (Appendix F, Figures F-111 - F-115), summarized in Table 4-7, showed a modest positive relationship with temperature and weak positive correlations with all other pollutants.

On average, the ambient relative humidity was lower at WA5B (45.81%) than CA5B (62.01%). The time series (Appendix E, Figure E-41) showed a muted peak around January 2008 for WA5B, like the exhaust relative humidity for the site. The site report offered no explanation for the plateau to the values. The regression analyses (Appendix F, Figures F-116 - F-120) showed slight or weak negative relationships with the emission value. The negative relationship between NH₃ emission and relative humidity is consistent with Sanchis et al. (2019).

Wind speeds averaged slightly higher at WA5B (2.59 ms⁻¹) than CA5B (1.97ms⁻¹). The time series (Appendix E, Figure E-42) showed no distinct seasonal trends, as peak and minimum

values occurred throughout the year. The regression analyses (Appendix F, Figures F-121 - F-125) showed a modest positive relationship with NH₃ emissions, and weak positive relationships with all other pollutants.

Pollutant	Parameter	R	R ²	Strength	Figure
NH ₃	Ambient temperature	0.537	0.289	modest	Appendix F, F-111
H₂S	Ambient temperature	0.257	0.066	slight or weak	Appendix F, F-112
PM10	Ambient temperature	0.370	0.137	slight or weak	Appendix F, F-113
PM2.5	Ambient temperature	0.398	0.159	slight or weak	Appendix F, F-114
TSP	Ambient temperature	0.348	0.121	slight or weak	Appendix F, F-115
NH ₃	Ambient relative humidity	-0.110	0.012	slight or weak	Appendix F, F-116
H₂S	Ambient relative humidity	< 0.001	< 0.001	none	Appendix F, F-117
PM10	Ambient relative humidity	-0.129	0.017	slight or weak	Appendix F, F-118
PM _{2.5}	Ambient relative humidity	-0.331	0.109	slight or weak	Appendix F, F-119
TSP	Ambient relative humidity	-0.155	0.024	slight or weak	Appendix F, F-120
NH ₃	Wind speed	0.537	0.289	modest	Appendix F, F-121
H₂S	Wind speed	0.257	0.066	slight or weak	Appendix F, F-122
PM10	Wind speed	0.370	0.137	slight or weak	Appendix F, F-123
PM2.5	Wind speed	0.398	0.159	slight or weak	Appendix F, F-124
TSP	Wind speed	0.348	0.121	slight or weak	Appendix F, F-125

Table 4-8. Naturally ventilated ambient parameters regression analyses

4.4 Open Sources (IN5A, WI5A and TX5A)

4.4.1 Emissions Data

Appendix D, Table D-33 presents the summary statistics for daily average emissions of NH₃ for the open source sites, including corrals. Appendix D, Table D-34 presents the emissions per square meter of surface area. The emissions from the sites with lagoons, IN5A and WI5A, were comparable, with emissions ranging from 19.83 kg d⁻¹ (2.01 g d⁻¹ m⁻²) at IN5A to 11.45 kg d⁻¹ (1.61 g d⁻¹ m⁻²) at WI5A. The time series (Appendix E, Figures E-43, and E-45) showed the observations from IN5A in the same year and show a seasonal pattern. The observations from WI5B are more spread out over the two-year monitoring period and showed a subtle seasonal pattern. The NH₃ emissions for corrals was higher than for the lagoons on a per day basis with average emissions of 754.97 kg d⁻¹ (222.1 g d⁻¹ hd⁻¹). However, when normalized for the surface area, it was slightly greater at 3.12 g d⁻¹ m⁻². The time series for the corral site (TX5A) is available in Appendix E, Figure E-52. There are not many summertime observations, so seasonality is hard to discern.

Appendix D, Table D-35 presents the summary statistics for daily average emissions of NH₃ for the open source sites, including corrals. Appendix D, Table D-36 presents the emissions per square meter of surface area. The average H₂S emissions from the lagoon sites, showed more of a difference, with emissions ranging from to 0.42 kg d⁻¹ (0.06 kg d⁻¹ m⁻²) at WI5A to 9.39 kg d⁻¹ (0.95 kg d⁻¹ m⁻²) at IN5A. The time series (Appendix E, Figure E-44, and E-46) showed the

observations from IN5A in the same year and show a seasonal pattern. The observations from WI5B are more spread out over the two-year monitoring period and showed a subtle seasonal pattern. The H₂S emissions for the corral was greater than for the lagoons at 10.69 kg d⁻¹ (3.14 g d⁻¹ hd⁻¹) but was much less when normalized by area (44.18 mg d⁻¹ m⁻²). The time series for the corral site is available in Appendix E, Figure E-53. No seasonal pattern was apparent.

4.4.2 Environmental Data

The statistical summary of the environmental parameters associated with dairy lagoons are presented in Appendix D, Table D-37. Lagoon temperatures were colder at WI5A, which had an average daily mean temperature of 18.35°C compared to 21.57°C at IN5A. The time series (Appendix E, Figure E-47) shows the spare nature of the observations but does suggest the expected trend of lagoon temperatures following seasonal temperature patterns. The regression analyses (Appendix F, Figures F-126 - F-127; summarized in Table 4-8) shows moderate relationships with daily emissions (kg/d).

Lagoon pH was consistent between the sites, with average daily mean values at 7.02 and 7.43 for WI5A and IN5A, respectively. The time series (Appendix E, Figure E-48) shows values typically between 7.0 and 7.5 for most of the observations. There is a small cluster of readings for IN5A above 8.0 for Fall 2008. The regression analyses (Appendix F, Figures F-128 - F-129), summarized in Table 4-8, showed only slight or weak relationships with daily emissions (kg/d).

Pollutant	Parameter	R	R ²	Strength	Figure
NH ₃	Lagoon temperature	0.66	0.436	moderate	Appendix F, F-126
H ₂ S	Lagoon temperature	-0.68	0.462	moderate	Appendix F, F-127
NH ₃	Lagoon pH	-0.2	0.040	slight or weak	Appendix F, F-128
H ₂ S	Lagoon pH	0.4	0.160	slight or weak	Appendix F, F-129

 Table 4-9. Open source environmental parameter regression analyses

4.4.3 Ambient Data

The statistical summary of the ambient parameters associated with dairy lagoons are presented in Appendix D, Table D-38. The average ambient temperature observed during monitoring periods for WI5A (-3.41°C) was much lower than IN5A (6.25°C). The time series (Appendix E, Figure E-49) show the expected seasonal trend in temperatures. The regression analyses (Appendix F, Figures F-130 - F-131), summarized in Table 4-9, show modest and moderately strong positive relationships with H₂S and NH₃ daily emissions (kg/d), respectively.

Observed ambient relative humidity were comparable between sites, with average daily means ranging from 71.53% at WI5A to 72.02% at IN5A. The time series (Appendix E, Figure E-50) show the relative humidity values vary throughout the year with no seasonal pattern. The

regression analyses (Appendix F, Figures F-132 - F-133) shows a slight negative relationship with daily emissions (kg/d) of both NH₃ and H₂S.

Wind speeds were also comparable between sites and ranged from 3.28 m s⁻¹ at IN5A to 3.45 m s⁻¹ at WI5A. The time series (Appendix E, Figure E-51) average daily wind speeds were equally variable throughout the year at both sites. The regression analyses (Appendix F, Figures F-134 - F-135) showed only slight correlation with daily emissions (kg/d), which was negative for NH₃ and positive for H₂S.

Pollutant	Parameter	R	R ²	Strength	Figure
NH₃	Ambient temperature	0.84	0.706	moderately strong	Appendix F, F-130
H ₂ S	Ambient temperature	0.59	0.348	modest	Appendix F, F-131
NH₃	Ambient relative humidity	-0.34	0.116	slight or weak	Appendix F, F-132
H ₂ S	Ambient relative humidity	-0.18	0.032	slight or weak	Appendix F, F-133
NH₃	Wind speed	-0.25	0.063	slight or weak	Appendix F, F-134
H ₂ S	Wind speed	0.1	0.010	slight or weak	Appendix F, F-135

Table 4-10. Open source ambient parameters regression analyses

The statistical summary of the ambient parameters associated with the monitored dairy corral are presented in Appendix D, Table D-39. Observations of ambient temperature ranged from -5.64°C to 27.50°C, and followed expected seasonal trends (Appendix E, Figure E-54). The regression analyses (Appendix F, Figures F-136 - F-137; summarized in Table 4-10) showed a slight positive relationship between temperature and emissions.

Average daily ambient relative humidity values ranged from 22.3% to 78.54% over the study at TX5A. The time series (Appendix E, Figure E-55) do not suggest any seasonal trends. The regression analyses (Appendix F, Figures F-138 - F-139) shows slight positive relationships with emissions. Average daily wind speeds ranged from 2.35 to 6.79 ms⁻¹ and showed no trends in the time series (Appendix E, Figure E-56). The time series did show a peak value in late winter to spring of 2009. The regression analyses (Appendix F, Figures F-140 - F-141) do not show a relationship between wind speed and emissions.

Water vapor deficit estimates ranged from 2.09 to 26.88 hectopascal (hPa) and showed some tendency for higher values in the summer and fall (Appendix E, Figure E-57). The regression analyses (Appendix F, Figures F-142 - F-143) summarized in Table 4-10 indicated a slight relationship between emissions that was positive for NH₃ and negative for H₂S.

 Table 4-11. Corral ambient parameters regression analyses

Pollutant	Parameter	R	R ²	Strength	Figure	
NH₃	Ambient temperature	0.17	0.029	slight or weak	Appendix F, F-136	
H ₂ S	Ambient temperature	0.003	< 0.001	slight or weak	Appendix F, F-137	

Deliberative, draft document – Do not cite, quote, or distribute

NH₃	Ambient relative humidity	0.17	0.029	slight or weak	Appendix F, F-138
H ₂ S	Ambient relative humidity	0.15	0.023	slight or weak	Appendix F, F-139
NH ₃	Wind speed	0.002	< 0.001	slight or weak	Appendix F, F-140
H ₂ S	Wind speed	0.003	< 0.001	slight or weak	Appendix F, F-141
NH ₃	Water vapor deficit	0.32	0.102	slight or weak	Appendix F, F-142
H ₂ S	Water vapor deficit	-0.16	0.026	slight or weak	Appendix F, F-143

5 DEVELOPMENT AND SELECTION OF MODELS FOR DAILY EMISSIONS

5.1 Mechanically Ventilated Barns

The literature review (Section 3) and exploratory data analysis (Section 4) suggested that EPA should consider ambient temperature, exhaust temperature, ambient relative humidity, exhaust relative humidity, manure management system, and inventory in the development of the emission models for mechanically ventilated barns. Barn airflow, or ventilation rate, can have a substantial influence on the emission rate of gaseous pollutants, but was not included in the parameter list as it may not be easily obtained at all farms. Since ventilation rate is essentially driven by the temperature (i.e., the higher ambient temperature the higher the ventilation rate), the ambient temperature provides an indication of airflow in the models tested.

The various combinations of these parameters were used in test models. For NH_3 and H_2S , 9 different combinations were tested as potential models (Table 5-1). There were 17 models (Table 5-2) tested for particulate matter emissions, which had variations to predict the emissions normalized by inventory.

Model	Parameters
MV-G1	Inventory, manure management system (Flush, Scrape)
MV-G2	Inventory, exhaust temperature, Exhaust relative humidity, manure management system (Flush, Scrape)
MV-G3	Inventory, exhaust temperature, manure management system (Flush, Scrape)
MV-G4	Inventory, exhaust relative humidity, manure management system (Flush, Scrape)
MV-G5	Inventory, ambient relative humidity, ambient temperature, manure management system
	(Flush, Scrape)
MV-G6	Inventory, ambient temperature, manure management system (Flush, Scrape)
MV-G7	Inventory, ambient relative humidity, manure management system (Flush, Scrape)
	Inventory, ambient temperature, exhaust relative humidity, manure management system
1010-00	(Flush, Scrape)
MV-G9	Inventory, exhaust temperature, ambient relative humidity, manure management system
	(Flush, Scrape)

Table 5-1. Parameter combinations tested as mechanically ventilated barn models for NH_3 and H_2S emissions.

Table 5-2. Parameter combinations tested as mechanically ventilated barn modelsfor PM10, PM2.5, and TSP emissions.

Model	Parameters
MV-P1	Intercept, inventory
MV-P2	Intercept, inventory, exhaust temperature, exhaust relative humidity
MV-P3	Intercept, inventory, exhaust temperature
MV-P4	Intercept, inventory, exhaust relative humidity
MV-P5	Intercept, inventory, ambient relative humidity, ambient temperature
MV-P6	Intercept, inventory, ambient temperature

Model	Parameters
MV-P7	Intercept, inventory, ambient relative humidity
MV-P8	Intercept, inventory, ambient temperature, exhaust relative humidity
MV-P9	Intercept, inventory, exhaust temperature, ambient relative humidity
MV-P10	Intercept, exhaust temperature, exhaust relative humidity
	(Emissions normalized by inventory)
MV-P11	Intercept, exhaust temperature (emissions normalized by inventory)
MV-P12	Intercept, exhaust relative humidity (emissions normalized by inventory)
	Intercept, ambient temperature, ambient relative humidity
IVIV-P15	(Emissions normalized by inventory)
MV-P14	Intercept, ambient temperature (emissions normalized by inventory)
MV-P15	Intercept, ambient relative humidity (emissions normalized by inventory)
	Intercept, ambient temperature, exhaust relative humidity
1010-010	(Emissions normalized by inventory)
	Intercept, ambient relative humidity, exhaust temperature
1010-671	(Emissions normalized by inventory)

For both NH₃ (Appendix G, Table G-3) and H₂S (Appendix G, Table G-5), models MV-G5 and MV-G7 had terms that were not statistically significant (p > 0.05) for both pollutants and were removed from further consideration. For H₂S, model MV-G4 and G9 had insignificant terms. The model fit (-2 log likelihood, AIC, AICc, and BIC) and evaluation statistics (ME, NME, MB, NMB) for NH₃ (Appendix G, Table G-4) and H₂S (Appendix G, Table G-5) indicate the remaining models had comparable performance, which suggested that using ambient parameters was as effective as models that included barn specific parameters. As noted in the Process Overview report, the model selection process also looked at how easily obtainable the parameters are as not to create an undue burden on the operators. Generally, ambient parameters were preferred since ambient meteorological data is actively recorded across the country and representative site data is accessible through the National Centers for Environmental Information (NCEI) website. To further ease any burden, the EPA plans to provide a tool that automatically populates relevant ambient parameters for any given location instead of requiring producers to measure and record environmental parameters either inside or outside of the barn to further reduce the burden of use on the producer.

Therefore, considering ambient temperature is a suitable proxy for barn airflow as exhaust temperature and representative ambient temperature data is accessible, the EPA concluded that a model using ambient temperature and relative humidity would be preferable to one with exhaust temperature and relative humidity. Of the remaining models that used ambient parameters (MV-G1, and G6), EPA selected model MV-G6 (including the parameters: inventory, ambient temperature, and manure management system) for further analysis for both NH₃ and H₂S as it had the best normalized mean bias of the remaining models. The final form of these models is presented in Table 5-3.

Pollutant	Formula	Units	Equation Number
NH ₃ , Flush	$ln(NH_3) = 1.746585 + 1.773832 * Inventory + 0.029586 * Amb_T$	kg/d	Equation 1
NH ₃ , Scrape	$ln(NH_3) = 1.864935 + 1.773832 * Inventory + 0.029586 * Amb_T$	kg/d	Equation 2
H₂S, Flush	$ln(H_2S) = 7.406887 + 0.86173 * Inventory + 0.012786 * Amb_T$	g/d	Equation 3
H ₂ S, Scrape	$ln(H_2S) = 6.287004 + 0.86173 * Inventory + 0.012786 * Amb_T$	g/d	Equation 4

Table 5-3. Selected daily models for mechanically ventilated barns.

For PM_{10} models (Appendix G, Table G-7), models MVP-1 through MVP-9 include inventory as a proxy for volume of manure produced. While all model terms were statistically significant (p > 0.05), coefficients for inventory were negative which suggests that emissions decrease as inventory increases. The negative coefficients for inventory are also seen in models MVP-1 through MVP-9 for PM_{2.5} (Appendix G, Table G-9) and TSP (Appendix G, Table G-11). As noted in Section 3.2, Garcia et al. (2012) found a similar inverse relationship with PM_{2.5} concentrations and inventory for MCs, which was attributed to the larger dairies being newer and more efficiently operated. Based on the site reports, the older barns have the lowest average inventory (Table 5-4), which lines up with Garcia et al. (2012). Still unknown is the management practice in the newer barns contributing to the reduced emissions and how to account for that practice in the model. Age of the barn and construction year were discussed as a possible parameter; however, there is not enough variability in construction year available in the NAEMS data for model construction.

Barn	Year Constructed	Average Inventory
IN5B-B1	2004	833
IN5B-B2	2004	864
NY5B-B1	1998	467
WI5B-B1	1990	211
WI5B-B2	1994	355

Table 5-4. Summary of barn construction dates for mechanically ventilated barns.

EPA tested a set of models that normalized emissions by inventory, MVP-10 through MVP-17, which use the same environmental and barn parameters as models MVP-2 through MVP-9. The goal was to determine if these models could be predictive based on the other environmental and ambient parameters alone. The model performance statistics (i.e., ME, NME, MB, NMB) did increase for these models (Appendix G, Tables G-8, G-10, and G-12), suggesting

accounting for the difference in newer barns is needed for a successful model. Therefore, EPA is not selecting a model at this time to allow for more research into the reason newer barns have lower particulate matter emissions, despite increased animal populations.

5.2 Milking Centers

The literature review (Section 3) and exploratory data analysis (Section 4) suggested that EPA should consider ambient temperature, exhaust temperature, ambient relative humidity, exhaust relative humidity, milk production, and inventory in the development of the emission models for MCs. Barn airflow, or ventilation rate, can have a substantial influence on the emission rate, but was not included in the parameter list as it may not be easily obtained at all farms. Since ventilation rate is essentially driven by the temperature (i.e., the higher ambient temperature the higher the ventilation rate), the ambient temperature provides an indication of airflow in the models tested. EPA tested 24 combinations of these parameters as potential models (Table 5-5), including which had variations to predict the emissions normalized by inventory (MC-25 through MC-32). The models to predict normalized emissions were added to incorporate a barn size into the model, as the relatively consistent inventory of the MCs could reduce the significance if inventory was used as a predictive parameter. This is demonstrated with the NH₃ modeling results (Appendix G, Table G-13), as inventory is insignificant in models MC-10 through MC-16.

Milk production values were only available for NY5B, and when combined with a static value for barn inventory, as in models MC-1 through MC-8, inventory was dropped from the model, making the result equivalent to models MC-17 through MC-24 for all pollutants. Therefore, the summary presented in this section will focus on models MC-8 through MC-32. Results for all models is summarized in Appendix G.

Model	Parameters
MC-1	Intercept, inventory, milk production, exhaust temperature, exhaust relative humidity
MC-2	Intercept, inventory, milk production, exhaust temperature
MC-3	Intercept, inventory, milk production, exhaust relative humidity
MC-4	Intercept, inventory, milk production, ambient relative humidity, ambient temperature
MC-5	Intercept, inventory, milk production, ambient temperature
MC-6	Intercept, inventory, milk production, ambient relative humidity
MC-7	Intercept, inventory, milk production, ambient temperature, exhaust relative humidity
MC-8	Intercept, inventory, milk production, exhaust temperature, ambient relative humidity
MC-9	Intercept, inventory, exhaust temperature, exhaust relative humidity
MC-10	Intercept, inventory, exhaust temperature
MC-11	Intercept, inventory, exhaust relative humidity
MC-12	Intercept, inventory, ambient relative humidity, ambient temperature

 Table 5-5. Parameter combinations tested as milking center models.

MC-13	Intercept, inventory, ambient temperature
MC-14	Intercept, inventory, ambient relative humidity
MC-15	Intercept, inventory, ambient temperature, exhaust relative humidity
MC-16	Intercept, inventory, exhaust temperature, ambient relative humidity
MC-17	Intercept, milk production, exhaust temperature, exhaust relative humidity
MC-18	Intercept, milk production, exhaust temperature
MC-19	Intercept, milk production, exhaust relative humidity
MC-20	Intercept, milk production, ambient relative humidity, ambient temperature
MC-21	Intercept, milk production, ambient temperature
MC-22	Intercept, milk production, ambient relative humidity
MC-23	Intercept, milk production, ambient temperature, exhaust relative humidity
MC-24	Intercept, milk production, exhaust temperature, ambient relative humidity
MC 25	Intercept, exhaust temperature, exhaust relative humidity
IVIC-25	(Emissions normalized by inventory)
MC-26	Intercept, exhaust temperature (emissions normalized by inventory)
MC-27	Intercept, exhaust relative humidity (emissions normalized by inventory)
MC 20	Intercept, ambient temperature, ambient relative humidity
IVIC-20	(Emissions normalized by inventory)
MC-29	Intercept, ambient temperature (emissions normalized by inventory)
MC-30	Intercept, ambient relative humidity (emissions normalized by inventory)
MC 21	Intercept, ambient temperature, exhaust relative humidity
IVIC-51	(Emissions normalized by inventory)
MC-22	Intercept, ambient relative humidity, exhaust temperature
IVIC-32	(Emissions normalized by inventory)

For NH₃ (Appendix G, Table G-13) models MC-1 through MC-24 had terms that were not statistically significant (p > 0.05). All the models predicting NH₃ emissions per head (MC-25 through MC-32) were comprised of significant parameters. The model fit (-2 log likelihood, AIC, AICc, and BIC) and evaluation statistics (ME, NME, MB, NMB) for these models are presented in Appendix G, Table G-14. The ambient parameter models performed comparably to their barn parameter counterparts, suggesting selecting the models with the easier to obtain ambient parameter would be as effective. Therefore, EPA concluded that a model using ambient temperature and relative humidity would be preferable to one with exhaust temperature and relative humidity. Of the remaining models that used ambient parameters (MC-28, MC-29, and MC-30), the NME and ME are comparable for the models. Model MC-30 has a substantially lower MB and NMB. However, this model only includes relative humidity and not temperature. The literature search (Section 3) noted that temperature is strongly linked to NH₃ emissions and should be included in the selected model. The model performance plots (Appendix G, Figures G-20 & G-24) also show better scatter across the one-to-one (1:1) for models MC-28, MC-29, indicating better predictive performance than model MC-30. Therefore, EPA selected model MC-29 (including ambient temperature as the predictive parameter) for further analysis for NH₃

as it had the best NMB of the remaining models. The final form of these models is presented in Table 5-6.

In addition to the models predicting normalized emissions, models MC-9, MC-10, MC-11, MC-13, MC-15, MC-18, and MC-21 were comprised of significant parameters for H₂S (Appendix G, Table G-15). Of the seven additional models, all but MC-11 contained either exhaust temperature or ambient temperature. as well as models MC-25 through MC-32. Comparing the model fit and evaluation statistics (Appendix G, Table G-16) the ambient parameter models performed comparably to their barn parameter counterparts, suggesting models utilizing the easier to obtain ambient parameter would be as effective. Therefore, EPA concluded that a model using ambient temperature and ambient relative humidity would be preferable to one with exhaust temperature and relative humidity. Of the remaining models that used ambient parameters (MC-13, MC-21, MC-28, MC-29, and MC-30), the error statistics (NME and ME) are lower for models MC-13 and MC-21, while the bias statistics (MB and NMB) are lower for MC-21 and MC-30, with other models being comparable. The scatter plots of observed versus predicted (Appendix G, Figures G-26 through G-32) for model MC-21 has more variability in the scatter across the 1:1 line, indicating a slightly better fit. However, this model includes milk production, which is only available for one site. For this study, it is preferred to include multiple sites in the model development dataset to represent variability across the country. Therefore, EPA selected model MC-29 (including ambient temperature as the predictive parameter) for further analysis for H₂S as it had the best NMB the remaining models (i.e., MC-13, MC-30). The final form of these models is presented in Table 5-6.

For the particulate matter size fractions, only NY5B reported emissions. With the dataset dropping to one site with a constant value for MC capacity, the coefficient of inventory in models MC-9 through MC-16 is estimated at zero and eliminates a size estimate from the model. The focus for the particulate matter model narrowed to just models MC-17 through MC-32. For PM₁₀, models MC-17, MC-18, MC-19, MC-20, MC-21, and MC-23 have parameters that are statistically insignificant (Appendix G, Table G-17). The model fit and evaluation statistics (Appendix G, Table G-18) for models with ambient parameters performed comparably to their barn parameter counterparts, suggesting models utilizing the easier to obtain ambient parameter would be as effective. Of the remaining models that used ambient parameters (MC-28, MC-29, and MC-30), the NME and ME are slightly lower for Model 28, and the bias parameters are similar. EPA selected model MC-28 (including ambient temperature and ambient relative humidity as the predictive parameter) for further analysis for PM₁₀ as it had the best NMB of the remaining models. The final form of these models is presented in Table 5-6.

As noted in Section 6.4 of the main report, the particulate matter model selection starts with PM_{10} due to the greater quantity of emissions data. The PM_{10} models had between 315 and

436 records available depending on the completeness of the various predictive parameters. For $PM_{2.5}$ and TSP the number of records available ranged between 40 - 44 for $PM_{2.5}$ and 29 - 40 for TSP. This is substantially less data that were available for PM_{10} and does not necessarily cover the breadth of conditions that the PM_{10} data does. Therefore, the models generated with these smaller datasets were examined mainly for consistency with the PM_{10} results to build confidence in using the same model form for all the particulate matter species.

Compared to the PM₁₀ models, more of the PM_{2.5} and TSP models have insignificant terms. For both PM_{2.5} (Appendix G, Table G-19) and TSP (Appendix G, Table G-21), only models MC-26 and MC-29 are comprised of significant parameters. Despite the insignificance of the parameters for most of the models, the relationships were consistent with the PM₁₀ models and literature. The model performance statistics for PM_{2.5} (Appendix G, Table G-20) and the model performance plots (Appendix G, Figures G-41 through G-48) were consistent, with slightly lower bias metric for model MC-29. For TSP, the performance metrics (Appendix G, Table G-22) and plots (Appendix G, Figures G-49 through G-56) were comparable. Therefore, EPA selected model MC-29 for PM_{2.5} (including ambient temperature as the predictive parameter) and model MC-28 (including ambient temperature and ambient relative humidity as the predictive parameter) for TSP to conduct further evaluation and analysis as an emission estimation method. The full forms of the models are presented in Table 5-6.

Pollutant	Formula	Units	Equation Number
NH₃	$ln(NH_3) = 2.505637 + 0.046434 * Amb_T$	g/d/hd	Equation 5
H₂S	$ln(H_2S) = 6.898188 + 0.024053 * Amb_T$	kg/d/hd	Equation 6
PM ₁₀	$ln(PM_{10}) = 8.042215 + 0.006791 * Amb_T - 0.003552 * Amb_{RH}$	g/d/hd	Equation 7
PM2.5	$ln(PM_{2.5}) = 6.58377 + 0.006698 * Amb_T$	g/d/hd	Equation 8
TSP	$ln(TSP) = 7.457268 + 0.010997 * Amb_T - 0.003639 * Amb_{RH}$	g/d/hd	Equation 9

Table 5-6.	Selected	daily	models	for milking	g centers.
------------	----------	-------	--------	-------------	------------

5.3 Naturally Ventilated Barns

The literature review (Section 3) and exploratory data analysis (Section 4) suggested that EPA should consider ambient temperature, ambient relative humidity, exhaust relative humidity,

wind speed, and inventory in the development of the emission models for naturally ventilated barns. EPA tested 8 combinations of these parameters as potential models (Table 5-5). Models predicting emissions normalized by inventory were not pursued at this time. However, based on the initial results of MCs, normalized inventory models may be considered for the final models.

Model	Parameters
NV-1	Intercept, inventory
NV-2	Intercept, inventory, ambient temperature, ambient relative humidity, wind speed
NV-3	Intercept, inventory, ambient temperature
NV-4	Intercept, inventory, ambient relative humidity
NV-5	Intercept, inventory, wind speed
NV-6	Intercept, inventory, ambient temperature, ambient relative humidity
NV-7	Intercept, inventory, ambient relative humidity, wind speed
NV-8	Intercept, inventory ambient temperature, wind speed

Table 5-7. Parameter combinations tested as naturally ventilated barns models.

For the gaseous species, models NV-3 and NV-8 had terms that were not statistically significant (p > 0.05) for NH₃ (Appendix G, Table G-24), and models NV-2, NV-3, NV-4, NV-6, NV-7, and NV-8 had insignificant terms for H₂S (Appendix G, Table G-26). The model fit (-2 log likelihood, AIC, AICc, and BIC) and evaluation statistics (ME, NME, MB, NMB) for these models are presented in Appendix G, Table G-25, and Table G-27 for NH₃ and H₂S, respectively. For both pollutants, the statistics for the models were comparable. Therefore, EPA selected model NV-5 (including as the predictive parameters: inventory and wind speed) for further analysis for NH₃ and H₂S as it had the best NMB of the remaining models. The final form of these models is presented in Table 5-8.

For PM₁₀, all models were comprised of statistically significant parameters (Appendix G, Table G-28). The model fit and evaluation statistics (Appendix G, Table G-29) suggested comparable performance across all models, with model NV-2 having slightly better error metrics. EPA selected model NV-2 (including the predictive parameters: inventory, ambient temperature, ambient relative humidity, and wind speed) for further analysis. The final form of the model is presented in Table 5-8.

As noted in Section 6.4 of the main report and with the MC model selection, the particulate matter model selection starts with the PM₁₀ due to the greater quantity of emissions data. For naturally ventilated barns, the PM₁₀ models had between 1,457 and 1,469 records available depending on the completeness of the various predictive parameters. For PM_{2.5} and TSP, the number of records available was 93 for PM_{2.5} and 205 for TSP. The PM_{2.5} models (Appendix G, Table G-30) all have insignificant parameters. The relationship generally follows the expected trend from literature (e.g., negative relationship with relative humidity). However,

inventory has a negative coefficient in each model. For TSP (Appendix G, Table G-32), all models are comprised entirely of significant parameters and the predictive parameters have the same relationships as with PM₁₀. Model NV-2 had reasonable performance for both PM_{2.5} (Appendix G, Table G-31) and TSP (Appendix G, Table G-33) and would be consistent with the PM₁₀ formulation that was developed from a much larger dataset. Therefore, EPA selected model NV-2 (including the predictive parameters: inventory, ambient temperature, ambient relative humidity, and wind speed) for further analysis. The final form of the models for PM_{2.5} and TSP are presented in Table 5-8.

			Equation
Pollutant	Formula	Units	Number
NH₃	$ln(NH_3) = 0.188357 + 3.451939 * Inventory + 0.048153$ * WindSpeed	g/d	Equation 10
H ₂ S	$ln(H_2S) = 6.541057 + 0.587702 * Inventory + 0.062678$ * WindSpeed	kg/d	Equation 11
PM10	$ln(PM_{10}) = 7.64258 + 1.525009 * Inventory + 0.011864 * Amb_T - 0.01521 * Amb_{RH} + 0.173698 * WindSpeed$	g/d	Equation 12
PM2.5	$ln(PM_{2.5}) = 7.068797 - 0.220453 * Inventory + 0.01121 * Amb_T - 0.003808 * Amb_{RH} + 0.218968 * WindSpeed$	g/d	Equation 13
TSP	$ln(TSP) = 7.868847 + 2.953893 * Inventory + 0.034508 * Amb_T - 0.033997 * Amb_{RH} + 0.248191 * WindSpeed$	g/d	Equation 14

Table 5-8, S	elected dailv	models f	or naturally	ventilated	barns
	elected dally	models i	or maturally	venthateu	Darris.

5.4 Open Sources

The literature review (Section 3) and exploratory data analysis (Section 4) suggested that EPA should consider lagoon pH, lagoon temperature, ambient temperature, and wind speed in the development of the emission models for open sources. EPA tested 15 combinations of these parameters as potential models (Table 5-9). Models were developed to predict daily emissions per meter squared (m²) of surface area of the open source.

Table 5-9. Parameter combinations tested as open source models for NH₃ and H₂S emissions.

Model	Parameters
LB-1	Lagoon pH, lagoon temperature
LB-2	Lagoon pH

LB-3	Lagoon temperature
LB-4	Ambient temperature, wind speed
LB-5	Ambient temperature
LB-6	Wind speed
LB-7	Lagoon pH, lagoon temperature, ambient temperature, wind speed
LB-8	Lagoon pH, lagoon temperature, ambient temperature
LB-9	Lagoon pH, lagoon temperature, wind speed
LB-10	Lagoon pH, ambient temperature, wind speed
LB-11	Lagoon temperature, ambient temperature, wind speed
LB-12	Lagoon pH, ambient temperature
LB-13	Lagoon pH, wind speed
LB-14	Lagoon temperature, ambient temperature
LB-15	Lagoon temperature, wind speed

For NH₃, of the 15 models tested, only LB-3, LB-5, LB-6, and LB-15 were comprised of significant parameters (Appendix G, Table G-34). The model fit (-2 log likelihood, AIC, AICc, and BIC) and evaluation statistics (ME, NME, MB, NMB) for these models are presented in Appendix G, Table G-35, and were consistent across the models with significant terms. This suggests that models with ambient temperature (model LB-5) perform as well as models with lagoon specific parameters (LB-3 and LB-15). Therefore, EPA selected model NV-5 (including ambient temperature as the predictive parameter) for further analysis for NH₃. The final form of this model is presented in Table 5-10.

For H₂S, of the 15 models tested, only LB-3, LB-5, and LB-6 were comprised entirely of significant parameters (Appendix G, Table G-36). The model fit and evaluation statistics (Appendix G, Table G-37), and were consistent across the models with significant terms. This suggests that models with ambient temperature (model LB-5) perform as well as models with lagoon specific parameters (LB-3). Therefore, EPA selected model NV-5 (including ambient temperature as the predictive parameter) for further analysis for H₂S. The final form of this model is presented in Table 5-10.

Pollutant	Formula	Units	Equation Number
NH₃	$ln(NH_3) = 1.396734 + 0.027201 * Amb_T$	kg/d m ²	Equation 15
H ₂ S	$ln(H_2S) = 1.189272 + 0.010557 * Amb_T$	kg/d m²	Equation 16

Table 5-10. Selected daily models for lagoons sources.

5.5 Corrals

The literature review (Section 3) and exploratory data analysis (Section 4) suggested that EPA should consider ambient temperature, ambient relative humidity, water vapor deficit, and wind speed in the development of the emission models for corrals. EPA tested 15 combinations of these parameters as potential models (Table 5-11). Models were developed to predict daily emissions per meter squared (g/d-m²) of surface area of the corral, as well as emissions per m2 per 1,000 head (g/d-m²-1,000 hd), to account for the stock density of the corral. In total, 30 models were tested to account for the 15 different parameter combinations and two forms of the emissions.

Model	Emissions	Parameters
CR-1a	g/d-m²	Ambient temperature, ambient relative humidity, wind speed, water vapor deficit
CR-2a	g/d-m²	Ambient temperature, ambient relative humidity, water vapor deficit
CR-3a	g/d-m ²	Ambient temperature, ambient relative humidity, wind speed
CR-4a	g/d-m ²	Ambient relative humidity, wind speed, water vapor deficit
CR-5a	g/d-m ²	Ambient temperature, wind speed, water vapor deficit
CR-6a	g/d-m ²	Ambient temperature, ambient relative humidity
CR-7a	g/d-m ²	Ambient temperature, water vapor deficit
CR-8a	g/d-m ²	Ambient relative humidity, water vapor deficit
CR-9a	g/d-m ²	Ambient temperature, wind speed
CR-10a	g/d-m ²	Ambient relative humidity, wind speed
CR-11a	g/d-m ²	Wind speed, water vapor deficit
CR-12a	g/d-m ²	Ambient temperature
CR-13a	g/d-m ²	Ambient relative humidity
CR-14a	g/d-m ²	Water vapor deficit
CR-15a	g/d-m ²	Wind speed
CR-1b	g/d-m ² -1,000 hd	Ambient temperature, ambient relative humidity, wind speed, water vapor deficit
CR-2b	g/d-m ² -1,000 hd	Ambient temperature, ambient relative humidity, water vapor deficit
CR-3b	g/d-m ² -1,000 hd	Ambient temperature, ambient relative humidity, wind speed
CR-4b	g/d-m ² -1,000 hd	Ambient relative humidity, wind speed, water vapor deficit
CR-5b	g/d-m ² -1,000 hd	Ambient temperature, wind speed, water vapor deficit
CR-6b	g/d-m ² -1,000 hd	Ambient temperature, ambient relative humidity
CR-7b	g/d-m ² -1,000 hd	Ambient temperature, water vapor deficit
CR-8b	g/d-m ² -1,000 hd	Ambient relative humidity, water vapor deficit
CR-9b	g/d-m ² -1,000 hd	Ambient temperature, wind speed
CR-10b	g/d-m ² -1,000 hd	Ambient relative humidity, wind speed
CR-11b	g/d-m ² -1,000 hd	Wind speed, water vapor deficit
CR-12b	g/d-m ² -1,000 hd	Ambient temperature
CR-13b	g/d-m ² -1,000 hd	Ambient relative humidity
CR-14b	g/d-m ² -1,000 hd	Water vapor deficit
CR-15b	g/d-m ² -1,000 hd	Wind speed

Table 5-11. Parameter combinations tested as corral models for NH₃ and H₂S emissions.

Models CR-3a, CR-4a, CR-6a, CR-8a, CR-12a, CR-13a, CR-14a, CR-4b, CR-6b, CR-8b, CR-12b, CR-13b, CR-14b, CR-15b were comprised of significant parameters for NH₃ (Appendix G, Table G-38). The model fit (-2 log likelihood, AIC, AICc, and BIC) and evaluation statistics (ME, NME, MB, NMB) for these models are presented in Appendix G, Table G-39, and were consistent across all the models. The models predicting the emissions in g/d-m²-1,000 hd have lower mean bias and mean error values than their counterpart predicting emissions as g/d-m². EPA selected model CR-3b (including the predictive parameters: ambient temperature, ambient relative humidity, and wind speed) for further analysis for NH₃. The final form of this model is presented in Table 5-12.

For H₂S, only model CR-13a was comprised entirely of statistically significant parameters (Appendix G, Table G-40). Like NH₃, the model fit and evaluation statistics (Appendix G, Table G-41) for the version of the model predicting emissions as g/d-m²-1,000 hd (i.e., CR-13b) has slightly lower mean bias and mean error values. EPA selected model CR-13b (including the predictive parameter ambient relative humidity) for further analysis for corral H₂S emissions. The final form of this model is presented in Table 5-12.

Pollutant	Formula	Units	Equation Number
NH3	$ln(NH_3) = 1.053805 + 0.004993 * Amb_T + 0.0031 * Amb_{RH} + 0.017832 * WindSpeed$	g/d-m²- 1,000 hd	Equation 17
H₂S	$ln(H_2S) = 2.404792 + 0.007177 * Amb_{RH}$	g/d-m²- 1,000 hd	Equation 18

Table 5-12. Selected daily models for corrals.

6 MODEL COEFFICIENT EVALUATION

To ensure reliable prediction of the emissions, the model coefficients were evaluated with the jackknife method (Christensen et al., 2016; Leeden et al., 2008), which examined the cumulative effect on coefficient estimates of multiple "minus-one" runs. The jackknife approach called for removing one of the independent sample units from the dataset. For NAEMS, the individual barns at each site and the lagoons are the mutually exclusive independent sample units. EPA then determined the associated parameter estimates for the selected model based on this dataset. This was repeated for each of the sample units. These results were then compared to the model coefficients based on the full dataset (full model). For each jackknife model, the ME, NME, MB, and NMB were calculated, based on the equations outlined in Section 6 of the main report, to facilitate comparison.

EPA also prepared plots showing the variation in coefficients and standard errors for the selected models and compared to each of the jackknife models. EPA interpreted these plots similar to Tukey confidence interval plots in that if the result for the jackknife model overlapped the results for the full model (i.e., the area highlighted in gray on the figures), then the model coefficients are not inconsistent with one another. If the omission of one monitoring unit (e.g., a barn or lagoon) resulted in a coefficient that was outside ± 1 standard error of the full model, the sample unit was reviewed to determine if a specific characteristic of that unit (e.g., animal placement strategy, manure handling system) might have caused the inconsistency. If the difference could not be ascribed to an operational characteristic of the unit, the data were reviewed for outliers that could be removed from analysis, and other potential remediation measures considered.

6.1 Mechanically Ventilated Barns Model

6.1.1 NH₃ Model Evaluation

Table 6-1 and Figure 6-1 show the variation in coefficients and standard errors for the selected model ("None") and each of the jackknife models. The model coefficients from the jackknife approach were comparable across the withheld sets (Table 6-1) and remained significant (p-value <0.05) across all models. The plots in Figure 6-1 show that the results for all jackknife models overlap the full model estimate ± 1 standard error, except for ambient temperature. In comparison to the full model, that is where the barn removed is "None", the maximum percent differences for parameter estimates across the three models were 7%, 23%, 3%, and 4% for inventory, ambient temperature, intercept for the flush barns, and intercept for scrape barns, respectively. Across all models, the difference in NME and NMB (Table 6-2) in comparison to the selected model were minor. For NME the values differed by less than 8%. For NMB the values varied by less than 34%. The largest difference was seen when WI5B B1 was withheld from the dataset, which decreased the NME and NMB by 8% and 34%, respectively.

NONE Ambient Temperature Ambient Temperature Flush Scrape Inventory Ambient Temperature Ambient Temperature Flush Scrape Inventory Inventory	1.773832 0.029586 1.746585 1.864935 1.736301 0.024312	0.06477 0.00088 0.03789 0.04253 0.07221	<.0001 <.0001 <.0001 <.0001
NONEAmbient TemperatureFlushScrapeInventoryInventoryAmbient TemperatureFlushFlushScrapeInventoryInventory	0.029586 1.746585 1.864935 1.736301 0.024312	0.00088 0.03789 0.04253 0.07221	<.0001 <.0001 <.0001
NONE Flush Scrape Inventory Ambient Temperature Flush Scrape Inventory	1.746585 1.864935 1.736301 0.024312	0.03789 0.04253 0.07221	<.0001 <.0001
ScrapeInventoryAmbient TemperatureFlushScrapeInventory	1.864935 1.736301 0.024312	0.04253	<.0001
IN5BB1 IN5BB1 IN5BB1 IN5BB1 Inventory Inventory	1.736301 0.024312	0.07221	
IN5BB1 Ambient Temperature Flush Scrape Inventory	0.024312	0.07 ===	<.0001
Flush Scrape Inventory		0.00093	<.0001
Scrape Inventory	1.793836	0.03772	<.0001
Inventory	1.925841	0.04232	<.0001
	1.898712	0.07457	<.0001
Ambient Temperature	0.024229	0.00091	<.0001
Flush	1.748491	0.03749	<.0001
Scrape	1.869675	0.0425	<.0001
Inventory	1.824003	0.06932	<.0001
Ambient Temperature	0.030506	0.00095	<.0001
Flush	1.72461	0.03966	<.0001
Scrape	1.798078	0.04787	<.0001
Inventory	1.722238	0.07977	<.0001
Ambient Temperature	0.036382	0.00101	<.0001
Flush	1.693687	0.05244	<.0001
Scrape	1.832478	0.05634	<.0001
Inventory	1.703501	0.07134	<.0001
Ambient Temperature	0.032999	0.00105	<.0001
Flush			
Scrape	1.765095	0.04896	<.0001

Table 6-1. Model coefficients developed using the jackknife approach for NH₃ emissions from mechanically ventilated barns.

Table 6-2. Model fi	t statistics for the	mechanically ventilated	barns NH3 jackknife.

Barn out	n	LNME ^a (%)	NME ^b (%)	ME ^b (kg day ⁻¹)	MB ^b (kg day ⁻¹)	NMB ^b (%)	Corr
NONE	2192	7.322	24.573	5.959	-0.583	-2.404	0.917
IN5BB1	1771	7.213	25.072	5.003	-0.542	-2.717	0.911
IN5BB2	1762	7.148	25.329	5.042	-0.472	-2.372	0.905
NY5BB1	1846	7.403	24.716	6.115	-0.701	-2.835	0.924
WI5BB1	1676	6.866	22.488	6.538	-0.459	-1.579	0.918
WI5BB2	1713	7.212	23.375	6.523	-0.547	-1.961	0.919

^a Based on transformed data (i.e., ln(NH₃)).

^b Based on back-transformed data.

Figure 6-1. Comparison of variation in coefficients and standard errors for NH₃ mechanically ventilated barn model.

Variation in coefficients and standard errors (black closed circle and \pm SE bar) for each jackknife model with the selected NH₃ mechanically ventilated model coefficient ("None", gray band for \pm SE) for each model parameter.

6.1.2 H₂S Model Evaluation

The variation in coefficients and standard errors for the selected model ("None") and each of the H₂S jackknife models is shown in Table 6-3 and Figure 6-2. The model coefficients from the jackknife approach were comparable across the withheld sets (Table 6-3) and remained significant (p-value <0.05) across all models. The plots in Figure 6-2 show that the results for all jackknife models overlap the full model estimate ± 1 standard error, except for WI5B B1 for ambient temperature. In comparison to the full model, where the barn removed is "None", the maximum percent differences for parameter estimates across the three models were 14%, 26%, 2%, and 1% for inventory, ambient temperature, intercept for the flush barns, and intercept for scrape barns, respectively. Across all models, the difference in NME and NMB (Table 6-4) in comparison to the selected model were minor for NME (< 8%) and more substantial for NMB (<32%).

		Lotindic	Standard Error	p-value
	Inventory	0.86173	0.08664	<.0001
NONE	Ambient Temperature	0.012786	0.00127	<.0001
NONE	Flush	7.406887	0.05129	<.0001
	Scrape	6.287004	0.05691	<.0001
	Inventory	0.974345	0.08989	<.0001
	Ambient Temperature	0.010264	0.00134	<.0001
INJUDI	Flush	7.389176	0.04755	<.0001
	Scrape	6.282462	0.053	<.0001
	Inventory	0.73697	0.09126	<.0001
	Ambient Temperature 0.010959		0.00124	<.0001
INJUDZ	Flush	7.453061	0.04624	<.0001
	Scrape	6.355244	0.0521	<.0001
	Inventory	0.915728	0.09384	<.0001
	Ambient Temperature	0.012973	0.00147	<.0001
NIJDDI	Flush	7.389581	0.05383	<.0001
	Scrape	6.222805	0.06537	<.0001
	Inventory	0.897494	0.11836	<.0001
	Ambient Temperature	0.016059	0.00149	<.0001
VVIJDDI	Flush	7.285544	0.07955	<.0001
	Scrape	6.224063	0.08308	<.0001
	Inventory	0.817846	0.10259	<.0001
\A/I5002	Ambient Temperature	0.014378	0.00148	<.0001
VVIJODZ	Flush	7.495271	0.07179	<.0001
	Scrape	6.313356	0.07154	<.0001

Table 6-3. Model coefficients developed using the jackknife approach for H₂S emissions from mechanically ventilated barns.

|--|

Barn out	n	LNME ^a (%)	NME ^b (%)	ME ^b (g day ⁻¹)	MB ^b (g day ⁻¹)	NMB [♭] (%)	Corr
NONE	2454	4.46	64.308	553.14	-38.66	-4.495	0.58
IN5BB1	1993	4.088	61.644	533.71	-34.72	-4.01	0.592
IN5BB2	1954	3.911	59.42	464	-25.36	-3.248	0.677
NY5BB1	1992	4.736	65.587	615.71	-39.17	-4.173	0.565
WI5BB1	1920	4.696	66.693	561.9	-47.91	-5.686	0.543
WI5BB2	1957	4.653	64.785	564.15	-51.6	-5.925	0.582

^a Based on transformed data (i.e., ln(H₂S)).

^b Based on back-transformed data.

Figure 6-2. Comparison of variation in coefficients and standard errors for H₂S mechanically ventilated barn model.

Variation in coefficients and standard errors (black closed circle and \pm SE bar) for each jackknife model with the selected H₂S mechanically ventilated barn model coefficient ("None", gray band for \pm SE) for each model parameter.

6.1.3 Particulate Matter Models

Particulate matter models were not selected at this time.

6.2 Milking Centers

6.2.1 NH₃ Model Evaluation

Table 6-5 and Figure 6-3 show the variation in coefficients and standard errors for the selected model ("None") and each of the jackknife models. The model coefficients from the jackknife approach were comparable across the withheld sets (Table 6-5) and remained significant (p-value <0.05) across all models. The plots in Figure 6-3 show that the results for all jackknife models do not overlap the full model estimate ± 1 standard error. The standard error was very small for the full model, where the Barn removed is "None", which prevented the overlap. In comparison to the full model, the maximum percent differences for parameter estimates across the two models were 29% and 44% for the intercept and ambient temperature, respectively. Across all models, the difference in NME and NMB (Table 6-6) in comparison to the selected model were substantial for NME and NMB, with values differing by up to 44% and 104%, respectively. Upon further review, it was determined that the MCs utilize different manure handling techniques. Specifically, IN5B used a flush system while NY5B used a scrape system. Additional models using this distinction will be tested for the final report.

Table 6-5. Model coefficients developed using the jackknife approach for NH₃ emissions from milking centers.

Site out	Effect	Estimate	Standard Error	p-value	
NONE	Intercept	2.505637	0.10119	<.0001	
	Ambient Temperature	0.046434	0.00335	<.0001	
IN5BMC	Intercept	3.155214	0.06261	<.0001	
	Ambient Temperature	0.026195	0.00297	<.0001	
NY5BMC	Intercept	1.783938	0.09766	<.0001	
	Ambient Temperature	0.064815	0.0051	<.0001	

Table 6-6. Model fit statistics for the milking center NH₃ jackknife.

Site out	n	LNME ^a (%)	NME ^b (%)	ME ^b (kg day⁻¹)	MB ^b (kg day ⁻¹)	NMB [♭] (%)	Corr
NONE	713	18.245	54.184	12.63	3.017	12.941	0.364
IN5BMC	376	8.032	30.564	9.232	1.475	4.884	0.264
NY5BMC	337	16.728	43.666	6.819	-0.088	-0.561	0.706

^a Based on transformed data (i.e., ln(NH₃)).

^b Based on back-transformed data.

Figure 6-3. Comparison of variation in coefficients and standard errors for NH_3 milking center model.

Variation in coefficients and standard errors (black closed circle and \pm SE bar) for each jackknife model with the selected NH₃ for milking center model coefficient ("None", gray band for \pm SE) for each model parameter.

6.2.2 H₂S Model Evaluation

Table 6-7 and Figure 6-4 show the variation in coefficients and standard errors for the selected H₂S MC model ("None") and each of the jackknife models. The model coefficients from the jackknife approach were comparable across the withheld sets (Table 6-7) and remained significant (p-value <0.05) across all models. The plots in Figure 6-4 show that the results for all jackknife models do not overlap the full model estimate \pm 1 standard error, except the intercept for the IN5B withheld model. Like the NH₃ model, the standard error was very small for the full model, where the Barn removed is "None", which prevented the overlap. In comparison to the full model, the maximum percent differences for parameter estimates across the two models were 4% and 120% for the intercept and ambient temperature, respectively. Across all models, the
difference in NME and NMB (Table 6-8) in comparison to the selected model were substantial for NME and NMB, with values differing by less than 32% and 79%, respectively. As with the NH₃ models, adding a parameter for manure management system may account for the variability between sites. Additional models using this distinction will be tested for the final report.

Table 6-7. Model coefficients developed using the jackknife approach for H₂S emissions from milking centers.

Site out	Effect	Estimate	Standard Error	p-value
NONE	Intercept	6.898188	0.07052	<.0001
NONE	Ambient Temperature	0.024053	0.00361	<.0001
IN5BMC	Intercept	6.99747	0.05042	<.0001
	Ambient Temperature	0.006415	0.0025	0.011
NY5BMC	Intercept	6.621331	0.13313	<.0001
	Ambient Temperature	0.052894	0.00711	<.0001

Table 6-8. Model fit statistics for the milking center H₂S jackknife.

Site out	n	LNME ^a (%)	NME ^b (%)	ME ^b (g day ⁻¹)	MB ^b (g day ⁻¹)	NMB ^b (%)	Corr
NONE	926	6.611	90.97	1204.3	-113.5	-8.571	0.347
IN5BMC	540	4.099	61.55	413.65	-12.28	-1.827	0.466
NY5BMC	386	8.707	84.8	1895.8	-284.9	-12.74	0.448

^a Based on transformed data (i.e., $ln(H_2S)$).

^b Based on back-transformed data.

Figure 6-4. Comparison of variation in coefficients and standard errors for H2S milking center model.

Variation in coefficients and standard errors (black closed circle and \pm SE bar) for each jackknife model with the selected H₂S milking center model coefficient ("None", gray band for \pm SE) for each model parameter.

6.2.3 Particulate Matter Model Evaluation

For the MC particulate matter models, we did not complete jackknife analysis because there was only one site in the dataset. We also did not pursue a model evaluation using a k-fold cross validation technique based on previous SAB comments (SAB, 2013) recommending against using this method to select data for temporally correlated data. Future EPA efforts will investigate obtaining additional data that would allow for further model testing and evaluation and an improved emission model.

6.3 Naturally Ventilated Barn Model

A theme across all the results presented below is withholding WA4B B4 from the data set produces the largest differences across the models. This is likely due to WA4B B4 having an average daily inventory almost twice the other three barns included in NAEMS. Removing this barn greatly reduced the variability of inventory values in the data set that the model must capture.

6.3.1 NH₃ Model Evaluation

Table 6-9 and Figure 6-5 show the variation in coefficients and standard errors for the selected NH₃ naturally ventilated barn model ("None") and each of the jackknife models. The model coefficients from the jackknife approach had some differences, most notable in the models with WA5B barns withheld (Table 6-9). For the models where WA4B B2 and B4 were withheld, one or both parameters were insignificant (p-value >0.05). The plots in Figure 6-5 show that the coefficients for these models also fall outside the full model estimate \pm 1 standard error, except for wind speed. In comparison to the full model, where the barn removed is "None", the maximum percent differences for parameter estimates across the models were 2292%, 235%, and 23% for the intercept, inventory, and wind speed, respectively. These largest differences all occurred for the model where WA5B B4 was removed. Across all models, the difference in NME and NMB (Table 6-10) in comparison to the selected model were the largest when WA5B B4 was withheld from the dataset, which increased the NME by 32% and decreased NMB by 174%. This is likely due to the reduced variability in inventory values caused by withholding WA4B B4.

Site out	Effect	Estimate	Standard Error	p-value ^a
	Intercept	0.188357	0.2678	0.484
NONE	Inventory	3.451939	0.4106	<.0001
	Wind Speed	0.048153	0.01837	0.009
	Intercept	0.734625	0.34491	0.0385
CA5BB1	Inventory	2.885717	0.49667	<.0001
	Wind Speed	0.043071	0.01873	0.022
	Intercept	0.730143	0.31533	0.0253
CA5BB2	Inventory	2.985909	0.45768	<.0001
	Wind Speed	0.040555	0.01847	0.0288
	Intercept	-0.84424	0.13064	<.0001
WA5BB2	Inventory	4.709923	0.19931	<.0001
	Wind Speed	0.019312	0.02201	0.3808
	Intercept	4.505901	1.29423	0.0009
WA5BB4	Inventory	-4.658465	2.41694	0.0582
	Wind Speed	0.037293	0.02361	0.1149

Table 6-9. Model coefficients developed using the jackknife approach for NH₃ emissions from naturally ventilated barns.

^aBold indicates insignificant p-values (i.e., > 0.05)

Table 6-10. Model fit statistics for the naturally ventilated barns NH₃ jackknife.

Site out	n	LNME ^a (%)	NME ^b (%)	ME ^b (kg day ⁻¹)	MB ^b (kg day ⁻¹)	NMB ^b (%)	Corr
NONE	605	27.084	75.233	12.818	0.828	4.862	0.636
CA5BB1	431	27.885	72.445	16.265	0.754	3.36	0.601
CA5BB2	396	25.139	69.96	16.995	1.728	7.114	0.599
WA5BB2	482	20.19	51.412	7.179	-0.504	-3.611	0.793
WA5BB4	506	32.404	98.929	9.575	-0.249	-2.571	0.207

^a Based on transformed data (i.e., In(NH₃)).

^b Based on back-transformed data.

Figure 6-5. Comparison of variation in coefficients and standard errors for NH₃ naturally ventilated barn model.

Variation in coefficients and standard errors (black closed circle and \pm SE bar) for each jackknife model with the selected NH₃ naturally ventilated barn model coefficient ("None", gray band for \pm SE) for each model parameter.

6.3.2 H₂S Model Evaluation

Table 6-11 and Figure 6-6 show the variation in coefficients and standard errors for the selected H₂S naturally ventilated barn model ("None") and each of the jackknife models. The model coefficients from the jackknife approach had some differences, most notable the coefficient for inventory switched to negative in the model with WA5B B4 withheld (Table 6-11) and was insignificant (p-value >0.05). For the models where CA4B B1 and B2 were withheld, the coefficient for mwind speed became insignificant. The plots in Figure 6-6 show that the coefficients for the model where WA5B B4 was withheld fall outside the full model estimate \pm 1 standard error, except for wind speed. In comparison to the full model, where the barn removed is "None", the maximum percent differences for parameter estimates across the models occurred when WA5B was withheld and were 12%, 307%, and 75% for the intercept, inventory, and wind speed, respectively. Across all models, the difference in NME and NMB (Table 6-12) in comparison to the selected model were the largest when WA5B B4 was withheld from the dataset, which increased the NME by 17% and decreased NMB by 92%. Withholding WA4B B4 from the dataset reduced variability in inventory, which changed the significance of inventory as a predictive parameter and lowered the bias seen in the model.

Site out	Effect	Estimate	Standard Error	p-value ^a
	Intercept	6.541057	0.14434	<.0001
NONE	Inventory	0.587702	0.21921	0.008
	Wind Speed	0.062678	0.02193	0.0044
	Intercept	6.593149	0.17451	<.0001
CA5BB1	Inventory	0.661236	0.24717	0.0083
	Wind Speed	0.036373	0.02762	0.1886
	Intercept	6.557214	0.18007	<.0001
CA5BB2	Inventory	0.6616	0.24813	0.0085
	Wind Speed	0.03755	0.03114	0.2288
	Intercept	6.559682	0.14376	<.0001
WA5BB2	Inventory	0.520217	0.21815	0.0182
	Wind Speed	0.075574	0.02381	0.0016
	Intercept	7.344257	0.58948	<.0001
WA5BB4	Inventory	-1.214405	1.08122	0.2645
	Wind Speed	0.109848	0.01931	<.0001

Table 6-11. Model coefficients developed using the jackknife approach for H₂S emissions from naturally ventilated barns.

^aBold indicates insignificant p-values (i.e., > 0.05)

Table 6-12. Model fit statistics for the naturally ventilated barns H₂S jackknife.

Site out	n	LNME ^a (%)	NME ^b (%)	ME ^b (g day ⁻¹)	MB ^b (kg day ⁻¹)	NMB ^b (%)	Corr
NONE	647	6.461	77.092	677.49	-29.02	-3.302	0.33
CA5BB1	449	6.937	80.862	807.4	-34.82	-3.487	0.326
CA5BB2	380	7.784	89.878	915.9	-39.6	-3.886	0.32
WA5BB2	550	5.832	69.934	603.45	-36.4	-4.218	0.371
WA5BB4	562	5.662	69.734	490.88	-1.791	-0.254	0.249

^a Based on transformed data (i.e., $ln(H_2S)$).

^b Based on back-transformed data.

Figure 6-6. Comparison of variation in coefficients and standard errors for H₂S naturally ventilated barn model.

Variation in coefficients and standard errors (black closed circle and \pm SE bar) for each jackknife model with the selected H₂S naturally ventilated barns model coefficient ("None", gray band for \pm SE) for each model parameter.

