Development of Emissions Estimating Methodologies for Broiler Operations

Draft

Prepared by:

U.S. Environmental Protection Agency

Office of Air and Radiation Office of Air Quality Planning and Standards 109 T.W. Alexander Drive Research Triangle Park, N.C. 27709

August 2021

This report is an external draft for review purposes only and does constitute U.S. Environmental Protection Agency (EPA) policy.

Table of Contents

1.0	INTF	RODUCTION	1-1			
	1.1	Site descriptions	1-1			
		1.1.1 CA1B	1-1			
		1.1.2 KY1B-1 and KY1B-2	1-2			
	1.2	Data Sampled	1-4			
		1.2.1 Particulate Matter	1-4			
		1.2.2 Animal Husbandry	1-4			
		1.2.3 Biomaterials Sampling Methods and Schedule	1-4			
2.0	REV	ISIONS TO DATA SET AND EMISSIONS DATA SUMMARY	2-1			
	2.1	Revisions to the 2010 Data Set	2-1			
	2.2	Data Completeness Criteria for the Revised Data Set	2-1			
	2.3	Comparison between the 2010 and Revised Data Sets	2-2			
	2.4	Comparison Between the Revised Data Sets and NAEMS Datasets Used in reviewed Published Papers	Peer- 2-3			
		2.4.1 NH ₃	2-3			
		2.4.1 H ₂ S	2-4			
		2.4.2 PM ₁₀	2-4			
		2.4.3 PM _{2.5}	2-6			
		2.4.1 TSP	2-6			
3.0	REL	ATIONSHIPS ESTABLISHED IN LITERATURE	3-1			
	3.1	NH3 and H2S Emissions from Houses				
	3.2	PM Emissions from Houses	3-4			
4.0	SITE	COMPARISON, TRENDS, AND ANALYSIS	4-1			
	4.1	Emissions Data	4-1			
	4.2	Environmental Parameters	4-2			
	4.3	Litter Parameters				
	4.4	Parameter selection	4-10			
5.0	DEV	ELOPMENT AND SELECTION OF MODELS FOR DAILY EMISSIONS	5-1			
6.0	MOI	MODEL COEFFICENT EVALUATION				
	6.1	NH ₃ Model Evaluation	6-1			
	6.2	H ₂ S Model Evaluation	6-4			
	6.3	PM ₁₀ Model Evaluation	6-6			

	6.4	PM _{2.5} Model Evaluation	6-8
	6.5	TSP Model Evaluation	6-10
7.0	ANN	UAL EMISSION ESTIMATES AND MODEL UNCERTAINTY	7-1
8.0	MOD	DEL APPLICATION AND ADDITIONAL TESTING	8-1
	8.1	Model Application Example	8-1
		8.1.1 NH ₃ Example	
		8.1.2 PM ₁₀ Example	
		8.1.3 Combining Structures	
	8.2	Model Sensitivity Testing	8-4
		8.2.1 Sensitivity to Inventory	
		8.2.2 Sensitivity to climate	8-6
		8.2.3 Model Limitations	8-9
	8.3	8.3 Comparison to literature	
	8.4	Replication of Independent Measurements	
9.0	CON	CLUSIONS	9-1
10.0	REFF	ERENCES	10-1

List of Tables

Table 1-1: Broiler Confinement Sites Monitored Under NAEMS	1-1
Table 2-1. Number of valid ADM and mean NH ₃ emission values (at 75% data completeness) between 2010 and revised CA1B H10 dataset.	the 2-2
Table 2-2. Number of valid ADM and mean NH ₃ emission values (at 75% data completeness) between 2010 and revised CA1B H12 datasets	the 2-3
Table 2-3. Comparison of NH ₃ emissions in the model dataset to published datasets.	2-4
Table 2-4. Comparison of H ₂ S emissions in the EEM dataset to published datasets	2-5
Table 2-5. Comparison of PM ₁₀ emissions in the EEM dataset to published datasets	2-5
Table 2-6. Comparison of PM _{2.5} emissions in the EEM dataset to published datasets	2-6
Table 2-7. Comparison of TSP emissions in the EEM dataset to published datasets	2-7
Table 4-1. Bird specific parameters regression analysis	4-3
Table 4-2. House specific parameters regression analysis	4-4
Table 4-3. Ambient parameters regression analysis	4-5
Table 4-4. Litter age parameters regression analysis	4-7
Table 4-5. House litter parameters regression analysis	4-8
Table 4-6. New litter parameters regression analysis	4-9
Table 4-7. Decaked litter parameters regression analysis	4-9
Table 4-8. Loadout litter parameters regression analysis4-	-10
Table 5-1. Parameter combinations tested as models for NH ₃ and H ₂ S emissions	5-1
Table 5-2. Selected daily models for broiler houses	5-4
Table 6-1. Model coefficients developed using the jackknife approach for NH ₃ emissions from brokhouses	iler 6-2
Table 6-2. Model fit statistics for the broiler house NH3 jackknife	6-2
Table 6-3. Model coefficients developed using the jackknife approach for H ₂ S emissions from brokhouses	iler 6-4
Table 6-4. Model fit statistics for the broiler house H ₂ S jackknife	6-4
Table 6-5. Model coefficients developed using the jackknife approach for PM ₁₀ emissions from brokhouses	iler 6-6
Table 6-6. Model fit statistics for the broiler house PM ₁₀ jackknife	6-6
Table 6-7. Model coefficients developed using the jackknife approach for PM _{2.5} emissions from brokhouses	iler 6-8
Table 6-8. Model fit statistics for the broiler house PM _{2.5} jackknife	6-8
Table 6-9. Model coefficients developed using the jackknife approach for TSP emissions from brown bouses	iler -10
Table 6-10. Model fit statistics for the broiler house TSP jackknife. 6-	-10
Table 7-1. Back transformation parameters	7-1

List of Figures

Figure 1-1. CA2B Farm layout
Figure 1-2. Locations of Kentucky broiler sites1-3
Figure 1-3. Aerial pictures indicating the locations of each monitored broiler house1-4
Figure 2-1. Ratio of mean predicted emissions for portion of day with valid emissions measurements to mean predicted emissions for the complete day at the finishing (A) and sow (B) farm. Error plotted against number of valid 30-minute measurements (from Grant et al., 2013)
Figure 6-1. Comparison of variation in coefficients and standard errors for NH ₃ broiler house model6-3
Figure 6-2. Comparison of variation in coefficients and standard errors for H ₂ S broiler house model6-5
Figure 6-3. Comparison of variation in coefficients and standard errors for PM ₁₀ broiler house model6-7
Figure 6-4. Comparison of variation in coefficients and standard errors for PM _{2.5} broiler house model6-9
Figure 6-5. Comparison of variation in coefficients and standard errors for TSP broiler house model6-11
Figure 8-1. Comparison of a broiler house with initial placement of 25,000 birds and 40,000 birds8-5
Figure 8-2. 2017 Census of Agriculture plot indicating areas of broiler sales
Figure 8-3. Comparison on temperatures at test locations in Minnesota (MN) and Texas (TX)8-7
Figure 8-4. Comparison of relative humidities at test locations MT and AZ
Figure 8-5. Comparison of daily emission at test broiler locations MN and TX8-8
Figure 8-6. Broiler limitation tests for gaseous pollutants8-10
Figure 8-7. Broiler house limitation tests for particulate matter
Figure 8-8. Maximum values at which the particulate matter equations yield negative emissions8-12
Figure 8-9. Scatter plot of the observed NH ₃ emissions at the APECAB IN high rise site versus the emission model estimates

GLOSSARY / ACRONYMS

negative twice the likelihood
average daily means
animal feeding operation
Akaike information criterion
adjusted Akaike information criterion
Schwarz Bayesian Information Criterion
Fan Assessment Numeration System
hydrogen sulfide
live animal weight
mean bias
mean error
National Air Emissions Monitoring Study
ammonia
normalized mean bias
normalized mean error
Principal Investigator
particulate matter
particulate matter with aerodynamic diameters less than 10 micrometers
PM with aerodynamic diameters less than 2.5 micrometers
quality assurance project plan
quality control
total ammoniacal nitrogen
tapered element oscillating microbalance
total Kjeldahl nitrogen
total suspended particulate
U.S. Department of Agriculture
volatile organic compounds

1.0 INTRODUCTION

1.1 Site descriptions

There were four broiler houses (confinement sites) monitored for the NAEMS. One site location was in California (CA1B) with two houses and two locations were in Kentucky (KY1B-1 and KY1B-2). Table 1-1 summarizes sites and the structures monitored. The following section provides additional detail on the sites. Appendix A provides a table that summarizes detail about the monitoring locations.

		Measurement	Number of	Ventilation	Manure
Site	Site type	period	units measured	type	storage
CA1B	Litter on floor	9/1/07 - 10/31/09	2	MV (tunnel)	None
KY1B-1	Litter on floor	2/14/06 - 3/14/07	1	MV (tunnel)	None
KY1B-2	Litter on floor	2/20/06 - 3/5/07	1	MV (tunnel)	None
1.1.1	CA1B	4			

Table 1-1: Broiler Confinement Sites Monitored Under NAEMS

1.1.1 CA1B

This 336,000-bird broiler ranch (CA1B) was located in California and consisted of 16 mechanically-ventilated houses that were oriented east-west. Figure 1-1 shows the overall layout of the site, with the two monitored houses (Houses 10 and 12) highlighted (Cortus et al., 2010). The houses are 125 m (410 ft) long x 12.2 m (40 ft) wide, arranged in an east-to west orientation, and are spaced 12.2 m (40 ft) apart. The house roofs have a 4:12 slope with sidewall heights of 2.3 m (7.5 ft).

Each house contains 21,000 birds (per flock) for a total farm capacity of 336,000 birds. Six to seven flocks of birds are raised in each house every year, and all houses are operated on the same grow-out and litter clean-out cycles. The birds housed at the facility over the course of the NAEMS were a 60/40 split between Cobb and Ross genetic varieties and were raised from approximately 0.05 to 2.41 kg (1.1 to 5.3 lb) with an average grow-out period of 47 days. The birds were concentrated in the east (front) end of the houses during the first 10 days of each brooding phase of the grow-out period.

Between each flock, the top 20 to 25 percent of the litter was removed from the entire length of the house (i.e., decaking) using a commercial poultry litter removal machine. After decaking, the remaining litter at the front (east end) of the house was moved to the back (west end) of the house and 34.4 m³ (1,214.8 ft³) of rice hulls were placed in the front of the house.

After three flocks, all litter from the houses was removed (i.e., full litter clean-out). Litter removed from the houses during decaking and full litter clean-out activities was placed in short

term storage piles for two to three days before being taken off site to a fertilizer plant. (Cortus et al., 2010)

Figure 1-1. CA2B Farm layout.

1.1.2 KY1B-1 and KY1B-2

Although not funded through the Air Compliance Agreement, the EPA considered a study conducted by Tyson Foods at two broiler farms in Kentucky (sites KY1B-1 and KY1B-2) from 2006 to 2007 to be an integral part of, and ultimately included in, the NAEMS dataset because the researchers at Iowa State University and the University of Kentucky (Burns et al, 2006) developed the quality assurance project plan (QAPP) for the Tyson study (Moody et al. 2008) to be consistent with NAEMS QAPP.

The two broiler farms, designated as KY1B-1 and KY1B-2, are located in western Kentucky. The KY1B-1 farm has 8 broiler houses and has a total maximum winter capacity of 206,400 birds. The KY1B-2 farm has 24 broiler houses and a total maximum winter capacity of 619,200 birds. Figure 1-2 shows the location of the monitored facilities within Kentucky. The aerial photographs in Figure 1-3 show the locations of the monitored houses at each site (Burns et al, 2010).

Draft document – Do not cite or quote

One broiler confinement house at each farm (designated as KY1B-1 House 5 and KY1B-2 House 3) was monitored. Built in the early 1990s, the two houses each measured 13.1 m x 155.5 m (43 ft x 510 ft). The birds housed during the monitoring period were Cobb-Cobb straight-run (mixed sex) broilers. During the winter, the houses were stocked with an initial placement of 25,800 birds. The initial placement during the summer was 24,400 birds. Typically, the birds were grown to 53 days of market age and an average bird weight of 2.75 kg (6.1 lb).

Each house had insulated drop ceilings, 26 box air inlets [15 x 66 cm (6 x 26 inch)] along each sidewall (see Figure 3-7), 26 pancake brood heaters [8.8 kW (30,000 Btu/hr) each], three space furnaces [65.9 kW (225,000 Btu/hr) each], four 91-cm (36-inch) diameter sidewall exhaust fans spaced approximately 36.6 m (120 ft) apart, and 10, 123-cm (48-inch) diameter tunnel fans.

A single 91-cm (36-inch) fan used for minimum ventilation was located in the brooding end of each house. Two evaporative cooling pads (24-m (80-ft) sections) were located in the opposite end of the houses from the tunnel fans. The houses were also equipped with foggers for additional cooling, if needed. Rice hulls were used as litter bedding in both houses. Each house was decaked and topped off with fresh litter after every flock, with a full litter clean-out occurring once per year.

Figure 1-2. Locations of Kentucky broiler sites.

Figure 1-3. Aerial pictures indicating the locations of each monitored broiler house.

1.2 Data Sampled

NAEMS collected a host of data from the sites. Data collected included gaseous pollutant samples, particulate matter samples, meteorological data, confinement parameters, and biomaterial samples. All procedures for CA1B were outlined in the project Quality Assurance Project Plan (QAPP) (Heber, 2008) and are summarized in Section 4 of the main report. The following sections outline any collection specific to the broiler sites.

1.2.1 Particulate Matter

For CA1B, at any one time, the sampled PM size class was either PM_{10} , $PM_{2.5}$ or TSP. Appendix A contains a summary table which notes the particulate matter sampling schedules for CA1B. The Kentucky site monitored PM_{10} , $PM_{2.5}$, and TSP continuously over the study period.

1.2.2 Animal Husbandry

For both the California and Kentucky sites, the producer recorded data on animal inventory and mortalities manually on a daily basis and provided this information to the NAEMS PI.

1.2.3 Biomaterials Sampling Methods and Schedule

1.2.3.1 CA1B

An independent laboratory, Midwest Laboratories, Omaha, NE, performed all analyses of biomaterials. Samples of the rice hull bedding material were collected in duplicate from each house and analyzed for nitrogen and solids.

Three types of manure samples were collected: surface litter, decaked litter, and litter removed during full clean-out. Surface litter samples were collected over the grow-out period from 16 random locations per house, including eight samples from the front of the house with relatively fresh litter and eight from the back of the house with the older litter. The two groups together were considered representative of the house litter. At each sampling point, all litter within a 0.6-m radius was brought to the center of the sampling location and mixed thoroughly. Composite samples from the mixtures were analyzed for pH, solids, total ammoniacal nitrogen, and total kjeldahl nitrogen. Decaking and complete litter clean-out samples were collected from 12 random locations in each house during litter decaking and clean-out, respectively, and analyzed for ash (after December 2, 2008), nitrogen and solids.

1.2.3.2 KY1B-1 and KY1B-2

Biomaterial sampling for the Tyson portion of the study was limited to litter sampling. All litter samples were processed by the Agricultural Waste Management Laboratory in the Department of Agricultural and Biosystems Engineering at Iowa State University.

Litter from the production houses was sampled after the removal of each flock and analyzed for total Kjeldahl nitrogen. Analyzed samples, in conjunction with litter mass removed during clean-out, were used to estimate nongaseous nitrogen movement in and out of the house.

Two types of litter samples were collected - loadout litter and decaked litter. For total litter sampling, the broiler house was divided into two main zones: non-brooding and brooding zone. Each zone was then subdivided into three sections. Twenty random samples were collected from each section and pooled together to form one composite sample per section (three composite samples per zone). Decaked litter samples were also collected by taking shovel samples from each load of removed cake and combining them to form two 20-L samples.

2.0 REVISIONS TO DATA SET AND EMISSIONS DATA SUMMARY

The section catalogs the changes made to the broiler dataset prior to model development (Section 2.1), considers further changes to the data completeness criteria (Section 2.2), and finally compares the model development dataset to the initial dataset received in 2010 (Section 2.3) and published literature (Section 2.4) to determine the effect of the data revisions.

2.1 Revisions to the 2010 Data Set

As described in Section 4.2 of the main report, the NAEMS monitoring data were submitted to EPA in 2010, with revisions submitted in 2015. Revisions included an adjustment to methodology to determine barn gas inlet concentrations. In addition to the revision noted in the main report, a few flagging errors associated with the gas emissions were corrected for CA1B.

No revised data were provided for the KY1B-1 and KY1B-2 sites as this these data were part of a separate effort (Tyson study) with different PIs. For the KY1B sites, inventory values were not provided during flock replacement events. To include the emissions during flock replacement events in modeling, an inventory value of zero (0) was added to these periods by the EPA. This resulted in 87 and 97 days of zero inventory being added to the KY1B-1 and KY1B-2 data sets, respectively.

2.2 Data Completeness Criteria for the Revised Data Set

The appropriate data completeness criteria to use in a study depends on the size of the dataset and the accuracy needed. A study by Grant et al. (2013), in which NH₃ emissions were modeled from swine lagoons based on NAEMS data, investigated data completeness and associated accuracy. The swine lagoon NH₃ emissions dataset had limited data availability at a data completeness of 75%. Grant et al. (2013) explored how much the data completeness criteria could be relaxed but still result in data with acceptable error. The study suggested an error of $\pm 25\%$ to be acceptable and determined that a daily data completeness of 52% (or 25 out of 48 30-minute periods) gave less than $\pm 25\%$ error (see Figure 2-1). Using this revised daily completeness criteria resulted in a substantial increase in the size of the dataset.

Based on Figure 2-1 from the Grant et al. (2013) study, it can be observed that a daily completeness criterion of 75% (36 out of 48 30-minute periods) would give an error of approximately 10%. If it is assumed that the relationship between data completeness and error from the Grant et al. (2013) study is representative of other NAEMS datasets, the effect of relaxed data completeness criteria can be investigated for other NAEMS sources.

The project Science Advisor provided EPA with additional analysis that examined the effect of different completeness criteria by comparing the number of valid average daily means

(ADM). EPA reviewed this data for the CA1B site and retained the 75% completeness criterion. The full analysis can be found in Appendix C.

Figure 2-1. Ratio of mean predicted emissions for portion of day with valid emissions measurements to mean predicted emissions for the complete day at the finishing (A) and sow (B) farm. Error plotted against number of valid 30-minute measurements (from Grant et al., 2013).

2.3 Comparison between the 2010 and Revised Data Sets

The influence of the previous described corrections on the revised CA1B data set can be observed by comparing the number of valid ADM and mean emission values (at 75% data completeness) between the 2010 dataset, as summarized in the final site reports, and the revised data set. The influence of the previous described corrections on the revised data set can be observed by comparing the number of valid ADM and mean emission values (at 75% data completeness) between the 2010 and revised datasets for CA1B H10 (Table 2-1) and CA1B H12 (Table 2-2). At CA1B H10 (Table 2-1), the number of valid ADM increased in by less than 1% for both NH₃ and H₂S. These changes in the number of ADM available only resulted in an overall ADM increase of 0.1% for NH₃ and a 0.3% decrease for H₂S. For CA1B H12 (Table 2-2), the number of valid ADM increased in by 1.1% for NH₃ and 0.3% for H₂S. These changes in the number of ADM available only resulted in an overall ADM increase of 0.2% for NH₃ and a 0.2% increase for H₂S.

Table 2-1. Number of valid ADM and mean NH₃ emission values (at 75% data completeness) between the 2010 and revised CA1B H10 dataset.

		NH₃	H₂S	PM ₁₀	PM _{2.5}	TSP
Dataset	Statistic	(kg d⁻¹)	(g d⁻¹)	(g d⁻¹)	(g d ⁻¹)	(g d ⁻¹)
2010	n of ADM	467	592	352	53	37
2010	Overall ADM	10.2	52.9	873	99	2,652
Deviced	n of ADM	472	596	352	53	37
Revised	Overall ADM	10.21	52.73	873.3	98.8	2,652.4

		NH₃	H₂S	PM ₁₀	PM _{2.5}	TSP
Dataset	Statistic	(kg d⁻¹)	(g d⁻¹)	(g d ⁻¹)	(g d ⁻¹)	(g d ⁻¹)
2010	n of ADM	466	590	376	43	39
2010	Overall ADM	9.0	50.3	879	124	2,270
Povisod	n of ADM	471	592	376	43	39
Revised	Overall ADM	8.98	50.41	879.2	124.4	2,269.8

Table 2-2. Number of valid ADM and mean NH₃ emission values (at 75% data completeness) between the 2010 and revised CA1B H12 datasets.

2.4 Comparison Between the Revised Data Sets and NAEMS Datasets Used in Peer-reviewed Published Papers

Where possible, EPA compared the revised dataset developed for this report to values presented in peer reviewed journals and reports to quantify any differences due to the application of the revised calculation methods and other adjustments discussed in Section 2.1. Summaries of the emissions from CA1B and the KY1B broiler houses have been published in peer-reviewed journal articles (Lin et al., 2012) or final project reports (Burns et al., 2007 and Burns et al., 2009). A simple comparison of the summary statistics presented in these papers and the summary statistics of the dataset used to develop the emission models is presented in the following sections for each of the pollutants. For the particulate matter size fractions, the revisions made for the model development dataset are minor and the dataset is still fairly consistent with versions previously published. For NH₃ and H₂S, the model development dataset contains a few larger values than included in published literature for the CA1B houses. Overall, any data revisions applied to the model development dataset are consistent with revision applied by the PIs in published reports and literature.

2.4.1 NH₃

The summary of the NH₃ emissions is presented in Table 2-3. For CA1B, the model dataset has 21 and 24 more ADM than the published datasets at H10 and H12, respectively. This resulted in a 16% and 17% difference in the mean ADM at H10 and H12, respectively. The substantial difference in the maximum values between the datasets suggests some larger values have been retained in the modeling data set that were removed for the publication dataset. For KY1B-1 and KY1B-2, differences in the means are minor (less than 2%) despite a decrease of 54 and 77 daily means at KY1B-1 H5 and KY1B-2 H3, respectively.

Site	Units	Statistic	Model Dataset	Published Studies	Study
		Number of ADM	391	370	
	Emissions	Mean	0.62	0.54	Lin et al.,
CAID HIU	(g day ⁻¹ hd ⁻¹)	Standard Deviation	1.10	0.45	2012
		Max	19.33	1.50	
		Number of ADM	393	369	
	Emissions (g day ⁻¹ hd ⁻¹)	Mean	0.55	0.47	Lin et al., 2012
CAID HIZ		Standard Deviation	1.04	0.42	
		Max	18.50	1.47	
	Emissions (g day ⁻¹ hd ⁻¹)	Number of ADM	299	353	Burns at al
KY1B-1 H5		Mean	0.54	0.55	Burns et al.,
		Standard Deviation	0.33	0.34	2007
	Emissions (g day ⁻¹ hd ⁻¹)	Number of ADM	246	323	Durns at al
KY1B-2 H3		Mean	0.60	0.59	burns et al.,
		Standard Deviation	0.38	0.38	2007

Table 2-3. Comparison of NH₃ emissions in the model dataset to published datasets.

2.4.1 H₂S

The summary of the H₂S emissions is presented in Table 2-4. For CA1B, the model dataset has 22 more ADM than the published datasets at both H10 and H12. This resulted in a 2% difference in the mean at both H10 and H12. There are substantial differences in the maximum values between the datasets, which suggests some larger values have been retained in the modeling data set that were removed for the publication dataset. For the Kentucky sites, Burns (2009) reports the overall number of ADM, or days that passed quality checks, but presents separate emission rates for normal operation and when birds are present. The averages presented in Table 2-4 represent time when birds were present in the house. KY1B-1 has an 11% lower overall mean ADM, and KY1B-2 matches fairly well. Without the exact count of days used in the average, it is tricky to determine the difference. One possibility for the differences is the flock 6 at KY1B-1 has an unexpected high mortality and was omitted from some of the analysis presented in the report. While not explicitly stated, this flock may have been omitted from the summary statistics pulled for this exercise.

2.4.2 PM₁₀

The summary of the PM_{10} emissions is presented in Table 2-5. For CA1B, the model dataset has 6 and 12 more ADM than the published dataset at H10 and H12, respectively. This resulted in a 2% decrease in the mean ADM at both H10 and H12. For the KY1B sites, the modeling dataset had 29 and 7 more ADM than the published dataset at KY1B-1 H5 and KY1B-

2 H3, respectively. These differences in ADM result in a decrease of 16% and 26% in the mean ADM at KY1B-1 H5 and KY1B-2 H3, respectively.

Site	Units	Statistic	EEM Dataset	Published Studies	Study	
		Number of ADM	511	489		
	Emissions	Mean	3.01	2.95	Lin et al.,	
CAIBHIU	(mg day⁻¹ hd⁻¹)	Standard Deviation	2.7	2.5	2012	
		Max	22.7	8.91		
		Number of ADM	510	488		
CA10 U12	Emissions	Mean	2.89	2.82	Lin et al.,	
CAIBHIZ	(mg day ⁻¹ hd ⁻¹)	Standard Deviation	2.78	2.53	2012	
		Max	22.1	8.91		
		Number of ADM	-	-		
	Emissions	Mean	56.48	63.3	Burns et al.,	
KITP-T U2	(g day⁻¹)	Standard Deviation	52.90	44.7	2009	
		Max 🔶	259.45	259.5		
		Number of ADM				
	Emissions	Mean	69.55	70	Burns et al.,	
KT1D-2 H3	(g day⁻¹)	Standard Deviation	48.42	43.6	2009	
		Max	186.33	186.3		

Table 2-4. Comparison of H ₂ S emissions in the EEM dataset to published
datasets.

Table 2-5. Comparison of PM₁₀ emissions in the EEM dataset to published datasets.

			EEM	Published	
Site	Units	Statistic	Dataset	Studies	Study
		Number of ADM	334	328	
	Emissions	Mean	44.6	45.4	Lin et al.,
CAID HIU	(g day ⁻¹ hd ⁻¹)	Standard Deviation	40.3	40.1	2012
		Max	171	170	
		Number of ADM	366	354	
	Emissions	Mean	43.7	44.6	Lin et al.,
CAID HIZ	(g day ⁻¹ hd ⁻¹)	Standard Deviation	37.7	37.9	2012
		Max	169	169	
		Number of ADM	301	272	
	Emissions	Mean	0.92	1.1	Burns et al.,
KITR-T U2	(kg day⁻¹)	Standard Deviation	0.9	0.9	2009
		Max	4.5	4.5	
		Number of ADM	305	298	
	Emissions	Mean	1.0	1.4	Burns et al.,
NITO-5 U2	(kg day⁻¹)	Standard Deviation	1.00	0.92	2009
		Max	4.1	4.3	

2.4.3 PM_{2.5}

The summary of the PM_{2.5} emissions is presented in Table 2-6. For CA1B, the modeling dataset has the same number of available ADM as the published literature. However, the datasets do have slightly different means, with a 6% decrease at CA1B H10 and a less than 1% decrease at CA1B H12. For KY1B-1 and KY1B-2, differences in the means are minor despite an increase of 54 and 77 daily means at KY1B-1 H5 and KY1B-2 H3, respectively.