6.3.3 PM₁₀ Model Evaluation

Table 6-13 and Figure 6-7 show the variation in coefficients and standard errors for the selected PM₁₀ naturally ventilated barn model ("None") and each of the jackknife models. The model coefficients from the jackknife approach had some differences, most notably the coefficient for inventory switched to negative in the model with WA5B B4 withheld (Table 6-13) and became insignificant. For the models where WA4B4 was withheld, the coefficient for ambient temperature also became insignificant (p-value >0.05). The plots in Figure 6-7 show that the coefficients for the model where WA5B B4 fall outside the full model estimate \pm 1 standard error, except for ambient relative humidity. In comparison to the full model, where the barn removed is "None", the maximum percent differences for parameter estimates across the three models were 15%, 138%, 80%, 24%, and 20% for the intercept, inventory, ambient temperature, ambient relative humidity, and wind speed, respectively. Across all models, the difference in NME and NMB (Table 6-14) in comparison to the selected model were the largest when WA5B B4 was withheld from the dataset, which increased the NME by 16% and decreased NMB by 37%.

Site out	Effect	Estimate	Standard Error	p-value ^a
	Intercept	7.64258	0.16783	<.0001
	Inventory	1.525009	0.14917	<.0001
NONE	Ambient Temperature	0.011864	0.00333	0.0004
	Ambient Relative Humidity	-0.01521	0.00154	<.0001
	Wind Speed	0.173698	0.01064	<.0001
	Intercept	7.695149	0.18357	<.0001
	Inventory	1.399494	0.16322	<.0001
CA5BB1	Ambient Temperature	0.018588	0.00384	<.0001
	Ambient Relative Humidity	-0.01564	0.00178	<.0001
	Wind Speed	0.181527	0.0118	<.0001
	Intercept	7.726456	0.19289	<.0001
	Inventory	1.420078	0.16427	<.0001
CA5BB2	Ambient Temperature	0.014917	0.00397	0.0002
	Ambient Relative Humidity	-0.015634	0.00196	<.0001
	Wind Speed	0.175816	0.01265	<.0001
	Intercept	6.831711	0.24796	<.0001
	Inventory	2.045075	0.17514	<.0001
WA5BB2	Ambient Temperature	0.020629	0.00419	<.0001
	Ambient Relative Humidity	-0.0115	0.00199	<.0001
	Wind Speed	0.192966	0.01355	<.0001
	Intercept	8.81874	0.46389	<.0001
	Inventory	-0.576586	0.90282	0.5241
WA5BB4	Ambient Temperature	0.002425	0.00354	0.494
	Ambient Relative Humidity	-0.012854	0.00154	<.0001
	Wind Speed	0.138497	0.01071	<.0001

Table 6-13. Model coefficients developed using the jackknife approach for PM₁₀ emissions from naturally ventilated barns.

^aBold indicates insignificant p-values (i.e., > 0.05)

Table 6-14. Model fit statistics for the naturally ventilated barns PM₁₀ jackknife.

Site out	N	LNME ^a (%)	NME ^b (%)	ME ^b (g day ⁻¹)	MB ^b (kg day ⁻¹)	NMB ^b (%)	Corr
CA5BB1	1214	5.102	79.404	4772.9	-701.9	-11.68	0.372
CA5BB2	1088	5.412	81.443	5265.9	-688.8	-10.65	0.358
NONE	1457	4.896	82.575	4195.9	-668.8	-13.16	0.374
WA5BB2	1024	4.537	76.692	3944.7	-926.4	-18.01	0.462
WA5BB4	1045	4.156	95.397	2384	-277.5	-11.1	0.208

^a Based on transformed data (i.e., In(PM₁₀)).

^b Based on back-transformed data.

Figure 6-7. Comparison of variation in coefficients and standard errors for PM₁₀ naturally ventilated barn model.

Variation in coefficients and standard errors (black closed circle and \pm SE bar) for each jackknife model with the selected PM₁₀ naturally ventilated barns model coefficient ("None", gray band for \pm SE) for each model parameter.

6.3.4 PM_{2.5} Model Evaluation

The analysis for the $PM_{2.5}$ naturally ventilated barns was a departure from the other evaluations, more of the models have coefficients that vary and are insignificant (Table 6-15). When compared to the full model, the coefficients vary up to 125%, 4,370%, 406%, 21,410%, and 25% for the intercept, inventory, ambient temperature, ambient relative humidity, and wind speed, respectively, and the large differences are not limited to the model with WA5B B4 withheld. Table 6-15 and Figure 6-8 show the variation in coefficients and standard errors for the selected $PM_{2.5}$ naturally ventilated barn model ("None") and each of the jackknife models. The plots in Figure 6-8 show that most of the coefficients for the models overlapped the full model estimate ± 1 standard error. The models for the WA5B barn both fell outside for the intercept and inventory, and the WA5B B1 model fell outside for ambient relative humidity. The difference in NME and NMB (Table 6-16) across the models with a barn withheld compared to the selected model changed by as much as 40% for NME and 1,566% for NMB.

Site out	Effect	Estimate	Standard Error	p-value ^a
	Intercept	7.068797	1.15954	<.0001
	Inventory	-0.220453	0.75959	0.7753
NONE	Ambient Temperature	0.01121	0.02585	0.6681
	Ambient Relative Humidity	-0.003808	0.01023	0.7125
	Wind Speed	0.218968	0.0563	0.0002
	Intercept	6.922323	1.15234	<.0001
	Inventory	-0.432386	0.76218	0.579
CA5BB1	Ambient Temperature	0.015697	0.02584	0.5493
	Ambient Relative Humidity	0.001448	0.01082	0.8946
	Wind Speed	0.232037	0.05911	0.0002
	Intercept	5.999344	0.97451	<.0001
	Inventory	-0.637279	0.60064	0.3062
CA5BB2	Ambient Temperature	0.056741	0.02418	0.0293
	Ambient Relative Humidity	0.012843	0.00944	0.1876
	Wind Speed	0.237943	0.06181	0.0002
	Intercept	-1.742952	1.50484	0.2592
	Inventory	4.220142	0.79698	<.0001
WA5BB2	Ambient Temperature	0.135315	0.02619	<.0001
	Ambient Relative Humidity	0.049877	0.01071	0.0001
	Wind Speed	0.221498	0.0743	0.0044
	Intercept	13.01778	2.71873	0.0035
	Inventory	-9.854431	5.35402	0.1099
WA5BB4	Ambient Temperature	-0.005191	0.0234	0.8255
	Ambient Relative Humidity	-0.012329	0.00844	0.1545
	Wind Speed	0.163688	0.02852	<.0001

Table 6-15. Model coefficients developed using the jackknife approach for PM2.5emissions from naturally ventilated barns.

^aBold indicates insignificant p-values (i.e., > 0.05)

Table 6-16. Model fit statistics for the natural	ly ventilated barns PM _{2.5} j	ackknife.
--	---	-----------

Site out	n	LNME ^a (%)	NME ^b (%)	ME ^b (g day ⁻¹)	MB ^b (kg day ⁻¹)	NMB ^b (%)	Corr
CA5BB1	89	8.295	59.345	1154	9.362	0.481	0.651
CA5BB2	78	6.288	37.718	820.71	50.306	2.312	0.821
NONE	93	8.789	62.65	1167	-19.48	-1.046	0.665
WA5BB2	56	5.461	48.197	625.08	198.89	15.335	0.901
WA5BB4	56	5.877	54.701	1018.8	-91.41	-4.908	0.718

^a Based on transformed data (i.e., ln(NH₃)).

^b Based on back-transformed data.

Figure 6-8. Comparison of variation in coefficients and standard errors for PM_{2.5} naturally ventilated barn model.

Variation in coefficients and standard errors (black closed circle and \pm SE bar) for each jackknife model with the selected PM_{2.5} naturally ventilated barn model coefficient ("None", gray band for \pm SE) for each model parameter.

6.3.5 TSP Model Evaluation

Table 6-17 and Figure 6-9 show the variation in coefficients and standard errors for the selected TSP naturally ventilated barn model ("None") and each of the jackknife models. The model coefficients from the jackknife approach were comparable across the withheld sets (Table 6-17) and remained significant (p-value <0.05) across all models, except for ambient temperature in the model where WA5BB4 was removed. The plots in Figure 6-9 show that all the coefficients overlap the full model estimate ± 1 standard error, except for inventory for the model where WA5BB4 was removed. In comparison to the full model, that is where the barn removed is "None", the maximum percent differences for parameter estimates across the three models were

17%, 141%, 56%, 25%, and 18% for the intercept, inventory, ambient temperature, ambient relative humidity, and wind speed, respectively. Across all models, the difference in NME and NMB (Table 6-18) in comparison to the selected model changed by as much as 16% for NME and 160% for NMB.

Site out	Effect	Estimate	Standard Error	p-value ^a
	Intercept	7.868847	0.58294	<.0001
	Inventory	2.953893	0.48928	<.0001
NONE	Ambient Temperature	0.034508	0.01069	0.0021
	Ambient Relative Humidity	-0.033997	0.00508	<.0001
	Wind Speed	0.248191	0.04211	<.0001
	Intercept	7.667585	0.48937	<.0001
	Inventory	2.477977	0.44054	<.0001
CA5BB1	Ambient Temperature	0.048926	0.01002	<.0001
	Ambient Relative Humidity	-0.026332	0.00445	<.0001
	Wind Speed	0.294612	0.03075	<.0001
	Intercept	7.786063	0.68673	<.0001
	Inventory	2.998098	0.56151	<.0001
CA5BB2	Ambient Temperature	0.034621	0.01325	0.0127
	Ambient Relative Humidity	-0.032651	0.00638	<.0001
	Wind Speed	0.238451	0.05294	<.0001
	Intercept	6.616785	0.81649	<.0001
	Inventory	3.762081	0.52641	<.0001
WA5BB2	Ambient Temperature	0.048947	0.01322	0.0005
	Ambient Relative Humidity	-0.026808	0.00659	0.0001
	Wind Speed	0.235277	0.04912	<.0001
	Intercept	6.558937	1.4622	<.0001
	Inventory	7.12147	2.73945	0.0131
WA5BB4	Ambient Temperature	0.0151	0.01245	0.2317
	Ambient Relative Humidity	-0.042411	0.0058	<.0001
	Wind Speed	0.203451	0.05134	0.0001

Table 6-17. Model o	oefficients developed using the jackknife approach for TSP
e	missions from naturally ventilated barns.

^aBold indicates insignificant p-values (i.e., > 0.05)

Table 6-18. Model fit statistics for the natural	ly ventilated barns TSP ja	ackknife.
--	----------------------------	-----------

Site out	n	LNME ^a (%)	NME ^b (%)	ME ^b (g day ⁻¹)	MB ^b (kg day ⁻¹)	NMB [♭] (%)	Corr
CA5BB1	135	4.902	44.574	9954.9	-1381	-6.185	0.875
CA5BB2	146	6.598	55.473	10927	-932.6	-4.734	0.799
NONE	205	6.07	52.783	8639.5	-492.6	-3.009	0.807
WA5BB2	167	5.659	49.037	7695.7	-297.8	-1.898	0.821
WA5BB4	167	6.446	57.093	5315	12.023	0.129	0.666

^a Based on transformed data (i.e., In(TSP)).

^b Based on back-transformed data.

Figure 6-9. Comparison of variation in coefficients and standard errors for TSP naturally ventilated barn model.

Variation in coefficients and standard errors (black closed circle and \pm SE bar) for each jackknife model with the selected TSP naturally ventilated barn model coefficient ("None", gray band for \pm SE) for each model parameter.

6.4 Open Sources

For the corral models, we did not complete jackknife analysis because there was only one site in the dataset. We also did not pursue a model evaluation using a k-fold cross validation technique based on previous SAB comments (SAB, 2013) recommending against using this method to select data for temporally correlated data. Future EPA efforts will look into obtaining additional data that would allow for further model testing and evaluation and an improved emission model.

6.4.1 NH₃ Model Evaluation

Table 6-19 and Figure 6-10 show the variation in coefficients and standard errors for the selected NH₃ open source model ("None") and each of the jackknife models. The model coefficients from the jackknife approach were comparable across the withheld sets (Table 6-19) and remained significant (p-value <0.05) across all models. The plots in Figure 6-10 show that the results for all jackknife models do not overlap the full model estimate ± 1 standard error, except the model where IN5A was withheld for ambient temperature. In comparison to the full model, the maximum percent differences for parameter estimates across the two models were 13% and 24% for the intercept and ambient temperature, respectively. Across all models, the difference in NME and NMB (Table 6-20) in comparison to the selected model were substantial for NME and NMB, with values differing by up to 38% and 77%, respectively.

Table 6-19. Model coefficients developed using the jackknife approach for NH₃ emissions from open sources.

Site out	Effect	Estimate	Standard Error	p-value
NONE	Intercept	1.396734	0.0248	<.0001
NONE	Ambient Temperature	0.027201	0.00195	<.0001
	Intercept	1.576653	0.06521	<.0001
INSA	Ambient Temperature	0.033848	0.00616	<.0001
	Intercept	1.323888	0.01843	<.0001
VVISA	Ambient Temperature	0.031531	0.00152	<.0001

Fable 6-20. Model fit statistic	s for the open sources	NH ₃ jackknife.
---------------------------------	------------------------	----------------------------

Site out	n	LNME ^a (%)	NME ^b (%)	ME ^b (g day ⁻¹)	MB ^b (kg day ⁻¹)	NMB ^b (%)	Corr
IN5A	28	12.225	53.586	0.865	-0.048	-2.958	0.84
NONE	157	9.709	38.766	0.712	-0.034	-1.859	0.821
WI5A	129	8.159	31.915	0.601	-0.008	-0.433	0.887

^a Based on transformed data (i.e., ln(NH₃)).

^b Based on back-transformed data.

Figure 6-10. Comparison of variation in coefficients and standard errors for NH_3 open source model. Variation in coefficients and standard errors (black closed circle and ± SE bar) for each jackknife model with the selected NH_3 open source model coefficient ("None", gray band for ± SE) for each model parameter.

6.4.2 H₂S Model Evaluation

Table 6-21 and Figure 6-11 show the variation in coefficients and standard errors for the selected H₂S open source model ("None") and each of the jackknife models. The model coefficients from the jackknife approach were comparable across the withheld sets (Table 6-21) and remained significant (p-value <0.05) across all models. The plots in Figure 6-11 show that the results for all jackknife models do not overlap the full model estimate \pm 1 standard error, except the model where IN5A was withheld. In comparison to the full model, the maximum percent differences for parameter estimates across the two models were 7% and 68% for the intercept and ambient temperature, respectively. Across all models, the difference in NME and NMB (Table 6-22) in comparison to the selected model were substantial for NME and NMB, with values differing by up to 20% and 98%, respectively.

Table 6-21. Model coefficients developed using the jackknife approach for H2Semissions from open sources.

Site out	Effect	Estimate	Standard Error	p-value
NONE	Intercept	1.189272	0.03163	<.0001
	Ambient Temperature	0.010557	0.0022	<.0001
IN5A	Intercept	1.109037	0.01639	<.0001
	Ambient Temperature	0.003382	0.00127	0.0203
WA5A	Intercept	1.189558	0.03019	<.0001
	Ambient Temperature	0.011581	0.00218	<.0001
WI5A	Intercept	1.226774	0.04029	<.0001
	Ambient Temperature	0.009725	0.00256	0.0005

Table 6-22. Model fit	statistics for	the open source	H₂S jackknife.

Site out	n	LNME ^a (%)	NME ^b (%)	ME ^b (g day ⁻¹)	MB ^b (kg day ⁻¹)	NMB ^b (%)	Corr
NONE	70	9.258	63.688	0.499	-0.011	-1.403	0.587
IN5A	13	1.475	76.161	0.052	0	-0.032	0.782
WA5A	69	8.922	61.188	0.484	-0.01	-1.321	0.615
WI5A	58	9.575	58.078	0.542	-0.009	-0.914	0.525

^a Based on transformed data (i.e., $In(H_2S)$).

^b Based on back-transformed data.

Figure 6-11. Comparison of variation in coefficients and standard errors for H_2S open source model. Variation in coefficients and standard errors (black closed circle and ± SE bar) for each jackknife model with the selected H_2S open source model coefficient ("None", gray band for ± SE) for each model parameter.

6-21

7 ANNUAL EMISSION ESTIMATES AND MODEL UNCERTAINTY

To estimate annual pollutant emissions, the results of the daily emission models are summed over the number of operating days per year. This approach requires values for the necessary ambient and barn parameters. For an actual emissions estimate, the daily estimates are based on meteorology from nearby monitors and barn occupancy and weight records for the year from the producer. For farms with multiple barns, annual emissions are determined for individual barns and summed across barns to calculate total annual farm-scale emissions.

As noted in Section 6 of the main report, the model results are transformed values of the emissions. To convert to the native emission units (e.g., kg or g), the back transformation equation (Equation from Section 6 of the main All Sector report) is applied using the values of \overline{E}_i and C provided in Table 7-1 for each emission model. Section 8 contains an example of this calculation.

A minuted Trune	Dellutent	—		Desulting units
Animai Type	Pollutant	E _i		Resulting units
Mechanically Ventilated barn	NH₃	1.03966	3	kg/d
Mechanically Ventilated barn	H ₂ S	1.11434	628	g/d
Mechanically Ventilated barn	PM10	а	a	а
Mechanically Ventilated barn	PM _{2.5}	а	а	а
Mechanically Ventilated barn	TSP	а	а	а
Milking Center	NH₃	1.21693	3	g/d/hd
Milking Center	H ₂ S	1.30119	628	kg/d/hd
Milking Center	PM10	1.0057	2200	g/d/hd
Milking Center	PM _{2.5}	1.00796	680	g/d/hd
Milking Center	TSP	1.0311	978	g/d/hd
Naturally Ventilated barn	NH₃	1.46499	3	g/d
Naturally Ventilated barn	H ₂ S	1.23366	628	kg/d
Naturally Ventilated barn	PM ₁₀	1.27211	2200	g/d
Naturally Ventilated barn	PM _{2.5}	1.33005	680	g/d
Naturally Ventilated barn	TSP	1.25126	978	g/d
Lagoon/basin	NH ₃	1.0079	3	kg/d m ²
Lagoon/basin	H ₂ S	1.03006	3	kg/d m ²
Corral	NH₃	1.0066	3	g/d-m ² -1,000 hd
Corral	H ₂ S	1.00007	3	g/d-m ² -1,000 hd

Table 7-1. Back transformation parameters

^a Annual models were not calculated to allow time to optimize the daily models.

EPA also developed an estimate of uncertainty for total annual emissions, characterized by the random error in the model prediction using an approach similar to the Monte Carlo analysis. Under this approach, EPA developed the statistical properties of predicted annual emissions by replicating annual sums of daily emissions. EPA ran these simulations for several different intervals of a predictor variable that fell within the observed range. For example, naturally ventilated barn inventory ranged from 500 to 600 head. The simulations were then run for inventory intervals of 5 head (e.g., 500, 505, 510). Table 7-2 lists the predictor variable and the number of intervals used for the annual uncertainty simulations for each model.

Source Type	Pollutant	Simulation Variable	Number of Simulations	k	Emission Units
Mechanically ventilated barn - Flush	H₂S	Inventory	10,000	3,457,126	g/d
Mechanically ventilated barn - Scrape	H₂S	Inventory	10,000	3,453,490	g/d
Mechanically ventilated barn - Flush	NH₃	Inventory	10,000	35,180	kg/d
Mechanically ventilated barn - Scrape	NH₃	Inventory	10,000	35,258	kg/d
Mechanically ventilated barn	PM ₁₀	а			
Mechanically ventilated barn	PM _{2.5}	а			
Mechanically ventilated barn	TSP	а		·	
Milking Center	H₂S	Ambient temperature	10,000	9,392,217	g/d-1,000 hd
Milking Center	NH₃	Ambient temperature	10,000	55,494	kg/d- 1,000 hd
Milking Center	PM ₁₀	Ambient temperature	10,000	1,082,872	g/d-1,000 hd
Milking Center	PM _{2.5}	Ambient temperature	10,000	498,298	g/d-1,000 hd
Milking Center	TSP	Ambient temperature	10,000	1,557,418	g/d-1,000 hd
Naturally ventilated barn	H ₂ S	Inventory	10,000	4,963,976	g/d
Naturally ventilated barn	NH₃	Inventory	10,000	73,495.7	kg/d
Naturally ventilated barn	PM10	Inventory	10,000	59,332,385	g/d
Naturally ventilated barn	PM _{2.5}	Inventory	10,000	5,181,114	g/d
Naturally ventilated barn	TSP	Inventory	10,000	83,299,795	g/d
Lagoon/basin	H_2S	Ambient temperature	10,000	2,606.3	g/d m²
Lagoon/basin	NH₃	Ambient temperature	10,000	4,114.1	g/d m ²
Corral	H ₂ S	Ambient relative humidity	10,000	18,479.4	mg/d-m ² - 1,000 hd
Corral	NH₃	Ambient temperature	10,000	1,278.5	g/d-m²- 1,000 hd

Table 7-2. Annual Uncertainty Model Details

^a Annual models were not calculated to allow time to optimize the daily models.

Simulations were run 10,000 times for each day for each interval to create an average uncertainty associated with the annual emissions from a single barn. EPA added a random residual to each day of the simulation to replicate the variability that would be seen in a real-

world application of the model. For each of the intervals run, EPA calculated standard statistics (i.e., minimum, median, mean, maximum, range) and used these to calculate the uncertainty for a single source via:

Single source uncertainty =
$$0.5 \times \left(\frac{Range}{Median annual emission}\right) \times 100$$
 Equation 19

EPA then plotted this single barn uncertainty against its associated annual emissions. This plot was then fit with a curve to model annual percent uncertainty for a single source (i.e., barn, lagoon, basin). For all uncertainty models, the curve took the form of:

Uncertainty (%) =
$$\frac{k}{Annual Emissions}$$

Equation 20

Where:

k is a constant, listed in Table 7-2, and *Annual Emissions* are the total sum from the daily models.

EPA has not calculated particulate matter annual uncertainty models for the mechanically ventilated barns in order to allow more time to optimize the models. EPA will include the annual uncertainty models in the final report.

Multiplying this percentage by the annual emissions calculated for the source provides the resulting uncertainty in the native emission units (e.g., kg or g), demonstrated in Equation 21.

$$Resulting Uncertainty = \frac{Percent uncertainty \times Annual emissions}{100}$$
Equation 21

To propagate the uncertainty across all sources at a farm, EPA combined the estimates of absolute uncertainty for each source according to:

Total farm uncertainty =
$$\sqrt{(U_{B1})^2 + \dots + (U_{Bi})^2 + (U_{L1})^2 + \dots + (U_{Lj})^2}$$
 Equation 22

Where:

Total farm uncertainty = total uncertainty for the total emissions from all farm sources. UBi = the resulting uncertainty for barns, with i representing the total number of barns on the farm,

ULj = the resulting uncertainty for manure sheds, with j representing the total number of open sources on the farm.

EPA notes that the uncertainty framework described above reflects the random uncertainty (error) in the prediction of daily emissions calculated using the emission models, which includes the random uncertainty in the measurements used to develop the equation. This framework does not, however, consider systematic error (e.g., bias) in either NAEMS measurements or the emission model. Section 8 provides an example of how the daily, annual, and annual uncertainty calculations are completed.

8 MODEL APPLICATION AND ADDITIONAL TESTING

Key to the development of any model is the demonstration of the use and practical examples of how the model behaves and replicates independent data. This section provides a series of example calculations to demonstrate the application of the models (Section 8.1), the sensitivity of the models to their inputs (Section 8.2), a comparison of the models developed to literature (section 8.3), and a test of model performance against an independent data set (Section 8.4). Finally, this section wraps up with a discussion of data limitations that could be driving sensitivity or performance issues.

8.1 Model Application Example

The following sections demonstrate how the daily emission models from Section 5 and the annual uncertainty from Section 7 are used to calculate emissions for an example farm for each structure type. Details about the use of the emission models to demonstrate compliance with Clean Air Act (CAA) permitting thresholds will be addressed in a forthcoming implementation document. This example is provided to walk through a calculation to demonstrate how the system of equations is intended to work.

In Section 6.4 of the main report, the data were log-transformed prior to developing the models, the results of the models will need to be back-transformed per Equation 7 to represent emissions in units of grams or kilograms.

 $Y_{bp} = e^{\widehat{(y_p)}} * \overline{E}_i - C$

Where:

 Y_{bp} is the back transformed predicted emissions; y_p is the model predicted (log transformed) emissions; \overline{E}_i is the average residual between model-predicted and observed (or measured) emissions on the natural log scale; and *C* is a constant added to the data prior to the log transformation.

To complete the back transformation, users need two parameters that are specific to each model: 1) \overline{E}_{ι} , the residual between model-predicted and observed (or measured) emissions on the natural log scale; and 2) C, which is a constant added to the data prior to the log transformation. The values for \overline{E}_{ι} and C for the dairy models are provided in Table 7-1.

Once the emission models are finalized, EPA will work with stakeholders to develop a tool to facilitate the calculation of barn and open source emissions. For transparency and to help stakeholders better understand the process of calculating emissions, this section will walk through example calculations to estimate NH₃ emissions from a mechanically ventilated barn, milking center, naturally ventilated barn, and lagoon.

The examples in this section use a fictional farm located in Brown County, Wisconsin on January 1, 2021. Wisconsin was chosen as it is a top five milk producing state according to the USDA Economic Research Service data

(https://www.ers.usda.gov/webdocs/DataFiles/48685/milkcowsandprod.xlsx?v=9708). The ambient weather data used in each equation can be obtained for free from several sources including the National Centers for Environmental Information (NCEI; https://www.ncdc.noaa.gov/cdo-web/). NCEI stores hourly and daily ambient data from various monitors located across the country that can be used for emission estimation. The Green Bay International Airport, WI site (WBAN: 14898), a Local Climatological Data (LCD) Station located in Brown County was selected as to represent the meteorological information for a theoretical farm for testing. Its data file provides the daily average values of the key meteorological parameters needed for calculations.

The naturally ventilated barn and corral models presented in this report use wind speed in the model calculations. The height at which wind speed is measured influences the observation as friction with the surface will affect the observation. That means, the closer to the ground the measurement is made, the more friction will act to slow the speed. NAEMS winds were monitored at a height of approximately 2.5 meters at open sources and site specific heights at barn sources, while the National Weather Service (NWS) sites archived at NCEI are typically monitored at 10m. Therefore, the difference in measurement heights between NAEMS and NWS requires an adjustment to the wind. The relationship between wind speed and height is well established and can be written as:

$$\frac{V}{V_r} = \left(\frac{Z}{Z_r}\right)^m$$
Equation 23

Where V_r is the wind velocity at a height of 10 m (Z_r) and V is the wind velocity height at 2.5 m (Z), and m is the friction coefficient, which is a function of atmospheric stability and the underlying surface roughness. The value of m can vary, ranging from 0 to 1, with lower values over low roughness surfaces (water) and higher values for rougher terrain (e.g., rolling terrain or urban settings) (Arya, 1999). To adjust the 10m NWS wind measurement to a height comparable to the study data used to develop the model, the equation can be rewritten, resulting in

$$V_{2.5m} = \left(\frac{2.5}{10}\right)^m \times V_{10m}$$
Equation 23

EPA is determining the best value of m to use for corrals and naturally ventilated barns. For the purposes of the example calculations, we will use the average daily wind speed from the NWS site.

In addition to weather information, the models also use the number of cows present in the barn. For this fictitious farm, we assume the barn has a capacity of 500 cows. The equations use thousands of cows, so this value will be divided by 1,000 for use in the emission models. A summary of the input values for the example calculations is provided in Table 8-1.

Parameter	Value
Daily Average Ambient Temperature (°C)	-9.4
Daily Average Relative Humidity (%)	86
Average Wind Speed (ms ⁻¹)	2.55
Inventory (thousand head)	0.50

Table 8-1. Daily calculation parameter values

8.1.1 Mechanically Ventilated Barn Example

For this example, we will assume the barn uses a scrape manure management system, which would use Equation 1, in Section 5.1, to calculate the log transformed values as follows:

$$ln(NH_3) = 1.86494 + 1.773832 * Inventory + 0.029586 * Amb_T$$
$$ln(NH_3) = 1.86494 + 0.1.773832 * \left(\frac{500}{1,000}\right) + 0.029586 * -9.4$$
$$ln(NH_3) = 1.86494 + 0.8869 - 0.2781$$
$$ln(NH_3) = 2.4737$$

To back transform the results to NH₃ in kg, use Equation 7, from the main report. For a flush managed mechanically ventilated barn, \overline{E}_i is 1.03966 and C is 3.

 $NH_3 = e^{2.4731} \times 1.03966 - 3$

This comes to 9.34 kg NH₃ for the day. This process is repeated for each day, then the daily emissions are added together to get an annual estimate of emissions. After considering the values for each day in 2021, the total annual emission for the barn was calculated at 7,108 kg. To calculate the uncertainty associated with this estimate, use Equation 17 with the value of k from Table 7-1. This results in an annual uncertainty of:

Uncertainty (%) =
$$\frac{35,180}{7,108.31}$$
 = 4.95%

This translates to an uncertainty of \pm 351kg. Thus, the final annual estimate for this barn is 7,108kg \pm 352 kg. This calculation would be repeated for any other mechanically ventilated barn on the site.

8.1.2 Milking Center Example

For this example, we will use Equation 5, in Section 5.2, to calculate the log transformed values as follows:

$$ln(NH_3) = 2.505637 + 0.046434 * Amb_1$$
$$ln(NH_3) = 2.505637 + 0.04643 * -9.4$$
$$ln(NH_3) = 2.505637 - 0.4368$$
$$ln(NH_3) = 2.0692$$

To back transform the results to NH₃ in kg, use Equation 7, from the main report. For a milking center, \overline{E}_{t} is 1.03966 and C is 3.

$$NH_{3}\left(\frac{\text{kg}}{\text{d} \cdot 1,000 \text{ head}}\right) = e^{2.0692} \times 1.2169 - 3$$
$$NH_{3}\left(\frac{\text{kg}}{\text{d} \cdot 1,000 \text{ head}}\right) = 6.64$$

This comes to 6.64 kg NH₃/d-1,000 head, which we can multiply by the 0.5 thousand head to get 3.32 kg NH₃ for the day. This process is repeated for each day, then the daily emissions are added together to get an annual estimate of emissions. After considering the values for each day in 2021, the total annual emissions for the milking center were calculated at 4,161.53 kg. To calculate the uncertainty associated with this estimate, use Equation 17 with the value of k from Table 7-1. This results in an annual uncertainty of:

Uncertainty (%) =
$$\frac{55,494}{4,161.53} = 13.33\%$$

This translates to an uncertainty of \pm 555 kg. Thus, the final annual estimate for this milking center is 4,161.53 kg \pm 554.94 kg.

8.1.3 Naturally Ventilated Barn Example

For this example, we will use Equation 10, in Section 5.3, to calculate the log transformed values as follows:

 $ln(NH_3) = 0.188357 + 3.451939 * Inventory + 0.048153 * WindSpeed$ $ln(NH_3) = 0.188357 + 3.451939 * Inventory + 0.048153 * WindSpeed$ $ln(NH_3) = 0.188357 + 3.451939 * \left(\frac{500}{1,000}\right) + 0.048153 * 2.55$ $ln(NH_3) = 0.188357 + 1.7260 + 0.1228$

$$\ln(NH_3) = 2.0371$$

To back transform the results to NH₃ in kg, use Equation 7, from the main report. For a naturally ventilated barn, \overline{E}_{l} is 1.03966 and C is 3.

$$NH_3 = e^{2.0371} \times 1.46499 - 3$$

This comes to 8.23 kg NH₃ for the day. This process is repeated for each day, then the daily emissions are added together to get an annual estimate of emissions. After considering the values for each day in 2021, the total annual emissions for the barn were calculated at 3,462.82 kg. To calculate the uncertainty associated with this estimate, use Equation 17 with the value of k from Table 7-1. This results in an annual uncertainty of:

Uncertainty (%) =
$$\frac{73,495.70}{3,462.82}$$
 = 21.%

This translates to an uncertainty of \pm 734.96 kg. Thus, the final annual estimate for this barn is 6,192.70 kg \pm 351.80 kg. This calculation would be repeated for any other naturally ventilated barn on the site.

8.1.4 Lagoon Example

For this example, we will use Equation 15, in Section 5.4, to calculate the log transformed values as follows:

$$ln(NH_3) = 1.396734 + 0.027201 * Amb_T$$
$$ln(NH_3) = 1.396734 + 0.027201 * -9.4$$
$$ln(NH_3) = 1.396734 - 0.2557$$
$$ln(NH_3) = 1.1410$$

To back transform the results to NH₃ in kg, use Equation 7, from the main report. For a lagoon, \overline{E}_{ι} is 1.0079 and C is 3.

$$NH_3 = e^{1.1410} \times 1.0079 - 3$$

This comes to 0.1548g NH₃/d m². This is multiplied by the surface area of the lagoon to estimate emissions for the whole lagoon. For this example, we will assume the lagoon is 10,000 m², which would result in emissions of 1,547 kg NH₃ for the day.

This process is repeated for each day, then the daily emissions are added together to get an annual estimate of emissions. After considering the values for each day in 2021, the total annual emissions for the lagoon were calculated at 8,961.21 kg. To calculate the uncertainty associated with this estimate, use Equation 17 with the value of k from Table 7-1. This results in an annual uncertainty of:

Uncertainty (%) =
$$\frac{4,114.1}{8,961.21} = 0.46\%$$

This translates to an uncertainty of \pm 41.14 kg. Thus, the final annual estimate for this lagoon is 8,961.21 kg \pm 41.14 kg. This calculation would be repeated for any other lagoon on the site.

8.1.5 Corral Example

For this example, we will use Equation 17, in Section 5.5, to calculate the log transformed values as follows:

$$ln(NH_3) = 1.053805 + 0.004993 * Amb_T + 0.0031 * Amb_{RH} + 0.017832 * WindSpeed$$
$$n(NH_3) = 1.053805 + 0.004993 * -9.4 + 0.0031 * 86 + 0.017832 * 2.55$$
$$ln(NH_3) = 1.053805 - 0.0469 + 0.266 + 0.0455$$
$$ln(NH_3) = 1.3189$$

To back transform the results to NH₃ in kg, use Equation 7, from the main report. For a corral, \overline{E}_i is 1.0066 and C is 3.

$$NH_3 = e^{1.3189} \times 1.0066 - 3$$

This comes to 0.07641 g NH₃/d m² 1,000 head. This is multiplied by the surface area of the corral and inventory to estimate emissions for the whole corral. For this example, we will assume the surface area of the corral is 100,000 m² and the farm population is 3,400 head, which would result in emissions of 260 kg NH₃ for the day.

This process is repeated for each day, then the daily emissions are added together to get an annual estimate of emissions. After considering the values for each day in 2021, the total annual emissions for the corral were calculated to be 124,562.33 kg. To calculate the uncertainty associated with this estimate, use Equation 17 with the value of k from Table 7-1. This results in an annual uncertainty of:

Uncertainty (%) =
$$\frac{1,278.5}{124,562.33} = 0.01\%$$

This translates to an uncertainty of \pm 12.79 kg. Thus, the final annual estimate for this corral is 124,562.33 kg \pm 12.79 kg.

8.1.6 Combining Structures

To calculate total farm emissions, the emissions from each unit are added. As an example, consider a farm with a 500 head mechanically ventilated barn, 500 head naturally ventilated barn, milking center with a 500 head capacity at any given time, and $10,000 \text{ m}^2$ lagoon. That is, the same emissions as the examples in sections 8.1.1 through 8.1.4. The annual farm emission estimate from four sources is:

Farm Total Emissions = 7,108.31 + 4,161.53 + 6,192.70 + 2,439.20

Farm Total Emissions = $19,901.74 kg NH_3$

To estimate the total farm uncertainty, use Equation 41:

Total Farm Uncertainty =
$$\sqrt{U_{barn 1}^{2} + U_{barn 2}^{2} + U_{milking center}^{2} + U_{lagoon}^{2}}$$

Total Farm Uncertainty = $\sqrt{(351.80)^{2} + (554.94)^{2} + (734.96)^{2} + (41.41)^{2}}$
Total Farm Uncertainty = 986.71 kg

The final annual NH_3 estimate for the farm is 19,901.74 \pm 986.71 kg. Once the emission models are finalized, EPA will work with stakeholder to develop a tool to facilitate the calculation of barn and open source emissions.

8.2 Model Sensitivity Testing

To further test the models, EPA varied the model parameters to ensure the model results would vary based on these key parameters. Two different tests were conducted: 1) the number of cows was increased while the meteorological parameters were held constant, and 2) inventory was held constant while the meteorological parameters were replaced with the values for a warmer climate.

8.2.1 Sensitivity to Inventory

To test the sensitivity of the confinement sources to inventory, the initial placement was doubled to 1,000 cows. Using the same meteorology from Section 8.1, the emissions for the dairy barns on January 1, 2020, is summarized in Table 8-2. For mechanically ventilated barns and milking centers, doubling the inventory at least doubled the NH₃ emissions for the same meteorological conditions. For naturally ventilated barns, doubling the inventory resulted in a sevenfold increase in NH₃ emissions. The large increase in the naturally ventilated barn emissions is further discussed in Section 8.2.3.3. These same ratios are seen when considering a year's worth of meteorology (Table 8-3).

Table 8-2. Comparison of confinement source NH₃ emissions (kg) on January 1, 2021, for different inventory levels at a theoretical Brown County farm.

Source Type	500 head	1,000 head
Mechanically Ventilated	9.34	26.91
Milking center	3.32	6.62
Naturally ventilated	8.23	62.49

Table 8-3. Comparison of confinement source total 2021 NH₃ emissions (kg) for different inventory levels at a theoretical Brown County farm.

Source Type	500 head	1,000 head
Mechanically Ventilated	7,108	18,820
Milking center	4,162	8,323
Naturally ventilated	3,463	24,511

For lagoons, doubling the surface area of the lagoon doubles both the daily and annual NH₃ emissions (Table 8-4). For corrals, doubling the inventory present doubles both the daily and annual NH₃ emissions (Table 8-5). The observed relationships suggest the models are sensitive to the size parameters, while scaling appropriately.

Table 8-4. Comparison of lagoon NH₃ emissions (kg) for different surface areas for theoretical Brown County farm.

NH ₃ Emissions (kg)	10,000 m ²	20,000 m ²
Daily (1/1/2021)	1.51	3.02
Annual (2021)	8,961	17,922

Table 8-5. Comparison of estimated corral NH₃ emissions (kg) for different inventory levels for theoretical Brown County farm.

NH ₃ Emissions (kg)	3,400 head	6,800 head
Daily (1/1/2021)	259.48	518.96
Annual (2021)	124,562	249,125

8.2.2 Sensitivity to Climate

To further test model sensitivity, specifically that climate differences were producing different emission results, EPA calculated the emissions for the same farm in two distinctly different climate regions. The first was the theoretical farm in Brown County, Wisconsin from the previous examples (Section 8.1). The NH₃ emission for these same theoretical barns were calculated using meteorological data from Livermore Municipal Airport in Alameda County, California. These locations were chosen based on 2017 Census of agriculture data indicating areas of high dairy inventory (Figure 8-1). USDA Economic Research Service data (available at: https://www.ers.usda.gov/webdocs/DataFiles/48685/milkcowsandprod.xlsx?v=9708) also notes California and Wisconsin are the top two dairy producing states in the country, further affirming the reasonableness of the testing locations.

Figure 8-1. 2017 Census of Agriculture plot indicating dairy inventory. Orange circles indicate approximate locations of test meteorology from Wisconsin (WI) and California (CA). Source: <u>https://www.nass.usda.gov/Publications/AgCensus/2017/Online Resources/Ag Atlas Maps/17-M209g.php</u>

For the test sites, the temperatures from the Wisconsin (WI) site were generally less than the California (CA) site (Figure 8-2). On average, the temperatures in Wisconsin were 7°C less than those in California (Table 8-6), with difference between individual monthly averages varying from 1.6 to 20.8°C lower, except for July when Wisconsin edged 0.6°C higher. With respect to relative humidity, the California and Wisconsin sites experienced a similar range of daily average relative humidities throughout the year (Figure 8-3 and Table 8-7). Wisconsin edged a little higher July through October, leading to an overall average 1.6% higher. Average daily wind speeds (Figure 8-4 and Table 8-7) were generally lower in California, with monthly average barely higher June through August. The following sections provide a summary of the calculations using the California meteorological data compared to the previous examples.

Figure 8-2. Comparison on average daily temperatures at test locations in Wisconsin (WI) and California (CA).

Statistic	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Overall
Min	-12.8	-21.7	-2.8	1.7	6.1	13.9	16.1	17.8	13.3	3.9	-6.1	-14.4	-21.7
Max	2.2	4.4	12.8	18.9	25.0	28.3	27.2	25.0	22.8	21.7	12.8	11.1	28.3
Average	-4.8	-9.5	3.4	9.1	14.0	21.9	21.5	21.9	17.3	12.6	2.2	-2.0	9.0
Min	4.4	8.3	6.1	11.1	13.9	15.0	18.9	18.9	17.8	12.2	10.0	0.0	0.0
Max	19.4	15.6	18.9	20.0	25.6	30.0	30.6	28.3	28.9	23.9	16.7	12.2	30.6
Average	10.3	11.3	11.5	15.1	18.4	21.3	23.5	23.4	22.4	16.9	13.0	8.0	16.3
	Statistic Min Max Average Min Max Average	Statistic Jan Min -12.8 Max 2.2 Average -4.8 Min 4.4 Max 19.4 Average 10.3	Statistic Jan Feb Min -12.8 -21.7 Max 2.2 4.4 Average -4.8 -9.5 Min 4.4 8.3 Max 19.4 15.6 Average 10.3 11.3	Statistic Jan Feb Mar Min -12.8 -21.7 -2.8 Max 2.2 4.4 12.8 Average -4.8 -9.5 3.4 Min 4.4 8.3 6.1 Max 19.4 15.6 18.9 Average 10.3 11.3 11.5	Statistic Jan Feb Mar April Min -12.8 -21.7 -2.8 1.7 Max 2.2 4.4 12.8 18.9 Average -4.8 -9.5 3.4 9.1 Min 4.4 8.3 6.1 11.1 Max 19.4 15.6 18.9 20.0 Average 10.3 11.3 11.5 15.1	Statistic Jan Feb Mar Apr May Min -12.8 -21.7 -2.8 1.7 6.1 Max 2.2 4.4 12.8 18.9 25.0 Average -4.8 -9.5 3.4 9.1 14.0 Min 4.4 8.3 6.1 11.1 13.9 Min 4.4 15.6 18.9 20.0 25.6 Max 19.4 15.6 18.9 20.0 25.6 Average 19.4 15.6 18.9 20.0 25.6 Average 10.3 11.3 11.5 15.1 18.4	Statistic Jan Feb Mar Apr May Jun Min -12.8 -21.7 -2.8 1.7 6.1 13.9 Max 2.2 4.4 12.8 18.9 25.0 28.3 Average -4.8 -9.5 3.4 9.1 14.0 21.9 Min 4.4 8.3 6.1 11.1 13.9 15.0 Max 19.4 15.6 18.9 20.0 25.6 30.0 Max 19.3 15.6 18.9 20.0 25.6 30.0 Average 10.3 11.3 11.5 15.1 18.4 21.3	Statistic Jan Feb Mar Apr May Jun Jul Min -12.8 -21.7 -2.8 1.7 6.1 13.9 16.1 Max 2.2 4.4 12.8 18.9 25.0 28.3 27.2 Average -4.8 -9.5 3.4 9.1 14.0 21.9 21.5 Min 4.4 8.3 6.1 11.1 13.9 15.0 18.9 Max 19.4 15.6 18.9 20.0 25.6 30.0 30.6 Max 19.3 11.3 11.5 15.1 18.4 21.3 23.5	Statistic Jan Feb Mar Apr May Jun Aug Min -12.8 -21.7 -2.8 1.7 6.1 13.9 16.1 17.8 Max 2.2 4.4 12.8 18.9 25.0 28.3 27.2 25.0 Average -4.8 -9.5 3.4 9.1 14.0 21.9 21.9 Min 4.4 8.3 6.1 11.1 13.9 15.0 18.9 21.9 Min 4.4 8.3 6.1 11.1 13.9 15.0 18.9 21.9 Max 19.4 15.6 18.9 20.0 25.6 30.0 30.6 28.3 Max 19.3 11.3 15.5 18.4 21.3 23.5 23.4	Statistic Jan Feb Mar Apr May Jun Aug Sep Min -12.8 -21.7 -2.8 1.7 6.1 13.9 16.1 17.8 13.3 Max 2.2 4.4 12.8 18.9 25.0 28.3 27.2 25.0 21.5	Statistic Jan Feb Mar Apr May Jun Jun Aug Sep Oct Min -12.8 -21.7 -2.8 1.7 6.1 13.9 16.1 17.8 3.3 3.9 Max 2.2 4.4 12.8 18.9 25.0 28.3 27.2 25.0 22.8 21.7 Average -4.8 -9.5 3.4 9.1 14.0 21.9 21.0 21.9 21.9 21.9 21.7 Min 4.4 8.3 6.1 11.1 13.9 21.0 21.9 21.9 12.8 12.8 Min 4.4 8.3 6.1 11.1 13.9 13.0 13.9 13.9 13.9 12.9 13.9 Min 4.4 8.3 6.1 11.1 13.9 13.0 13.0 13.9 13.9 13.9 13.9 Max 19.4 15.5 18.9 15.1 13.4 13.9 <td< td=""><td>Statistic Jan Feb Mar Apr May Jun Jun Aug Sep Oct Nov Min -12.8 -21.7 -2.8 1.7 6.1 13.9 16.1 17.8 13.3 3.9 -6.1 Max 2.2 4.4 12.8 18.9 25.0 28.3 27.2 25.0 22.8 21.7 12.8 Average -4.8 -9.5 3.4 9.1 14.0 21.9 21.5 21.8 21.7 12.8 Min 4.4 12.8 13.4 9.1 14.0 21.9 21.5 21.9 17.3 12.6 12.8 Min 4.4 8.3 6.1 11.1 13.9 15.0 18.9 21.9 18.9 14.9 14.9 Max 19.4 15.6 18.9 20.0 25.9 30.6 28.4 28.9 23.9 16.7 Average 10.3 11.5 15.1 18.4</td><td>Statistic Jan Feb Mar Apr May Jun Jun Aug Sep Oct Nov Dec Min -12.8 -21.7 -2.8 1.7 6.1 13.9 16.1 17.8 13.3 3.9 -6.1 -14.4 Max 2.2 4.4 12.8 18.9 25.0 25.0 25.8 21.7 12.8 11.1 Average -4.8 -9.5 3.4 9.1 14.0 21.9 21.0 21.8 21.7 12.8 11.1 Average -4.8 -9.5 3.4 9.1 14.0 21.9 21.9 17.3 12.6 2.2 -2.0 Min 4.4.9 8.3 6.1 11.1 13.9 21.5 21.9 17.8 12.2 10.0 10.1 Min 4.4.9 15.6 18.0 21.6 13.0 21.9 21.9 21.9 10.0 12.9 12.9 Min 19.4</td></td<>	Statistic Jan Feb Mar Apr May Jun Jun Aug Sep Oct Nov Min -12.8 -21.7 -2.8 1.7 6.1 13.9 16.1 17.8 13.3 3.9 -6.1 Max 2.2 4.4 12.8 18.9 25.0 28.3 27.2 25.0 22.8 21.7 12.8 Average -4.8 -9.5 3.4 9.1 14.0 21.9 21.5 21.8 21.7 12.8 Min 4.4 12.8 13.4 9.1 14.0 21.9 21.5 21.9 17.3 12.6 12.8 Min 4.4 8.3 6.1 11.1 13.9 15.0 18.9 21.9 18.9 14.9 14.9 Max 19.4 15.6 18.9 20.0 25.9 30.6 28.4 28.9 23.9 16.7 Average 10.3 11.5 15.1 18.4	Statistic Jan Feb Mar Apr May Jun Jun Aug Sep Oct Nov Dec Min -12.8 -21.7 -2.8 1.7 6.1 13.9 16.1 17.8 13.3 3.9 -6.1 -14.4 Max 2.2 4.4 12.8 18.9 25.0 25.0 25.8 21.7 12.8 11.1 Average -4.8 -9.5 3.4 9.1 14.0 21.9 21.0 21.8 21.7 12.8 11.1 Average -4.8 -9.5 3.4 9.1 14.0 21.9 21.9 17.3 12.6 2.2 -2.0 Min 4.4.9 8.3 6.1 11.1 13.9 21.5 21.9 17.8 12.2 10.0 10.1 Min 4.4.9 15.6 18.0 21.6 13.0 21.9 21.9 21.9 10.0 12.9 12.9 Min 19.4

Table 8-6. Summary o	f average daily	temperature at t	ne tw	o me	teorological sites.
----------------------	-----------------	------------------	-------	------	---------------------

Figure 8-3. Comparison of average daily relative humidities at test locations in Wisconsin (WI) and California (CA).

Site	Statistic	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Overall
	Min	54.0	51.0	47.0	43.0	39.0	42.0	63.0	66.0	60.0	52.0	50.0	0.0	0.0
WI	Max	91.0	79.0	87.0	88.0	85.0	92.0	91.0	90.0	87.0	91.0	81.0	86.0	92.0
	Average	75.9	66.4	64.2	63.7	63.1	64.9	72.1	76.1	72.3	75.8	66.5	69.4	69.2
	Min	35.0	35.9	39.4	38.6	49.2	42.7	58.1	51.0	42.3	53.0	31.8	28.0	28.0
CA	Max	95.3	92.0	94.4	93.5	82.0	86.7	82.1	73.0	86.4	90.7	93.9	86.3	95.3
	Average	68.3	66.2	73.0	70.3	67.5	69.9	67.3	62.3	70.3	67.6	67.5	64.6	67.8

Table 8-7. Summary of average daily relative humidity at the two meteorologicalsites.

Figure 8-4. Comparison of average daily wind speeds at test locations in Wisconsin (WI) and California (CA).

Site	Statistic	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Overall
	Min	1.4	0.5	1.5	2.2	1.8	1.5	0.9	1.1	0.9	1.6	1.9	0.0	0.0
WI	Max	7.4	7.6	8.4	6.9	7.2	5.4	5.1	4.5	5.4	7.2	6.9	10.3	10.3
	Average	3.6	3.8	4.5	4.1	3.6	3.5	2.9	2.5	3.0	3.4	3.9	4.0	3.6
	Min	0.6	1.2	1.2	1.7	1.9	1.3	1.7	1.6	1.2	1.1	0.4	0.0	0.0
CA	Max	7.0	4.6	5.1	4.9	6.2	6.4	5.6	5.0	4.8	6.4	3.9	6.2	7.0
	Average	2.2	2.4	2.6	3.4	3.7	4.2	3.7	3.2	2.6	2.7	1.6	2.5	2.9

Table 8-8. Summary of average daily wind speeds at the two meteorological sites.

8.2.2.1 Mechanically Ventilated Barn

When the daily calculations are performed for the entire year for a mechanically ventilated dairy barn with 500 cows, the California site typically has higher daily emissions for both NH₃ and H₂S and for either manure management system than the Wisconsin site (Figure 8-5). Table 8-9 contains the estimated annual emissions for the different combinations of pollutant and manure management system. For the mechanically ventilated scrape barn from the example in Section 8.1.1, the total annual NH₃ emissions estimate for the farm using meteorological data from California was 8,689 kg— a 1,581 kg increase from the same

mechanically ventilated barn with meteorological data from Wisconsin. A similar trend is seen across the other pollutant and manure management system combinations. This is consistent with the trend of lower temperatures yielding lower emissions seen during the data exploration in Section 4. Overall, this suggests that the emission models can account for regional temperature differences in the results for mechanically ventilated barns.

Figure 8-5. Comparison of daily mechanically ventilated barn emission at test dairy in locations WI and CA.

Table 8-9. Total annual emission	from a theoretical	mechanically ventilated barn
	in WI and CA.	-

Pollutant	WI Emissions (kg per year)	CA Emissions (kg per year)
H2S - Flush	152	186
H ₂ S - Scrape	940	1,044
NH3 - Flush	6,193	7,597
NH3 - Scrape	7,108	8,689

8.2.2.2 Milking Center

Repeating the daily calculations for a 500 head capacity milking center using the California meteorological data show the warmer site typically has greater daily emissions for all pollutants (Figure 8-6). Table 8-10 has the estimated annual emissions of each pollutant studied. For the milking center from the example in Section 8.1.2, the total estimated annual NH₃ emissions increase by 1,317 kg by using California meteorological data. A similar trend is seen

across the other pollutants, with increases ranging from 38% to 152%. This is consistent with the trend of lower temperatures yielding lower emissions seen during the data exploration in Section 4. Overall, this suggests that the emission models can account for regional temperature differences in the results for milking centers.

Figure 8-6. Comparison of daily milking center emission at test dairy locations in WI and CA. Table 8-10. Total annual emission from a theoretical milking center in WI and CA.

	WI Emissions	CA Emissions
Pollutant	(kg per year)	(kg per year)
NH ₃	4,162	5,479
H_2S	189	474
PM ₁₀	74	112
PM _{2.5}	18	24
TSP	185	427

8.2.2.3 Naturally Ventilated Barn

A naturally ventilated dairy barn with 500 cows in California typically has lower daily emissions than the same barn in Wisconsin (Figure 8-7) for gaseous pollutants and PM_{2.5}. Table 8-11 has the estimated annual emissions of the pollutants studied. The differences in the annual gaseous pollutants are minor, as the models are based on average daily wind speed which is only slightly different between the sites. Table 8-11 shows a larger difference with the PM_{2.5} annual emissions, and the plot shows several large spikes when using the Wisconsin meteorological data. Looking into the data, these data points are associated with days with high average daily wind speeds and suggests some limitation in the model performance for these instances. This is discussed further in Section 8.2.3.3. For PM₁₀ and TSP, the spikes in emissions are generally due to higher wind speeds combined with lower relative humidities to mitigate the emission. These relationships are explored more in section 8.2.3.3.

Figure 8-7. Comparison of daily naturally ventilated barn emission at test dairy locations in WI and CA.

	WI Emissions	CA Emissions
Pollutant	(kg per year)	(kg per year)
NH₃	3,463	3,274
H ₂ S	297	275
PM ₁₀	777	962
PM _{2.5}	89,168	23,113
TSP	112	369

Table 8-11. Total annual emission from a theoretical milking center in WI and CA.

8.2.2.4 Lagoon

Repeating the daily calculations for the dairy lagoon using the California meteorological data typically has higher daily emission values than when using the Wisconsin meteorological data (Figure 8-8). Table 8-12 has the estimated annual emissions of each pollutant studied and shows a roughly 40% increase for both pollutants using the warmer temperatures from California. This is consistent with the trend of warmer temperatures yielding greater emissions seen during the data exploration in Section 4 and noted in the literature review in Section 3. Overall, this suggests that the emission models are capable of accounting for the different growing regions in the lagoon results.

Figure 8-8. Comparison of daily lagoon emission at test dairy locations in WI and CA. Table 8-12. Total annual emission from a theoretical lagoon in WI and CA.

Pollutant	WI Emission (kg per year)	CA Emission (kg per year)		
NH₃	8,961	12,525		
H ₂ S	2,734.2	3,748.8		

8.2.2.5 Corral

The emission estimates for a corral using the meteorological data from California, are slightly lower than calculations with the Wisconsin meteorological data (Figure 8-9). Table 8-13 has the estimated annual emissions of each pollutant and shows the total annual NH₃ emissions estimate for the theoretical California corral was 124,261 kg, which is a 302 kg decrease from the same theoretical corral in Wisconsin. The H₂S model only shows a minor difference between

the emissions for the two climates. This generally limited sensitivity is discussed more in Section 8.2.3.5.

Figure 8-9. Comparison of daily milking center emission at test dairy locations in WI and CA. Table 8-13. Total annual emission from a theoretical milking center in WI and CA.

Pollutant	WI Emission (kg per year)	CA Emission (kg per year)	
NH₃	124,562	124,261	/
H_2S	1,902.7	1,789.7	

8.2.3 Model Limitations

As noted in the 2013 SAB review (US EPA SAB, 2013), extrapolating to conditions beyond those represented in the model development dataset could produce unrealistic results. To test the limitations of the model, EPA conducted a series of emission calculations over a range of conditions that could be seen at a farm in the US. These emission calculations tested one parameter at a time, with the selected parameter varied by a constant value through the range. For example, ambient temperature was increased by 1°C from the minimum value in the model development dataset up to the maximum value. While one parameter was tested, the remaining parameters were held constant at the average value seen in the model development dataset. The resulting emission values were reviewed and plotted to determine if the model resulted in unrealistic emission values, such as negative emissions or rapid increases in emission rates.

The dairy equations included some combination of inventory, ambient temperature, ambient relative humidity, and wind speed. The ranges of ambient parameters are based on the NAEMS dataset. The number of cows in a single barn or milking center are based on barn capacity numbers provided by consent agreement participants. The range values tested for each parameter are in Table 8-14. Table 8-14

This analysis does not account for interaction between multiple terms within an equation, which could further affect the results. For example, a dairy barn with higher ambient temperatures would be able to cover a larger range of inventory per barn before producing negative NH₃ emissions. Conversely, a barn with lower ambient temperatures would cover a

smaller range of inventory before producing negative NH₃ emission values. However, the analysis does provide a general range where the model produces reasonable results.

To further explore any limitations in the models, emissions were calculated for all combinations across the range of values specified in Table 8-14. A list of all the combinations of the three inputs was created using the R statistical software. R was then used to calculate the emissions using the method shown in section 8.1. The results were then filtered down to only the results that produced negative values to generate the plots for each pollutant. The following sections outline the analysis for each of the selected models.

Parameter	Upper limit	Lower limit	Average Value	Increment
Ambient temperature (°C)	32.0	-23	10.0	0.8
Ambient relative humidity (%)	93	24	68.1	1
Wind speed (ms ⁻¹)	11.2	0.00	2.3	0.15
Inventory (head)	5,000	0	1,000	70

 Table 8-8-14. Parameter ranges tested for the dairy models.

8.2.3.1 Mechanically Ventilated Barn

The initial analysis for mechanically ventilated barns is presented in Figure 8-10 and Figure 8-11. Neither the H₂S (Figure 8-10) nor NH₃ (Figure 8-11) models produce negative emissions under average conditions. Additional analysis of the 5,110 combinations of conditions tested produced negative values. The models also produce a rapid increase in emissions when estimating barns with inventories greater than 2,000 head. The largest barn in the NAEMS had an average daily population of 833, which would account for the unrealistic behavior with extreme inventory numbers. Based on the consent agreement participant data, more than 90% of the participating barns fall below a capacity of 2,000 head. This suggests the model would still be appropriate for the bulk of the participants. EPA will explore models that predict emissions normalized by inventory, as these models will produce a linear relationship between inventory and emissions (with other factors constant), regardless of the size of the operation.

Figure 8-11. Mechanically ventilated barn limitation tests for NH₃. Visualization of the results for NH₃ – Flush (top row) and NH₃ – Scrape (bottom row) tests of inventory (left) and ambient temperature (right).

8.2.3.2 Milking Center

The milking centers analysis for gaseous pollutants is presented in Figure 8-12 and particulate matter is presented in Figure 8-13. Neither the H₂S nor NH₃ (Figure 8-12) models produce negative emissions under average conditions. The relationship of emissions to increasing temperature is fairly linear through the expected conditions and does not display any extreme behavior that would suggest extrapolation issues.

Figure 8-12. Milking center limitation tests for gaseous pollutants. Visualization of the results for H₂S (left) and NH₃ (right) tests of ambient temperature.

The PM₁₀ and PM_{2.5} models (Figure 8-13) do produce negative emission values less than -11°C and -18.2°C for PM₁₀ and PM_{2.5} models, respectively, at average relative humidity levels. Additional analysis of 5,390 combinations of temperature and relative humidity values shows the PM₁₀ model (Figure 8-14) will produce negative emission estimates when temperatures fall below zero in an increasingly drier environment. That is, the lower the temperature, the lower the relative humidity needed to produce a negative emissions value. For example, the equation for PM₁₀ will produce negative emissions at any level of relative humidity when ambient temperature falls just below zero. Similarly, at -21.4°C, the equation can produce negative number when relative humidity is less than or equal to ~60%.

Figure 8-13. Milking center limitation tests for particulate matter.

Visualization of the results for PM10 (top row), TSP (center row), and PM_{2.5} (bottom row) tests of ambient temperature (left) and ambient relative humidity(right).

Figure 8-14. Maximum values of relative humidity for each temperature at which the PM10 equation yields negative emissions.

8.2.3.3 Naturally Ventilated Barn

The naturally ventilated barn analysis for gaseous pollutants is presented in Figure 8-15. Analysis for PM_{10} , $PM_{2.5}$, and TSP are presented in Figure 8-17, Figure 8-19, and Figure 8-18, respectively, and particulate matter is presented in Figure 8-13. The H₂S (Figure 8-12) model does not produce negative emissions under average conditions with varying inventory. The NH₃ model will produce negative emission for very small inventories (i.e., less than 70 head) under average conditions. Further testing of 5,548 combinations of wind speed and inventory show at very low wind speeds (< 1 ms⁻¹), an inventory as large as 140 cows will produce negative emissions. As wind speed increases, the corresponding inventory needed to produce a negative number also decreases. These thresholds are demonstrated in Figure 8-16. The sensitivity analysis testing shows rapid increases in NH₃ and H₂S emissions at high inventories. EPA will explore models that predict emissions normalized by inventory, as these models will produce a linear relationship between inventory and emissions (with other factors constant), regardless of the size of the operation.

Figure 8-15. Naturally ventilated barn limitation tests for gaseous pollutants. Visualization of the results for H₂S (top row) and NH₃ (bottom row) tests of inventory (left) and wind speed (right).

Figure 8-16. Maximum values of inventory for each wind speed at which the NH₃ equation yields negative emissions.

Though it is hard to see on the figures, the PM_{10} and TSP models (Figure 8-17, and Figure 8-18) produce negative values under average conditions for very small inventory levels. Further analysis of 29,903,720 combinations of inventory, ambient temperature, ambient relative humidity, and wind speed show that the models will produce negative values for progressively lower temperatures and winds speeds for increasing temperatures (Figure 8-20). For example, with the PM_{10} model (top graph, Figure 8-20) for an empty barn, the model will produce a negative emission value for temperatures less than 32°C and wind speed less than 9 ms⁻¹. As inventory increases to 1,050 head, negative emissions only occur at temperatures below -30°C and wind speeds less than 1 ms⁻¹. The sensitivity analysis testing shows rapid increases in PM_{10} and TSP emissions at high inventories. EPA will explore models that predict emissions normalized by inventory, as these models will produce a linear relationship between inventory and emissions (with other factors constant), regardless of the size of the operation.

The PM_{2.5} model (Figure 8-19) did not produce negative values under average conditions. However, looking across the combinations of inventory, ambient temperature, ambient relative humidity, and wind speed, the PM_{2.5} model produces negative emission estimates at low wind speeds and temperatures combined with low inventory levels (Figure 8-20). As inventory levels increase, the negative emission estimates can occur at higher values of temperature and wind speed. This is due to the negative relationship between PM_{2.5} and inventory in the model, which will need to be further explored. One option is to explore models that predict emissions normalized by inventory, as these models will produce a positive linear relationship between inventory and emissions (with other factors constant), regardless of the size of the operation.

Figure 8-17. Naturally ventilated barn limitation tests for PM₁₀.

Visualization of the results for PM₁₀ tests of inventory (top left), ambient temperature (top right), relative humidity (bottom left), and wind speed (bottom right).

Visualization of the results for TSP tests of inventory (top left), ambient temperature (top right), relative humidity (bottom left), and wind speed (bottom right).

Visualization of the results for PM_{2.5} tests of inventory (top left), ambient temperature (top right), relative humidity (bottom left), and wind speed (bottom right).

Figure 8-20. Maximum values of wind speed and temperature for each inventory level at which the particulate matter equations yields negative emissions.

Visualizations of the results for PM_{10} (top), TSP (middle) and $PM_{2.5}$ (bottom).

8.2.3.4 Lagoon

The lagoon analysis for gaseous pollutants is presented in Figure 8-21. Both NH₃ and H₂S will produce negative emission values when temperatures dip below -11.8°C. EPA will evaluate whether the model should include a "floor", that is past a certain temperature it is assumed the lagoon is frozen and is producing minimal emissions. The relationship between temperature and emissions is positive with no large changes in emission sensitivity.

Figure 8-21. Lagoon limitation tests for gaseous pollutants. Visualization of the results for tests of ambient temperature for H₂S (left) and NH₃ (right).

8.2.3.5 Corral

The corral analyses for H₂S and NH₃ are presented in Figure 8-22 and Figure 8-23, respectively. Neither the H₂S nor the NH₃ model produce negative emissions under average conditions. However, analyzing 397, 936 combinations of temperature, relative humidity, and wind speed, found that the NH₃ model will produce negative emission estimates at low temperatures (<7.8°C) combined with low relative humidities (<46%) and low wind speeds (<3.9 ms⁻¹). Figure 8-24 show that as temperature increases, there is a smaller range of relative humidity and wind speeds that produce negative emissions. Otherwise, the relationships between emissions and predictors do not show any rapid changes in emission sensitivity that are causes of concern.

Deliberative, draft document – Do not cite, quote, or distribute

Figure 8-23. Corral limitation tests for NH₃.

Visualization of the results for NH₃ tests of ambient temperature (left), relative humidity (center), and wind speed (right).

8.3 Comparison to Literature

To further validate the EEMs developed under this effort, EPA compared the results for the emission models to the emissions calculated using emission factors found in literature. EPA scanned the literature for a variety of emission factors for this comparison. EPA selected a variety of recent factors not derived from the NAEMS for comparison, which are summarized separately for barns, lagoons, and corrals in Table 8-15, Table 8-16, and Table 8-17, respectively. There were no emission factors identified for milking centers during the literature review. For the mechanically ventilated barns, the original units provided in Teye, F.K and Hautala, M. (2010) were g m⁻² hr⁻¹, which were converted to kg hd⁻¹ yr⁻¹ based on the reported floor area of 774 m² and inventory of 65 head. For naturally ventilated barns, values were converted based on 500 kg AU⁻¹, and an average weight of 635 kg per head, based on the NAEMS farms. For the lagoon and corral sources, surface areas in hectare were converted using the standard factor of 10000 m²/ha. These converted emission factors were then applied to the theoretical farm sources from the previous example calculations. The following sections summarize the results for each source type.

Source	Farm Source	Pollutant	mg sec ⁻¹ hd ⁻¹	µg sec⁻¹ hd⁻¹	kg hd ⁻¹ d ⁻¹	g m² hr	kg hd⁻¹ yr⁻¹
Teye, F.K and Hautala, M. (2010)	Mechanically ventilated barn	NH ₃				0.12ª	12.52
Huang (2017)	Naturally ventilated barn	NH_3	0.98ª				30.91
Leytem, et al. (2012)	Naturally ventilated barn	NH₃			0.08ª		29.20
Huang (2017)	Naturally ventilated barn	H ₂ S		18.5ª			0.58

Table 8-15. Emission factors for dairy barns from literature.

^a as reported in source.

Source	Farm Source	Pollutant	kg/ha-d	g/m²-d	kg/m²-yr
Leytem, A.B., et al. (2011)	Lagoon ^a	NH3		2.0 ^b	0.73
Leytem, A.B., et al. (2018)	Lagoon	NH3	43 ^{a,c}		1.57

 Table 8-16. Emission factors for dairy lagoons from literature.

^a Identified in the study as a wastewater pond

^bas reported in source.

^crate reported for lagoon associated with a freestall barn (location ID D4)

Table 8-17. Emission factors for dairy corrals from literature.

Source	Farm Source	Pollutant	g/hd-d	kg/hd-d
Leytem, A.B., et al. (2011)	Corral	NH ₃		0.13 ^ª
Moore, K.D., (2014)	Corral	NH₃	134.2 ^ª	0.134
Bonifacio, H.F., et al. (2015)	Corral	NH ₃	155 ^a	0.155

^a as reported in source.

8.3.1 Mechanically Ventilated Barn

Comparisons were made for an inventory of 500 cows and 1,000 cows for both a cold weather location (Wisconsin) and a warm weather location (California). The results for comparing the calculations for NH₃ emissions for mechanically ventilated scrape barns are presented in Table 8-18, and flush barn in Table 8-19. For both inventory levels, the emission factor from Teye and Hautala (2010) produces an estimate that falls just below the estimate produced by the emission models developed in this report. For the flush barns, the estimates based on Teye and Hautala (2010) fall between the estimate for the smaller barn (500 head) and just below the model estimates for the larger barn (1,000). For both manure management types, the models developed in the text represent an increase from previously published literature.

Table 8-18. Comparison of resulting mechanically ventilated scrape barn NH₃ emission from various estimation methods.

Meteorology	Inventory	NH₃ Emissions (kg yr⁻¹)			
site	(hd)	EPA 2022 models	Teye and Hautala (2010)		
WI	500	7,098	6,259		
CA	500	8,689	6,259		
WI	1000	18,794	12,517		
CA	1000	22,657	12,517		

Table 8-19. Comparison of resulting mechanically ventilated flush barn NH₃ emission from various estimation methods.

Meteorology	Inventory	NH₃ Emissions (kg yr ⁻¹)			
site	(hd)	EPA 2022 models	Teye and Hautala (2010)		
WI	500	6,183	6,259		
CA	500	7,597	6,259		
WI	1000	16,574	12,517		
CA	1000	20,006	12,517		

8.3.2 Naturally Ventilated Barn

Like the mechanically ventilated examples, comparisons were made for an inventory of 500 cows and 1,000 cows for both a cold weather location (WI) and a warm weather location (CA). The results for NH₃ are presented in Table 8-20. For the smaller barn (500 head), the estimates for both the cold and warm meteorological conditions fall well below the estimates generated by the factors from literature. The estimates for the larger barn (1,000) the models presented in this work are closer to the estimates provided by emission factors from literature. This reiterates the results from the sensitivity analysis, where the emission estimates from the models increase rapidly with size.

For H₂S (Table 8-21), the estimates based on the models developed in this report are slightly greater for the smaller barn in a cold climate compared to literature. The large inventory examples and the 500 head barn in a warm climate are slightly lower than estimates based on literature.

Table 8-20. Comparison of resulting naturally	y ventilated barn NH ₃ emission from
various estimation	methods.

Meteorology	Inventory	NH ₃ Emissions (kg yr ⁻¹)				
site	(hd)	EPA 2022 models	Huang (2017)	Leytem, et al. (2012)		
WI	500	4,194	15,453	14,600		
CA	500	3,816	15,453	14,600		
WI	1,000	28,137	30,905	29,200		
CA	1,000	26,050	30,905	29,200		

 Table 8-21. Comparison of resulting naturally ventilated barn H₂S emission from various estimation methods.

Meteorology	Inventory	H2S Emissions (kg yr ⁻¹)			
site	(hd)	EPA 2022 models	Huang (2017)		
WI	500	310	292		
CA	500	289	292		
WI	1,000	477	583		
CA	1,000	447	583		

8.3.3 Lagoon

For lagoons, comparisons were made for both a cold weather location (WI) and a warm weather location (CA) assuming a surface area of $10,000 \text{ m}^2$. The NH₃ results in Table 8-22 show the models developed in this report generate an estimate that falls between the factors from literature.

		NH3 Emissions (kg yr-1)				
Meteorology	Surface	EPA 2022	Leytem, A.B.,	Leytem, A.B.,		
site	Area (m2)	models	et al. (2011)	et al. (2018)		
WI	10,000	8,961	7,300	15,695		
CA	10,000	12,525	7,300	15,695		

Table 8-22. Comparison of resulting dairy lagoon NH₃ emission from various estimation methods.

8.3.4 Corral

For corrals, the comparison was made for both cold (WI) and warm (CA) meteorological scenarios. Calculations were also made for a small farm (500 head) and a larger farm (1,000 head), assuming a surface area of 10,000 m² for each farm for the method developed in this report. The summary for NH₃ in Table 8-22 shows the estimates based on the EPA 2022 draft methods are comparable to the estimates based on emission factors from literature.

Table 8-23. Comparison of resulting dairy corral NH₃ emission from variousestimation methods.

			NH3 Emissions (kg yr-1)					
Meteorology site	Inventory (hd)	Surface Area (m ²)	EPA 2022 models	Leytem, A.B., et al. (2011)	Moore, K.D., et al. (2014)	Bonifacio, H.F., et al. (2015)		
WI	500	10,000	23,975	23,725	28,288	24,492		
CA	500	10,000	22,551	23,725	28,288	24,492		
WI	1000	10,000	47,949	47,450	56,575	48,983		
CA	1000	10,000	45,101	47,450	56,575	48,983		

8.4 Replication of Independent Measurements

A final test of the developed emission models is to compare the predicted emissions to observed values from an independent study. For this test, EPA was able to obtain some of the data from the Harper, et al. (2009) study of lagoons in Wisconsin. The data available are for NH₃ emissions for two of the three sites, for fall and summer monitoring periods. EPA was also able to obtain data from the Leytem et al. (2013) study, where an open-freestall production facility was monitored in southern Idaho. Measurements were collected for both the open-freestall area and the wastewater ponds. The data from the Idaho open-freestall area was used to test the corral model and data from the Wisconsin lagoons and the Idaho wastewater pond data was used to test the lagoon model.

The data provided included the necessary information to estimate emissions using the developed emission models. These estimates were then compared to the observed values, when available, using the same model performance statistics noted in Section 6 of the main report. Scatter plots were also developed to present the ordered pairs with observations on the x-axis and the model predicted values on y-axis. These plots are useful for indicating trends of either over-,

or under-prediction across the range of values. The plots include the 1:1 line (solid line) and the 1:0.5 and 1:2 lines (dashed lines). Points that fall on the 1:1 line were predicted correctly, and points that fall between the 1:0.5 and 1:2 are within a factor of two observations. Good model performance would be indicated by scatter contained within a factor of two of the 1:1 line, that is between the 1:0.5 and 1:2 lines. Looking for scatter confined to within a factor of two of the observation has been used as a model performance metric in air quality modeling by EPA for some time (Chang & Hanna, 2004) and continues to be included in EPA's Atmospheric Model Evaluation Tool (Appel, et al. 2011), which is the current model evaluation platform. The following sections summarize the result for each source type.

8.4.1 Lagoon

The model performance statistics (Table 8-24) indicate an under-prediction of emissions at both sites. Figure 8-25 shows that the largest under-predictions occur for observations greater than 10 g d⁻¹ 1000 hd⁻¹, as indicated by the drop below the 1:1.05 line on the plot for the Idaho site. This suggests the current formulation of the model underestimates the highest emissions.

Table 8-24. Model performance evaluation statistics for lagoon NH₃ estimates.

		LNME ^a	NME ^b	ME ^b	MB ^b	NMB⁵			
Site	n	(%)	(%)	(g d⁻¹ 1000 hd⁻¹)	(g d⁻¹ 1000 hd⁻¹)	(%)	Corr.		
ID	2 3	26.177	69.196	4.800	-4.681	-67.47	0.497		
WI	3	20.271	48.388	3.209	-3.209	-48.39	0.999		
a Deceder									

Figure 8-25. Scatter plot of the observed lagoon NH_3 emissions versus the emission model estimates.

Results from the Idaho site (left) and Wisconsin site (right).

8.4.2 Corral

The model performance statistics (Table 8-25) show an under-prediction of emissions from the corral. The plot of observed versus estimated emissions (Figure 8-26) show there are

slight overpredictions at low emission levels, as the points fall above the 1:1 line, and an underprediction at higher observed emission levels. As with the lagoon model, this suggests an underprediction of highest emission values in the model.

Table 8-25. Model performance evaluation statistics for corral NH₃ estimates.

				ME ^b	MB ^b		
Site	n	LNME ^a (%)	NME ^b (%)	(g d⁻¹ 1000 hd⁻¹)	(g d⁻¹ 1000 hd⁻¹)	NMB ^b (%)	Corr.
WI	18	17.371	70.689	1.316	-0.574	-30.84	-0.351

^a Based on transformed data (i.e., ln(NH₃)).

^b Based on back-transformed data.

Figure 8-26. Scatter plot of the observed corral NH₃ emissions versus the emission model estimates.

9 CONCLUSIONS

Consistent with the Air Compliance Agreement with the AFO industry, EPA has developed emission estimation methods for NH₃, H₂S, PM₁₀, PM_{2.5}, and TSP for confinement and open sources associated with dairy operations. These draft statistical models focus on parameters that have been identified in published peer-reviewed journals as having empirical relationships with emissions. These relationships were evaluated within the NAEMS dataset before selecting parameters for emission model development. EPA also considered which variables could be measured or obtained with minimal effort.

The inventory was identified as a key parameter and is used in all the models as a proxy for the volume of manure generated. Temperature and relative humidity parameters were also identified as important variables for emission rates in the barn emission models. Relative humidity parameters proved to be key for particulate matter prediction, as the higher moisture levels keep barn materials from entraining into the air with mechanical disruptions. Confinement parameters specific to the barn, like exhaust temperature, showed promise as predictive parameters. However, these parameters are not routinely measured at farms and would therefore represent an increased burden to operators should they be required for emissions estimation. As such, all of the draft dairy emission models put forward for potential future use in this document use parameters that are already routinely collected as part of the standard farm operation (e.g., inventory) or are ambient meteorological parameters, which are freely available from public sources such as National Center for Environmental Information (NCEI, https://gis.ncdc.noaa.gov/maps/).

Overall, the method used to develop the emission models allows for the incorporation of additional emissions and monitoring datasets from other studies, should they become available to EPA after the release of the emission models. Revised emission models for any individual farm type could be issued once significant additional data becomes available. Similarly, if monitoring options for barn parameters become more widespread as automation options grow, future evaluations could assess whether emission models should be developed to include these parameters.

EPA recognizes the scientific and community desire for process-based models. The data collected during NAEMS, and the emission models developed here lay the groundwork for developing these more process-related emission estimates. EPA supports the future development of process-based models which account for the entire animal feeding process. While the interim statistical models allow estimation of emissions from barns and open sources at dairy operations across the U.S., process-based models would allow producers to estimate the impacts of different management practices to reduce air emissions, helping to incentivize change.

10 REFERENCES

- Aarnink, A.J.A., Ellen, H.H., 2007. Processes and factors affecting dust emissions from livestock production. In: Proceedings of DustConf 2007. How to Improve Air Quality. International Conference, Maastricht, The Netherlands
- Appel, K.W., Gilliam, R.C., Davis, N., Zubrow, A., and Howard, S.C. (2011). Overview of the Atmospheric Model Evaluation Tool (AMET) v1.1 for evaluating meteorological and air quality models, Environ. Modell. Softw., 26(4), 434-443.
- Arogo, J., Zhang, R., Riskowski, G. L., Christianson, L. L., & Day, D. L. (1999). Mass transfer coefficient of ammonia in liquid swine manure and aqueous solution. Journal of Agricultural Engineering Research, 73(1), 77e86.
- Arogo, Jactone, Philip W. Westerman, Albert J. Heber, Wayne P. Robarge, and John J. Classen. Ammonia Emissions from Animal Feeding Operations. Animal Agriculture and the Environment, National Center for Manure & Animal Waste Management White Papers. St. Joseph, MI: ASABE, 2006. doi:https://doi.org/10.13031/2013.20247.
- Arya, S.P. (1999). Air pollution meteorology and dispersion. Oxford University Press. Blunden, J., & Aneja, V.P. (2008). Characterizing ammonia and hydrogen sulfide emissions from a swine waste treatment lagoon in North Carolina. Atmospheric Environment 42, 3277-3290.
- B. Bjerg, T. Norton, T. Banhazi, G. Zhang, T. Bartzanas, P. Liberati, G. Cascone, I.-B. Lee, and A. Marucci. "Modelling of ammonia emissions from naturally ventilated livestock buildings. Part 1: Ammonia release modelling" Biosystems engineering 116, no. 3 (2013): 232-245. doi: 10.1016/j.biosystemseng.2013.08.001
- Bogan, B.W., A. Chandrasekar, S. McGlynn, C.A. Gooch, and A.J. Heber. 2010. National Air Emissions Monitoring Study: Data from Dairy Freestall Barn and Milking Center in New York- Site NY5B. Final Report. Purdue University, West Lafayette, IN, July 2
- Bonifacio, Henry & Rotz, C.A. & Leytem, A.B. & Waldrip, Heidi & R.W.Todd. (2015).
 Process-based modeling of ammonia and nitrous oxide emissions from open-lot beef and dairy facilities. Transactions of the ASABE (American Society of Agricultural and Biological Engineers). 58. 827-846.
- Bougouin, A., Leytem, A., Dijkstra, J., Dungan, R. S., & Kebreab, E. (2016). Nutritional and Environmental Effects on Ammonia Emissions from Dairy Cattle Housing: A Meta-Analysis. Journal of environmental quality, 45(4), 1123-1132.
- Cambra-López, M., Aarnink, A.J.A., Zhao, Y., Calvet, S., & Torres, A.G. (2010). Airborne particulate matter from livestock production systems: A review of an air pollution problem. *Environmental Pollution 158*, 1-17.
- Cambra-López, M., Torres, A. G., Aarnink, A. J. A., & Ogink, N. W. M. (2011). Source analysis of fine and coarse particulate matter from livestock houses. Atmospheric Environment, 45(3), 694-707. doi:10.1016/j.atmosenv.2010.10.018
- Chang, J., Hanna, S. Air quality model performance evaluation. Meteorol Atmos Phys 87, 167–196 (2004). https://doi.org/10.1007/s00703-003-0070-7

- Christensen J.R., Nash, M.S., Chaloud D., and Pitchford A. 2016. Spatial Distribution of Small Water Body Types Across Indiana Ecoregions. *Ecohydrology*. 9,122-137. Available at: https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=308263&Lab=NERL
- Cortus, E.L., L. D. Jacobson, B.P. Hetchler, and A.J. Heber. 2010. National Air Emissions Monitoring Study: Emissions Data from Two Freestall Dairy Barns in Wisconsin - Site WI5B. Final Report. Purdue University, West Lafayette, IN, July 2.
- Dandan Huang & Huiqing Guo (2017) Diurnal and seasonal variations of odor and gas emissions from a naturally ventilated free-stall dairy barn on the Canadian prairies, Journal of the Air & Waste Management Association, 67:10, 1092-1105, DOI:10.1080/10962247.2017.1329172
- Feidler, A.M., Müller, H.J., 2011. Emissions of ammonia and methane from a livestock building natural cross ventilation. Meteorologische Zeitschrift 20 (1), 059e065.
- Garcia, J., Bennett, D. H., Tancredi, D., Schenker, M. B., Mitchell, D., & Mitloehner, F. M. (2013). A survey of particulate matter on California dairy farms. Journal of environmental quality, 42(1), 40-47.
- Grant, R.H. 2008, Quality Assurance Project Plan for the National Air Emissions Monitoring Study (Open Source Emissions Component), Ver. 4, Purdue Applied Meteorology Laboratory, Department of Agronomy, Purdue University
- Grant, R.H. and M.T. Boehm. (2010a). National Air Emissions Monitoring Study: Data from the eastern US milk production facility IN5A. Final Report to the Agricultural Air Research Council. Purdue University, West Lafayette, IN, June 4.
- Grant, R.H. and M.T. Boehm. (2010b). National Air Emissions Monitoring Study: Data from the southwest milk producer facility TX5A. Final Report to the Agricultural Air Research Council. Purdue University, West Lafayette, IN, July 2.
- Grant, R.H. and M.T. Boehm. (2010e.) National Air Emissions Monitoring Study: Data from the northwestern US milk production facility WA5A. Final Report to the Agricultural Air Research Council. Purdue University, West Lafayette, IN, July 2.
- Grant, R.H. and M.T. Boehm. (2010d). National Air Emissions Monitoring Study: Data from the midwestern US milk production facility WI5A. Final Report to the Agricultural Air Research Council. Purdue University, West Lafayette, IN, July 2.
- Grant, R. H., Boehm, M. T., & Lawrence, A. F. (2013). Comparison of a backward-Lagrangian stochastic and vertical radial plume mapping methods for estimating animal waste lagoon emissions. Agricultural and Forest Meteorology, 180, 236-248. doi:10.1016/j.agrformet.2013.06.013
- Grant, R.H., Boehm, M.T., Lawrence, A.F., & Heber, A.J. (2013b). Ammonia emissions from anaerobic treatment lagoons at sow and finishing farms in Oklahoma. Agricultural and Forest Meteorology 180, 203-210.
- Grant, R.H. and Boehm, M.T (2015). Manure ammonia and hydrogen sulfide emissions from a western storage basin. Journal of environmental quality, 45, 127-136.
- Grant, R. H., & Boehm, M. T. (2020). Ammonia Emissions from Differing Manure Storage Facilities at Two Midwestern Free-Stall Dairies. Atmosphere, 11(10), 1108.

- Grant, R. H., Boehm, M. T., & Hagevoort, G. R. (2020). Ammonia Emissions from a Western Open-Lot Dairy. Atmosphere, 11(9), 913.
- Harper, L.A., T.K. Flesch, J.M. Powell, W.K. Coblentz, W.E. Jokela, N.P. Martin, Ammonia emissions from dairy production in Wisconsin, Journal of Dairy Science, Volume 92, Issue 5, 2009, Pages 2326-2337, ISSN 0022-0302, https://doi.org/10.3168/jds.2008-1753.
- Heber A.J., Ni, J-Q., Ramirez, J.C., Schrock, W., & Elkins, J. (2008). Quality assurance project plan for the National Air Emissions Monitoring Study (barn component). Purdue University.
- Herbut, P., & Angrecka, S. (2014). Ammonia Concentrations in a Free-Stall Dairy Barn. Annals of Animal Science, 14(1), 153-166. doi:10.2478/aoas-2013-0065
- Joo, H., Ndegwa, P.M., Wang, X., Heber, A.J., Ni, J.Q., Cortus, E.L., Ramirez-Dorronsoro, J.C., Bogan, B.W. and Chai, L., 2015. Ammonia and hydrogen sulfide concentrations and emissions for naturally ventilated freestall dairy barns. Transactions of the ASABE, 58(5), pp.1321-1331.
- Kavolelis, B. (2003). Influence ventilation rate on ammonia concentration and emission in animal house. Polish Journal of Environmental Studies, 12(6), 709-712.
- Leeden, Rien & Meijer, Erik & Busing, Frank. (2008). Resampling Multilevel Models. 10.1007/978-0-387-73186-5_11.
- Leytem, A. B., Dungan, R. S., Bjorneberg, D. L., & Koehn, A. C. (2011). Emissions of ammonia, methane, carbon dioxide, and nitrous oxide from dairy cattle housing and manure management systems. Journal of environmental quality, 40(5), 1383–1394. https://doi.org/10.2134/jeq2009.0515
- Leytem, A. B., Dungan, R. S., Bjorneberg, D. L., & Koehn, A. C. (2013). Greenhouse gas and ammonia emissions from an open-freestall dairy in southern Idaho. Journal of Environmental Quality, 42, 10-20.
- Leytem, A. B., Bjorneberg, D. L., Al Rotz, C., Moraes, L. E., Kebreab, E., & Dungan, R. S. (2018). Ammonia emissions from dairy lagoons in the western US. Transactions of the ASABE, 61(3), 1001-1015.
- Lim, T.T., Y. Jin, J.H. Ha, and A.J. Heber. 2010. National Air Emissions Monitoring Study: Emissions Data from Two Freestall Barns and a Milking Center at a Dairy Farm in Indiana - Site IN5B. Final Report. Purdue University, West Lafayette, IN, July 30.
- Maasikmets, Marek, Erik Teinemaa, Allan Kaasik, Veljo Kimmel, Measurement and analysis of ammonia, hydrogen sulphide and odour emissions from the cattle farming in Estonia, Biosystems Engineering, Volume 139, 2015, Pages 48-59, ISSN 1537-5110, https://doi.org/10.1016/j.biosystemseng.2015.08.002.
- Meisinger, J. J., & Jokela, W. E. (2000). Ammonia volatilization from dairy and poultry manure. Proc Managing nutrients and pathogens from animal agriculture. Camp Hill, PA, 28-30.
- Montes, F., C.A. Rotz, and H. Chaoui. 2009. Process modeling of ammonia volatilization from ammonium solution and manure surfaces. Trans. ASABE 52(5):1707-1719.

- Moore, K. D.; Young, E.; Gurell, C.; Wojcik, M. D.; Martin, R. S.; Bingham, G. E.; Pfeiffer, R. L.; Prueger, J. H.; and Hatfield, J. L., "Ammonia Measurements and Emissions from a California Dairy Using Point and Remote Sensors" (2014). Space Dynamics Lab Publications. Paper 95.
- Mostafa, E., Nannen, C., Henseler, J., Diekmann, B., Gates, R., & Buescher, W. (2016). Physical properties of particulate matter from animal houses-empirical studies to improve emission modelling. Environ Sci Pollut Res Int, 23(12), 12253-12263. doi:10.1007/s11356-016-6424-8
- Ngwabie, N. M., K. H. Jeppsson, G. Gustafsson, and S. Nimmermark. "Effects of Animal Activity and Air Temperature on Methane and Ammonia Emissions from a Naturally Ventilated Building for Dairy Cows." *Atmospheric Environment* 45, no. 37 (Dec 2011): 6760-68. https://doi.org/10.1016/j.atmosenv.2011.08.027.
- Philippe, F. X., Cabaraux, J. F., & Nicks, B. (2011). Ammonia emissions from pig houses: Influencing factors and mitigation techniques. Agriculture, Ecosystems & Environment, 141(3e4),245e260. http://doi.org/10.1016/j.agee.2011.03.012.
- Samer, M., C. Ammon, C. Loebsin, M. Fiedler, W. Berg, P. Sanftleben, and R. Brunsch. "Moisture balance and tracer gas technique for ventilation rates measurement and greenhouse gases and ammonia emissions quantification in naturally ventilated buildings." Building and Environment 50 (2012): 10-20.
- Ramirez-Dorronsoro, J.C., H.S. Joo, P. Ndegwa, and A.J. Heber. 2010. National Air Emissions Monitoring Study: Data from Two Dairy Freestall Barns in Washington WA5B, Final Report. Purdue University, West Lafayette, IN, July 30.
- Rotz, C Alan, Dawn S Chianese, Felipe Montes, Sasha Hafner, and Henry F Bonifacio. "Dairy Gas Emissions Model." (2014).
- Saha, C. K., C. Ammon, W. Berg, M. Fiedler, C. Loebsin, P. Sanftleben, R. Brunsch, and T. Amon. "Seasonal and diel variations of ammonia and methane emissions from a naturally ventilated dairy building and the associated factors influencing emissions." Science of the total environment 468 (2014): 53-62.
- Sanchis, E., Calvet, S., del Prado, A., & Estelles, F. (2019). A meta-analysis of environmental factor effects on ammonia emissions from dairy cattle houses. Biosystems Engineering, 178, 176-183. doi:10.1016/j.biosystemseng.2018.11.017
- Schmithausen, A. J., Schiefler, I., Trimborn, M., Gerlach, K., Sudekum, K. H., Pries, M., & Buscher, W. (2018). Quantification of Methane and Ammonia Emissions in a Naturally Ventilated Barn by Using Defined Criteria to Calculate Emission Rates. Animals, 8(5), 75. doi:ARTN 7510.3390/ani8050075
- Schrade, S., Zeyer, K., Gygax, L., Emmenegger, L., Hartung, E., & Keck, M. (2012). Ammonia emissions and emission factors of naturally ventilated dairy housing with solid floors and an outdoor exercise area in Switzerland. Atmospheric Environment, 47, 183-194. doi:10.1016/j.atmosenv.2011.11.015
- Shi, Zhifang, Xiaoqin Sun, Yao Lu, Lei Xi, and Xin Zhao. "Emissions of ammonia and hydrogen sulfide from typical dairy barns in central China and major factors influencing the

emissions." Scientific Reports 9, no. 1 (2019): 1-12. https://doi.org/10.1038/s41598-019-50269-y

- Sommer, S.G., Christensen, M.L., Schmidt, T., Jensen, L.S., 2013. Animal Manure Recycling: Treatment and Management. John Wiley Sons Ltd, West Sussex, UK.
- Takai H., Pedersen S., Johnsen J.O., Metz J.H.M., Koerkamp P.W.G.G., Uenk G.H., Phillips V.R., Holden M.R., Sneath R.W., Short J.L., White R.P., Hartung J., Seedorf J., Schroder M., Linkert K.H., Wathes C.M. 1998. Concentrations and emissions of airborne dust in livestock buildings in Northern Europe. J. Agr. Eng. Res., 70: 59-77. doi: 10.1006/ jaer.1997.0280
- Teye, F. K., & Hautala, M. (2010). A comparative assessment of four methods for estimating ammonia emissions at microclimatic locations in a dairy building. International journal of biometeorology, 54(1), 63–74. https://doi.org/10.1007/s00484-009-0255-y
- U.S. EPA Science Advisory Board (SAB), 2013. SAB Review of Emissions-Estimating Methodologies for Broiler Animal Feeding Operations and for Lagoons and Basins at Swine and Dairy Animal Feeding Operations, EPA-SAB-13-003.
- Wu, W., Zhang, G., & Kai, P. (2012). Ammonia and methane emissions from two naturally ventilated dairy cattle buildings and the influence of climatic factors on ammonia emissions. Atmospheric Environment, 61, 232-243. doi:10.1016/j.atmosenv.2012.07.050
- Zhao, Y., F.M. Mitloehner, L. Chai, J.C. Ramirez, K. Wang, J. Ni, C. Diehl, E.L. Cortus, T.T. Lim, B.W. Bogan, I. Kilic, and A.J. Heber. 2010. National Air Emissions Monitoring Study: Data from Two Dairy Freestall Barns in California - Site CA5B. Final Report. Purdue University, West Lafayette, IN, July 30.

Appendix A: PM Sampling

Table of Contents

APPENDIX A: PM SAMPLING	A-1
A.1 Overall Sampling Schedule	
A.2 PM Sampling Schedules	

List of Tables

Table A-1. Open Source Sampling Schedule	 A-3
Table A-2. PM Sampling Schedule CA5B	 A-4
Table A-3. PM Sampling Schedule IN5B	 A-5
Table A-4. PM Sampling Schedule NY5B	 A-6
Table A-5. PM Sampling Schedule WA5B	 A-7
Table A-6. PM Sampling Schedule WI5B	A-8

A.1 Overall Sampling Schedule

Site	Source	Manure		Period									
Sile	Туре	Collection	1	2	3	4	5	6	7a	7b	8	9	10
IN5A	Lagoon	Flush						9/11/08 - 12/10/08	12/11/08 - 2/25/09		3/11/09 - 5/28/09	5/29/09 - 8/24/200 9	
WA5A ³	Lagoon	Flush			2/25/08 - 3/12/08	3/12/08 - 3/26/08	8/8/08 - 9/3/08	9/3/08 - 9/26/08			5/18/09 - 6/4/09	6/4/09 - 6/20/09	
WI5A ³	Lagoon ²	Flush	7/18/07 - 8/28/07	11/13/07 - 11/28/07	11/28/07 - 12/18/07	4/23/08 - 5/13/08	6/25/08 - 7/14/08	10/21/08 - 11/11/08	12/17/08 - 1/7/09		3/10/09 - 4/7/09		
TX5A	Corral	Dry lot		9/19/07 - 11/6/07	1/8/08 - 1/23/08	4/1/08 - 4/23/08	6/10/08 - 7/1/08	10/15/08 - 11/4/08	12/16/08 - 1/6/09	1/27/09 - 2/19/09	2/19/09 - 3/18/09	8/3/09 - 8/27/09	

Table A-1. Open Source Sampling Schedule

¹Characterizes type of farm.

² Lagoon can be single or double stage

³ Area site that also had barn monitoring sites during NAEMS

A.2 PM Sampling Schedules

Day, r	n/d/y	Test duration (days)				
Start	Stop	PM ₁₀	TSP	PM _{2.5}		
9/26/07	1/20/08	116.5				
1/20/08	2/18/08		29.0			
2/18/08	2/29/08			11.0		
2/29/08	6/4/08	95.9				
6/4/08	6/12/08		7.8			
6/12/08	6/23/08		10.9*			
6/12/08	6/23/08	10.9**				
6/23/08	9/11/08	80.1				
9/11/08	10/2/08		20.8			
10/2/08	10/11/08			8.8		
10/11/08	1/14/09	95.6				
1/14/09	1/27/09		12.9			
1/27/09	2/23/09			26.7		
2/23/09	6/15/09	112.2				
6/15/09	7/7/09		22.0			
7/7/09	7/17/09			9.8		
7/17/09	7/22/09			5.1‡‡		
7/17/09	7/22/09	5.0 ++				
7/22/09	9/26/09	66.0				
Tot	tals	566	70	56		
*All except ambient						

Table A-2. PM Sampling Schedule CA5B

*All except ambient **Only ambient ††Only B1

‡‡All except B1

V

Time and	day, m/d/y	Test duration, d		
Start	Stop	PM ₁₀	TSP	PM _{2.5}
9/8/07 0:00	11/5/07 10:30	58.4		
11/5/07 10:30	11/14/07 10:30		9.0	
11/14/07 10:30	1/4/08 13:00	51.1		
1/4/08 13:00	1/11/08 12:00		7.0	
1/11/08 13:00	1/25/08 16:00			14.1
1/25/08 16:00	3/20/08 12:10	54.8		
3/20/08 12:10	3/27/08 12:40		7.0	
3/27/08 12:40	6/16/08 12:55	81.0		
6/16/08 12:55	6/24/08 10:00		7.9	
6/24/08 10:00	9/10/08 14:25	78.2		
9/10/08 14:25	9/19/08 13:45		9.0	
9/19/08 13:45	9/25/08 9:25	5.8		
9/25/08 9:25	9/29/08 8:30			4.0
9/29/08 8:30	9/29/08 14:37		0.3	
9/29/08 14:37	10/1/08 9:10			1.8
10/1/08 9:10	10/13/08 12:39		12.1	
10/13/08 12:39	11/25/08 9:58	42.9		
11/25/08 9:58	11/25/08 12:30			0.1
11/25/08 12:30	12/2/08 14:15	7.1		
12/2/08 14:15	12/4/08 14:13		2.0	
12/4/08 14:13	12/8/08 9:27	3.8		
12/8/08 11:21	12/10/08 10:44			
12/20/08 9:00	12/29/08 13:57		9.2	
12/29/08 13:42	2/2/09 11:52	34.9		
2/2/09 11:52	2/16/09 14:49			14.1
2/16/09 14:49	3/3/09 12:32		14.9	
3/3/09 12:45	3/23/09 12:01	20.0		
3/23/09 13:00	3/30/09 10:00		6.9	
3/30/09 11:00	4/17/09 11:30	18.0		
4/17/09 11:30	4/20/09 8:15			2.9
4/20/09 8:15	5/27/09 11:00	37.1		
5/27/09 11:00	6/1/09 11:27		5.0	
6/1/09 11:27	7/13/09 10:38	42.0		
7/13/09 10:38	7/24/09 9:55		11.0	
7/24/09 10:16	8/10/09 7:50			16.9
8/10/09 8:11	9/12/09 23:59	33.7		
Tot	als:	569	101	54

Table A-3. PM Sampling Schedule IN5B

Day,	Test	durati	on, d		
Start	Stop	PM ₁₀	TSP	PM _{2.5}	
10/24/07	12/14/07	51.6			
12/14/07	12/21/07		7.0		
12/21/07	1/11/08	20.8			
1/11/08	1/25/08			14.0	
1/25/08	2/13/08	19.1			
2/13/08	2/21/08		7.7		
2/21/08	4/4/08	43.1			
4/4/08	4/11/08		7.0		
4/11/08	6/24/08	73.9			
6/24/08	7/10/08		15.9		
7/10/08	7/24/08	13.8			
7/24/08	8/27/08			34.2	
8/27/08	11/4/08	68.6			
11/4/08	11/24/08			19.9	
11/24/08	1/13/09	49.9			
1/13/09	1/20/09		6.9		
1/20/09	3/13/09	52.0			
3/13/09	3/19/09		5.9		
3/19/09	5/11/09	52.9			
5/11/09	5/18/09		7.0		
5/18/09	9/8/09	113.0			
9/8/09	10/24/09	45.6†			
9/8/09	9/21/09		13.0‡		
9/21/09	10/24/09	32.6‡			
То	tals	636.9	70.5	68.1	
$ \land \lor $	+ Only	B1F15			
	ŦAII exce	DT B1F12			

Table A-4. PM Sampling Schedule NY5B

Day, r	n/d/y	Test duration, d			
Start	Stop	PM ₁₀	TSP	PM _{2.5}	
9/28/07	1/17/08	111.6			
1/17/08	2/7/08			21.1	
2/7/08	4/10/08	62.9			
4/10/08	4/24/08		13.9		
4/24/08	6/12/08	49.1			
6/12/08	6/18/08		6.0		
6/18/08	7/10/08	22.0			
7/10/08	7/23/08			12.9	
7/23/08	9/12/08	50.9			
9/12/08	9/18/08		6.0		
9/18/08	11/13/08	56.0		•	
11/13/08	11/21/08		8.0		
11/21/08	2/12/09	82.9			
2/12/09	2/26/09			14.0	
2/26/09	3/4/09		6.1		
3/4/09	4/30/09	57.0			
4/30/09	5/7/09		7.0		
5/7/09	7/8/09	62.1			
7/8/09	7/22/09			14.0	
7/22/09	7/30/09	7.9			
7/30/09	8/5/09		6.2		
8/5/09	9/27/09	53.4			
Tot	tals	615.8	53.1	62.1	

 Table A-5. PM Sampling Schedule WA5B

ŀ	Time and d	lay (m/d/y)	Test	durati	ion, d
	Start	Stop	PM ₁₀	TSP	PM _{2.5}
	9/12/07	12/11/07	90.5		
-	12/11/07	12/17/07		6.1	
	12/17/07	1/15/08	28.9		
	1/15/08	2/5/08			21.0
	2/5/08	2/19/08	14.0		
Ī	2/19/08	2/26/08		6.9	
Ī	2/26/08	3/17/08	20.1		
Ī	3/17/08	3/25/08		7.9	
ĺ	3/25/08	4/29/08	34.9		
Ī	4/29/08	5/5/08		6.0	
Ī	5/5/08	6/19/08	45.0		-
Ī	6/19/08	6/26/08		7.0	
Ī	6/26/08	8/1/08	35.9		
Ī	8/1/08	8/18/08			17.0
Ī	8/18/08	8/25/08		7.1	
Ī	8/25/08	10/14/08	50.0		
Ī	10/14/08	10/28/08		14.2	
Ī	10/28/08	12/16/08	48.8		
Ī	12/16/08	12/30/08		14.0	
Ī	12/30/08	1/13/09	13.9		
Ī	1/13/09	1/27/09			14.0
Ī	1/27/09	2/17/09	21.0		
ĺ	2/17/09	2/24/09		6.9	
	2/24/09	4/6/09	41.1		
	4/6/09	4/14/09		7.9	
	4/14/09	6/3/09	50.0		
	6/3/09	6/8/09		5.3	
	6/8/09	7/6/09	28.0		
	7/6/09	7/21/09			14.7
	7/21/09	8/4/09	14.0		
Ī	8/4/09	8/11/09		7.0	
	8/11/09	9/15/09	35.0		
	Tot	tals	571.2	96.3	66.7

Table A-6. PM Sampling Schedule WI5B

Appendix B: Data Processing

Table of Contents

APPENDIX B: DAT A	A PROCESSING	B-1
B.1 Negative Emis	ssion Value Assessment Method	B-3
B.2 Open Source I	Data Preparation	B-10
B.2.1 Accepta	ance Criteria of 2012 Data Sets	B-10
B.2.2 Accepta	ance Criteria of Post-2012 Data Sets	B-11
B.2.3 Calcula	tion of Average Daily Values	B-14
B.3 References		B-17

List of Tables

List of Tables
Table B-1. Summary of the effect of applying the negative emission cut-off to dairy barn NH ₃ emissions (kg/d) data.
Table B-2. Summary of the effect of applying the negative emission cut-off to dairy barn H ₂ S emissions (g/d) data. B-5
Table B-3. Summary of the effect of applying the negative emission cut-off to dairy barn PM ₁₀ emissions (g/d) data.
Table B-4. Summary of the effect of applying the negative emission cut-off to dairy barn PM _{2.5} emissions (g/d) data.
Table B-5. Summary of the effect of applying the negative emission cut-off to dairy barn TSP emissions (g/d) data. B-8
Table B-6. Summary of the effect of applying the negative emission cut-off to dairy milking center NH ₃ emissions (kg/d) dataB-9
Table B-7. Summary of the effect of applying the negative emission cut-off to dairy barn H ₂ S emissions (g/d) data.
Table B-8. Summary of the effect of applying the negative emission cut-off to dairy barn PM ₁₀ emissions (g/d) data.
Table B-9. Summary of the effect of applying the negative emission cut-off to dairy barn PM _{2.5} emissions (g/d) data.
Table B-10. Summary of the effect of applying the negative emission cut-off to dairy barn TSP emissions (g/d) data. B-9
Table B-11. Summary of 2012 acceptance criteria for NH ₃ bLS data for lagoons and basinsB-10
Table B-12. Summary of 2012 acceptance criteria for H_2S bLS data for lagoons and basinsB-10
Table B-13. Summary of the effect of applying the negative emission cut-off to dairy barn dataB-11 Table B-14. Summary of 2012 accortance criteria for NIL and U.S. bl.S. data for correla
Table B-14. Summary 01 2012 acceptance Criteria for the 2012 bLS data for contais
Table B-16. Number of Available 30-Minute bLS NH ₃ Emissions Flux Values Based on the 2012 and Revised
Acceptance CriteriaB-12
Table B-17. Dairy Lagoon/Basin Acceptance Criteria for the 2012 bLS H2S 30-Minute Emissions ValuesB-12
Table B-18. Number of Available 30- Minute bLS H ₂ S Emissions Flux Values Based on the 2012 and Revised
Table B-19 Dairy Corral Acceptance Criteria for the 2012 bLS NH ₂ 30-Minute Emissions B-13
Table B-20. Number of Available 30-Minute bLS NH ₃ Emissions Flux Values Based on the 2012 and Revised
Acceptance CriteriaB-13
Table B-21. Dairy Corral Acceptance Criteria for the 2012 bLS H ₂ S 30-Minute Emissions ValuesB-14
Table B-22. Number of Available 30-Minute bLS H ₂ S Emissions Flux Values Based on the 2012 and Revised
Table B-23. Example Calculation of Average NH3 Emissions for IN5A

B.1 Negative Emission Value Assessment Method

Negative calculated emission values can occur in NAEMS data set due to a range of different scenarios as described in the SAB review of the 2012 EEMs developed by EPA (U.S. EPA SAB, 2013). A summary of these scenarios and whether SAB recommended the data should be retained or removed is provided below:

- 1. A calculation bias may occur when measured values are at or close to the detection limit, or negative. This scenario should result in small negative values, which should be retained.
- 2. In NAEMS, the background and source measurements were measured either intermittently (twice a day for gaseous pollutant), or continuously without correction for lag time in the barn (PM). The limited and uncorrected background concentrations can be biased, either negatively or positively, due to instrument "noise" or adjustment of calibration offset procedure. When this bias is negative, it introduces the potential for negative emission values. Negative emission values should be retained because omitting this data could bias the model high.
- 3. Outdoor events may affect background and barn concentrations. For example, if there was activity outside an animal barn which resulted in increased pollutant concentration (e.g., manure cleanout of another barn)), the measured background values would create a negative bias. Alternatively, a positive bias could occur if meteorological conditions caused the barn exhaust air to return into the barn, thus affecting measured barn concentrations.

To avoid bias from the true value, the SAB suggests keeping calculated values from scenario 1 and 2 and removing values identified to be caused by scenario 3, however the NAEMS did not record outdoor events that may affect background concentration (scenario 3), therefore it could not be determined if negative emissions were caused by scenario 2 or 3. It is likely that scenarios 1 and 2 result in smaller negative (closer to zero) emissions than scenario 3. Therefore, a methodology was developed to remove large negative emissions likely associated with scenario 3. In the NAEMS QAPP, the gas and PM barn emission uncertainty were determined to be $\pm 27\%$ and $\pm 32\%$ for mechanically ventilated barns and $\pm 50\%$ and $\pm 53\%$ for naturally ventilated barns (Heber et al. 2008). Cut-offs for valid negative data were therefore determined for each pollutant by multiplying the emission uncertainty by the median of the positive measured emission values. Tables B-1 through B-10 summarize the changes to the data set due to the negative emission removal.
Site	Description	Avg	St Dev	Ν	Median	Min	Max	CV (%)	N < 0
CAED	Original Data Set	2.95	4.11	191	2.54	-8.57	21.16	1.39	37
CA5B	Revised Data Set	3.75	3.54	170	3.29	-0.86	21.16	0.95	16
DI	Difference	0.80	-0.57	21	0.75	7.71	0.00	-0.45	21
0.155	Original Data Set	2.76	3.76	223	2.67	-10.77	15.37	1.36	42
CA5B	Revised Data Set	3.64	3.01	194	3.16	-0.91	15.37	0.83	13
DZ	Difference	0.88	-0.76	29	0.49	9.86	0.00	-0.54	29
	Original Data Set	40.34	25.27	467	33.71	3.42	122.62	0.63	0
IN5B	Revised Data Set	40.34	25.27	467	33.71	3.42	122.62	0.63	0
DI	Difference	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Original Data Set	39.79	24.10	478	34.47	3.03	119.73	0.61	0
IN2R	Revised Data Set	39.79	24.10	478	34.47	3.03	119.73	0.61	0
DZ	Difference	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Original Data Set	21.69	8.09	350	20.17	6.81	45.26	0.37	0
	Revised Data Set	21.69	8.09	350	20.17	6.81	45.26	0.37	0
DI	Difference	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Original Data Set	26.60	29.43	125	21.91	-156.36	96.60	1.11	2
WA5B	Revised Data Set	29.09	21.81	123	22.06	0.52	96.60	0.75	0
DZ	Difference	2.49	-7.62	2	0.16	156.88	0.00	-0.36	2
	Original Data Set	54.65	31.64	99	45.13	9.03	170.93	0.58	0
WA5B	Revised Data Set	54.65	31.64	99	45.13	9.03	170.93	0.58	0
D4	Difference	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Original Data Set	8.58	2.83	564	8.22	3.75	19.14	0.33	0
WI5B	Revised Data Set	8.58	2.83	564	8.22	3.75	19.14	0.33	0
DI	Difference	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Original Data Set	11.22	4.56	524	10.74	3.37	26.55	0.41	0
VV15B	Revised Data Set	11.22	4.56	524	10.74	3.37	26.55	0.41	0
ΒZ	Difference	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a

Table B-1. Summary of the effect of applying the negative emission cut-off to dairy barn NH₃ emissions (kg/d) data.

Site	Description	Avg	St Dev	Ν	Median	Min	Max	CV (%)	N < 0
	Original Data Set	487.25	740.76	212	569.87	-2,418.29	3,775.09	1.52	37
CA5B	Revised Data Set	634.01	558.98	192	646.11	-175.56	3,775.09	0.88	17
DI	Difference	146.76	-181.78	20	76.24	2,242.72	0.00	-0.64	20
	Original Data Set	669.69	515.92	269	680.39	-609.03	2,644.93	0.77	18
CA5B	Revised Data Set	690.49	497.50	264	691.60	-166.03	2,644.93	0.72	13
DZ	Difference	20.79	-18.41	5	11.21	443.00	0.00	-0.05	5
	Original Data Set	1,480.66	16,908.71	522	228.55	-284.20	386,451.70	11.42	49
	Revised Data Set	758.10	949.99	512	236.80	-80.10	5,809.50	1.25	40
DI	Difference	-722.56	-15,958.73	10	8.25	204.10	-380,642.20	-10.17	9
	Original Data Set	1,067.52	1,500.87	552	463.35	-226.60	11,093.10	1.41	24
	Revised Data Set	1,069.87	1,501.22	551	479.00	-139.90	11,093.10	1.40	23
DZ	Difference	2.35	0.35	1	15.65	86.70	0.00	0.00	1
	Original Data Set	523.69	430.82	467	378.91	34.05	2,183.82	0.82	0
	Revised Data Set	523.69	430.82	467	378.91	34.05	2,183.82	0.82	0
DI	Difference	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Original Data Set	555.61	1,746.24	116	192.14	-5,400.93	6,513.61	3.14	45
WA5B	Revised Data Set	1,054.52	1,529.29	91	431.84	-240.39	6,513.61	1.45	20
DZ	Difference	498.91	-216.95	25	239.70	5,160.54	0.00	-1.69	25
	Original Data Set	1,130.95	3,503.40	104	690.94	-11,640.14	17,960.29	3.10	30
WA5B	Revised Data Set	2,159.19	3,002.40	81	1,189.54	-324.98	17,960.29	1.39	7
D4	Difference	1,028.24	-501.00	23	498.60	11,315.16	0.00	-1.71	23
	Original Data Set	1.04	1.30	582	0.39	-0.01	8.20	1.24	3
WI5B	Revised Data Set	1.04	1.30	582	0.39	-0.01	8.20	1.24	3
DI	Difference	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Original Data Set	0.86	1.08	545	0.23	-0.20	5.31	1.25	8
	Revised Data Set	0.87	1.08	541	0.24	-0.07	5.31	1.24	4
DZ	Difference	0.01	0.00	4	0.01	0.14	0.00	-0.01	4

Table B-2. Summary of the effect of applying the negative emission cut-off to dairy barn H₂S emissions (g/d) data.

Site	Description	Avg	St Dev	Ν	Median	Min	Max	CV (%)	N < 0
CAED	Original Data Set	-325.77	1,108.73	520	-302.25	-5,733.05	6,135.13	-3.40	372
CA5B	Revised Data Set	559.36	926.13	205	271.63	-150.91	6,135.13	1.66	57
DI	Difference	885.13	-182.60	315	573.88	5,582.15	0.00	5.06	315
CAED	Original Data Set	592.97	2,143.17	451	11.58	-7,732.99	14,371.93	3.61	221
CA5B	Revised Data Set	1,200.13	2,163.40	324	416.48	-320.54	14,371.93	1.80	94
DZ	Difference	607.15	20.23	127	404.90	7,412.45	0.00	-1.81	127
	Original Data Set	19.41	300.16	368	18.31	-1,376.97	3,571.86	15.46	158
	Revised Data Set	121.56	179.18	234	78.85	-23.80	2,069.94	1.47	25
DI	Difference	102.15	-120.97	134	60.54	1,353.17	-1,501.92	-13.99	133
	Original Data Set	130.40	209.40	348	141.52	-1,161.89	1,083.87	1.61	71
	Revised Data Set	182.07	159.76	302	166.63	-55.35	1,083.87	0.88	25
DZ	Difference	51.67	-49.64	46	25.11	1,106.54	0.00	-0.73	46
	Original Data Set	223.73	337.46	328	72.89	-406.14	2,101.45	1.51	8
NY5B	Revised Data Set	229.12	335.64	324	73.93	-21.40	2,101.45	1.46	4
DI	Difference	5.39	-1.82	4	1.05	384.74	0.00	-0.04	4
	Original Data Set	4,497.74	17,839.79	452	1,590.37	-20,331.95	353,457.48	3.97	53
WA5B	Revised Data Set	5,001.87	18,160.35	428	1,734.92	-547.21	353,457.48	3.63	29
DZ	Difference	504.12	320.56	24	144.55	19,784.73	0.00	-0.34	24
	Original Data Set	11,391.71	24,574.35	418	4,958.78	-7,473.60	367,744.48	2.16	14
WA5B	Revised Data Set	11,664.78	24,691.71	411	5,080.35	-1,591.37	367,744.48	2.12	7
D4	Difference	273.08	117.36	7	121.57	5,882.23	0.00	-0.04	7
	Original Data Set	363.37	578.04	400	117.65	-553.04	3,888.47	1.59	37
WI5B	Revised Data Set	376.45	577.56	391	120.67	-41.61	3,888.47	1.53	28
DI	Difference	13.08	-0.48	9	3.02	511.44	0.00	-0.06	9
	Original Data Set	562.91	818.39	362	169.16	-462.86	4,553.70	1.45	9
WI5B כם	Revised Data Set	571.92	818.28	358	171.73	-43.53	4,553.70	1.43	5
DZ	Difference	9.00	-0.11	4	2.57	419.33	0.00	-0.02	4

Table B-3. Summary of the effect of applying the negative emission cut-off to dairy barn PM₁₀ emissions (g/d) data.

Site	Description	Avg	St Dev	Ν	Median	Min	Max	CV (%)	N < 0
CAED	Original Data Set	-905.18	1,423.62	47	-573.67	-9,203.14	101.31	-1.57	44
CA5B	Revised Data Set	63.26	36.78	3	60.56	27.90	101.31	0.58	0
DI	Difference	968.44	-1,386.84	44	634.23	9,231.04	0.00	2.15	44
CAED	Original Data Set	-607.29	1,570.75	54	-303.17	-9,932.95	458.02	-2.59	40
CA5B	Revised Data Set	260.77	122.84	14	260.50	82.11	458.02	0.47	0
DZ	Difference	868.06	-1,447.91	40	563.66	10,015.06	0.00	3.06	40
	Original Data Set	21.18	114.16	28	32.61	-329.99	208.10	5.39	11
IN5B	Revised Data Set	69.60	65.33	21	74.59	-29.74	208.10	0.94	4
DI	Difference	48.42	-48.83	7	41.99	300.25	0.00	-4.45	7
	Original Data Set	44.96	129.13	29	69.94	-304.84	206.93	2.87	10
IN5B	Revised Data Set	102.14	72.20	22	122.98	-21.95	206.93	0.71	3
DZ	Difference	57.18	-56.93	7	53.04	282.89	0.00	-2.17	7
	Original Data Set	36.66	29.81	53	27.52	-3.16	113.84	0.81	2
NY5B	Revised Data Set	36.66	29.81	53	27.52	-3.16	113.84	0.81	2
DI	Difference	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Original Data Set	2,719.21	1,828.35	37	2,818.24	347.76	7,247.60	0.67	0
WA5B	Revised Data Set	2,719.21	1,828.35	37	2,818.24	347.76	7,247.60	0.67	0
DZ	Difference	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Original Data Set	1,863.35	1,779.09	37	1,362.29	-676.29	6,474.69	0.95	6
WA5B	Revised Data Set	1,933.90	1,751.06	36	1,404.24	-401.24	6,474.69	0.91	5
D4	Difference	70.55	-28.03	1	41.95	275.05	0.00	-0.05	1
	Original Data Set	141.51	145.45	53	86.92	-27.13	538.99	1.03	7
WI5B	Revised Data Set	141.51	145.45	53	86.92	-27.13	538.99	1.03	7
DI	Difference	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Original Data Set	186.74	203.76	45	95.71	-4.26	805.76	1.09	1
WI5B	Revised Data Set	186.74	203.76	45	95.71	-4.26	805.76	1.09	1
DZ	Difference	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a

Table B-4. Summary of the effect of applying the negative emission cut-off to dairy barn PM_{2.5} emissions (g/d) data.

Site	Description	Avg	St Dev	Ν	Median	Min	Max	CV (%)	N < 0
	Original Data Set	4,766.27	7,249.04	71	2,525.45	-2,055.21	45,690.25	1.52	7
CA5B	Revised Data Set	4,863.72	7,254.39	70	2,902.71	-973.38	45,690.25	1.49	6
DI	Difference	97.45	5.35	1	377.25	1,081.82	0.00	-0.03	1
CAED	Original Data Set	8,128.69	8,699.37	59	5,578.41	-235.60	43,350.07	1.07	4
CA5B	Revised Data Set	8,128.69	8,699.37	59	5,578.41	-235.60	43,350.07	1.07	4
DZ	Difference	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Original Data Set	347.60	333.86	77	310.35	-158.33	1,841.13	0.96	9
IN5B	Revised Data Set	367.18	325.66	74	317.81	-80.18	1,841.13	0.89	6
DI	Difference	19.58	-8.19	3	7.46	78.14	0.00	-0.07	3
	Original Data Set	328.95	273.76	67	267.19	-88.83	1,225.92	0.83	2
	Revised Data Set	328.95	273.76	67	267.19	-88.83	1,225.92	0.83	2
DZ	Difference	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Original Data Set	218.66	308.10	41	208.45	-505.43	1,572.59	1.41	5
	Revised Data Set	271.81	270.81	37	216.50	-3.71	1,572.59	1.00	1
DI	Difference	53.15	-37.30	4	8.05	501.72	0.00	-0.41	4
	Original Data Set	19 <i>,</i> 331.70	25,603.35	38	8,286.13	1,413.48	122,272.14	1.32	0
WA5B	Revised Data Set	19,331.70	25,603.35	38	8,286.13	1,413.48	122,272.14	1.32	0
DZ	Difference	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Original Data Set	47,389.03	71,484.69	38	25,605.49	4,817.02	374,175.36	1.51	0
WA5B	Revised Data Set	47,389.03	71,484.69	38	25,605.49	4,817.02	374,175.36	1.51	0
54	Difference	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Original Data Set	849.92	827.35	82	505.92	-450.25	3,302.96	0.97	6
	Revised Data Set	909.68	803.45	78	530.54	-110.45	3,302.96	0.88	2
DI	Difference	59.76	-23.90	4	24.62	339.80	0.00	-0.09	4
	Original Data Set	878.88	943.01	76	451.11	14.99	4,198.23	1.07	0
R2	Revised Data Set	878.88	943.01	76	451.11	14.99	4,198.23	1.07	0
	Difference	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a

Table B-5. Summary of the effect of applying the negative emission cut-off todairy barn TSP emissions (g/d) data.