			EEM	Published	
Site	Units	Statistic	Dataset	Studies	Study
		Number of ADM	53	53	
	Emissions	Mean	4.48	4.77	Lin et al.,
CAID HIU	(g day ⁻¹ hd ⁻¹)	Standard Deviation	3.06	3.04	2012
		Max	11.9	11.8	
		Number of ADM	43	43	
	Emissions	Mean	6.00	6.01	Lin et al.,
	(g day⁻¹ hd⁻¹)	Standard Deviation	2.31	2.33	2012
		Max	11.4	11.5	
		Number of ADM	286	256	
	Emissions	Mean	0.1	0.1	Burns et al.,
KTID-I IID	(kg day⁻¹)	Standard Deviation	0.1	0.1	2009
		Max	0.4	0.4	
		Number of ADM	301	296	
	Emissions	Mean	0.10	0.12	Burns et al.,
KT1D-2 H3	(kg day⁻¹)	Standard Deviation	0.10	0.01	2009
		Max	0.38	0.39	

Table 2-6. Comparison of PM_{2.5} emissions in the EEM dataset to published datasets.

2.4.1 TSP

The summary of the TSP emissions is presented in Table 2-7. For CA1B, the modeling dataset has the same number of ADM available as the published literature. There is a 2% decrease in the mean at H10, and no difference in the overall mean at H12. The difference in the mean ADM at H10 might be the result of a rounding and truncation difference between the two sources. For the KY1B sites, there are 34 and 6 more ADM than the published datasets for KY1B-1 H5 and KY1B-2 H3, respectively. This results in a mean ADM that is 19 and 16% lower at KY1B-1 H5 and KY1B-2 H3, respectively.

			EEM	Published	
Site	Units	Statistic	Dataset	Studies	Study
		Number of ADM	37	37	
	Emissions	Mean	128	130	Lin et al.,
CAID HIU	(g day⁻¹ hd⁻¹)	Standard Deviation	41.3	40.6	2012
		Max	228	229	
		Number of ADM	39	39	
	Emissions	Mean	109	109	Lin et al.,
CAID HIZ	(g day⁻¹ hd⁻¹)	Standard Deviation	76.4	76.3	2012
		Max	298	297	
		Number of ADM	315	281	
	Emissions	Mean	2.17	2.69	Burns et al.,
KTID-T HD	(kg day⁻¹)	Standard Deviation	2.02	1.96	2009
		Max	10.3	10.3	
		Number of ADM	301	295	
	Emissions	Mean	2.41	2.88	Burns et al.,
KT1D-2 H3	(kg day⁻¹)	Standard Deviation	2.20	1.83	2009
		Max	7.5	7.3	

Table 2-7. Comparison of TSP emissions in the EEM dataset to published datasets.

3.0 RELATIONSHIPS ESTABLISHED IN LITERATURE

Developing EEMs for AFOs is complex as many variables potentially influence emissions. Therefore, to be efficient in this study, a focused approach was used. The focused approach involved developing models based on variables that could potentially have a major influence on air emissions. This assessment was made based on theoretical considerations and observations reported by previous studies that have investigated the influence of variables on emissions from broiler AFOs.

3.1 NH₃ and H₂S Emissions from Houses

The microbial degradation of urea, undigested proteins, and amino acids results in the generation of NH₃ and H₂S in poultry manure (Elliott and Collins, 1982; Saksrithai and King, 2018), which then can be released or emitted into the air. Accordingly, the amount of manure produced at a broiler house will be an important factor that influences emissions. Proxies for the amount of fresh manure produced at a broiler house are LAW and inventory. Similar to EEMs developed for other animal types, LAW and inventory were selected as predictor variables. This allows the influence of these variables to be quantified and will consider the periods where the relationship between emissions and fresh manure production are not as strongly related. For example, during a flock replacement event there will be zero inventory and live animal weight, but emissions are non-zero during litter removal and also while there is litter or manure in the house. Furthermore, the LAW predictor variable can potentially represent the effects of other flock characteristics such as bird age, feed consumption and retention efficiency due to the relationship between these variables. LAW is a function of bird age and therefore increases with increasing bird age. As LAW increases, feed consumption will increase, however retention efficiency may change with increasing bird age. A variable named 'flock age' was created to represent bird age (i.e., number of days since birds were introduced to the house) with zero values used for flock age when the house was empty. The 'flock age' variable in addition to LAW and inventory was selected for further investigation. Various previous studies have observed that NH₃ and H₂S emissions increase with bird age and growth (Wheeler et al. 2006a; Calvet et al. 2011; Lin et al. 2012; Li et al. 2008)

In broiler houses, broilers reside on top of bedding that is on the floor of the house. Bedding type can influence gas emissions (Wood and Van Heyst, 2016; Van Harn et al. 2012), however, in NAEMS, all three sites used a rice hull bedding, therefore this factor could not be investigated further. Manure excreted by birds, deposits onto the bedding, which is thereafter referred to as litter. Litter characteristics such as nutrient content, solid and moisture content and pH can influence NH₃ emissions (Liu et al. 2007; Carey et al. 2004) and H₂S emissions. Common measurements of nutrient content that relate to NH₃ and H₂S emissions are total kjeldahl nitrogen (TKN; NH₃-N + organic N), total ammoniacal nitrogen (TAN; NH₃-N), and sulfide. Higher litter nutrient content can result in higher NH₃ emissions (Liu et al. 2009) and presumably H₂S emissions. Within a flock cycle, litter nitrogen and sulfur content are likely to increase with litter age as more manure is contributed to the litter (Liu et al. 2007), thus increasing gas emissions . Litter pH is an important factor in influencing litter NH₃ and H₂S concentrations and thus the potential for emissions. The pH of the litter effects the chemical equilibrium between NH₃ and NH₄⁺ and HS⁻ and H₂S, respectively (Liang et al. 2014; Saksrithal and King, 2018).

Litter moisture can influence NH₃ generation by promoting microbial degradation of uric acid, amino acids, and undigested proteins (Liu et al. 2007; Elliott and Collins, 1982). Moisture content in litter can be influenced by the bird's consumption of water, which may be higher in warmer conditions, and also by misting systems and the efficiency of broiler drinking systems (Liu et al. 2007; Carey et al. 2004). Within a flock cycle, litter moisture content is expected to increase as more manure is excreted to the litter surface. At CA1B, litter floor samples were taken for six of the fourteen flocks that were present during the two-year monitoring period. For four of these six flocks, one sample was taken. For the other two flocks, weekly sampling was conducted throughout the broiler cycle. All litter samples were analyzed for TAN, pH, and solids content (inverse of moisture content), but sulfide was only measured in three samples at each house and TKN was not measured at all. At KY1B-1 and KY1B-2, no litter floor samples were taken. The litter solids content, pH, and TAN data at CA1B were selected for further investigation.

Management activities can influence gas emissions from broiler houses (Carey et al. 2004). During flock emptying and replacement, there will be different numbers of broilers in the house, which will influence the amount of fresh manure in the house. In addition, in-between flock cycles the litter is either partially or completely removed. While the litter is being removed, there is the potential for increases in NH₃, and particularly H₂S, emissions due to manure disturbance (Ni et al. 2009). The influence of flock emptying and replacement, and litter removal was investigated by assigning a status of full (F), empty (E), or transition to empty or full (T). The date(s) of litter removal were not provided; however, it is assumed that the litter removal occurred on some or all of the days when the house was empty. Therefore, the E status also represents the effects of litter removal.

As stated, at the end of each flock cycle the litter is either partially or completely removed. Partial removal of litter is known as decaking, and the number of times litter is decaked before complete litter removal occurs can vary. When litter is decaked as opposed to being completely removed, it is probable that the nitrogen and sulfur content of the remaining 'built-up' litter will be higher than fresh bedding and thus could have higher gas emissions.

Observational studies support that emissions from built-up litter are higher, however the reported increase varies greatly from study to study (Brewer and Costello, 1999; Wheeler et al. 2006a; Lin et al. 2012; Burns et al. 2007). To investigate the influence of litter age, a numerical variable was created that represented the age (in days) of the litter. In addition, categorical variables were developed that represented the status of litter usage.

Airflow caused by house ventilation can influence gas emissions. The transfer rate of NH₃ from litter to the house air is dependent on the mass transfer coefficient, which is a function of air velocity (Elliot and Collins, 1982) and thus the transfer rate will increase as air velocity or air flow increases. However, higher house ventilation can dry the litter, resulting in less NH₃ generation and thus reduced emissions (Lin et al. 2012; Calvet et al. 2011). It is expected that airflow will have a similar effect on H₂S emissions. Accordingly, airflow was selected for further investigation.

Temperature is an important factor in many of the processes that influence gas emissions from litter. Temperature can influence microbial activity and thus the generation of NH₃ from uric acid as temperature increases to around 35°C (Elliot and Collins, 1982). An increasing litter temperature will increase the dissociation constant and Henry's law constant for NH₃ (Liang et al. 2014; Liu et al. 2009), increasing the potential amount that can be released into the air. For H₂S, increasing litter temperature will increase the dissociation constant and Henry's law constant similarly. However, an increasing dissociation constant results in less availability of H₂S due to its effect on the chemical equilibrium (Rumsey and Aneja, 2014), therefore the influence of litter temperature on H₂S may be weaker than that for NH₃. Temperature can also potentially influence the transfer of NH₃ and H₂S across the litter-air interface, however the effect of temperature on NH₃ mass transfer is not clear as two studies that have examined this closely (Elliot and Collins, 1982; Liu et al. 2008) report different (i.e., positive versus negative) effects. The effect of temperature on gas emissions from broiler litter is further complicated by the effect of temperature on mechanical ventilation rate, as higher temperatures will result in higher ventilation rates, which as previously described, can reduce the moisture content of the litter, resulting in reduced gas emissions. Continuous measurements of barn exhaust temperature and ambient temperature were made during NAEMS and both were selected for further investigation.

Relative humidity (RH) may affect gas emissions from broiler litter due to its effect on litter moisture/solid content. As was described for layer manure (Ni et al. 2017), higher RH may similarly reduce the evaporation of water from the litter surface, resulting in higher moisture content. This influence of RH on NH₃ emissions was identified by Weaver and Meijerhof (1991), in which they found relative humidity to generally increase NH₃ levels in broiler litter.

Continuous measurements of barn exhaust RH and ambient RH were made during NAEMS and both were selected for further investigation.

3.2 PM Emissions from Houses

The release of PM into broiler house air is caused by the physical suspension of different source materials including feathers, feed, manure, and bedding (Cambra-Lopez et al. 2011; Redwine et al. 2002; Winkel, 2016). The amount of source materials increases with increasing LAW and bird age (Roumeliotis et al. 2010a). Similar to the gases, the variables inventory, LAW, and flock age were selected as predictor variables for further investigation.

Physical suspension of PM from house surfaces can be caused by animal activity, human activity, and air flow (Aarnink and Ellen, 2007). Activity measurements were not provided to the EPA; however, broiler activity has been reported to increase with bird age and weight (Redwine et al. 2002), which means using these variables as predictor variables may partly consider their influence. Air flow or ventilation rate can influence PM emissions by facilitating PM suspension from litter (Lin et al. 2012). As mentioned, mechanical ventilation rates are related to ambient and house temperature, thus meaning that temperature could be a potential surrogate variable that represents airflow. Factors that can influence the physical suspension of PM in house air include house air moisture content. A study by Takai et al. (1998) examined PM emissions from a variety of livestock types including broiler and reported that RH greater than 70% contributed to particles aggregating together and thus reducing emissions. Accordingly, for broiler houses the variables airflow, ambient temperature, barn exhaust temperature, ambient RH, and barn RH were selected for further investigation. Litter moisture content, which as previously described can be influenced by numerous factors, may also affect the physical suspension of PM. Accordingly, litter solid content (inverse of moisture content) was selected for further investigation.

Management activities can also influence PM emissions from broiler houses (Patterson and Adrizal, 2005). Flock replacement and litter removal events will increase the disturbance of PM source materials, resulting in increased PM emissions. Similar to gases, the influence of flock emptying and replacement, and litter removal was investigated by assigning a management status of full (F), empty (E), transition to empty or full (T) to the appropriate days. As previously mentioned, the E status also represents the effects of litter removal.

Another management activity that may influence PM emissions is the bedding type (Wood and Van Heyst, 2016; Van Harn et al. 2012). In NAEMS, all three sites used a rice hull bedding, therefore this factor could not be investigated further. However, the type of litter removal (i.e., de-caking or complete removal) theoretically influences litter characteristics and thus the potential for the litter to be suspended. Similar to gases, the influence of litter age was investigated using a numerical variable and also through categorical variables that represented the status of litter usage.

ی ر

4.0 SITE COMPARISON, TRENDS, AND ANALYSIS

Based on the analysis described in Section 3.0, EPA identified the key environmental and manure parameters that potentially affect emissions from broiler houses. Parameters of particular interest include inventory, live animal weight, flock age, barn conditions (exhaust temperature, exhaust relative humidity, and airflow), ambient temperature, ambient relative humidity, litter age and status, litter moisture, litter pH, litter total ammoniacal nitrogen (TAN), and litter total Kjeldahl Nitrogen (TKN).

Before developing the emission models, EPA evaluated NAEMS data for each pollutant to identify patterns and trends in the emissions data using a combination of summary statistics (mean, standard deviation, number of data values, median, minimum, maximum, coefficient of variation, and number of data values less than zero) and time series plots. Section 4.1 summarizes the emissions trends from the sites, while Appendix D contains the tables of summary statistics. Appendix E presents the time series plots of the site-specific emissions, environmental and production parameters, and manure data collected under NAEMS.

The next step of the analysis was to look at the key environmental and manure parameters compared to emissions trends through regression analysis. A summary of this analysis for environmental parameters is discussed in Section 4.2, and the manure parameters are presented in Section 4.3. Appendix F contains least squares regression analysis between the identified parameters and emissions.

4.1 Emissions Data

Appendix D, Table D-1 presents the summary statistics for daily average emissions of NH₃ for the broiler sites. From the table, the emissions are fairly consistent across sites with average daily emissions of 8.98 at CA1b H12 to 12.37 kg d⁻¹ at KY1B-2 H3. Appendix E, Figure E-1 shows that the emissions follow a cycle that is likely linked to bird age and size. The figure also reiterates that the range of average daily emissions is consistent between sites. There were only 2 negative values in the NH₃ dataset, both of which occurred at CA1B H12.

Appendix D, Table D-2 presents the summary statistics for daily average emissions of H_2S for the broiler sites. From the table, the emissions are fairly consistent across sites with average daily emissions of 47.70 at KY1B-1 H5 to 53.50 g d⁻¹ at KY1B-2 H3 Appendix E, Figure E-2 shows that the emissions again follow a cycle that is likely linked to the growing cycle. The figure supports that the range of average daily emissions is consistent between sites but does show a tendency for higher values at KY1B-1 H5. There were 18 negative values in the H₂S dataset for both CA1B houses, and only one negative value at KY1B-1 H5.

Appendix D, Table D-3 presents the summary statistics for daily average emissions of PM_{10} for the broiler sites. From the table, the emissions are fairly consistent across sites with average daily emissions of 873.30 g d⁻¹ at CA1B H10 to 1040.05 g d⁻¹ KY1B-2 H3. Appendix E, Figure E-3 shows that the emissions again follow a cycle that is likely linked to the growing cycle. The figure visually demonstrates the range of average daily emissions is consistent between sites. There were 4 negative values in the PM_{10} dataset, which occurred at CA1B houses.

Appendix D, Table D-4 presents the summary statistics for daily average emissions of $PM_{2.5}$ for the broiler sites. From the table, the emissions are fairly consistent across sites with average daily emissions of 89.60 g d⁻¹ at KY1B-1 H5 to 124.39 g d⁻¹ at CA1B H12. Appendix E, Figure E-4 shows that the emissions again follow a cycle that is likely linked to the growing cycle at the Kentucky sites. The CA1B houses practiced a limited monitoring schedule, which limits the ability to detect a similar trend. However, the data available shows increasing emissions for successive days in the growing cycle. There were no negative values in the PM_{2.5} dataset.

Appendix D, Table D-5 presents the summary statistics for daily average emissions of TSP for the broiler sites. From the table, the emissions are fairly consistent across sites with average daily emissions of 2.16 kg d⁻¹ at KY1B-1 H5 to 2.65 kg d⁻¹ at CA1B H10. As with $PM_{2.5}$, the time series plot in Appendix E, Figure E-5 shows the limited nature of the TSP observations from the CA1B houses compared the Kentucky sites. There is still the indication of increased emissions as the bird progress through the growing cycle across all houses. There were no negative values in the TSP.

4.2 Environmental Parameters

The statistical summary of the environmental parameters associated with broiler houses are presented in Appendix D, Table D-6. The inventory was similar across the sites, with CA1B having just under 17,000 birds in each house to KY1B-2 H3 with just over 18,000 birds. Appendix E, Figure E-6 shows that the number of birds present over the course of NAEMS was fairly consistent, except during periods of bird removal and cleaning after each cycle. Appendix F, Figures F-1 through F-5 show the scatter plots of inventory versus each pollutant. A summary of the findings is provided in Table 4-1. In general, there is a weak positive relationship with inventory across all pollutants.

Bird weight and live animal weight (i.e., inventory * bird weight) are fairly consistent across the houses with the average bird weight ranging from 1.04 to 1.14 kg. Appendix E, Figure E-7 shows the weight steadily increasing through the growing cycle, which is also reflected in

the plot of live animal weight (Appendix E, Figure E-8). The regression analysis for average weight (Appendix F, Figures F-6 through F-10) and live animal weight (Appendix F, Figures F-11 through F-15) showed moderately strong correlations with all the pollutants.

Pollutant	Parameter	R ²	Strength	Figure
NH₃	Inventory (head)	0.0399	Slight or weak	Appendix F, F-1
H₂S	Inventory (head)	0.1271	Slight or weak	Appendix F, F-2
PM10	Inventory (head)	0.0775	Slight or weak	Appendix F, F-3
PM _{2.5}	Inventory (head)	0.0691	Slight or weak	Appendix F, F-4
TSP	Inventory (head)	0.1179	Slight or weak	Appendix F, F-5
NH₃	Average bird weight (kg)	0.7282	moderately strong	Appendix F, F-6
H₂S	Average bird weight (kg)	0.6921	moderately strong	Appendix F, F-7
PM10	Average bird weight (kg)	0.7058	moderately strong	Appendix F, F-8
PM2.5	Average bird weight (kg)	0.7715	moderately strong	Appendix F, F-9
TSP	Average bird weight (kg)	0.6364	moderately strong	Appendix F, F-10
NH₃	Live animal weight (kg)	0.5844	moderate	Appendix F, F-11
H₂S	Live animal weight (kg)	0.7242	moderately strong	Appendix F, F-12
PM10	Live animal weight (kg)	0.7467	moderately strong	Appendix F, F-13
PM2.5	Live animal weight (kg)	0.8122	strong	Appendix F, F-14
TSP	Live animal weight (kg)	0.7241	moderately strong	Appendix F, F-15
NH₃	Flock Age (days, 0 between flocks)	0.4989	moderate	Appendix F, F-16
H₂S	Flock Age (days, 0 between flocks)	0.6781	moderately strong	Appendix F, F-17
PM10	Flock Age (days, 0 between flocks)	0.7343	moderately strong	Appendix F, F-18
PM2.5	Flock Age (days, 0 between flocks)	0.7246	moderately strong	Appendix F, F-19
TSP	Flock Age (days, 0 between flocks)	0.7070	moderately strong	Appendix F, F-20
NH₃	Flock age (continuous between flocks)	0.1209	Slight or weak	Appendix F, F-21
H₂S	Flock age (continuous between flocks)	0.0757	Slight or weak	Appendix F, F-22
PM10	Flock age (continuous between flocks)	0.1924	Slight or weak	Appendix F, F-23
PM _{2.5}	Flock age (continuous between flocks)	0.1411	Slight or weak	Appendix F, F-24
TSP	Flock age (continuous between flocks)	0.0778	Slight or weak	Appendix F, F-25
NH₃	Bird age (days)	0.6886	moderately strong	Appendix F, F-26
H₂S	Bird age (days)	0.6656	moderately strong	Appendix F, F-27
PM10	Bird age (days)	0.7150	moderately strong	Appendix F, F-28
PM2.5	Bird age (days)	0.7337	moderately strong	Appendix F, F-29
TSP	Bird age (days)	0.6632	moderately strong	Appendix F, F-30

Table 4-1. Bird specific parameters regression analysis

To capture the cyclical nature of the emissions at broiler farms, EPA explored three different variations on age parameters: 1) flock age, where age was set to zero between flocks (Appendix E, Figure E-9); 2) flock age, where age increased between flocks (Appendix E, Figure E-10); and 3) bird age, which only included periods when birds were in the house (Appendix E, Figure E-11). Both flock age, where age was zero between flocks, (Appendix F, Figures F-16 through F-20) and bird age (Appendix F, Figures F-26 through F-30) showed moderately strong correlations with each pollutant, which were consistent with the weight correlations. Since broilers are grown, weight and age will be corelated and should show similar correlations with

emissions. The regression analysis for flock age, where age increased between flocks (Appendix F, Figures F-21 through F-25) only showed weak correlations with emissions.

Appendix D, Table D-7 provides the summary statistic for the house environmental parameters. The mean daily house temperature actually varies across the growth cycle, with temperatures ranging from as low as 4.24 to 24.99 °C. This wide range of temperatures was seen at each of the houses. The time series (Appendix E, Table E-12) shows the trend of increasing temperatures as the birds grow, followed by decreasing temperature during periods between flocks. The regression analysis in Appendix F Figures F-31 through F-35, summarized in Table 4-2, shows only a weak relationship between house temperature and each pollutant.

Pollutant	Parameter	R ²	Strength	Figure
NH ₃	Exhaust temperature	0.0081	Slight or weak	Appendix F, F-31
H ₂ S	Exhaust temperature	0.0000	Slight or weak	Appendix F, F-32
PM ₁₀	Exhaust temperature	0.0007	Slight or weak	Appendix F, F-33
PM2.5	Exhaust temperature	0.0084	Slight or weak	Appendix F, F-34
TSP	Exhaust temperature	0.0111	Slight or weak	Appendix F, F-35
NH ₃	House relative humidity	0.0733	Slight or weak	Appendix F, F-36
H ₂ S	House relative humidity	0.0124	Slight or weak	Appendix F, F-37
PM10	House relative humidity	0.0012	Slight or weak	Appendix F, F-38
PM _{2.5}	House relative humidity	0.0628	Slight or weak	Appendix F, F-39
TSP	House relative humidity	0.0023	Slight or weak	Appendix F, F-40
NH ₃	Airflow	0.4285	moderate	Appendix F, F-41
H ₂ S	Airflow	0.3537	modest	Appendix F, F-42
PM10	Airflow	0.4568	moderate	Appendix F, F-43
PM _{2.5}	Airflow	0.5757	moderate	Appendix F, F-44
TSP	Airflow	0.2667	modest	Appendix F, F-45

Table 4-2. House specific parameters regression analysis

The summary statistics (Appendix D, Table D-7) show all the houses maintained a similar range of relative humidities across the study. The trends in house relative humidity shown in Appendix E, Figure E-13 appear to have some seasonality, although it varies at the two locations. The Kentucky sites have higher barn relative humidities in the summer, and the California houses have higher relative humidities in the winter. Regression analysis (Appendix F, Figures F-36 through F-40) shows a weak relationship with house relative humidity and pollutant emissions.

The summary statistics (Appendix D, Table D-7) show airflow for the houses spanned a wide range, which was fairly consistent across the houses. Appendix E, Figure E-14 shows a similar pattern to house temperatures, with increased airflow rates roughly corresponding to increasing bird age and size, with decreasing values after the birds are removed. The regression

analysis (Appendix F, Figures F-41 through F-15) indicates a modest linear relationship between airflow and any of the pollutants.

The statistical summary of the ambient parameters for the broiler sites is presented in Appendix D, Table D-8. The table shows that the average daily temperature is lowest at KY1B-2 followed by KY1B-1, and CA1B. The sites did have variation in the range of temperatures covered, as CA1B was not exposed to freezing temperatures, but both KY1B-1 and KY1B-2 were. The temporal trend in ambient temperature is as expected, with Appendix E, Figure E-15 showing peaks in the July timeframe and lows after the new year. The regression analysis, shown in Appendix F, Figures F-46 through F-50 and summarized in Table 4-3, note ambient temperature had a weak relationship to pollutant emissions.

The summary statistics (Appendix D, Table D-8) show that while the sites had different mean ambient relative humidities, they were subject to approximately the same range of values across the study. Appendix E, Figure E-16 shows some seasonality to the relative humidity measurements, but these patterns vary between the sites. CA1B has peaks at the start of the year, with lows midyear. KY1B-1 and KY1B-2 have peak relative humidity in the summer, and generally more variability than CA1B. The regression analysis (Appendix F Figures F-51 through F-55) showed ambient relative humidity had a weak linear relationship with each pollutant.

Pollutant	Parameter	R ²	Strength	Figure
NH₃	Ambient temperature	0.0131	Slight or weak	Appendix F, F-46
H ₂ S	Ambient temperature	0.0105	Slight or weak	Appendix F, F-47
PM10	Ambient temperature	0.0411	Slight or weak	Appendix F, F-48
PM2.5	Ambient temperature	0.0526	Slight or weak	Appendix F, F-49
TSP	Ambient temperature	0.0059	Slight or weak	Appendix F, F-50
NH₃	Ambient relative humidity	0.0120	Slight or weak	Appendix F, F-51
H₂S	Ambient relative humidity	0.0000	Slight or weak	Appendix F, F-52
PM10	Ambient relative humidity	0.0092	Slight or weak	Appendix F, F-53
PM2.5	Ambient relative humidity	3E-05	Slight or weak	Appendix F, F-54
TSP	Ambient relative humidity	0.0139	Slight or weak	Appendix F, F-55

Table 4-3. Ambient parameters regression analysis

4.3 Litter Parameters

For broilers, litter age can affect emission rates in the house. While all the houses decaked litter (i.e., removed the top layer) between flock, full litter clean out happened less frequently and at different rates across the sites. CA1B had a full litter clean out after every third flock, while KY1B-1 and KY1B-2 only performed a full clean out once a year. During the study,

Draft document – Do not cite or quote

KY1B-1 raised 4 flocks before a full litter clean out and KY1B-2 raised 7 flocks on the same litter. To account for this, EPA tested five parameters to account for the age of the litter:

- Litter age: continuous variable that indicates the number of days since litter removal
- Litter Status (0-1, continuous between flocks): discrete variable to indicate whether the flock was the first flock raised on fresh litter (0) or if it was not fresh litter (1). The value is held during transition periods between flocks.
- Litter Status (0-3, continuous between flocks): discrete variable to indicate the number of flocks since litter removal, where 0 indicates the first flock raised on fresh litter, up to 3 to indicate four or more flocks had been raised on the litter. The value is held during transition periods between flocks.
- Litter Status (0-6, continuous between flocks): discrete variable to indicate the number of flocks since litter removal, where 0 indicates the first flock raised on fresh litter and up to 6 to indicate the up to seven (7) flocks raised on the litter before a full clean out. The value is held during transition periods between flocks.
- Litter Status (0-6; empty between flocks): discrete variable to indicate the number of flocks since litter removal, where 0 indicates the first flock raised on fresh litter and up to 6 to indicate the up to seven (7) flocks raised on the litter before a full clean out. The value set to "null" during transition periods between flocks.