Site	Description	Avg	St Dev	Ν	Median	Min	Max	CV (%)	N < 0
	Original Data Set	8.81	7.35	338	7.36	-0.66	35.89	0.83	0
IN5B	Revised Data Set	8.81	7.35	338	7.36	-0.66	35.89	0.83	0
MC	Difference	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Original Data Set	5.76	2.07	385	5.68	1.27	13.69	0.36	0
NY5B MC	Revised Data Set	5.76	2.07	385	5.68	1.27	13.69	0.36	0
	Difference	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a

Table B-6. Summary of the effect of applying the negative emission cut-off to dairy milking center NH₃ emissions (kg/d) data.

Table B-7. Summary of the effect of applying the negative emission cut-off to dairy barn H₂S emissions (g/d) data.

Site	Description	Avg	St Dev	Ν	Median	Min	Max	CV (%)	N < 0
	Original Data Set	1,207.31	2,122.15	400	305.05	-478.50	17,787.00	1.76	79
IN5B	Revised Data Set	1,254.65	2,137.31	388	345.95	-191.00	17,787.00	1.70	67
IVIC	Difference	47.34	15.15	12	40.90	287.50	0.00	-0.05	12
	Original Data Set	129.49	113.00	551	92.13	7.20	628.84	0.87	0
NY5B	Revised Data Set	129.49	113.00	551	92.13	7.20	628.84	0.87	0
IVIC	Difference	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a

n/a = No change in dataset

Table B-8. Summary of the effect of applying the negative emission cut-off to dairy barn PM₁₀ emissions (g/d) data.

Site	Description	Avg	St Dev	N	Median	Min	Max	CV (%)	N < 0
	Original Data Set	89.97	73.40	438	65.31	-81.12	484.51	0.82	3
NY5B	Revised Data Set	90.68	72.79	436	65.64	-1.42	484.51	0.80	1
IVIC	Difference	0.72	-0.61	2	0.34	79.70	0.00	-0.01	2

n/a = No change in dataset

Table B-9. Summary of the effect of applying the negative emission cut-off to dairy barn PM_{2.5} emissions (g/d) data.

Site	Description	Avg	St Dev	Ν	Median	Min	Max	CV (%)	N < 0
	Original Data Set	26.56	27.50	44	23.70	2.80	188.76	1.04	0
NY5B MC	Revised Data Set	26.56	27.50	44	23.70	2.80	188.76	1.04	0
IVIC	Difference	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a

n/a = No change in dataset

Table B-10. Summary of the effect of applying the negative emission cut-off to
dairy barn TSP emissions (g/d) data.

Site	Description	Avg	St Dev	Ν	Median	Min	Max	CV (%)	N < 0
	Original Data Set	115.88	95.69	42	100.22	-79.12	321.67	0.83	3
NY5B	Revised Data Set	124.73	89.02	40	101.04	-0.67	321.67	0.71	1
IVIC	Difference	8.84	-6.67	2	0.83	78.45	0.00	-0.11	2

B.2 Open Source Data Preparation

The 2012 data sets for dairy open sources (lagoons, basins, and corrals) were provided to EPA by the principal investigator (PI) for the National Air Emissions Monitoring Study (NAEMS). The datasets contain 30-minute data values for ammonia (NH₃), obtained using the backward Lagrangian Stochastics (bLS) model and vertical radial plume mapping (VRPM), and hydrogen sulfide (H₂S) emissions, obtained using the bLS model only. The 2012 NAEMS data sets also included 30-minute data values for meteorological conditions (e.g., air temperature, relative humidity) for the dairy lagoon/basin and corral sites and lagoon/basin conditions (e.g., pH).

This appendix presents the analysis used to prepare the 2012 data for use in developing daily emissions estimating methodologies (EEMs) for dairy open sources. Section B.2.1 presents the original acceptance criteria, while Section B.2.2 presents the analysis of the revised bLS model acceptance criteria for dairy lagoons/basins and corrals. Section B.2.3 presents the processing and calculation steps followed to prepare the average daily emissions records from the NAEMS 30-minute data.

B.2.1 Acceptance Criteria of 2012 Data Sets

The 2012 bLS NH₃ data sets for lagoons and basins provided to EPA followed a set of acceptance criteria (i.e., all valid NH₃ bLS records meet these criteria), summarized in Table B-11. These criteria are the same criteria specified in Grant, et al. (2013). For bLS H₂S, the 2012 data sets for lagoons and basins reflect the acceptance criteria presented in Table B-12.

and basins.	
Parameter	Acceptance Criteria
Monin-Obukov Length	Abs[>2 m]
Friction velocity (u*)	> 0.15 m/s
Standard deviation of wind direction	< 30°

> 0.1 -0.1 to 0.1 ppmv

Table B-11. Summary of 2012 acceptance criteria for NH₃ bLS data for lagoons and basins.

Table B-12. Summary of 2012 acceptance criteria for H₂S bLS data for lagoons
and basins.

Touchdown fraction

Background concentration

Parameter	Acceptance Criteria
Monin-Obukov Length	Abs[>2 m]
Friction velocity (u*)	> 0.15 m/s
Standard deviation of wind direction	< 30°
Touchdown fraction	> 0.1

However, it does not appear that the 2012 bLS H_2S data account for background concentration. Table B-13 shows the range of background concentrations for the valid bLS H_2S emissions records.

Table B-13. Summary of the effect of	f applying the	negative	emission	cut-off to
dairy	y barn data.			

Site	Background Concentration Range
IN5A	-631.27 to 5,292.58 ppbv
WA5A	-377.79 to 757.18 ppbv
WI5A	-147.99 to 593.45 ppbv

The 2012 bLS NH₃ and H₂S data sets for TX5A provided to EPA reflect the acceptance criteria (i.e., all the valid emissions records meet these criteria) presented in Table B-14. However, all background concentration values for the valid bLS NH₃ and H₂S emissions records are 0.

Table B-14. Summary of 2012 acceptance criteria for NH₃ and H₂S bLS data for corrals.

Parameter	Acceptance Criteria
Monin-Obukov Length	Abs[>2 m]
Friction velocity (u*)	> 0.15 m/s
St dev of wind direction	< 30°
Touchdown fraction	> 0.1

B.2.2 Acceptance Criteria of Post-2012 Data Sets

For bLS NH3, increasing the touchdown fraction from > 0.1 to > 0.2 and revising the background concentration from a range to < 0.15 ppmv, as described in Grant and Boehm (2020), increases the number of available bLS NH₃ emissions records for IN5A (+ 225 records) and WI5A (+ 278 records). EPA assumed that the standard deviation of wind speed criteria remained $< 30^{\circ}$ (Grant and Boehm 2020 does not mention this criteria).

For bLS H₂S, reducing the touchdown fraction from > 0.1 to > 0.05 and revising the background concentration from a range to < 3.4 ppbv for WA5A, as described in Grant and Boehm (2015), decreases the number of available bLS H₂S emissions records for WA5A (- 55 records).

For bLS NH₃, increasing the Monin-Obukov length from Abs[>2 m] to Abs[>4 m] and the touchdown fraction from > 0.1 to > 0.4, and using 17 μ g/m³ as the background concentration criteria, as described in Grant, et al. (2020), decreases the number of available bLS NH₃ emissions records for TX5A (- 747 records).

B.2.2.1 NH₃ Emissions from Lagoons/Basins

Table B-15 presents the bLS NH₃ acceptance criteria applied by the NAEMS PI to the 2012 dairy lagoon/basin data sets of 30-minute emissions values and the revised acceptance criteria provided by EPA.

Table B-15. Dairy Lagoon/Basin Acceptance Criteria for the 2012 bLS NH₃ 30-Minute Emissions Values

	Value	
Parameter	2012 Data Set	EPA Revised
Touchdown (TD) fraction	> 0.1	> 0.2
Background concentration (Cbg)	-0.1 < Cbg < 0.1	Cbg < 0.15
Standard deviation of wind direction (sigma-dir)	< 30	No change.
Friction velocity (u*)	> 0.15	No change.

Table B-16 presents the number of 30-minute bLS NH₃ emissions flux values available after applying the revised set of acceptance criteria shown in Table 2-1.

Table B-16. Number of Available 30-Minute bLS NH₃ Emissions Flux Values Based on the 2012 and Revised Acceptance Criteria

NAEMS Site	2012 Data Set	EPA Revised	Difference
IN5A	6,753	6,781	28
WA5A	153	269	116
WI5A	1,832	2,044	212

B.2.2.2 H₂S Emissions from Lagoons/Basins

Table B-17 presents the bLS H₂S acceptance criteria applied by the NAEMS PI to the 2012 dairy lagoon/basin data sets of 30-minute emissions values and the revised acceptance criteria provided by EPA.

Table B-17. Dairy Lagoon/Basin Acceptance Criteria for the 2012 bLS H2S 30-Minute Emissions Values

	Value		
Parameter	2012 Data Set	EPA Revised	
TD fraction	> 0.1	> 0.05	
Cbg	This parameter was not explicitly applied as an acceptance criterion in the 2012 data sets.	Cbg < 3.4	
Sigma-dir	< 30	No change.	
Wind direction attack angle (WD-Perp)	This parameter was not explicitly applied as an acceptance criterion in the 2012 data sets.	< 60	
u*	> 0.15ª	No change.	

^a The data header in the 2012 data sets says "<" rather than ">".

Table B-18 presents the number of 30-minute bLS H_2S emissions flux values available after applying the revised set of acceptance criteria shown in Table B-17.

NAEMS Site	2012 Data Set	EPA Revised	Difference
IN5A	5,338	4,668	-670
WA5A	501	407	-94
WI5A	1,658	1,099	-559

Table B-18. Number of Available 30- Minute bLS H₂S Emissions Flux Values Based on the 2012 and Revised Acceptance Criteria

B.2.2.3 NH₃ Emissions from Corrals

Table B-19 presents the bLS NH₃ acceptance criteria applied by the NAEMS PI to the 2012 dairy corral data set of 30-minute emissions values and the revised acceptance criteria provided by EPA.

Table B-20 presents the number of 30-minute bLS NH₃ emissions flux values available after applying the revised set of acceptance criteria shown in Table B-19.

Table B-19. Dairy Corral Acceptance Criteria for the 2012 bLS NH₃ 30-Minute Emissions

	Value		
Parameter	2012 Data Set	EPA Revised	
TD fraction	> 0.1	> 0.4	
Cbg	N/A ^a	N/A	
Sigma-dir	< 30	No change.	
u*	> 0.15 ^b	No change.	
M-O Length (absolute value)	>2	> 4	
Sigw homogeneity	This parameter was not explicitly applied as	< 0.4	
fraction (σ _w)	an acceptance criterion in the 2012 data set.	< 0.4	

^a The Cbg criteria for NH_3 at TX5A is not applicable (N/A) because all values in the NAEMS data set provided to EPA are 0. ^b The data header in the 2012 data sets says "<" rather than ">".

Table B-20. Number of Available 30-Minute bLS NH₃ Emissions Flux Values Based on the 2012 and Revised Acceptance Criteria

Site	2012 Data Set	EPA Revised	Difference
TX5A	4,671	3,724	-947

B.2.2.4 H₂S Emissions from Corrals

Table B-21 presents the bLS H₂S acceptance criteria applied by the NAEMS PI to the 2012 dairy corral data set of 30-minute emissions values and the revised acceptance criteria provided by EPA.

Table B-21. Dairy Corral Acceptance Criteria for the 2012 bLS H2S 30-MinuteEmissions Values

	Value		
Parameter	2012 Data Set	EPA Revised	
TD fraction	> 0.1	> 0.05	
Cbg	N/A ^a	N/A	
Sigma-dir	< 30	No change.	
u*	> 0.15 ^b	No change.	
WD-Perp	This parameter was not explicitly applied as an acceptance criterion in the 2012 data set.	< 60	
M-O Length (absolute value)	>2	> 4	
σ _w	This parameter was not explicitly applied as an acceptance criterion in the 2012 data set.	< 0.4	

^a The Cbg criteria for NH₃ at TX5A is not applicable (N/A) because all values in the NAEMS data set provided to EPA are 0. ^b The data header in the 2012 data sets says "<" rather than ">".

Table B-22 presents the number of 30-minute bLS H₂S emissions flux values available after applying the revised set of acceptance criteria shown in Table B-21.

Table B-22. Number of Available 30-Minute bLS H₂S Emissions Flux Values Based on the 2012 and Revised Acceptance Criteria

Site	2012 Data Set	EPA Revised	Difference
TX5A	3,028	3,033	5

B.2.3 Calculation of Average Daily Values

To prepare the 2012 NAEMS data sets of 30-minute values for use in calculating daily averages, EPA adjusted the bLS NH₃ values for sites IN5A and WI5A by multiplying the emissions values by 1.19 (Grant & Boehm 2020) and 1.13 (Grant & Boehm 2020), respectively. Adjustments factors were not provided in literature for the bLS NH₃ values for the WA5A and TX5A sites. In cases where 30-minute emissions flux values were available for both the bLS model and VRPM, we used the average of the bLS and VRPM values. Table B-23 presents an example calculation for two days at site IN5A (one day with both bLS and VRPM data, and one day with data from only measurement methodology).

	Emissions	Flux Data Va	Average of VRPM and	
	2012 N	IAEMS	Adjusted	Adjusted bLS 30-min
Date and Time	VRPM	bLS	bLS	Values (g/s)
9/30/08 12:15 AM	0.450	0.630	0.750	0.600
9/30/08 12:45 AM	0.410	0.491	0.584	0.497
9/30/08 1:15 AM	0.420	0.474	0.564	0.492
9/30/08 4:15 AM	0.130	0.014	0.017	0.073
9/30/08 4:45 AM		0.064	0.076	0.076
9/30/08 6:15 AM	0.080	0.027	0.032	0.056
9/30/08 6:45 AM		0.040	0.047	0.047
9/30/08 7:15 AM		0.002	0.002	0.002
9/30/08 12:15 PM		0.037	0.044	0.044
9/30/08 12:45 PM		0.038	0.045	0.045
9/30/08 1:15 PM	0.110	0.090	0.107	0.108
9/30/08 1:45 PM	0.160	0.125	0.149	0.154
9/30/08 2:15 PM	0.130	0.139	0.165	0.148
9/30/08 2:45 PM	0.200	0.213	0.253	0.227
9/30/08 3:15 PM	0.140	0.166	0.198	0.169
9/30/08 4:15 PM	0.190	0.179	0.213	0.202
9/30/08 4:45 PM	0.190	0.169	0.201	0.196
9/30/08 5:15 PM	0.250	0.239	0.284	0.267
9/30/08 5:45 PM	0.240	0.236	0.281	0.260
9/30/08 6:45 PM	0.270	0.199	0.237	0.253
9/30/08 7:15 PM	0.350	0.341	0.406	0.378
9/30/08 7:45 PM		0.308	0.367	0.367
9/30/08 8:15 PM	0.370	0.560	0.666	0.518
9/30/08 9:15 PM		0.478	0.569	0.569
9/30/08 9:45 PM		0.553	0.658	0.658
9/30/08 10:15 PM	0.340	0.380	0.452	0.396
9/30/08 10:45 PM	0.370	0.479	0.570	0.470
9/30/08 11:45 PM	0.190	0.153	0.182	0.186
2/1/09 12:45 AM		0.115	0.137	0.137
2/1/09 1:15 AM		0.111	0.132	0.132
2/1/09 1:45 AM		0.071	0.085	0.085
2/1/09 2:15 AM		0.121	0.144	0.144
2/1/09 3:15 AM		0.113	0.134	0.134
2/1/09 3:45 AM		0.127	0.151	0.151
2/1/09 4:15 AM		0.111	0.132	0.132
2/1/09 4:45 AM		0.094	0.111	0.111
2/1/09 5:15 AM		0.137	0.163	0.163
2/1/09 5:45 AM		0.129	0.154	0.154
2/1/09 6:15 AM		0.154	0.183	0.183
2/1/09 6:45 AM		0.109	0.130	0.130
2/1/09 7:15 AM		0.098	0.117	0.117

 Table B-23. Example Calculation of Average NH3 Emissions for IN5A

	Emissions	Flux Data Val	ues (g/s)	Average of VRPM and		
	2012 N	IAEMS	Adjusted	Adjusted bLS 30-min		
Date and Time	VRPM	bLS	bLS	Values (g/s)		
2/1/09 7:45 AM		-0.006	-0.007	-0.007		
2/1/09 8:15 AM		0.073	0.087	0.087		
2/1/09 9:15 AM		0.085	0.101	0.101		
2/1/09 9:45 AM		0.076	0.091	0.091		
2/1/09 10:15 AM		0.051	0.060	0.060		
2/1/09 10:45 AM		0.028	0.033	0.033		
2/1/09 11:15 AM		0.013	0.015	0.015		
2/1/09 11:45 AM		0.017	0.020	0.020		
2/1/09 4:15 PM		0.032	0.038	0.038		
2/1/09 5:15 PM		0.013	0.016	0.016		
2/1/09 5:45 PM		0.004	0.005	0.005		
2/1/09 6:45 PM		-0.003	-0.003	-0.003		
2/1/09 7:15 PM		0.007	0.009	0.009		
2/1/09 7:45 PM		-0.020	-0.024	-0.024		
2/1/09 8:15 PM		-0.004	-0.005	-0.005		
2/1/09 9:15 PM		-0.012	-0.014	-0.014		
2/1/09 10:15 PM		-0.002	-0.003	-0.003		
2/1/09 10:45 PM		-0.011	-0.012	-0.012		
2/1/09 11:15 PM		0.003	0.004	0.004		
2/1/09 11:45 PM		0.020	0.024	0.024		

XS

 Table B-23. Example Calculation of Average NH3 Emissions for IN5A

B.3 References

Grant, R. H., Boehm, M. T., & Lawrence, A. F. (2013). Comparison of a backward-Lagrangian stochastic and vertical radial plume mapping methods for estimating animal waste lagoon emissions. Agricultural and Forest Meteorology, 180, 236-248. doi:10.1016/j.agrformet.2013.06.013

Grant, R. H., & Boehm, M. T. (2015). Manure ammonia and hydrogen sulfide emissions from a Western dairy storage basin. J Environ Qual, 44(1), 127-136. doi:10.2134/jeq2014.05.0196

Grant, R. H., & Boehm, M. T. (2020). Ammonia Emissions from Differing Manure Storage Facilities at Two Midwestern Free-Stall Dairies. Atmosphere, 11(10), 1108. doi:10.3390/atmos11101108

Grant, R. H., Boehm, M. T., & Hagevoort, G. R. (2020). Ammonia Emissions from a Western Open-Lot Dairy. Atmosphere, 11(9), 913. doi:10.3390/atmos11090913

Heber A.J., Ni J-Q., Ramirez J.C., Schrock W., and Elkins J. 2008. Quality assurance project plan for the National Air Emissions Monitoring Study (barn component). Purdue University, West Lafayette, IN.

U.S. EPA Science Advisory Board (SAB), 2013. SAB Review of Emissions-Estimating Methodologies for Broiler Animal Feeding Operations and for Lagoons and Basins at Swine and Dairy Animal Feeding Operations, EPA-SAB-13-003.

Appendix C: Data Completeness

Table of Contents

APPENDIX	C:DATA COMPLETENESS	C-1
C.1.1	Data Completeness Criteria for the Revised Data Set	C-4
C.1.2	Data Completeness Review and Conclusions for Mechanically Ventilated Barns	C-5
C.1.3	Data Completeness Review and Conclusions for Naturally Ventilated Barns	C-6
C.1.4	Data Completeness Review and Conclusions for Milking Centers	C-8
C.1.5	Data Completeness Review and Conclusions for Open Sources	C-9
C.2 Refer	rence	C-10

List of Tables

List of Tables
Table C-1. The number of mechanically ventilated barn ADM for NH ₃ at varying percentages of data completeness.
Table C-2. The number of mechanically ventilated barn ADM for H ₂ S at varying percentages of data completeness.
Table C-3. The number of mechanically ventilated barn ADM for PM ₁₀ at varying percentages of data completeness.
Table C-4. The number of mechanically ventilated barn ADM for PM2.5 at varying percentages of data completeness. C-6
Table C-5. The number of mechanically ventilated barn ADM for TSP at varying percentages of data completeness. C-6
Table C-6. The number of naturally ventilated barn ADM for NH3 at varying percentages of data completenessC-7
Table C-7. The number of naturally ventilated barn ADM for H ₂ S at varying percentages of data completenessC-7
Table C-8. The number of naturally ventilated barn ADM for PM ₁₀ at varying percentages of data completeness. C-7
Table C-9. The number of naturally ventilated ADM for PM2.5 at varying percentages of data completenessC-7
Table C-10. The number of naturally ventilated barn ADM for TSP at varying percentages of data completeness. C-8
Table C-11. The number of milking centers ADM for NH3 at varying percentages of data completenessC-8
Table C-12. The number of milking centers ADM for H ₂ S at varying percentages of data completenessC-8
Table C-13. The number of milking centers ADM for PM ₁₀ at varying percentages of data completenessC-8
Table C-14. The number of milking centers ADM for PM _{2.5} at varying percentages of data completenessC-9
Table C-15. The number of milking centers ADM for TSP at varying percentages of data completeness
Table C-16. The number of lagoon and basin ADM for NH ₃ at varying percentages of data completenessC-9
Table C-17. The number of lagoon and basin ADM for H ₂ S at varying percentages of data completenessC-10
Table C-18. The number of corral ADM for NH ₃ at varying percentages of data completenessC-10

List of Figures

C.1.1 Data Completeness Criteria for the Revised Data Set

The appropriate data completeness criteria to use in a study depends on the size of the dataset and the accuracy needed. A study by Grant et al. (2013), in which NH₃ emissions were modeled from swine lagoons based on NAEMS data, investigated data completeness and associated accuracy. The swine lagoon NH₃ emissions dataset had limited data availability at a data completeness of 75%. Grant et al. (2013) explored how much the data completeness criteria could be relaxed but still result in data with acceptable error. The study suggested an error of $\pm 25\%$ to be acceptable and determined that a daily data completeness of 52% (or 25 out of 48 30-minute periods) gave less than $\pm 25\%$ error (see Figure B-1). Using this relaxed daily completeness criteria resulted in a substantial increase in the size of the dataset.

Based on Figure C-1 from the Grant et al. (2013) study, it can be observed that a daily completeness criterion of 75% (36 out of 48 30-minute periods) would give an error of approximately 10%. If it is assumed that the relationship between data completeness and error from the Grant et al. (2013) study is representative of other NAEMS datasets, the effect of relaxed data completeness criteria can be investigated for other NAEMS sources.

The following sections examine the effect of a reduced data completeness criterion on the number of valid average daily means (ADM) for both the layer barns and manure shed, based on additional analysis completed by Heber that examined the effect of different completeness criteria by comparing the number of valid ADM.

Figure C-1. Ratio of mean predicted emissions for portion of day with valid emissions measurements to mean predicted emissions for the complete day at the finishing (A) and sow (B) farm. Error plotted against number of valid 30-minute measurements (from Grant et al. 2013)

C.1.2 Data Completeness Review and Conclusions for Mechanically Ventilated Barns

The number of average daily means (ADM) for NH₃ emissions at varying percentages of data completeness for the revised data set are shown in Table C-1. For the mechanically ventilated site data set, decreasing the daily completeness criteria from 75% to 50% would increase the number of valid days by 397 (16.66 %). A summary of the ADM available for H₂S is provided in Table C-2. For H2S a shift to 50% completeness criteria would increase the ADM available by 391, a 14.66% increase. For the particulate matter size fractions, PM₁₀ (Table C-3) would increase by 338 (18.73%), PM_{2.5} (Table C-4) would increase by 29 (13.94%) and TSP (Table C-5) would increase by 99 (28.86%).

Based on the Grant et al. (2013) study there would be an approximate 15% increase in error with the shift to 50% completeness criteria. Since the small increase in the number of ADM values for mechanically ventilated barns does not justify the 15% increase in error, a daily completeness criterion of 75% was chosen for the revised mechanically ventilated data set.

Table C-1. The number of mechanically ventilated barn ADM for NH₃ at varying percentages of data completeness.

% Valid Data	0	10	20	30	40	50	60	70	75	80	90	100
IN5B B1	606	599	596	582	566	552	522	486	467	436	422	344
IN5B B2	613	608	605	592	578	562	530	495	478	446	434	356
NY5B B1	442	440	435	420	410	399	382	360	350	336	296	90
WI5B B1	697	696	692	682	664	641	613	585	564	549	525	314
WI5B B2	710	705	696	682	658	626	593	549	524	498	448	190
Total	3068	3048	3024	2958	2876	2780	2640	2475	2383	2265	2125	1294

Table C-2. The number of mechanically ventilated barn ADM for H ₂ S at varying
percentages of data completeness.

% Valid Data	0	10	20	30	40	50	60	70	75	80	90	100
IN5B B1	638	634	629	616	596	586	566	540	521	489	477	388
IN5B B2	657	652	650	639	625	616	597	567	552	521	510	412
NY5B B1	608	603	646	578	567	546	516	480	467	443	392	140
WI5B B1	718	716	713	706	686	661	634	607	582	565	538	319
WI5B B2	732	725	717	703	680	649	616	572	545	518	465	198
Total	3353	3330	3355	3242	3154	3058	2929	2766	2667	2536	2382	1457

% Valid Data	0	10	20	30	40	50	60	70	75	80	90	100
IN5B B1	474	463	455	449	435	415	393	371	367	364	343	232
IN5B B2	426	422	414	409	398	379	365	351	348	339	323	205
NY5B B1	496	491	492	471	454	431	397	343	328	303	240	43
WI5B B1	534	528	526	516	500	469	437	416	400	391	359	181
WI5B B2	531	523	519	504	484	449	416	383	362	348	305	104
Total	2461	2427	2406	2349	2271	2143	2008	1864	1805	1745	1570	765

Table C-3. The number of mechanically ventilated barn ADM for PM₁₀ at varying percentages of data completeness.

Table C-4. The number of mechanically ventilated barn ADM for PM_{2.5} at varying percentages of data completeness.

% Valid Data	0	10	20	30	40	50	60	70	75	80	90	100
IN5B B1	42	41	39	36	33	32	31	29	28	27	27	22
IN5B B2	44	41	39	39	35	32	32	30	29	29	29	21
NY5B B1	70	69	68	66	65	60	56	56	53	52	43	1
WI5B B1	68	67	66	65	62	59	56	54	53	53	49	26
WI5B B2	67	66	64	60	56	54	47	47	45	45	42	16
Total	291	284	276	266	251	237	222	216	208	206	190	86

 Table C-5. The number of mechanically ventilated barn ADM for TSP at varying percentages of data completeness.

% Valid Data	0	10	20	30	40	50	60	70	75	80	90	100
IN5B B1	105	104	102	99	93	86	77	77	77	77	74	57
IN5B B2	90	89	87	86	83	76	68	67	67	67	66	47
NY5B B1	62	61	89	59	54	77	48	42	41	37	35	12
WI5B B1	118	118	118	117	111	100	95	86	82	81	75	38
WI5B B2	130	130	126	124	118	103	87	78	76	73	59	22
Total	505	502	522	485	459	442	375	350	343	335	309	176

C.1.3 Data Completeness Review and Conclusions for Naturally Ventilated Barns

The number of ADM of NH₃ for the naturally ventilated barn revised data set are shown in Table C-6. The table shows decreasing the daily completeness criteria from 75% to 50% would increase the number of valid days by 630 (98.75 %). For H₂S (Table C-7), a shift to 50% completeness would increase ADM to 680, a 97.00% increase. For the particulate matter size fractions, PM₁₀ (Table C-8) would increase by 108 (4.87%), PM_{2.5} (Table C-9) by 7 (4.00%) and TSP (Table C-10) by 28 (13.59%).

EPA considered shifting the completeness criteria to 50% for the naturally ventilated barns. However, concerns about data quality at both CA5B and WA5B led to questions on whether the approximate 15% increase in error suggested by the Grant et al. (2013) study would

hold for these sources or introduce more additional error. EPA elected to leave the completeness criteria at 75% at this time and will revisit prior to the finalization of the emission models.

Table C-6. The number of naturally ventilated barn ADM for NH₃ at varying percentages of data completeness.

% Valid Data	0	10	20	30	40	50	60	70	75	80	90	100
CA5B B1	524		486		399	349	282		191	160		9
CA5B B2	557		516		431	381	316		223	188		8
WA5B B2	562	504	458	410	359	294	270	158	125	96	43	1
WA5B B4	454	398	368	336	290	244	226	124	99	73	34	2
Total	2097	902	1828	746	1479	1268	1094	282	638	517	77	20

Table C-7. The number of naturally ventilated barn ADM for H₂S at varying percentages of data completeness.

% Valid Data	0	10	20	30	40	50	60	70	75	80	90	100
CA5B B1	550		510		420	367	296		212	175		9
CA5B B2	625		582		497	443	372		269	227		9
WA5B B2	626	545	501	449	385	314	283	158	116	87	41	1
WA5B B4	518	439	404	369	324	257	229	128	104	73	37	2
Total	2319	984	1997	818	1626	1381	1180	286	701	562	78	21

Table C-8. The number of naturally ventilated barn ADM for PM₁₀ at varying percentages of data completeness.

% Valid Data	0	10	20	30	40	50	60	70	75	80	90	100
CA5B B1	563		560		553	547	531		520	517		332
CA5B B2	491		488		478	470	457		451	448		284
WA5B B2	513	513	511	506	499	482	466	455	452	450	447	373
WA5B B4	482	481	479	473	463	450	433	421	418	417	416	340
Total	2049	994	2038	979	1993	1949	1887	876	1841	1832	863	1329

 Table C-9. The number of naturally ventilated ADM for PM2.5 at varying percentages of data completeness.

% Valid Data	0	10	20	30	40	50	60	70	75	80	90	100
CA5B B1	60		57		52	48	48		47	46		27
CA5B B2	68		64		58	56	54		54	53		35
WA5B B2	44	43	43	42	42	39	38	37	37	37	37	32
WA5B B4	44	43	43	42	42	39	38	37	37	37	37	26
Total	216	86	207	84	194	182	178	74	175	173	74	120

% Valid Data	0	10	20	30	40	50	60	70	75	80	90	100
CA5B B1	88		85		82	81	75		71	71		49
CA5B B2	76		72		71	69	63		59	59		38
WA5B B2	53	52	52	52	51	42	39	38	38	38	37	34
WA5B B4	53	52	52	52	52	42	39	38	38	38	37	33
Total	270	104	261	104	256	234	216	76	206	206	74	154

 Table C-10. The number of naturally ventilated barn ADM for TSP at varying percentages of data completeness.

C.1.4 Data Completeness Review and Conclusions for Milking Centers

The number of ADM for NH₃ emissions for the milking center revised data set at varying percentages of data completeness are shown in Table C-11. Decreasing the daily completeness criteria from 75% to 50% would increase the number of valid days by 74 (10.24 %) for NH3. Similarly, shifting to 50% completeness criteria would increase H₂S (Table C-12) ADM by 80 (8.41%), PM₁₀ (Table C-13) by 43 (9.82%), PM_{2.5} (Table C-14) by 4 (9.09%), and TSP (Table C-15) by 9 (21.43%). EPA decide the modest increases in available ADM obtained by decreasing the completeness criteria to 50% did not justify the approximate 15% increase in error estimated by the Grant et al. (2013) study. Therefore, a daily completeness criterion of 75% was chosen for the milking center data set.

Table C-11. The number of milking centers ADM for NH₃ at varying percentages of data completeness.

% Valid Data	0	10	20	30	40	50	60	70	75	80	90	100
IN5B MC	423	422	420	414	402	387	373	350	338	301	300	259
NY5B MC	432	430	430	427	419	410	404	393	385	381	358	153
Total	855	852	850	841	821	797	777	743	723	682	658	412

Table C-12. The number of milking centers ADM for H₂S at varying percentages of data completeness.

% Valid Data	0	10	20	30	40	50	60	70	75	80	90	100
IN5B MC	480	479	477	474	463	447	434	412	400	368	366	317
NY5B MC	608	606	654	601	592	584	576	562	551	545	520	225
Total	1088	1085	1131	1075	1055	1031	1010	974	951	913	886	542

Table C-13. The number of milking centers ADM for PM₁₀ at varying percentages of data completeness.

% Valid Data	0	10	20	30	40	50	60	70	75	80	90	100
IN5B MC												
NY5B MC	510	507	511	499	490	481	465	448	438	431	400	148
Total	510	507	511	499	490	481	465	448	438	431	400	148

% Valid Data	0	10	20	30	40	50	60	70	75	80	90	100
IN5B MC												
NY5B MC	50	50	50	49	48	48	44	44	44	44	43	6
Total	50	50	50	49	48	48	44	44	44	44	43	6

Table C-14. The number of milking centers ADM for PM_{2.5} at varying percentages of data completeness.

Table C-15. The number of milking centers ADM for TSP at varying percentages of
data completeness.

% Valid Data	0	10	20	30	40	50	60	70	75	80	90	100
IN5B MC												
NY5B MC	61	61	89	59	53	51	49	43	42	40	36	15
Total	61	61	89	59	53	51	49	43	42	40	36	15

C.1.5 Data Completeness Review and Conclusions for Open Sources

For lagoons and basins, the number of ADM for NH₃ (Table C-16) increased by 84 (118%) when considering the combined bLS and VRPM dataset. For H₂S (Table C-17), where there are only bLS estimates, the number of ADM increased by 56 (266%) when looking at all three sites combined. For corrals (Table C-18), the number of NH₃ ADM increased by 41 (66.13%) and H₂S ADM increased to 25 (119.05%) when shifting to 52% completeness criteria. For all the open sources, EPA concluded the increases in available ADM obtained by decreasing the completeness criteria to 52% did justify the approximate 15% increase in error estimated by the Grant et al. (2013) study. Therefore, a daily completeness criterion of 52% was chosen for all the open source types.

Table C-16. The number of lagoon and basin ADM for NH₃ at varying percentages of data completeness.

			•	ADN	1 by NAEN					
		IN5A			WA5A		WI5A			
Percent			bLS or			bLS or			bLS or	
Completeness	bLS	VRPM	VRPM	bLS	VRPM	VRPM	bLS	VRPM	VRPM	
0%	281	215	283	42	58	71	113	77	124	
52%	110	71	131	0	2	2	22	1	22	
75 <mark>%</mark> *	49	18	59	0	0	0	12	1	12	

Percent	А	DM by NAEMS Sit	te
Completeness	IN5A	WA5A	WI5A
0%	303	61	77
52%	59	1	17
75% [*]	17	0	4

Table C-17. The number of lagoon and basin ADM for H₂S at varying percentages of data completeness.

Table C-18. The number of corral ADM for NH₃ at varying percentages of data completeness.

Percent Completeness	NH3	H2S
0%	163	140
52%	103	46
75%*	62	21

C.2 Reference

Grant, R.H., Boehm, M.T., Lawrence, A.F., & Heber, A.J. (2013). Ammonia emissions from anaerobic treatment lagoons at sow and finishing farms in Oklahoma. Agricultural and Forest Meteorology 180, 203-210

Appendix D: Summary Statistics

Table of Contents

APPENDIX	D:SUMMARY STATISTICS	D-1
D.1 Mech	nanically Ventilated Barns	D-4
D.1.1 D.1.2	Emissions Environmental	D-4 D-8
D.1.3	Ambient	D-10
D.2 Milki	ing Centers	D-11
D.2.1	Emissions	D-11
D.2.2	Environmental	D-13
D.2.3	Ambient	D-14
D.3 Natur	rally Ventilated Barns	D-15
D.3.1	Emissions	D-15
D.3.2	Environmental	D-19
D.3.3	Ambient	D-20
D.4 Open	sources	D-21
D.4.1	Emissions	D-21
D.4.2	Environmental	D-23
D.4.3	Ambient	D-24
		=

List of Tables

Table D-1. NH3 emission summary statistics for mechanically ventilated dairy barns (kg d ⁻¹)D-4
Table D-2. NH ₃ emission summary statistics for mechanically ventilated dairy barns (g d ⁻¹ hd ⁻¹)D-4
Table D-3. H ₂ S emission summary statistics for mechanically ventilated dairy barns (g d ⁻¹)D-5
Table D-4. H ₂ S emission summary statistics for mechanically ventilated dairy barns (mg d ⁻¹ hd ⁻¹)D-5
Table D-5. PM ₁₀ emission summary statistics for mechanically ventilated dairy barns (g d ⁻¹)D-5
Table D-6. PM ₁₀ emission summary statistics for mechanically ventilated dairy barns (mg d ⁻¹ hd ⁻¹)D-6
Table D-7. PM _{2.5} emission summary statistics for mechanically ventilated dairy barns (g d ⁻¹)D-6
Table D-8. PM _{2.5} emission summary statistics for mechanically ventilated dairy barns (mg d ⁻¹ hd ⁻¹) D-6
Table D-9. TSP emission summary statistics for mechanically ventilated dairy barns (g d ⁻¹)D-7
Table D-10. TSP emission summary statistics for mechanically ventilated dairy barns (mg d ⁻¹ hd ⁻¹) D-7
Table D-11. Environmental parameter summary statistics for mechanically ventilated dairy barnsD-8
Table D-12. Ambient parameter summary statistics for mechanically ventilated dairy barnsD-10
Table D-13. NH ₃ emission summary statistics for milking centers (kg d ⁻¹)D-11
Table D-14. NH ₃ emission summary statistics for milking centers (g d ⁻¹ hd ⁻¹)D-11
Table D-15. H ₂ S emission summary statistics for milking centers (g d ⁻¹)D-11
Table D-16. H ₂ S emission summary statistics for milking centers (mg d ⁻¹ hd ⁻¹)D-12
Table D-17. PM emission summary statistics for milking centers (g d ⁻¹)D-12
Table D-18. PM emission summary statistics for milking centers (mg d ⁻¹ hd ⁻¹)D-12
Table D-19. Environmental parameter summary statistics for milking centersD-13
Table D-20. Ambient parameter summary statistics for milking centersD-14
Table D-21. NH ₃ emission summary statistics for naturally ventilated dairy barns (kg d ⁻¹)D-15
Table D-22. NH ₃ emission summary statistics for naturally ventilated dairy barns (g d ⁻¹ hd ⁻¹)D-15

Table D-23. H ₂ S emission summary statistics for naturally ventilated dairy barns (g d ⁻¹)	.D-16
Table D-24. H ₂ S emission summary statistics for naturally ventilated dairy barns (mg d ⁻¹ hd ⁻¹)	.D-16
Table D-25. PM ₁₀ emission summary statistics for naturally ventilated dairy barns (g d ⁻¹)	.D-16
Table D-26. PM ₁₀ emission summary statistics for naturally ventilated dairy barns (mg d ⁻¹ hd ⁻¹)	.D-17
Table D-27. PM _{2.5} emission summary statistics for naturally ventilated dairy barns (g d ⁻¹)	.D-17
Table D-28. PM _{2.5} emission summary statistics for naturally ventilated dairy barns (mg d ⁻¹ hd ⁻¹)	.D-17
Table D-29. TSP emission summary statistics for naturally ventilated dairy barns (g d ⁻¹)	.D-18
Table D-30. TSP emission summary statistics for naturally ventilated dairy barns (mg d ⁻¹ hd ⁻¹)	.D-18
Table D-31. Environmental parameter summary statistics for naturally ventilated dairy barns	.D-19
Table D-32. Ambient parameter summary statistics for naturally ventilated dairy barns	.D-20
Table D-33. NH ₃ emission summary statistics for dairy open sources (kg d ⁻¹).	.D-21
Table D-34. NH ₃ emission summary statistics for dairy open sources (g d ⁻¹ m ⁻²)	.D-21
Table D-35. H ₂ S emission summary statistics for dairy open sources (kg d ⁻¹)	.D-22
Table D-36. H ₂ S emission summary statistics for dairy open sources (g d ⁻¹ hd ⁻¹)	.D-22
Table D-37. Environmental parameter summary statistics for dairy open sources	.D-23
Table D-38. Ambient parameter summary statistics for dairy open sources.	.D-24
Table D-39. Ambient parameter summary statistics for dairy corrals.	.D-25

D.1 Mechanically Ventilated Barns

D.1.1 Emissions

Statistic	IN5B-B1	IN5B-B2	NY5B-B1	WI5B-B1	WI5B-B2
Mean	40.34	39.79	21.69	8.58	11.22
Std Dev	25.27	24.10	8.09	2.83	4.56
Median	33.71	34.47	20.17	8.22	10.74
Minimum	3.42	3.03	6.81	3.75	3.37
Maximum	122.62	119.73	45.26	19.14	26.55
N	467	478	350	564	524
N<0	0	0	0	0	0
N>0	467	478	350	564	524
Q25	20.85	19.90	15.14	6.64	7.64
Q75	59.57	56.54	27.45	10.26	14.13
CV	0.63	0.61	0.37	0.33	0.41
			•		

Table D-1. NH₃ emission summary statistics for mechanically ventilated dairy barns (kg d⁻¹).

Table D-2. NH₃ emission summary statistics for mechanically ve	entilated dairy
barns (g d ⁻¹ hd ⁻¹).	

Statistic	IN5B-B1	IN5B-B2	NY5B-B1	WI5B-B1	WI5B-B2
Mean	48.28	46.02	46.12	41.37	31.35
Std Dev	30.04	27.91	17.34	15.07	12.19
Median	40.32	39.29	43.35	38.97	30.34
Minimum	4.32	3.72	14.40	17.76	9.93
Maximum	142.91	140.20	99.43	102.90	70.59
N	467	478	348	564	524
N<0	0	0	0	0	0
N>0	467	478	348	564	524
Q25	25.23	23.59	32.57	30.99	21.79
Q75	71.46	65.38	58.47	48.98	39.36
CV	0.62	0.61	0.38	0.36	0.39

Statistic	IN5B-B1	IN5B-B2	NY5B-B1	WI5B-B1	WI5B-B2
Mean	741.75	1,067.52	523.69	1,044.63	863.83
Std Dev	949.82	1,500.87	430.82	1,296.09	1,076.46
Median	228.50	463.35	378.91	385.90	234.90
Minimum	-284.20	-226.60	34.05	-14.60	-204.80
Maximum	5,809.50	11,093.10	2,183.82	8,195.10	5,311.90
N	521	552	467	582	545
N<0	49	24	0	3	8
N>0	472	528	467	579	537
Q25	48.70	85.50	165.46	67.68	72.90
Q75	1,380.80	1,519.30	815.87	1,654.68	1,470.30
CV	1.28	1.41	0.82	1.24	1.25

Table D-3. H₂S emission summary statistics for mechanically ventilated dairy
barns (g d⁻¹).

Table D-4. H ₂ S emission summary statistics for mechanically ventilated dairy
barns (mg d ⁻¹ hd ⁻¹).

Statistic	IN5B-B1	IN5B-B2	NY5B-B1	WI5B-B1	WI5B-B2
Mean	882.68	1,227.17	1,117.85	4,959.69	2,430.89
Std Dev	1,123.02	1,715.62	917.68	6,137.03	3,033.68
Median	272.86	543.04	816.72	1,803.41	663.56
Minimum	-356.06	-261.36	72.59	-69.19	-576.90
Maximum	6,685.27	12,605.80	4,810.18	38,839.34	14,963.10
N	521	552	465	582	545
N<0	49	24	0	3	8
N>0	472	528	465	579	537
Q25	56.43	99.94	348.01	317.31	208.38
Q75	1,694.23	1,789.39	1,731.89	7,842.06	4,141.69
CV	1.27	1.40	0.82	1.24	1.25

Table D-5. PM₁₀ emission summary statistics for mechanically ventilated dairy barns (g d⁻¹).

Statistic	IN5B-B1	IN5B-B2	NY5B-B1	WI5B-B1	WI5B-B2
Mean	9.73	130.40	223.73	363.37	562.91
Std Dev	236.15	209.40	337.46	578.04	818.39
Median	18.10	141.52	72.89	117.65	169.16
Minimum	-1,376.97	-1,161.89	-406.14	-553.04	-462.86
Maximum	2,069.94	1,083.87	2,101.45	3,888.47	4,553.70
N	367	348	328	400	362
N<0	158	71	8	37	9
N>0	209	277	320	363	353
Q25	-82.23	20.08	41.10	50.09	81.16
Q75	109.19	230.37	266.11	349.08	709.92
CV	24.26	1.61	1.51	1.59	1.45

Statistic	IN5B-B1	IN5B-B2	NY5B-B1	WI5B-B1	WI5B-B2
Mean	12.49	150.98	484.46	1,751.03	1,571.90
Std Dev	282.64	240.94	730.05	2,761.49	2,283.70
Median	20.97	162.03	153.71	548.83	483.51
Minimum	-1,625.70	-1,311.39	-858.64	-2,621.05	-1,168.84
Maximum	2,530.49	1,266.20	4,424.10	17,594.87	12,827.33
N	367	348	326	400	362
N<0	158	71	8	37	9
N>0	209	277	318	363	353
Q25	-97.97	24.26	87.53	237.40	233.43
Q75	132.50	263.25	572.32	1,692.10	1,927.75
CV	22.62	1.60	1.51	1.58	1.45

Table D-6. PM₁₀ emission summary statistics for mechanically ventilated dairy barns (mg d⁻¹ hd⁻¹).

Table D-7. PM _{2.5} emission summary statistics	s for mechanically ventilated dairy
barns (g d ⁻¹)	

Statistic	IN5B-B1	IN5B-B2	NY5B-B1	WI5B-B1	WI5B-B2
Mean	21.18	44.96	36.66	141.51	186.74
Std Dev	114.16	129.13	29.81	145.45	203.76
Median	32.61	69.94	27.52	86.92	95.71
Minimum	-329.99	-304.84	-3.16	-27.13	-4.26
Maximum	208.10	206.93	113.84	538.99	805.76
N	28	29	53	53	45
N<0	11	10	2	7	1
N>0	17	19	51	46	44
Q25	-30.32	-21.95	11.36	26.37	33.73
Q75	103.66	147.51	59.75	217.78	265.95
CV	5.39	2.87	0.81	1.03	1.09

Table D-8. PM2.5 emission summary statistics for mechanically ventilated dairy
barns (mg d-1 hd-1).

Statistic	IN5B-B1	IN5B-B2	NY5B-B1	WI5B-B1	WI5B-B2
Mean	25.89	52.40	77.60	662.17	529.22
Std Dev	139.99	151.79	62.99	672.35	576.34
Median	39.17	81.80	60.21	413.36	275.03
Minimum	-406.89	-360.33	-6.56	-128.58	-12.58
Maximum	255.96	239.78	240.69	2,427.87	2,269.74
N	28	29	53	53	45
N<0	11	10	2	7	1
N>0	17	19	51	46	44
Q25	-35.79	-25.82	23.97	124.95	99.20
Q75	126.96	172.22	126.32	981.01	749.17
CV	5.41	2.90	0.81	1.02	1.09

Statistic IN5B-B1 IN5B-B2 NY5B-B1 WI5B-B1 W Mean 347.60 328.95 218.66 849.92 8 Std Dev 333.86 273.76 308.10 827.35 9 Median 310.35 267.19 208.45 505.92 4	15B-B2 78.88 43.01
Mean 347.60 328.95 218.66 849.92 8 Std Dev 333.86 273.76 308.10 827.35 9 Median 310.35 267.19 208.45 505.92 4	78.88 43.01
Std Dev 333.86 273.76 308.10 827.35 9 Median 310.35 267.19 208.45 505.92 4	43.01
Median 310 35 267 19 208 45 505 92 4	
	51.11
Minimum -158.33 -88.83 -505.43 -450.25 2	14.99
Maximum 1,841.13 1,225.92 1,572.59 3,302.96 4,	198.23
N 77 67 41 82	76
N<0 9 2 5 6	0
N>0 68 65 36 76	76
Q25 95.63 127.69 100.53 286.11 2	54.70
Q75 531.98 437.08 285.95 1,615.04 1,	173.63
CV 0.96 0.83 1.41 0.97	1.07

Table D-9. TSP emission summary statistics for mechanically ventilated dairybarns (g d-1).

Table D-10. TSP emission summary statistics for mechanically ventilated dairy
barns (mg d⁻¹ hd⁻¹).

Statistic	IN5B-B1	IN5B-B2	NY5B-B1	WI5B-B1	WI5B-B2
Mean	423.48	385.29	466.35	4,195.58	2,436.47
Std Dev	406.65	317.70	654.51	4,161.36	2,600.30
Median	390.40	325.05	452.18	2,597.63	1,290.02
Minimum	-188.48	-101.17	-1,061.83	-2,133.91	42.23
Maximum	2,248.03	1,410.72	3,338.84	17,853.82	11,826.00
Ν	77	67	41	82	76
N<0	9	2	5	6	0
N>0	68	65	36	76	76
Q25	113.30	146.73	217.59	1,408.67	701.60
Q75	654.34	519.21	583.12	7,785.34	3,169.67
CV	0.96	0.82	1.40	0.99	1.07

D.1.2 Environmental

Parameter	Statistic	IN5B-B1	IN5B-B2	NY5B-B1	WI5B-B1	WI5B-B2
	Mean	833.33	863.76	466.99	211.12	354.52
	Std Dev	21.95	17.2	11.14	9.9	14.43
	Median	836	866	467	211	355
	Minimum	767	789	435	183	324
Inventory	Maximum	883	901	503	236	398
(bd)	Ν	761	761	728	783	783
(nu)	N<0	0	0	0	0	0
	N>0	761	761	728	783	783
	Q25	818	854	460	211	345.5
	Q75	851	876	474	216	355
	CV	0.03	0.02	0.02	0.05	0.04
	Mean	635	635	577.71	703	703
	Std Dev			0.8		<u>_</u>
	Median			578		
	Minimum			576		
Average	Maximum			580		
Animal Mass	N			728		
(kg)	N<0			0		
	N>0			728		
	Q25			577		
	Q75			578		
	CV			0		
	Mean	529.17	548.49	269.79	148.42	249.23
	Std Dev	13.94	10.92	6.45	6.97	10.16
	Median	530.86	549.91	269.93	148.33	249.57
	Minimum	487.05	501.02	251.87	128.65	227.77
Live animal	Maximum	560.71	572.14	291.24	165.91	279.79
weight (Mg)	N	761	761	728	781	781
weight (wig)	N<0	0	0	0	0	0
	N>0	761	761	728	781	781
	Q25	519.43	542.29	265.18	148.33	242.54
	Q75	540.39	556.26	273.97	151.85	249.57
	CV	0.03	0.02	0.02	0.05	0.04
	Mean	11.78	12.16	12.89	10.56	10.55
	Std Dev	8.25	8.08	6.51	8.29	8.47
	Median	12.9	13.1	12.6	10.6	10.7
	Minimum	-9.9	-9.2	-1.8	-6.3	-7.4
Exhaust	Maximum	26.4	26.8	28.6	25.8	26.4
Temperature	N	721	721	701	723	723
(°C)	N<0	66	58	6	92	102
	N>0	655	663	695	631	621
	Q25	5.3	5.9	7.6	3.6	3.5
	Q75	18.6	18.9	18.3	18.1	18.4
	CV	0.7	0.66	0.51	0.79	0.8

Table D-11. Environmental parameter summary statistics for mechanically ventilated dairy barns.

Parameter	Statistic	IN5B-B1	IN5B-B2	NY5B-B1	WI5B-B1	WI5B-B2
	Mean	74.97	75.38	72.79	69	66.79
	Std Dev	7.36	7.37	7.5	9.36	10.41
	Median	75.3	75.5	73.7	70.5	67.9
	Minimum	53.2	53.9	39.3	37.6	30.9
Exhaust	Maximum	89.5	88.1	86.9	85.5	87.8
Relative	N	714	717	683	644	705
Humidity (%)	N<0	0	0	0	0	0
	N>0	714	717	683	644	705
	Q25	69.6	70	68.9	63.6	60.6
	Q75	81.3	81.9	77.7	76.1	73.7
	CV	0.1	0.1	0.1	0.14	0.16
	Mean	210.14	204.68	135.03	131.28	150.04
	Std Dev	56.09	58.96	107.61	87.81	105.16
	Median	244.00	238.00	103.00	116.00	134.00
	Minimum	67.70	47.00	20.00	16.90	26.10
A :	Maximum	286.00	278.00	312.00	355.00	378.00
AIRTIOW (dsm ³ s ⁻¹)	Ν	673	693	649	630	589
(usin's)	N<0	0	0	0	0	0
	N>0	673	693	649	630	589
	Q25	146	144	33.3	49.025	40
	Q75	256.00	252.00	251.00	200.75	234.00
	CV	0.27	0.29	0.80	0.67	0.70

D.1.3 Ambient

Parameter	Statistic	IN5B	NY5B	WI5B
	Mean	12.20	11.13	7.21
	Std Dev	10.43	10.11	12.08
	Median	14.7	11.7	9.0
	Minimum	-22.4	-11.5	-23.5
Ambient	Maximum	29.4	31.6	27.9
Temperature	Ν	663	692	672
(°C)	N<0	110	116	192
	N>0	553	576	480
	Q25	3.8	2.6	-1.4
	Q75	21.2	20.2	17.9
	CV	0.85	0.91	1.67
	Mean	67.90	67.81	68.40
	Std Dev	8.31	10.56	11.39
	Median	68.7	68.9	69.5
	Minimum	40.7	29.4	24.4
Ambient	Maximum	93.0	91.8	91.7
Relative	N	673	674	672
Humidity (%)	N<0	0	0	0
	N>0	673	674	672
	Q25	62.4	61.0	61.9
	Q75	73.8	75.3	76.0
	CV	0.12	0.16	0.17

Table D-12. Ambient parameter summary statistics for mechanically ventilateddairy barns.

D.2 Milking Centers

D.2.1 Emissions

Table D-13 NH ₂ emission summar	v statistics for milking	n centers	$(ka d^{-1})$
	y statistics for mining	j contors	(ng a).

Statistic	IN5B-MC	NY5B-MC
Mean	8.81	5.76
Std Dev	7.35	2.07
Median	7.36	5.68
Minimum	-0.66	1.27
Maximum	35.89	13.69
Ν	338	385
N<0	13	0
N>0	325	385
Q25	2.37	4.31
Q75	14.26	6.93
CV	0.83	0.36

Table D-14. NH₃ emission summary statistics for milking centers (g d⁻¹ hd⁻¹).

Statistic	IN5B-MC	NY5B-MC
Mean	15.67	30.29
Std Dev	13.08	10.92
Median	13.10	29.87
Minimum	-1.17	6.66
Maximum	63.87	72.07
N	338	385
N<0	13	0
N>0	325	385
Q25	4.21	22.68
Q75	25.37	36.45
CV	0.83	0.36

Table D-15. H₂S emission summary statistics for milking centers (g d⁻¹).

Statistic	IN5B-MC	NY5B-MC
Mean	1,207.31	129.49
Std Dev	2,122.15	113.00
Median	305.05	92.13
Minimum	-478.50	7.20
Maximum	17,787.00	628.84
N	400	551
N<0	79	0
N>0	321	551
Q25	12.90	46.04
Q75	1,816.55	170.65
CV	1.76	0.87

Statistic	IN5B-MC	NY5B-MC
Mean	2,148.23	681.54
Std Dev	3,776.07	594.75
Median	542.79	484.91
Minimum	-851.42	37.90
Maximum	31,649.47	3,309.71
N	400	551
N<0	79	0
N>0	321	551
Q25	22.95	242.32
Q75	3,232.30	898.16
CV	1.76	0.87

Table D-16. H₂S emission summary statistics for milking centers (mg d⁻¹ hd⁻¹).

Table D-17. PM emission summary statistics for milking centers (g d⁻¹).

Statistic	NY5B-MC, PM10	NY5B-MC, PM2.5	NY5B-MC, TSP
Mean	89.97	26.56	115.88
Std Dev	73.40	27.50	95.69
Median	65.31	23.70	100.22
Minimum	-81.12	2.80	-79.12
Maximum	484.51	188.76	321.67
Ν	438	44	42
N<0	3	0	3
N>0	435	44	39
Q25	41.86	13.53	50.29
Q75	113.41	29.49	182.55
CV	0.82	1.04	0.83

Table D-18. PM emission summary statistics for milking centers (mg d⁻¹ hd⁻¹).

Statistic	NY5B-MC, PM10	NY5B-MC, PM2.5	NY5B-MC, TSP
Mean	473.52	139.78	609.90
Std Dev	386.31	144.73	503.63
Median	343.71	124.76	527.46
Minimum	-426.93	14.72	-416.41
Maximum	2,550.03	993.45	1,692.99
Ν	438	44	42
N<0	3	0	3
N>0	435	44	39
Q25	220.29	71.23	264.71
Q75	596.88	155.21	960.77
CV	0.82	1.04	0.83
D.2.2 Environmental

Parameter	Statistic	IN5B-MC	NY5B-MC
Inventory (hd)	Mean	72	190
	Mean	635	577.71
	Std Dev		0.80
	Median		578.0
	Minimum		576.0
	Maximum		580.0
Average Animai	N		728
iviass (kg)	N<0		0
	N>0		728
	Q25		577.0
	Q75		578.0
	CV		0.00
	Mean	356.87	109.76
	Std Dev	.00	0.15
	Median	356.87	109.82
	Minimum	356.87	109.44
Live enimel	Maximum	356.87	110.20
Live animai	N	761	728
weight (kg)	N<0	0	0
	N>0	761	728
	Q25	356.87	109.63
	Q75	356.87	109.82
	CV	0.00	0.00
	Mean	13.21	12.83
	Std Dev	7.66	6.76
	Median	14.8	12.4
	Minimum	-7.0	-4.6
Exhaust Tomporaturo	Maximum	27.1	28.8
(°C)	N	721	701
(0)	N<0	28	9
	N>0	693	692
	Q25	6.2	7.3
	Q75	19.5	18.5
	CV	0.58	0.53
	Mean	74.18	73.81
	Std Dev	10.64	8.45
	Median	75.2	74.2
	Minimum	41.1	30.7
Exhaust Relative	Maximum	92.7	91.0
Humidity (%)	N	697	547
	N<0	0	0
	N>0	697	547
	Q25	67.1	69.7
	Q75	83.4	79.9

Table D-19. Environmental parameter summary statistics for milking centers.

Parameter	Statistic	IN5B-MC	NY5B-MC
	CV	0.14	0.11
	Mean	183.33	39.90
	Std Dev	43.13	26.40
	Median	200.00	35.60
	Minimum	74.10	6.70
٨: الم	Maximum	241.00	84.40
AITTIOW (dcm2c 1)	Ν	471	692
(051135-1)	N<0	0	0
	N>0	471	692
	Q25	148.5	15.7
	Q75	220.00	73.00
	CV	0.24	0.66

D.2.3 Ambient

Table D-20. Ambient parameter summary statistics for milking centers.

Parameter	Statistic	IN5B	NY5B
	Mean	12.20	11.13
	Std Dev	10.43	10.11
	Median	14.7	11.7
	Minimum	-22.4	-11.5
Ambiant	Maximum	29.4	31.6
Amplent Tomporaturo (°C)	N	663	692
remperature (C)	N<0	110	116
	N>0	553	576
	Q25	3.8	2.6
	Q75	21.2	20.2
	CV	0.85	0.91
	Mean	67.90	67.81
	Std Dev	8.31	10.56
	Median	68.7	68.9
	Minimum	40.7	29.4
Ambiant Dalativa	Maximum	93.0	91.8
	N	673	674
Humaily (%)	N<0	0	0
	N>0	673	674
	Q25	62.4	61.0
	Q75	73.8	75.3
	CV	0.12	0.16

D.3 Naturally Ventilated Barns

D.3.1 Emissions

Statistic	CA5B-B1	CA5B-B2	WA5B-B2	WA5B-B4
Mean	2.95	2.76	26.60	54.65
Std Dev	4.11	3.76	29.43	31.64
Median	2.54	2.67	21.91	45.13
Minimum	-8.57	-10.80	-156.36	9.03
Maximum	21.20	15.40	96.60	170.93
N	191	223	125	99
N<0	37	42	2	0
N>0	154	181	123	99
Q25	0.61	0.59	12.89	31.83
Q75	4.92	4.77	36.98	70.84
CV	1.39	1.36	1.11	0.58

Table D-21. NH₃ emission summary statistics for naturally ventilated dairy barns (kg d⁻¹).