The four 'Litter Status' categorical variables were considered experimental by EPA since an appropriate methodology for their evaluation and application has not been finalized. The data has been included in the report to note all the options EPA explored.

The summary statistics for the litter age parameters is provided in Appendix D, Table D-9, which reiterates litter was removed more frequently at CA1B than KY1B-1 and KY1B-2. The time series in Appendix E, Figure E-17 through E-22 shows the more frequent cleaning at CA1B, and less frequent clean outs at KY1B-1 and KY1B-2. The figures also show the limited data available for older litter, with only one instance each of 5, 6 and 7 flocks raised on the litter. Appendix F Figures F-56 through F-80, with the results summarized in Table 4-4, show the scatter plots of the various litter age parameters versus each pollutant. The analysis shows only a weak linear relationship with any of the litter ages and the emission of each pollutant.

Pollutant	Parameter	R ²	Strength	Figure
NH ₃	Litter age	0.0466	Slight or weak	Appendix F, F-56
H ₂ S	Litter age	0.0266	Slight or weak	Appendix F, F-57
PM10	Litter age	0.0262	Slight or weak	Appendix F, F-58
PM _{2.5}	Litter age	0.0227	Slight or weak	Appendix F, F-59
TSP	Litter age	0.0131	Slight or weak	Appendix F, F-60
NH ₃	Litter Status (0-1, continuous)	0.0031	Slight or weak	Appendix F, F-61
H ₂ S	Litter Status (0-1, continuous)	0.0005	Slight or weak	Appendix F, F-62
PM10	Litter Status (0-1, continuous)	0.0002	Slight or weak	Appendix F, F-63
PM2.5	Litter Status (0-1, continuous)	0.0132	Slight or weak	Appendix F, F-64
TSP	Litter Status (0-1, continuous)	0.001	Slight or weak	Appendix F, F-65
NH ₃	Litter Status (0-3, continuous)	0.0167	Slight or weak	Appendix F, F-66
H₂S	Litter Status (0-3, continuous)	0.0100	Slight or weak	Appendix F, F-67
PM ₁₀	Litter Status (0-3, continuous)	0.0105	Slight or weak	Appendix F, F-68
PM2.5	Litter Status (0-3, continuous)	0.0253	Slight or weak	Appendix F, F-69
TSP	Litter Status (0-3, continuous)	0.0047	Slight or weak	Appendix F, F-70
NH ₃	Litter status (0-6, continuous between flocks)	0.0203	Slight or weak	Appendix F, F-71
H₂S	Litter status (0-6, continuous between flocks)	0.0145	Slight or weak	Appendix F, F-72
PM10	Litter status (0-6, continuous between flocks)	0.0089	Slight or weak	Appendix F, F-73
PM2.5	Litter status (0-6, continuous between flocks)	0.0123	Slight or weak	Appendix F, F-74
TSP	Litter status (0-6, continuous between flocks)	0.0055	Slight or weak	Appendix F, F-75
NH ₃	Litter Status (0-6; empty between flocks)	0.0379	Slight or weak	Appendix F, F-76
H ₂ S	Litter Status (0-6; empty between flocks)	0.0285	Slight or weak	Appendix F, F-77
PM10	Litter Status (0-6; empty between flocks)	0.0181	Slight or weak	Appendix F, F-78
PM _{2.5}	Litter Status (0-6; empty between flocks)	0.0196	Slight or weak	Appendix F, F-79
TSP	Litter Status (0-6; empty between flocks)	0.0081	Slight or weak	Appendix F, F-80

Table 4-4.	Litter age	parameters	regression	analysis
		P		

Several samples of the floor litter were taken and analyzed for litter moisture/solids content, litter TAN, litter TKN, and litter pH. These samples were taken for several different times during the litter cycle, including litter from the house floor, fresh litter after it was added to the house, decaked litter removed from the house, full load-out litter.

The summary statistics of the litter samples is provided in Appendix D, Table D-10. For measurements taken of litter from the house floor, the table shows the only measurement available were from CA1B. The solids, TAN content, and pH were similar between the two houses at Ca1B. When plotted (Appendix E, Figures E-22, E-23, E-33), the sparse nature of the measurements makes it difficult to discern any seasonal trends. However, the plots do show the samples were generally comparable between the two houses. The regression analysis (Appendix F, Figures F-81 through F-90, F-113, and F-114), summarized in Table 4-5, do show moderate to moderately strong linear relationships between both solids content and TAN content with the emission of NH₃, H₂S, and PM_{2.5}. There was only a weak relationship between the PM₁₀

sufficient measurement data to conduct a linear regression analysis. For pH, there was a modest relationship with NH₃ and H₂S emissions.

Pollutant	Parameter	R ² Strength		Figure
NH₃	Solid Content Litter Floor	0.6680	moderately strong	Appendix F, F-81
H ₂ S	Solid Content Litter Floor	0.6031	moderately strong	Appendix F, F-82
PM10	Solid Content Litter Floor	0.1038	Slight or weak	Appendix F, F-83
PM _{2.5}	Solid Content Litter Floor	0.6169	moderately strong	Appendix F, F-84
TSP	Solid Content Litter Floor	а		Appendix F, F-85
NH₃	TAN Litter floor	0.7529	moderately strong	Appendix F, F-86
H ₂ S	TAN Litter floor	0.5696	moderate	Appendix F, F-87
PM10	TAN Litter floor	0.1387	Slight or weak	Appendix F, F-88
PM2.5	TAN Litter floor	0.7906	moderately strong	Appendix F, F-89
TSP	TAN Litter floor	а		Appendix F, F-90
NH ₃	pH Litter floor	0.2799	modest	Appendix F, F-113
H ₂ S	pH Litter floor	0.3918	modest	Appendix F, F-114

 Table 4-5. House litter parameters regression analysis

^a EPA did not have sufficient measurement data from NAEMS to conduct a linear regression analysis (i.e., two or fewer observations were taken).

For new litter samples, fewer samples were taken over the course of the study. The summary statistics provided in Appendix D, Table D-10 show there were no new litter measurements at KY1B-2, and only one sample taken at KY1B-1. The summary table also shows the samples were analyzed differently between the sites, as CA1B provided values on a wet weight basis and the KY1B sites provided both wet and dry weight basis. The time series for TKN (Appendix E, Figures E-24 and E-25) and solids content (Appendix E, Figure E-26) show the sparse nature of the measurements, which makes it difficult to discern any trends. The regression analysis for TKN (Appendix F, Figures F-91 through F-94) and solids content (Appendix F, Figures F-95 and F-96), summarized in Table 4-6, show some relationship to NH₃ and H₂S emissions. However, with only four samples in the regression, there is not a lot of confidence in the relationship. For PM₁₀, PM_{2.5} and TSP, none of the new litter samples coincided with emissions observations.

For decaked litter samples, there were only a few samples taken over the course of the study. The summary statistics provided in Appendix D, Table D-10 show there were no solids analysis on decaked litter samples at the KY1B sites. Again, the summary table shows the samples were analyzed differently between the sites, as CA1B provided values only on a wet weight basis and the KY1B sites provided both wet and dry weight basis. The time series for TKN (Appendix E, Figures E-27 and E-28) and solids content (Appendix E, Figure E-29) show the sparse nature of the measurements, which makes it difficult to discern any trends. The regression analysis for TKN (Appendix F, Figures F-97 through F-104) and solids content (Appendix F, Figures F-105 and F-106), summarized in Table 4-7, show modest linear

relationships with NH_3 and H_2S emission. For PM_{10} , $PM_{2.5}$ and TSP, none of the decaked litter samples coincided with emissions observations.

Pollutant	Parameter	R ² Strength		Figure	
NH3	TKN Content, new litter (wet basis)	0.0486	Slight or weak	Appendix F, F-91	
H ₂ S	TKN Content, new litter (wet basis)	0.3807	modest	Appendix F, F-92	
PM10	TKN Content, new litter (wet basis)		b		
PM _{2.5}	TKN Content, new litter (wet basis)		b		
TSP	TKN Content, new litter (wet basis)		b		
NH3	TKN Content, new litter, (dry basis)		а	Appendix F, F-93	
H ₂ S	TKN Content, new litter, (dry basis)	а		Appendix F, F-94	
PM10	TKN Content, new litter, (dry basis)		b		
PM2.5	TKN Content, new litter, (dry basis)		b		
TSP	TKN Content, new litter, (dry basis)		b		
NH ₃	Solids content , new litter	0.9236	strong	Appendix F, F-95	
H ₂ S	Solids content , new litter	0.3331 modest		Appendix F, F-96	
PM ₁₀	Solids content , new litter	b			
PM2.5	Solids content , new litter	b			
TSP	Solids content , new litter		b		

Table 4-6. New litter parameters regression analysis

^a EPA did not have sufficient measurement data from NAEMS to conduct a linear regression analysis (i.e., two or fewer observations were taken).

^b No observations were collected that coincided with emission observations.

Table 4-7. Decaked litter parameters regression analysis

Pollutant	Parameter	R ² Strength		Figure	
NH ₃	TKN, decaked litter (wet weight basis)	0.0718	Slight or weak	Appendix F, F-97	
H ₂ S	TKN, decaked litter (wet weight basis)	0.2384	modest	Appendix F, F-98	
PM10	TKN, decaked litter (wet weight basis)		b		
PM _{2.5}	TKN, decaked litter (wet weight basis)		а	Appendix F, F-99	
TSP	TKN, decaked litter (wet weight basis)		а	Appendix F, F-100	
NH ₃	TKN content, decaked litter (dry weight basis)	0.3342 modest		Appendix F, F-101	
H₂S	TKN content, decaked litter (dry weight basis)	0.1887 Slight or weak		Appendix F, F-102	
PM ₁₀	TKN content, decaked litter (dry weight basis)		b		
PM2.5	TKN content, decaked litter (dry weight basis)		а	Appendix F, F-103	
TSP	TKN content, decaked litter (dry weight basis)		а	Appendix F, F-104	
NH ₃	Solids Content, decaked litter	0.3014	modest	Appendix F, F-105	
H₂S	Solids Content, decaked litter	0.4653 moderate		Appendix F, F-106	
PM10	Solids Content, decaked litter	b			
PM _{2.5}	Solids Content, decaked litter	b			
TSP	Solids Content, decaked litter		b		

^a EPA did not have sufficient measurement data from NAEMS to conduct a linear regression analysis (i.e., two or fewer observations were taken).

^b No observations were collected that coincided with emission observations.

For loadout litter samples, there were only limited samples taken over the course of the study. The summary statistics provided in Appendix D, Table D-10 show there were no solids analysis on decaked litter samples at the KY1B sites. Again, the summary tables show the

samples were analyzed differently between the sites, as CA1B provided values only on a wet weight basis and the KY1B sites provided both wet and dry weight basis. The time series for TKN (Appendix E, Figures E-30 and E-31) and solids content (Appendix E, Figure E-30) reiterate the sparse nature of the measurements, which makes it difficult to discern any trends. The plots show that measurements are similar across the sites. The regression analysis for TKN (Appendix F, Figures F-107 through F-110) and solids content (Appendix F, Figures F-111 and F-112), summarized in Table 4-8, show modest linear relationships with NH₃ and H₂S emissions. For PM₁₀, PM_{2.5} and TSP, none of the decaked litter samples coincided with emissions observations.

Pollutant	Parameter	R ² Strength		Figure
NH ₃	TKN, loadout litter (wet weight basis)	0.3979	modest	Appendix F, F-107
H ₂ S	TKN, loadout litter (wet weight basis)	0.3621	modest	Appendix F, F-108
PM ₁₀	TKN, loadout litter (wet weight basis)		b	
PM _{2.5}	TKN, loadout litter (wet weight basis)		b	
TSP	TKN, loadout litter (wet weight basis)		b	
NH ₃	TKN content, loadout litter (dry weight basis)		а	Appendix F, F-109
H ₂ S	TKN content, loadout litter (dry weight basis)	a Append		Appendix F, F-110
PM10	TKN content, loadout litter (dry weight basis)	b		
PM _{2.5}	TKN content, loadout litter (dry weight basis)		b	
TSP	TKN content, loadout litter (dry weight basis)		b	
NH ₃	Solids content, loadout litter	0.3348	modest	Appendix F, F-111
H ₂ S	Solids content, loadout litter	0.0454 Slight or weak Ap		Appendix F, F-112
PM10	Solids content, loadout litter	b		
PM _{2.5}	Solids content, loadout litter	b		
TSP	Solids content, loadout litter		b	

Table 4-8. Loadout litter parameters regression analysis

^a EPA did not have sufficient measurement data from NAEMS to conduct a linear regression analysis (i.e., two or fewer observations were taken).

^b No observations were collected that coincided with emission observations.

4.4 Parameter selection

The exploratory data analysis was conducted to confirm that the variables were selected based on the following criteria: (1) data analysis in this study and/or literature suggested that these variables had an influence on emissions; (2) the variables should be easy to measure; and (3) the variables were already in the daily average NAEMS data and were available for most days of monitored emissions. These selection criteria particularly apply to the manure parameters, such as moisture content and TAN concentration, which were infrequent due to the intensive collection and analysis methods. Additional time could be taken to develop an appropriate methodology for interpolating between the few data points available for these parameters in the dataset. However, these parameters are difficult to acquire as they require

chemical analysis from a laboratory. The exploratory data analysis was also used to explore whether additional parameters, such as bird age, could be included to explain trends.

Based on both the literature review (Section 3) and exploratory data analysis in this section, the EPA selected ambient temperature, exhaust temperature, ambient relative humidity, exhaust relative humidity, management phase, litter age and status, bird age, inventory, and live animal weight as parameters to consider for emission model development.

5.0 DEVELOPMENT AND SELECTION OF MODELS FOR DAILY EMISSIONS

Based on the literature review (Section 3) and exploratory data analysis (Section 4) EPA selected ambient temperature, exhaust temperature, ambient relative humidity, exhaust relative humidity, management phase, litter age and status, bird age, inventory, and live animal weight in the development of the emission models for broiler houses. The 26 combinations of these parameters were used as test models, which are listed in Table 5-1.

Models 19 through 26 are slightly different due to the inclusion of a categorical variable to account for either the management phase or the number of flocks raised on the litter. These models do have merit, as both the management phase and the number of flocks raised on the litter will affect emissions. However, EPA is still considering these models as experimental since an appropriate methodology for their evaluation and application has not been finalized. The models have been included in the tables to note all the options EPA explored, but were not considered as potential models at this time.

The final PM_{10} , $PM_{2.5}$, and TSP models are not based on log transformed emissions data like with the gaseous pollutant or other animal types. During the model development, it was found that better model performance was achieved with non-transformed data. Only the results for the non-transformed particulate matter models are presented in this report. Section 8 will provide an example calculation for particulate matter to show how these calculations differ from the gaseous pollutant that use transformed data.

Model	Parameter
1	Intercept, Inventory, Flock age
2	Intercept, Inventory, Flock age, Ambient temperature
3	Intercept, Inventory, Flock age, Ambient relative humidity
4	Intercept, Inventory, Flock age, Exhaust temperature
5	Intercept, Inventory, Flock age, Exhaust humidity
6	Intercept, Inventory, Flock age, Ambient temperature, Ambient relative humidity
7	Intercept, Inventory, Flock age, Exhaust temperature, Exhaust relative humidity
8	Intercept, Inventory, Flock age, Litter age
9	Intercept, Inventory, Flock age, Litter age, Ambient temperature
10	Intercept, Live animal weight
11	Intercept, Live animal weight, Ambient temperature
12	Intercept, Live animal weight, Ambient relative humidity
13	Intercept, Live animal weight, Exhaust temperature
14	Intercept, Live animal weight, Exhaust humidity
15	Intercept, Live animal weight, Ambient temperature, Ambient relative humidity

Table 5-1. Parameter combinations tested as models for NH₃ and H₂S emissions.
Model	Parameter
16	Intercept, Live animal weight, Exhaust temperature, Exhaust relative humidity
17	Intercept, Live animal weight, Litter age
18	Intercept, Live animal weight, Litter age, Ambient temperature
19*	Intercept, Inventory, Flock age, Ambient temperature, Ambient relative humidity, House status (Empty (E), Full (F), Transition (T))
20*	Intercept, Live animal weight, Ambient temperature, Ambient relative humidity, House status (Empty (E), Full (F), Transition (T))
21*	Intercept, Inventory, Flock age, Ambient temperature, Ambient relative humidity, Litter status (0-3, continuous between flocks)
22*	Intercept, Live animal weight, Ambient temperature, Ambient relative humidity, Litter status (0-3, continuous between flocks)
23*	Intercept, Inventory, Flock age, Ambient temperature, Ambient relative humidity, Litter status (0-6, continuous between flocks)
24*	Intercept, Live animal weight, Ambient temperature, Ambient relative humidity, Litter status (0-6, continuous between flocks)
25*	Intercept, Inventory, Flock age, Ambient temperature, Ambient relative humidity, Litter status (0-1, continuous between flocks)
26*	Intercept, Live animal weight, Ambient temperature, Ambient relative humidity, Litter status (0-1, continuous between flocks)

Of the models tested for NH₃ (Appendix G, Table G-2), models 1 through 8, 14, 17, and 18 had terms that were not statistically significant (p > 0.05) and were removed from further consideration. The model fit (-2 log likelihood, AIC, AICc, and BIC) and evaluation statistics (ME, NME, MB, NMB) for NH₃ (Appendix G, Table G-3) indicate the remaining models had comparable performance, which suggested using ambient parameters was as effective as house parameters. The model performance plots (Appendix G, Figures G-1 through G-3) also indicated nominal performance differences between the remaining models. Therefore, EPA considered the potential ease of data collection and concluded that a model using ambient temperature and relative humidity would be preferable to one with exhaust temperature and relative humidity and eliminated models with the barn specific parameters. EPA also wanted to include temperature in the model to account for regional emission variability due to climate. EPA also verified the relationship indicated by the coefficients (i.e., negative, or positive relationship with emissions) were consistent with literature. Of the remaining models that used ambient temperature (9, 11, and 15), EPA selected model 15 for further analysis for NH₃ as it had marginally lower error than the remaining models. The final form of these models is presented in Table 5-2.

For H₂S (Appendix G, Table G-4), only models 17 and 18 had terms that were not statistically significant (p > 0.05) and were removed from further consideration. The model fit (-2 log likelihood, AIC, AICc, and BIC) and evaluation statistics (ME, NME, MB, NMB) for H₂S (Appendix G, Table G-5) indicate the remaining models had comparable performance, which suggested using ambient parameters was as effective as house parameters. The model

performance plots (Appendix G, Figures G-4 through G-6) also indicated nominal performance differences between the remaining models. After a review of the consistency of the model relationships compared to literature, EPA considered the potential ease of data collection and concluded that a model using ambient temperature and relative humidity would be preferable to one with exhaust temperature and relative humidity. As with NH₃, EPA wanted to include temperature in the H₂S model to account for regional emission variability due to climate. Of the remaining models that used ambient parameters (2, 6, 9, 11, and 15), EPA selected model 15 for further analysis for H₂S as it had marginally lower error than the remaining models. The final form of these models is presented in Table 5-2.

For PM_{10} (Appendix G, Table G-6), models 5, 10, 11, 12, 13, 14, and 15 were comprised entirely of terms that were statistically significant and moved forward for further consideration. The model fit and evaluation statistics for PM_{10} (Appendix G, Table G-7) indicate the remaining models were comparable, which suggested using ambient parameters was as effective as house parameters. The model performance plots (Appendix G, Figures G-7 through G-9) also indicated nominal performance differences between the remaining models. After a review of the consistency of the model relationships compared to literature, EPA considered the potential ease of data collection and concluded that ambient temperature and relative humidity would be preferable to one with exhaust temperature and relative humidity and eliminated models with the barn specific parameters. Of the remaining models that used ambient parameters (12 and 15), EPA selected model 15 for further analysis as it had marginally better fit statistics than model 12. The full form of the model is presented in Table 5-2.

As noted in Section 6.4 of the main report, the particulate matter model selection starts with the PM₁₀ due to the greater quantity of emissions data. Because of the continuous monitoring of PM_{2.5} and TSP at the KY1B-1 and KY1B-2 sites, the number of daily emission values is much greater than for other animal types in NAEMS. The PM₁₀ models had between 1,296 and 1,334 daily ADM values for model development, depending on the completeness of the various predictive parameters. For PM_{2.5} and TSP, the number of daily predicted values ranged between 681 – 683 for PM_{2.5} and 688 – 692 for TSP. For broilers, there is more PM_{2.5} and TSP observations than the other animal types. This increase means that the PM_{2.5} and TSP observations cover a wide range of conditions, similar to the PM₁₀ data. The consistency in broiler PM_{2.5} and TSP model results, in comparison with the PM₁₀ model results, support the approach used for model selection for other animal types, where PM₁₀ model selection was used in determining TSP and PM_{2.5} model selection.

Even with the increased data for $PM_{2.5}$ and TSP, the model's consistency with the PM_{10} results, build confidence in supported using the same model form for all the particulate matter species.

For PM_{2.5} (Appendix G, Table G-8), only four models are were comprised of significant parameters (11, 12, 14, 15) and moved forward for further consideration. These models were also considered for PM₁₀, and the relationships were consistent with the PM₁₀ models and literature. The model performance statistics for PM_{2.5} (Appendix G, Table G-9) suggested comparable performance between ambient and house parameters. The model performance plots (Appendix G, Figures G-10 through G-12) also indicated nominal performance differences between the remaining models. Again, EPA considered the ease of data collection and focused on the remaining models that utilized ambient parameters, and verified the relationship indicated by the coefficent was consistent with literature. Of the remaining models (11, 12 and 15), EPA selected model 15 for further analysis as it had marginally better fit statistics and was consistent with the model selected for PM₁₀. The full form of the model is presented in Table 5-2.

TSP (Appendix G, Table G-10) has six significant models (10, 11, 12, 13, 14, and 15). Again, these were similar to the set of models considered for PM_{10} . The relationships in the TSP models were consistent with the PM_{10} models and literature, except the intercept in model 11 was positive for TSP. Overall, the model statistics for TSP (Appendix G, Table G-11) suggested comparable performance between ambient and house parameters. The model performance plots (Appendix G, Figures G-13 through G-15) also indicated nominal performance differences between the remaining models. Again, EPA considered the ease of data collection and focused on the remaining models that utilized ambient parameters. Of the remaining models (11, 12 and 15), EPA selected model 15 for further analysis as it had marginally better fit statistics and was consistent with the model selected for PM_{10} . The full form of the model is presented in Table 5-2.

		Equation
Pollutant	Formula	Number
NH₃	$ln(NH_3) = 1.60581 + 0.008532 * LAW + 0.020739 * Amb_T + 0.004038 * Amb_{RH}$	Equation 1
H ₂ S	$ln(H_2S) = 2.824278 + 0.016214 * LAW + 0.015048 * Amb_T + 0.004429 * Amb_{RH}$	Equation 2
PM10	$PM_{10} = 397.28057 + 40.872002 * LAW + 10.401892 * Amb_T - 6.584463 * Amb_{RH}$	Equation 3
PM2.5	$PM_{2.5} = 15.776704 + 4.087002 * LAW + 1.308433 * Amb_T - 0.464143 * Amb_{RH}$	Equation 4
TSP	$TSP = 1518.9199 + 85.598315 * LAW + 22.632906 * Amb_T - 21.28833 * Amb_{RH}$	Equation 5

Table 5-2. Selected daily models for broiler houses.

6.0 MODEL COEFFICENT EVALUATION

To ensure reliable prediction of the emissions, the model coefficients were evaluated with the jackknife method (Christensen et al., 2016; Leeden et al., 2008), which examined the cumulative effect on coefficient estimates of multiple "minus-one" runs. The jackknife approach called for removing one of the independent sample units from the dataset. For NAEMS, the individual barns at each site and the monitored lagoons are the mutually exclusive independent sample units. EPA then determined the associated parameter estimates for the selected model based on this dataset. This was repeated for each of the sample units. These results were then compared to the model coefficients based on the full dataset (full model). For each jackknife model, the ME, NME, MB, and NMB were calculated, based on the equations outlined in Section 6 of the main report, to facilitate comparison.

EPA also prepared plots showing the variation in coefficients and standard errors for the selected model and compared to each of the jackknife models. EPA interpreted these plots similar to the Tukey confidence interval plots in that, if the result for the jackknife model overlapped the results for the full model (i.e., the area highlighted in gray on the figures), then the model coefficients are not inconsistent with one another. If the omission of one monitoring unit (e.g., a barn or lagoon) resulted in a coefficient that was outside ± 1 standard error of the full model, the sample unit was reviewed to determine if a specific characteristic of that unit (e.g., animal placement strategy, manure handling system) might have caused the inconsistency. If the difference could not be ascribed to an operational characteristic of the unit, the data were reviewed for outliers that could be trimmed, and other potential remediation measures considered.

6.1 NH₃ Model Evaluation

Table 6-1 and Figure 6-1 show the variation in coefficients and standard errors for the selected model ("None") and each of the jackknife models. The model coefficients from the jackknife approach were comparable across the withheld sets (Table 6-1) and remained significant across all models. The plots in Figure 6-1 show that the results for all jackknife models overlap the full model estimate ± 1 standard error. In comparison to the full model, that is where the house removed is "None", the maximum percent differences for parameter estimates across the three models were 7%, 6%, 4%, and 13% for intercept, inventory, ambient temperature, and ambient relative humidity, respectively. Across all models, the difference in NME and NMB (Table 6-2) in comparison to the selected model were minor, with NME values differing by less than 6.20% and NMB by less than 0.81%.

House out	Effect	Estimate	Standard Error	p-value
None	Intercept	1.60581	0.10407	<.0001
	Live animal weight	0.008532	0.00094	<.0001
	Ambient temperature	0.020739	0.0024	<.0001
	Ambient relative humidity	0.004038	0.00081	<.0001
	Intercept	1.663708	0.10922	<.0001
	Live animal weight	0.008131	0.00113	<.0001
CAID HIU	Ambient temperature	0.020722	0.00268	<.0001
	Ambient relative humidity	0.003718	0.00092	<.0001
	Intercept	1.662263	0.10958	<.0001
	Live animal weight	0.008731	0.00114	<.0001
	Ambient temperature	0.019854	0.00272	<.0001
	Ambient relative humidity	0.003844	0.00093	<.0001
	Intercept	1.498738	0.14664	<.0001
	Live animal weight	0.008223	0.00105	<.0001
	Ambient temperature	0.021704	0.00297	<.0001
	Ambient relative humidity	0.004087	0.00099	<.0001
	Intercept	1.543183	0.12071	<.0001
	Live animal weight	0.009042	0.00105	<.0001
KITR-5 H2	Ambient temperature	0.020961	0.00277	<.0001
	Ambient relative humidity	0.004549	0.00093	<.0001

Table 6-1. Model coefficients developed using the jackknife approach for NH₃ emissions from broiler houses.

Table 6-2. Model fit statistics for the broiler house NH₃ jackknife.

House out	n	LNME ^a (%)	NME ^b (%)	ME ^b (kg d ⁻¹)	MB ^b (kg d ⁻¹)	NMB [♭] (%)	Corr
None	1602	26.067	56.78	5.984	-0.599	-5.681	0.662
CA1B H10	1157	24.948	54.351	5.89	-0.555	-5.123	0.654
CA1B H12	1159	24.267	52.335	5.91	-0.587	-5.199	0.664
KY1B-1 H5	1224	28.902	62.982	6.328	-0.652	-6.493	0.672
KY1B-2 H3	1266	25.816	57.057	5.736	-0.583	-5.799	0.658

^a Based on transformed data (i.e., In(NH₃)).

^b Based on back-transformed data.

Figure 6-1. Comparison of variation in coefficients and standard errors for NH₃ broiler house model.

Variation in coefficients and standard errors (blue closed circle and ± SE bar) for each jackknife model with the selected TSP belted battery house model coefficient ("None", gray band for ± SE) for each model parameter.

6.2 H₂S Model Evaluation

Table 6-3 and Figure 6-2 show the variation in coefficients and standard errors for the selected model ("None") and each of the jackknife models. The model coefficients from the jackknife approach were comparable across the withheld sets (Table 6-3) and remained significant across all models. The plots in Figure 6-2 show that the results for all jackknife models overlap the full model estimate ± 1 standard error, except for ambient temperature at KY1B-2 H3. In comparison to the full model, that is where the house removed is "None", the maximum percent differences for parameter estimates across the three models were 4%, 5%, 28%, and 13% for intercept, inventory, ambient temperature, and ambient relative humidity, respectively. Across all models, the difference in NME and NMB (Table 6-4) in comparison to the selected model were minor, with NME values differing by less than 5.41% and NMB by less than 0.32%.

House out	Effect	Estimate	Standard Error	p-value
	Intercept	2.824278	0.10483	<.0001
Nono	Live animal weight	0.016214	0.0008	<.0001
None	Ambient temperature	0.015048	0.00189	<.0001
	Ambient relative humidity	0.004429	0.00063	<.0001
	Intercept	2.829714	0.09394	<.0001
CA10 U10	Live animal weight	0.017087	0.00095	<.0001
CA1B H10	Ambient temperature	0.012804	0.00206	<.0001
	Ambient relative humidity	0.004492	0.00069	<.0001
CA10.1112	Intercept	2.887174	0.08908	<.0001
	Live animal weight	0.015657	0.00096	<.0001
CAIBHIZ	Ambient temperature	0.012718	0.00211	<.0001
	Ambient relative humidity	0.004257	0.00071	<.0001
	Intercept	2.828938	0.13856	<.0001
	Live animal weight	0.01539	0.00089	<.0001
KTIB-T H2	Ambient temperature	0.015985	0.00238	<.0001
	Ambient relative humidity	0.004112	0.00079	<.0001
	Intercept	2.723739	0.12561	<.0001
	Live animal weight	0.016739	0.0009	<.0001
NT1D-2 H3	Ambient temperature	0.019268	0.00219	<.0001
	Ambient relative humidity	0.004991	0.00072	<.0001

Table 6-3. Model coefficients developed using the jackknife approach for H ₂ S
emissions from broiler houses.

Table 6-4. Model fit statistics for the broiler house H₂S jackknife.

House out	n	LNME ^a (%)	NME ^b (%)	ME ^b (g d ⁻¹)	MB ^b (g d ⁻¹)	NMB ^b (%)	Corr
None	1757	16.921	56.995	29.307	-7.107	-13.82	0.814
CA1B H10	1193	15.882	54.29	27.444	-7.245	-14.33	0.82
CA1B H12	1197	16.329	55.164	28.536	-6.93	-13.4	0.812
KY1B-1 H5	1415	18.295	59.699	31.234	-7.133	-13.63	0.815
KY1B-2 H3	1466	16.967	58.133	29.653	-7.068	-13.86	0.817

^a Based on transformed data (i.e., ln(NH₃)).

^b Based on back-transformed data.

Figure 6-2. Comparison of variation in coefficients and standard errors for H₂S broiler house model.

Variation in coefficients and standard errors (blue closed circle and ± SE bar) for each jackknife model with the selected TSP belted battery house model coefficient ("None", gray band for ± SE) for each model parameter.

6.3 PM₁₀ Model Evaluation

Table 6-5 and Figure 6-3 show the variation in coefficients and standard errors for the selected model ("None") and each of the jackknife models. The model coefficients from the jackknife approach were comparable across the withheld sets (Table 6-5) and remained significant across all models. The plots in Figure 6-3 show that the results for all jackknife models overlap the full model estimate ± 1 standard error. In comparison to the full model, that is where the house removed is "None", the maximum percent differences for parameter estimates across the three models were 21%, 4%, 34%, and 26% for intercept, inventory, ambient temperature, and ambient relative humidity, respectively. Across all models, the difference in NME and NMB (Table 6-6) in comparison to the selected model were minor, with NME values differing by less than 0.90% and NMB by less than 0.59%.

House out	Effect	Estimate	Standard Error	p-value
	Intercept	397.28057	87.0688	<.0001
Nono	Live animal weight	40.872002	1.23866	<.0001
None	Ambient temperature	10.401892	2.31348	<.0001
	Ambient relative humidity	-6.584463	0.99133	<.0001
CA1B H10	Intercept	416.43351	96.5238	<.0001
	Live animal weight	40.560352	1.30848	<.0001
	Ambient temperature	11.933339	2.46947	<.0001
	Ambient relative humidity	-7.181311	1.14528	<.0001
CA10 U12	Intercept	423.44921	99.3889	<.0001
	Live animal weight	40.320695	1.31826	<.0001
CAIBHIZ	Ambient temperature	11.307166	2.51767	<.0001
	Ambient relative humidity	-7.119333	1.17254	<.0001
	Intercept	315.11649	110.273	0.0044
	Live animal weight	41.28158	1.52787	<.0001
KTIB-T HD	Ambient temperature	9.677985	2.94704	0.0011
	Ambient relative humidity	-4.859073	1.22256	<.0001
	Intercept	425.79124	97.2686	<.0001
	Live animal weight	42.501116	1.57997	<.0001
KITR-5 H3	Ambient temperature	6.833973	2.73684	0.0128
	Ambient relative humidity	-6.808038	1.03715	<.0001

Table 6-5. Model coefficients developed using the jackknife approach for PM10emissions from broiler houses.

Table 6-6. Model fit statistics for the broiler house PM₁₀ jackknife.

House out	n	NME (%)	ME (g d ⁻¹)	MB (g d ⁻¹)	NMB (%)	Corr
None	1298	30.33	280.05	-2.222	-0.241	0.881
CA1B H10	963	29.435	276.74	-4.744	-0.505	0.886
CA1B H12	941	30.089	283.67	-2.064	-0.219	0.886
KY1B-1 H5	997	30.969	286.3	-3.922	-0.424	0.875
KY1B-2 H3	993	31.079	275.82	3.124	0.352	0.873

Variation in coefficients and standard errors (blue closed circle and ± SE bar) for each jackknife model with the selected TSP belted battery house model coefficient ("None", gray band for ± SE) for each model parameter.

6.4 PM_{2.5} Model Evaluation

Table 6-7 and Figure 6-4 show the variation in coefficients and standard errors for the selected model ("None") and each of the jackknife models. The model coefficients from the jackknife approach were comparable across the withheld sets (Table 6-7) and remained significant across all models. The plots in Figure 6-4 show that the results for all jackknife models overlap the full model estimate ± 1 standard error, except for ambient temperature at KY1B-2 H3. In comparison to the full model, that is where the house removed is "None", the maximum percent differences for parameter estimates across the three models were 60%, 4%, 52%, and 25% for intercept, inventory, ambient temperature, and ambient relative humidity, respectively. Across all models, the difference in NME and NMB (Table 6-8) in comparison to the selected model were minor, with NME values differing by less than 3.12% and NMB by less than 4.67%.

House out	Effect	Estimate	Standard Error	p-value
None	Intercept	15.776704	9.16964	0.0862
	Live animal weight	4.087002	0.13779	<.0001
	Ambient temperature	1.308433	0.23488	<.0001
	Ambient relative humidity	-0.464143	0.10162	<.0001
	Intercept	14.962259	9.30605	0.1087
	Live animal weight	4.094488	0.13513	<.0001
CAIBHIU	Ambient temperature	1.417178	0.23708	<.0001
	Ambient relative humidity	-0.463122	0.10522	<.0001
	Intercept	15.710709	9.26846	0.0909
	Live animal weight	4.114284	0.13705	<.0001
CAIBHIZ	Ambient temperature	1.318599	0.23673	<.0001
	Ambient relative humidity	-0.463017	0.1044	<.0001
	Intercept	6.333521	11.8668	0.594
	Live animal weight	4.173591	0.14753	<.0001
KITR-T U2	Ambient temperature	1.659652	0.27877	<.0001
	Ambient relative humidity	-0.37942	0.13758	0.0061
	Intercept	25.189723	13.5625	0.0653
	Live animal weight	3.911753	0.24801	<.0001
NT18-2 H3	Ambient temperature	0.62491	0.36119	0.0851
	Ambient relative humidity	-0.578885	0.13371	<.0001

Table 6-7. Model coefficients developed using the jackknife approach for PM2.5emissions from broiler houses.

Table 6-8. Model fit statistics for the broiler house PM_{2.5} jackknife.

House out	n	NME (%)	ME (g d⁻¹)	MB (g d⁻¹)	NMB (%)	Corr
None	683	28.989	27.76	6.014	6.28	0.919
CA1B H10	630	28.965	27.663	5.17	5.413	0.923
CA1B H12	640	29.129	27.334	5.215	5.557	0.924
KY1B-1 H5	397	25.872	25.924	7.627	7.612	0.933
KY1B-2 H3	382	30.363	28.782	1.526	1.61	0.888

Variation in coefficients and standard errors (blue closed circle and ± SE bar) for each jackknife model with the selected TSP belted battery house model coefficient ("None", gray band for ± SE) for each model parameter.

6.5 TSP Model Evaluation

Table 6-9 and Figure 6-5 show the variation in coefficients and standard errors for the selected model ("None") and each of the jackknife models. The model coefficients from the jackknife approach were comparable across the withheld sets (Table 6-9) and remained significant across all models. The plots in Figure 6-5 show that the results for all jackknife models overlap the full model estimate ± 1 standard error. In comparison to the full model, that is where the house removed is "None", the maximum percent differences for parameter estimates across the three models were 9%, 6%, 53%, and 9% for intercept, inventory, ambient temperature, and ambient relative humidity, respectively. Across all models, the difference in NME and NMB (Table 6-10) in comparison to the selected model were minor, with NME values differing by less than 2.07% and NMB by less than 1.16%.

House out	Effect	Estimate	Standard Error	p-value
	Intercept	1518.9199	267.416	<.0001
None	Live animal weight	85.598315	4.07168	<.0001
None	Ambient temperature	22.632906	6.91714	0.0012
	Ambient relative humidity	-21.28833	3.03384	<.0001
	Intercept	1532.9567	277.153	<.0001
	Live animal weight	86.095861	4.1767	<.0001
CAIBHIU	Ambient temperature	23.162107	7.14728	0.0014
	Ambient relative humidity	-21.60906	3.16145	<.0001
	Intercept	1522.2666	277.367	<.0001
CA10 U12	Live animal weight	85.388284	4.14236	<.0001
CAIBHIZ	Ambient temperature	22.903337	7.11571	0.0015
	Ambient relative humidity	-21.04226	3.16372	<.0001
•	Intercept	1375.9692	378.531	0.0003
	Live animal weight	80.604024	5.92136	<.0001
KTIB-T H2	Ambient temperature	34.587826	9.62385	0.0004
	Ambient relative humidity	-19.47689	4.1225	<.0001
KV10 2 112	Intercept	1607.4014	331.078	<.0001
	Live animal weight	89.968545	5.1479	<.0001
NT1D-2 H3	Ambient temperature	10.575943	8.82671	0.233
	Ambient relative humidity	-22.82391	3.84822	<.0001

Table 6-9. Model coefficients developed using the jackknife approach for TSPemissions from broiler houses.

Table 6-10. Model fit statistics for the broiler house TSP jackknife.

House out	n	NME (%)	ME (g d ⁻¹)	MB (g d ⁻¹)	NMB (%)	Corr
None	688	30.502	701.59	-29.46	-1.281	0.863
CA1B H10	653	30.92	705.63	-29.05	-1.273	0.864
CA1B H12	651	30.341	699.71	-31.29	-1.357	0.864
KY1B-1 H5	373	32.572	785.97	-50.92	-2.11	0.856
KY1B-2 H3	387	29.546	653.52	-2.717	-0.123	0.863

Variation in coefficients and standard errors (blue closed circle and ± SE bar) for each jackknife model with the selected TSP belted battery house model coefficient ("None", gray band for ± SE) for each model parameter

7.0 ANNUAL EMISSION ESTIMATES AND MODEL UNCERTAINTY

To estimate annual pollutant emissions, the results of the daily emission models are summed over the number of operating days per year. This approach requires values for the necessary ambient and barn parameters. For an actual emissions estimate, the daily estimates are based on meteorology from nearby monitors and barn occupancy and weight records for the year from the producer. Since the models were developed with all the available data, producers can specify downtime for cleaning or other reasons with an inventory value of zero. For farms with multiple barns, annual emissions are determined for individual barns and summed across barns to calculate total annual farm-scale emissions.

As noted in Section 6 of the main report, the model results are transformed values of the emissions. To convert to the native emission units (e.g., kg or g), the back transformation equation (Equation 7 from Section 6 of the main report) is applied using the values of \overline{E}_l and C provided in Table 7-1 for each emission model. As noted in Section 5, the particulate matter models were developed using data that was not transformed, and do not have to be back transformed. Section 8 contains an example of the back transformation calculation.

Animal Type	Pollutant	$\overline{E_i}$	С	Resulting units					
Broiler House	NH ₃	1.10605	2	kg					
Broiler House	H₂S	1.32433	10	g					
Broiler House	PM ₁₀	a		g					
Broiler House	PM _{2.5}	a		g					
Broiler House	TSP	а		g					

Table 7-1. Back transformation parameters

^a Data used to develop models was not log transformed.

EPA also developed an estimate of uncertainty for total annual emissions, characterized by the random error in the model prediction using an approach similar to Monte Carlo analysis. Under this approach, EPA developed the statistical properties of predicted annual emissions by replicating annual sums of daily emissions. EPA ran these simulations for several different intervals of a predictor variable that fell within the observed range. For example, broiler house live animal weight ranged from 0 to 75 Mg. The simulations were then run for inventory intervals of 5 thousand head/kg (e.g., 0, 5, 10, 15). Table 7-2 list the predictor variable and the number of intervals used for the annual uncertainty simulations for each model.

Simulations were run 10,000 times for each day for each interval to create an average uncertainty associated with the annual emissions from a single barn. EPA added a random residual to each day of the simulation to replicate the variability that would be seen in a real-world application of the model. For each of the intervals run, EPA calculated standard statistics

(i.e., minimum, median, mean, maximum, range) and used these to calculate the uncertainty for a single source via Equation 6:

Single source uncertainty =
$$0.5 \times \left(\frac{Range}{Median annual emission}\right) \times 100$$
 Equation 6

EPA then plotted this single barn uncertainty against its associated annual emissions. This plot was then fit with a curve to model annual percent uncertainty for a single source (i.e., barn, house, lagoon, basin). For all uncertainty models, the curve took the form of:

$$Uncertainty (\%) = \frac{k}{Annual Emissions}$$
 Equation 7

Where k is a constant, listed in Table 7-2, and annual emissions are the total sum from the daily models.

		Simulation	Number of		Emission
Animal Type	Pollutant	variable	Simulations	k	Units
Broiler House	H_2S	Live animal weight	10,000	138,554	g
Broiler House	NH₃	Live animal weight	10,000	27,081	kg
Broiler House	PM ₁₀	Live animal weight	10,000	1,566,305	g
Broiler House	PM _{2.5}	Live animal weight	10,000	133,946	g
Broiler House	TSP	Live animal weight	10,000	3,846,356	gg

Table 7-2. Annual Uncertainty Model Details

Multiplying this percentage by the annual emissions calculated for the source provides the resulting uncertainty in the native emission units (e.g., kg or g), demonstrated in Equation 8:

$$Resulting Uncertainty = \frac{Percent uncertainty \times Annual emissions}{100} Equation 8$$

To propagate the uncertainty across all sources at a farm, EPA combined the estimates of absolute uncertainty for each source according to:

Total farm uncertainty =
$$\sqrt{(U_{B1})^2 + \dots + (U_{Bi})^2}$$
 Equation 9

Where:

Total farm uncertainty = total uncertainty for the total emissions from all farm sources. UBi = the resulting uncertainty for barns, with i representing the total number of barns on the farm,

EPA notes that the uncertainty framework described above reflects the random uncertainty (error) in the prediction of daily emissions calculated using the emission models, which includes the random uncertainty in the measurements used to develop the equation. This framework does not, however, consider systematic error (e.g., bias) in either NAEMS measurements or the emission model. Section 8 provides an example of how the daily emissions, annual emissions, and annual uncertainty calculations are completed.

8.0 MODEL APPLICATION AND ADDITIONAL TESTING

Key to the development of any model is the demonstration of the use and practical examples of how the model behaves and replicates independent data. This section provides a series of example calculations to demonstrate the application of the models (Section 8.1), the sensitivity of the models to their inputs and possible limitations (Section 8.2), a comparison of the models developed to literature (section 8.3), and a test of model performance against an independent data set (Section 8.4).

8.1 Model Application Example

The following sections demonstrate how the daily EEMs from Section 5 and the annual uncertainty from Section 7 are used to calculate emissions for an example farm. Details about the use of the EEMs to demonstrate compliance with Clean Air Act thresholds will be addressed in a forthcoming implementation document. This example is provided to walkthrough a calculation to demonstrate how the system of equations is intended to work.

In Section 6.4 of the main report, the data were log-transformed prior to developing the models, the result would need to be back-transformed per Equation 7 to represent emissions in units of grams or kilograms.

$$Y_{bp} = e^{\widehat{(y_p)}} * \overline{E}_i - C$$

Where:

 Y_{bp} is the back transformed predicted emissions. y_p is the model predicted (log transformed) emissions. \overline{E}_i is the average residual between model-predicted and observed (or measured) emissions on the natural log scale. C is a constant added to the data prior to the log transformation.

To complete the back transformation, users need two parameters that are specific to each model: 1) \overline{E}_{l} , the residual between model-predicted and observed (or measured) emissions on the natural log scale; and 2) C, which is a constant added to the data prior to the log transformation. As noted in Sections 5 and 7 of this report, the particulate matter emission data were not log-transformed for model development. The values for \overline{E}_{l} and C for the NH₃ and H₂S broiler models is provided in Table 8-1.

Animal Type	Pollutant	\overline{E}_i	С	Resulting units
Broiler house	NH₃	1.10605	2	kg
Broiler house	H₂S	1.32433	10	g
Broiler house	PM ₁₀	а		b
Broiler house	PM _{2.5}	а		g
Broiler house	TSP	а		g

Table 8-1. Ba	ck transformation	tion parameters
---------------	-------------------	-----------------

^a Data used to develop models was not log transformed.

Once the EEMs are finalized, EPA will work with stakeholders to develop a tool to facilitate the calculation of all barn and open source emissions. For transparency and to help stakeholders better understand the process of calculating emissions, this section will walk through example calculations to estimate NH₃ and PM₁₀ emissions from a broiler house.

The examples in this section use a fictional farm located in Crow Wing County, Minnesota on January 1, 2020. The ambient weather data used in each equation can be obtained for free from several sources including the National Centers for Environmental Information (NCEI; <u>https://www.ncdc.noaa.gov/cdo-web/</u>). NCEI stores hourly and daily ambient data from various monitors located across the country that can be used for emission estimation. The Brainerd Crow Wing County Airport site (GHCND:USW00094938) is a Global Historical Climatology Network (GHCN) Station located in Crow Wing County. Its data file provides the values of the key meteorological parameters needed for calculations.

Additionally, the broiler model requires the live animal weight, which is the number of birds in the house multiplied by the average weight. For this fictious farm, an initial placement of 25,000 chicks are added to the house and have an average weight of 0.087 kg. The equations use thousands of birds, so this value will be divided by 1,000 for use in the emission models. A summary of the input values for the example calculations for January 1, 2020 is provided in Table 8-2.

Parameter	Value
Daily Average Ambient Temperature (°C)	-5.3
Daily Average Relative Humidity (%)	76
Inventory (birds)	25,000
Average bird weight (kg)	0.087
Live animal weight (Mg)	2.16

Table 8-2. Daily calculation parameter values for January 1, 2020

8.1.1 NH₃ Example

Referring back to Equation 1, in Section 5, the log transformed values are calculated as follows:

$$ln(NH_3) = 1.60581 + 0.008532 * LAW + 0.020739 * Amb_T + 0.004038 * Amb_{RH}$$
$$ln(NH_3) = 1.60581 + 0.008532 * 2.16 + 0.020739 * -5.3 + 0.004038 * 76$$
$$ln(NH_3) = 1.60581 + 0.018429 - 0.109917 + 0.306888$$
$$ln(NH_3) = 1.82121$$

To back transform the results to NH₃ in kg, use Equation 7, from the main report. For a broiler house, \overline{E}_{l} is 1.106051 and C is 2.

$$NH_3 = e^{1.82121} \times 1.10605 - 2$$

This comes to 4.83 kg NH₃ for the day. This process is repeated for each day, using the daily values for the ambient parameters and daily average bird weight, which changes during the growing cycle. The individual daily emissions are added together to get an annual estimate of emissions. After considering the values for each day in 2020, the total annual emissions for the barn were calculated at 3,254.58 kg. To calculate the uncertainty associated with this estimate, use Equation 11 with the value of k from Table 7-1. This results in an annual uncertainty of:

Uncertainty (%) =
$$\frac{27,081}{3,254.58} = 8.32\%$$

This translates to an uncertainty of \pm 270.91 kg. Thus, the final annual estimate for this barn is 3,254.58 kg \pm 270.81 kg. This calculation would be repeated for any other broiler barns on the site.

8.1.2 PM₁₀ Example

Referring back to Equation 3, in Section 5, the log transformed NH₃ emission values for a broiler house is calculated as follows:

$$PM_{10} = 397.28057 + 40.872002 * LAW + 10.401892 * Amb_T - 6.584463 * Amb_{RH}$$
$$PM_{10} = 397.28057 + 40.872002 * 2.16 + 10.401892 * -5.3 - 6.584463 * 76$$
$$PM_{10} = 397.28057 + 88.283524 - 55.130028 - 500.419188$$
$$PM_{10} = -69.99 g$$

With no back transformation necessary, the total PM_{10} emissions for the data come to -69.99 g for the day. This example demonstrates that the PM_{10} equation produces negative emission estimates for low live animal weights at low temperatures and high relative humidities. The limitations of the broiler equations are discussed further in section 8.2.1. This emission calculation process is repeated for each day, then the daily emissions are added together to get an

annual estimate of emissions. After considering the values for each day in 2020, the total annual emissions for the barn were calculated at 386.93 kg. This total does leave any negative emission results as a negative value, as there were negative emission values in the model development dataset.

To calculate the uncertainty associated with this estimate, use Equation 11 with the value of k from Table 7-1. This results in an annual uncertainty of:

Uncertainty (%) = $\frac{1,566,305}{386,931}$ = 4.05%

This translates to an uncertainty of \pm 15,663 g or \pm 15.66 kg. Thus, the final annual estimate for this barn is 386.93 \pm 15.66 kg. This calculation would be repeated for any other broiler barns on the site.

8.1.3 Combining Structures

To calculate total farm emissions, the emissions from each unit are added. As an example, consider a farm with two houses with a capacity of 25,000 broilers each. These houses will have the same emission estimate for the year, $3,254.58 \text{ kg} \pm 1,844.90 \text{ kg}$. The annual farm emission estimate is:

Farm Total Emissions =
$$3,254.58 + 3,254.58 = 6,509.16 \text{ kg NH}_3$$

To estimate the total farm uncertainty, use Equation 41:

Total Farm Uncertainty =
$$\sqrt{U_{house 1}^{2} + U_{house 2}^{2}}$$

Total Farm Uncertainty = $\sqrt{(270.81)^{2} + (270.81)^{2}}$
Total Farm Uncertainty = 382.98 kg

The final annual NH₃ estimate for the farm is $6,509.16 \pm 2,609.08$ kg. Once the emission models are finalized, EPA will work with stakeholder to develop a tool to facilitate the calculation of barn and open source emissions.

8.2 Model Sensitivity Testing

To further test the models, EPA varied the model parameters to ensure the model results would vary based on these key parameters. Two different tests were conducted: 1) bird placement was increased while the meteorological parameters were held constant, and 2) bird placement was held constant while the meteorological parameters were replaced with the values for a warmer climate.

8.2.1 Sensitivity to Inventory

To test the sensitivity to the bird population, the initial placement was increased to 40,000 birds, resulting in a live animal weight of 3.46. Using the same meteorology from Section 8.1, the emissions for a broiler house on January 1, 2020 is as follows:

 $ln(NH_3) = 1.60581 + 0.008532 * LAW + 0.020739 * Amb_T + 0.004038 * Amb_{RH}$ $ln(NH_3) = 1.60581 + 0.008532 * 3.46 + 0.020739 * -5.3 + 0.004038 * 76$ $ln(NH_3) = 1.60581 + 0.029521 - 0.109917 + 0.306888$ $ln(NH_3) = 1.83230$ $NH_3 = e^{1.83230} \times 1.10605 - 2$

This comes to 4.91 kg NH₃ for the day. This is only 0.08 kg more than a barn with a bird population of 25,000 broiler chicks for the same day. While the individual day difference at a low LAW is minimal, over a year the house with 40,000 birds is estimated to produce 3,942 kg of NH₃ compared the 3,254.58 kg at the 25,000 head house. This annual difference of 687 kg suggests there is some model sensitivity to the number of animals in the barn. A plot of the estimated emissions over the year (Figure 8-1) shows a greater difference in emissions at the end of the growing cycle, particularly during the summer months.

Figure 8-1. Comparison of a broiler house with initial placement of 25,000 birds and 40,000 birds.

8.2.2 Sensitivity to climate

To further test model sensitivity, specifically that climate differences were producing different emission results, EPA calculated the emissions for the same farm in two distinctly different climate regions. The first was the theoretical farm in central Minnesota from the previous example (Section 8.1). The NH₃ emission for this same broiler barn were calculated using meteorology from Atascosa, Texas. These locations were chosen based on 2017 Census of agriculture data indicating areas of broiler markets (Figure 8-2).