Table D-22. NH₃ emission summary statistics for naturally ventilated dairy barns (g d⁻¹ hd⁻¹).

Statistic	CA5B-B1	CA5B-B2	WA5B-B2	WA5B-B4
Mean	5.59	4.98	51.69	56.51
Std Dev	7.76	6.75	57.53	33.20
Median	5.01	4.83	41.49	47.99
Minimum	-18.20	-19.64	-305.38	9.48
Maximum	36.93	28.71	188.67	174.24
N	191	223	125	99
N<0	37	42	2	0
N>0	154	181	123	99
Q25	1.11	1.09	25.15	33.31
Q75	9.85	8.63	71.38	72.51
CV	1.39	1.36	1.11	0.59

Statistic	CA5B-B1	CA5B-B2	WA5B-B2	WA5B-B4
Mean	487.15	669.69	555.61	1,130.95
Std Dev	741.02	515.83	1,746.24	3,503.40
Median	569.50	680.00	192.14	690.94
Minimum	-2,420.00	-609.00	-5,400.93	-11,640.14
Maximum	3,780.00	2,640.00	6,513.61	17,960.29
N	212	269	116	104
N<0	37	18	45	30
N>0	175	251	71	74
Q25	97.28	316.00	-224.53	-204.79
Q75	838.50	927.00	1,058.48	2,099.26
CV	1.52	0.77	3.14	3.10

Table D-23. H₂S emission summary statistics for naturally ventilated dairy barns (g d⁻¹).

Table D-24. H ₂ S emission summary statistics for	naturally v	entilated dairy	barns
(mg d ⁻¹ hd ⁻¹).			

Statistic	CA5B-B1	CA5B-B2	WA5B-B2	WA5B-B4
Mean	963.53	1,209.21	1,082.24	1,145.11
Std Dev	1,454.39	941.36	3,406.70	3,579.39
Median	1,148.73	1,255.81	373.21	693.25
Minimum	-4,708.17	-1,067.03	-10,548.68	-12,291.59
Maximum	7,354.09	4,817.52	12,721.89	17,888.74
N	212	269	116	104
N<0	37	18	45	30
N>0	175	251	71	74
Q25	183.69	530.88	-426.06	-217.13
Q75	1,647.26	1,693.63	2,027.32	2,176.33
CV	1.51	0.78	3.15	3.13

Table D-25. PM₁₀ emission summary statistics for naturally ventilated dairy barns (g d⁻¹).

Statistic	CA5B-B1	CA5B-B2	WA5B-B2	WA5B-B4
Mean	-325.80	593.25	4,497.74	11,391.71
Std Dev	1,108.87	2,144.54	17,839.79	24,574.35
Median	-302.00	11.60	1,590.37	4,958.78
Minimum	-5,730.00	-7,730.00	-20,331.95	-7,473.60
Maximum	6,140.00	14,400.00	353,457.48	367,744.48
N	520	451	452	418
N<0	372	221	53	14
N>0	148	230	399	404
Q25	-797.25	-373.50	640.75	1,342.88
Q75	90.50	1,035.00	5,104.78	13,052.63
CV	-3.40	3.61	3.97	2.16

Statistic	CA5B-B1	CA5B-B2	WA5B-B2	WA5B-B4
Mean	-636.79	1,040.62	8,711.99	11,794.47
Std Dev	2,120.47	3,785.44	34,798.09	25,929.03
Median	-596.11	20.21	3,049.49	5,077.18
Minimum	-11,147.86	-13,513.99	-40,909.35	-7,633.91
Maximum	11,455.22	26,815.64	690,346.65	392,470.09
N	520	451	452	418
N<0	372	221	53	14
N>0	148	230	399	404
Q25	-1,470.78	-666.53	1,254.50	1,443.15
Q75	170.73	1,942.62	9,942.48	13,316.10
CV	-3.33	3.64	3.99	2.20

Table D-26. PM₁₀ emission summary statistics for naturally ventilated dairy barns (mg d⁻¹ hd⁻¹).

Table D-27. PM _{2.5} emission su	immary statistics for	naturally	ventilated dairy	barns
	(g d⁻¹).			

Statistic	CA5B-B1	CA5B-B2	WA5B-B2	WA5B-B4
Mean	-905.01	-607.24	2,719.21	1,863.35
Std Dev	1,422.96	1,570.36	1,828.35	1,779.09
Median	-574.00	-303.00	2,818.24	1,362.29
Minimum	-9,200.00	-9,930.00	347.76	-676.29
Maximum	101.00	458.00	7,247.60	6,474.69
N	47	54	37	37
N<0	44	40	0	6
N>0	3	14	37	31
Q25	-919.50	-583.25	1,197.81	681.90
Q75	-338.50	28.33	3,632.30	3,090.90
CV	-1.57	-2.59	0.67	0.95
		•	•	

Table D-28. PM_{2.5} emission summary statistics for naturally ventilated dairy barns (mg d⁻¹ hd⁻¹).

Statistic	CA5B-B1	CA5B-B2	WA5B-B2	WA5B-B4
Mean	-1,831.84	-1,164.93	5,250.37	1,903.81
Std Dev	3,028.26	3,049.97	3,509.23	1,819.72
Median	-1,125.49	-568.84	5,504.37	1,314.33
Minimum	-19,532.91	-19,356.73	679.22	-679.00
Maximum	196.50	825.23	13,991.51	6,829.84
N	47	54	37	37
N<0	44	40	0	6
N>0	3	14	37	31
Q25	-1,823.11	-1,056.61	2,330.37	669.18
Q75	-669.58	41.87	6,958.43	3,263.89
CV	-1.65	-2.62	0.67	0.96

Statistic	CA5B-B1	CA5B-B2	WA5B-B2	WA5B-B4
Mean	4,766.04	8,132.82	19,331.70	47,389.03
Std Dev	7,250.11	8,706.46	25,603.35	71,484.69
Median	2,530.00	5,580.00	8,286.13	25,605.49
Minimum	-2,060.00	-236.00	1,413.48	4,817.02
Maximum	45,700.00	43,400.00	122,272.14	374,175.36
N	71	59	38	38
N<0	7	4	0	0
N>0	64	55	38	38
Q25	570.00	1,615.00	4,547.87	9,331.36
Q75	6,530.00	13,550.00	25,279.09	51,921.98
CV	1.52	1.07	1.32	1.51

Table D-29. TSP emission summary statistics for naturally ventilated dairy barns (g d^{-1}).

Table D-30. TSP emission summary statistics for naturally ventilated dairy barns (mg d⁻¹ hd⁻¹).

Statistic	CA5B-B1	CA5B-B2	WA5B-B2	WA5B-B4
Mean	9,113.52	14,642.34	37,190.29	49,099.58
Std Dev	13,726.86	15,653.06	48,828.63	74,726.49
Median	4,922.18	10,730.77	16,143.11	25,774.94
Minimum	-4,364.41	-425.99	2,760.70	5,007.30
Maximum	86,389.41	81,886.79	230,702.15	388,551.77
N	71	59	38	38
N<0	7	4	0	0
N>0	64	55	38	38
Q25	1,108.95	2,909.91	8,745.90	8,889.25
Q75	12,783.26	22,666.73	48,836.86	54,748.26
CV	1.51	1.07	1.31	1.52

D.3.2 Environmental

Parameter	Statistic	CA5B-B1	CA5B-B2	WA5B-B2	WA5B-B4
	Mean	519.19	558.07	513.83	963.20
	Std Dev	39.80	26.62	7.20	48.98
	Median	519.0	555.0	512.0	961.0
	Minimum	416.0	501.0	492.0	739.0
	Maximum	588.0	607.0	530.0	1066.0
Inventory	N	859	859	734	734
(nd)	N<0	0	0	0	0
	N>0	859	859	734	734
	Q25	506.5	540.0	512.0	937.0
	Q75	548.5	580.5	517.0	993.8
	CV	0.08	0.05	0.01	0.05
Average Animal Mass (kg)	Mean	635	635	635	635
	Mean	329.68	354.37	326.28	611.63
	Std Dev	25.27	16.90	4.57	31.10
	Median	329.57	352.43	325.12	610.24
	Minimum	264.16	318.14	312.42	469.27
	Maximum	373.38	385.45	336.55	676.91
Live animal weight	N	859	859	734	734
(Mg)	N<0	0	0	0	0
	N>0	859	859	734	734
	Q25	321.63	342.90	325.12	595.00
	Q75	348.30	368.62	328.30	631.03
	CV	0.08	0.05	0.01	0.05
	Mean	18.75	18.00	11.41	11.90
•	Std Dev	6.67	6.62	8.89	8.00
	Median	18.8	17.4	10.4	10.8
	Minimum	5.2	5.0	-12.1	-5.6
Evhaust Tamparatura	Maximum	34.5	33.9	31.9	31.3
exhaust remperature	N	673	795	613	590
(C)	N<0	0	0	49	28
	N>0	673	795	564	562
	Q25	13.2	12.4	5.0	6.1
	Q75	24.5	23.6	18.6	17.7
	CV	0.36	0.37	0.78	0.67
	Mean	58.49	57.89	45.86	45.16
	Std Dev	13.87	13.09	13.79	13.70
	Median	58.2	57.0	44.0	43.2
	Minimum	28.0	27.6	0.0	0.0
Exhaust Polativo Humidity	Maximum	88.4	84.8	80.2	78.6
(%)	N	704	796	678	678
(/0)	N<0	0	0	0	0
	N>0	704	796	678	678
	Q25	47.2	47.6	36.4	35.5
	Q75	69.2	68.6	51.7	51.9
	CV	0.24	0.23	0.30	0.30

Table D-31. Environmental parameter summary statistics for naturally ventilated
dairy barns.

Parameter	Statistic	CA5B-B1	CA5B-B2	WA5B-B2	WA5B-B4
	Mean	1,151.61	1,151.61	886.51	882.65
	Std Dev	694.46	694.46	509.85	542.87
	Median	1,020.00	1,020.00	851.00	835.00
	Minimum	225.00	225.00	0.00	0.00
Airflow	Maximum	6,230.00	6,230.00	2,790.00	3,100.00
AITHOW (dom2a_1)	N	766	766	677	677
(USIII3S-1)	N<0	0	0	0	0
	N>0	766	766	677	677
	Q25	667.5	667.5	475	438
	Q75	1,410.00	1,410.00	1,190.00	1,240.00
	CV	0.60	0.60	0.58	0.62

D.3.3 Ambient

Table D-32. Ambient parameter summary statistics for naturally ventilated dairy barns.

Parameter	Statistic	CA5B	WA5B
	Mean	16.34	10.07
	Std Dev	6.50	9.22
	Median	15.8	9.1
	Minimum	3.7	-11.0
Ambient Temperature	Maximum	31.7	33.2
(°C)	N	778	670
(C)	N<0	0	87
	N>0	778	583
X	Q25	10.9	3.3
	Q75	21.8	15.3
	CV	0.40	0.92
	Mean	62.01	45.81
	Std Dev	13.74	15.00
	Median	61.5	42.9
	Minimum	29.5	21.7
Ambient Polative	Maximum	91.2	87.8
Humidity (%)	N	785	671
Furnitierty (76)	N<0	0	0
·	N>0	785	671
	Q25	51.4	34.9
	Q75	73.4	52.1
	CV	0.22	0.33
	Mean	1.97	2.59
	Std Dev	1.17	1.63
	Median	1.8	2.2
	Minimum	0.3	0.4
	Maximum	10.1	10.2
Wind Speed (ms ⁻¹)	N	770	671
	N<0	0	0
	N>0	770	671
	Q25	1.2	1.5
	Q75	2.4	3.2
	CV	0.60	0.63

D.4 Open sources

D.4.1 Emissions

Statistic	IN5A	WI5A	TX5A
Mean	19.83	11.45	754.97
Std Dev	19.04	16.35	317.45
Median	17.46	6.27	698.23
Minimum	-11.73	-3.55	240.56
Maximum	92.30	79.00	1,719.29
N	133	28	73
N<0	17	4	0
N>0	116	24	73
Q25	5.93	2.46	582.16
Q75	29.78	13.49	874.68
CV	0.96	1.43	0.42

Table D-33. NH₃ emission summary statistics for dairy open sources (kg d⁻¹).

Table D-34. NH₃ emission summary statistics for dairy open sources (g d⁻¹ m⁻²).

Statistic	IN5A	WI5A	TX5A
Mean	2.01	1.61	3.12
Std Dev	1.93	2.31	1.31
Median	1.77	0.88	2.89
Minimum	-1.19	-0.50	0.99
Maximum	9.34	11.14	7.10
N	133	28	73
N<0	17	4	0
N>0	116	24	73
Q25	0.60	0.35	2.41
Q75	3.01	1.90	3.61
CV	0.96	1.43	0.42

Statistic	IN5A	WI5A	TX5A
Mean	9.39	0.42	10.69
Std Dev	8.20	0.89	4.32
Median	9.09	0.05	9.93
Minimum	-0.06	-0.05	4.84
Maximum	35.24	3.08	29.53
N	62	12	49
N<0	3	3	0
N>0	59	9	49
Q25	1.54	0.01	8.14
Q75	13.02	0.32	11.84
CV	0.87	2.11	0.40

Table D-35. H₂S emission summary statistics for dairy open sources (kg d⁻¹).

Table D-36. H₂S emission summary statistics for dairy open sources (g d⁻¹ hd⁻¹).

	Statistic	IN5A	WI5A	TX5A
	Mean	0.95	0.06	44.18
	Std Dev	0.83	0.13	17.84
	Median	0.92	0.01	41.03
	Minimum	-0.01	-0.01	19.99
	Maximum	3.57	0.43	122.03
	N	62	12	49
	N<0	3	3	0
	N>0	59	9	49
	Q25	0.16	0.00	33.62
	Q75	1.32	0.05	48.94
	CV	0.87	2.11	0.40
X				

D.4.2 Environmental

Mean		WI5A
mean	7.43	7.02
Std Dev	0.52	0.04
Median	7.17	7.01
Minimum	7.02	6.98
Maximum	8.37	7.09
N	29	6
N<0	0	0
N>0	29	6
Q25	7.06	7.00
Q75	8.19	7.04
CV	0.07	0.01
Mean	21.57	5.22
Std Dev	4.64	1.27
Median	22.18	4.75
Minimum	11.27	4.57
Maximum	27.63	7.80
N	29	6
N<0	0	0
N>0	29	6
Q25	19.95	4.61
Q75	25.11	4.84
CV	0.22	0.24
	Minimum Maximum N N<0 N>0 Q25 Q75 CV Mean Std Dev Median Minimum Maximum Naximum N N<0 N>0 Q25 Q75 CV	Minimum 7.02 Maximum 8.37 N 29 N<0

Table D-37. Environmental parameter summary statistics for dairy open sources.

D.4.3 Ambient

Parameter	Statistic	IN5A	WI5A
	Mean	6.25	-3.41
	Std Dev	10.20	8.95
	Median	5.66	-1.80
	Minimum	-19.73	-21.50
Ambient Air	Maximum	27.11	16.75
Temperature	N	129	28
(°C)	N<0	38	16
	N>0	91	12
	Q25	-0.67	- <u>9</u> .36
	Q75	13.49	1.03
	CV	1.63	-2.62
	Mean	72.02	71.53
	Std Dev	12.20	9.85
	Median	73.85	71.33
	Minimum	38.05	46.35
Ambient Relative	Maximum	94.35	94.18
Humidity	N	133	28
(%)	N<0	0	0
	N>0	133	28
	Q25	64.20	66.32
	Q75	81.55	77.03
	CV	0.17	0.14
	Mean	3.28	3.45
	Std Dev	1.23	1.23
	Median	3.22	3.37
	Minimum	1.12	1.58
Wind Spood	Maximum	7.75	6.28
(ms^{-1})	N	133	28
• (1115)	N<0	0	0
	N>0	133	28
	Q25	2.32	2.56
	Q75	4.02	3.97
	CV	0.38	0.36

Table D-38. Ambient parameter summary statistics for dairy open sources.

	Parameter	Statistic	ΤΥΕΛ	
	Faranieter	Mean	14.26	
		Std Dov	14.20 Q /11	
		Median	0.41	
		Minimum	-5.64	
		Maximum	27.50	
	Ambient Air	N	62	
	Temperature (°C)		2	
		N>0	60	
		025	0.36	
		075	22.24	
		 	0.59	
		Mean	17.10	
		Std Dev	12 00	
		Median	12.33	
		Minimum	40.10 22.72	
		Maximum	78 51	
	Ambient Relative	N	62	
	Humidity (%)	IN N/c0	02	
			62	
		025	27.94	
		075	57.04	
			0.27	
		Moon	11 20	
	×C	Std Dov	E 96	
		Madian	10.26	
		Minimum	2.00	
		Maximum	2.09	
	Water Vapor	N	20.00	
	Deficit (hPa)		02	
			0 67	
			7 10	
		075	12 60	
			13.00	
			0.52	
	·		4.48	
		Stu Dev	1.10	
		Minimum	4.45	
	Wind Speed (ms ⁻¹)	Maximum	2.35	
			0./9 CT	
		IN NEO	/3	
			0	
			/3	
		Q25	3.69	
		Q/5	5.13	
		CV	0.25	

Table D-39. Ambient parameter summary statistics for dairy corrals.

Appendix E: Time Series Plots

Table of Contents

APPENDIX	E: TIME SERIES PLOTS	E-1
E.1 Mecl	nanically Ventilated Barns	E-5
E.1.1 E.1.2 E.1.3	Emissions Environmental Parameters Ambient Parameters	E-5 E-10 E-16
E.2 Milk	ing Centers	E-18
E.2.1 E.2.2 E.2.3	Emissions Environmental Parameters Ambient Parameters	E-18 E-23 E-31
E.3 Natu	rally Ventilated Barns	E-33
E.3.1 E.3.2 E.3.3	Emissions Environmental Parameters Ambient Parameters	E-33 E-38 E-44
E.4 Lago	oon E-47	
E.4.1 E.4.2 E.4.3	Emissions Environmental Parameters Ambient Parameters	E-47 E-51 E-53
E.5 Corra	al E-56	
E.5.1 E.5.2	Emissions Ambient Parameters	E-56 E-58

List of Figures

Figure E-1	. Trends in NH ₃ emissions at mechanically ventilated barns, by site, during the NAEMS monitoring period	E-5
Figure E-2.	. Trends in H ₂ S emissions at mechanically ventilated barns, by site, during the NAEMS monitoring period	E-6
Figure E-3.	Trends in PM ₁₀ emissions at mechanically ventilated barns, by site, during the NAEMS monitoring period	E-7
Figure E-4.	Trends in PM _{2.5} emissions at mechanically ventilated barns, by site, during the NAEMS monitoring period	E-8
Figure E-5.	Trends in TSP emissions at mechanically ventilated barns, by site, during the NAEMS monitoring period.	E-9
Figure E-6	Trends in inventory at mechanically ventilated barns, by site, during the NAEMS monitoring period 10	. E-
Figure E-7.	Trends in average animal mass at mechanically ventilated barns, by site, during the NAEMS monitori period.	ng -11
Figure E-8.	Trends in live animal weight at mechanically ventilated barns, by site, during the NAEMS monitoring period.	g -12
Figure E-9	. Trends in exhaust temperature at mechanically ventilated barns, by site, during the NAEMS monitorin period	ng -13
Figure E-10	0. Trends in exhaust relative humidity at mechanically ventilated barns, by site, during the NAEMS monitoring period.	-14
Figure E-1 Figure E-12	 Trends in airflow at mechanically ventilated barns, by site, during the NAEMS monitoring period. E Trends in ambient temperature at mechanically ventilated barns, by site, during the NAEMS 	-15
Figure E-1	monitoring period	-16
Figure E-14	E E E E E E E E E E E E E E E E E E E	-17 -18
Figure E-1:	5. NAEMS milking center H ₂ S emission trends, by site E	-19
Figure E-1	6. NAEMS milking center PM10 emission trends, by site E	-20
Figure E-1	7. NAEMS milking center PM _{2.5} emission trends, by siteE	-21
Figure E-1	8. NAEMS milking center TSP emission trends, by site	-22
Figure E-19 Figure E-20	9. Trends in inventory at milking centers, by site, during the NAEMS monitoring period E 0. Trends in average animal mass (kg) at milking centers, by site, during the NAEMS monitoring perio	-23 d.
Figure E-2	1 Trends in live animal weight at milking centers, by site, during the NAFMS monitoring period F	-24 -25
Figure E-2	2 Trends in exhaust temperature at milking centers, by site, during the NAEMS monitoring period.	-26
Figure E-2.	3. Trends in exhaust relative humidity at milking centers, by site, during the NAEMS monitoring perio E	d. -27
Figure E-24	4. Trends in ventilation rate at milking centers, by site, during the NAEMS monitoring period	-28
Figure E-2:	5. Trends in milk production (kg per day) at milking centers, by site, during the NAEMS monitoring period	-29
Figure E-2	 Trends in milk production (kg per day per head) at milking centers, by site, during the NAEMS monitoring period. 	-30
Figure E-2	7. Trends in ambient temperature at milking centers, by site, during the NAEMS monitoring period E	-31
Figure E-2	8. Trends in ambient relative humidity at milking centers, by site, during the NAEMS monitoring period. 	od. -32
Figure E-2	9. Trends in NH ₃ emissions at naturally ventilated barns, by site, during the NAEMS monitoring period. E	ł. -33
Figure E-3	0. Trends in H ₂ S emissions at naturally ventilated barns, by site, during the NAEMS monitoring period 34	.E-
Figure E-3	1. Trends in PM ₁₀ emissions at naturally ventilated barns, by site, during the NAEMS monitoring perioE	d. -35
Figure E-32	2. Trends in PM _{2.5} emissions at naturally ventilated barns, by site, during the NAEMS monitoring period.	od. -36

Figure E-33. Trends in TSP emissions at naturally ventilated barns, by site, during the NAEMS monitoring period.	7
Figure E-34. Trends in Inventory at naturally ventilated barns, by site, during the NAEMS monitoring period E-3	8
Figure E-35. Trends in average animal mass at naturally ventilated barns, by site, during the NAEMS monitoring period.	9
Figure E-36. Trends in live animal weight at naturally ventilated barns, by site, during the NAEMS monitoring period.	0
Figure E-37. Trends in exhaust temperature at naturally ventilated barns, by site, during the NAEMS monitoring period.	1
Figure E-38. Trends in exhaust relative humidity at naturally ventilated barns, by site, during the NAEMS monitoring period.	2
Figure E-39. Trends in airflow rate at naturally ventilated barns, by site, during the NAEMS monitoring period. E-4	3
Figure E-40. Trends in ambient temperature at naturally ventilated barns, by site, during the NAEMS monitoring period.	4
Figure E-41. Trends in ambient relative humidity at naturally ventilated barns, by site, during the NAEMS monitoring period.	5
Figure E-42. Trends in wind speed at naturally ventilated barns, by site, during the NAEMS monitoring period. E-4	6
Figure E-43. Trends in NH ₃ emissions at dairy lagoons, by site, during the NAEMS monitoring period E-4	7
Figure E-44. Trends in H ₂ S emissions at dairy lagoons, by site, during the NAEMS monitoring period E-4	8
Figure E-45. Trends in NH ₃ emissions normalized by surface area, by site, during the NAEMS monitoring period. E 49	<u>-</u>
Figure E-46. Trends in H ₂ S emissions normalized by surface area, by site, during the NAEMS monitoring period E 50	<u>i</u> –
Figure E-47. Trends in lagoon/basin temperature, by open source site, during the NAEMS monitoring period E-5	1
Figure E-48. Trends in pH, by open source site, during the NAEMS monitoring period E-5	2
Figure E-49. Trends in ambient temperature, by open source site, during the NAEMS monitoring period E-5	3
Figure E-50. Trends in ambient relative humidity, by open source site, during the NAEMS monitoring period E-5	4
Figure E-51. Trends in wind speed, by open source site, during the NAEMS monitoring period E-5	5
Figure E-52. Trends in corral NH ₃ emissions, during the NAEMS monitoring period E-5	6
Figure E-53. Trends in corral H ₂ S emissions, during the NAEMS monitoring period E-5	7
Figure E-54. Trends in corral ambient temperature, during the NAEMS monitoring period E-5	8
Figure E-55. Trends in corral ambient relative humidity, during the NAEMS monitoring period E-5	9
Figure E-56. Trends in corral wind speed, during the NAEMS monitoring period E-6	0
Figure E-57. Trends in corral water vapor deficit, during the NAEMS monitoring period E-6	1

E.1 Mechanically Ventilated Barns

E.1.1 Emissions

Figure E-1. Trends in NH₃ emissions at mechanically ventilated barns, by site, during the NAEMS monitoring period.

Figure E-2. Trends in H₂S emissions at mechanically ventilated barns, by site, during the NAEMS monitoring period.

Figure E-3. Trends in PM₁₀ emissions at mechanically ventilated barns, by site, during the NAEMS monitoring period.

Figure E-4. Trends in PM_{2.5} emissions at mechanically ventilated barns, by site, during the NAEMS monitoring period.

Figure E-5. Trends in TSP emissions at mechanically ventilated barns, by site, during the NAEMS monitoring period.

E.1.2 Environmental Parameters

Figure E-6. Trends in inventory at mechanically ventilated barns, by site, during the NAEMS monitoring period.

Figure E-7. Trends in average animal mass at mechanically ventilated barns, by site, during the NAEMS monitoring period.

Figure E-8. Trends in live animal weight at mechanically ventilated barns, by site, during the NAEMS monitoring period.

Figure E-9. Trends in exhaust temperature at mechanically ventilated barns, by site, during the NAEMS monitoring period.

Figure E-10. Trends in exhaust relative humidity at mechanically ventilated barns, by site, during the NAEMS monitoring period.

Figure E-11. Trends in airflow at mechanically ventilated barns, by site, during the NAEMS monitoring period.

E.1.3 Ambient Parameters

Figure E-12. Trends in ambient temperature at mechanically ventilated barns, by site, during the NAEMS monitoring period.

Figure E-13. Trends in ambient relative humidity at mechanically ventilated barns, by site, during the NAEMS monitoring period.

E.2 Milking Centers

E.2.1 Emissions

House × IN5B-MC □ NY5B-MC

Figure E-14. NAEMS milking center NH₃ emission trends, by site.

Figure E-15. NAEMS milking center H₂S emission trends, by site.

House × IN5B-MC □ NY5B-MC

Figure E-16. NAEMS milking center PM₁₀ emission trends, by site.

House × IN5B-MC □ NY5B-MC

Figure E-17. NAEMS milking center $PM_{2.5}$ emission trends, by site.

House × IN5B-MC □ NY5B-MC

Figure E-18. NAEMS milking center TSP emission trends, by site.

E.2.2 Environmental Parameters

House × IN5B-MC □ NY5B-MC

Figure E-19. Trends in inventory at milking centers, by site, during the NAEMS monitoring period.
620 Average animal mass (kg) 600 580 2008-01 2008-07 2009-01 2009-07 Date

House × IN5B-MC □ NY5B-MC

Figure E-20. Trends in average animal mass (kg) at milking centers, by site, during the NAEMS monitoring period.

House × IN5B-MC □ NY5B-MC

Figure E-21. Trends in live animal weight at milking centers, by site, during the NAEMS monitoring period.

30 × ×× П X × 20 × × × Exhaust temperature (C) X × × × ٥ × × \mathbf{h}^{o} 2 Þ 10 4 ¥ X 0 ×× х æ×××× × □× × ×× × × ××× 2008-01 2008-07 2009-01 2009-07 Date

House × IN5B-MC □ NY5B-MC

Figure E-22. Trends in exhaust temperature at milking centers, by site, during the NAEMS monitoring period.

8 ××× *× ×× Ċ 2 -80 46 80 ۸, × ά \times^{\times} Ы П × o Π Exhaust relative humidity (%) à Ь ₽ f G,C П Ē × п ٨ × x 曲 \times_{\times} Ь × × Х х $\times \times_{\times}$ × Q ≫ ×× × □ × × ×X × × Ж х × П × 40 п 2008-01 2009-01 2009-07 2008-07 Date

House × IN5B-MC □ NY5B-MC

Figure E-23. Trends in exhaust relative humidity at milking centers, by site, during the NAEMS monitoring period.

House × IN5B-MC □ NY5B-MC

Figure E-24. Trends in ventilation rate at milking centers, by site, during the NAEMS monitoring period.

House × IN5B-MC □ NY5B-MC

Figure E-25. Trends in milk production (kg per day) at milking centers, by site, during the NAEMS monitoring period.

Figure E-26. Trends in milk production (kg per day per head) at milking centers, by site, during the NAEMS monitoring period.

E.2.3 Ambient Parameters

House × IN5B-MC □ NY5B-MC

Figure E-27. Trends in ambient temperature at milking centers, by site, during the NAEMS monitoring period.

House × IN5B-MC □ NY5B-MC

Figure E-28. Trends in ambient relative humidity at milking centers, by site, during the NAEMS monitoring period.

E.3 Naturally Ventilated Barns

Figure E-29. Trends in NH₃ emissions at naturally ventilated barns, by site, during the NAEMS monitoring period.

Figure E-30. Trends in H₂S emissions at naturally ventilated barns, by site, during the NAEMS monitoring period.

Figure E-31. Trends in PM₁₀ emissions at naturally ventilated barns, by site, during the NAEMS monitoring period.

Figure E-32. Trends in PM_{2.5} emissions at naturally ventilated barns, by site, during the NAEMS monitoring period.

Figure E-33. Trends in TSP emissions at naturally ventilated barns, by site, during the NAEMS monitoring period.

E.3.2 Environmental Parameters

Figure E-34. Trends in Inventory at naturally ventilated barns, by site, during the NAEMS monitoring period.

Figure E-35. Trends in average animal mass at naturally ventilated barns, by site, during the NAEMS monitoring period.

Figure E-36. Trends in live animal weight at naturally ventilated barns, by site, during the NAEMS monitoring period.

Figure E-37. Trends in exhaust temperature at naturally ventilated barns, by site, during the NAEMS monitoring period.

Figure E-38. Trends in exhaust relative humidity at naturally ventilated barns, by site, during the NAEMS monitoring period.

Figure E-39. Trends in airflow rate at naturally ventilated barns, by site, during the NAEMS monitoring period.

E.3.3 Ambient Parameters

Figure E-40. Trends in ambient temperature at naturally ventilated barns, by site, during the NAEMS monitoring period.

Figure E-41. Trends in ambient relative humidity at naturally ventilated barns, by site, during the NAEMS monitoring period.

Figure E-42. Trends in wind speed at naturally ventilated barns, by site, during the NAEMS monitoring period.

E.4 Lagoon

E.4.1 Emissions

Figure E-43. Trends in NH₃ emissions at dairy lagoons, by site, during the NAEMS monitoring period.

Figure E-44. Trends in H₂S emissions at dairy lagoons, by site, during the NAEMS monitoring period.

Figure E-45. Trends in NH₃ emissions normalized by surface area, by site, during the NAEMS monitoring period.

Figure E-46. Trends in H₂S emissions normalized by surface area, by site, during the NAEMS monitoring period.

E.4.2 Environmental Parameters

Figure E-47. Trends in lagoon/basin temperature, by open source site, during the NAEMS monitoring period.

Figure E-48. Trends in pH, by open source site, during the NAEMS monitoring period.

E.4.3 Ambient Parameters

Figure E-49. Trends in ambient temperature, by open source site, during the NAEMS monitoring period.

Figure E-50. Trends in ambient relative humidity, by open source site, during the NAEMS monitoring period.

Figure E-51. Trends in wind speed, by open source site, during the NAEMS monitoring period.

E.5 Corral

E.5.1 Emissions

Figure E-52. Trends in corral NH₃ emissions, during the NAEMS monitoring period.

Figure E-53. Trends in corral H₂S emissions, during the NAEMS monitoring period.

E.5.2 Ambient Parameters

Figure E-54. Trends in corral ambient temperature, during the NAEMS monitoring period.

Figure E-55. Trends in corral ambient relative humidity, during the NAEMS monitoring period.

Figure E-56. Trends in corral wind speed, during the NAEMS monitoring period.

Figure E-57. Trends in corral water vapor deficit, during the NAEMS monitoring period.

Site × TX5A

Appendix F: Scatter Plots

Table of Contents

APPENDIX	F: SCATTER PLOTS	F-1
F.1 Mech	hanically Ventilated Barns	F-8
F.1.1 F.1.2	Environmental Parameters Ambient Parameters	F-8 F-39
F.2 Milk	ing Centers	F-50
F.2.1 F.2.2	Environmental Parameters Ambient Parameters	F-50 F-81
F.3 Natur	rally Ventilated Barns	F-92
F.3.1 F.3.2	Environmental Parameters Ambient Parameters	F-92 F-123
F.4 Lago	oon/basin	F-140
F.4.1 F.4.2	Environmental Parameters Ambient Parameters	F-140 F-145
F.5 Corra	al	F-152
F.5.1	Ambient Parameters	F-152

List of Tables

Table F-1: Relationship classification based on R ² values	
Table F-2. Summary of mechanically ventilated barn R ² values for environmental parameters	F-8
Table F-3. Summary of mechanically ventilated barn R ² values for ambient parameters	F-39
Table F-4. Summary of milking center barn R ² values for environmental parameters.	F-50
Table F-5. Summary of milking center barn R ² values for ambient parameters.	F-81
Table F-6. Summary of naturally ventilated barn R ² values for environmental parameters	F-92
Table F-7. Summary of naturally ventilated barn R ² values for ambient parameters	F-123
Table F-8. Summary of lagoons/basins R ² values for environmental parameters	F-140
Table F-9. Summary of lagoons/basins R ² values for ambient parameters	F-145
Table F-10. Summary of corral R ² values for ambient parameters.	

List of Figures

Figure F-1. Scatter plot of mechanically ventilated NH ₃ emissions versus inventory and scatter plot with regression F-
Figure F-2. Scatter plot of mechanically ventilated H-S emissions versus inventory and scatter plot with repression
Figure F-3. Scatter plot of mechanically ventilated PM ₁₀ emissions versus inventory and scatter plot with regression
Figure F-4 Scatter plot of mechanically ventilated PM2 5 emissions versus inventory and scatter plot with representation $E-1^2$
Figure FS scatter plot of mechanically ventilated TSP emissions versus inventory and scatter plot with regression F_{-1}
Figure 1-5. Scatter plot of mechanically ventilated NH2 emissions versus inventory and scatter plot with regression.
14
Figure F-7. Scatter plot of mechanically ventilated H ₂ S emissions versus average animal mass and scatter plot with regressionF 15
Figure F-8. Scatter plot of mechanically ventilated PM ₁₀ emissions versus average animal mass and scatter plot with regression.
Figure F-9 Scatter plot of mechanically ventilated PM2.5 emissions versus average animal mass and scatter plot with regression
F_1'
Figure E-10 Scatter plot of mechanically ventilated TSP emissions versus average animal mass and scatter plot with regression
Figure 1-10. Seater plot of mechanically ventilated 151 emissions versus average animal mass and seater plot with regression.
Figure E-11 Scatter plot of mechanically ventilated NH2 emissions versus live animal weight and scatter plot with repression E
10
Figure E-12 Scatter plot of mechanically ventilated HoS emissions versus live animal weight and scatter plot with regression E
20
20 Figure E 13 Souther plot of mechanically vertilated DM/s emissions versus live animal weight and souther plot with regression. E
Tigure 1-15. Scatter plot of incenanciary ventilated 1 will emissions versus rive animal weight and scatter plot with regressionF
21 Einme E. 14. Souther alot of machinedus sentiated DM2.5 amingione serves live animal weight and souther alot with macrossical
Figure F-14. Scatter plot of mechanically ventilated FM2.3 emissions versus five animal weight and scatter plot with regression.
Γ^{-2}
rigure F-15. Scatter plot of mechanically ventilated TSP emissions versus live animal weight and scatter plot with regressionF 23
Figure F-16. Scatter plot of mechanically ventilated NH3 emissions versus exhaust temperature and scatter plot with regression.F
24
Figure F-17. Scatter plot of mechanically ventilated H ₂ S emissions versus exhaust temperature and scatter plot with regression. F
25
Figure F-18. Scatter plot of mechanically ventilated PM ₁₀ emissions versus exhaust temperature and scatter plot with regression.
F-20
Figure F-19. Scatter plot of mechanically ventilated $PM_{2.5}$ emissions versus exhaust temperature and scatter plot with regression.
F-2'
Figure F-20. Scatter plot of mechanically ventilated TSP emissions versus exhaust temperature and scatter plot with regression. F
28
Figure F-21. Scatter plot of mechanically ventilated NH3 emissions versus exhaust relative humidity and scatter plot with
regression F-2
Figure F-22 Scatter plot of mechanically ventilated H ₂ S emissions versus exhaust relative humidity and scatter plot with
regression
Figure F-23 Scatter plot of mechanically ventilated PM_{10} emissions versus exhaust relative humidity and scatter plot with
repression F-3
Figure F-24 Scatter plot of mechanically ventilated PM2.5 emissions versus exhaust relative humidity and scatter plot with
repression F-2*

Figure F-25.	Scatter plot of mechanically ventilated TSP emissions versus exhaust relative humidity and scatter plot with	
-	regression.	F-33
Figure F-26.	Scatter plot of mechanically ventilated NH ₃ emissions versus airflow and scatter plot with regression	F-34
Figure F-27.	Scatter plot of mechanically ventilated H ₂ S emissions versus airflow and scatter plot with regression	F-35
Figure F-28.	Scatter plot of mechanically ventilated PM ₁₀ emissions versus airflow and scatter plot with regression	F-36
Figure F-29.	Scatter plot of mechanically ventilated PM2.5 emissions versus airflow and scatter plot with regression	F-37
Figure F-30.	Scatter plot of mechanically ventilated TSP emissions versus airflow and scatter plot with regression	F-38
Figure F-31.	Scatter plot of mechanically ventilated NH3 emissions versus ambient temperature and scatter plot with regressi	on.
ingule i sil		F-40
Figure F-32	Scatter plot of mechanically ventilated H2S emissions versus ambient temperature and scatter plot with regressic	n F-
ingule i 52.		
Figure F-33		ion
ingule i 55.		F-42
Figure F-34	Scatter plot of mechanically ventilated PM2 semissions versus ambient temperature and scatter plot with represe	sion
ingule i sh		F-43
Figure F-35	Scatter plot of mechanically ventilated TSP emissions versus ambient temperature and scatter plot with regressi	n n
i iguie i 55.	Source prot of meenaneury ventrated 151 emissions versus anotoni competatate and source prot with regressiv	F-44
Figure F-36	Scatter plot of mechanically ventilated NH2 emissions versus ambient relative humidity and scatter plot with	1
Figure F-50.	scatter piot of mechanically ventilated NT3 emissions versus anotent relative numberly and scatter piot with	E 15
Eiguro E 27	Regression.	1-45
Figure F-57.	Scater plot mechanically ventilated 1125 emissions versus anotent relative numberly and scatter plot with	E 16
E: E 20	regression.	г-40
Figure F-38.	Scatter plot of mechanically ventilated PM10 emissions versus amolent relative numberly and scatter plot with	E 47
E. E 30	regression.	Г-4/
Figure F-39.	Scatter plot of mechanically ventilated PM2.5 emissions versus ambient relative numidity and scatter plot with	F 40
E' E 40	regression.	F-48
Figure F-40.	Scatter plot of mechanically ventilated 1SP emissions versus ambient relative humidity and scatter plot with	- 10
	regression.	F-49
Figure F-41.	Scatter plot of milking center NH ₃ emissions versus inventory and seatter plot with regression	F-51
Figure F-42.	Scatter plot of milking center H ₂ S emissions versus inventory and scatter plot with regression	F-52
Figure F-43.	Scatter plot of milking center PM ₁₀ emissions versus inventory and scatter plot with regression	F-53
Figure F-44.	Scatter plot of milking center PM _{2.5} emissions versus inventory and scatter plot with regression	F-54
Figure F-45.	Scatter plot of milking center TSP emissions versus inventory and scatter plot with regression.	F-55
Figure F-46.	Scatter plot of milking center NH3 emissions versus average animal mass and scatter plot with regression	F-56
Figure F-47.	Scatter plot of milking center H ₂ S emissions versus average animal mass and scatter plot with regression	F-57
Figure F-48.	Scatter plot of milking center PM ₁₀ emissions versus average animal mass and scatter plot with regression	F-58
Figure F-49.	Scatter plot of milking center PM2.5 emissions versus average animal mass and scatter plot with regression	F-59
Figure F-50.	Scatter plot of milking center TSP emissions versus average animal mass and scatter plot with regression	F-60
Figure F-51.	Scatter plot of milking center NH3 emissions versus live animal weight and scatter plot with regression	F-61
Figure F-52.	Scatter plot of milking center H2S emissions versus live animal weight and scatter plot with regression	F-62
Figure F-53.	Scatter plot of milking center PM10 emissions versus live animal weight and scatter plot with regression	F-63
Figure F-54.	Scatter plot of milking center PM2.5 emissions versus live animal weight and scatter plot with regression	F-64
Figure F-55.	Scatter plot of milking center TSP emissions versus live animal weight and scatter plot with regression	F-65
Figure F-56.	Scatter plot of milking center NH3 emissions versus exhaust temperature and scatter plot with regression	F-66
Figure F-57.	Scatter plot of milking center H ₂ S emissions versus exhaust temperature and scatter plot with regression	F-67
Figure F-58.	Scatter plot of milking center PM10 emissions versus exhaust temperature and scatter plot with regression	F-68
Figure F-59.	Scatter plot of milking center PM2.5 emissions versus exhaust temperature and scatter plot with regression	F-69
Figure F-60.	Scatter plot of milking center TSP emissions versus exhaust temperature and scatter plot with regression	F-70
Figure F-61.	Scatter plot of milking center NH3 emissions versus exhaust relative humidity and scatter plot with regression	F-71
Figure F-62.	Scatter plot of milking center H ₂ S emissions versus exhaust relative humidity and scatter plot with regression	F-72
Figure F-63.	Scatter plot of milking center PM ₁₀ emissions versus exhaust relative humidity and scatter plot with regression.	F-73
Figure F-64.	Scatter plot of milking center PM_{25} emissions versus exhaust relative humidity and scatter plot with regression.	F-74
Figure F-65.	Scatter plot of milking center TSP emissions versus exhaust relative humidity and scatter plot with regression.	F-75
Figure F-66	Scatter plot of milking center NH2 emissions versus airflow and scatter plot with regression	F-76
Figure F-67	Scatter plot of milking center H2S emissions versus airflow and scatter plot with regression	F-77
Figure F-68	Scatter plot of milking center PM ₁₀ emissions versus airflow and scatter plot with regression	F-78
Figure F-60	Scatter plot of milking center PM2 5 emissions versus airflow and scatter plot with regression.	F-79
Figure F_{-70}	Scatter plot of milking center TSP emissions versus airflow and scatter plot with regression	F-80
Figure F 71	Scatter plot of milking center NH ₂ emissions versus ambient temperature and scatter plot with regression	F-80
Figure F 72	Scatter plot of milking center H ₂ S emissions versus ambient temperature and scatter plot with regression.	F-02
Figure E 72	Scatter plot of milking center II ₂ S emissions versus ambient temperature and scatter plot with regression.	E 01
Figure $F = 74$	Scatter plot of milking center PM ₂ , emissions versus ambient temperature and scatter plot with regression	1'-04 E 05
Figure F-74.	Souther plot of milling center TSD emissions versus andient temperature and scatter plot with regression	r-83
rigure F-/3.	scatter plot of minking center 15P emissions versus amoient temperature and scatter plot with regression	г-80

Figure F-77. Scatter plot of milking center H ₂ S emissions versus ambient relative humidity and scatter plot with regression F-88 Figure F-78. Scatter plot of milking center PM ₁₀ emissions versus ambient relative humidity and scatter plot with regression. F-89 Figure F-79. Scatter plot of milking center PM _{2.5} emissions versus ambient relative humidity and scatter plot with regression. F-90 Figure F-80. Scatter plot of milking center TSP emissions versus ambient relative humidity and scatter plot with regression
Figure F-87. Scatter plot of naturally ventilated barns H ₂ S emissions versus average animal mass and scatter plot with regression.
Figure F-88. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus average animal mass and scatter plot with regression
Figure F-89. Scatter plot of naturally ventilated barns PM _{2.5} emissions versus average animal mass and scatter plot with regression. F-101
Figure F-90. Scatter plot of naturally ventilated barns TSP emissions versus average animal mass and scatter plot with regression. F-102
Figure F-91. Scatter plot of naturally ventilated barns NH ₃ emissions versus live animal weight and scatter plot with regression.F- 103
Figure F-92. Scatter plot of naturally ventilated barns H ₂ S emissions versus live animal weight and scatter plot with regression. F- 104
Figure F-93. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus live animal weight and scatter plot with regression. F-105
Figure F-94. Scatter plot of naturally ventilated barns $PM_{2.5}$ emissions versus live animal weight and scatter plot with regression. F-106
Figure F-95. Scatter plot of naturally ventilated barns TSP emissions versus live animal weight and scatter plot with regression. F- 107
Figure F-96. Scatter plot of naturally ventilated barns NH ₃ emissions versus exhaust temperature and scatter plot with regression.
Figure F-97. Scatter plot of naturally ventilated barns H ₂ S emissions versus exhaust temperature and scatter plot with regression
F-109
F-109 Figure F-98. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust temperature and scatter plot with
Figure F-98. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust temperature and scatter plot with regression
Figure F-98. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust temperature and scatter plot with regression. F-110 Figure F-99. Scatter plot of naturally ventilated barns PM _{2.5} emissions versus exhaust temperature and scatter plot with regression. F-111 Figure F-100. Scatter plot of naturally ventilated barns TSP emissions versus exhaust temperature and scatter plot with
F-110 Figure F-98. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust temperature and scatter plot with regression. F-110 Figure F-99. Scatter plot of naturally ventilated barns PM _{2.5} emissions versus exhaust temperature and scatter plot with regression. F-111 Figure F-100. Scatter plot of naturally ventilated barns TSP emissions versus exhaust temperature and scatter plot with regression. F-112 Figure F-101. Scatter plot of naturally ventilated barns NH ₃ emissions versus exhaust relative humidity and scatter plot with
F-110 Figure F-98. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust temperature and scatter plot with regression
F-109 Figure F-98. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust temperature and scatter plot with regression
F-110 Figure F-98. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust temperature and scatter plot with regression. F-110 Figure F-99. Scatter plot of naturally ventilated barns PM _{2.5} emissions versus exhaust temperature and scatter plot with regression. F-111 Figure F-100. Scatter plot of naturally ventilated barns TSP emissions versus exhaust temperature and scatter plot with regression. F-112 Figure F-101. Scatter plot of naturally ventilated barns NH ₃ emissions versus exhaust relative humidity and scatter plot with regression. F-113 Figure F-102. Scatter plot of naturally ventilated barns H ₂ S emissions versus exhaust relative humidity and scatter plot with regression. F-114 Figure F-103. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust relative humidity and scatter plot with regression. F-115 Figure F-104. Scatter plot of naturally ventilated barns PM _{2.6} emissions versus exhaust relative humidity and scatter plot with regression. F-115
F-109 Figure F-98. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust temperature and scatter plot with regression
Figure F-98. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust temperature and scatter plot with F-110 Figure F-99. Scatter plot of naturally ventilated barns PM _{2.5} emissions versus exhaust temperature and scatter plot with F-111 Figure F-100. Scatter plot of naturally ventilated barns TSP emissions versus exhaust temperature and scatter plot with regression. Figure F-101. Scatter plot of naturally ventilated barns NH ₃ emissions versus exhaust relative humidity and scatter plot with regression. Figure F-102. Scatter plot of naturally ventilated barns H ₂ S emissions versus exhaust relative humidity and scatter plot with regression. Figure F-103. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust relative humidity and scatter plot with regression. Figure F-104. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust relative humidity and scatter plot with regression. Figure F-104. Scatter plot of naturally ventilated barns PM _{2.5} emissions versus exhaust relative humidity and scatter plot with regression. Figure F-105. Scatter plot of naturally ventilated barns PM _{2.5} emissions versus exhaust relative humidity and scatter plot with regression. Figure F-105. Scatter plot of naturally ventilated barns PM _{2.5} emissions versus exhaust relative humidity and scatter plot with regression. Figure F-105. Scatter plot of naturally ventilated barns TSP emissions versus exhaust relative humidity and scatter plot with regress
Figure F-98. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust temperature and scatter plot with regression. F-110 Figure F-99. Scatter plot of naturally ventilated barns PM _{2.5} emissions versus exhaust temperature and scatter plot with regression. F-111 Figure F-100. Scatter plot of naturally ventilated barns TSP emissions versus exhaust temperature and scatter plot with regression. F-112 Figure F-101. Scatter plot of naturally ventilated barns NH ₃ emissions versus exhaust relative humidity and scatter plot with regression. F-113 Figure F-102. Scatter plot of naturally ventilated barns H ₂ S emissions versus exhaust relative humidity and scatter plot with regression. F-114 Figure F-103. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust relative humidity and scatter plot with regression. F-115 Figure F-104. Scatter plot of naturally ventilated barns PM _{2.5} emissions versus exhaust relative humidity and scatter plot with regression. F-116 Figure F-105. Scatter plot of naturally ventilated barns PM _{2.5} emissions versus exhaust relative humidity and scatter plot with regression. F-116 Figure F-106. Scatter plot of naturally ventilated barns TSP emissions versus airflow and scatter plot with regression. F-117 Figure F-106. Scatter plot of naturally ventilated barns PM _{2.5} emissions versus airflow and scatter plot with regression. F-117 Figure F-106. Scatter plot of naturally ventilated barns NH ₃ emissions versus airflow and scatter plot with regre
Figure F-98. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust temperature and scatter plot with regression. F-110 Figure F-99. Scatter plot of naturally ventilated barns PM _{2.5} emissions versus exhaust temperature and scatter plot with regression. F-111 Figure F-100. Scatter plot of naturally ventilated barns TSP emissions versus exhaust temperature and scatter plot with regression. F-112 Figure F-101. Scatter plot of naturally ventilated barns NH ₃ emissions versus exhaust relative humidity and scatter plot with regression. F-113 Figure F-102. Scatter plot of naturally ventilated barns PM _{2.5} emissions versus exhaust relative humidity and scatter plot with regression. F-114 Figure F-103. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust relative humidity and scatter plot with regression. F-115 Figure F-104. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust relative humidity and scatter plot with regression. F-116 Figure F-105. Scatter plot of naturally ventilated barns PM _{2.5} emissions versus exhaust relative humidity and scatter plot with regression. F-116 Figure F-105. Scatter plot of naturally ventilated barns TSP emissions versus exhaust relative humidity and scatter plot with regression. F-116 Figure F-105. Scatter plot of naturally ventilated barns TSP emissions versus exhaust relative humidity and scatter plot with regression. F-116 Figure F-106. Scatter plot of naturally ventilated barns TSP emissions versus airf
F-109 Figure F-98. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust temperature and scatter plot with regression. Figure F-99. Scatter plot of naturally ventilated barns TSP emissions versus exhaust temperature and scatter plot with regression. Figure F-100. Scatter plot of naturally ventilated barns TSP emissions versus exhaust temperature and scatter plot with regression. Figure F-101. Scatter plot of naturally ventilated barns NH ₃ emissions versus exhaust relative humidity and scatter plot with regression. Figure F-102. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust relative humidity and scatter plot with regression. Figure F-103. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust relative humidity and scatter plot with regression. Figure F-104. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust relative humidity and scatter plot with regression. Figure F-105. Scatter plot of naturally ventilated barns PM _{2.5} emissions versus exhaust relative humidity and scatter plot with regression. F-116 Figure F-106. Scatter plot of naturally ventilated barns TSP emissions versus exhaust relative humidity and scatter plot with regression. F-117 Figure F-106. Scatter plot of naturally ventilated barns TSP emissions versus airflow and scatter plot with regression. F-117 Figure F-108. Scatter plot of naturally ventilated barns TSP emissions versus airflow and scatter plot with regression. F
F-109 Figure F-98. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust temperature and scatter plot with regression. Figure F-99. Scatter plot of naturally ventilated barns PM _{2.5} emissions versus exhaust temperature and scatter plot with regression. F-111 Figure F-100. Scatter plot of naturally ventilated barns TSP emissions versus exhaust temperature and scatter plot with regression. F-112 Figure F-101. Scatter plot of naturally ventilated barns H ₂ emissions versus exhaust relative humidity and scatter plot with regression. F-113 Figure F-102. Scatter plot of naturally ventilated barns H ₂ S emissions versus exhaust relative humidity and scatter plot with regression. F-114 Figure F-103. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust relative humidity and scatter plot with regression. F-114 Figure F-104. Scatter plot of naturally ventilated barns PM _{2.5} emissions versus exhaust relative humidity and scatter plot with regression. F-116 Figure F-106. Scatter plot of naturally ventilated barns TSP emissions versus exhaust relative humidity and scatter plot with regression. F-116 Figure F-106. Scatter plot of naturally ventilated barns M _{2.5} emissions versus exhaust relative humidity and scatter plot with regression. F-117 Figure F-106. Scatter plot of naturally ventilated barns M _{2.5} emissions versus airflow and scatter plot w
F-109 Figure F-98. Scatter plot of naturally ventilated barns PM _{0.5} emissions versus exhaust temperature and scatter plot with regression. Figure F-99. Scatter plot of naturally ventilated barns TSP emissions versus exhaust temperature and scatter plot with regression. Figure F-100. Scatter plot of naturally ventilated barns NH ₃ emissions versus exhaust temperature and scatter plot with regression. F-112 Figure F-102. Scatter plot of naturally ventilated barns NH ₃ emissions versus exhaust relative humidity and scatter plot with regression. F-113 Figure F-102. Scatter plot of naturally ventilated barns PM _{1.0} emissions versus exhaust relative humidity and scatter plot with regression. F-114 Figure F-103. Scatter plot of naturally ventilated barns PM _{1.0} emissions versus exhaust relative humidity and scatter plot with regression. F-115 Figure F-104. Scatter plot of naturally ventilated barns PM _{2.5} emissions versus exhaust relative humidity and scatter plot with regression. F-116 Figure F-105. Scatter plot of naturally ventilated barns TSP emissions versus exhaust relative humidity and scatter plot with regression. F-117 Figure F-106. Scatter plot of naturally ventilated barns TSP emissions versus exhaust relative humidity and scatter plot with regression. F-116 Figure F-107. Scatter plot of naturally ventilated barns TSP emissions versus airflow and scatter plot with regression.
F-109 Figure F-98. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust temperature and scatter plot with regression. Figure F-99. Scatter plot of naturally ventilated barns PM ₂₅ emissions versus exhaust temperature and scatter plot with regression. Figure F-100. Scatter plot of naturally ventilated barns TSP emissions versus exhaust temperature and scatter plot with regression. F-112 Figure F-101. Scatter plot of naturally ventilated barns NH ₃ emissions versus exhaust relative humidity and scatter plot with regression. F-113 Figure F-102. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust relative humidity and scatter plot with regression. F-114 Figure F-103. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust relative humidity and scatter plot with regression. F-114 Figure F-104. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust relative humidity and scatter plot with regression. F-116 Figure F-104. Scatter plot of naturally ventilated barns TSP emissions versus exhaust relative humidity and scatter plot with regression. F-116 Figure F-105. Scatter plot of naturally ventilated barns TSP emissions versus airflow and scatter plot with regression. F-117 Figure F-108. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus airflow and scatter plot with regression. F-117
F-109 Figure F-98. Scatter plot of naturally ventilated barns PM ₀ emissions versus exhaust temperature and scatter plot with regression F-110 Figure F-99. Scatter plot of naturally ventilated barns TSP emissions versus exhaust temperature and scatter plot with regression F-111 Figure F-100. Scatter plot of naturally ventilated barns TSP emissions versus exhaust temperature and scatter plot with regression F-112 Figure F-101. Scatter plot of naturally ventilated barns NH ₃ emissions versus exhaust relative humidity and scatter plot with regression F-113 Figure F-102. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust relative humidity and scatter plot with regression F-114 Figure F-103. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust relative humidity and scatter plot with regression F-114 Figure F-103. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust relative humidity and scatter plot with regression F-116 Figure F-104. Scatter plot of naturally ventilated barns TSP emissions versus exhaust relative humidity and scatter plot with regression F-116 Figure F-105. Scatter plot of naturally ventilated barns H ₂ S emissions versus exhaust relative humidity and scatter plot with regression F-117 Figure F-104. Scatter plot of naturally ventilated barns NH ₃ emissions versus exhaust relative humidity and scatter plot with regression F-117 Figure F-105. Scatter plot of naturally ventilated barns P
F-109 Figure F-98. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust temperature and scatter plot with regression. F-110 Figure F-99. Scatter plot of naturally ventilated barns PM _{2.5} emissions versus exhaust temperature and scatter plot with regression. F-111 Figure F-100. Scatter plot of naturally ventilated barns TSP emissions versus exhaust temperature and scatter plot with regression. F-112 Figure F-101. Scatter plot of naturally ventilated barns NH ₃ emissions versus exhaust relative humidity and scatter plot with regression. F-112 Figure F-102. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust relative humidity and scatter plot with regression. F-113 Figure F-103. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust relative humidity and scatter plot with regression. F-114 Figure F-103. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust relative humidity and scatter plot with regression. F-116 Figure F-104. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust relative humidity and scatter plot with regression. F-116 Figure F-105. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust relative humidity and scatter plot with regression. F-117 Figure F-105. Scatter plot of naturally ventilated barns PM ₁₀ emissions versus exhaust relative humidity and scatter plot with regression. F-116 Figure F-105. Scatter plot of naturall

Figure F-114.	. Scatter plot of naturally ventilated barns PM _{2.5} emissions versus ambient temperature and scatter plot with	
	regression	-127
Figure F-115.	. Scatter plot of naturally ventilated barns TSP emissions versus ambient temperature and scatter plot with	
D ' D 444	F-	-128
Figure F-116.	. Scatter plot of naturally ventilated barns NH ₃ emissions versus ambient relative humidity and scatter plot with	120
Figure F-117	Scatter plot of naturally ventilated barns HaS emissions versus ambient relative humidity and scatter plot with	-129
1 iguie 1 -117.	regression.	-130
Figure F-118.	Scatter plot of naturally ventilated barns PM ₁₀ emissions versus ambient relative humidity and scatter plot with	
C	regressionF-	-131
Figure F-119.	. Scatter plot of naturally ventilated barns PM _{2.5} emissions versus ambient relative humidity and scatter plot with	
-	F-	-133
Figure F-120.	. Scatter plot of naturally ventilated barns TSP emissions versus ambient relative humidity and scatter plot with	124
Figure F 121	regression. F-	125
Figure F-121.	Scatter plot of naturally ventilated barns HaS emissions versus wind speed and scatter plot with regression	-135
Figure F-122.	Scatter plot of naturally ventilated barns PM ₁₀ emissions versus wind speed and scatter plot with regressionF	.137
Figure F-124.	Scatter plot of naturally ventilated barns PM_2 emissions versus wind speed and scatter plot with regressionF	-138
Figure F-125.	Scatter plot of naturally ventilated barns TSP emissions versus wind speed and scatter plot with regressionF-	-139
Figure F-126.	. Scatter plot of lagoon/basin NH ₃ emissions versus lagoon temperature and scatter plot with regression	-141
Figure F-127.	. Scatter plot of lagoon/basin H2S emissions versus lagoon temperature and scatter plot with regressionF-	-142
Figure F-128.	. Scatter plot of lagoon/basin NH3 emissions versus lagoon pH and scatter plot with regression F-	-143
Figure F-129.	. Scatter plot of lagoon/basin H ₂ S emissions versus lagoon pH and scatter plot with regressionF-	-144
Figure F-130.	. Scatter plot of lagoon/basin NH3 emissions versus ambient temperature and scatter plot with regression F-	-146
Figure F-131.	. Scatter plot of lagoon/basin H ₂ S emissions versus ambient temperature and scatter plot with regressionF-	-147
Figure F-132.	. Scatter plot of lagoon/basin NH ₃ emissions versus ambient relative humidity and scatter plot with regression. F-	-148
Figure F-133. Eigene E 124	Scatter plot of lagoon/basin H ₂ S emissions versus ambient relative humidity and scatter plot with regression. F-	-149
Figure F-134.	Scatter plot of lagoon/basin NH3 emissions versus wind speed and scatter plot with regression	151
Figure F-135.	Scatter plot of ragoon/basin 1125 emissions versus ambient temperature and scatter plot with regression	.153
Figure F-137.	Scatter plot of corral H ₂ S emissions versus ambient temperature and scatter plot with regression.	-153
Figure F-138.	Scatter plot of corral NH ₃ emissions versus ambient relative humidity and scatter plot with regression	-154
Figure F-139.	. Scatter plot of corral H ₂ S emissions versus ambient relative humidity and scatter plot with regression	-154
Figure F-140.	. Scatter plot of corral NH3 emissions versus wind speed and scatter plot with regressionF-	-155
Figure F-141.	. Scatter plot of corral H ₂ S emissions versus wind speed and scatter plot with regressionF-	-155
Figure F-142.	. Scatter plot of corral H ₂ S emissions versus water vapor deficit and scatter plot with regressionF-	-156
Figure F-143.	. Scatter plot of corral H ₂ S emissions versus water vapor deficit and scatter plot with regression F-	-157

To further explore the trends between the predictor variables and emissions and determine whether the parameter should be included in developing an EEM, EPA prepared scatter plots of emissions versus the process, environmental, and manure parameters and conducted least squares regression analysis to assess the influence of each variable on emissions. For the regressions, EPA classified the linear relationships based on the ranges in Table F-1.