Figure 8-2. 2017 Census of Agriculture plot indicating areas of broiler sales. Orange circles indicate approximate locations of test meteorology from Minnesota (MN) and Texas (TX).

For the test sites, the temperatures from the Minnesota (MN) site were generally less than the Texas (TX) site (Figure 8-3). On average, the temperatures in Minnesota were 15 °C less than those in Texas (Table 8-3), with difference between individual month averages varying from 4.6 to 19.7°C lower. With respect to relative humidity, the Texas and Minnesota sites experienced a similar range of daily average relative humidities throughout the year (Figure 8-4and Table 8-4). There are a few instances in the January to March timeframe where humidities were higher in Texas.

Figure 8-3. Comparison on temperatures at test locations in Minnesota (MN) and Texas (TX)

Site	Statistic	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Overall
	Min	-23.5	-22.9	-6.4	-4.9	2.4	15.9	15.4	15.0	4.9	-5.1	-7.8	-20.1	-23.5
MN	Max	-0.3	3.5	6.1	13.9	20.4	28.8	28.1	25.9	19.4	18.0	17.6	0.8	28.8
	Average	-8.2	-8.3	0.7	5.5	12.9	21.4	22.7	20.5	12.4	4.0	1.7	-5.9	6.7
	Min	8.3	5.3	10.5	11.3	20.1	24.6	26.5	26.4	19.0	8.2	8.4	6.5	5.3
ТΧ	Max	22.3	21.9	25.5	25.9	30.0	31.0	32.4	32.8	32.3	28.3	25.8	21.4	32.8
	Average	14.0	12.8	20.4	20.6	25.7	27.9	30.2	30.4	26.0	22.3	19.1	12.9	21.9

Figure 8-4. Comparison of relative humidities at test locations MT and AZ

Table 8-4. Summary	of relative	humidity at th	he two	meteorol	ogical	sites
--------------------	-------------	----------------	--------	----------	--------	-------

Site	Statistic	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Overall
	Min	61.3	53.0	42.0	39.3	30.8	41.0	57.6	53.2	53.0	48.5	48.6	63.0	30.8
MN	Max	85.2	81.4	83.5	74.6	86.0	81.9	82.0	86.9	92.7	89.0	89.4	93.5	93.5
	Average	74.9	65.7	67.1	53.7	57.2	58.9	70.4	73.4	77.2	69.0	70.6	78.8	68.1
	Min	35.0	35.9	39.4	38.6	49.2	42.7	58.1	51.0	42.3	53.0	31.8	28.0	28.0
ТΧ	Max	95.3	92.0	94.4	93.5	82.0	86.7	82.1	73.0	86.4	90.7	93.9	86.3	95.3
	Average	68.3	66.2	73.0	70.3	67.5	69.9	67.3	62.3	70.3	67.6	67.5	64.6	67.8

When the daily calculations are performed for the entire year for a broiler with 25,000 birds, the Texas site typically has higher greater daily emission values for the gaseous pollutants than the Minnesota site (Figure 8-5). Table 8-5 has the estimated annual emissions of all the pollutants studied. The total annual NH₃ emissions estimate for the farm using meteorology from Texas was 4,622 kg— a 1,368 kg increase from the same broiler house with meteorology from Minnesota. A similar trend is seen across the other pollutants. This is consistent with the trend of lower temperatures and higher humidities yielding lower emissions seen during the data exploration in Section 4. Overall, this suggests that the emission models can account for differences in temperature of the different growing regions in the results for broiler houses.

Figure 8-5. Comparison of daily emission at test broiler locations MN and TX.

	MN Emission	TX Emissions
Pollutant	(kg per year)	(kg per year)
NH₃	3,255	4,622
H_2S	16.4	21.2
PM ₁₀	387	446
PM _{2.5}	35.4	42.8
TSP	877	1,005

Table 8-5. Total annual emission from the theoretical broiler barn in MN and TX.

8.2.3 Model Limitations

As noted in the 2013 SAB review (US EPA SAB, 2013), extrapolating to conditions beyond those represented in the model development dataset could produce unrealistic results. To test the limitations of the model, EPA conducted a series of emission calculations over a range of conditions that could be seen at a farm in the US. These emission calculations tested one parameter at a time, with the selected parameter varied by a constant value through the range. For example, ambient temperature was increased by 1°C from the minimum value in the model development dataset up to the maximum value. While one parameter was tested, the remaining parameters were held constant at the average value seen in the model development dataset. The resulting emission values were reviewed and plotted to determine if the model resulted in unrealistic emission values, such as negative emissions or rapid increases in emission rates.

This analysis does not account for interaction between multiple terms within an equation, which could further affect the results. For example, a broiler house with higher ambient temperatures would be able to cover a larger range of inventory before producing negative NH₃ emissions. Conversely, a house with lower ambient temperatures would cover a smaller range of inventory before producing negative NH₃ emission values. However, the analysis does provide a general range where the model produces reasonable results. The following sections outline the analysis for each of the selected models.

The broiler equations included live animal weight, ambient temperature, and ambient relative humidity. The ranges of ambient parameters and average bird weight are based on the NAEMS dataset. The number of birds in a single house are based on house capacity numbers provided by consent agreement participants. The range values tested for each parameter are in Table 8-6, with the results plotted in Figure 8-6 and Figure 8-7. Neither the NH₃ nor H₂S models produce negative emissions under average conditions. For PM₁₀, PM_{2.5}, and TSP (Figure 8-7), none of the models produce negative emissions under average conditions.

Parameter	Upper limit	Lower limit	Average Value	Increment
Ambient temperature (°C)	31	-9	15.8	0.6
Ambient relative humidity (%)	100	32	65.3	1
average of bird weight (kg)	3	0.00	1.1	0.045
Inventory (birds)	50,000	0	24,000	750
Live animal weight (Mg)	150	0	25.7	0.034

 Table 8-6. Parameter ranges tested for the broiler model.

Figure 8-6. Broiler limitation tests for gaseous pollutants.

Visualization of the results for NH₃ (top row) and H₂S (bottom row) with tests live animal weight (left), ambient temperature (center), and relative humidity (right).

Visualization of the results for PM₁₀ (top row), PM_{2.5} (center row), and TSP (bottom row) with tests for live animal weight (left), ambient temperature (center), and relative humidity (right).

To further explore any limitations in the models, emissions were calculated for 21,695,808 combinations across the range of values specified in Table 8-6. A list of all the combinations of the three inputs was created using the R statistical software. R was then used to calculate the emissions using the method shown in section 8.1. The results were then filtered down to only the results that produced negative values to generate the plots for each pollutant. Across this range of conditions, neither the NH₃ nor H₂S models produce negative emissions. The models for PM₁₀, PM_{2.5}, and TSP will produce negative values in instances of low live animal weight ($<\sim$ 10 thousand bird kg⁻¹) combined with high humidities and low temperatures. These conditions mostly occur when the house is empty or during the very first days of the growing cycle. The plots in Figure 8-8 are an attempt to plot the maximum values of live animal weight and ambient temperature that produce negative emissions at the relative humidity specified on the x-axis, but not necessarily in combination. For example, the equation for PM_{10} will produce negative emission at 47% humidity when live animal weight is zero, and ambient temperature is less than or equal to -9°C. Similarly, at 99% relative humidity, the equation can produce negative number when live animal weight is less than or equal to 8.46 thousand birds kg⁻¹ with low temperatures, and temperatures as high as 24°C in combination with low live animal weights.

Figure 8-8. Maximum values at which the particulate matter equations yield negative emissions. Visualization of the results for PM₁₀ (top left), PM_{2.5} (top right), and TSP (bottom).

8.3 Comparison to literature

To further validate the EEMs developed under this effort, EPA compared the results for the emission models to the emissions calculated using emission factors found in literature. EPA scanned the literature for a variety of emission factors for this comparison. EPA selected a variety of recent factors not derived from the NAEMS for comparison, which are summarized separately for each pollutant in Table 8-7. The original units provided in Roumeliotis et al. (2010b) were g d⁻¹ AU⁻¹, based on an animal unit (AU) of 500kg, and was converted to head (hd) using an average bird weight of 1.03. For a further comparison, the emission factor included EPA's 2001 draft AP-42 chapter is included for NH₃. The emission factor was converted from the original units of the document were lb yr⁻¹ AU⁻¹, where AU was equivalent to 100 birds, to kg hd⁻¹ yr⁻¹. The draft AP-42 has a general emission factor for particulate matter that is not specific to size fractions and is not included here.

Source	Pollutant	mg h ⁻¹ 500 kg ⁻¹	g d ⁻¹ AU ⁻¹	g hd ⁻¹ yr ⁻¹	kg hd⁻¹ yr⁻¹
EPA 2001	NH₃	♦		243	0.243
Lacey et al., 2003	NH₃			0.630 ^a	0.230
Roumeliotis et al., 2010b	NH₃		82ª		0.062
Harper et al., 2010	NH₃	-			0.099 ª
Miles et al., 2014	NH₃			0.540 ^a	0.197
Lacey et al., 2003	PM ₁₀	536ª			0.010
Roumeliotis et al., 2010b	PM ₁₀		5 ^a		0.004
Roumeliotis et al., 2010b	PM _{2.5}		0.78°		0.001
Lacey et al., 2003	TSP	10,210ª			0.184

Table 8-7. Emission factors for broiler houses from literature

^a as reported in source.

These emission factors were then applied to the theoretical broiler house from the previous example calculations. Comparisons were made for an inventory of 25,000 birds and 40,000 birds for both a cold weather location (Minnesota) and a warm weather location (Texas). The results for NH₃ are presented in Table 8-8. For both inventory levels, the emission factors from literature generally fall between the estimate produced by the emission models for the two climate extremes. The exception is the emission factor from Miles et al. (2014) which produces an estimate slightly higher than the warm weather estimate from the model developed for this report.

		NH₃ Emissions (kg yr ⁻¹)					
Meteorology	Inventory	2021	EPA	Lacey et	Roumeliotis et	Harper et	Miles et
site	(hd)	models	2001	al., 2003	al., 2010b	al., 2010	al., 2014
MN	25,000	3,255	6,075	5,749	1,541	2,475	4,928
ТХ	25,000	4,469	6,075	5,749	1,541	2,475	4,928
MN	40,000	3,942	9,720	9,198	2,466	3,960	7,884
ТХ	40,000	5,352	9,720	9,198	2,466	3,960	7,884

Table 8-8. Comparison of resulting broiler house NH₃ emission from various estimation methods.

The comparisons for PM₁₀, PM_{2.5}, and TSP are presented in Table 8-9, Table 8-10, and Table 8-11, respectively. The models developed for this report produce higher estimates for PM₁₀ and PM_{2.5} than the factors found in literature. For TSP, the model estimates are lower than the factors found in literature. One possible reason for the differences in emissions might be the amount of data collected. The KY1B site captures all three particulate matter sizes for an entire year, while Lacey et al. (2003) monitored for 6 months and Roumeliotis et al. (2010b) monitored for 8 months. The Lacey et al. (2003) study does not provide an indication of the completeness of observation from its modeling period. However, the Roumeliotis et al. (2010b) study does provide a summary by season, which indicates a loss of data, particularly in the spring, that would further reduce the number of daily emission values available to develop an emission factor. In addition, the NAEMS models included the days between flocks in the data set used to develop the model, which do not appear to have been included in the estimates from literature. Another factor that could contribute to differences is the farms in the Lacey et al. (2003) and Roumeliotis et al. (2010b) used different bedding material (wood shavings and wheat straw) from the NAEMS sites (rice hulls).

				(1 1)		
		PIV	PM ₁₀ Emissions (kg yr ¹)			
Meteorology	Inventory	2021	Lacey et	Roumeliotis		
site	(hd)	models	al., 2003	et al., 2010b		
MN	25,000	387	242	94		
ТХ	25,000	430	242	94		
MN	40,000	615	388	150		

658

388

150

ТΧ

40,000

 Table 8-9. Comparison of resulting broiler house PM10 emission from various estimation methods.

		PM _{2.5} Emissions (kg yr ⁻¹)			
Meteorology	Inventory	2021	Roumeliotis et		
site	(hd)	models	al., 2010b		
MN	25,000	35	15		
ТХ	25,000	41	15		
MN	40,000	58	23		
ТХ	40,000	64	23		

Table 8-10. Comparison of resulting broiler house PM2.5 emission from various estimation methods.

Table 8-11. Comparison of resulting broiler house TSP emission from variousestimation methods.

		TSP Emissions (kg yr ⁻¹)		
Meteorology	Inventory	2021	Lacey et al.,	
site	(hd)	models	2003	
MN	25,000	877	4,605	
ТХ	25,000	961	4,605	
MN	40,000	1,355	7,369	
TX	40,000	1,439	7,369	

8.4 Replication of Independent Measurements

A final test of the developed emission models is to compare the predicted emissions to observed values from an independent study. For this test EPA obtained data from the Wheeler et al. (2006b) study, where twelve commercial broiler houses in Pennsylvania and western Kentucky were monitored for NH₃ emissions for several two day periods over the course of a year. EPA was able to obtain data for the Kentucky sites, which were comprised of two sites, where four barns were monitored. The study included houses that used a pH-reducing litter treatment to reduce ammonia emissions. Observations from the houses with treated litter were withheld from this comparison, as the emission model replicates uncontrolled emissions.

The data provided included the inventory and animal weight parameters needed to estimate emission from the barns using the developed emission models. The additional ambient temperature and relative humidity data were obtained from the NCEI for the Paducah Barkley Regional Airport in KY (WBAN: 03816), a Local Climate Data site in in western Kentucky with data available for this period. Its data file provides the values of the key meteorological parameters needed for calculations. These estimates were then compared to the observed values, when available, using the same model performance statistics noted in Section 6 of the main report. The statistics for all observation are presented in Table 8-11. These statistics suggest the model has a negative bias, and under predicts NH₃ to some degree. The model performance statistics were also calculated for each season (Table 8-12). The season statistics show slightly better performance in the spring and a shift to positive bias (over prediction) in the winter.

Pollutant	n	MB (kg)	ME (kg)	NMB (%)	NME (%)	r
NH₃	154	-5.21	11.01	-24%	51%	0.83

Table 8-12. Model performance evaluation statistics for high rise houses

Table 8-13. Model performance evaluation statistics by season

Pollutant	season	n	MB (kg)	ME (kg)	NMB (%)	NME (%)	r
NH3	spring (MAM)	36	-0.64	7.28	-4%	48%	0.82
NH3	summer (JJA)	60	-10.81	13.48	-36%	45%	0.81
NH3	autumn (SON)	40	-4.43	12.25	-22%	61%	0.74
NH3	winter (DJF)	18	2.60	7.45	26%	75%	0.56

Scatter plots were also developed to present the ordered pairs with observations on the xaxis and the model predicted values on y-axis. These plots are useful for indicating trends of either over, or under prediction across the range of values. The plots include the 1:1 line (solid line) and the 1:0.5 and 1:2 lines (dashed lines). Points that fall on the 1:1 line were predicted correctly, and points that fall between the 1:0.5 and 1:2 are within a factor of two observations. Good model performance would be indicated by scatter contained within a factor of two of the 1:1 line, that is between the 1:0.5 and 1:2 lines. Looking for scatter confined to within a factor of two of the observation has been used as a model performance metric in air quality modeling as by EPA for some time (Chang & Hanna, 2004), and continues to be included in EPA's Atmospheric Model Evaluation Tool (Appel, et al. 2011) which is the current model evaluation platform.

The scatter plots were developed by season and color code to show the performance for each house. The NH₃ scatter plots (Figure 8-6) show that a vast majority of the predicted values fall within a factor of two of the observation for all seasons. Additional plots and statistics are available in Appendix H.

Figure 8-9. Scatter plot of the observed NH₃ emissions at the APECAB IN high rise site versus the emission model estimates.

9.0 CONCLUSIONS

Consistent with the Air Compliance Agreement with the AFO industry, EPA has developed emission estimation methods for NH₃, H₂S, PM₁₀, PM_{2.5}, and TSP for confinement sources at broiler operations. These draft statistical models focus on parameters that have been identified in published peer-reviewed journals as having empirical relationships with emissions. These relationships were evaluated within the NAEMS dataset before selecting parameters for emission model development. EPA also considered which variables could be measured or obtained with minimal effort.

The live animal weight (inventory*average animal weight) was identified as a key parameter and is used in all the models as a proxy for the volume of manure generated and changes during the growing cycle. Temperature and relative humidity parameters were also identified as important variables for emission rates in the confinement house emission models. Relative humidity parameters proved to be key for particulate matter prediction, as the higher moisture levels keep barn materials from entraining into the air with mechanical disruptions. Confinement parameters specific to the barn, like exhaust temperature, showed promise as predictive parameters. However, these parameters are not routinely measured at farms and would therefore represent an increased burden to operators should they be required for emissions estimation. As such, all of the draft broiler emission models put forward for potential future use in this document use parameters that are already routinely collected as part of the standard farm operation (e.g., inventory and animal weight) or are ambient meteorological parameters, which are freely available from public sources such National Center for Environmental Information (NCEI, https://gis.ncdc.noaa.gov/maps/).

Overall, the method used to develop the emission models allows for the incorporation of additional emissions and monitoring datasets from other studies, should they become available to EPA after the release of the emission models. Revised emission models for any individual farm type could be issued once significant additional data becomes available. Similarly, if monitoring options for house parameters become more widespread as automation options grow, future evaluations could assess whether emission models should be developed to include these parameters.

EPA recognizes the scientific and community desire for process-based models. The data collected during NAEMS and the emission models developed here lay the groundwork for developing these more process-related emission estimates. EPA supports the future development of process-based models which account for the entire animal feeding process. While the interim statistical models allow estimation of emissions from confinement houses at broiler operations

across the U.S., process-based models would allow producers to estimate the impacts of different management practices to reduce air emissions, helping to incentivize change.
10.0 REFERENCES

Aarnink, A.J.A, & Ellen, H.H. (2007). Processes and factors affecting dust emissions from livestock production. In: *Proceedings of the DustConf 2007. How to Improve Air Quality.* Maastricht, The Netherlands.

Brewer, S.K., Costello, T.A. (1999) In situ measurement of ammonia volatilization from broiler litter using an enclosed air chamber. Transactions of the ASAE 42(5), 1415-1422.

Burns, Robert T.; Xin, Hongwei; Gates, Richard S.; Li, Hong; Hoff, Steven J.; Moody, Lara B.; Overhults, Douglas G.; and Earnest, John W., "Tyson Broiler Ammonia Emission Monitoring Project: Final Report" (2007). Agricultural and Biosystems Engineering Technical Reports and White Papers. 15. <u>http://lib.dr.iastate.edu/abe_eng_reports/15</u>

Burns, Robert T.; Xin, Hongwei; Gates, Richard S.; Li, Hong; Moody, Lara B.; Overhults, Douglas G.; Earnest, John W.; Hoff, Steven J.; and Trabue, Steven, "Southeastern Broiler Gaseous and Particulate Matter Emissions Monitoring" (2009). *Agricultural and Biosystems Engineering Technical Reports and White Papers*. 7. http://lib.dr.iastate.edu/abe_eng_reports/7

Calvet, S., Cambra-López, M., Estelles, F., & Torres, A. G. (2011). Characterization of gas emissions from a Mediterranean broiler farm. Poultry science 90(3), 534-542.

Cambra-Lopez, Hermosilla, T., Lai, H.T.L., Aarnink, A.J.A., & Ogink, N.W.M. (2011). Particulate matter emitted from poultry and pig houses: source identification and quantification. Transactions of the ASABE 54(2), 629-642.

Carey, J. B., Lacey, R. E., & Mukhtar, S. (2004). A review of literature concerning odors, ammonia, and dust from broiler production facilities: 2. Flock and house management factors. Journal of Applied Poultry Research 13(3), 509-513.

Christensen J.R., Nash, M.S., Chaloud D., and Pitchford A. 2016. Spatial Distribution of Small Water Body Types Across Indiana Ecoregions. *Ecohydrology*. 9,122-137. Available at: https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=308263&Lab=NERL

Cortus, E.L., X.-J. Lin, R. Zhang, and A.J. Heber. 2010. National Air Emissions Monitoring Study: Emissions Data from Two Broiler Chicken Houses in California - Site CA1B. Final Report. Purdue University, West Lafayette, IN, July 2.

Elliot, H.A., Collins, N.E. (1982). Factors affecting ammonia release in broiler houses. Transactions of the ASAE 25(2),413-424.

Grant, R.H., Boehm, M.T., Lawrence, A.F., & Heber, A.J. (2013). Ammonia emissions from anaerobic treatment lagoons at sow and finishing farms in Oklahoma. Agricultural and Forest Meteorology 180, 203-210.

Harper LA, Flesch TK, Wilson JD. (2010) Ammonia emissions from broiler production in the San Joaquin Valley. Poult Sci. 2010 Sep;89(9):1802-14. doi: 10.3382/ps.2010-00718. PMID: 20709964.

Heber A.J., Ni, J-Q., Ramirez, J.C., Schrock, W., & Elkins, J. (2008). Quality assurance project plan for the National Air Emissions Monitoring Study (barn component). Purdue University.

Lacey, R.E., Redwine, J.S., Parnell Jr., C.B., 2003. Particulate matter and ammonia emission factors for tunnel-ventilated broiler production houses in the southern US. Transactions of the ASAE 46, 1203e1214.

Leeden, Rien & Meijer, Erik & Busing, Frank. (2008). Resampling Multilevel Models. 10.1007/978-0-387-73186-5_11.

Li, Hong; Burns, Robert T.; Gates, Richard S.; Trabue, Steven; Overhults, Douglas G.; Moody, Lara B.; and Earnest, John W., "Hydrogen Sulfide and Nonmethane Hydrocarbon Emissions from Broiler Houses in the Southeastern United States" (2008). Agricultural and Biosystems Engineering Conference Proceedings and Presentations. 177. <u>https://lib.dr.iastate.edu/abe_eng_conf/177</u>

Liang, W.-Z., Classen, J.J., Shah, S.B. (2014). Ammonia fate and transport mechanisms in broiler litter. Water, Air and Soil Pollution 225,1812.

Lin, X. J., Cortus, E. L., Zhang, R., Jiang, S., & Heber, A. J. (2012). Air emissions from broiler houses in California. Transactions of the ASABE 55(5), 1895-1908.

Liu, Z., Wang, L., Beasley, D., & Oviedo, E. (2007). Effect of moisture content on ammonia emissions from broiler litter: A laboratory study. Journal of Atmospheric Chemistry 58(1), 41-53.

Liu, Z., Wang, L., Beasley, D.B., Shah, S.B. (2008). Mass transfer coefficient of ammonia emissions from broiler litter. ASABE Paper No. 084368. St Joesph, MI:ASABE.

Liu, Z., Wang, L., Beasley, D.B., Shah, S.B. (2009). Modeling ammonia emissions from broiler litter at laboratory scale. Transactions of the ASABE 52(5), 1683-1694.

Miles DM, Moore PA, Burns RT, Brooks JP. Ammonia and nitrous oxide emissions from a commercial broiler house. J Environ Qual. 2014 Jul;43(4):1119-24. doi: 10.2134/jeq2013.09.0390. PMID: 25603060.

Moody, L.B., Li, H., Burns, R.T., Xin, H., Gates, R.S., Hoff, S.J., Overhults, D. 2008. Appendices J-T, pp. 199-258 in A Quality Assurance Project Plan for Monitoring Gaseous and Particulate Matter Emissions. ASABE # 913C0708e.

Ni, J-Q., Heber A.J., Sutton A.L., & Kelly D.T. (2009). Mechanisms of gas releases from swine wastes. Transactions of the ASABE 52(6), 2013-2025.

Ni, J-Q., Liu, S., Diehl, C.A., Lim T.T., Bogan, B.W., Chen, L., Chai, L., Wang, K., & Heber, A.J. (2017). Emission factors and characteristics of ammonia, hydrogen sulfide, carbon dioxide, and particulate matter at two high-rise layer hen houses. Atmospheric Environment 154, 260-273.

Patterson, P.H., Adrizal. (2005). Management strategies to reduce air emissions: Emphasis – Dust and ammonia. *Journal of Applied Poultry Research* 14(3), 638-650

Redwine, J. S., Lacey, R. E., Mukhtar, S., & Carey, J. B. (2002). Concentration and emissions of ammonia and particulate matter in tunnel–ventilated broiler houses under summer conditions in Texas. Transactions of the ASAE 45(4), 1101.

Roumeliotis, T.S., Dixon, B.J, Van Heyst, B.J., (2010a). Characterization of gaseous pollutant and particulate matter emission rates from a commercial broiler operation part I: Observed trends in emissions. Atmospheric Environment 44, 3770-3777.

Roumeliotis, Taylor & Dixon, Brad & Van Heyst, Bill. (2010b). Characterization of gaseous pollutant and particulate matter emission rates from a commercial broiler operation part II: Correlated emission rates. Atmospheric Environment. 44. 3778-3786. 10.1016/j.atmosenv.2010.06.051.

Rumsey I.C., & Aneja V.P. (2014). Measurement and modeling of hydrogen sulfide lagoon emissions from a swine concentrated animal feeding operation. Environmental Science and Technology 48, 1609-1617.

Saksrithai, K., & King, A. J. (2018). Controlling hydrogen sulfide emissions during poultry productions. Journal of Animal Research and Nutrition 3(1), 2.

Takai H., Pedersen S., Johnsen J.O., Metz J.H.M., Groot Koerkamp P.W.G., Uenk G.H., Phillips V.R., Holden M.R., Sneath R.W., Short, J.L., White, R.P., Hartung, J., Seedorf J., Schroder M.,

Linkert K.H., & Wathes C.M. (1998). Concentrations and emissions of airborne dust in livestock buildings in Northern Europe. Journal of Agricultural Engineering Research 70(1), 59-77.

U.S. EPA Science Advisory Board (SAB), 2013. SAB Review of Emissions-Estimating Methodologies for Broiler Animal Feeding Operations and for Lagoons and Basins at Swine and Dairy Animal Feeding Operations, EPA-SAB-13-003.

Van Harn, J., Aarnink, A., Mosquera, J., Van Riel, J., Ogink, N. (2012). Effect of bedding material on dust and ammonia emission from broilers houses. *Transactions of the ASABE*, 55(1), 219-226.

Weaver W.D., & Meijerhof, R. (1991). The effect of different levels of relative humidity and air movement on litter conditions, ammonia levels, growth, and carcass quality for broiler chickens. Poultry Science 70, 746-755.

Wheeler, E. F., Casey, K. D., Gates, R. S., Xin, H., Zajaczkowski, J. L., Topper, P. A., Liang, Y., & Pescatore, A. J. (2006a). Ammonia emissions from twelve US broiler chicken houses. ASABE Paper No. 0622042. St. Joseph, MI: ASABE.

Wheeler, Eileen F.; Casey, Kenneth D.; Gates, Richard S.; Xin, Hongwei; Zajaczkowski, Jennifer L.; Topper, Patrick A.; Liang, Yi; and Pescatore, Anthony J., "Ammonia Emissions from Twelve U.S. Broiler Chicken Houses" (2006b). Agricultural and Biosystems Engineering Publications. 151.https://lib.dr.iastate.edu/abe_eng_pubs/151

Winkel, A. (2016). Particulate matter emission from livestock houses: measurement methods, emission levels and abatement systems (Doctoral dissertation, Wageningen University).

Wood, D.J., Van Heyst. (2016). A review of ammonia and particulate matter control strategies for poultry housing. *Transactions of the ASABE* 59(1), 329-344.

Appendix A - PM Sampling

List of Tables

Fable A-2. Comparison of CA1B, KY1B-1, and KY1B-2	A-3
Cable A-1. PM Sampling Schedule CA1B	A-4

Table A-1. Comparison of CA1B, KY1B-1, and KY1B-2

			Site				
Parameter	CA1B H10	CA1B H12	KY1B-1 H5	KY1B-2 H3			
Site Type		Litte	er on Floor				
House Ventilation Type		Mechanically-ve	entilated (MV) (tunnel)				
House Capacity	21.0	003	24,400 (summer)				
(no. of birds per flock)	21,0	00-	25,800	(winter)			
Bird Type	60% Cobb,	40% Ross	100% Cobb	(mixed sex)			
Average Animal residence	Λ.	,		2			
time, days	42	2		5			
Frequency of full clean-out	After thre	ee flocks	Once p	ber year			
	After each flock to	p 20-25% of litter					
Decaking	removed from e	entire length of	After ea	ach flock			
	hou	ise					
Manure storage in barn, days	46 (brooder are	ea), 155 (back)	~:	365			
# buildings at site	10	5	8	24			
Year of construction	1960s/	/2002	1992	1991			
Ridgeline orientation	East-V	West	North	-South			
Barn width, m	12.2 (4	40 ft)	13.1	(43 ft)			
Barn length, m	125 (4	10 ft)	155.5 (510 ft)				
Barn area, m ²	1,524 (16	,400 ft ²)	621 (2,2	1930 ft2)			
Barn spacing, m	12.2 (*	40 ft)	18.3	(60 ft)			
Ridge height, m	4.2 (13	3.8 ft)	5.2 (1	7.2 ft)			
Sidewall height, m	2.3 (7	.5 ft)	2.1	(7 ft)			
Number of air inlets	60 sidewal	l/2 tunnel	L .	52			
Type of inlat	Baffled eave inle	t, 0.18 x 1.32 m	box air inlets 15 x 66 cm				
Type of met	(0.6 x	4.3 ft)	(6 x 26 inch)				
Inlet control basis	Static pi	ressure	automatic				
Number of exhaust fans	1	2	14				
Largest fan dia., m	1.22 (4	48 in)	1.22	(48 in)			
Smallest fan dia., m	0.91 (3	36 in)	0.91	(36 in)			
Fan spacing, m	0.2 (8	3 in)	36.6 m	(120 ft)			
Number of Ventilation	1	7	12	13			
Stages			12	15			
Fan manufacturer	Choretime (48),	Aerotech (36)	CanArm	Euroemme			
Controls vendor	Choretime (48),	Aerotech (36)	Chore-Time	Rotem			
Artificial heating	LP Radiant brood Btu	lers (14), 42,000 /h	Pancake brooders	(26), 30,000 Btu/h			
	LP heaters (3),	180,000 Btu/h	Space furnaces ((3) 225,000 Btu/h			
Summer cooling	Tunne	el/EP	Tunr	nel/EP			
Brooding section	East half	of barn	South ha	alf of barn			
Monitoring Period	Sept. 27, 2007-	Oct. 21, 2009	Feb. 14, 2006 – March 14, 2007	Feb. 20, 2006 – March 5, 2007			
Length of Monitoring (days)	75	6	394	379			
	//			373			

^a The NAEMS documentation for site CA1B did not indicate a difference in summer and winter bird placements.

Time and	day, m/d/y	Test du	uration	(days)
Start	Stop	PM ₁₀	TSP	PM _{2.5}
9/28/07	12/10/07	73.6		
12/10/07	12/19/07		8.9	
12/19/07	2/1/08	44.0		
2/1/08	2/19/08			18.1
2/19/08	2/20/08			0.3†
2/19/08	2/20/08	0.3‡		
2/20/08	5/15/08	85.7		
5/15/08	5/28/08		12.8	
5/28/08	7/9/08	42.0		
7/9/08	7/25/08			16.0
7/25/08	11/17/08	115.1		
11/17/08	11/24/08		7.1	
11/24/08	1/5/09	41.9		
1/5/09	1/20/09			15.0
1/20/09	4/9/09	79.0		
4/9/09	4/20/09		11.0	
4/20/09	6/25/09	66.1		
6/25/09	7/8/09		12.9	
7/8/09	9/26/09	80.1		
9/26/09	10/7/09			10.9
10/7/09	10/21/09		14.1	
10/21/09	10/22/09	0.4		
To	tals	628.3	66.7	60.3

Table A-2. PM Sampling Schedule CA1B

+ All except ambient ‡Only ambient

Appendix B - Data Processing

List of Tables

Table B-1. Summar	v of the effect of	of applying the	negative emission	cut-off to broile	r dataB-4
	j or the erreet c	i uppijing ine	negative ennosion		

1.0 NEGATIVE EMISSION VALUE ASSESSMENT METHODOLOGY

Negative calculated emission values can occur in NAEMS data set due to a range of different scenarios as described in the SAB review of the 2012 EEMs developed by EPA (U.S. EPA SAB, 2013). A summary of these scenarios and whether SAB recommended the data should be retained or removed is provided below:

- 1. A calculation bias may occur when measured values are at or close to the detection limit, or negative. This scenario should result in small negative values, which should be retained.
- 2. In NAEMS, the background and source measurements were measured either intermittently (twice a day for gas), or continuously without correction for lag time in the barn (PM data), thus leading to a bias either up or down, introducing the potential for negative emission values. Negative emission values should be retained because this bias could occur in either the positive or negative direction.
- 3. Outdoor events may affect background and barn concentrations. For example, if there was activity outside an animal barn which resulted in increased pollutant concentration (e.g., manure cleanout of another barn)), the measured background values would create a negative bias. Alternatively, a positive bias could occur if meteorological conditions caused the barn exhaust air to return into the barn, thus affecting measured barn concentrations.

To avoid bias from the true value, the SAB suggests keeping calculated values from scenario 1 and 2 and removing values identified to be caused by scenario 3, however the NAEMS did not record outdoor events that may affect background concentration (scenario 3), therefore it could not be determined if negative emissions were caused by scenario 2 or 3. It is likely that scenarios 1 and 2 result in smaller negative (closer to zero) emissions than scenario 3. Therefore, a methodology was developed to remove large negative emissions likely associated with scenario 3. In the NAEMS QAPP, the gas and PM barn emission uncertainty were determined to be $\pm 27\%$ and $\pm 32\%$ for mechanically ventilated barns and $\pm 50\%$ and $\pm 53\%$ for naturally ventilated barns (Heber et al. 2008). Cut-offs for valid negative data were therefore determined for each pollutant by multiplying the emission uncertainty by the median of the positive measured emission values.

			Negative	# of nega	# of negative emission			
	Median positive		emission	Before	Removed	After		
	emission	Uncertainty	Cut-Off	cut-off	due to	cut-off		
Pollutant	(kg d⁻¹/ g d⁻¹)ª	(%)	(kg day⁻¹/ g d⁻¹)ª	applied	cut-off	applied		
NH ₃	11.72	27	-3.16	2	0	2		
H ₂ S	32.00	27	-8.64	37	3	34		
PM ₁₀	754.10	32	-241.31	4	0	4		
PM _{2.5}		32	-16.29	0	0	0		
TSP		32	-559.85	0	0	0		

Table B-1. Summary of the effect of applying the negative emission cut-off to
broiler data.

^a NH₃ emissions in units of kg d⁻¹, all other pollutants in units of g d⁻¹

2.0 REFERENCES

Heber A.J., Ni J-Q., Ramirez J.C., Schrock W., and Elkins J. 2008. Quality assurance project plan for the National Air Emissions Monitoring Study (barn component). Purdue University, West Lafayette, IN.

U.S. EPA Science Advisory Board (SAB), 2013. SAB Review of Emissions-Estimating Methodologies for Broiler Animal Feeding Operations and for Lagoons and Basins at Swine and Dairy Animal Feeding Operations, EPA-SAB-13-003.

Appendix C - Data Completeness

List of Tables

Table C-1. The number of Broiler ADM for NH3 at varying percentages of data completeness C-4
Table C-2. The number of Broiler ADM for H ₂ S at varying percentages of data completenessC-4
Table C-3. The number of Broiler ADM for PM_{10} at varying percentages of data completenessC-5
Table C-4. The number of Broiler ADM for $PM_{2.5}$ at varying percentages of data completeness C-5
Table C-5. The number of Broiler ADM for TSP at varying percentages of data completeness C-5

1 Data Completeness Criteria for the Revised Data Set

The appropriate data completeness criteria to use in a study depends on the size of the dataset and the accuracy needed. A study by Grant et al. (2013), in which NH₃ emissions were modeled from swine lagoons based on NAEMS data, investigated data completeness and associated accuracy. The swine lagoon NH₃ emissions dataset had limited data availability at a data completeness of 75%. Grant et al. (2013) explored how much the data completeness criteria could be relaxed but still result in data with acceptable error. The study suggested an error of $\pm 25\%$ to be acceptable and determined that a daily data completeness of 52% (or 25 out of 48 30-minute periods) gave less than $\pm 25\%$ error (see Figure B-1). Using this relaxed daily completeness criteria resulted in a substantial increase in the size of the dataset.

Based on Figure B-1 from the Grant et al. (2013) study, it can be observed that a daily completeness criterion of 75% (36 out of 48 30-minute periods) would give an error of approximately 10%. If it is assumed that the relationship between data completeness and error from the Grant et al. (2013) study is representative of other NAEMS datasets, the effect of relaxed data completeness criteria can be investigated for other NAEMS sources.

The following sections examine the effect of a reduced data completeness criterion on the number of valid average daily means (ADM) for both the layer barns and manure shed, based on additional analysis completed by Heber that examined the effect of different completeness criteria by comparing the number of valid ADM.

EPA reviewed this data for the egg-layer sites and retained the 75% completeness criterion for all sites. The full analysis can be found in Appendix B.

1.1 Data Completeness Review and Conclusions for the CA1B dataset

The number of average daily means (ADM) for NH₃ emissions at varying percentages of data completeness for the revised data set are shown in Figure C-1. For the Broiler site data set, decreasing the daily completeness criteria from 75% to 50% would increase the number of valid days by 32 (3 %), but based on the Grant et al. (2013) study there would be an approximate 15% increase in error. Since the small increase in the number of ADM values does not justify the 15% increase in error, a daily completeness criterion of 75% was chosen for the revised NH₃ Broiler site data set.

Table C-1. The number of Broiler ADM for NH₃ at varying percentages of data completeness.

% Valid Data	0	10	20	30	40	50	60	70	75	80	90	100
CA1B H10	506	505	504	502	497	487	477	472	472	466	456	363
CA1B H12	506	505	504	502	497	488	476	473	471	466	462	389
Total	1,012	1,010	1,008	1,004	994	975	953	945	943	932	918	752

For H_2S , the number of ADM at varying percentages of data completeness for the revised data set are shown in Table C-2. For the Broiler site data set, decreasing the daily completeness criteria from 75% to 50% would increase the number of valid days by 38 (3%), but based on the Grant et al. (2013) study there would be an approximate 15% increase in error. Since the small increase in the number of ADM values does not justify the 15% increase in error, a daily completeness criterion of 75% was chosen for the revised H_2S Broiler site data set.

 Table C-2. The number of Broiler ADM for H₂S at varying percentages of data completeness.

% Valid Data	0	10	20	30	40	50	60	70	75	80	90	100
CA1B H10	628	627	626	624	620	612	602	597	596	588	576	460
CA1B H12	628	627	626	624	620	614	601	596	592	585	581	490
Total	1,256	1,254	1,252	1,248	1,240	1,226	1,203	1,193	1,188	1,173	1,157	950

For PM₁₀, the number of ADM at varying percentages of data completeness for the revised data set are shown in Table C-3. For the Broiler site data set, decreasing the daily completeness criteria from 75% to 50% would increase the number of valid days by 456 (14%). The number of ADM for PM_{2.5} are presented in Table C-4, and show the number of valid ADM would increase by 5 (5%). TSP (Table C-5) had an increase of 9 days (12%), when shifting to 50% completeness criteria. Again, the small increase in the number of ADM values does not justify the 15% increase in error, a daily completeness criterion of 75% was chosen for the all the PM species for the Broiler data set.

% Valid Data	0	10	20	30	40	50	60	70	75	80	90	100
CA1B H10	408	407	407	401	389	375	359	353	352	344	336	244
CA1B H12	428	426	426	422	411	395	381	377	376	373	364	282
Total	836	833	833	823	800	770	740	730	728	717	700	526

Table C-3. The number of Broiler ADM for PM10 at varying percentages of datacompleteness.

Table C-4. The number of Broiler ADM for PM2.5 at varying percentages of datacompleteness.

% Valid Data	0	10	20	30	40	50	60	70	75	80	90	100
CA1B H10	62	61	61	61	59	55	53	53	53	53	52	41
CA1B H12	51	50	50	50	48	46	43	43	43	43	43	36
Total	113	111	111	111	107	101	96	96	96	96	95	77

Table C-5. The number of Broiler ADM for TSP at varying percentages of data completeness.

% Valid Data	0	10	20	30	40	50	60	70	75	80	90	100
CA1B H10	53	51	50	48	46	41	38	37	37	36	34	21
CA1B H12	53	52	50	48	46	44	41	39	39	38	36	29
Total	106	103	100	96	92	85	79	76	76	74	70	50

1.2 Data Completeness Review and Conclusions for the KY1B sites

Evaluation of adjusted completeness criteria was not performed for the data from KY1B-1 or KY1B-2.

Appendix D - Summary Statistics

List of Tables

Table D-1. Summary statistics for NH ₃ emissions (kg d ⁻¹) from broiler sitesD-3
Table D-2. Summary statistics for NH ₃ emissions (g hd ⁻¹ d ⁻¹) from broiler sitesD-3
Table D-3. Summary statistics for H_2S emissions (g hd ⁻¹ d ⁻¹) from broiler sitesD-3
Table D-4. Summary statistics for H_2S emissions (g hd ⁻¹ d ⁻¹) from broiler sitesD-3
Table D-5. Summary statistics for PM_{10} emissions (g hd ⁻¹ d ⁻¹) from broiler sitesD-4
Table D-6. Summary statistics for PM_{10} emissions (g hd ⁻¹ d ⁻¹) from broiler sitesD-4
Table D-7. Summary statistics for PM _{2.5} emissions (g hd ⁻¹ d ⁻¹) from broiler sitesD-4
Table D-8. Summary statistics for PM _{2.5} emissions (g hd ⁻¹ d ⁻¹) from broiler sitesD-4
Table D-9. Summary statistics for TSP emissions (g d ⁻¹) from broiler sitesD-5
Table D-10. Summary statistics for TSP emissions (g hd ⁻¹ d ⁻¹) from broiler sitesD-5
Table D-11. Summary statistics of production parameters at broiler sitesD-6
Table D-12. Summary statistics of environmental parameters at broiler sitesD-7
Table D-13. Summary statistics of ambient meteorological parameters at broiler sitesD-7
Table D-14. Summary statistics of litter age parameters at broiler sites
Table D-15. Summary statistics of litter parameters at broiler sites.

Statistic	CA1B H10	CA1B H12	KY1B-1 H5	KY1B-2 H3
Mean	10.21	8.98	12.13	12.37
St. Dev	9.27	8.46	7.81	9.57
N	472	471	378	336
Median	6.43	4.94	11.22	11.14
Min	0	-0.02	0	0
Max	51.93	36.05	44.72	35.48
CV(%)	90.86	94.18	64.39	77.36
N<0	0	2	0	0

Table D-1. Summary statistics for NH₃ emissions (kg d⁻¹) from broiler sites.

Table D-2. Summary statistics for NH₃ emissions (g hd⁻¹d⁻¹) from broiler sites.

Statistic	CA1BH10	CA1BH12	KY1B1H5	KY1B2H3	
Mean	0.62	0.55	0.54	0.59	
St. Dev	1.10	1.04	0.33	0.38	
N	391	393	299	246	
Median	0.37	0.29	0.50	0.58	
Min	0.00	0.00	0.01	0.01	
Max	19.33	18.50	1.52	1.48	
CV(%)	177.42	188.84	60.94	64.56	
N<0	0	0	0	0	

Table D-3. Summary statistics for H₂S emissions (g hd⁻¹d⁻¹) from broiler sites.

Statistic	CA1B H10	CA1B H12	KY1B-1 H5	KY1B-2 H3
Mean	52.73	50.41	47.70	53.50
St. Dev	50.48	50.71	51.11	50.19
N	596	592	342	291
Median	35.02	25.79	31.00	35.60
Min	-8.65	-13.09	0.00	0.00
Max	206.84	184.90	259.45	186.33
CV(%)	95.73	100.59	107.14	93.81
N<0	18	18	1	0

Table D-4. Summary statistics for H₂S emissions (g hd⁻¹d⁻¹) from broiler sites.

Statistic	CA1BH10	CA1BH12	KY1B1H5	KY1B2H3	
Mean	0.00301	0.00289	0.00252	0.00284	
St. Dev	0.00273	0.00278	0.00238	0.00199	
Ν	511	510	276	216	
Median	0.00267	0.00226	0.00197	0.00291	
Min	-0.00003	-0.00002	0.00005	0.00006	
Max	0.02275	0.02207	0.01180	0.00783	
CV(%)	90.92673	96.17013	94.34564	69.95740	
N<0	3	4	0	0	

Statistic	CA1B H10	CA1B H12	KY1B-1 H5	KY1B-2 H3	
Mean	873.30	879.19	919.69	1,040.05	
St. Dev	831.52	781.04	886.32	999.30	
N	352	376	301	305	
Median	622.62	651.82	745.93	770.89	
Min	-2.11	-1.46	0.00	0.00	
Max	3,557.85	3,464.29	4,513.85	4,146.86	
CV(%)	95.22	88.84	96.37	96.08	
N<0	3	1	0	0	

Table D-5. Summary statistics for PM₁₀ emissions (g hd⁻¹d⁻¹) from broiler sites.

Table D-6. Summary statistics for PM₁₀ emissions (g hd⁻¹d⁻¹) from broiler sites.

CA1BH10	CA1BH12	KY1B1H5	KY1B2H3	
0.04464	0.04367	0.04326	0.05048	
0.04026	0.03772	0.03917	0.04006	
334	366	285	256	
0.03198	0.03142	0.03534	0.05072	
0.00046	0.00033	0.00080	0.00098	
0.17060	0.16869	0.20717	0.17389	
90.18984	86.38324	90.55632	79.35431	
0	0	0	0	
	CA1BH10 0.04464 0.04026 334 0.03198 0.00046 0.17060 90.18984 0	CA1BH10CA1BH120.044640.043670.040260.037723343660.031980.031420.000460.000330.170600.1686990.1898486.3832400	CA1BH10CA1BH12KY1B1H50.044640.043670.043260.040260.037720.039173343662850.031980.031420.035340.000460.000330.000800.170600.168690.2071790.1898486.3832490.55632000	

Table D-7. Summary statistics for PM_{2.5} emissions (g hd⁻¹d⁻¹) from broiler sites.

Statistic	CA1B H10	CA1B H12	CA1B H12 KY1B-1 H5		
Mean	98.80	124.39	89.60	96.99	
St. Dev	62.97	47.60	91.79	99.08	
N	53	43	286	301	
Median	92.25	118.07	49.37	55.54	
Min	1.25	45.11	0.00	0.00	
Max	243.34	234.83	405.16	383.81	
CV(%)	63.74	38.27	102.44	102.15	
N<0	0	0	0	0	

Table D-8. Summary statistics for PM_{2.5} emissions (g hd⁻¹d⁻¹) from broiler sites.

Statistic	CA1BH10	CA1BH12	KY1B1H5	KY1B2H3
Mean	0.00478	0.00600	0.00430	0.00466
St. Dev	0.00306	0.00231	0.00425	0.00410
Ν	53	43	266	252
Median	0.00446	0.00565	0.00280	0.00391
Min	0.00006	0.00215	0.00013	0.00011
Max	0.01192	0.01140	0.01860	0.01528
CV(%)	63.90884	38.45081	98.79736	88.12967
N<0	0	0	0	0

Statistic	CA1B H10	CA1B H12	KY1B-1 H5	KY1B-2 H3
Mean	2,652.40	2,269.78	2,166.50	2,413.70
St. Dev	890.25	1,594.64	2,018.75	2,198.01
N	37	39	315	301
Median	2,224.89	2,318.96	1,743.66	1,998.44
Min	1,298.64	3.44	0.00	0.00
Max	4,761.51	6,215.15	10,340.87	7,472.53
CV(%)	33.56	70.26	93.18	91.06
N<0	0	0	0	0

Table D-9. Summary statistics for TSP emissions (g d⁻¹) from broiler sites.

Table D-10. Summary statistics for TSP emissions (g hd⁻¹d⁻¹) from broiler sites.

Statistic	CA1BH10	CA1BH12	KY1B1H5	KY1B2H3		
Mean	0.12832	0.10904	0.10458	0.11564		
St. Dev	0.04130	0.07638	0.08755	0.08700		
Ν	37	39	290	256		
Median	0.10703	0.11185	0.08895	0.12318		
Min	0.06791	0.00016	0.00174	0.00182		
Max	0.22848	0.29756	0.42234	0.30915		
CV(%)	32.18559	70.05418	83.72068	75.23857		
N<0	0	0	0	0		

Parameter	Statistic	CA1B H10	CA1B H12	KY1B-1 H5	KY1B-2 H3
	Mean	16,957.87	16,989.01	18,036.17	18,363.42
	St. Dev	7,777.85	7,721.77	10,073.84	10,797.32
Inventory	N	765	765	394	379
(head)	Median	20,788.00	20,759.00	23,877.50	24,198.00
(neau)	Min	0.00	0.00	0.00	0.00
	Max	21,454.00	21,422.00	26,600.00	26,013.00
	CV(%)	45.87	45.45	55.85	58.80
	Mean	1.04	1.05	1.14	1.11
	St. Dev	0.84	0.85	0.87	0.88
Average bird	N	613	616	307	282
weight	Median	0.84	0.87	0.99	0.93
(kg)	Min	0.06	0.06	0.03	0.03
	Max	2.75	2.76	2.89	2.97
	CV(%)	81.13	81.03	76.16	78.70
	Mean	17,909.11	18,104.07	20,108.78	20,342.10
15	St. Dev	17,672.49	17,782.28	20,395.00	21,872.13
LIVE	N	732	731	394	379
annia	Median	11,896.50	11,951.00	12,729.50	11,332.00
(Mg)	Min	0.00	0.00	0.00	0.00
(IVIB)	Max	55,741.00	56,265.00	69,843.00	74,611.00
	CV(%)	98.68	98.22	101.42	107.52
	Mean	23.78	23.85	26.10	25.35
	St. Dev	13.50	13.59	14.83	15.14
Dird ago	N	647	651	307	282
(days)	Median	24.00	24.00	26.00	24.00
(uays)	Min	1.00	1.00	1.00	1.00
	Max	49.00	49.00	54.00	54.00
	CV(%)	56.79	56.96	56.81	59.71
	Mean	19.90	20.03	20.34	18.87
	St. Dev	15.16	15.19	16.99	17.12
Flock age	N	773	773	394	379
(days)	Median	19.00	19.00	19.00	16.00
(ddys)	Min	0.00	0.00	0.00	0.00
	Max	49.00	49.00	54.00	54.00
	CV(%)	76.15	75.84	83.54	90.75
	Mean	28.57	28.54	33.77	35.48
	St. Dev	16.61	16.63	19.68	22.24
Flock are cont	N	772	773	394	379
(dave)	Median	28.00	28.00	33.00	34.00
(uuys)	Min	1.00	1.00	1.00	1.00
	Max	70.00	70.00	75.00	91.00
	CV(%)	58.13	58.25	58.28	62.70

 Table D-11. Summary statistics of production parameters at broiler sites.

Parameter	Statistic	CA1B H10	CA1B H12	KY1B-1 H5	KY1B-2 H3
	Mean	24.99	24.99	22.24	22.93
	St. Dev	4.25	4.35	5.05	5.05
House	N	723	724	384	367
Temperature	Median	25.50	25.65	23.49	23.67
(°C)	Min	8.20	7.60	5.65	4.24
	Max	32.60	33.70	38.71	32.03
	CV(%)	17.00	17.41	22.69	22.01
	Mean	57.65	56.00	60.59	62.11
	St. Dev	9.86	9.53	11.02	11.44
House Relative	N	732	721	384	367
Humidity	Median	56.85	55.40	61.12	62.07
(%)	Min	34.10	34.00	29.40	32.86
	Max	91.10	88.10	88.52	93.75
	CV(%)	17.10	17.01	18.19	18.42
	Mean	14.62	14.88	17.30	15.77
	St. Dev	13.93	14.37	15.88	15.76
Airflow	N	698	687	384	366
(dcm ³ /c)	Median	10.05	10.03	11.42	8.91
(usiii / s)	Min	0.00	0.00	0.00	0.00
	Max	63.66	71.53	59.22	72.65
	CV(%)	95.28	96.58	91.80	99.98

Table D-12. Summary statistics of environmental parameters at broiler sites.

Table D-13. Summary statistics	of ambien	t meteorological	parameters at	broiler
-	sites		-	

Parameter	Statistic	CA1B	KY1B-1	KY1B-2
	Mean	16.86	13.75	13.68
	St. Dev	6.59	9.49	9.59
Ambient	Ν	726	384	367
Temperature	Median	16.90	14.54	14.18
(°C)	Min	3.30	-9.94	-8.97
	Max	31.10	29.77	29.94
	CV(%)	39.10	69.06	70.11
Ambient Relative Humidity	Mean	61.17	72.69	72.37
	St. Dev	13.58	12.63	11.73
	N	661	384	367
	Median	60.30	73.64	73.37
	Min	32.70	37.43	37.28
(70)	Max	95.00	99.74	97.43
	CV(%)	22.21	17.38	16.20

Parameter	Statistic	CA1B H10	CA1B H12	KY1B-1 H5	KY1B-2 H3
	Mean	82.43	82.43	133.61	297.38
	St. Dev	50.48	50.48	67.72	122.81
Littor ago	Ν	717	717	394	379
Litter age	Median	81.00	81.00	132.50	304.00
(uays)	Min	1.00	1.00	1.00	1.00
	Max	181.00	181.00	270.00	493.00
	CV(%)	61.24	61.24	50.68	41.30
	Mean	0.68	0.68	0.81	0.94
	St. Dev	0.47	0.47	0.39	0.23
Status of litter usage	N	772	773	394	379
(0-1), continuous for	Median	1.00	1.00	1.00	1.00
in-between flock	Min	0.00	0.00	0.00	0.00
	Max	1.00	1.00	1.00	1.00
	CV(%)	69.25	68.77	47.75	24.86
	Mean	1.06	1.06	1.48	2.59
	St. Dev	0.84	0.84	1.00	0.77
Status of litter usage	N	772	773	394	379
(0-3), continuous for	Median	1.00	1.00	1.00	3.00
in-between flock	Min	0.00	0.00	0.00	0.00
	Max	2.00	2.00	3.00	3.00
	CV(%)	79.16	78.76	67.47	29.77
	Mean	1.02	1.02	1.49	3.71
	St. Dev	0.84	0.84	0.95	1.73
Status of litter usage	N	648	651	307	282
(0-6), empty for in-	Median	1.00	1.00	1.00	4.00
between flock	Min	0.00	0.00	0.00	0.00
	Max	2.00	2.00	3.00	6.00
	CV(%)	82.59	82.66	63.97	46.56
	Mean	1.06	1.06	1.48	3.61
	St. Dev	0.84	0.84	1.00	1.66
Status of litter usage	N	772	773	394	379
(0-6), continuous for	Median	1.00	1.00	1.00	4.00
in-between flock	Min	0.00	0.00	0.00	0.00
	Max	2.00	2.00	3.00	6.00
	CV(%)	79.16	78.76	67.47	45.83

Table D-14. Summary statistics of litter age parameters at broiler sites.