Range of R ²	Relationship strength
$R^2 = 0$	none
$0 < R^2 \le 0.2$	slight or weak
$0.2 < R^2 \le 0.4$	modest
$0.4 < R^2 \le 0.6$	moderate 📃
$0.6 < R^2 \le 0.8$	moderately strong
$R^2 > 0.8$	strong

CC

Table F-1: Relationship classification based on R² values

F.1 Mechanically Ventilated Barns

F.1.1 Environmental Parameters

Pollutant	Parameter	R	R ²	Strength	Figure
NH ₃	Inventory	0.660	0.435	moderate	F-1
H ₂ S	Inventory	0.002	0.000	slight or weak	F-2
PM10	Inventory	-0.292	0.085	slight or weak	F-3
PM _{2.5}	Inventory	-0.319	0.102	slight or weak	F-4
TSP	Inventory	-0.327	0.107	slight or weak	F-5
NH ₃	Average animal weight	-0.423	0.179	slight or weak	F-6
H ₂ S	Average animal weight	0.114	0.013	slight or weak	F-7
PM ₁₀	Average animal weight	0.240	0.058	slight or weak	F-8
PM _{2.5}	Average animal weight	0.384	0.148	slight or weak	F-9
TSP	Average animal weight	0.384	0.147	slight or weak	F-10
NH ₃	Live animal weight	0.653	0.426	moderate	F-11
H ₂ S	Live animal weight	0.014	0.000	slight or weak	F-12
PM10	Live animal weight	-0.278	0.077	slight or weak	F-13
PM _{2.5}	Live animal weight	-0.283	0.080	slight or weak	F-14
TSP	Live animal weight	-0.307	0.094	slight or weak	F-15
NH ₃	Exhaust temperature	0.493	0.243	modest	F-16
H ₂ S	Exhaust temperature	0.323	0.104	slight or weak	F-17
PM10	Exhaust temperature	0.410	0.168	slight or weak	F-18
PM _{2.5}	Exhaust temperature	0.484	0.234	modest	F-19
TSP	Exhaust temperature	0.406	0.165	slight or weak	F-20
NH₃	Exhaust relative humidity	0.390	0.152	slight or weak	F-21
H ₂ S	Exhaust relative humidity	0.193	0.037	slight or weak	F-22
PM10	Exhaust relative humidity	-0.269	0.072	slight or weak	F-23
PM2.5	Exhaust relative humidity	-0.414	0.171	slight or weak	F-24
TSP	Exhaust relative humidity	-0.322	0.104	slight or weak	F-25
NH ₃	Airflow	0.536	0.287	modest	F-26
H ₂ S	Airflow	0.232	0.054	slight or weak	F-27
PM10	Airflow	0.425	0.180	slight or weak	F-28
PM _{2.5}	Airflow	0.449	0.202	modest	F-29
TSP	Airflow	0.376	0.141	slight or weak	F-30

Table F-2. Summary of mechanically ventilated barn R² values for environmental parameters.

Figure F-1. Scatter plot of mechanically ventilated NH₃ emissions versus inventory and scatter plot with regression.

Figure F-2. Scatter plot of mechanically ventilated H₂S emissions versus inventory and scatter plot with regression.

Figure F-3. Scatter plot of mechanically ventilated PM₁₀ emissions versus inventory and scatter plot with regression.

Figure F-4. Scatter plot of mechanically ventilated PM2.5 emissions versus inventory and scatter plot with regression.

Figure F-5. Scatter plot of mechanically ventilated TSP emissions versus inventory and scatter plot with regression.

Figure F-6. Scatter plot of mechanically ventilated NH₃ emissions versus average animal mass and scatter plot with regression.

Figure F-7. Scatter plot of mechanically ventilated H₂S emissions versus average animal mass and scatter plot with regression.

Figure F-8. Scatter plot of mechanically ventilated PM₁₀ emissions versus average animal mass and scatter plot with regression.

Figure F-9. Scatter plot of mechanically ventilated PM2.5 emissions versus average animal mass and scatter plot with regression.

Figure F-10. Scatter plot of mechanically ventilated TSP emissions versus average animal mass and scatter plot with regression.

Figure F-11. Scatter plot of mechanically ventilated NH₃ emissions versus live animal weight and scatter plot with regression.

Figure F-12. Scatter plot of mechanically ventilated H₂S emissions versus live animal weight and scatter plot with regression.

Figure F-13. Scatter plot of mechanically ventilated PM₁₀ emissions versus live animal weight and scatter plot with regression.

Figure F-14. Scatter plot of mechanically ventilated PM2.5 emissions versus live animal weight and scatter plot with regression.

Figure F-15. Scatter plot of mechanically ventilated TSP emissions versus live animal weight and scatter plot with regression.

Figure F-16. Scatter plot of mechanically ventilated NH₃ emissions versus exhaust temperature and scatter plot with regression.

Figure F-17. Scatter plot of mechanically ventilated H₂S emissions versus exhaust temperature and scatter plot with regression.

Figure F-18. Scatter plot of mechanically ventilated PM₁₀ emissions versus exhaust temperature and scatter plot with regression.

Figure F-19. Scatter plot of mechanically ventilated PM_{2.5} emissions versus exhaust temperature and scatter plot with regression.

Figure F-20. Scatter plot of mechanically ventilated TSP emissions versus exhaust temperature and scatter plot with regression.

Figure F-21. Scatter plot of mechanically ventilated NH₃ emissions versus exhaust relative humidity and scatter plot with regression.

Figure F-22. Scatter plot of mechanically ventilated H₂S emissions versus exhaust relative humidity and scatter plot with regression.

Figure F-23. Scatter plot of mechanically ventilated PM₁₀ emissions versus exhaust relative humidity and scatter plot with regression.

Figure F-24. Scatter plot of mechanically ventilated PM2.5 emissions versus exhaust relative humidity and scatter plot with regression.

Figure F-25. Scatter plot of mechanically ventilated TSP emissions versus exhaust relative humidity and scatter plot with regression.

Figure F-26. Scatter plot of mechanically ventilated NH₃ emissions versus airflow and scatter plot with regression.

Figure F-27. Scatter plot of mechanically ventilated H₂S emissions versus airflow and scatter plot with regression.

Figure F-28. Scatter plot of mechanically ventilated PM₁₀ emissions versus airflow and scatter plot with regression.

Figure F-29. Scatter plot of mechanically ventilated PM2.5 emissions versus airflow and scatter plot with regression.

Figure F-30. Scatter plot of mechanically ventilated TSP emissions versus airflow and scatter plot with regression.

F.1.2 Ambient Parameters

Table F-3. Summary of mechanically ventilated barn R ² values for ambient
parameters.

Pollutant	Parameter	R	R ²	Strength	Figure
NH ₃	Ambient temperature	0.537	0.289	modest	F-31
H ₂ S	Ambient temperature	0.257	0.066	slight or weak	F-32
PM10	Ambient temperature	0.370	0.137	slight or weak	F-33
PM _{2.5}	Ambient temperature	0.398	0.159	slight or weak	F-34
TSP	Ambient temperature	0.348	0.121	slight or weak	F-35
NH ₃	Ambient relative humidity	-0.110	0.012	slight or weak	F-36
H ₂ S	Ambient relative humidity	0.000	0.000	slight or weak	F-37
PM10	Ambient relative humidity	-0.129	0.017	slight or weak	F-38
PM _{2.5}	Ambient relative humidity	-0.331	0.109	slight or weak	F-39
TSP	Ambient relative humidity	-0.155	0.024	slight or weak	F-40

F-39

Figure F-31. Scatter plot of mechanically ventilated NH₃ emissions versus ambient temperature and scatter plot with regression.

Figure F-32. Scatter plot of mechanically ventilated H₂S emissions versus ambient temperature and scatter plot with regression.

Figure F-33. Scatter plot of mechanically ventilated PM₁₀ emissions versus ambient temperature and scatter plot with regression.

Figure F-34. Scatter plot of mechanically ventilated PM_{2.5} emissions versus ambient temperature and scatter plot with regression.

Figure F-35. Scatter plot of mechanically ventilated TSP emissions versus ambient temperature and scatter plot with regression.

Figure F-36. Scatter plot of mechanically ventilated NH₃ emissions versus ambient relative humidity and scatter plot with regression.

Figure F-37. Scatter plot of mechanically ventilated H₂S emissions versus ambient relative humidity and scatter plot with regression.

Figure F-38. Scatter plot of mechanically ventilated PM₁₀ emissions versus ambient relative humidity and scatter plot with regression.

Figure F-39. Scatter plot of mechanically ventilated PM_{2.5} emissions versus ambient relative humidity and scatter plot with regression.

Figure F-40. Scatter plot of mechanically ventilated TSP emissions versus ambient relative humidity and scatter plot with regression.

F.2 Milking Centers

F.2.1 Environmental Parameters

Table F-4. Summary of milking center barn R ² values for en	vironmental
parameters.	

Pollutant	Parameter	R	R ²	Strength	Figure
NH₃	Inventory	0.279	0.078	slight or weak	F-41
H ₂ S	Inventory	0.360	0.130	slight or weak	F-42
PM10	Inventory			None	F-43
PM _{2.5}	Inventory			None	F-44
TSP	Inventory			None	F-45
NH₃	Average animal weight	0.279	0.078	slight or weak	F-46
H ₂ S	Average animal weight	0.360	0.130	slight or weak	F-47
PM ₁₀	Average animal weight	-0.005	0.000	slight or weak	F-48
PM _{2.5}	Average animal weight	-0.161	0.026	slight or weak	F-49
TSP	Average animal weight	0.154	0.024	slight or weak	F-50
NH₃	Live animal weight	0.279	0.078	slight or weak	F-51
H₂S	Live animal weight	0.360	0.130	slight or weak	F-52
PM10	Live animal weight	-0.005	0.000	slight or weak	F-53
PM _{2.5}	Live animal weight	-0.161	0.026	slight or weak	F-54
TSP	Live animal weight	0.154	0.024	slight or weak	F-55
NH₃	Exhaust temperature	0.518	0.268	modest	F-56
H ₂ S	Exhaust temperature	0.322	0.104	slight or weak	F-57
PM10	Exhaust temperature	0.550	0.303	modest	F-58
PM _{2.5}	Exhaust temperature	0.401	0.160	slight or weak	F-59
TSP	Exhaust temperature	0.348	0.121	slight or weak	F-60
NH₃	Exhaust relative humidity	-0.188	0.035	slight or weak	F-61
H ₂ S	Exhaust relative humidity	-0.378	0.143	slight or weak	F-62
PM10	Exhaust relative humidity	-0.111	0.012	slight or weak	F-63
PM _{2.5}	Exhaust relative humidity	-0.241	0.058	slight or weak	F-64
TSP	Exhaust relative humidity	0.184	0.034	slight or weak	F-65
NH ₃	Airflow	0.381	0.146	slight or weak	F-66
H ₂ S	Airflow	0.332	0.110	slight or weak	F-67
PM10	Airflow	-0.458	0.210	modest	F-68
PM _{2.5}	Airflow	-0.009	0.000	slight or weak	F-69
TSP	Airflow	0.106	0.011	slight or weak	F-70

Figure F-41. Scatter plot of milking center NH₃ emissions versus inventory and scatter plot with regression.

Figure F-42. Scatter plot of milking center H₂S emissions versus inventory and scatter plot with regression.

Figure F-43. Scatter plot of milking center PM₁₀ emissions versus inventory and scatter plot with regression.

Figure F-44. Scatter plot of milking center PM_{2.5} emissions versus inventory and scatter plot with regression.

Figure F-45. Scatter plot of milking center TSP emissions versus inventory and scatter plot with regression.

Figure F-46. Scatter plot of milking center NH₃ emissions versus average animal mass and scatter plot with regression.

Figure F-47. Scatter plot of milking center H₂S emissions versus average animal mass and scatter plot with regression.

Figure F-48. Scatter plot of milking center PM₁₀ emissions versus average animal mass and scatter plot with regression.

Figure F-49. Scatter plot of milking center PM_{2.5} emissions versus average animal mass and scatter plot with regression.

Figure F-50. Scatter plot of milking center TSP emissions versus average animal mass and scatter plot with regression.

Figure F-51. Scatter plot of milking center NH₃ emissions versus live animal weight and scatter plot with regression.

Figure F-52. Scatter plot of milking center H₂S emissions versus live animal weight and scatter plot with regression.

Figure F-53. Scatter plot of milking center PM₁₀ emissions versus live animal weight and scatter plot with regression.

Figure F-54. Scatter plot of milking center PM_{2.5} emissions versus live animal weight and scatter plot with regression.

Figure F-55. Scatter plot of milking center TSP emissions versus live animal weight and scatter plot with regression.

Figure F-56. Scatter plot of milking center NH₃ emissions versus exhaust temperature and scatter plot with regression.

Figure F-57. Scatter plot of milking center H₂S emissions versus exhaust temperature and scatter plot with regression.

Figure F-58. Scatter plot of milking center PM₁₀ emissions versus exhaust temperature and scatter plot with regression.

Figure F-59. Scatter plot of milking center PM_{2.5} emissions versus exhaust temperature and scatter plot with regression.

Figure F-60. Scatter plot of milking center TSP emissions versus exhaust temperature and scatter plot with regression.

Figure F-61. Scatter plot of milking center NH₃ emissions versus exhaust relative humidity and scatter plot with regression.

Figure F-62. Scatter plot of milking center H₂S emissions versus exhaust relative humidity and scatter plot with regression.

Figure F-63. Scatter plot of milking center PM₁₀ emissions versus exhaust relative humidity and scatter plot with regression.

Figure F-64. Scatter plot of milking center PM_{2.5} emissions versus exhaust relative humidity and scatter plot with regression.

Figure F-65. Scatter plot of milking center TSP emissions versus exhaust relative humidity and scatter plot with regression.

Figure F-66. Scatter plot of milking center NH₃ emissions versus airflow and scatter plot with regression.

Figure F-67. Scatter plot of milking center H₂S emissions versus airflow and scatter plot with regression.

Figure F-68. Scatter plot of milking center PM₁₀ emissions versus airflow and scatter plot with regression.

Figure F-69. Scatter plot of milking center PM_{2.5} emissions versus airflow and scatter plot with regression.

Figure F-70. Scatter plot of milking center TSP emissions versus airflow and scatter plot with regression.

F.2.2 Ambient Parameters

Pollutant	Parameter	R	R ²	Strength	Figure
NH₃	Ambient temperature	0.495	0.245	modest	F-71
H ₂ S	Ambient temperature	0.296	0.088	slight or weak	F-72
PM10	Ambient temperature	0.568	0.323	modest	F-73
PM _{2.5}	Ambient temperature	0.399	0.159	slight or weak	F-74
TSP	Ambient temperature	0.348	0.121	slight or weak	F-75
NH ₃	Ambient relative humidity	-0.043	0.002	slight or weak	F-76
H ₂ S	Ambient relative humidity	0.039	0.002	slight or weak	F-77
PM10	Ambient relative humidity	-0.421	0.178	slight or weak	F-78
PM _{2.5}	Ambient relative humidity	0.043	0.002	slight or weak	F-79
TSP	Ambient relative humidity	0.066	0.004	slight or weak	F-80

Table F-5. Summary of milking center barn R² values for ambient parameters.

Figure F-71. Scatter plot of milking center NH₃ emissions versus ambient temperature and scatter plot with regression.

Figure F-72. Scatter plot of milking center H₂S emissions versus ambient temperature and scatter plot with regression.

Figure F-73. Scatter plot of milking center PM₁₀ emissions versus ambient temperature and scatter plot with regression.

Figure F-74. Scatter plot of milking center PM_{2.5} emissions versus ambient temperature and scatter plot with regression.

Figure F-75. Scatter plot of milking center TSP emissions versus ambient temperature and scatter plot with regression.

Figure F-76. Scatter plot of milking center NH₃ emissions versus ambient relative humidity and scatter plot with regression.

Figure F-77. Scatter plot of milking center H₂S emissions versus ambient relative humidity and scatter plot with regression.

Figure F-78. Scatter plot of milking center PM₁₀ emissions versus ambient relative humidity and scatter plot with regression.

Figure F-79. Scatter plot of milking center PM_{2.5} emissions versus ambient relative humidity and scatter plot with regression.

Figure F-80. Scatter plot of milking center TSP emissions versus ambient relative humidity and scatter plot with regression.

F.3 Naturally Ventilated Barns

F.3.1 Environmental Parameters

Table F-6. Summary of naturally ventilated barn R² values for environmental parameters.

Pollutant	Parameter	R	R ²	Strength	Figure
NH ₃	Inventory	0.660	0.435	moderate	F-81
H ₂ S	Inventory	0.002	0.000	slight or weak	F-82
PM10	Inventory	-0.292	0.085	slight or weak	F-83
PM _{2.5}	Inventory	-0.319	0.102	slight or weak	F-84
TSP	Inventory	-0.327	0.107	slight or weak	F-85
NH ₃	Average animal weight	-0.423	0.179	slight or weak	F-86
H ₂ S	Average animal weight	0.114	0.013	slight or weak	F-87
PM ₁₀	Average animal weight	0.240	0.058	slight or weak	F-88
PM _{2.5}	Average animal weight	0.384	0.148	slight or weak	F-89
TSP	Average animal weight	0.384	0.147	slight or weak	F-90
NH ₃	Live animal weight	0.653	0.426	moderate	F-91
H ₂ S	Live animal weight	0.014	0.000	slight or weak	F-92
PM10	Live animal weight	-0.278	0.077	slight or weak	F-93
PM2.5	Live animal weight	-0.283	0.080	slight or weak	F-94
TSP	Live animal weight	-0.307	0.094	slight or weak	F-95
NH₃	Exhaust temperature	0.493	0.243	modest	F-96
H ₂ S	Exhaust temperature	0.323	0.104	slight or weak	F-97
PM10	Exhaust temperature	0.410	0.168	slight or weak	F-98
PM2.5	Exhaust temperature	0.484	0.234	modest	F-99
TSP	Exhaust temperature	0.406	0.165	slight or weak	F-100
NH₃	Exhaust relative humidity	0.390	0.152	slight or weak	F-101
H ₂ S	Exhaust relative humidity	0.193	0.037	slight or weak	F-102
PM10	Exhaust relative humidity	-0.269	0.072	slight or weak	F-103
PM2.5	Exhaust relative humidity	-0.414	0.171	slight or weak	F-104
TSP	Exhaust relative humidity	-0.322	0.104	slight or weak	F-105
NH₃	Airflow	0.536	0.287	modest	F-106
H ₂ S	Airflow	0.232	0.054	slight or weak	F-107
PM ₁₀	Airflow	0.425	0.180	slight or weak	F-108
PM _{2.5}	Airflow	0.449	0.202	modest	F-109
TSP	Airflow	0.376	0.141	slight or weak	F-110

Figure F-81. Scatter plot of naturally ventilated barns NH₃ emissions versus inventory and scatter plot with regression.

Figure F-82. Scatter plot of naturally ventilated barns H₂S emissions versus inventory and scatter plot with regression.

Figure F-83. Scatter plot of naturally ventilated barns PM₁₀ emissions versus inventory and scatter plot with regression.

Figure F-84. Scatter plot of naturally ventilated barns PM_{2.5} emissions versus inventory and scatter plot with regression.

Figure F-85. Scatter plot of naturally ventilated barns TSP emissions versus inventory and scatter plot with regression.

Figure F-86. Scatter plot of naturally ventilated barns NH₃ emissions versus average animal mass and scatter plot with regression.

Figure F-87. Scatter plot of naturally ventilated barns H₂S emissions versus average animal mass and scatter plot with regression.

Figure F-88. Scatter plot of naturally ventilated barns PM₁₀ emissions versus average animal mass and scatter plot with regression.

Figure F-89. Scatter plot of naturally ventilated barns PM_{2.5} emissions versus average animal mass and scatter plot with regression.

Figure F-90. Scatter plot of naturally ventilated barns TSP emissions versus average animal mass and scatter plot with regression.

Figure F-91. Scatter plot of naturally ventilated barns NH₃ emissions versus live animal weight and scatter plot with regression.

Figure F-92. Scatter plot of naturally ventilated barns H₂S emissions versus live animal weight and scatter plot with regression.

Figure F-93. Scatter plot of naturally ventilated barns PM₁₀ emissions versus live animal weight and scatter plot with regression.

Figure F-94. Scatter plot of naturally ventilated barns PM_{2.5} emissions versus live animal weight and scatter plot with regression.

Figure F-95. Scatter plot of naturally ventilated barns TSP emissions versus live animal weight and scatter plot with regression.

Figure F-96. Scatter plot of naturally ventilated barns NH₃ emissions versus exhaust temperature and scatter plot with regression.

Figure F-97. Scatter plot of naturally ventilated barns H₂S emissions versus exhaust temperature and scatter plot with regression.

Figure F-98. Scatter plot of naturally ventilated barns PM₁₀ emissions versus exhaust temperature and scatter plot with regression.

Figure F-99. Scatter plot of naturally ventilated barns PM_{2.5} emissions versus exhaust temperature and scatter plot with regression.

Figure F-100. Scatter plot of naturally ventilated barns TSP emissions versus exhaust temperature and scatter plot with regression.

Figure F-101. Scatter plot of naturally ventilated barns NH₃ emissions versus exhaust relative humidity and scatter plot with regression.

Figure F-102. Scatter plot of naturally ventilated barns H₂S emissions versus exhaust relative humidity and scatter plot with regression.

Figure F-103. Scatter plot of naturally ventilated barns PM₁₀ emissions versus exhaust relative humidity and scatter plot with regression.

Figure F-104. Scatter plot of naturally ventilated barns PM_{2.5} emissions versus exhaust relative humidity and scatter plot with regression.

Figure F-105. Scatter plot of naturally ventilated barns TSP emissions versus exhaust relative humidity and scatter plot with regression.

Figure F-106. Scatter plot of naturally ventilated barns NH₃ emissions versus airflow and scatter plot with regression.

Figure F-107. Scatter plot of naturally ventilated barns H₂S emissions versus airflow and scatter plot with regression.

Figure F-108. Scatter plot of naturally ventilated barns PM₁₀ emissions versus airflow and scatter plot with regression.

Figure F-109. Scatter plot of naturally ventilated barns PM_{2.5} emissions versus airflow and scatter plot with regression.

Figure F-110. Scatter plot of naturally ventilated barns TSP emissions versus airflow and scatter plot with regression.

F.3.2 Ambient Parameters

Pollutant	Parameter	R	R ²	Strength	Figure
NH₃	Ambient temperature	0.537	0.289	modest	F-111
H ₂ S	Ambient temperature	0.257	0.066	slight or weak	F-112
PM10	Ambient temperature	0.370	0.137	slight or weak	F-113
PM2.5	Ambient temperature	0.398	0.159	slight or weak	F-114
TSP	Ambient temperature	0.348	0.121	slight or weak	F-115
NH ₃	Ambient relative humidity	-0.110	0.012	slight or weak	F-116
H ₂ S	Ambient relative humidity	0.000	0.000	slight or weak	F-117
PM10	Ambient relative humidity	-0.129	0.017	slight or weak	F-118
PM2.5	Ambient relative humidity	-0.331	0.109	slight or weak	F-119
TSP	Ambient relative humidity	-0.155	0.024	slight or weak	F-120
NH ₃	Wind speed	0.537	0.289	modest	F-121
H ₂ S	Wind speed	0.257	0.066	slight or weak	F-122
PM10	Wind speed	0.370	0.137	slight or weak	F-123
PM _{2.5}	Wind speed	0.398	0.159	slight or weak	F-124
TSP	Wind speed	0.348	0.121	slight or weak	F-125

Table F-7. Summary of naturally ventilated barn R² values for ambient parameters.

Figure F-111. Scatter plot of naturally ventilated barns NH₃ emissions versus ambient temperature and scatter plot with regression.

Figure F-112. Scatter plot of naturally ventilated barns H₂S emissions versus ambient temperature and scatter plot with regression.

Figure F-113. Scatter plot of naturally ventilated barns PM₁₀ emissions versus ambient temperature and scatter plot with regression.

Figure F-114. Scatter plot of naturally ventilated barns PM_{2.5} emissions versus ambient temperature and scatter plot with regression.

Figure F-115. Scatter plot of naturally ventilated barns TSP emissions versus ambient temperature and scatter plot with regression.

Figure F-116. Scatter plot of naturally ventilated barns NH₃ emissions versus ambient relative humidity and scatter plot with regression.

Figure F-117. Scatter plot of naturally ventilated barns H₂S emissions versus ambient relative humidity and scatter plot with regression.

Figure F-118. Scatter plot of naturally ventilated barns PM₁₀ emissions versus ambient relative humidity and scatter plot with regression.

Figure F-119. Scatter plot of naturally ventilated barns PM_{2.5} emissions versus ambient relative humidity and scatter plot with regression.

Figure F-120. Scatter plot of naturally ventilated barns TSP emissions versus ambient relative humidity and scatter plot with regression.

Figure F-121. Scatter plot of naturally ventilated barns NH₃ emissions versus wind speed and scatter plot with regression.

Figure F-122. Scatter plot of naturally ventilated barns H₂S emissions versus wind speed and scatter plot with regression.

Figure F-123. Scatter plot of naturally ventilated barns PM₁₀ emissions versus wind speed and scatter plot with regression.

Figure F-124. Scatter plot of naturally ventilated barns PM_{2.5} emissions versus wind speed and scatter plot with regression.

Figure F-125. Scatter plot of naturally ventilated barns TSP emissions versus wind speed and scatter plot with regression.

F.4 Lagoon/basin

F.4.1 Environmental Parameters

Table F-8. Summary of lagoons/basins R² values for environmental parameters.

Pollutant	Parameter	R	R ²	Strength	Figure
NH₃	Lagoon temperature	0.66	0.436	moderate	F-126
H ₂ S	Lagoon temperature	-0.68	0.462	moderate	F-127
NH₃	Lagoon pH	-0.2	0.040	slight or weak	F-128
H ₂ S	Lagoon pH	0.4	0.160	slight or weak	F-129

Figure F-126. Scatter plot of lagoon/basin NH₃ emissions versus lagoon temperature and scatter plot with regression.

Figure F-127. Scatter plot of lagoon/basin H₂S emissions versus lagoon temperature and scatter plot with regression.

Figure F-128. Scatter plot of lagoon/basin NH₃ emissions versus lagoon pH and scatter plot with regression.

Figure F-129. Scatter plot of lagoon/basin H₂S emissions versus lagoon pH and scatter plot with regression.

F.4.2 Ambient Parameters

Pollutant	ParameterRR ²		Strength	Figure	
NH₃	Ambient temperature	0.84	0.706	moderately strong	F-130
H ₂ S	Ambient temperature	0.59	0.348	modest	F-131
NH ₃	Ambient relative humidity	-0.34	0.116	slight or weak	F-132
H ₂ S	Ambient relative humidity	-0.18	0.032	slight or weak	F-133
NH ₃	Wind speed	-0.25	0.063	slight or weak	F-134
H ₂ S	Wind speed	0.10	0.010	slight or weak	F-135

Table F-9. Summary of lagoons/basins R² values for ambient parameters.

Figure F-130. Scatter plot of lagoon/basin NH₃ emissions versus ambient temperature and scatter plot with regression.

Figure F-131. Scatter plot of lagoon/basin H₂S emissions versus ambient temperature and scatter plot with regression.

Figure F-132. Scatter plot of lagoon/basin NH₃ emissions versus ambient relative humidity and scatter plot with regression.

Figure F-133. Scatter plot of lagoon/basin H₂S emissions versus ambient relative humidity and scatter plot with regression.

Figure F-134. Scatter plot of lagoon/basin NH₃ emissions versus wind speed and scatter plot with regression.

Figure F-135. Scatter plot of lagoon/basin H₂S emissions versus wind speed and scatter plot with regression.

F.5 Corral

F.5.1 Ambient Parameters

Table F-10. Summary of corral R² values for ambient parameters.

Pollutant	Parameter	R	R ²	Strength	Figure
NH ₃	Ambient temperature	0.17	0.029	slight or weak	F-136
H₂S	Ambient temperature	0.003	0.000	slight or weak	F-137
NH ₃	Ambient relative humidity	0.17	0.029	slight or weak	F-138
H ₂ S	Ambient relative humidity	0.15	0.023	slight or weak	F-139
NH ₃	Wind speed	0.002	0.000	slight or weak	F-140
H ₂ S	Wind speed	0.003	0.000	slight or weak	F-141
NH ₃	Water vapor deficit	0.32	0.102	slight or weak	F-142
H ₂ S	Water vapor deficit	-0.16	0.026	slight or weak	F-143

Figure F-136. Scatter plot of corral NH₃ emissions versus ambient temperature and scatter plot with regression.

Figure F-137. Scatter plot of corral H₂S emissions versus ambient temperature and scatter plot with regression.

Figure F-138. Scatter plot of corral NH₃ emissions versus ambient relative humidity and scatter plot with regression.

Figure F-139. Scatter plot of corral H₂S emissions versus ambient relative humidity and scatter plot with regression.

Figure F-140. Scatter plot of corral NH₃ emissions versus wind speed and scatter plot with regression.

Figure F-141. Scatter plot of corral H₂S emissions versus wind speed and scatter plot with regression.

Figure F-142. Scatter plot of corral H₂S emissions versus water vapor deficit and scatter plot with regression.

Figure F-143. Scatter plot of corral H₂S emissions versus water vapor deficit and scatter plot with regression.

Appendix G: Modeling Results

APPENDIX	G:MODELING RESULTS	G-1
G.1 Mech	nanically Ventilated Barns	G-6
G.1.1 G.1.2 G.1.3 G.1.4 G.1.5	Ammonia (NH ₃) Hydrogen Sulfide (H ₂ S) PM ₁₀ Fine particulate matter (PM _{2.5}) Total Suspended Particulates (TSP)	G-7 G-11 G-15 G-21 G-27
G.2 Milki	ing Centers	G-33
G.2.1 G.2.2 G.2.3 G.2.4 G.2.5	Ammonia (NH ₃) Hydrogen Sulfide (H ₂ S) PM ₁₀ Fine particulate matter (PM _{2.5}) Total Suspended Particulates (TSP)	G-33 G-45 G-57 G-69 G-81
G.3 Natur	rally Ventilated Barns	G-93
G.3.1 G.3.2 G.3.3 G.3.4 G.3.5	Ammonia (NH ₃) Hydrogen Sulfide (H ₂ S) PM ₁₀ Fine particulate matter (PM _{2.5}) Total Suspended Particulates (TSP)	G-93 G-97 G-101 G-104 G-107
G.4 Lago	ons	G-110
G.4.1 G.4.2	Ammonia (NH ₃) Hydrogen Sulfide (H ₂ S)	G-110 G-116
G.5 Corra	als	G-122
G.5.1 G.5.2	Ammonia (NH ₃) Hydrogen Sulfide (H ₂ S)	G-122 G-133

Table of Contents

List of Tables

Table G-1. Parameter combinations tested as models for NH ₃ and H ₂ S emissions	G-6
Table G-2. Parameter combinations tested as models for PM10, PM2.5, and TSP emissions	G-6
Table G-3. Parameter and estimates NH ₃ emission models for dairy mechanically ventilated barn	G-7
Table G-4. Fit and evaluation statistics for dairy mechanically ventilated barn NH ₃ models tested	G-8
Table G-5. Parameter and estimates H ₂ S emission models for dairy mechanically ventilated barn	G-11
Table G-6. Fit and evaluation statistics for H ₂ S emission models for dairy mechanically ventilated barn	G-12
Table G-7. Parameter and estimates PM ₁₀ emission models for dairy mechanically ventilated barn	G-15
Table G-8. Fit and evaluation statistics for PM10 emission models for dairy mechanically ventilated barn	G-16
Table G-9. Parameter and estimates PM2.5 emission models for dairy mechanically ventilated barn	G-21
Table G-10. Fit and evaluation statistics for PM2.5 emission models for dairy mechanically ventilated barn	G-22
Table G-11. Parameter and estimates TSP emission models for dairy mechanically ventilated barn	G-27
Table G-12. Fit and evaluation statistics for TSP emission models for dairy mechanically ventilated barn	G-28
Table G-13. Parameter and estimates NH ₃ emission models for dairy milking centers.	G-33
Table G-14. Fit and evaluation statistics for NH3 emission models for dairy milking centers	G-36
Table G-15. Parameter and estimates H ₂ S emission models for dairy milking centers	G-45
Table G-16. Fit and evaluation statistics for H ₂ S emission models for dairy milking centers	G-48
Table G-17. Parameter and estimates PM ₁₀ emission models for dairy milking centers	G-57
Table G-18. Fit and evaluation statistics for PM ₁₀ emission models for dairy milking centers	G-60
Table G-19. Parameter and estimates PM2.5 emission models for dairy milking centers	G-69
Table G-20. Fit and evaluation statistics for PM2.5 emission models for dairy milking centers.	G-72
Table G-21. Parameter and estimates TSP emission models for dairy milking centers	G-81
Table G-22. Fit and evaluation statistics for TSP emission models for dairy milking centers	G-84
Table G-23. Parameter combinations tested as naturally ventilated barns models	G-93
Table G-24. Parameter and estimates NH3 emission models for dairy mechanically ventilated barn	G-93
Table G-25. Fit and evaluation statistics for NH ₃ emission models for dairy mechanically ventilated barn	G-94
Table G-26. Parameter and estimates H ₂ S emission models for dairy naturally ventilated barn	G-97
Table G-27. Fit and evaluation statistics for H ₂ S emission models for dairy naturally ventilated barn	G-98
Table G-28. Parameter and estimates PM ₁₀ emission models for dairy naturally ventilated barn	. G-101
Table G-29. Fit and evaluation statistics for PM10 emission models for dairy naturally ventilated barn	. G-101
Table G-30. Parameter and estimates PM2.5 emission models for dairy naturally ventilated barn	. G-104
Table G-31. Fit and evaluation statistics for PM2.5 emission models for dairy naturally ventilated barn	. G-104
Table G-32. Parameter and estimates TSP emission models for dairy naturally ventilated barn	. G-107
Table G-33. Fit and evaluation statistics for TSP emission models for dairy naturally ventilated barn	. G-107
Table G-34. Parameter and estimates NH ₃ emission models for dairy lagoons	. G-110
Table G-35. Fit and evaluation statistics for NH ₃ emission models for dairy lagoons	. G-111
Table G-36. Parameter and estimates H ₂ S emission models for dairy lagoons.	. G-116
Table G-37. Fit and evaluation statistics for H ₂ S emission models for dairy lagoons	. G-117
Table G-38. Parameter and estimates NH3 emission models for dairy corrals.	. G-122
Table G-39. Fit and evaluation statistics for NH ₃ emission models for dairy corrals	. G-124
Table G-40. Parameter and estimates H ₂ S emission models for dairy corrals	. G-133
Table G-41. Fit and evaluation statistics for H ₂ S emission models for dairy corrals.	. G-135

List of Figures

Figure G-1. Dairy mechanically ventilated barn NH_3 one-to-one plots models 1 through 9, log transformed.......G-9 Figure G-2. Dairy mechanically ventilated barn NH_3 one-to-one plots models 1 through 9, back transformed.....G-10 Figure G-3. Dairy mechanically ventilated barn H_2S one-to-one plots models 1 through 9, log transformed......G-13 Figure G-4. Dairy mechanically ventilated barn H_2S one-to-one plots models 1 through 9, back transformed......G-14 Figure G-5. Dairy mechanically ventilated barn PM_{10} one-to-one plots models 1 through 9, log transformed......G-17 Figure G-6. Dairy mechanically ventilated barn PM_{10} one-to-one plots models 10 through 17, log transformed.....G-18 Figure G-7. Dairy mechanically ventilated barn PM_{10} one-to-one plots models 1 through 9, back transformed.....G-19 Figure G-8. Dairy mechanically ventilated barn PM_{10} one-to-one plots models 10 through 17, back transformed.....G-20 Figure G-9. Dairy mechanically ventilated barn $PM_{2.5}$ one-to-one plots models 10 through 17, back transformed......G-20

Figure G-10. Dairy mechanically ventilated barn PM _{2.5} one-to-one plots models 10 through 17, log transformed	G-24
Figure G-11. Dairy mechanically ventilated barn PM _{2.5} one-to-one plots models 1 through 9, back transformed.	G-25
Figure G-12. Dairy mechanically ventilated barn $PM_{2.5}$ one-to-one plots models 10 through 17, back transformed	G-26
Figure G-13. Dairy mechanically ventilated barn TSP one-to-one plots models 1 through 9, log transformed	G-29
Figure G-14. Dairy mechanically ventilated barn TSP one-to-one plots models 10 through 17, log transformed	l. G-30
Figure G-15. Dairy mechanically ventilated barn TSP one-to-one plots models 1 through 9, back transformed.	. G-31
Figure G-16. Dairy mechanically ventilated barn TSP one-to-one plots models 1 through 9, back transformed.	. G-32
Figure G-17. Dairy milking center NH ₃ one-to-one plots models 1 through 9, log transformed	G-37
Figure G-18. Dairy milking center NH ₃ one-to-one plots models 10 through 18, log transformed	G-38
Figure G-19. Dairy milking center NH ₃ one-to-one plots models 19 through 24, log transformed	G-39
Figure G-20. Dairy milking center NH ₃ one-to-one plots models 25 through 32, log transformed	G-40
Figure G-21 Dairy milking center NH ₃ one-to-one plots models 1 through 9, back transformed	G-41
Figure G-22 Dairy milking center NH ₃ one-to-one plots models 10 through 18, back transformed.	G-42
Figure G-23 Dairy milking center NH ₃ one-to-one plots models 19 through 24, back transformed.	G-43
Figure G-24 Dairy milking center NH ₃ one-to-one plots models 25 through 32, back transformed	G-44
Figure G-25. Dairy milking center H ₂ S one-to-one plots models 1 through 9, log transformed.	G-49
Figure G-26. Dairy milking center H ₂ S one-to-one plots models 10 through 18, log transformed	G-50
Figure G-27. Dairy milking center H ₂ S one-to-one plots models 19 through 24, log transformed	G-51
Figure G-28. Dairy milking center H ₂ S one-to-one plots models 25 through 32, log transformed	G-52
Figure G-29. Dairy milking center H ₂ S one-to-one plots models 1 through 9, back transformed	G-53
Figure G-30. Dairy milking center H ₂ S one-to-one plots models 10 through 18, back transformed	G-54
Figure G-31. Dairy milking center H ₂ S one-to-one plots models 19 through 24, back transformed	G-55
Figure G-32. Dairy milking center H ₂ S one-to-one plots models 25 through 32, back transformed	G-56
Figure G-33. Dairy milking center PM ₁₀ one-to-one plots models 1 through 9, log transformed	G-61
Figure G-34. Dairy milking center PM ₁₀ one-to-one plots models 10 through 18, log transformed	G-62
Figure G-35. Dairy milking center PM ₁₀ one-to-one plots models 19 through 24, log transformed	G-63
Figure G-36. Dairy milking center PM ₁₀ one-to-one plots models 25 through 32, log transformed	G-64
Figure G-37. Dairy milking center PM ₁₀ one-to-one plots models 1 through 9, back transformed	G-65
Figure G-38. Dairy milking center PM ₁₀ one-to-one plots models 10 through 18, back transformed	G-66
Figure G-39. Dairy milking center PM ₁₀ one-to-one plots models 19 through 24, back transformed	G-67
Figure G-40. Dairy milking center PM ₁₀ one-to-one plots models 25 through 32, back transformed	G-68
Figure G-41. Dairy milking center PM _{2.5} one-to-one plots models 1 through 9, log transformed	G-73
Figure G-42. Dairy milking center PM _{2.5} one-to-one plots models 10 through 18, log transformed	G-74
Figure G-43. Dairy milking center PM2.5 one-to-one plots models 19 through 24, log transformed	G-75
Figure G-44. Dairy milking center PM _{2.5} one-to-one plots models 25 through 32, log transformed	G-76
Figure G-45. Dairy milking center PM _{2.5} one-to-one plots models 1 through 9, back transformed	G- 77
Figure G-46. Dairy milking center PM2.5 one-to-one plots models 10 through 18, back transformed	G-78
Figure G-47. Dairy milking center PM _{2.5} one-to-one plots models 19 through 24, back transformed	G-79
Figure G-48. Dairy milking center PM _{2.5} one-to-one plots models 25 through 32, back transformed	G-80
Figure G-49. Dairy milking center TSP one-to-one plots models 1 through 9, log transformed	G-85
Figure G-50. Dairy milking center TSP one-to-one plots models 10 through 18, log transformed	G-86
Figure G-51. Dairy milking center TSP one-to-one plots models 19 through 24, log transformed	G-87
Figure G-52. Dairy milking center TSP one-to-one plots models 25 through 32, log transformed	G-88
Figure G-53. Dairy milking center TSP one-to-one plots models 1 through 9, back transformed	G-89
Figure G-54. Dairy milking center TSP one-to-one plots models 10 through 18, back transformed	G-90
Figure G-55. Dairy milking center TSP one-to-one plots models 19 through 24, back transformed	G-91
Figure G-56. Dairy milking center TSP one-to-one plots models 25 through 32, back transformed	G-92
Figure G-57. Dairy naturally ventilated barn NH3 one-to-one plots models 1 through 8, log transformed	G-95
Figure G-58. Dairy naturally ventilated barn NH3 one-to-one plots models 1 through 8, back transformed	G-96
Figure G-59. Dairy naturally ventilated barn H2S one-to-one plots models 1 through 8, log transformed	G-99
Figure G-60. Dairy naturally ventilated barn H ₂ S one-to-one plots models 1 through 8, back transformed	G-100
Figure G-61. Dairy naturally ventilated barn PM10 one-to-one plots models 1 through 8, log transformed	G-102
Figure G-62. Dairy naturally ventilated barn PM10 one-to-one plots models 1 through 8, back transformed	G-103
Figure G-63. Dairy naturally ventilated barn PM2.5 one-to-one plots models 1 through 8, log transformed	G-105
Figure G-64. Dairy naturally ventilated barn PM2.5 one-to-one plots models 1 through 8, back transformed	G-106
Figure G-65. Dairy naturally ventilated barn TSP one-to-one plots models 1 through 8, log transformed	G-108

Figure G-66. Dairy naturally ventilated barn TSP one-to-one plots models 1 through 8, back transformed	G-109
Figure G-67. Dairy lagoon NH3 one-to-one plots models 1 through 9, log transformed	G-112
Figure G-68. Dairy lagoon NH3 one-to-one plots models 10 through 15, log transformed	G-113
Figure G-69. Dairy lagoon NH3 one-to-one plots models 1 through 9, back transformed.	G-114
Figure G-70. Dairy lagoon NH3 one-to-one plots models 10 through 15, back transformed	G-115
Figure G-71. Dairy lagoon H ₂ S one-to-one plots models 1 through 9, log transformed	G-118
Figure G-72. Dairy lagoon H ₂ S one-to-one plots models 1 through 9, log transformed	G-119
Figure G-73. Dairy lagoon H ₂ S one-to-one plots models 1 through 9, back transformed	G-120
Figure G-74. Dairy lagoon H ₂ S one-to-one plots models 10 through 15, back transformed	G-121
Figure G-75. Dairy corral NH3 one-to-one plots models 1a through 9a, log transformed	G-125
Figure G-76. Dairy corral NH3 one-to-one plots models 10a through 15a, log transformed	G-126
Figure G-77. Dairy corral NH3 one-to-one plots models 1b through 9b, log transformed	G-127
Figure G-78. Dairy corral NH ₃ one-to-one plots models 10b through 15b, log transformed	G-128
Figure G-79. Dairy corral NH3 one-to-one plots models 1a through 9a, back transformed	G-129
Figure G-80. Dairy corral NH ₃ one-to-one plots models 10a through 15a, back transformed	G-130
Figure G-81. Dairy corral NH3 one-to-one plots models 1b through 9b, back transformed	G-131
Figure G-82. Dairy corral NH3 one-to-one plots models 10b through 15b, back transformed	G-132
Figure G-83. Dairy corral H ₂ S one-to-one plots models 1a through 9a, log transformed	G-136
Figure G-84. Dairy corral H ₂ S one-to-one plots models 10a through 15a, log transformed	G-137
Figure G-85. Dairy corral H ₂ S one-to-one plots models 1b through 9b, log transformed	G-138
Figure G-86. Dairy corral H ₂ S one-to-one plots models 10b through 15b, log transformed	G-139
Figure G-87. Dairy corral H ₂ S one-to-one plots models 1a through 9a, back transformed	G-140
Figure G-88. Dairy corral H ₂ S one-to-one plots models 10a through 15a, back transformed	G-141
Figure G-89. Dairy corral H ₂ S one-to-one plots models 1b through 9b, back transformed	G-142
Figure G-90. Dairy corral H ₂ S one-to-one plots models 10b through 15b, back transformed	G-143

corral H₂S one-to-one plots models 10 through 15b, back transform

G.1 Mechanically Ventilated Barns

Table G-1. Parameter combinations tested as models for NH₃ and H₂S emissions.

Model	Parameters
MV-G1	Inventory, manure management system (Flush, Scrape)
MV-G2	Inventory, Exhaust temperature, Exhaust relative humidity, manure management system
NAV CO	(Flush, Scrape)
IVIV-G3	Inventory, Exhaust temperature, manure management system (Flush, Scrape)
MV-G4	Inventory, Exhaust relative humidity, manure management system (Flush, Scrape)
MV-G5	Inventory, Ambient relative humidity, Ambient temperature, manure management system
1010-03	(Flush, Scrape)
MV-G6	Inventory, Manure age, Ambient temperature, manure management system (Flush, Scrape)
MV-G7	Inventory, Ambient relative humidity, manure management system (Flush, Scrape)
MV C9	Inventory, Ambient temperature, Exhaust relative humidity, manure management system
1010-00	(Flush, Scrape)
	Inventory, Exhaust temperature, Ambient relative humidity, manure management system
1010-09	(Flush, Scrape)

Table G-2. Parameter combinations tested as models for PM₁₀, PM_{2.5}, and TSP emissions.

Model	Parameters					
MV-P1	Intercept, Inventory					
MV-P2	Intercept, Inventory, Exhaust temperature, Exhaust relative humidity					
MV-P3	Intercept, Inventory, Exhaust temperature					
MV-P4	Intercept, Inventory, Exhaust relative humidity					
MV-P5	Intercept, Inventory, Ambient relative humidity, Ambient temperature					
MV-P6	Intercept, Inventory, Manure age, Ambient temperature					
MV-P7	Intercept, Inventory, Ambient relative humidity					
MV-P8	Intercept, Inventory, Ambient temperature, Exhaust relative humidity					
MV-P9	Intercept, Inventory, Exhaust temperature, Ambient relative humidity					
	Intercept, Exhaust temperature, Exhaust relative humidity					
1010-010	(Emissions normalized by Inventory)					
MV-P11	Intercept, Exhaust temperature (Emissions normalized by Inventory)					
MV-P12	Intercept, Exhaust relative humidity (Emissions normalized by Inventory)					
M// D12	Intercept, Ambient temperature, Ambient relative humidity					
IVIV-P15	(Emissions normalized by Inventory)					
MV-P14	Intercept, Ambient temperature (Emissions normalized by Inventory)					
MV-P15	Intercept, Ambient relative humidity (Emissions normalized by Inventory)					
	Intercept, Ambient temperature, Exhaust relative humidity					
1010-010	(Emissions normalized by Inventory)					
	Intercept, Ambient relative humidity, Exhaust temperature					
1010-671	(Emissions normalized by Inventory)					

G.1.1 Ammonia (NH₃)

Model	Parameter	Estimate	Standard Error	p-value
	Inventory	1.747472	0.13368	<.0001
MV-G1	FLUSH	1.968975	0.07724	<.0001
	SCRAPE	2.160489	0.0875	<.0001
	Inventory	1.737001	0.05581	<.0001
MV-G2	Exhaust temperature	0.048392	0.00111	<.0001
	Exhaust relative humidity	0.003011	0.00068	<.0001
	FLUSH	1.194081	0.05649	<.0001
	SCRAPE	1.396364	0.05863	<.0001
	Inventory	1.752395	0.06206	<.0001
	Exhaust temperature	0.047056	0.00114	<.0001
IVI V-G3	FLUSH	1.456887	0.03748	<.0001
	SCRAPE	1.619738	0.04267	<.0001
	Inventory	1.709631	0.13396	<.0001
	Exhaust relative humidity	0.00436	0.00087	<.0001
WV-G4	FLUSH	1.686656	0.0987	<.0001
	SCRAPE	1.868988	0.10501	<.0001
	Inventory	1.773753	0.06478	<.0001
	Ambient temperature	0.029581	0.00088	<.0001
MV-G5	Ambient relative humidity	-0.000242	0.00049	0.6239
	FLUSH	1.763365	0.05105	<.0001
	SCRAPE	1.881425	0.05421	<.0001
	Inventory	1.773832	0.06477	<.0001
	Ambient temperature	0.029586	0.00088	<.0001
IVIV-G6	FLUSH	1.746585	0.03789	<.0001
	SCRAPE	1.864935	0.04253	<.0001
	Inventory	1.790687	0.13499	<.0001
	Ambient relative humidity	0.00001	0.00058	0.9866
IVIV-G7	FLUSH	1.953638	0.08808	<.0001
	SCRAPE	2.144209	0.09609	<.0001
	Inventory	1.731025	0.05731	<.0001
	Exhaust relative humidity	0.004884	0.00071	<.0001
MV-G8	Ambient temperature	0.031826	0.00086	<.0001
	FLUSH	1.366088	0.05869	<.0001
	SCRAPE	1.515295	0.06027	<.0001
	Inventory	1.775013	0.06212	<.0001
	Exhaust temperature	0.04585	0.00117	<.0001
MV-G9	Ambient relative humidity	-0.00111	0.00047	0.0183
	FLUSH	1.564041	0.04971	<.0001
	SCRAPE	1.700058	0.05275	<.0001

Table G-3. Parameter and estimates NH₃ emission models for dairy mechanically ventilated barn.

Madal		ALC	A1Ca	BIC	Com	LNME ^a	NME ^b	ME ^b	MB ^b	NMB ^b
woder	ZLOGL	AIC	AICC	ыс	Corr.	(%)	(%)	(kg day ⁻¹)	(kg day⁻¹)	(%)
MV-G1	-156	-146	-146	-144	0.736	11.54	43.67	10.29	-0.625	-2.65
MV-G2	-1347	-1333	-1333	-1330	0.921	6.812	22.36	5.389	-0.566	-2.347
MV-G3	-1345	-1333	-1333	-1330	0.911	7.291	23.68	5.58	-0.434	-1.843
MV-G4	-125	-113	-113	-110	0.733	11.61	42.99	10.36	-0.685	-2.841
MV-G5	-1105	-1091	-1091	-1088	0.909	7.322	24.57	5.957	-0.579	-2.389
MV-G6	-1105	-1093	-1093	-1091	0.909	7.322	24.57	5.959	-0.583	-2.404
MV-G7	-255	-243	-243	-241	0.754	11.4	42.74	10.35	-0.784	-3.24
MV-G8	-1155	-1141	-1141	-1139	0.922	6.773	22.57	5.609	-0.628	-2.527
MV-G9	-1314	-1300	-1300	-1298	0.918	6.999	23	5.568	-0.45	-1.859

Table G-4. Fit and evaluation statistics for dairy mechanically ventilated barn NH₃ models tested.

^a Based on transformed data (i.e., ln(NH₃)).

^b Based on back-transformed data.

G-8

Figure G-1. Dairy mechanically ventilated barn NH₃ one-to-one plots models 1 through 9, log transformed.

Figure G-2. Dairy mechanically ventilated barn NH₃ one-to-one plots models 1 through 9, back transformed.

G.1.2 Hydrogen Sulfide (H₂S)

Model	Parameter	Estimate	Standard Error	p-value
	Inventory	0.85197	0.10927	<.0001
MV-G1	FLUSH	7.489765	0.0634	<.0001
	SCRAPE	6.409219	0.07174	<.0001
	Inventory	0.749681	0.07466	<.0001
	Exhaust temperature	0.023646	0.00164	<.0001
MV-G2	Exhaust relative humidity	0.003395	0.00106	0.0014
	FLUSH	7.001505	0.0838	<.0001
	SCRAPE	5.943562	0.08587	<.0001
	Inventory	0.790491	0.07913	<.0001
	Exhaust temperature	0.021314	0.00166	<.0001
1010-03	FLUSH	7.272397	0.04871	<.0001
	SCRAPE	6.193112	0.05513	<.0001
	Inventory	0.828413	0.10997	<.0001
	Exhaust relative humidity	0.002065	0.0011	0.0598
1010-04	FLUSH	7.362012	0.09788	<.0001
	SCRAPE	6.273489	0.10168	<.0001
	Inventory	0.862257	0.08689	<.0001
	Ambient temperature	0.012718	0.00127	<.0001
MV-G5	Ambient relative humidity	-0.00075	0.00072	0.2988
	FLUSH	7.459213	0.07186	<.0001
	SCRAPE	6.338222	0.07532	<.0001
	Inventory	0.86173	0.08664	<.0001
	Ambient temperature	0.012786	0.00127	<.0001
1010-00	FLUSH	7.406887	0.05129	<.0001
	SCRAPE	6.287004	0.05691	<.0001
	Inventory	0.921144	0.1135	<.0001
	Ambient relative humidity	-0.000989	0.00072	0.167
WW-G7	FLUSH	7.551565	0.0833	<.0001
	SCRAPE	6.449859	0.08831	<.0001
	Inventory	0.804201	0.08038	<.0001
	Exhaust relative humidity	0.003593	0.00105	0.0006
MV-G8	Ambient temperature	0.015583	0.00126	<.000
	FLUSH	7.13763	0.08504	<.0002
	SCRAPE	6.029703	0.08645	<.0001
	Inventory	0.848409	0.0827	<.0001
	Exhaust temperature	0.020512	0.00171	<.0001
MV-G9	Ambient relative humidity	-0.001261	0.00072	0.0782
	FLUSH	7.378145	0.071	<.0001
	SCRAPE	6.265544	0.07426	<.0001

Table G-5. Parameter and estimates H2S emission models for dairy mechanicallyventilated barn.

Madal	21 0 71			DIC	Comm	LNME ^a	NME ^b	ME ^b	MB ^b	NMB ^b
woder	ZLOGL	AIC	AICC	ыс	Corr.	(%)	(%)	(g day⁻¹)	(g day⁻¹)	(%)
MV-G1	1234	1244	1244	1246	0.59	5.33	74.81	649.1	0.724	0.083
MV-G2	1035	1049	1049	1051	0.746	4.287	62.99	527	-46.27	-5.53
MV-G3	1122	1134	1134	1137	0.726	4.47	63.99	555.2	-38.55	-4.443
MV-G4	1163	1175	1176	1178	0.588	5.33	76.61	641	-4.608	-0.551
MV-G5	848	862	863	865	0.713	4.467	64.4	553.9	-38.24	-4.446
MV-G6	850	862	862	864	0.714	4.46	64.31	553.1	-38.66	-4.495
MV-G7	916	928	928	931	0.595	5.201	74.21	633.7	1	0.117
MV-G8	750	764	764	767	0.742	4.232	62.78	518.8	-47.85	-5.79
MV-G9	818	832	832	834	0.729	4.388	63.2	539.7	-42.24	-4.946

Table G-6. Fit and evaluation statistics for H_2S emission models for dairy mechanically ventilated barn.

^a Based on transformed data (i.e., ln(H₂S)).
^b Based on back-transformed data.

Figure G-3. Dairy mechanically ventilated barn H₂S one-to-one plots models 1 through 9, log transformed.

Figure G-4. Dairy mechanically ventilated barn H₂S one-to-one plots models 1 through 9, back transformed.

G.1.3 PM₁₀

Model	Parameter	Estimate	Standard Error	p-value
	Intercept	7.893278	0.02207	<.0001
IVI V P-1	Inventory	-0.164739	0.03776	<.0001
	Intercept	8.000154	0.0316	<.0001
	Inventory	-0.154561	0.02763	<.0001
IVI V P-Z	Exhaust temperature	0.009357	0.00069	<.0001
	Exhaust relative humidity	-0.003067	0.00039	<.0001
	Intercept	7.792627	0.01763	<.0001
MVP-3	Inventory	-0.176717	0.02764	<.0001
	Exhaust temperature	0.009331	0.00069	<.0001
	Intercept	8.105856	0.03512	<.0001
MVP-4	Inventory	-0.149821	0.03774	0.0001
	Exhaust relative humidity	-0.003063	0.00041	<.0001
	Intercept	7.975044	0.02594	<.0001
	Inventory	-0.19122	0.02854	<.0001
101 0 P-5	Ambient temperature	0.006017	0.00051	<.0001
	Ambient relative humidity	-0.001883	0.00029	<.0001
	Intercept	7.843341	0.01664	<.0001
MVP-6	Inventory	-0.186495	0.02844	<.0001
	Ambient temperature	0.006236	0.00051	<.0001
	Intercept	8.029831	0.02952	<.0001
MVP-7	Inventory	-0.16347	0.03753	<.0001
	Ambient relative humidity	-0.002031	0.00029	<.0001
	Intercept	8.027481	0.03188	<.0001
MVP-8	Inventory	-0.166792	0.02878	<.0001
	Exhaust relative humidity	-0.002682	0.00041	<.0001
	Ambient temperature	0.006001	0.0316 0.02763 0.00069 0.00039 0.01763 0.02764 0.00069 0.03512 0.03512 0.03514 0.00041 0.02594 0.02594 0.00051 0.00029 0.01664 0.02952 0.03753 0.00029 0.03188 0.02878 0.00041 0.00051 0.02878 0.00041 0.00051 0.02878 0.00041 0.00051 0.02607 0.02753 0.00069 0.00028 0.00028 0.00078 0.00156 0.00078 0.00159 0.00301 0.004588 0.00117 0.00056	<.0001
	Intercept	7.936865	0.02207 0.03776 0.0316 0.02763 0.00069 0.00039 0.01763 0.02764 0.00069 0.03512 0.03774 0.00041 0.02594 0.002854 0.00051 0.0029 0.01664 0.02952 0.03753 0.00029 0.03188 0.02878 0.00051 0.02607 0.02607 0.002753 0.00051 0.00051 0.00051 0.00051 0.02607 0.02607 0.002753 0.00054 0.00055 0.00078 0.00078 0.00156 0.00078 0.00159 0.04588 0.00117 0.00056	<.0001
MVP-6 MVP-7 MVP-8 MVP-9	Inventory	-0.1827	0.02753	<.0001
	Exhaust temperature	0.009106	0.00069	<.0001
	Ambient relative humidity	-0.002059	0.00028	<.0001
	Intercept	8.249507	0.06206	<.0001
MVP-10	Exhaust temperature	0.018019	0.00156	<.0001
	Exhaust relative humidity	-0.007211	0.00078	<.0001
MVP-11	Intercept	7.737968	0.02793	<.0001
IVIVP-11	Exhaust temperature	0.01796	0.00159	<.0001
	Intercept	8.447248	0.00156 0.00078 0.02793 0.00159 0.06301 0.00081	<.0001
MVP-12	Exhaust relative humidity	-0.00706	0.00081	<.0001
	Intercept	8.130759	0.04588	<.0001
MVP-13	Ambient temperature	0.01083	0.00117	<.0001
	Ambient relative humidity	-0.004322	0.00056	<.0001

Table G-7. Parameter and estimates PM₁₀ emission models for dairy mechanically ventilated barn.