Parameter	Statistic	CA1B H10	CA1B H12	KY1B-1 H5	KY1B-2 H3
	Mean	59.03	59.03	а	а
	St. Dev	7.81	7.81	а	а
Decaked litter	Ν	8	8	а	а
Solids	Median	58.80	58.80	а	а
(% wet weight basis)	Min	49.20	49.20	а	а
	Max	70.50	70.50	а	а
	CV(%)	13.24	13.24	а	а
	Mean	2.33	2.30	2.72	2.65
	St. Dev	0.33	0.37	0.22	0.10
Deselved litter TKN	Ν	8	8	4	4
Decaked litter TKN	Median	2.40	2.42	2.70	2.60
(% wet weight basis)	Min	1.89	1.78	2.50	2.60
	Max	2.84	2.82	3.00	2.80
	CV(%)	14.03	16.06	8.14	3.77
	Mean	b	b	4.65	4.74
	St. Dev	b	b	0.40	0.46
Deceled litter TKN	N	b	b	4	4
Decaked litter TKN	Median	b	b	4.65	4.80
(% dry weight basis)	Min	b	b	4.30	4.17
	Max	b	b	5.00	5.18
	CV(%)	b	b	8.69	9.72
Litter Floor Solids (% wet weight basis)	Mean	73.93	74.25	с	с
	St. Dev	10.05	9.52	с	с
	N	16	16	С	С
	Median	74.50	73.10	С	с
	Min	56.80	57.10	С	с
	Max	88.60	87.50	С	с
	CV(%)	13.59	12.82	C	С
	Mean	8.15	8.00	а	а
	St. Dev	0.12	0.12	а	а
	N	16	16	а	а
Litter Floor pH	Median	8.32	8.04	а	а
	Min	7.11	7.29	а	а
	Max	8.70	8.67	а	а
	CV(%)	1.51	1.46	а	а
	Mean	0.31	0.31	C	С
	St. Dev	0.09	0.13	C	С
Litter Floor TAN	Ν	16	16	с	с
(% wet weight basis)	Median	0.34	0.33	с	с
(70 wet weight basis)	Min	0.15	0.16	с	с
	Max	0.41	0.62	С	С
	CV(%)	30.44	40.06	с	с
Loadout Litter Solids	Mean	49.35	51.58	С	С
(% wet weight basis)	St. Dev	33.23	34.65	C	С

Table D-15. Summary statistics of litter parameters at broiler sites.

Parameter	Statistic	CA1B H10	CA1B H12	KY1B-1 H5	KY1B-2 H3
	Ν	4	4	с	с
	Median	63.15	66.90	с	с
	Min	0.00	0.00	с	с
	Max	71.10	72.50	с	с
	CV(%)	67.34	67.19	с	с
	Mean	2.22	2.40	2.60	2.20
	St. Dev	0.34	0.37		•
Loadout Littor TKN	Ν	4	4	1	1
(% wet weight basis)	Median	2.32	2.31	2.60	2.20
(70 Wet Weight Dasis)	Min	1.74	2.08	2.60	2.20
	Max	2.52	2.88	2.60	2.20
	CV(%)	15.30	15.25	•	•
	Mean	b	b	4.30	3.33
	St. Dev	b	b	·	•
Loadout Littor TKN	Ν	b	b	1	1
(% drywoight basis)	Median	b	b	4.30	3.33
(% ury weight basis)	Min	b	b	4.30	3.33
	Max	b	b	4.30	3.33
	CV(%)	b	b		
	Mean	91.90	92.70	а	а
	St. Dev	1.27	0.85	а	а
New Litter Solids (% wet weight basis)	Ν	2	2	а	а
	Median	91.90	92.70	а	а
	Min	91.00	92.10	а	а
	Max	92.80	93.30	а	а
	CV(%)	1.39	0.92	а	а
	Mean	0.46	0.51	0.36	а
	St. Dev	0.09	0.14	•	а
	N	2	2	1	а
(% wot woight basis)	Median	0.46	0.51	0.36	а
(⁷⁰ wet weight basis)	Min	0.39	0.41	0.36	а
	Max	0.52	0.61	0.36	а
	CV(%)	20.20	27.73		а
	Mean	b	b	0.39	а
	St. Dev	b	b		а
	N	b	b	1	а
New Litter TKN	Median	b	b	0.39	а
(% dry weight basis)	Min	b	b	0.39	а
	Max	b	b	0.39	а
	CV(%)	b	b		а

^a Parameter was not available for this site
 ^b Parameter only available on a percent wet weight basis
 ^c Parameter only available on a percent dry weight basis

Appendix E - Time Series Plots

List of Figures

Figure E-1. NAEMS broiler NH ₃ emissions, by site E-4
Figure E-2. NAEMS broiler H ₂ S emissions, by site
Figure E-3. NAEMS broiler PM ₁₀ emissions, by site E-6
Figure E-4. NAEMS broiler PM _{2.5} emissions, by site E-7
Figure E-5. NAEMS broiler TSP emissions, by site E-8
Figure E-6. NAEMS broiler inventory, by site E-9
Figure E-7. NAEMS broiler average bird weight, by site E-10
Figure E-8. NAEMS broiler live animal weight, by site E-11
Figure E-9. NAEMS broiler flock age excluding between flock, by site
Figure E-10. NAEMS broiler flock age, by site E-13
Figure E-11. NAEMS broiler age, by site E-14
Figure E-12. NAEMS broiler house temperature, by site E-15
Figure E-13. NAEMS broiler house relative humidity by site E-16
Figure E-14. NAEMS broiler house airflow, by site E-17
Figure E-15. NAEMS broiler site ambient temperature, by site
Figure E-16. NAEMS broiler site ambient relative humidity, by site
Figure E-17. NAEMS broiler litter age, by site E-20
Figure E-18. NAEMS broiler litter status (0 = first flock on fresh litter, 1 = one or more flocks raised on litter), by site.
Figure E-19. NAEMS broiler litter status (0 = fresh litter, 1 = second flock raised on litter, 2= third flock, 3= four or more flocks), by site
Figure E-20. NAEMS broiler litter status (0-6, continuous), by site
Figure E-21. NAEMS broiler litter status (0-6, null between flocks), without in between flock, by site E-24
Figure E-22. NAEMS broiler mean solid content of litter floor samples, by site E-25
Figure E-23. NAEMS broiler TAN content of litter floor samples, by site
Figure E-24. NAEMS broiler TKN content of new litter samples on a wet weight percentage, by site. E-27

Figure E-25. NAEMS broiler TKN content of new litter samples on a dry weight percentage, by site. E-28
Figure E-26. NAEMS broiler solids content of new litter samples, by site E-29
Figure E-27. NAEMS broiler TKN content of decaked litter samples on a wet weight percentage, by site. E-30
Figure E-28. NAEMS broiler TKN content of decaked litter samples on a dry weight percentage, by site. E-31
Figure E-29. NAEMS broiler solids content of decaked litter samples, by site
Figure E-30. NAEMS broiler TKN content of loadout litter samples on a wet weight percentage, by site. E-33
Figure E-31. NAEMS broiler TKN content of loadout litter samples on a dry weight percentage, by site.
Figure E-32. NAEMS broiler solids content of loadout litter samples, by site

Emission

NH3 Emission (kg/d)

Figure E-1. NAEMS broiler NH₃ emissions, by site.

Figure E-2. NAEMS broiler H₂S emissions, by site.

Figure E-3. NAEMS broiler PM₁₀ emissions, by site.

PM2.5 Emission (g/d)

Figure E-4. NAEMS broiler PM_{2.5} emissions, by site.

TSP Emission (g/d)

Figure E-5. NAEMS broiler TSP emissions, by site.

Animal Parameters

Figure E-6. NAEMS broiler inventory, by site.

Figure E-7. NAEMS broiler average bird weight, by site.

Figure E-8. NAEMS broiler live animal weight, by site.

Figure E-9. NAEMS broiler flock age excluding between flock, by site.

Figure E-10. NAEMS broiler flock age, by site.

Figure E-11. NAEMS broiler age, by site.

Barn Environmental Parameters

Figure E-12. NAEMS broiler house temperature, by site.

Barn relative humidity (%)

Figure E-13. NAEMS broiler house relative humidity by site.

Broilers

Figure E-14. NAEMS broiler house airflow, by site.

Ambient Parameters

Figure E-15. NAEMS broiler site ambient temperature, by site.

Ambient relative humidity (%)

Figure E-16. NAEMS broiler site ambient relative humidity, by site.

Manure Parameters

Figure E-17. NAEMS broiler litter age, by site.

Status of litter usage (0-1), continuous for in-between flock

Figure E-18. NAEMS broiler litter status (0 = first flock on fresh litter, 1 = one or more flocks raised on litter), by site.

Status of litter usage (0-3), continuous for in-between flock

Figure E-19. NAEMS broiler litter status (0 = fresh litter, 1 = second flock raised on litter, 2= third flock, 3= four or more flocks), by site.

Status of litter usage (0-6), continuous for in-between flock

Figure E-20. NAEMS broiler litter status (0-6, continuous), by site.

Figure E-21. NAEMS broiler litter status (0-6, null between flocks), without in between flock, by site.

Figure E-22. NAEMS broiler mean solid content of litter floor samples, by site.

Figure E-23. NAEMS broiler TAN content of litter floor samples, by site.

Figure E-24. NAEMS broiler TKN content of new litter samples on a wet weight percentage, by site.

Figure E-25. NAEMS broiler TKN content of new litter samples on a dry weight percentage, by site.

Figure E-26. NAEMS broiler solids content of new litter samples, by site.

Figure E-27. NAEMS broiler TKN content of decaked litter samples on a wet weight percentage, by site.

Figure E-28. NAEMS broiler TKN content of decaked litter samples on a dry weight percentage, by site.

Figure E-29. NAEMS broiler solids content of decaked litter samples, by site.

Figure E-30. NAEMS broiler TKN content of loadout litter samples on a wet weight percentage, by site.

Figure E-31. NAEMS broiler TKN content of loadout litter samples on a dry weight percentage, by site.

Figure E-32. NAEMS broiler solids content of loadout litter samples, by site.

Appendix F - Scatter Plots

List of Tables

Table F-1: Relationship classification based on R ² values	. F-6	5
Table F-2: Summary of high rise house R ² values	. F-7	1

List of Figures

Figure F-1. Scatter plot of broiler NH ₃ emissions versus inventory and scatter plot with regression	. F-10
Figure F-2. Scatter plot of broiler H ₂ S emissions versus inventory and scatter plot with regression	.F-11
Figure F-3. Scatter plot of broiler PM ₁₀ emissions versus inventory and scatter plot with regression	. F-12
Figure F-4. Scatter plot of broiler PM _{2.5} emissions versus inventory and scatter plot with regression	. F-13
Figure F-5. Scatter plot of broiler TSP emissions versus inventory and scatter plot with regression	. F-14
Figure F-6. Scatter plot of broiler NH ₃ emissions versus average bird weight and scatter plot with regression	. F-15
Figure F-7. Scatter plot of broiler H ₂ S emissions versus average bird weight and scatter plot with regression	.F-16
Figure F-8. Scatter plot of broiler PM ₁₀ emissions versus average bird weight and scatter plot with regression	.F-17
Figure F-9. Scatter plot of broiler PM _{2.5} emissions versus average bird weight and scatter plot with regression	. F-18
Figure F-10. Scatter plot of broiler TSP emissions versus average bird weight and scatter plot with regression	. F-19
Figure F-11. Scatter plot of broiler NH ₃ emissions versus live animal weight and scatter plot with regression	. F-20
Figure F-12. Scatter plot of broiler H ₂ S emissions versus live animal weight and scatter plot with regression	. F-21
Figure F-13. Scatter plot of broiler PM ₁₀ emissions versus live animal weight and scatter plot with regression	. F-22
Figure F-14. Scatter plot of broiler PM _{2.5} emissions versus live animal weight and scatter plot with regression	. F-23
Figure F-15. Scatter plot of broiler TSP emissions versus live animal weight and scatter plot with regression	. F-24
Figure F-16. Scatter plot of broiler NH ₃ emissions versus flock age (set to zero between flocks) and scatter plo	t with
regression.	. F-25
Figure F-17. Scatter plot of broiler H ₂ S emissions versus flock age (set to zero between flocks) and scatter plo	t with
regression.	. F-26
Figure F-18. Scatter plot of broiler PM ₁₀ emissions versus flock age (set to zero between flocks) and scatter plo	t with
regression.	. F-27
Figure F-19. Scatter plot of broiler PM _{2.5} emissions versus flock age (set to zero between flocks) and scatter plo	t with
regression.	. F-28
Figure F-20. Scatter plot of broiler TSP emissions versus flock age (set to zero between flocks) and scatter plo	t with
regression.	. F-29
Figure F-21. Scatter plot of broiler NH3 emissions versus flock age (continues to increase between flocks) and s	scatter
plot with regression.	. F-30
Figure F-22. Scatter plot of broiler H ₂ S emissions versus flock age (continues to increase between flocks) and s	catter
plot with regression.	. F-31
Figure F-23. Scatter plot of broiler PM ₁₀ emissions versus flock age (continues to increase between flocks) and s	scatter
plot with regression.	. F-32
Figure F-24. Scatter plot of broiler PM2.5 emissions versus flock age (continues to increase between flocks) and s	scatter
plot with regression.	. F-33
Figure F-25. Scatter plot of broiler TSP emissions versus flock age (continues to increase between flocks) and s	catter
plot with regression.	. F-34
Figure F-26. Scatter plot of broiler NH ₃ emissions versus bird age and scatter plot with regression	. F-35
Figure F-27. Scatter plot of broiler H ₂ S emissions versus bird age and scatter plot with regression.	. F-36
Figure F-28. Scatter plot of broiler PM ₁₀ emissions versus bird age and scatter plot with regression	. F-37
Figure F-29. Scatter plot of broiler PM ₂₅ emissions versus bird age and scatter plot with regression	. F-38
Figure F-30. Scatter plot of broiler TSP emissions versus bird age and scatter plot with regression	. F-39
Figure F-31. Scatter plot of broiler NH ₃ emissions versus barn exhaust temperature and scatter plot with regre	ssion.
8	. F-40
Figure F-32. Scatter plot of broiler H ₂ S emissions versus barn exhaust temperature and scatter plot with regre	ssion.
	. F-41
Figure F-33. Scatter plot of broiler PM ₁₀ emissions versus barn exhaust temperature and scatter plot with regre	ssion.
	. F-42
Figure F-34. Scatter plot of broiler PM2.5 emissions versus barn exhaust temperature and scatter plot with regre	ssion.
	. F-43

Figure F-35. Scatter plot of broiler TSP emissions versus barn exhaust temperature and scatter plot with regression.

Figure F-36. Scatter plot of broiler NH₃ emissions versus barn relative humidity and scatter plot with regression...F-45 Figure F-37. Scatter plot of broiler H₂S emissions versus barn relative humidity and scatter plot with regression.F-46 Figure F-38. Scatter plot of broiler PM₁₀ emissions versus barn relative humidity and scatter plot with regression. F-47 Figure F-39. Scatter plot of broiler PM_{2.5} emissions versus barn relative humidity and scatter plot with regression. F-48 Figure F-40. Scatter plot of broiler TSP emissions versus barn relative humidity and scatter plot with regression....F-49 Figure F-41. Scatter plot of broiler NH₃ emissions versus airflow and scatter plot with regression. F-50 Figure F-42. Scatter plot of broiler H₂S emissions versus airflow and scatter plot with regression......F-51 Figure F-43. Scatter plot of broiler PM₁₀ emissions versus airflow and scatter plot with regression...... F-52 Figure F-44. Scatter plot of broiler PM_{2.5} emissions versus airflow and scatter plot with regression. F-53 Figure F-45. Scatter plot of broiler TSP emissions versus airflow and scatter plot with regression. F-54 Figure F-46. Scatter plot of broiler NH₃ emissions versus ambient temperature and scatter plot with regression. F-55 Figure F-47. Scatter plot of broiler H₂S emissions versus ambient temperature and scatter plot with regression... F-56 Figure F-48. Scatter plot of broiler PM₁₀ emissions versus ambient temperature and scatter plot with regression. F-57 Figure F-49. Scatter plot of broiler PM_{2.5} emissions versus ambient temperature and scatter plot with regression.F-58 Figure F-50. Scatter plot of broiler TSP emissions versus ambient temperature and scatter plot with regression. . F-59 Figure F-51. Scatter plot of broiler NH₃ emissions versus ambient relative humidity and scatter plot with regression. Figure F-52. Scatter plot of broiler H₂S emissions versus ambient relative humidity and scatter plot with regression. Figure F-53. Scatter plot of broiler PM₁₀ emissions versus ambient relative humidity and scatter plot with regression. Figure F-54. Scatter plot of broiler PM_{2.5} emissions versus ambient relative humidity and scatter plot with regression. Figure F-55. Scatter plot of broiler TSP emissions versus ambient relative humidity and scatter plot with regression. Figure F-56. Scatter plot of broiler NH₃ emissions versus litter age and scatter plot with regression...... F-65 Figure F-57. Scatter plot of broiler H₂S emissions versus litter age and scatter plot with regression. F-66 Figure F-59. Scatter plot of broiler PM2.5 emissions versus litter age and scatter plot with regression...... F-68 Figure F-61. Scatter plot of broiler NH₃ emissions versus litter status (0-1, continuous) and scatter plot with regression. Figure F-62. Scatter plot of broiler H₂S emissions versus litter status (0-1, continuous) and scatter plot with regression. Figure F-63. Scatter plot of broiler PM₁₀ emissions versus litter status (0-1, continuous) and scatter plot with regression......F-72 Figure F-64. Scatter plot of broiler PM2.5 emissions versus litter status (0-1, continuous) and scatter plot with regression......F-73 Figure F-65. Scatter plot of broiler TSP emissions versus litter status (0-1, continuous) and scatter plot with regression. Figure F-66. Scatter plot of broiler NH₃ emissions versus litter status (0-3, continuous) and scatter plot with regression. Figure F-67. Scatter plot of broiler H₂S emissions versus litter status (0-3, continuous) and scatter plot with regression. Figure F-68. Scatter plot of broiler PM₁₀ emissions versus litter status (0-3, continuous) and scatter plot with regression.....F-77 Figure F-69. Scatter plot of broiler PM_{2.5} emissions versus litter status (0-3, continuous) and scatter plot with Figure F-70. Scatter plot of broiler TSP emissions versus litter status (0-3, continuous) and scatter plot with regression.

Figure F-71. Scatter plot of broiler NH ₃ emissions versus litter status (0-6, continuous) and scatter plot with regression. F-80
Figure F-72. Scatter plot of broiler H ₂ S emissions versus litter status (0-6, continuous) and scatter plot with regression. F-81
Figure F-73. Scatter plot of broiler PM ₁₀ emissions versus litter status (0-6, continuous) and scatter plot with regression
Figure F-74. Scatter plot of broiler $PM_{2.5}$ emissions versus litter status (0-6, continuous) and scatter plot with F-83
Figure F-75. Scatter plot of broiler TSP emissions versus litter status (0-6, continuous) and scatter plot with regression. F-84
Figure F-76. Scatter plot of broiler NH ₃ emissions versus litter status (0-6, empty between) and scatter plot with regression.
Figure F-77. Scatter plot of broiler H ₂ S emissions versus litter status (0-6, empty between) and scatter plot with regression
Figure F-78. Scatter plot of broiler PM_{10} emissions versus litter status (0-6, empty between) and scatter plot with regression.
Figure F-79. Scatter plot of broiler PM _{2.5} emissions versus litter status (0-6, empty between) and scatter plot with regression.
Figure F-80. Scatter plot of broiler TSP emissions versus litter status (0-6, empty between) and scatter plot with regression.
Figure F-81. Scatter plot of broiler NH ₃ emissions versus solid contents of litter floor and scatter plot with regression. F-90
Figure F-82. Scatter plot of broiler H ₂ S emissions versus solid contents of litter floor and scatter plot with regression. F-91
Figure F-83. Scatter plot of broiler PM ₁₀ emissions versus solid contents of litter floor and scatter plot with regression. F-92
Figure F-84. Scatter plot of broiler PM _{2.5} emissions versus solid contents of litter floor and scatter plot with regression. F-93
Figure F-85. Scatter plot of broiler TSP emissions versus solid contents of litter floor and scatter plot with regression. F-94
Figure F-86. Scatter plot of broiler NH ₃ emissions versus TAN content of litter floor and scatter plot with regression. F-95
Figure F-87. Scatter plot of broiler H ₂ S emissions versus TAN content of litter floor and scatter plot with regression. F-96
Figure F-88. Scatter plot of broiler PM ₁₀ emissions versus TAN content of litter floor and scatter plot with regression.
Figure F-89. Scatter plot of broiler PM _{2,5} emissions versus TAN content of litter floor and scatter plot with regression. F-98
Figure F-90. Scatter plot of broiler TSP emissions versus TAN content of litter floor and scatter plot with regression. F-99
Figure F-91. Scatter plot of broiler NH ₃ emissions versus TKN content of new litter (wet basis) and scatter plot with regression
Figure F-92. Scatter plot of broiler H ₂ S emissions versus TKN content of new litter (wet basis) and scatter plot with regression
Figure F-93. Scatter plot of broiler NH ₃ emissions versus TKN content of new litter (dry basis) and scatter plot with regression
Figure F-94. Scatter plot of broiler H ₂ S emissions versus TKN content of new litter (dry basis) and scatter plot with regression
Figure F-95. Scatter plot of broiler NH ₃ emissions versus solids content of new litter and scatter plot with regression. F-104
Figure F-96. Scatter plot of broiler H ₂ S emissions versus solids content of new litter and scatter plot with regression. F-105
Figure F-97. Scatter plot of broiler NH ₃ emissions versus decaked litter TKN content (wet weight basis) and scatter plot with regression. F-106
Figure F-98. Scatter plot of broiler H ₂ S emissions versus decaked litter TKN content (wet weight basis) and scatter plot with regression

Figure F-99. Scatter plot of broiler PM _{2.5} emissions versus decaked litter TKN content (wet weight basis) and scatter plot with regression.
Figure F-100. Scatter plot of broiler TSP emissions versus decaked litter TKN content (wet weight basis) and scatter plot with regression.
Figure F-101. Scatter plot of broiler NH ₃ emissions versus decaked litter TKN content (dry weight basis)and scatter plot with regression.
Figure F-102. Scatter plot of broiler H ₂ S emissions versus decaked litter TKN content (wet weight basis) and scatter plot with regression.
Figure F-103. Scatter plot of broiler PM _{2.5} emissions versus decaked litter TKN content (wet weight basis) and scatter plot with regression
Figure F-104. Scatter plot of broiler TSP emissions versus decaked litter TKN content (wet weight basis) and scatter plot with regression
Figure F-105. Scatter plot of broiler NH ₃ emissions versus decaked litter solids content and scatter plot with regression.
Figure F-106. Scatter plot of broiler H ₂ S emissions versus inventory and scatter plot with regression
Figure F-107. Scatter plot of broiler NH ₃ emissions versus loadout litter TKN content (wet weight basis) and scatter plot with regression
Figure F-108. Scatter plot of broiler H ₂ S emissions versus loadout litter TKN content (wet weight basis) and scatter plot with regression
Figure F-109. Scatter plot of broiler NH ₃ emissions versus loadout litter TKN content (dry weight basis) and scatter plot with regression
Figure F-110. Scatter plot of broiler H ₂ S emissions versus loadout litter TKN content (dry weight basis) and scatter plot with regression.
Figure F-111. Scatter plot of broiler NH ₃ emissions versus loadout litter solids content and scatter plot with regression. F-120
Figure F-112. Scatter plot of broiler H ₂ S emissions versus loadout litter solids content and scatter plot with regression. F-121

To further explore the trends between the predictor variables and emissions, and determine whether the parameter should be included in developing an EEM, EPA prepared scatter plots of emissions versus the process, environmental, and manure parameters and conducted least squares regression analysis to assess the influence of each variable on emissions. For the regressions, EPA classified the linear relationships based on the ranges in Table F-1.

Range of R ²	Relationship strength
$R^2 = 0$	none
$0 < R^2 \le 0.2$	slight or weak
$0.2 < R^2 \le 0.4$	modest
0.4 < R ² ≤ 0.6	moderate
$0.6 < R^2 \le 0.8$	moderately strong
R ² > 0.8	strong

Table F-1: Relationship classification based on R² values

For broilers, litter age can affect emission rates in the house. To account for this, EPA tested five parameters to account for the age of the litter:

- Litter age: continuous variable that indicates the number of days since litter removal
- Litter Status (0-1, continuous between flocks): discrete variable to indicate whether the flock was the first flock raised on fresh litter (0) or if it was not fresh litter (1). The value is held during transition periods between flocks.
- Litter Status (0-3, continuous between flocks): discrete variable to indicate the number of flocks since litter removal, where 0 indicates the first flock raised on fresh litter, up to 3 to indicate four or more flocks had been raised on the litter. The value is held during transition periods between flocks.
- Litter status (0-6, continuous between flocks): discrete variable to indicate the number of flocks since litter removal, where 0 indicates the first flock raised on fresh litter and up to 6 to indicate the up to seven (7) flock raised on the litter before a full clean out. The value is held during transition periods between flocks.
- Litter Status (0-6; empty between flocks): discrete variable to indicate the number of flocks since litter removal, where 0 indicates the first flock raised on fresh litter and up to 6 to indicate the up to seven (7) flock raised on the litter before a full clean out. The value set to "null" during transition periods between flocks.