Model	Parameter	Estimate	Standard Error	p-value
	Intercept	7.835482	0.0252	<.0001
10109-14	Ambient temperature	0.011268	0.00118	<.0001
	Intercept	8.250004	0.04677	<.0001
IVIVP-15	Ambient relative humidity	-0.004532	0.00057	<.0001
MVP-16	Intercept	8.301634	0.06314	<.0001
	Exhaust relative humidity	-0.006477	0.00081	<.0001
	Ambient temperature	0.010627	0.00117	<.0001
MVP-17	Intercept	8.05718	0.04675	<.0001
	Exhaust temperature	0.01731	0.00158	<.0001
	Ambient relative humidity	-0.004623	0.00056	<.0001

Table G-8. Fit and evaluation statistics for PM₁₀ emission models for dairy mechanically ventilated barn.

						LNME ^a	NME ^b	ME ^b	MB ^b	NMB ^b
Model	2LogL	AIC	AICc	BIC	Corr.	(%)	(%)	(g day⁻¹)	(kg day ⁻¹)	(%)
MVP-1	-2,874	-2,866	-2,866	-2,865	0.22	1.43	102.20	323.70	-0.50	-0.16
MVP-2	-2,986	-2,974	-2,974	-2,972	0.62	1.18	82.59	266.30	-7.22	-2.24
MVP-3	-3,017	-3,007	-3,007	-3,005	0.59	1.22	86.12	272.80	-6.68	-2.11
MVP-4	-2,843	-2,833	-2,833	-2,831	0.31	1.41	99.97	322.40	-1.31	-0.41
MVP-5	-2,897	-2,885	-2,885	-2,883	0.57	1.19	85.84	265.10	-5.69	-1.84
MVP-6	-2,887	-2,877	-2,877	-2,875	0.57	1.19	86.50	265.40	-5.77	-1.88
MVP-7	-2,801	-2,791	-2,791	-2,789	0.27	1.38	99.99	308.10	-0.86	-0.28
MVP-8	-2,840	-2,828	-2,828	-2,826	0.59	1.17	83.56	261.10	-6.28	-2.01
MVP-9	-2,939	-2,927	-2,927	-2,925	0.59	1.18	85.03	262.00	-5.83	-1.89
MVP-10	-818	-808	-808	-806	0.58	2.71	96.84	941.10	-70.93	-7.30
MVP-11	-724	-716	-716	-714	0.51	2.84	101.30	969.60	-58.71	-6.14
MVP-12	-700	-692	-692	-691	0.29	3.02	113.20	1,100.00	-14.42	-1.48
MVP-13	-730	-720	-720	-718	0.46	2.78	102.80	951.80	-45.14	-4.88
MVP-14	-688	-680	-680	-678	0.47	2.82	103.70	952.90	-47.53	-5.17
MVP-15	-657	-649	-649	-647	0.13	3.08	116.60	1,075.00	-1.75	-0.19
MVP-16	-764	-754	-754	-752	0.54	2.71	99.80	932.00	-58.17	-6.23
MVP-17	-766	-756	-755	-754	0.49	2.75	100.50	927.40	-51.05	-5.53

^a Based on transformed data (i.e., ln(PM₁₀)).
 ^b Based on back-transformed data.

Figure G-5. Dairy mechanically ventilated barn PM₁₀ one-to-one plots models 1 through 9, log transformed.

Figure G-6. Dairy mechanically ventilated barn PM₁₀ one-to-one plots models 10 through 17, log transformed.

Figure G-7. Dairy mechanically ventilated barn PM₁₀ one-to-one plots models 1 through 9, back transformed.

Figure G-8. Dairy mechanically ventilated barn PM₁₀ one-to-one plots models 10 through 17, back transformed.

G.1.4 Fine particulate matter (PM_{2.5})

Model	Parameter	Estimate	Standard Error	p-value
	Intercept	6.723444	0.05214	<.0001
IVI VP-1	Inventory	-0.162107	0.09504	0.0991
	Intercept	6.705085	0.11364	<.0001
	Inventory	-0.223783	0.07902	0.0079
IVI V P-Z	Exhaust temperature	0.008378	0.00169	<.0001
	Exhaust relative humidity	-0.000595	0.0015	0.6917
	Intercept	6.639886	0.04142	<.0001
MVP-3	Inventory	-0.202089	0.07244	0.0088
	Exhaust temperature	0.008704	0.00159	<.0001
	Intercept	6.838487	0.11859	<.0001
MVP-4	Inventory	-0.206677	0.09595	0.0406
MVP-2 MVP-3 MVP-4 MVP-5 MVP-5 MVP-6 MVP-7 MVP-8	Exhaust relative humidity	-0.001078	0.00159	0.4986
	Intercept	6.697356	0.08085	<.0001
MVP-5 MVP-6	Inventory	-0.150216	0.07109	0.0449
IVI VP-5	Ambient temperature	0.00381	0.001	0.0004
	Ambient relative humidity	-0.000422	0.00101	0.6764
	Intercept	6.667655	0.03747	<.0001
MVP-6	Inventory	-0.149752	0.07223	0.0477
	Ambient temperature	0.003817	0.00101	0.0004
	Intercept	6.672905	0.08644	<.0001
MVP-7	Inventory	-0.076468	0.08704	0.3894
	Ambient relative humidity	-0.00009	0.00102	0.9295
	Intercept	6.656394	0.10911	<.0001
	Inventory	-0.200477	0.08068	0.0195
MVP-7 MVP-8	Exhaust relative humidity	0.000576	0.00147	0.6967
	Ambient temperature	0.003939	0.0011	0.0008
	Intercept	6.65579	0.08022	<.0001
N/1\/D_Q	Inventory	-0.149074	0.06841	0.039
	Exhaust temperature	0.006647	0.00145	<.0001
	Ambient relative humidity	-0.000437	0.00099	0.6602
	Intercept	6.734071	0.2477	<.0001
MVP-10	Exhaust temperature	0.018344	0.00461	0.0002
	Exhaust relative humidity	-0.001841	0.00313	0.5567
	Intercept	6.607057	0.07549	<.0001
	Exhaust temperature	0.016971	0.00434	0.0002
M\/D_12	Intercept	6.945997	0.25138	<.0001
10106-12	Exhaust relative humidity	-0.001699	0.00326	0.603
	Intercept	6.76777	0.15722	<.0001
MVP-13	Ambient temperature	0.00474	0.00273	0.0872
	Ambient relative humidity	-0.000547	0.00207	0.7919

Table G-9. Parameter and estimates PM2.5 emission models for dairy mechanically ventilated barn.
Model	Parameter	Estimate	Standard Error	p-value
	Intercept	6.72987	0.06275	<.0001
10109-14	Ambient temperature	0.004738	0.00274	0.0878
	Intercept	6.803706	0.15669	<.0001
IVIVP-15	Ambient relative humidity	-0.000454	0.00207	0.8267
	Intercept	6.640063	0.24227	<.0001
MVP-16	Exhaust relative humidity	0.001234	0.00305	0.6865
	Ambient temperature	0.005929	0.00301	0.0528
	Intercept	6.689929	0.159	<.0001
MVP-17	Exhaust temperature	0.01113	0.00397	0.0063
	Ambient relative humidity	-0.000642	0.00204	0.7532

Table G-10. Fit and evaluation statistics for PM2.5 emission models for dairymechanically ventilated barn.

Madal	21 0 01		ALCO	DIC	Com	LNME ^a	NME ^b	ME ^b	MB ^b	NMB ^b
iviodei	ZLOGL	AIC	AICC	BIC	Corr.	(%)	(%)	(g day⁻¹)	(kg day⁻¹)	(%)
MVP-1	-338	-330	-330	-328	0.19	1.75	90.89	101.00	0.07	0.06
MVP-2	-340	-328	-328	-326	0.57	1.47	70.94	83.19	-0.25	-0.22
MVP-3	-363	-353	-353	-351	0.57	1.45	73.38	81.53	-0.51	-0.46
MVP-4	-318	-308	-307	-306	0.31	1.74	85.29	100.00	-0.10	-0.08
MVP-5	-369	-357	-356	-354	0.52	1.29	80.29	69.43	-0.70	-0.81
MVP-6	-369	-359	-358	-357	0.51	1.31	81.34	70.33	-0.62	-0.71
MVP-7	-357	-347	-346	-345	0.08	1.43	90.73	78.45	0.03	0.03
MVP-8	-343	-331	-331	-329	0.49	1.35	78.93	72.74	-0.36	-0.39
MVP-9	-375	-363	-362	-360	0.55	1.26	78.22	67.64	-0.54	-0.62
MVP-10	-60	-50	-50	-48	0.44	4.10	93.30	342.50	-5.74	-1.56
MVP-11	-65	-57	-56	-55	0.43	4.04	96.72	336.20	-7.30	-2.10
MVP-12	-44	-36	-36	-35	0.53	4.07	101.90	374.20	-3.30	-0.90
MVP-13	-109	-99	-98	-97	0.33	3.23	101.80	258.00	-4.87	-1.92
MVP-14	-109	-101	-100	-99	0.31	3.25	102.40	259.40	-4.33	-1.71
MVP-15	-106	-98	-97	-96	0.39	3.24	104.60	265.20	-0.52	-0.21
MVP-16	-102	-92	-92	-90	0.23	3.44	102.00	275.80	-1.57	-0.58
MVP-17	-114	-104	-103	-102	0.37	3.25	100.70	255.10	-4.98	-1.96

^a Based on transformed data (i.e., ln(PM_{2.5})).
^b Based on back-transformed data.

Figure G-9. Dairy mechanically ventilated barn PM_{2.5} one-to-one plots models 1 through 9, log transformed.

Figure G-10. Dairy mechanically ventilated barn PM_{2.5} one-to-one plots models 10 through 17, log transformed.

Figure G-11. Dairy mechanically ventilated barn PM_{2.5} one-to-one plots models 1 through 9, back transformed.

Figure G-12. Dairy mechanically ventilated barn PM_{2.5} one-to-one plots models 10 through 17, back transformed.

G.1.5 Total Suspended Particulates (TSP)

Model	Parameter	Estimate	Standard Error	p-value
	Intercept	7.506149	0.07383	<.0001
101015-1	Inventory	-0.426276	0.12654	0.0013
	Intercept	8.080847	0.12835	<.0001
	Inventory	-0.266376	0.10963	0.0178
IVIVP-Z	Exhaust temperature	0.015445	0.00297	<.0001
	Exhaust relative humidity	-0.011664	0.00178	<.0001
	Intercept	7.358078	0.07017	<.0001
MVP-3	Inventory	-0.436108	0.10746	0.0001
	Exhaust temperature	0.014361	0.00303	<.0001
	Intercept	8.210417	0.13518	<.0001
MVP-4	Inventory	-0.278826	0.12623	0.0308
	Exhaust relative humidity	-0.011042	0.00185	<.0001
	Intercept	7.857034	0.11335	<.0001
	Inventory	-0.389323	0.1128	0.001
IVIVP-5	Ambient temperature	0.008795	0.00219	<.0001
	Ambient relative humidity	-0.006738	0.00139	<.0001
	Intercept	7.409806	0.06478	<.0001
MVP-6	Inventory	-0.404463	0.10961	0.0005
	Ambient temperature	0.009577	0.00219	<.0001
	Intercept	7.939351	0.11744	<.0001
MVP-7	Inventory	-0.352971	0.1263	0.0071
	Ambient relative humidity	-0.007146	0.00141	<.0001
	Intercept	8.090359	0.12981	<.0001
	Inventory	-0.254138	0.11268	0.0276
10109-0	Exhaust relative humidity	-0.010719	0.0018	<.0001
	Ambient temperature	0.009293	0.00217	<.0001
	Intercept	7.796195	0.11451	<.0001
M//D_Q	Inventory	-0.368408	0.11077	0.0015
	Exhaust temperature	0.014024	0.00303	<.0001
	Ambient relative humidity	-0.007089	0.00138	<.0001
	Intercept	8.975691	0.21501	<.0001
MVP-10	Exhaust temperature	0.027785	0.0056	<.0001
	Exhaust relative humidity	-0.023121	0.00293	<.0001
	Intercept	7.431124	0.09737	<.0001
101015-11	Exhaust temperature	0.020482	0.00614	0.001
	Intercept	9.111458	0.22141	<.0001
VIVP-12	Exhaust relative humidity	-0.020799	0.00299	<.0001
	Intercept	8.434953	0.17254	<.0001
MVP-13	Ambient temperature	0.01277	0.00439	0.004
	Ambient relative humidity	-0.013417	0.0023	<.0001

Table G-11. Parameter and estimates TSP emission models for dairy mechanically
ventilated barn.

Model	Parameter	Estimate	Standard Error	p-value
	Intercept	7.539927	0.08173	<.0001
10109-14	Ambient temperature	0.013471	0.00453	0.0033
	Intercept	8.546104	0.1713	<.0001
IVIVP-15	Ambient relative humidity	-0.0135	0.00231	<.0001
	Intercept	9.009825	0.21894	<.0001
MVP-16	Exhaust relative humidity	-0.021338	0.00297	<.0001
	Ambient temperature	0.016536	0.00418	0.0001
	Intercept	8.338173	0.17488	<.0001
MVP-17	Exhaust temperature	0.023054	0.00598	0.0001
	Ambient relative humidity	-0.014012	0.00228	<.0001

Table G-12. Fit and evaluation statistics for TSP emission models for dairymechanically ventilated barn.

Madal	21.001		A1C+	DIC	Com	LNME ^a	NME ^b	ME ^b	MB ^b	NMB ^b
woder	ZLOGL	AIC	AICC	ыс	Corr.	(%)	(%)	(g day⁻¹)	(kg day ⁻¹)	(%)
MVP-1	-39	-31	-31	-30	0.36	3.43	76.20	452.20	-7.27	-1.23
MVP-2	-100	-88	-88	-85	0.58	3.12	65.73	392.90	-10.15	-1.70
MVP-3	-59	-49	-49	-47	0.52	3.29	69.78	414.10	-13.38	-2.25
MVP-4	-75	-65	-65	-63	0.45	3.21	72.38	432.70	-5.15	-0.86
MVP-5	-74	-62	-62	-60	0.48	3.20	70.42	403.60	-7.64	-1.33
MVP-6	-52	-42	-42	-40	0.48	3.20	70.09	401.70	-10.53	-1.84
MVP-7	-60	-50	-49	-48	0.35	3.28	74.49	426.90	-3.09	-0.54
MVP-8	-87	-75	-74	-72	0.54	3.07	66.61	384.80	-8.25	-1.43
MVP-9	-79	-67	-67	-65	0.49	3.20	70.07	401.60	-7.09	-1.24
MVP-10	236	246	246	248	0.57	5.76	80.77	1,507.00	-161.40	-8.65
MVP-11	310	318	318	320	0.37	6.77	93.60	1,735.00	-119.00	-6.42
MVP-12	260	268	268	269	0.42	6.12	93.23	1,740.00	-54.94	-2.94
MVP-13	270	280	281	282	0.31	6.41	92.68	1,628.00	-66.13	-3.77
MVP-14	303	311	311	312	0.31	6.63	94.21	1,655.00	-86.80	-4.94
MVP-15	279	287	287	288	0.15	6.57	99.61	1,749.00	13.17	0.75
MVP-16	237	247	247	249	0.52	5.73	82.91	1,466.00	-125.10	-7.08
MVP-17	264	274	274	276	0.36	6.36	90.45	1,589.00	-85.82	-4.89

^a Based on transformed data (i.e., In(TSP)).

^b Based on back-transformed data.

Figure G-13. Dairy mechanically ventilated barn TSP one-to-one plots models 1 through 9, log transformed.

Figure G-14. Dairy mechanically ventilated barn TSP one-to-one plots models 10 through 17, log transformed.

Figure G-15. Dairy mechanically ventilated barn TSP one-to-one plots models 1 through 9, back transformed.

Figure G-16. Dairy mechanically ventilated barn TSP one-to-one plots models 1 through 9, back transformed.

G.2 Milking Centers

G.2.1 Ammonia (NH₃)

Table G-13. Parameter and estimates NH₃ emission models for dairy milking centers.

Model	Parameter	Estimate	Standard Error	p-value
	Intercept	1.208525	0.8987	0.1802
	Inventory	0		
MC-1	Milk Production	0.017805	0.02543	0.4848
	Exhaust temperature	0.0238	0.00339	<.0001
	Exhaust relative humidity	0.000102	0.00144	0.9434
	Intercept	0.897337	0.76585	0.2424
MC 2	Inventory	0		
IVIC-Z	Milk Production	0.024322	0.02166	0.2626
	Exhaust temperature	0.030704	0.00286	<.0001
	Intercept	1.652131	0.89508	0.0669
MC 2	Inventory	0		•
IVIC-3	Milk Production	0.018111	0.02522	0.4739
	Exhaust relative humidity	-0.00155	0.00155	0.3188
	Intercept	0.838636	0.80156	0.2965
	Inventory	0		
MC-4	Milk Production	0.028606	0.02269	0.2087
	Ambient temperature	0.019551	0.00209	<.0001
	Ambient relative humidity	0.001192	0.00087	0.1697
	Intercept	0.829125	0.80015	0.3012
	Inventory	0		
IVIC-5	Milk Production	0.031273	0.02257	0.1674
	Ambient temperature	0.019256	0.00208	<.0001
	Intercept	1.548428	0.80445	0.056
MCG	Inventory	0	•	•
IVIC-0	Milk Production	0.015087	0.02273	0.5079
	Ambient relative humidity	0.000923	0.00099	0.3531
	Intercept	1.120794	0.94412	0.2367
	Inventory	0	•	
MC-7	Milk Production	0.022857	0.02672	0.3935
	Exhaust relative humidity	0.000694	0.00152	0.6489
	Ambient temperature	0.015329	0.00252	<.0001
	Intercept	0.774798	0.79271	0.3292
	Inventory	0	•	•
MC-8	Milk Production	0.025147	0.02248	0.2642
	Exhaust temperature	0.032583	0.00296	<.0001
	Ambient relative humidity	0.001034	0.00083	0.2133
	Intercept	0.804663	0.15646	<.0001
1010-9	Inventory	0.18583	0.25045	0.4624

Model	Parameter	Estimate	Standard Error	p-value
	Exhaust temperature	0.051146	0.00368	<.0001
	Exhaust relative humidity	0.008179	0.00146	<.0001
	Intercept	1.433197	0.11131	<.0001
MC-10	Inventory	0.088677	0.25075	0.7254
	Exhaust temperature	0.053704	0.00331	<.0001
	Intercept	1.346365	0.17597	<.0001
MC-11	Inventory	0.263579	0.29536	0.3772
	Exhaust relative humidity	0.010509	0.00166	<.0001
	Intercept	1.406205	0.13211	<.0001
MC 12	Inventory	0.210045	0.25239	0.41
IVIC-12	Ambient temperature	0.035077	0.00241	<.0001
	Ambient relative humidity	0.00438	0.00107	<.0001
	Intercept	1.718316	0.10593	<.0001
MC-13	Inventory	0.191352	0.24706	0.4428
	Ambient temperature	0.034376	0.00242	<.0001
	Intercept	1.823354	0.15017	<.0001
MC-14	Inventory	0.409915	0.29689	0.1744
	Ambient relative humidity	0.003493	0.00122	0.0043
	Intercept	1.004861	0.15587	<.0001
MC 1E	Inventory	0.272607	0.24764	0.2771
IVIC-15	Exhaust relative humidity	0.009201	0.00152	<.0001
	Ambient temperature	0.032845	0.00267	<.0001
	Intercept	1.197532	0.13428	<.0001
MC 16	Inventory	0.090108	0.25633	0.727
IVIC-10	Exhaust temperature	0.054912	0.00335	<.0001
	Ambient relative humidity	0.003251	0.00104	0.0018
	Intercept	1.208525	0.8987	0.1802
MC 17	Milk Production	0.017805	0.02543	0.4848
IVIC-17	Exhaust temperature	0.0238	0.00339	<.0001
	Exhaust relative humidity	0.000102	0.00144	0.9434
	Intercept	0.897337	0.76585	0.2424
MC-18	Milk Production	0.024322	0.02166	0.2626
	Exhaust temperature	0.030704	0.00286	<.0001
	Intercept	1.652131	0.89508	0.0669
MC-19	Milk Production	0.018111	0.02522	0.4739
	Exhaust relative humidity	-0.00155	0.00155	0.3188
	Intercept	0.838636	0.80156	0.2965
MC 20	Milk Production	0.028606	0.02269	0.2087
IVIC-20	Ambient temperature	0.019551	0.00209	<.0001
	Ambient relative humidity	0.001192	0.00087	0.1697
	Intercept	0.829125	0.80015	0.3012
MC-21	Milk Production	0.031273	0.02257	0.1674
	Ambient temperature	0.019256	0.00208	<.0001

Model	Parameter	Estimate	Standard Error	p-value
	Intercept	1.548428	0.80445	0.056
MC-22	Milk Production	0.015087	0.02273	0.5079
	Ambient relative humidity	0.000923	0.00099	0.3531
	Intercept	1.120794	0.94412	0.2367
MC 22	Milk Production	0.022857	0.02672	0.3935
IVIC-25	Exhaust relative humidity	0.000694	0.00152	0.6489
	Ambient temperature	0.015329	0.00252	<.0001
	Intercept	0.774798	0.79271	0.3292
N/C 24	Milk Production	0.025147	0.02248	0.2642
IVIC-24	Exhaust temperature	0.032583	0.00296	<.0001
	Ambient relative humidity	0.001034	0.00083	0.2133
	Intercept	1.397358	0.17941	<.0001
MC-25	Exhaust temperature	0.068193	0.00507	<.0001
	Exhaust relative humidity	0.009331	0.00191	<.0001
MC 26	Intercept	2.077434	0.11748	<.0001
IVIC-20	Exhaust temperature	0.072495	0.00453	<.0001
MC 27	Intercept	2.153227	0.18617	<.0001
IVIC-27	Exhaust relative humidity	0.012156	0.00217	<.0001
	Intercept	2.12093	0.14039	<.0001
MC-28	Ambient temperature	0.047334	0.00332	<.0001
	Ambient relative humidity	0.00551	0.00139	<.0001
MC 20	Intercept	2.505637	0.10119	<.0001
IVIC-29	Ambient temperature	0.046434	0.00335	<.0001
MC 20	Intercept	2.774069	0.14027	<.0001
IVIC-50	Ambient relative humidity	0.004302	0.00159	0.0069
	Intercept	1.700751	0.17521	<.0001
MC-31	Exhaust relative humidity	0.010613	0.00199	<.0001
	Ambient temperature	0.043973	0.00371	<.0001
	Intercept	1.78757	0.14904	<.0001
MC-32	Exhaust temperature	0.074156	0.00458	<.0001
	Ambient relative humidity	0.003945	0.00134	0.0032

Madal	21.001	ALC	ALCO	DIC	Com	LNME ^a	NME ^b	ME ^b	MB ^b	NMB ^b
woder	ZLOGL	AIC	AICC	ыс	Corr.	(%)	(%)	(kg day ⁻¹)	(kg day ⁻¹)	(%)
MC-1	-266	-256	-256	-238	0.209	8.607	27.94	1.684	0.139	2.31
MC-2	-366	-358	-358	-342	0.318	9.035	30.29	1.759	0.224	3.861
MC-3	-224	-216	-216	-201	-0.024	8.906	28.11	1.695	0.004	0.062
MC-4	-335	-325	-325	-306	0.316	9.015	29.85	1.729	0.201	3.471
MC-5	-333	-325	-325	-310	0.316	8.912	29.47	1.707	0.188	3.24
MC-6	-261	-253	-253	-238	-0.127	9.095	29.09	1.685	0.007	0.118
MC-7	-243	-233	-233	-215	0.208	8.636	27.84	1.675	0.125	2.077
MC-8	-356	-346	-346	-327	0.315	9.509	32.04	1.855	0.267	4.609
MC-9	16	28	29	31	0.614	15.49	47.52	3.521	0.086	1.159
MC-10	-24	-14	-14	-12	0.558	15.93	49.43	3.55	0.226	3.147
MC-11	187	197	197	199	0.412	17.2	52.4	3.883	-0.157	-2.112
MC-12	14	26	26	28	0.537	16.38	50.44	3.619	0.21	2.926
MC-13	30	40	40	42	0.541	16.16	49.76	3.57	0.168	2.34
MC-14	202	212	212	214	0.104	17.21	53.21	3.818	-0.045	-0.62
MC-15	55	67	67	69	0.607	15.66	47.7	3.532	0.034	0.46
MC-16	-29	-17	-17	-14	0.557	16.16	50.06	3.592	0.266	3.709
MC-17	-266	-254	-254	-232	0.209	8.607	27.94	1.684	0.139	2.31
MC-18	-366	-356	-356	-337	0.318	9.035	30.29	1.759	0.224	3.861
MC-19	-224	-214	-214	-196	-0.024	8.906	28.11	1.695	0.004	0.062
MC-20	-335	-323	-323	-300	0.316	9.015	29.85	1.729	0.201	3.471
MC-21	-333	-323	-323	-304	0.316	8.912	29.47	1.707	0.188	3.24
MC-22	-261	-251	-251	-232	-0.127	9.095	29.09	1.685	0.007	0.118
MC-23	-243	-231	-231	-210	0.208	8.636	27.84	1.675	0.125	2.077
MC-24	-356	-344	-344	-321	0.315	9.509	32.04	1.855	0.267	4.609
MC-25	382	392	392	394	0.514	17.68	52.09	12.03	2.2	9.522
MC-26	390	398	398	400	0.384	18.81	58.25	13.66	3.717	15.85
MC-27	541	549	550	551	0.373	19.48	49.75	11.49	-0.169	-0.732
MC-28	423	433	433	435	0.401	18.31	55.01	12.82	3.194	13.7
MC-29	438	446	446	448	0.394	18.25	54.18	12.63	3.017	12.94
MC-30	601	609	609	611	0.079	18.92	48.9	11.4	0.006	0.025
MC-31	412	422	423	424	0.529	17.31	49.26	11.29	1.719	7.5
MC-32	381	391	391	393	0.386	19.1	60.13	14.02	3.985	17.1

Table G-14. Fit and evaluation statistics for NH₃ emission models for dairy milking centers.

^a Based on transformed data (i.e., ln(NH₃)).
^b Based on back-transformed data.

Figure G-17. Dairy milking center NH₃ one-to-one plots models 1 through 9, log transformed.

Figure G-18. Dairy milking center NH₃ one-to-one plots models 10 through 18, log transformed.

Figure G-19. Dairy milking center NH₃ one-to-one plots models 19 through 24, log transformed.

Figure G-20. Dairy milking center NH₃ one-to-one plots models 25 through 32, log transformed.

Figure G-21 Dairy milking center NH₃ one-to-one plots models 1 through 9, back transformed.

Figure G-22 Dairy milking center NH₃ one-to-one plots models 10 through 18, back transformed.

Figure G-23 Dairy milking center NH₃ one-to-one plots models 19 through 24, back transformed.

Figure G-24 Dairy milking center NH₃ one-to-one plots models 25 through 32, back transformed.

G.2.2 Hydrogen Sulfide (H₂S)

Table G-15. Parameter and estimates H ₂ S emission models for dairy milking
centers.

Model	Parameter	Estimate	Standard Error	p-value
	Intercept	7.893109	0.43963	<.0001
	Inventory	0		•
MC-1	Milk Production	-0.035798	0.01243	0.0043
	Exhaust temperature	-0.000485	0.00156	0.7567
	Exhaust relative humidity	0.000179	0.00066	0.7859
	Intercept	7.717017	0.35514	<.0001
	Inventory	0		
IVIC-2	Milk Production	-0.032225	0.00999	0.0014
	Exhaust temperature	0.003142	0.00125	0.0128
	Intercept	7.898421	0.43608	<.0001
N/C 2	Inventory	0		
IVIC-3	Milk Production	-0.036205	0.01229	0.0035
	Exhaust relative humidity	0.000204	0.00065	0.7547
	Intercept	7.531657	0.35782	<.0001
	Inventory	0		
MC-4	Milk Production	-0.028082	0.01007	0.0057
	Ambient temperature	0.002876	0.00088	0.0013
	Ambient relative humidity	0.000661	0.00042	0.115
	Intercept	7.543277	0.36085	<.0001
	Inventory	0		
MC-5	Milk Production	-0.02709	0.01015	0.0082
	Ambient temperature	0.002689	0.00089	0.0029
	Intercept	7.501342	0.37715	<.0001
	Inventory	0		
IVIC-6	Milk Production	-0.025945	0.01065	0.0154
	Ambient relative humidity	0.000501	0.00041	0.2271
	Intercept	7.66922	0.45352	<.0001
	Inventory	0		
MC-7	Milk Production	-0.029811	0.01283	0.021
	Exhaust relative humidity	0.000297	0.00067	0.6574
	Ambient temperature	-0.000295	0.00117	0.8018
	Intercept	7.522973	0.36263	<.0001
	Inventory	0		
MC-8	Milk Production	-0.028004	0.0102	0.0065
	Exhaust temperature	0.003377	0.00126	0.008
	Ambient relative humidity	0.000596	0.00042	0.1536
	Intercept	5.509849	0.16201	<.0001
N/C 0	Inventory	1.31127	0.18731	<.0001
IVIC-9	Exhaust temperature	0.024987	0.00417	<.0001
	Exhaust relative humidity	0.006798	0.00191	0.0004
	Intercept	6.049	0.09117	<.0001
MC-10	Inventory	1.355319	0.19579	<.0001
	Exhaust temperature	0.022625	0.0038	<.0001
NAC 11	Intercept	5.942188	0.16899	<.0001
MC-11	Inventory	1.351143	0.23652	<.0001

Model	Parameter	Estimate	Standard Error	p-value
	Exhaust relative humidity	0.00596	0.00194	0.0022
	Intercept	6.034746	0.12697	<.0001
MC-12	Inventory	1.40603	0.1962	<.0001
	Ambient temperature	0.016109	0.00273	<.0001
	Ambient relative humidity	0.001621	0.00136	0.2333
	Intercept	6.149091	0.08507	<.0001
MC-13	Inventory	1.405751	0.19795	<.0001
	Ambient temperature	0.015731	0.00274	<.0001
	Intercept	6.281146	0.13305	<.0001
MC-14	Inventory	1.493207	0.24053	<.0001
	Ambient relative humidity	0.000723	0.00135	0.5928
	Intercept	5.570392	0.16012	<.0001
MC 1E	Inventory	1.359386	0.18838	<.0001
IVIC-15	Exhaust relative humidity	0.007425	0.00193	0.0001
	Ambient temperature	0.017816	0.00297	<.0001
	Intercept	5.971123	0.13014	<.0001
NAC 1C	Inventory	1.358924	0.1965	<.0001
IVIC-10	Exhaust temperature	0.023044	0.00384	<.0001
	Ambient relative humidity	0.001053	0.00135	0.4366
	Intercept	7.893109	0.43963	<.0001
NAC 17	Milk Production	-0.035798	0.01243	0.0043
MC-17	Exhaust temperature	-0.000485	0.00156	0.7567
	Exhaust relative humidity	0.000179	0.00066	0.7859
	Intercept	7.717017	0.35514	<.0001
MC-18	Milk Production	-0.032225	0.00999	0.0014
	Exhaust temperature	0.003142	0.00125	0.0128
	Intercept	7.898421	0.43608	<.0001
MC-19	Milk Production	-0.036205	0.01229	0.0035
	Exhaust relative humidity	0.000204	0.00065	0.7547
	Intercept	7.531657	0.35782	<.0001
MC-20	Milk Production	-0.028082	0.01007	0.0057
1010-20	Ambient temperature	0.002876	0.00088	0.0013
	Ambient relative humidity	0.000661	0.00042	0.115
	Intercept	7.543277	0.36085	<.0001
MC-21	Milk Production	-0.02709	0.01015	0.0082
	Ambient temperature	0.002689	0.00089	0.0029
	Intercept	7.501342	0.37715	<.0001
MC-22	Milk Production	-0.025945	0.01065	0.0154
	Ambient relative humidity	0.000501	0.00041	0.2271
	Intercept	7.66922	0.45352	<.0001
MC-23	Milk Production	-0.029811	0.01283	0.021
1010 25	Exhaust relative humidity	0.000297	0.00067	0.6574
	Ambient temperature	-0.000295	0.00117	0.8018
	Intercept	7.522973	0.36263	<.0001
MC-24	Milk Production	-0.028004	0.0102	0.0065
WIC-24	Exhaust temperature	0.003377	0.00126	0.008
	Ambient relative humidity	0.000596	0.00042	0.1536
MC-25	Intercept	6.121627	0.19903	<.0001
IVIC-25	Exhaust temperature	0.0332	0.00556	<.0001

Model	Parameter	Estimate	Standard Error	p-value
	Exhaust relative humidity	0.008349	0.00245	0.0007
MC-26	Intercept	6.727295	0.08868	<.0001
	Exhaust temperature	0.033995	0.00499	<.0001
NAC 27	Intercept	6.719077	0.19516	<.0001
IVIC-27	Exhaust relative humidity	0.007161	October October <t< td=""><td>0.004</td></t<>	0.004
	Intercept	6.712936	0.14037	<.0001
MC28	Ambient temperature	0.024797	0.00361	<.0001
	Ambient relative humidity	0.002601	0.00174	0.1357
MC 20	Intercept	6.898188	0.07052	<.0001
IVIC-29	Ambient temperature	0.024053	0.07052	<.0001
MC 20	Intercept	7.141095	0.13417	<.0001
1010-30	Ambient relative humidity	0.001169	0.00173	0.4985
	Intercept	6.21485	0.19461	<.0001
MC-31	Exhaust relative humidity	0.009244	0.00247	0.0002
	Ambient temperature	0.02404	0.00398	<.0001
	Intercept	6.596762	0.14782	<.0001
MC-32	Exhaust temperature	0.034941	0.00504	<.0001
	Ambient relative humidity	0.001726	0.00173	0.3196

Ambient relative humidity 0.001726

						LNME ^a	NME ^b	ME ^b	MB ^b	NMB ^b
Model	2LogL	AIC	AICc	BIC	Corr.	(%)	(%)	(g day ⁻¹)	(g day⁻¹)	(%)
MC-1	-836	-826	-826	-806	0.237	1.655	62.34	88.63	-0.125	-0.088
MC-2	-1077	-1069	-1069	-1052	0.487	1.458	59.63	77.93	-0.889	-0.681
MC-3	-836	-828	-828	-812	0.279	1.639	61.71	87.73	-0.247	-0.174
MC-4	-1062	-1052	-1051	-1030	0.532	1.402	58.25	75.04	-1.048	-0.813
MC-5	-1059	-1051	-1051	-1034	0.518	1.425	59.07	76.1	-1.01	-0.784
MC-6	-1057	-1049	-1049	-1032	0.344	1.557	64.53	83.19	-0.449	-0.348
MC-7	-816	-806	-806	-786	0.205	1.663	63.38	88.8	-0.123	-0.088
MC-8	-1062	-1052	-1052	-1031	0.504	1.438	59.67	76.92	-0.952	-0.739
MC-9	671	683	683	685	0.648	4.686	90.64	589.1	-100.4	-15.44
MC-10	667	677	677	679	0.598	4.648	94.71	563	-82.11	-13.81
MC-11	698	708	708	710	0.512	5.28	101.5	659.4	-76.1	-11.71
MC-12	669	681	681	683	0.6	4.707	94.81	567.1	-82.69	-13.82
MC-13	670	680	680	682	0.596	4.721	95.1	568.9	-81.9	-13.69
MC-14	696	706	706	708	0.464	5.108	105.1	628.3	-59.23	-9.91
MC-15	670	682	683	685	0.651	4.725	90.48	592.8	-101.3	-15.47
MC-16	668	680	680	682	0.6	4.671	94.87	567.1	-83.35	-13.94
MC-17	-836	-824	-824	-800	0.237	1.655	62.34	88.63	-0.125	-0.088
MC-18	-1077	-1067	-1067	-1046	0.487	1.458	59.63	77.93	-0.889	-0.681
MC-19	-836	-826	-826	-806	0.279	1.639	61.71	87.73	-0.247	-0.174
MC-20	-1062	-1050	-1049	-1024	0.532	1.402	58.25	75.04	-1.048	-0.813
MC-21	-1059	-1049	-1049	-1028	0.518	1.425	59.07	76.1	-1.01	-0.784
MC-22	-1057	-1047	-1047	-1026	0.344	1.557	64.53	83.19	-0.449	-0.348
MC-23	-816	-804	-804	-780	0.205	1.663	63.38	88.8	-0.123	-0.088
MC-24	-1062	-1050	-1050	-1025	0.504	1.438	59.67	76.92	-0.952	-0.739
MC-25	1080	1090	1090	1092	0.613	6.679	87.05	1235	-153.9	-10.84
MC-26	1147	1155	1155	1156	0.547	6.632	89.96	1190	-118.3	-8.949
MC-27	1105	1113	1113	1115	0.454	7.858	99.39	1410	-54.77	-3.86
MC-28	1139	1149	1149	1151	0.551	6.556	90.52	1198	-116.2	-8.777
MC-29	1141	1149	1149	1150	0.542	6.611	90.97	1204	-113.5	-8.571
MC-30	1173	1181	1181	1183	0.099	7.907	105.2	1392	-1.373	-0.104
MC-31	1071	1081	1081	1083	0.614	6.634	87.47	1244	-154.3	-10.85
MC-32	1138	1148	1148	1150	0.554	6.612	90.08	1192	-122.5	-9.259

Table G-16. Fit and evaluation statistics for H₂S emission models for dairy milking centers.

^a Based on transformed data (i.e., ln(H₂S)).
^b Based on back-transformed data.

Figure G-25. Dairy milking center H₂S one-to-one plots models 1 through 9, log transformed.

Figure G-26. Dairy milking center H₂S one-to-one plots models 10 through 18, log transformed.

Figure G-27. Dairy milking center H₂S one-to-one plots models 19 through 24, log transformed.

Figure G-28. Dairy milking center H₂S one-to-one plots models 25 through 32, log transformed.

Figure G-29. Dairy milking center H₂S one-to-one plots models 1 through 9, back transformed.

Figure G-30. Dairy milking center H₂S one-to-one plots models 10 through 18, back transformed.

Figure G-31. Dairy milking center H₂S one-to-one plots models 19 through 24, back transformed.

Figure G-32. Dairy milking center H₂S one-to-one plots models 25 through 32, back transformed.

G.2.3 PM₁₀

Model	Parameter	Estimate	Standard Error	p-value
	Intercept	7.910105	0.09756	<.0001
MC-1	Inventory	0		
	Milk Production	-0.003003	0.00272	0.2724
	Exhaust temperature	0.00227	0.00035	<.0001
	Exhaust relative humidity	-0.001367	0.00018	<.0001
	Intercept	7.818453	0.08025	<.0001
N4C 2	Inventory	0		
IVIC-2	Milk Production	-0.0032	0.00224	0.156
	Exhaust temperature	0.002308	0.0003	<.0001
	Intercept	7.939436	0.11836	<.0001
N46 0	Inventory	0		
MC-3	Milk Production	-0.002741	0.00333	0.4125
	Exhaust relative humidity	-0.001433	0.00019	<.0001
	Intercept	7.905604	0.07678	<.0001
	Inventory	0		
MC-4	Milk Production	-0.003753	0.00215	0.0824
	Ambient temperature	0.001506	0.00019	<.0001
	Ambient relative humidity	-0.000804	0.00011	<.0001
	Intercept	7.839738	0.08147	<.0001
	Inventory	0		
MC-5	Milk Production	-0.003497	0.00228	0.1277
	Ambient temperature	0.001685	0.00021	<.0001
	Intercept	8.009566	0.09414	<.0001
	Inventory	0		
MC-6	Milk Production	-0.006083	0.00266	0.0236
	Ambient relative humidity	-0.000848	0.00011	<.0001
	Intercept	7.930999	0.10033	<.0001
	Inventory	0	0.09756 0.00272 0.00035 0.00018 0.08025 . 0.00224 0.0003 0.11836 . 0.00333 0.0019 0.07678 0.00215 0.00019 0.00011 0.00215 0.00011 0.00228 0.00021 0.00244 0.002566 0.00011 0.10033 . 0.00281 0.000281 0.000281 0.00027 0.00018 0.00027 0.00011 0.00027 0.00011 0.00035 0.00018 0.00019 0.00027 0.00018 0.00035 0.00018 0.00029 0.01365	
MC-7	Milk Production	-0.003376	0.00281	0.2322
	Exhaust relative humidity	-0.001333	0.00018	<.0001
	Ambient temperature	0.00166	0.00024	<.0001
	Intercept	7.912341	0.07564	<.0001
	Inventory	0		
MC-8	Milk Production	-0.004203	0.00211	0.0482
	Exhaust temperature	0.002259	0.00027	<.0001
	Ambient relative humidity	-0.000841	0.00011	<.0001
	Intercept	7.803527	0.01421	<.0001
	Inventory	0		
MC-9	Exhaust temperature	0.002284	0.00035	<.0001
	Exhaust relative humidity	-0.001359	0.00018	<.0001
	Intercept	7.704265	0.0045	<.0001
MC-10		0	0.0010	
110 10	Exhaust temperature	0.002354	0.00029	< 0001
	Intercent	7 841781	0.07564 	< 0001
MC-11		0	0.01000	10001
	niventory		•	•

Table G-17. Parameter and estimates PM₁₀ emission models for dairy milking centers.
Model	Parameter	Estimate	Standard Error	p-value
	Exhaust relative humidity	-0.001416	0.00019	<.0001
	Intercept	7.772467	0.00806	<.0001
MC-12	Inventory	0		
	Ambient temperature	0.001574	0.00018	<.0001
	Ambient relative humidity	-0.000817	0.00011	<.0001
	Intercept	7.715019	0.00322	<.0001
MC-13	Inventory	0		
	Ambient temperature	0.001725	0.0002	<.0001
	Intercept	7.79443	0.00809	<.0001
MC-14	Inventory	0		
	Ambient relative humidity	-0.000855	0.00011	<.0001
	Intercept	7.811649	0.01366	<.0001
MC 1E	Inventory	0		
IVIC-15	Exhaust relative humidity	-0.001331	0.00018	<.0001
	Ambient temperature	0.001667	0.00024	<.0001
	Intercept	7.762946	0.00846	<.0001
NAC 1C	Inventory	0		
IVIC-10	Exhaust temperature	0.002356	0.00026	<.0001
	Ambient relative humidity	-0.000857	0.00011	<.0001
	Intercept	7.910105	0.09756	<.0001
NAC 17	Milk Production	-0.003003	0.00272	0.2724
IVIC-17	Exhaust temperature	0.00227	0.00035	<.0001
	Exhaust relative humidity	-0.001367	0.00018	<.0001
	Intercept	7.818453	0.08025	<.0001
MC-18	Milk Production	-0.0032	0.00224	0.156
	Exhaust temperature	0.002308	0.0003	<.0001
	Intercept	7.939436	0.11836	<.0001
MC-19	Milk Production	-0.002741	0.00333	0.4125
	Exhaust relative humidity	-0.001433	0.00019	<.0001
	Intercept	7.905604	0.07678	<.0001
MC 20	Milk Production	-0.003753	0.00215	0.0824
IVIC-20	Ambient temperature	0.001506	0.00019	<.0001
	Ambient relative humidity	-0.000804	0.00011	<.0001
	Intercept	7.839738	0.08147	<.0001
MC-21	Milk Production	-0.003497	0.00228	0.1277
	Ambient temperature	0.001685	0.00021	<.0001
	Intercept	8.009566	0.09414	<.0001
MC-22	Milk Production	-0.006083	0.00266	0.0236
	Ambient relative humidity	-0.000848	0.00011	<.0001
	Intercept	7.930999	0.10033	<.0001
MC-23	Milk Production	-0.003376	0.00281	0.2322
1010-25	Exhaust relative humidity	-0.001333	0.00018	<.0001
	Ambient temperature	0.00166	0.00024	<.0001
	Intercept	7.912341	0.07564	<.0001
MC-24	Milk Production	-0.004203	0.00211	0.0482
WIC-24	Exhaust temperature	0.002259	0.00027	<.0001
	Ambient relative humidity	-0.000841	0.00011	<.0001
MC-25	Intercept	8.173978	0.05729	<.0001
	Exhaust temperature	0.009635	0.00139	<.0001

Model	Parameter	Estimate	Standard Error	p-value
	Exhaust relative humidity	-0.005808	0.00071	<.0001
MC 26	Intercept	7.747757	0.01852	<.0001
IVIC-20	Exhaust temperature	0.010041	0.0012	<.0001
MC 27	Intercept	8.335064	0.0552	<.0001
IVIC-27	Exhaust relative humidity	-0.006048	0.00075	<.0001
	Intercept	8.042215	0.03257	<.0001
MC-28	Ambient temperature	0.006791	0.00074	<.0001
	Ambient relative humidity	-0.003552	0.00043	<.0001
MC 20	Intercept	7.792856	0.01316	<.0001
IVIC-29	Ambient temperature	0.007429	0.00082	<.0001
MC 20	Intercept	8.135768	0.03298	<.0001
IVIC-SU	Ambient relative humidity	-0.003695	0.00044	<.0001
	Intercept	8.206537	0.05486	<.0001
MC-31	Exhaust relative humidity	-0.005681	0.00071	<.0001
	Ambient temperature	0.007121	0.00096	<.0001
	Intercept	8.001735	0.03418	<.0001
MC-32	Exhaust temperature	0.010115	0.00107	<.0001
	Ambient relative humidity	-0.003722	0.00043	<.0001

Ambient relative num

						LNME ^a	NME ^b	ME ^b	MB ^b	NMB ^b
Model	2LogL	AIC	AICc	BIC	Corr.	(%)	(%)	(g day⁻¹)	(g day ⁻¹)	(%)
MC-1	-1524	-1514	-1513	-1495	0.648	0.222	38.98	41.04	-0.143	-0.136
MC-2	-2084	-2076	-2076	-2060	0.565	0.228	45.4	41.34	-0.083	-0.091
MC-3	-1492	-1484	-1483	-1469	0.472	0.269	47.36	49.85	-0.103	-0.098
MC-4	-2013	-2003	-2003	-1983	0.678	0.2	39.68	36.21	-0.109	-0.119
MC-5	-2039	-2031	-2031	-2015	0.587	0.223	44.5	40.29	-0.062	-0.068
MC-6	-1972	-1964	-1964	-1948	0.486	0.255	50.22	45.99	-0.113	-0.123
MC-7	-1476	-1466	-1465	-1447	0.662	0.22	38.5	40.44	-0.114	-0.109
MC-8	-2022	-2012	-2012	-1992	0.687	0.198	39.14	35.83	-0.122	-0.134
MC-9	-1573	-1565	-1565	-1563	0.648	0.22	39.02	40.71	-0.143	-0.137
MC-10	-2131	-2125	-2125	-2124	0.561	0.228	45.61	41.36	-0.099	-0.109
MC-11	-1540	-1534	-1534	-1532	0.464	0.266	47.15	49.2	-0.095	-0.091
MC-12	-2061	-2053	-2053	-2052	0.677	0.2	39.83	36.19	-0.126	-0.138
MC-13	-2086	-2080	-2080	-2078	0.58	0.223	44.74	40.34	-0.077	-0.085
MC-14	-2017	-2011	-2011	-2010	0.425	0.262	51.9	47.3	-0.086	-0.095
MC-15	-1524	-1516	-1516	-1515	0.659	0.218	38.61	40.2	-0.115	-0.11
MC-16	-2070	-2062	-2062	-2060	0.685	0.197	39.23	35.75	-0.141	-0.155
MC-17	-1524	-1512	-1511	-1489	0.648	0.222	38.98	41.04	-0.143	-0.136
MC-18	-2084	-2074	-2074	-2054	0.565	0.228	45.4	41.34	-0.083	-0.091
MC-19	-1492	-1482	-1481	-1463	0.472	0.269	47.36	49.85	-0.103	-0.098
MC-20	-2013	-2001	-2001	-1977	0.678	0.2	39.68	36.21	-0.109	-0.119
MC-21	-2039	-2029	-2029	-2009	0.587	0.223	44.5	40.29	-0.062	-0.068
MC-22	-1972	-1962	-1962	-1942	0.486	0.255	50.22	45.99	-0.113	-0.123
MC-23	-1476	-1464	-1463	-1441	0.662	0.22	38.5	40.44	-0.114	-0.109
MC-24	-2022	-2010	-2010	-1986	0.687	0.198	39.14	35.83	-0.122	-0.134
MC-25	-664	-654	-654	-652	0.67	0.898	38.92	213.7	-3.632	-0.661
MC-26	-901	-893	-893	-891	0.581	0.954	45.54	217.4	-2.747	-0.575
MC-27	-630	-622	-622	-620	0.478	1.108	47.15	258.9	-2.222	-0.405
MC-28	-919	-909	-908	-907	0.704	0.822	39.14	187.1	-3.441	-0.72
MC-29	-888	-880	-879	-878	0.603	0.929	44.43	210.8	-2.322	-0.489
MC-30	-868	-860	-860	-859	0.44	1.11	51.95	249.2	-2.087	-0.435
MC-31	-648	-638	-638	-636	0.684	0.885	38.2	209.4	-3.064	-0.559
MC-32	-924	-914	-914	-912	0.711	0.814	38.74	185.8	-3.748	-0.781

Table G-18. Fit and evaluation statistics for PM_{10} emission models for dairy milking centers.

^a Based on transformed data (i.e., ln(PM₁₀)).
^b Based on back-transformed data.

Figure G-33. Dairy milking center PM₁₀ one-to-one plots models 1 through 9, log transformed.

Figure G-34. Dairy milking center PM₁₀ one-to-one plots models 10 through 18, log transformed.

Figure G-35. Dairy milking center PM₁₀ one-to-one plots models 19 through 24, log transformed.

Figure G-36. Dairy milking center PM₁₀ one-to-one plots models 25 through 32, log transformed.

Figure G-37. Dairy milking center PM₁₀ one-to-one plots models 1 through 9, back transformed.

Figure G-38. Dairy milking center PM₁₀ one-to-one plots models 10 through 18, back transformed.

Figure G-39. Dairy milking center PM₁₀ one-to-one plots models 19 through 24, back transformed.

Figure G-40. Dairy milking center PM₁₀ one-to-one plots models 25 through 32, back transformed.

G.2.4 Fine particulate matter (PM_{2.5})

Table G-19. Parameter and estimates PM2.5 emission models for dairy milking
centers.

Model	Parameter	Estimate	Standard Error	p-value
	Intercept	5.782857	0.45714	<.0001
MC-1	Inventory	0		
	Milk Production	0.017245	0.01151	0.1455
	Exhaust temperature	0.005228	0.00197	0.013
	Exhaust relative humidity	0.001056	0.00107	0.3348
	Intercept	5.994771	0.41089	<.0001
	Inventory	0		
IVIC-2	Milk Production	0.013925	0.01087	0.2098
	Exhaust temperature	0.004385	0.00178	0.0196
	Intercept	6.882941	0.21318	<.0001
	Inventory	0		
IVIC-3	Milk Production	-0.009611	0.00604	0.13
	Exhaust relative humidity	0.000201	0.00118	0.8663
	Intercept	5.779762	0.4562	<.0001
	Inventory	0		
MC-4	Milk Production	0.019436	0.01196	0.1146
	Ambient temperature	0.003482	0.00129	0.0116
	Ambient relative humidity	0.000509	0.00066	0.4459
	Intercept	5.910604	0.43144	<.0001
	Inventory	0		
MC-5	Milk Production	0.016897	0.01169	0.1583
	Ambient temperature	0.003223	0.00127	0.0164
	Intercept	6.931659	0.17526	<.0001
	Inventory	0	•	
MC-6	Milk Production	-0.010649	0.0046	0.0321
	Ambient relative humidity	0.000032	0.00072	0.9644
	Intercept	5.644267	0.48097	<.0001
	Inventory	0		
MC-7	Milk Production	0.021724	0.01243	0.0917
	Exhaust relative humidity	0.001082	0.00106	0.3177
	Ambient temperature	0.004016	0.00143	0.0091
	Intercept	5.864775	0.43643	<.0001
	Inventory	0	•	
MC-8	Milk Production	0.016373	0.01114	0.152
	Exhaust temperature	0.004763	0.00182	0.0136
	Ambient relative humidity	0.000513	0.00066	0.4447
	Intercept	6.456241	0.09142	<.0001
	Inventory	0		
MC-9	Exhaust temperature	0.002601	0.00093	0.0121
	Exhaust relative humidity	0.000764	0.00111	0.4987
	Intercept	6.520602	0.01278	<.0001
MC-10	Inventory	0		
10 10	Exhaust temperature	0.002273	0.00069	0.0036

Model	Parameter	Estimate	Standard Error	p-value
	Intercept	6.571678	0.09482	<.0001
MC-11	Inventory	0		
	Exhaust relative humidity	-0.000124	0.00125	0.9216
	Intercept	6.518691	0.04956	<.0001
MC-12	Inventory	0	•	
	Ambient temperature	0.001502	0.00046	0.0037
	Ambient relative humidity	0.00021	0.00067	0.7554
	Intercept	6.533998	0.00916	<.0001
MC-13	Inventory	0	•	
	Ambient temperature	0.001502	0.00046	0.0038
	Intercept	6.546912	0.05823	<.0001
MC-14	Inventory	0	•	•
	Ambient relative humidity	0.000172	0.0008	0.83
	Intercept	6.473366	0.08908	<.0001
MC 1E	Inventory	0		
IVIC-15	Exhaust relative humidity	0.000733	0.00112	0.5168
	Ambient temperature	0.001747	0.00063	0.0128
	Intercept	6.503502	0.05028	<.0001
MC 16	Inventory	0		
IVIC-10	Exhaust temperature	0.002275	0.00069	0.0034
	Ambient relative humidity	0.000234	0.00067	0.7276
	Intercept	5.782857	0.45714	<.0001
MC-17	Milk Production	0.017245	0.01151	0.1455
	Exhaust temperature	0.005228	0.00197	0.013
	Exhaust relative humidity	0.001056	0.00107	0.3348
	Intercept	5.994771	0.41089	<.0001
MC-18	Milk Production	0.013925	0.01087	0.2098
	Exhaust temperature	0.004385	0.00178	0.0196
	Intercept	6.882941	0.21318	<.0001
MC-19	Milk Production	-0.009611	0.00604	0.13
	Exhaust relative humidity	0.000201	0.00118	0.8663
	Intercept	5.779762	0.4562	<.0001
MC-20	Milk Production	0.019436	0.01196	0.1146
1010-20	Ambient temperature	0.003482	0.00129	0.0116
	Ambient relative humidity	0.000509	0.00066	0.4459
	Intercept	5.910604	0.43144	<.0001
MC-21	Milk Production	0.016897	0.01169	0.1583
	Ambient temperature	0.003223	0.00127	0.0164
	Intercept	6.931659	0.17526	<.0001
MC-22	Milk Production	-0.010649	0.0046	0.0321
	Ambient relative humidity	0.000032	0.00072	0.9644
	Intercept	5.644267	0.48097	<.0001
MC-23	Milk Production	0.021724	0.01243	0.0917
1010 25	Exhaust relative humidity	0.001082	0.00106	0.3177
	Ambient temperature	0.004016	0.00143	0.0091
	Intercept	5.864775	0.43643	<.0001
MC-24	Milk Production	0.016373	0.01114	0.152
	Exhaust temperature	0.004763	0.00182	0.0136

Model	Parameter	Estimate	Standard Error	p-value
	Ambient relative humidity	0.000513	0.00066	0.4447
	Intercept	6.289348	0.32603	<.0001
MC-25	Exhaust temperature	0.011374	0.00333	0.003
	Exhaust relative humidity	0.002775	0.00397	0.4911
MC 26	Intercept	6.524119	0.04565	<.0001
IVIC-20	Exhaust temperature	0.010128	0.00246	0.0005
MC 27	Intercept	6.7872	0.35897	<.0001
IVIC-27	Exhaust relative humidity	-0.001024	0.00472	0.83
	Intercept	6.525115	0.17709	<.0001
MC28	Ambient temperature	0.006696	0.00163	0.0006
	Ambient relative humidity	0.000805	0.00239	0.7383
MC 20	Intercept	6.58377	0.03273	<.0001
IVIC-29	Ambient temperature	0.006698	0.00164	0.0006
MC 20	Intercept	6.653836	0.22324	<.0001
IVIC-50	Ambient relative humidity	0.000586	0.00306	0.8492
	Intercept	6.363494	0.31761	<.0001
MC-31	Exhaust relative humidity	0.002645	0.00398	0.5118
	Ambient temperature	0.007648	0.00225	0.0032
	Intercept	6.457625	0.17955	<.0001
MC-32	Exhaust temperature	0.010136	0.00245	0.0005
	Ambient relative humidity	0.00091	0.00238	0.7045

Ambient relative humidity 0.00091 0.0

						LNME ^a	NME ^b	ME ^b	MB ^b	NMB ^b
Model	2LogL	AIC	AICc	BIC	Corr.	(%)	(%)	(g day⁻¹)	(g day ⁻¹)	(%)
MC-1	-161	-151	-149	-142	0.432	0.242	41.4	11.78	-0.004	-0.013
MC-2	-180	-172	-171	-165	0.459	0.213	38.83	10.31	-0.004	-0.014
MC-3	-155	-147	-146	-140	0.244	0.244	41.87	11.91		
MC-4	-181	-171	-169	-162	0.476	0.229	41.72	11.08	-0.005	-0.018
MC-5	-180	-172	-171	-165	0.466	0.223	40.57	10.78	-0.005	-0.017
MC-6	-174	-166	-165	-159	0.331	0.223	40.89	10.86	-0.001	-0.003
MC-7	-162	-152	-150	-143	0.448	0.248	42.25	12.02	-0.006	-0.019
MC-8	-180	-170	-169	-161	0.469	0.222	40.67	10.8	-0.004	-0.014
MC-9	-159	-151	-150	-149	0.383	0.229	39.22	11.16	-0.003	-0.012
MC-10	-178	-172	-171	-171	0.429	0.208	38.02	10.1	-0.003	-0.012
MC-11	-152	-146	-146	-145	0.017	0.266	45.31	12.89		
MC-12	-178	-170	-169	-168	0.429	0.214	39	10.36	-0.003	-0.013
MC-13	-178	-172	-171	-171	0.427	0.211	38.69	10.28	-0.003	-0.013
MC-14	-170	-164	-163	-162	0.043	0.272	49.27	13.09		-0.001
MC-15	-159	-151	-150	-149	0.382	0.232	39.5	11.24	-0.004	-0.013
MC-16	-178	-170	-169	-169	0.431	0.211	38.51	10.23	-0.003	-0.012
MC-17	-161	-149	-146	-139	0.432	0.242	41.4	11.78	-0.004	-0.013
MC-18	-180	-170	-168	-161	0.459	0.213	38.83	10.31	-0.004	-0.014
MC-19	-155	-145	-143	-136	0.244	0.244	41.87	11.91		
MC-20	-181	-169	-166	-158	0.476	0.229	41.72	11.08	-0.005	-0.018
MC-21	-180	-170	-168	-161	0.466	0.223	40.57	10.78	-0.005	-0.017
MC-22	-174	-164	-163	-155	0.331	0.223	40.89	10.86	-0.001	-0.003
MC-23	-162	-150	-147	-139	0.448	0.248	42.25	12.02	-0.006	-0.019
MC-24	-180	-168	-166	-158	0.469	0.222	40.67	10.8	-0.004	-0.014
MC-25	-57	-47	-45	-45	0.455	0.9	38.63	57.85	-0.245	-0.163
MC-26	-66	-58	-57	-56	0.509	0.832	37.75	52.77	-0.242	-0.173
MC-27	-48	-40	-39	-39	0.040	1.079	45.16	67.63	0.015	0.010
MC-28	-66	-56	-54	-54	0.509	0.85	38.41	53.69	-0.260	-0.186
MC-29	-66	-58	-57	-56	0.507	0.842	38.2	53.4	-0.248	-0.177
MC-30	-54	-46	-45	-45	0.044	1.131	49.22	68.8	-0.011	-0.008
MC-31	-57	-47	-45	-45	0.454	0.912	38.91	58.27	-0.254	-0.170
MC-32	-66	-56	-55	-54	0.512	0.839	37.97	53.08	-0.255	-0.183

Table G-20. Fit and evaluation statistics for $PM_{2.5}$ emission models for dairy milking centers.

^a Based on transformed data (i.e., ln(PM_{2.5})).
^b Based on back-transformed data.

Figure G-41. Dairy milking center PM_{2.5} one-to-one plots models 1 through 9, log transformed.

Figure G-42. Dairy milking center PM_{2.5} one-to-one plots models 10 through 18, log transformed.

Figure G-43. Dairy milking center PM_{2.5} one-to-one plots models 19 through 24, log transformed.

Figure G-44. Dairy milking center PM_{2.5} one-to-one plots models 25 through 32, log transformed.

Figure G-45. Dairy milking center PM_{2.5} one-to-one plots models 1 through 9, back transformed.

Figure G-46. Dairy milking center PM_{2.5} one-to-one plots models 10 through 18, back transformed.

Figure G-47. Dairy milking center PM_{2.5} one-to-one plots models 19 through 24, back transformed.

Figure G-48. Dairy milking center PM_{2.5} one-to-one plots models 25 through 32, back transformed.

G.2.5 Total Suspended Particulates (TSP)

Table G-21. Parameter and estimates TSP emission models for dairy mile	ling					
centers.						

Model	Parameter	Estimate	Standard Error	p-value
	Intercept	7.417305	1.47685	<.0001
MC-1	Inventory	0		
	Milk Production	-0.009841	0.04316	0.8215
	Exhaust temperature	0.005685	0.00354	0.1232
	Exhaust relative humidity	-0.002283	0.00192	0.2463
	Intercept	6.873533	0.80906	<.0001
	Inventory	0		
IVIC-2	Milk Production	0.001702	0.02286	0.9415
	Exhaust temperature	0.004185	0.00187	0.041
	Intercept	6.155982	1.33907	0.0004
	Inventory	0		
IVIC-3	Milk Production	0.029139	0.03836	0.4599
	Exhaust relative humidity	-0.002728	0.00197	0.1788
	Intercept	6.805037	0.83171	<.0001
	Inventory	0		•
MC-4	Milk Production	0.007334	0.02365	0.7602
	Ambient temperature	0.002678	0.00133	0.0636
	Ambient relative humidity	-0.001591	0.00124	0.2091
	Intercept	6.849108	0.81895	<.0001
	Inventory	0		
MC-5	Milk Production	0.003034	0.02308	0.8969
	Ambient temperature	0.0028	0.0013	0.0488
	Intercept	6.582306	0.93037	<.0001
	Inventory	0		•
IVIC-6	Milk Production	0.014791	0.02636	0.5815
	Ambient relative humidity	-0.001797	0.00126	0.1649
	Intercept	7.24242	1.50524	<.0001
	Inventory	0		
MC-7	Milk Production	-0.004363	0.04392	0.9217
	Exhaust relative humidity	-0.002037	0.00195	0.3085
	Ambient temperature	0.003466	0.0025	0.1813
	Intercept	6.836392	0.81838	<.0001
	Inventory	0		
MC-8	Milk Production	0.00605	0.0233	0.7982
	Exhaust temperature	0.004136	0.0019	0.0462
	Ambient relative humidity	-0.001729	0.00123	0.1707
	Intercept	7.050905	0.1357	<.0001
	Inventory	0		
IVIC-9	Exhaust temperature	0.005687	0.00299	0.08
	Exhaust relative humidity	-0.001897	0.00179	0.2974
	Intercept	6.934518	0.02998	<.0001
MC-10	Inventory	0		
	Exhaust temperature	0.004622	0.0019	0.0256
	Intercept	7.141007	0.13383	<.0001
MC-11	Inventory	0		

Model	Parameter	Estimate	Standard Error	p-value
	Exhaust relative humidity	-0.001912	0.00184	0.3067
	Intercept	7.040962	0.08412	<.0001
MC-12	Inventory	0		
	Ambient temperature	0.003156	0.00135	0.0331
	Ambient relative humidity	-0.001202	0.00118	0.3164
	Intercept	6.958684	0.02208	<.0001
MC-13	Inventory	0		•
	Ambient temperature	0.003141	0.0013	0.0277
	Intercept	7.087242	0.08557	<.0001
MC-14	Inventory	0	•	
	Ambient relative humidity	-0.00134	0.00122	0.279
	Intercept	7.058876	0.13559	<.0001
MC 15	Inventory	0		
1010-13	Exhaust relative humidity	-0.001574	0.0018	0.3881
	Ambient temperature	0.003772	0.00205	0.0925
	Intercept	7.025749	0.08501	<.0001
MC-16	Inventory	0		•
1010-10	Exhaust temperature	0.004751	0.00197	0.0277
	Ambient relative humidity	-0.001355	0.00118	0.2587
	Intercept	7.417305	1.47685	<.0001
MC-17	Milk Production	-0.009841	0.04316	0.8215
IVIC-17	Exhaust temperature	0.005685	0.00354	0.1232
	Exhaust relative humidity	-0.002283	0.00192	0.2463
	Intercept	6.873533	0.80906	<.0001
MC-18	Milk Production	0.001702	0.02286	0.9415
	Exhaust temperature	0.004185	0.00187	0.041
	Intercept	6.155982	1.33907	0.0004
MC-19	Milk Production	0.029139	0.03836	0.4599
	Exhaust relative humidity	-0.002728	0.00197	0.1788
	Intercept	6.805037	0.83171	<.0001
MC-20	Milk Production	0.007334	0.02365	0.7602
1110 20	Ambient temperature	0.002678	0.00133	0.0636
	Ambient relative humidity	-0.001591	0.00124	0.2091
	Intercept	6.849108	0.81895	<.0001
MC-21	Milk Production	0.003034	0.02308	0.8969
	Ambient temperature	0.0028	0.0013	0.0488
	Intercept	6.582306	0.93037	<.0001
MC-22	Milk Production	0.014791	0.02636	0.5815
	Ambient relative humidity	-0.001797	0.00126	0.1649
	Intercept	7.24242	1.50524	<.0001
MC-23	Milk Production	-0.004363	0.04392	0.9217
	Exhaust relative humidity	-0.002037	0.00195	0.3085
	Ambient temperature	0.003466	0.0025	0.1813
	Intercept	6.836392	0.81838	<.0001
MC-24	Milk Production	0.00605	0.0233	0.7982
	Exhaust temperature	0.004136	0.0019	0.0462
	Ambient relative humidity	-0.001729	0.00123	0.1707
MC-25	Intercept	/.439891	0.46903	<.0001
	Exhaust temperature	0.020743	0.01092	0.0789

Model	Parameter	Estimate	Standard Error	p-value
	Exhaust relative humidity	-0.005608	0.00618	0.3709
MC 26	Intercept	7.123716	0.10967	<.0001
WIC-20	Exhaust temperature	0.016156	0.00699	0.0327
MC 27	Intercept	7.748619	0.46313	<.0001
1010-27	Exhaust relative humidity	-0.005395	0.00636	0.4029
	Intercept	7.457268	0.2912	<.0001
MC28	Ambient temperature	0.010997	0.00497	0.0417
	Ambient relative humidity	-0.003639	0.00409	0.3791
MC 20	Intercept	7.209101	0.08119	<.0001
1010-29	Ambient temperature	0.010892	0.00482	0.0372
MC 20	Intercept	7.604712	0.29594	<.0001
WC-30	Ambient relative humidity	-0.003934	0.00421	0.3562
	Intercept	7.472509	0.46839	<.0001
MC-31	Exhaust relative humidity	-0.004474	0.0062	0.4758
	Ambient temperature	0.013728	0.00753	0.0941
	Intercept	7.402084	0.29449	<.0001
MC-32	Exhaust temperature	0.016685	0.00723	0.0336
	Ambient relative humidity	-0.004162	0.00407	0.3139

 Ambient relative humidity
 -0.004162
 0.00407
 0.3

Model	2LogL	AIC	AICc	BIC	Corr.	LNME ^a	NME ^b	ME ^b	MB⁵	NMB ^b
						(%)	(%)	(g day⁻¹)	(g day⁻¹)	(%)
MC-1	-75	-65	-63	-58	0.475	0.872	54.48	66.33	-0.004	-0.004
MC-2	-95	-87	-85	-80	0.469	0.746	50.28	57.72	-0.115	-0.1
MC-3	-73	-65	-63	-59	0.302	0.904	58.22	70.87	-0.109	-0.09
MC-4	-96	-86	-84	-78	0.475	0.726	48.79	56	-0.076	-0.066
MC-5	-94	-86	-85	-80	0.454	0.739	49.96	57.35	-0.094	-0.082
MC-6	-92	-84	-83	-78	0.232	0.855	59.18	67.94	-0.044	-0.038
MC-7	-75	-65	-62	-58	0.441	0.882	55.02	66.98	0.041	0.034
MC-8	-96	-86	-84	-79	0.497	0.726	48.66	55.86	-0.091	-0.08
MC-9	-87	-79	-78	-78	0.412	0.869	50.89	67.38	0.164	0.124
MC-10	-107	-101	-100	-100	0.468	0.774	48.47	60.45	-0.117	-0.093
MC-11	-84	-78	-77	-76	0.001	1.006	59.85	79.23	0.172	0.13
MC-12	-108	-100	-99	-98	0.448	0.767	47.73	59.53	-0.008	-0.007
MC-13	-107	-101	-100	-100	0.462	0.768	48.2	60.11	-0.102	-0.081
MC-14	-103	-97	-96	-96	0.013	0.923	58.99	73.58	0.121	0.097
MC-15	-87	-79	-77	-77	0.405	0.883	51.7	68.45	0.149	0.112
MC-16	-108	-100	-99	-99	0.456	0.765	47.66	59.44		
MC-17	-75	-63	-59	-55	0.475	0.872	54.48	66.33	-0.004	-0.004
MC-18	-95	-85	-82	-77	0.469	0.746	50.28	57.72	-0.115	-0.1
MC-19	-73	-63	-60	-56	0.302	0.904	58.22	70.87	-0.109	-0.09
MC-20	-96	-84	-81	-75	0.475	0.726	48.79	56	-0.076	-0.066
MC-21	-94	-84	-82	-76	0.454	0.739	49.96	57.35	-0.094	-0.082
MC-22	-92	-82	-80	-74	0.232	0.855	59.18	67.94	-0.044	-0.038
MC-23	-75	-63	-59	-54	0.441	0.882	55.02	66.98	0.041	0.034
MC-24	-96	-84	-81	-75	0.497	0.726	48.66	55.86	-0.091	-0.08
MC-25	-2	8	10	10	0.412	2.939	50.43	351.4	2.215	0.318
MC-26	-7	1	2	3	0.454	2.636	48.44	318	-3.004	-0.458
MC-27	2	10	11	11	-0.031	3.415	59.87	417.2	1.988	0.285
MC-28	-7	3	4	5	0.43	2.618	47.65	312.8	-1.787	-0.272
MC-29	-7	1	2	3	0.444	2.609	48.38	317.6	-3.03	-0.462
MC-30	-3	5	6	7	-0.008	3.139	58.97	387.1	1.453	0.221
MC-31	-2	8	10	10	0.402	2.991	51.18	356.7	1.494	0.214
MC-32	-8	2	4	4	0.441	2.612	47.48	311.7	-1.317	-0.201

Table G-22. Fit and evaluation statistics for TSP emission models for dairy milking centers.

^a Based on transformed data (i.e., ln(TSP)).
^b Based on back-transformed data.

Figure G-49. Dairy milking center TSP one-to-one plots models 1 through 9, log transformed.

Figure G-50. Dairy milking center TSP one-to-one plots models 10 through 18, log transformed.

Figure G-51. Dairy milking center TSP one-to-one plots models 19 through 24, log transformed.

Figure G-52. Dairy milking center TSP one-to-one plots models 25 through 32, log transformed.

Figure G-53. Dairy milking center TSP one-to-one plots models 1 through 9, back transformed.

Figure G-54. Dairy milking center TSP one-to-one plots models 10 through 18, back transformed.

Figure G-55. Dairy milking center TSP one-to-one plots models 19 through 24, back transformed.

Figure G-56. Dairy milking center TSP one-to-one plots models 25 through 32, back transformed.

G.3 Naturally Ventilated Barns

Table G-23. Parameter combinations tested as naturally ventilated barns models.

Model	Parameters					
NV-1	Intercept, Inventory					
NV-2	Intercept, Inventory, Ambient temperature, Ambient relative humidity, Wind Speed					
NV-3	Intercept, Inventory, Ambient temperature					
NV-4	Intercept, Inventory, Ambient relative humidity					
NV-5	Intercept, Inventory, Wind Speed					
NV-6	Intercept, Inventory, Ambient temperature, Ambient relative humidity					
NV-7	Intercept, Inventory, Ambient relative humidity, Wind Speed					
NV-8	Intercept, Inventory Ambient temperature, Wind Speed					

G.3.1 Ammonia (NH₃)

Table G-24. Parameter and estimates NH₃ emission models for dairy mechanically ventilated barn.

Model	Parameter	Estimate	Standard Error	p-value						
NV-1	Intercept	0.302928	0.26899	0.2638						
	Inventory	3.525901	0.41679	<.0001						
	Intercept	1.564251	0.33361	<.0001						
	Inventory	2.979164	0.33977	<.0001						
NV-2	Ambient temperature	-0.01665	0.00637	0.0096						
	Ambient relative humidity	-0.01548	0.00269	<.0001						
	Wind Speed	0.046414	0.01877	0.0137						
NV-3	Intercept	0.387363	0.29177	0.1878						
	Inventory	3.492633	0.41432	<.0001						
	Ambient temperature	-0.004143	0.00665	0.5341						
	Intercept	1.121109	0.29364	0.0002						
NV-4	Inventory	3.245651	0.36468	<.0001						
	Ambient relative humidity	-0.01182	0.00261	<.0001						
	Intercept	0.188357	0.2678	0.484						
NV-5	Inventory	3.451939	0.4106	<.0001						
	Wind Speed	0.048153	0.01837	0.009						
	Intercept	1.726964	0.32917	<.0001						
NV-6	Inventory	3.038111	0.34221	<.0001						
110-0	Ambient temperature	-0.019085	0.00633	0.0029						
	Ambient relative humidity	-0.015666	0.00271	<.0001						
	Intercept	1.02681	0.29008	0.0006						
NIV 7	Inventory	3.15081	0.35633	<.0001						
111-7	Ambient relative humidity	-0.012222	0.00258	<.0001						
	Wind Speed	0.052342	0.01849	0.0048						
	Intercept	0.238892	0.29441	0.4192						
	Inventory	3.433342	0.41004	<.0001						
111-0	Ambient temperature	-0.002104	0.00665	0.7521						
	Wind Speed	0.046827	0.01856	0.0119						
Madal	21.0.01	A1C	A1Ca	BIC	Com	LNME ^a	NME ^b	ME ^b	MB⁵	NMB ^b
-------	---------	-------	-------	-------	-----------	-------------------	------------------	-------------------------	------------	-------------------------
woder	ZLOGL	AIC	AICC	ыс	BIC Corr.		(%)	(kg day ⁻¹)	(kg day⁻¹)	(%)
NV-1	998	1,006	1,007	1,008	0.601	27.52	76.2	12.98	0.969	5.686
NV-2	964	978	978	981	0.719	24.21	62.92	10.76	-0.583	-3.41
NV-3	995	1,005	1,005	1,007	0.609	27.2	74.93	12.81	0.824	4.821
NV-4	978	988	988	990	0.671	25.61	68.15	11.65	0.019	0.113
NV-5	992	1,002	1,002	1,004	0.615	27.08	75.23	12.82	0.828	4.862
NV-6	970	982	982	984	0.715	24.36	63.4	10.84	-0.491	-2.87
NV-7	970	982	982	985	0.686	25.18	66.73	11.41	-0.21	-1.23
NV-8	988	1,000	1,001	1,003	0.618	26.92	74.61	12.75	0.765	4.476

Table G-25. Fit and evaluation statistics for NH₃ emission models for dairy mechanically ventilated barn.

^a Based on transformed data (i.e., ln(NH₃)).
^b Based on back-transformed data.

Figure G-57. Dairy naturally ventilated barn NH₃ one-to-one plots models 1 through 8, log transformed.

Figure G-58. Dairy naturally ventilated barn NH₃ one-to-one plots models 1 through 8, back transformed.

G.3.2 Hydrogen Sulfide (H₂S)

ventilated barn.										
Model	Parameter	Estimate	Standard Error	p-value						
	Intercept	6.68466	0.1356	<.0001						
	Inventory	0.67609	0.21735	0.0022						

Table G-26. Parameter and estimates H₂S emission models for dairy naturally

NIV/ 1	Intercept	6.68466	0.1356	<.0001
	Inventory	0.67609	0.21735	0.0022
	Intercept	6.675321	0.26174	<.0001
	Inventory	0.54958	0.23161	0.0186
NV-2	Ambient temperature	-0.003921	0.00477	0.4118
	Ambient relative humidity	-0.000765	0.00225	0.734
	Wind Speed	0.059704	0.02329	0.0106
	Intercept	6.824733	0.15921	<.0001
NV-3	Inventory	0.633119	0.21924	0.0043
	Ambient temperature	-0.007224	0.00424	0.0895
	Intercept	6.663477	0.20081	<.0001
NV-4	Inventory	0.686017	0.22535	0.0027
	Ambient relative humidity	0.000289	0.00212	0.8919
NV-5	Intercept	6.541057	0.14434	<.0001
	Inventory	0.587702	0.21921	0.008
	Wind Speed	0.062678	0.02193	0.0044
	Intercept	6.911144	0.24515	<.0001
	Inventory	0.599883	0.23054	0.01
110-0	Ambient temperature	-0.007924	0.0045	0.0794
	Ambient relative humidity	-0.001042	0.00225	0.6435
	Intercept	6.541762	0.20441	<.0001
	Inventory	0.581809	0.22794	0.0114
1117-7	Ambient relative humidity	-0.000151	0.00212	0.9432
	Wind Speed	0.065974	0.02198	0.0028
	Intercept	6.610517	0.17959	<.0001
	Inventory	0.573546	0.2207	0.0101
111-8	Ambient temperature	-0.003381	0.0045	0.453
	Wind Speed	0.060086	0.02327	0.01

Madal	21.001		AICo	BIC	Com	LNME ^a	NME ^b	ME ^b	MB⁵	NMB ^b
woder	ZLOGL	AIC	AICC	ыс	Corr.	(%)	(%)	(g day⁻¹)	(g day⁻¹)	(%)
NV-1	1182	1190	1190	1192	0.143	6.468	78.57	690.4	-22.89	-2.605
NV-2	1156	1170	1171	1173	0.185	6.477	76.7	675.5	-31.35	-3.56
NV-3	1163	1173	1173	1175	0.158	6.517	77.5	682.5	-27.48	-3.12
NV-4	1166	1176	1176	1178	0.143	6.43	78.11	687.9	-22.82	-2.591
NV-5	1174	1184	1184	1186	0.182	6.461	77.09	677.5	-29.02	-3.302
NV-6	1163	1175	1175	1177	0.16	6.525	77.45	682.1	-28.85	-3.276
NV-7	1157	1169	1169	1171	0.183	6.427	76.57	674.3	-29.47	-3.346
NV-8	1157	1169	1169	1171	0.184	6.474	76.72	675.7	-30.34	-3.445

Table G-27. Fit and evaluation statistics for H_2S emission models for dairy naturally ventilated barn.

^a Based on transformed data (i.e., ln(H₂S)).
^b Based on back-transformed data.

Figure G-59. Dairy naturally ventilated barn H₂S one-to-one plots models 1 through 8, log transformed.

Figure G-60. Dairy naturally ventilated barn H₂S one-to-one plots models 1 through 8, back transformed.

G.3.3 PM₁₀

Model	Parameter	Estimate	Standard Error	p-value
NIV / 1	Intercept	7.009063	0.13722	<.0001
INV-T	Inventory	2.082987	0.20542	<.0001
	Intercept	7.64258	0.16783	<.0001
	Inventory	1.525009	0.14917	<.0001
NV-2	Ambient temperature	0.011864	0.00333	0.0004
	Ambient relative humidity	-0.01521	0.00154	<.0001
	Wind Speed	0.173698	0.01064	<.0001
	Intercept	6.65764	0.14302	<.0001
NV-3	Inventory	2.180088	0.19022	<.0001
	Ambient temperature	0.022242	0.00401	<.0001
	Intercept	8.55389	0.14514	<.0001
NV-4	Inventory	1.471936	0.1528	<.0001
	Ambient relative humidity	-0.021771	0.00153	<.0001
	Intercept	6.731818	0.12658	<.0001
NV-5	Inventory	1.87902	0.18847	<.0001
	Wind Speed	0.189893	0.01051	<.0001
	Intercept	8.30515	0.16936	<.0001
NV 6	Inventory	1.553859	0.15268	<.0001
110-0	Ambient temperature	0.00977	0.00345	0.0049
	Ambient relative humidity	-0.020486	0.00159	<.0001
	Intercept	7.94231	0.14612	<.0001
NV 7	Inventory	1.430049	0.15197	<.0001
111-7	Ambient relative humidity	-0.016713	0.00149	<.0001
	Wind Speed	0.172251	0.01063	<.0001
	Intercept	6.399407	0.12982	<.0001
NI/-8	Inventory	1.970209	0.17197	<.0001
100-0	Ambient temperature	0.02085	0.00363	<.0001
	Wind Speed	0.190344	0.01057	<.0001

Table G-28. Parameter and estimates PM₁₀ emission models for dairy naturally ventilated barn.

Table G-29. Fit and evaluation statistics for PM₁₀ emission models for dairy naturally ventilated barn.

Madal	21.001		ALCO	BIC	Com	LNME ^a	NME ^b	ME ^b	MB⁵	NMB ^b
woder	ZLOGL	AIC	AICC	ыс	Corr.	(%)	(%)	(g day⁻¹)	(g day⁻¹)	(%)
NV-1	2520	2528	2528	2529	0.455	6.512	106.8	5382	-189.6	-3.764
NV-2	2103	2117	2117	2120	0.707	4.896	82.58	4196	-668.8	-13.16
NV-3	2480	2490	2490	2492	0.512	6.325	100	5082	-293.4	-5.775
NV-4	2354	2364	2364	2366	0.645	5.427	90.28	4588	-633.1	-12.46
NV-5	2225	2235	2235	2237	0.59	5.713	96.61	4867	-350.2	-6.951
NV-6	2346	2358	2358	2361	0.654	5.374	88.54	4499	-648.2	-12.76
NV-7	2115	2127	2127	2129	0.693	4.995	85.47	4343	-623.2	-12.26
NV-8	2187	2199	2199	2201	0.637	5.52	89.53	4550	-487.1	-9.586

^a Based on transformed data (i.e., In(PM₁₀)).

^b Based on back-transformed data.

Figure G-61. Dairy naturally ventilated barn PM₁₀ one-to-one plots models 1 through 8, log transformed.

Figure G-62. Dairy naturally ventilated barn PM₁₀ one-to-one plots models 1 through 8, back transformed.

G.3.4 Fine particulate matter (PM_{2.5})

Model	Parameter	Estimate	Standard Error	p-value
NIV. 1	Intercept	7.538178	0.60541	<.0001
INV-T	Inventory	-0.062898	0.82412	0.9401
	Intercept	7.068797	1.15954	<.0001
	Inventory	-0.220453	0.75959	0.7753
NV-2	Ambient temperature	0.01121	0.02585	0.6681
	Ambient relative humidity	-0.003808	0.01023	0.7125
	Wind Speed	0.218968	0.0563	0.0002
	Intercept	7.191914	0.67544	<.0001
NV-3	Inventory	-0.048643	0.8011	0.9523
	Ambient temperature	0.020077	0.01867	0.2929
	Intercept	8.102164	0.75989	<.0001
NV-4	Inventory	-0.210004	0.83321	0.8043
	Ambient relative humidity	-0.009286	0.00755	0.2293
	Intercept	7.017716	0.57907	<.0001
NV-5	Inventory	-0.162197	0.76824	0.8354
	Wind Speed	0.22186	0.05644	0.0002
	Intercept	7.884815	1.26347	<.0001
NV 6	Inventory	-0.175865	0.84208	0.8374
110-0	Ambient temperature	0.006056	0.02852	0.8336
	Ambient relative humidity	-0.007434	0.01126	0.5147
	Intercept	7.468014	0.70982	<.0001
	Inventory	-0.2821	0.75884	0.7147
IN V-7	Ambient relative humidity	-0.007141	0.0069	0.3095
	Wind Speed	0.217628	0.05624	0.0002
	Intercept	6.707074	0.63045	<.0001
	Inventory	-0.153913	0.73284	0.8362
NV-0	Ambient temperature	0.018488	0.01708	0.2895
	Wind Speed	0.22074	0.05621	0.0002

Table G-30. Parameter and estimates PM2.5 emission models for dairy naturally ventilated barn.

Table G-31. Fit and evaluation statistics for PM_{2.5} emission models for dairy naturally ventilated barn.

Madal	21.0.01		ALCO	BIC	Com	LNME ^a	NME ^b	ME ^b	MB⁵	NMB ^b
woder	ZLOGL	AIC	AICC	ыс	Corr.	(%)	(%)	(g day⁻¹)	(g day⁻¹)	(%)
NV-1	213	221	221	223	0.115	9.415	83.02	1547	-1.112	-0.06
NV-2	197	211	212	214	0.405	8.789	62.65	1167	-19.48	-1.046
NV-3	212	222	222	224	0.185	9.218	73.49	1369	-4.909	-0.264
NV-4	211	221	222	223	0.075	9.331	77.47	1443	33.14	1.779
NV-5	198	208	209	210	0.383	8.499	68.51	1276	32.93	1.768
NV-6	211	223	224	226	0.106	9.295	75.78	1412	25.66	1.378
NV-7	197	209	210	212	0.376	8.814	64.72	1206	-3.53	-0.189
NV-8	197	209	210	212	0.425	8.719	61.74	1150	-23.56	-1.265

a Based on transformed data (i.e., In(PM2.5)).

b Based on back-transformed data.

Figure G-63. Dairy naturally ventilated barn PM_{2.5} one-to-one plots models 1 through 8, log transformed.

Figure G-64. Dairy naturally ventilated barn PM_{2.5} one-to-one plots models 1 through 8, back transformed.

G.3.5 Total Suspended Particulates (TSP)

Model	Parameter	Estimate	Standard Error	p-value
NIV 1	Intercept	6.716276	0.54312	<.0001
INV-T	Inventory	3.65659	0.8364	<.0001
	Intercept	7.868847	0.58294	<.0001
	Inventory	2.953893	0.48928	<.0001
NV-2	Ambient temperature	0.034508	0.01069	0.0021
	Ambient relative humidity	-0.033997	0.00508	<.0001
	Wind Speed	0.248191	0.04211	<.0001
	Intercept	5.452192	0.49718	<.0001
NV-3	Inventory	4.164233	0.6622	<.0001
	Ambient temperature	0.063139	0.01381	<.0001
	Intercept	9.787872	0.4929	<.0001
NV-4	Inventory	2.537642	0.53949	<.0001
	Ambient relative humidity	-0.04473	0.00513	<.0001
	Intercept	6.174486	0.51843	<.0001
NV-5	Inventory	3.474803	0.78627	<.0001
	Wind Speed	0.280443	0.04518	<.0001
	Intercept	8.765746	0.59397	<.0001
NIV 6	Inventory	2.928583	0.51502	<.0001
IN V-0	Ambient temperature	0.030747	0.01123	0.0083
	Ambient relative humidity	-0.038657	0.00531	<.0001
	Intercept	9.015472	0.4949	<.0001
	Inventory	2.516121	0.5246	<.0001
INV-7	Ambient relative humidity	-0.040582	0.00498	<.0001
	Wind Speed	0.242434	0.04269	<.0001
	Intercept	4.87915	0.4634	<.0001
	Inventory	4.001109	0.60616	<.0001
111-0	Ambient temperature	0.063391	0.01263	<.0001
	Wind Speed	0.288347	0.04483	<.0001

Table G-32. Parameter and estimates TSP emission models for dairy naturally ventilated barn.

 Table G-33. Fit and evaluation statistics for TSP emission models for dairy naturally ventilated barn.

Model	21.001	AIC	AICo	PIC	Corr	LNME ^a	NME ^b	ME ^b	MB ^b	NMB ^b
woder	ZLOGL	AIC	AICC	ыс	con.	(%)	(%)	(g day⁻¹)	(g day⁻¹)	(%)
NV-1	555	563	563	564	0.473	10.32	95.26	15590	731.5	4.469
NV-2	465	479	480	482	0.799	6.07	52.78	8640	-492.6	-3.009
NV-3	540	550	550	552	0.649	8.187	79.69	13040	1027	6.277
NV-4	504	514	514	516	0.738	7.035	77.22	12640	724.9	4.428
NV-5	519	529	530	531	0.562	9.458	74.7	12230	-481.8	-2.943
NV-6	498	510	510	512	0.765	6.577	70.74	11580	1087	6.638
NV-7	474	486	486	488	0.769	6.741	63.73	10430	-732.5	-4.475
NV-8	502	514	514	516	0.712	7.348	53.6	8773	-517.8	-3.164

^a Based on transformed data (i.e., In(TSP)).

^b Based on back-transformed data.

Figure G-65. Dairy naturally ventilated barn TSP one-to-one plots models 1 through 8, log transformed.

Figure G-66. Dairy naturally ventilated barn TSP one-to-one plots models 1 through 8, back transformed.

G.4 Lagoons

G.4.1 Ammonia (NH₃)

Table G-34. Parameter and estimates NH₃ emission models for dairy lagoons.

Model	Parameter	Estimate	Standard Error	p-value
	Intercept	1.722568	0.6531	0.0199
1	рН	-0.053724	0.08502	0.5378
	Lagoon temperature	0.027232	0.00574	0.0005
ſ	Intercept	2.591012	1.01478	0.0295
Z	рН	-0.102478	0.13732	0.473
n	Intercept	1.314921	0.11852	<.0001
5	Lagoon temperature	0.027883	0.00579	0.0004
	Intercept	1.371991	0.0478	<.0001
4	Ambient temperature	0.027336	0.00196	<.0001
	Wind speed	0.007476	0.01235	0.546
5	Intercept	1.396734	0.0248	<.0001
J	Ambient temperature	0.027201	0.00195	<.0001
6	Intercept	1.502677	0.09895	<.0001
0	Wind speed	0.023567	0.01151	0.0426
	Intercept	1.608092	0.43955	0.0048
	рН	-0.055494	0.0508	0.305
7	Lagoon temperature	0.003169	0.0121	0.7953
	Ambient temperature	0.025656	0.00858	0.0055
	Wind speed	0.087207	0.04508	0.0613
	Intercept	1.932937	0.34647	<.0001
Q	рН	-0.045789	0.04532	0.3291
8	Lagoon temperature	-0.014509	0.00847	0.1031
	Ambient temperature	0.035315	0.00719	<.0001
	Intercept	1.163616	0.61297	0.0794
9	рН	-0.046984	0.07586	0.547
5	Lagoon temperature	0.037778	0.00618	<.0001
	Wind speed	0.130956	0.04347	0.005
	Intercept	1.653065	0.39038	0.0011
10	pH	-0.054928	0.05035	0.2967
10	Ambient temperature	0.027696	0.0032	<.0001
	Wind speed	0.07906	0.03441	0.0295
	Intercept	1.169318	0.22158	<.0001
11	Lagoon temperature	0.00492	0.01259	0.6987
	Ambient temperature	0.024875	0.00893	0.0092
	Wind speed	0.090877	0.04651	0.0591
	Intercept	1.852817	0.3957	0.0006
12	рН	-0.049413	0.05252	0.3659
	Ambient temperature	0.023893	0.00288	<.0001
	Intercept	2.318938	1.30318	0.1328
13	рН	-0.098184	0.17512	0.598
	Wind speed	0.093085	0.04437	0.0451
	Intercept	1.590048	0.07475	<.0001
14	Lagoon temperature	-0.014419	0.00859	0.1094
	Ambient temperature	0.035571	0.00728	<.0001
	Intercept	0.804363	0.19861	0.0003
15	Lagoon temperature	0.038432	0.00622	<.0001
	Wind speed	0.131343	0.0434	0.0048

						LNME ^a	NME ^b	ME ^b	MB ^b	NMB ^b
Model	2LogL	AIC	AICc	BIC	Corr.	(%)	(%)	(kg day ⁻¹ m ⁻²)	(kg day ⁻¹ m ⁻²)	(%)
1	-18	-8	-6	-14	0.708	8.598	31	1.09	0.01	0.275
2	-4	4	5	-1	0.195	11.94	39.73	1.397	-0.006	-0.164
3	-17	-9	-8	-14	0.701	8.806	31.62	1.112	0.01	0.295
4	-84	-74	-73	-78	0.845	9.664	38.59	0.708	-0.036	-1.947
5	-83	-75	-75	-79	0.844	9.709	38.77	0.712	-0.034	-1.859
6	-26	-18	-17	-21	-0.21	20.38	79.01	1.531	0.017	0.901
7	-33	-19	-15	-28	0.837	6.727	23.31	0.819	-0.01	-0.291
8	-30	-18	-15	-25	0.811	7.504	26.16	0.92	-0.001	-0.035
9	-27	-15	-12	-22	0.783	7.857	27.49	0.966	0.005	0.133
10	-33	-21	-18	-28	0.837	6.772	23.42	0.823	-0.01	-0.284
11	-32	20	17	27	-0.83	6.828	23.86	0.839	-0.012	-0.341
12	-27	-17	-15	-24	0.805	7.521	26.6	0.935	-0.01	-0.285
13	-7	3	5	-4	-0.08	13.16	43.55	1.531	0.052	1.472
14	-29	-19	-17	-25	0.805	7.781	26.94	0.947	-0.002	-0.044
15	-26	-16	-14	-23	0.777	7.921	27.62	0.971	0.006	0.165

Table G-35. Fit and evaluation statistics for NH_3 emission models for dairy lagoons.

^a Based on transformed data (i.e., ln(NH₃)).
^b Based on back-transformed data.

Figure G-67. Dairy lagoon NH₃ one-to-one plots models 1 through 9, log transformed.

Figure G-68. Dairy lagoon NH₃ one-to-one plots models 10 through 15, log transformed.

Figure G-69. Dairy lagoon NH₃ one-to-one plots models 1 through 9, back transformed.

Figure G-70. Dairy lagoon NH₃ one-to-one plots models 10 through 15, back transformed.

G.4.2 Hydrogen Sulfide (H₂S)

Table G-36. Parameter and estimates H_2S emission models for dairy lagoons.

Model	Parameter	Estimate	Standard Error	p-value
	Intercept	2.025152	0.48925	0.0015
1	рН	-0.02631	0.05394	0.6347
	Lagoon temperature	-0.019651	0.00545	0.0042
2	Intercept	0.835524	0.4355	0.0939
2	рН	0.07913	0.05889	0.2177
2	Intercept	1.788655	0.06241	<.0001
5	Lagoon temperature	-0.017479	0.00301	0.0003
	Intercept	1.097897	0.06192	<.0001
4	Ambient temperature	0.010035	0.00221	<.0001
	Wind speed	0.028266	0.01635	0.0883
5	Intercept	1.189272	0.03163	<.0001
	Ambient temperature	0.010557	0.0022	<.0001
6	Intercept	1.096039	0.06837	<.0001
0	Wind speed	0.050923	0.01682	0.0035
	Intercept	2.238441	0.45542	0.0002
	рН	-0.078948	0.05614	0.1808
7	Lagoon temperature	-0.016463	0.00848	0.074
	Ambient temperature	-0.001524	0.00708	0.8328
	Wind speed	0.051834	0.02703	0.0745
	Intercept	2.065969	0.50043	0.0014
8	рН	-0.032196	0.05637	0.5784
Ũ	Lagoon temperature	-0.017075	0.00926	0.0873
	Ambient temperature	-0.002616	0.0075	0.733
	Intercept	2.211002	0.43846	0.0002
9	рН	-0.07547	0.05381	0.1831
-	Lagoon temperature	-0.017868	0.00496	0.0076
	Wind speed	0.052399	0.02715	0.0728
	Intercept	1.263457	0.54647	0.0382
10	рН	-0.002854	0.06568	0.9662
	Ambient temperature	-0.003814	0.0053	0.4825
	Wind speed	0.100247	0.02692	0.0019
	Intercept	1.315891	0.18564	<.0001
11	Lagoon temperature	-0.005659	0.01032	0.5933
	Ambient temperature	-0.000177	0.00734	0.9811
	Wind speed	0.091226	0.0328	0.014
	Intercept	1.739304	0.51573	0.0048
12	рН	-0.006914	0.05981	0.9096
	Ambient temperature	-0.01326	0.00475	0.016
13	Intercept	0.955639	0.35017	0.0289
	рН	0.029795	0.04902	0.5609
	Wind speed	0.097403	0.027	0.0026
	Intercept	1.782638	0.07244	<.0001
14	Lagoon temperature	-0.015974	0.00908	0.101
	Ambient temperature	-0.001281	0.00713	0.8602
	Intercept	1.318016	0.1736	<.0001
15	Lagoon temperature	-0.005881	0.00577	0.3379
	Wind speed	0.090879	0.03087	0.011

Model 2Log				DIC	Comm	LNME ^a	NME ^b	ME ^b	MB ^b	NMB ^b
woder	ZLOGL	AIC	AICC	BIC	Corr.	(%)	(%)	(kg day ⁻¹ m ⁻²)	(kg day ⁻¹ m ⁻²)	(%)
1	-36	-26	-20	-33	0.667	4.219	20.74	0.241	0.003	0.22
2	-32	-24	-20	-29	0.381	5.254	26.32	0.305	#NUM!	-0.02
3	-36	-28	-24	-33	0.652	4.379	21.67	0.252	0.003	0.262
4	-86	-76	-75	-81	0.657	9.05	62.46	0.489	-0.015	-1.925
5	-83	-75	-75	-79	0.632	9.258	63.69	0.499	-0.011	-1.403
6	-80	-72	-71	-75	0.07	13.58	84.47	0.673	0.007	0.868
7	-40	-26	-10	-35	0.776	3.094	15.3	0.178	0.001	0.056
8	-37	-25	-14	-32	0.663	4.275	20.97	0.244	0.002	0.193
9	-40	-28	-18	-36	0.777	3.103	15.56	0.181	0.001	0.074
10	-42	-30	-21	-38	0.732	3.624	17.87	0.207	0.003	0.271
11	-39	27	17	35	-0.76	3.535	17.47	0.203	0.003	0.215
12	-35	-25	-19	-32	0.519	4.647	23.1	0.268	0.004	0.355
13	-42	-32	-26	-38	0.702	3.736	18.36	0.213	0.002	0.195
14	-36	-26	-20	-33	0.648	4.406	21.83	0.254	0.003	0.252
15	-39	-29	-23	-36	0.757	3.527	17.43	0.203	0.002	0.21

Table G-37. Fit and evaluation statistics for H₂S emission models for dairy lagoons.

^a Based on transformed data (i.e., ln(H₂S)).

^b Based on back-transformed data.

Figure G-71. Dairy lagoon H₂S one-to-one plots models 1 through 9, log transformed.

Figure G-72. Dairy lagoon H_2S one-to-one plots models 1 through 9, log transformed.

Figure G-73. Dairy lagoon H₂S one-to-one plots models 1 through 9, back transformed.

Figure G-74. Dairy lagoon H_2S one-to-one plots models 10 through 15, back transformed.

G.5 Corrals

G.5.1 Ammonia (NH₃)

Table G-38. Parameter and estimates NH₃ emission models for dairy corrals.

Model	Parameter	Estimate	Standard Error	p-value
CR-1a	Intercept	0.763691	0.20329	0.0004
	Ambient temperature	-0.009511	0.00852	0.2691
	Ambient relative humidity	0.012295	0.00291	<.0001
	Water vapor deficit	0.02969	0.01167	0.0135
	Wind speed	0.051483	0.02037	0.0142
	Intercept	1.095199	0.16438	<.0001
CP 25	Ambient temperature	-0.007421	0.00896	0.411
CR-Zd	Ambient relative humidity	0.010416	0.00297	0.001
	Water vapor deficit	0.025559	0.0122	0.0403
	Intercept	1.108679	0.15818	<.0001
CP 25	Ambient temperature	0.01048	0.00358	0.0063
CK-5d	Ambient relative humidity	0.006897	0.00208	0.0016
	Wind speed	0.043973	0.02121	0.0426
	Intercept	0.881656	0.17272	<.0001
CP /a	Ambient relative humidity	0.010059	0.00206	<.0001
CK-4d	Water vapor deficit	0.017815	0.00466	0.0005
	Wind speed	0.049059	0.02044	0.0196
	Intercept	1.497591	0.12214	<.0001
	Ambient temperature	0.016378	0.00684	0.0203
CR-Ja	Water vapor deficit	-0.007059	0.00898	0.4349
	Wind speed	0.030011	0.02259	0.1889
	Intercept	1.351154	0.11265	<.0001
CR-6a	Ambient temperature	0.009972	0.00371	0.0118
	Ambient relative humidity	0.005983	0.00212	0.0068
	Intercept	1.633829	0.06663	<.0001
CR-7a	Ambient temperature	0.015112	0.00688	0.0327
	Water vapor deficit	-0.006025	0.00911	0.5109
	Intercept	1.171368	0.13154	<.0001
CR-8a	Ambient relative humidity	0.008797	0.00211	0.0002
	Water vapor deficit	0.016432	0.00486	0.0019
	Intercept	1.487014	0.12166	<.0001
CR-9a	Ambient temperature	0.011907	0.00381	0.0038
	Wind speed	0.028613	0.02271	0.2124
	Intercept	1.235356	0.16215	<.0001
CR-10a	Ambient relative humidity	0.007641	0.00224	0.0012
	Wind speed	0.040427	0.02259	0.0787
CR-11a	Intercept	1.554303	0.12582	<.0001
	Water vapor deficit	0.010869	0.00526	0.0449
	Wind speed	0.023438	0.02372	0.3269
CR-12a	Intercept	1.619652	0.06236	<.0001
	Ambient temperature	0.011295	0.00376	0.0054
CR-13a	Intercept	1.452108	0.1134	<.0001

Model	Parameter	Estimate	Standard Error	p-value
	Ambient relative humidity	0.006779	0.00224	0.0039
CD 14a	Intercept	1.656264	0.06712	<.0001
CK-14d	Water vapor deficit	0.010833	0.00518	0.0423
CD 15-	Intercept	1.630471	0.09345	<.0001
CK-15d	Wind speed	0.036663	0.01958	0.0657
	Intercept	0.897152	0.09258	<.0001
	Ambient temperature	-0.003981	0.0039	0.3115
CR-1b	Ambient relative humidity	0.005528	0.00134	0.0001
	Water vapor deficit	0.013337	0.00531	0.0146
	Wind speed	0.02136	0.00912	0.0226
	Intercept	1.03179	0.07648	<.0001
CD 2h	Ambient temperature	-0.002965	0.00407	0.4692
CR-20	Ambient relative humidity	0.004789	0.00137	0.0009
	Water vapor deficit	0.011521	0.00551	0.0406
	Intercept	1.053805	0.07073	<.0001
CD 26	Ambient temperature	0.004993	0.00173	0.0069
CK-30	Ambient relative humidity	0.0031	0.00095	0.0018
	Wind speed	0.017832	0.00937	0.0622
	Intercept	0.946391	0.07858	<.0001
	Ambient relative humidity	0.004605	0.00096	<.0001
CR-4D	Water vapor deficit	0.008399	0.0022	0.0005
	Wind speed	0.02021	0.00908	0.0301
	Intercept	1.2253	0.05532	<.0001
	Ambient temperature	0.007602	0.00317	0.0199
CK-50	Water vapor deficit	-0.00327	0.00404	0.4214
	Wind speed	0.012747	0.01006	0.2102
	Intercept	1.147634	0.05358	<.0001
CR-6b	Ambient temperature	0.004878	0.00179	0.0103
	Ambient relative humidity	0.002795	0.00097	0.0057
	Intercept	1.281746	0.03227	<.0001
CR-7b	Ambient temperature	0.007244	0.0032	0.0278
	Water vapor deficit	-0.002941	0.00411	0.4768
	Intercept	1.061536	0.06261	<.0001
CR-8b	Ambient relative humidity	0.004155	0.00098	0.0001
	Water vapor deficit	0.007899	0.00228	0.0015
	Intercept	1.219287	0.05483	<.0001
CR-9b	Ambient temperature	0.005536	0.00182	0.0048
	Wind speed	0.012282	0.01015	0.2308
CR-10b	Intercept	1.114354	0.07143	<.0001
	Ambient relative humidity	0.003353	0.00102	0.0017
	Wind speed	0.017336	0.00988	0.0847
	Intercept	1.248844	0.05728	<.0001
CR-11b	Water vapor deficit	0.004788	0.00248	0.0597
	Wind speed	0.010938	0.01066	0.309
CP 12h	Intercept	1.274696	0.03019	<.0001
CR-12b	Ambient temperature	0.005373	0.00181	0.0057

Model	Parameter	Estimate	Standard Error	p-value
CD 12h	Intercept	1.202252	0.05362	<.0001
CK-130	Ambient relative humidity	0.003084	0.00104	0.0045
CR-14b	Intercept	1.294429	0.03205	<.0001
	Water vapor deficit	0.004931	0.00243	0.0487
CR-15b	Intercept	1.280846	0.04185	<.0001
	Wind speed	0.017141	0.00848	0.0477

Table G-39. Fit and evaluation statistics for NH_3 emission models for dairy corrals.

						LNME ^a	NME ^b	ME ^b	MB ^b	NMB ^b
Model	2LogL	AIC	AICc	BIC	Corr.	(%)	(%)	(kg day ⁻¹)	(kg day ⁻¹)	(%)
CR-1a	-64	-50	-47	-35	0.611	7.499	27.48	0.847	0.002	0.05
CR-2a	-57	-45	-44	-32	0.566	8.023	29.51	0.91	0.01	0.321
CR-3a	-57	-45	-44	-32	0.567	7.746	28.54	0.88	-0.003	-0.101
CR-4a	-62	-50	-49	-38	0.603	7.611	27.83	0.858	0.003	0.082
CR-5a	-47	-35	-33	-22	0.416	8.813	32.02	0.987	0.001	0.026
CR-6a	-53	-43	-42	-32	0.526	8.07	29.73	0.917	0.007	0.228
CR-7a	-45	-35	-34	-24	0.414	8.675	31.57	0.973	0.002	0.062
CR-8a	-56	-46	-45	-36	0.558	8.124	29.81	0.919	0.013	0.415
CR-9a	-46	-36	-35	-26	0.398	8.943	32.66	1.007	0.002	0.078
CR-10a	-49	-39	-38	-28	0.437	7.982	29.41	0.907	-0.004	-0.126
CR-11a	-41	31	30	21	-0.27	8.935	33.05	1.019	0.001	0.046
CR-12a	-45	-37	-36	-28	0.402	8.815	32.06	0.988	0.002	0.066
CR-13a	-45	-37	-37	-29	0.425	8.108	29.36	0.905	-0.003	-0.101
CR-14a	-40	-32	-32	-24	0.306	8.839	32.59	1.005	-0.002	-0.075
CR-15a	-49	-41	-40	-32	-0.02	8.626	31.34	0.978	0.012	0.377
CR-1b	-162	-148	-146	-133	0.62	4.549	28.02	0.247	0.000	-0.01
CR-2b	-156	-144	-143	-132	0.583	4.826	29.79	0.263	0.001	0.143
CR-3b	-156	-144	-142	-131	0.572	4.746	29.19	0.257	0.000	-0.055
CR-4b	-161	-149	-147	-136	0.611	4.613	28.45	0.251	0.000	0.022
CR-5b	-146	-134	-133	-121	0.432	5.359	32.67	0.288	0.000	-0.016
CR-6b	-152	-142	-141	-131	0.54	4.925	30.31	0.267	0.001	0.119
CR-7b	-144	-134	-133	-124	0.435	5.267	32.17	0.284	0.000	0.014
CR-8b	-156	-146	-145	-135	0.575	4.89	30.17	0.266	0.002	0.195
CR-9b	-145	-135	-134	-125	0.417	5.444	33.25	0.293	0.000	0.001
CR-10b	-148	-138	-137	-127	0.423	4.829	29.86	0.263	-0.001	-0.08
CR-11b	-140	-130	-129	-120	0.284	5.485	33.7	0.297	0.000	-0.018
CR-12b	0	-136	-135	-127	0.426	5.337	32.66	0.288	0.000	0.007
CR-13b	-145	-137	-136	-128	0.423	4.804	29.51	0.26	-0.001	-0.064
CR-14b	-139	-131	-130	-123	0.334	5.402	33.29	0.293	-0.001	-0.08
CR-15b	-166	-158	-158	-149	-0.05	5.31	32.04	0.285	0.002	0.198

^a Based on transformed data (i.e., ln(NH₃)).
^b Based on back-transformed data.

Figure G-75. Dairy corral NH₃ one-to-one plots models 1a through 9a, log transformed.

Figure G-76. Dairy corral NH₃ one-to-one plots models 10a through 15a, log transformed.

Figure G-77. Dairy corral NH₃ one-to-one plots models 1b through 9b, log transformed.

Figure G-78. Dairy corral NH₃ one-to-one plots models 10b through 15b, log transformed.

Figure G-79. Dairy corral NH₃ one-to-one plots models 1a through 9a, back transformed.

Figure G-80. Dairy corral NH₃ one-to-one plots models 10a through 15a, back transformed.

Figure G-81. Dairy corral NH₃ one-to-one plots models 1b through 9b, back transformed.

Figure G-82. Dairy corral NH $_{3}$ one-to-one plots models 10b through 15b, back transformed.

G.5.2 Hydrogen Sulfide (H₂S)

Model	Parameter	Estimate	Standard Error	p-value
	Intercept	2.970638	0.50444	<.0001
	Ambient temperature	-0.009345	0.01773	0.601
CR-1a	Ambient relative humidity	0.012274	0.00727	0.0994
	Water vapor deficit	0.010058	0.02412	0.6787
	Wind speed	0.068824	0.04038	0.0957
	Intercept	3.419792	0.41522	<.0001
CD 2-	Ambient temperature	-0.001785	0.01752	0.9193
CR-2a	Ambient relative humidity	0.008789	0.00695	0.2139
	Water vapor deficit	0.00194	0.0241	0.9362
	Intercept	3.136866	0.31165	<.0001
CD 24	Ambient temperature	-0.002867	0.00806	0.726
Ск-за	Ambient relative humidity	0.009747	0.00411	0.0222
	Wind speed	0.06504	0.03878	0.1011
	Intercept	3.139137	0.39428	<.0001
CD 4-	Ambient relative humidity	0.009432	0.00498	0.067
CR-4a	Water vapor deficit	-0.00146	0.011	0.8956
·	Wind speed	0.062441	0.03826	0.1113
	Intercept	3.755593	0.20355	<.0001
CR-5a	Ambient temperature	0.011631	0.01281	0.3698
	Water vapor deficit	-0.02361	0.01369	0.0926
	Wind speed	0.049549	0.03869	0.2072
CR-6a	Intercept	3.447268	0.24975	<.0001
	Ambient temperature	-0.000519	0.00788	0.948
	Ambient relative humidity	0.008329	0.00411	0.0491
	Intercept	3.923743	0.15146	<.0001
CR-7a	Ambient temperature	0.014019	0.01286	0.2819
	Water vapor deficit	-0.023084	0.01418	0.1115
	Intercept	3.446605	0.33784	<.0001
CR-8a	Ambient relative humidity	0.008265	0.00492	0.1037
	Water vapor deficit	-0.000304	0.01087	0.9779
	Intercept	3.714552	0.20898	<.0001
CR-9a	Ambient temperature	-0.004232	0.0091	0.647
	Wind speed	0.047206	0.04025	0.2473
	Intercept	3.104242	0.3003	<.0001
CR-10a	Ambient relative humidity	0.00982	0.00412	0.0214
	Wind speed	0.062062	0.03834	0.1142
CR-11a	Intercept	3.787018	0.2035	<.0001
	Water vapor deficit	-0.014936	0.00973	0.1324
	Wind speed	0.057853	0.03842	0.1403
CR-12a	Intercept	3.873591	0.15106	<.0001
	Ambient temperature	-0.00154	0.00858	0.859
CR-13a	Intercept	3.439236	0.21621	<.0001
	Ambient relative humidity	0.008342	0.00412	0.049
CP 140	Intercept	3.984094	0.14367	<.0001
CK-14a	Water vapor deficit	-0.011103	0.00958	0.2531
CR-15a	Intercept	3.666611	0.18136	<.0001

Table G-40. Parameter and estimates H₂S emission models for dairy corrals.

Model	Parameter	Estimate	Standard Error	p-value
	Wind speed	0.039609	0.03675	0.2875
CR-1b	Intercept	2.017076	0.44535	<.0001
	Ambient temperature	-0.007493	0.01562	0.6338
	Ambient relative humidity	0.010275	0.00643	0.1177
	Water vapor deficit	0.007516	0.02113	0.7237
	Wind speed	0.060242	0.03519	0.0943
	Intercept	2.405151	0.37002	<.0001
CD 2h	Ambient temperature	-0.000322	0.01532	0.9833
CK-2D	Ambient relative humidity	0.007217	0.00615	0.2477
	Water vapor deficit	0.000192	0.02107	0.9928
	Intercept	2.143018	0.27163	<.0001
	Ambient temperature	-0.002677	0.00729	0.7172
CK-50	Ambient relative humidity	0.008365	0.00359	0.0244
	Wind speed	0.057368	0.03371	0.0963
	Intercept	2.152013	0.34858	<.0001
CP /h	Ambient relative humidity	0.008004	0.00443	0.0798
CK-40	Water vapor deficit	-0.001621	0.0099	0.8713
	Wind speed	0.054825	0.03306	0.106
	Intercept	2.675305	0.17806	<.0001
CR-5b	Ambient temperature	0.00986	0.01132	0.3891
	Water vapor deficit	-0.020596	0.01183	0.0898
	Wind speed	0.044353	0.03369	0.195
	Intercept	2.407912	0.22223	<.0001
CR-6b	Ambient temperature	-0.000198	0.00707	0.9779
	Ambient relative humidity	0.007171	0.00361	0.0534
	Intercept	2.821316	0.13542	<.0001
CR-7b	Ambient temperature	0.012414	0.0113	0.2782
	Water vapor deficit	-0.020249	0.01229	0.1073
	Intercept	2.410015	0.30355	<.0001
CR-8b	Ambient relative humidity	0.007122	0.00438	0.1149
CK-80	Water vapor deficit	-0.000212	0.00975	0.9828
	Intercept	2.637725	0.1827	<.0001
CR-9b	Ambient temperature	Intercept 2.821316 0.13 nbient temperature 0.012414 0.0 Vater vapor deficit -0.020249 0.07 Intercept 2.410015 0.30 ient relative humidity 0.007122 0.00 Vater vapor deficit -0.000212 0.00 Intercept 2.637725 0.1 nbient temperature -0.004004 0.00 Wind speed 0.042679 0.03 Intercept 2.113231 0.26	0.00815	0.6284
	Wind speed	0.042679	0.03505	0.2301
	Intercept	2.113231	0.26144	<.0001
CR-10b	Ambient relative humidity	0.008445	0.00359	0.0233
	Wind speed	0.054306	0.0331	0.1097
	Intercept	2.701641	0.17821	<.0001
CR-11b	Water vapor deficit	-0.013503	0.00851	0.1197
	Wind speed	0.052106	0.03317	0.1245
CR-12b	Intercept	2.777138	0.135	<.0001
	Ambient temperature	-0.001264	0.00763	0.8697
CR-13b	Intercept	2.404792	0.1906	<.0001
	Ambient relative humidity	0.007177	0.00361	0.0531
CR-14b	Intercept	2.876877	0.12785	<.0001
	Water vapor deficit	-0.009855	0.0084	0.2473
CR-15b	Intercept	2.593193	0.15874	<.0001
	Wind speed	0.035442	0.03174	0.2708

						LNME ^a	NME ^b	ΜE ^b	MB ^b	NMB ^b
Model	2LogL	AIC	AICc	BIC	Corr.	(%)	(%)	(kg day ⁻¹)	(kg day ⁻¹)	(%)
CR-1a	5	19	22	31	0.351	6.373	26.37	11.92	-0.041	-0.091
CR-2a	8	20	22	30	0.4	6.315	26.24	11.86	-0.207	-0.458
CR-3a	5	17	19	28	0.324	6.449	26.66	12.05	-0.041	-0.09
CR-4a	5	17	19	28	0.338	6.476	26.72	12.07	-0.082	-0.181
CR-5a	8	20	22	30	0.09	6.755	27.81	12.56	0.147	0.325
CR-6a	8	18	19	27	0.395	6.339	26.32	11.89	-0.204	-0.451
CR-7a	9	19	21	28	0.211	6.638	27.39	12.38	-0.086	-0.19
CR-8a	8	18	19	27	0.394	6.353	26.37	11.92	-0.199	-0.44
CR-9a	11	21	22	30	-0.1	6.785	28.27	12.78	0.354	0.783
CR-10a	5	15	17	24	0.349	6.471	26.7	12.07	-0.094	-0.209
CR-11a	9	-19	-20	-27	-0	7.098	29.26	13.22	0.596	1.319
CR-12a	12	20	21	27	-0.02	6.56	27.48	12.42	-0.001	-0.002
CR-13a	8	16	17	23	0.394	6.356	26.38	11.92	-0.197	-0.435
CR-14a	11	19	20	26	0.089	6.496	26.9	12.16	0.039	0.086
CR-15a	9	17	18	25	-0.12	6.694	27.9	12.32	0.173	0.392
CR-1b	-7	7	10	20	0.319	8.137	27.72	3.596	0.001	0.008
CR-2b	-4	8	10	19	0.387	7.975	27.12	3.518	-0.048	-0.37
CR-3b	-7	5	8	16	0.294	8.223	27.94	3.624	0.003	0.021
CR-4b	-7	5	8	16	0.31	8.165	27.66	3.589	-0.01	-0.075
CR-5b	-4	8	10	18	0.058	8.556	29.04	3.767	0.056	0.43
CR-6b	-4	6	8	15	0.386	7.978	27.12	3.519	-0.048	-0.369
CR-7b	-3	7	9	16	0.198	8.364	28.31	3.673	-0.015	-0.113
CR-8b	-4	6	8	15	0.385	7.985	27.14	3.521	-0.048	-0.366
CR-9b	-1	9	10	18	-0.12	8.677	29.63	3.844	0.104	0.801
CR-10b	-6	4	5	12	0.327	8.135	27.55	3.574	-0.015	-0.119
CR-11b	-3	7	8	15	-0.02	9.083	30.79	3.995	0.179	1.38
CR-12b	0	8	9	15	-0.04	8.288	28.39	3.683	0.001	0.006
CR-13b	-4	4	5	11	0.386	7.988	27.15	3.522	-0.047	-0.364
CR-14b	-1	7	8	14	0.066	8.244	27.94	3.625	0.02	0.157
CR-15b	-4	4	5	12	-0.13	8.441	28.85	3.654	0.048	0.377

Table G-41. Fit and evaluation statistics for H_2S emission models for dairy corrals.

^a Based on transformed data (i.e., In(H₂S)).

^b Based on back-transformed data.

Figure G-83. Dairy corral H₂S one-to-one plots models 1a through 9a, log transformed.

Figure G-84. Dairy corral H₂S one-to-one plots models 10a through 15a, log transformed.

Figure G-85. Dairy corral H₂S one-to-one plots models 1b through 9b, log transformed.

Figure G-86. Dairy corral H_2S one-to-one plots models 10b through 15b, log transformed.

Figure G-87. Dairy corral H₂S one-to-one plots models 1a through 9a, back transformed.

Figure G-88. Dairy corral H₂S one-to-one plots models 10a through 15a, back transformed.

Figure G-89. Dairy corral H₂S one-to-one plots models 1b through 9b, back transformed.

Figure G-90. Dairy corral H_2S one-to-one plots models 10b through 15b, back transformed.