Pollutant	Parameter	R ²	Strength	Figure
NH₃	Inventory	0.0399	Slight or weak	F-1
H ₂ S	Inventory	0.1271	Slight or weak	F-2
PM ₁₀	Inventory	0.0775	Slight or weak	F-3
PM _{2.5}	Inventory	0.0691	Slight or weak	F-4
TSP	Inventory	0.1179	Slight or weak	F-5
NH₃	Bird weight	0.7282	moderately strong	F-6
H ₂ S	Bird weight	0.6921	moderately strong	F-7
PM ₁₀	Bird weight	0.7058	moderately strong	F-8
PM _{2.5}	Bird weight	0.7715	moderately strong	F-9
TSP	Bird weight	0.6364	moderately strong	F-10
NH₃	Live animal weight	0.5844	moderate	F-11
H ₂ S	Live animal weight	0.7242	moderately strong	F-12
PM10	Live animal weight	0.7467	moderately strong	F-13
PM2.5	Live animal weight	0.8122	strong	F-14
TSP	Live animal weight	0.7241	moderately strong	F-15
NH₃	Flock Age (0 between flocks)	0.4989	moderate	F-16
H ₂ S	Flock Age (0 between flocks)	0.6781	moderately strong	F-17
PM10	Flock Age (0 between flocks)	0.7343	moderately strong	F-18
PM _{2.5}	Flock Age (0 between flocks)	0.7246	moderately strong	F-19
TSP	Flock Age (0 between flocks)	0.7070	moderately strong	F-20
NH₃	Flock age (continuous between flocks)	0.1209	Slight or weak	F-21
H ₂ S	Flock age (continuous between flocks)	0.0757	Slight or weak	F-22
PM10	Flock age (continuous between flocks)	0.1924	Slight or weak	F-23
PM2.5	Flock age (continuous between flocks)	0.1411	Slight or weak	F-24
TSP	Flock age (continuous between flocks)	0.0778	Slight or weak	F-25
NH₃	Bird age	0.6886	moderately strong	F-26
H ₂ S	Bird age	0.6656	moderately strong	F-27
PM ₁₀	Bird age	0.7150	moderately strong	F-28
PM _{2.5}	Bird age	0.7337	moderately strong	F-29
TSP	Bird age	0.6632	moderately strong	F-30
NH₃	Exhaust temperature	0.0081	Slight or weak	F-31
H ₂ S	Exhaust temperature	0.0000	Slight or weak	F-32
PM10	Exhaust temperature	0.0007	Slight or weak	F-33
PM _{2.5}	Exhaust temperature	0.0084	Slight or weak	F-34
TSP	Exhaust temperature	0.0111	Slight or weak	F-35
NH₃	House relative humidity	0.0733	Slight or weak	F-36
H ₂ S	House relative humidity	0.0124	Slight or weak	F-37
PM10	House relative humidity	0.0012	Slight or weak	F-38
PM _{2.5}	House relative humidity	0.0628	Slight or weak	F-39
TSP	House relative humidity	0.0023	Slight or weak	F-40
NH₃	Airflow	0.4285	moderate	F-41
H ₂ S	Airflow	0.3537	modest	F-42
PM10	Airflow	0.4568	moderate	F-43
PM _{2.5}	Airflow	0.5757	moderate	F-44
TSP	Airflow	0.2667	modest	F-45
NH₃	Ambient temperature	0.0131	Slight or weak	F-46

Pollutant	itant Parameter		Strength	Figure
H ₂ S	Ambient temperature	0.0105	Slight or weak	F-47
PM10	Ambient temperature	0.0411	Slight or weak	F-48
PM2.5	Ambient temperature	0.0526	Slight or weak	F-49
TSP	Ambient temperature	0.0059	Slight or weak	F-50
NH₃	Ambient relative humidity	0.0120	Slight or weak	F-51
H ₂ S	Ambient relative humidity	0.0000	Slight or weak	F-52
PM10	Ambient relative humidity	0.0092	Slight or weak	F-53
PM _{2.5}	Ambient relative humidity	3F-05	Slight or weak	F-54
TSP	Ambient relative humidity	0.0139	Slight or weak	F-55
NH₃	Litter age	0.0466	Slight or weak	F-56
H ₂ S	Litter age	0.0266	Slight or weak	F-57
PM10	Litter age	0.0262	Slight or weak	F-58
PM _{2.5}	Litter age	0.0227	Slight or weak	F-59
TSP	Litter age	0.0131	Slight or weak	F-60
NH ₃	Litter Status (0-1, continuous)	0.0031	Slight or weak	F-61
H ₂ S	Litter Status (0-1, continuous)	0.0005	Slight or weak	F-62
PM10	Litter Status (0-1, continuous)	0.0002	Slight or weak	F-63
PM2.5	Litter Status (0-1, continuous)	0.0132	Slight or weak	F-64
TSP	Litter Status (0-1, continuous)	0.001	Slight or weak	F-65
NH₃	Litter Status (0-3, continuous)	0.0167	Slight or weak	F-66
H ₂ S	Litter Status (0-3, continuous)	0.0100	Slight or weak	F-67
PM ₁₀	Litter Status (0-3, continuous)	0.0105	Slight or weak	F-68
PM _{2.5}	Litter Status (0-3, continuous)	0.0253	Slight or weak	F-69
TSP	Litter Status (0-3, continuous)	0.0047	Slight or weak	F-70
NH₃	Litter status (0-6, continuous between flocks)	0.0203	Slight or weak	F-71
H ₂ S	Litter status (0-6, continuous between flocks)	0.0145	Slight or weak	F-72
PM10	Litter status (0-6, continuous between flocks)	0.0089	Slight or weak	F-73
PM2.5	Litter status (0-6, continuous between flocks)	0.0123	Slight or weak	F-74
TSP	Litter status (0-6, continuous between flocks)	0.0055	Slight or weak	F-75
NH₃	Litter Status (0-6; empty between flocks)	0.0379	Slight or weak	F-76
H ₂ S	Litter Status (0-6; empty between flocks)	0.0285	Slight or weak	F-77
PM10	Litter Status (0-6; empty between flocks)	0.0181	Slight or weak	F-78
PM _{2.5}	Litter Status (0-6; empty between flocks)	0.0196	Slight or weak	F-79
TSP	Litter Status (0-6; empty between flocks)	0.0081 Slight or weak		F-80
NH₃	Solid Content Litter Floor	0.6680	moderately strong	F-81
H ₂ S	Solid Content Litter Floor	0.6031	moderately strong	F-82
PM ₁₀	Solid Content Litter Floor	0.1038	Slight or weak	F-83
PM2.5	Solid Content Litter Floor	0.6169	moderately strong	F-84
TSP	Solid Content Litter Floor	а		F-85
NH₃	TAN Litter floor	0.7529	moderately strong	F-86
H₂S	TAN Litter floor	0.5696	moderate	F-87
PM10	TAN Litter floor	0.1387	Slight or weak	F-88
PM2.5	TAN Litter floor	0.7906	moderately strong	F-89
TSP	TAN Litter floor	а		F-90
NH3	TKN Content, new litter (wet basis)	0.0486	Slight or weak	F-91
H₂S	TKN Content, new litter (wet basis)	0.3807	modest	F-92
PM10	TKN Content, new litter (wet basis)	b		
PM _{2.5}	TKN Content, new litter (wet basis)	b		

Pollutant	Parameter	R ² Strength		Figure		
TSP	TKN Content, new litter (wet basis)	b				
NH₃	TKN Content, new litter, (dry basis)	a F-		F-93		
H ₂ S	TKN Content, new litter, (dry basis)	а		F-94		
PM10	TKN Content, new litter, (dry basis)	b				
PM2.5	TKN Content, new litter, (dry basis)		b			
TSP	TKN Content, new litter, (dry basis)		b			
NH ₃	Solids content , new litter	0.9236	strong	F-95		
H ₂ S	Solids content , new litter	0.3331	modest	F-96		
PM10	Solids content , new litter		b	·		
PM2.5	Solids content , new litter		b			
TSP	Solids content , new litter		b			
NH ₃	TKN, decaked litter (wet weight basis)	0.0718	Slight or weak	F-97		
H ₂ S	TKN, decaked litter (wet weight basis)	0.2384	modest	F-98		
PM10	TKN, decaked litter (wet weight basis)		b			
PM _{2.5}	TKN, decaked litter (wet weight basis)		а	F-99		
TSP	TKN, decaked litter (wet weight basis)	a		F-100		
NH ₃	TKN content, decaked litter (dry weight basis)	0.3342	modest	F-101		
H ₂ S	TKN content, decaked litter (dry weight basis)	0.1887 Slight or weak		F-102		
PM10	TKN content, decaked litter (dry weight basis)	b				
PM _{2.5}	TKN content, decaked litter (dry weight basis)		а	F-103		
TSP	TKN content, decaked litter (dry weight basis)	a		F-104		
NH ₃	Solids Content, decaked litter	0.3014	modest	F-105		
H ₂ S	Solids Content, decaked litter	0.4653 moderate		F-106		
PM10	Solids Content, decaked litter	b		·		
PM2.5	Solids Content, decaked litter	b				
TSP	Solids Content, decaked litter	b				
NH ₃	TKN, loadout litter (wet weight basis)	0.3979	modest	F-107		
H ₂ S	TKN, loadout litter (wet weight basis)	0.3621	modest	F-108		
PM10	TKN, loadout litter (wet weight basis)	b				
PM2.5	TKN, loadout litter (wet weight basis)	b				
TSP	TKN, loadout litter (wet weight basis)	b				
NH ₃	TKN content, loadout litter (dry weight basis)	a F-109		F-109		
H ₂ S	TKN content, loadout litter (dry weight basis)	a F-110		F-110		
PM10	TKN content, loadout litter (dry weight basis)	b				
PM _{2.5}	TKN content, loadout litter (dry weight basis)	b		b		
TSP	TKN content, loadout litter (dry weight basis)	b				
NH ₃	Solids content, loadout litter	0.3348 modest F-		F-111		
H ₂ S	Solids content, loadout litter	0.0454	Slight or weak	F-112		
PM10	Solids content, loadout litter	b				
PM _{2.5}	Solids content, loadout litter	b				
TSP	Solids content, loadout litter	b				

^a EPA did not have sufficient measurement data from NAEMS to conduct a linear regression analysis (i.e., two or fewer observations were taken).

^b No observations were collected that coincided with emission observations.

Figure F-1. Scatter plot of broiler NH₃ emissions versus inventory and scatter plot with regression.

Figure F-2. Scatter plot of broiler H₂S emissions versus inventory and scatter plot with regression.

Figure F-3. Scatter plot of broiler PM₁₀ emissions versus inventory and scatter plot with regression.

Figure F-4. Scatter plot of broiler PM_{2.5} emissions versus inventory and scatter plot with regression.

Figure F-5. Scatter plot of broiler TSP emissions versus inventory and scatter plot with regression.

Figure F-6. Scatter plot of broiler NH₃ emissions versus average bird weight and scatter plot with regression.

Figure F-7. Scatter plot of broiler H₂S emissions versus average bird weight and scatter plot with regression.

Figure F-8. Scatter plot of broiler PM₁₀ emissions versus average bird weight and scatter plot with regression.

Figure F-9. Scatter plot of broiler PM_{2.5} emissions versus average bird weight and scatter plot with regression.

Figure F-10. Scatter plot of broiler TSP emissions versus average bird weight and scatter plot with regression.

Figure F-11. Scatter plot of broiler NH₃ emissions versus live animal weight and scatter plot with regression.

Figure F-12. Scatter plot of broiler H₂S emissions versus live animal weight and scatter plot with regression.

Figure F-13. Scatter plot of broiler PM₁₀ emissions versus live animal weight and scatter plot with regression.

Figure F-14. Scatter plot of broiler PM_{2.5} emissions versus live animal weight and scatter plot with regression.

Figure F-15. Scatter plot of broiler TSP emissions versus live animal weight and scatter plot with regression.

Flock Age (0 between flocks)

Figure F-16. Scatter plot of broiler NH₃ emissions versus flock age (set to zero between flocks) and scatter plot with regression.

Figure F-17. Scatter plot of broiler H₂S emissions versus flock age (set to zero between flocks) and scatter plot with regression.

Figure F-18. Scatter plot of broiler PM₁₀ emissions versus flock age (set to zero between flocks) and scatter plot with regression.

Figure F-19. Scatter plot of broiler PM_{2.5} emissions versus flock age (set to zero between flocks) and scatter plot with regression.

Figure F-20. Scatter plot of broiler TSP emissions versus flock age (set to zero between flocks) and scatter plot with regression.

Flock age (continues to increase between flocks)

Figure F-21. Scatter plot of broiler NH₃ emissions versus flock age (continues to increase between flocks) and scatter plot with regression.

Figure F-22. Scatter plot of broiler H₂S emissions versus flock age (continues to increase between flocks) and scatter plot with regression.

Figure F-23. Scatter plot of broiler PM₁₀ emissions versus flock age (continues to increase between flocks) and scatter plot with regression.

Figure F-24. Scatter plot of broiler PM_{2.5} emissions versus flock age (continues to increase between flocks) and scatter plot with regression.

Figure F-25. Scatter plot of broiler TSP emissions versus flock age (continues to increase between flocks) and scatter plot with regression.

Figure F-26. Scatter plot of broiler NH₃ emissions versus bird age and scatter plot with regression.

Figure F-27. Scatter plot of broiler H₂S emissions versus bird age and scatter plot with regression.

Figure F-28. Scatter plot of broiler PM₁₀ emissions versus bird age and scatter plot with regression.

Figure F-29. Scatter plot of broiler PM_{2.5} emissions versus bird age and scatter plot with regression.

Figure F-30. Scatter plot of broiler TSP emissions versus bird age and scatter plot with regression.

Barn Exhaust Temperature

Figure F-31. Scatter plot of broiler NH₃ emissions versus barn exhaust temperature and scatter plot with regression.

Figure F-32. Scatter plot of broiler H₂S emissions versus barn exhaust temperature and scatter plot with regression.

Figure F-33. Scatter plot of broiler PM₁₀ emissions versus barn exhaust temperature and scatter plot with regression.

Figure F-34. Scatter plot of broiler PM_{2.5} emissions versus barn exhaust temperature and scatter plot with regression.

Figure F-35. Scatter plot of broiler TSP emissions versus barn exhaust temperature and scatter plot with regression.

Figure F-36. Scatter plot of broiler NH₃ emissions versus barn relative humidity and scatter plot with regression.

Figure F-37. Scatter plot of broiler H₂S emissions versus barn relative humidity and scatter plot with regression.

Figure F-38. Scatter plot of broiler PM₁₀ emissions versus barn relative humidity and scatter plot with regression.

Figure F-39. Scatter plot of broiler PM_{2.5} emissions versus barn relative humidity and scatter plot with regression.

Figure F-40. Scatter plot of broiler TSP emissions versus barn relative humidity and scatter plot with regression.

Figure F-41. Scatter plot of broiler NH₃ emissions versus airflow and scatter plot with regression.

Figure F-42. Scatter plot of broiler H₂S emissions versus airflow and scatter plot with regression.

Figure F-43. Scatter plot of broiler PM₁₀ emissions versus airflow and scatter plot with regression.

Figure F-44. Scatter plot of broiler PM_{2.5} emissions versus airflow and scatter plot with regression.

Figure F-45. Scatter plot of broiler TSP emissions versus airflow and scatter plot with regression.

Ambient Temperature

Figure F-46. Scatter plot of broiler NH₃ emissions versus ambient temperature and scatter plot with regression.

Figure F-47. Scatter plot of broiler H₂S emissions versus ambient temperature and scatter plot with regression.

Figure F-48. Scatter plot of broiler PM₁₀ emissions versus ambient temperature and scatter plot with regression.

Figure F-49. Scatter plot of broiler PM_{2.5} emissions versus ambient temperature and scatter plot with regression.

Figure F-50. Scatter plot of broiler TSP emissions versus ambient temperature and scatter plot with regression.

Ambient relative Humidity

Figure F-51. Scatter plot of broiler NH₃ emissions versus ambient relative humidity and scatter plot with regression.

Figure F-52. Scatter plot of broiler H₂S emissions versus ambient relative humidity and scatter plot with regression.

Figure F-53. Scatter plot of broiler PM₁₀ emissions versus ambient relative humidity and scatter plot with regression.

Figure F-54. Scatter plot of broiler PM_{2.5} emissions versus ambient relative humidity and scatter plot with regression.

Figure F-55. Scatter plot of broiler TSP emissions versus ambient relative humidity and scatter plot with regression.

Figure F-56. Scatter plot of broiler NH₃ emissions versus litter age and scatter plot with regression.

Figure F-57. Scatter plot of broiler H₂S emissions versus litter age and scatter plot with regression.

Figure F-58. Scatter plot of broiler PM₁₀ emissions versus litter age and scatter plot with regression.

Figure F-59. Scatter plot of broiler PM_{2.5} emissions versus litter age and scatter plot with regression.

Figure F-60. Scatter plot of broiler TSP emissions versus litter age and scatter plot with regression.

Litter Status (0-1, continuous)

Figure F-61. Scatter plot of broiler NH₃ emissions versus litter status (0-1, continuous) and scatter plot with regression.

Figure F-62. Scatter plot of broiler H₂S emissions versus litter status (0-1, continuous) and scatter plot with regression.

Figure F-63. Scatter plot of broiler PM₁₀ emissions versus litter status (0-1, continuous) and scatter plot with regression.

Figure F-64. Scatter plot of broiler PM_{2.5} emissions versus litter status (0-1, continuous) and scatter plot with regression.

Figure F-65. Scatter plot of broiler TSP emissions versus litter status (0-1, continuous) and scatter plot with regression.

Litter Status (0-3, continuous)

Figure F-66. Scatter plot of broiler NH₃ emissions versus litter status (0-3, continuous) and scatter plot with regression.

Figure F-67. Scatter plot of broiler H₂S emissions versus litter status (0-3, continuous) and scatter plot with regression.

Figure F-68. Scatter plot of broiler PM₁₀ emissions versus litter status (0-3, continuous) and scatter plot with regression.

Figure F-69. Scatter plot of broiler PM_{2.5} emissions versus litter status (0-3, continuous) and scatter plot with regression.

Figure F-70. Scatter plot of broiler TSP emissions versus litter status (0-3, continuous) and scatter plot with regression.

Litter status (0-6, continuous between flocks)

Figure F-71. Scatter plot of broiler NH₃ emissions versus litter status (0-6, continuous) and scatter plot with regression.

Figure F-72. Scatter plot of broiler H₂S emissions versus litter status (0-6, continuous) and scatter plot with regression.

Figure F-73. Scatter plot of broiler PM₁₀ emissions versus litter status (0-6, continuous) and scatter plot with regression.

Figure F-74. Scatter plot of broiler PM_{2.5} emissions versus litter status (0-6, continuous) and scatter plot with regression.

Figure F-75. Scatter plot of broiler TSP emissions versus litter status (0-6, continuous) and scatter plot with regression.

Litter Status (0-6; empty between flocks)

Figure F-76. Scatter plot of broiler NH₃ emissions versus litter status (0-6, empty between) and scatter plot with regression.

Figure F-77. Scatter plot of broiler H₂S emissions versus litter status (0-6, empty between) and scatter plot with regression.

Figure F-78. Scatter plot of broiler PM₁₀ emissions versus litter status (0-6, empty between) and scatter plot with regression.

Figure F-79. Scatter plot of broiler PM_{2.5} emissions versus litter status (0-6, empty between) and scatter plot with regression.

Figure F-80. Scatter plot of broiler TSP emissions versus litter status (0-6, empty between) and scatter plot with regression.

Solid Content Litter Floor

TAN Litter floor

TKN Content, new litter (wet basis)

TKN Content, new litter, (dry basis)

Figure F-93. Scatter plot of broiler NH₃ emissions versus TKN content of new litter (dry basis) and scatter plot with regression.

Figure F-94. Scatter plot of broiler H₂S emissions versus TKN content of new litter (dry basis) and scatter plot with regression.

Solids content , new litter

TKN, decaked litter (wet weight basis)

Figure F-97. Scatter plot of broiler NH₃ emissions versus decaked litter TKN content (wet weight basis) and scatter plot with regression.

Figure F-98. Scatter plot of broiler H₂S emissions versus decaked litter TKN content (wet weight basis) and scatter plot with regression.

TKN content, decaked litter (dry weight basis)

Figure F-101. Scatter plot of broiler NH₃ emissions versus decaked litter TKN content (dry weight basis) and scatter plot with regression.

Figure F-102. Scatter plot of broiler H₂S emissions versus decaked litter TKN content (wet weight basis) and scatter plot with regression.

Figure F-103. Scatter plot of broiler PM_{2.5} emissions versus decaked litter TKN content (wet weight basis) and scatter plot with regression.

Figure F-104. Scatter plot of broiler TSP emissions versus decaked litter TKN content (wet weight basis) and scatter plot with regression.

Solids Content, decaked litter

Figure F-107. Scatter plot of broiler NH₃ emissions versus loadout litter TKN content (wet weight basis) and scatter plot with regression.

TKN content, loadout litter (dry weight basis)

Figure F-109. Scatter plot of broiler NH₃ emissions versus loadout litter TKN content (dry weight basis) and scatter plot with regression.

Figure F-110. Scatter plot of broiler H₂S emissions versus loadout litter TKN content (dry weight basis) and scatter plot with regression.

Solids content, loadout litter

Appendix G - Modeling Plots

List of Tables

Table G-1. Parameter combinations tested as models for NH ₃ and H ₂ S emissions	G-3
Table G-2. Parameter and estimates for broiler NH ₃ emission models tested.	G-4
Table G-3. Fit and evaluation statistics for the broiler house NH ₃ models tested	G-7
Table G-4. Parameter and estimates for broiler H ₂ S emission models tested	G-11
Table G-5. Fit and evaluation statistics for the broilerH ₂ S models tested.	G-14
Table G-6. Parameter and estimates for broiler PM ₁₀ emission models tested	G-18
Table G-7. Fit and evaluation statistics for the broiler PM ₁₀ models tested	G-21
Table G-8. Parameter and estimates for broiler PM _{2.5} emission models tested	G-25
Table G-9. Fit and evaluation statistics for the broiler PM _{2.5} models tested	G-28
Table G-10. Parameter and estimates for broiler TSP emission models tested	G-32
Table G-11. Fit and evaluation statistics for the broiler TSP models tested	G-35

List of Figures

Figure G-1. Broiler house NH3 one-to-one plots models 1 through 9.	G-8
Figure G-2. Broiler house NH3 one-to-one plots models 10 through 18.	G-9
Figure G-3. Broiler house NH3 one-to-one plots models 19 through 26.	G-10
Figure G-4. Broiler house H ₂ S one-to-one plots models 1 through 9	G-15
Figure G-5. Broiler house H ₂ S one-to-one plots models 10 through 18.	G-16
Figure G-6. Broiler house H ₂ S one-to-one plots models 19 through 26	G-17
Figure G-7. Broiler house PM ₁₀ one-to-one plots models 1 through 9	G-22
Figure G-8. Broiler house PM ₁₀ one-to-one plots models 10 through 18.	G-23
Figure G-9. Broiler house PM ₁₀ one-to-one plots models 19 through 26.	G-24
Figure G-10. Broiler house PM2.5 one-to-one plots models 1 through 9.	G-29
Figure G-11. Broiler house PM2.5 one-to-one plots models 10 through 18	G-30
Figure G-12. Broiler house PM2.5 one-to-one plots models 19 through 26	G-31
Figure G-13. Broiler house TSP one-to-one plots models 1 through 9.	G-36
Figure G-14. Broiler house TSP one-to-one plots models 10 through 18	G-37
Figure G-15. Broiler house TSP one-to-one plots models 19 through 26	G-38

 \land

Model	Parameter
1	Intercept, Inventory, Flock age
2	Intercept, Inventory, Flock age, Ambient temperature
3	Intercept, Inventory, Flock age, Ambient relative humidity
4	Intercept, Inventory, Flock age, Exhaust temperature
5	Intercept, Inventory, Flock age, Exhaust humidity
6	Intercept, Inventory, Flock age, Ambient temperature, Ambient relative humidity
7	Intercept, Inventory, Flock age, Exhaust temperature, Exhaust relative humidity
8	Intercept, Inventory, Flock age, Litter age
9	Intercept, Inventory, Flock age, Litter age, Ambient temperature
10	Intercept, Live animal weight
11	Intercept, Live animal weight, Ambient temperature
12	Intercept, Live animal weight, Ambient relative humidity
13	Intercept, Live animal weight, Exhaust temperature
14	Intercept, Live animal weight, Exhaust humidity
15	Intercept, Live animal weight, Ambient temperature, Ambient relative humidity
16	Intercept, Live animal weight, Exhaust temperature, Exhaust relative humidity
17	Intercept, Live animal weight, Litter age
18	Intercept, Live animal weight, Litter age, Ambient temperature
19*	Intercept, Inventory, Flock age, Ambient temperature, Ambient relative humidity, House
	status (Empty (E), Full (F), Transition (T))
20*	Intercept, Live animal weight, Ambient temperature, Ambient relative humidity, House
	status (Empty (E), Full (F), Transition (T))
21*	Intercept, Inventory, Flock age, Ambient temperature, Ambient relative humidity, Litter
	status (0-3, continuous between flocks)
22*	Intercept, Live animal weight, Ambient temperature, Ambient relative humidity, Litter
	status (0-3, continuous between flocks)
23*	Intercept, Inventory, Flock age, Ambient temperature, Ambient relative humidity, Litter
2.4*	status (U-6, continuous between flocks)
24*	Intercept, Live animal weight, Ambient temperature, Ambient relative humidity, Litter
25*	status (0-6, continuous between flocks)
25*	Intercept, Inventory, Flock age, Ambient temperature, Ambient relative humidity, Litter
20*	status (U-1, continuous between flocks)
26*	Intercept, Live animal weight, Ambient temperature, Ambient relative humidity, Litter
	status (U-1, continuous between flocks)

Table G-1. Paramete	r combinations	tested as mod	dels for NH₃ and	H ₂ S emissions.
---------------------	----------------	---------------	------------------	-----------------------------

Model	Parameter	Estimate	Standard Error	p-value
	Intercept	2.141006	0.08806	<.0001
1	Inventory	0.004007	0.00213	0.0599
	Flock age	0.006244	0.00112	<.0001
	Intercept	1.87684	0.0924	<.0001
2	Inventory	0.004044	0.0021	0.0545
Z	Flock age	0.006357	0.00111	<.0001
	Ambient temperature	0.019455	0.00239	<.0001
	Intercept	1.968834	0.10345	<.0001
2	Inventory	0.003964	0.00214	0.0643
5	Flock age	0.00632	0.00113	<.0001
	Ambient relative humidity	0.002452	0.00082	0.0028
	Intercept	1.748571	0.11 <u>69</u> 7	<.0001
4	Inventory	0.002681	0.00212	0.2057
4	Flock age	0.006108	0.0011	<.0001
	Exhaust temperature	0.018707	0.00345	<.0001
	Intercept	1.976981	0.11744	<.0001
F	Inventory	0.002385	0.00209	0.2539
5	Flock age	0.009209	0.00114	<.0001
	Exhaust relative humidity	0.002284	0.00127	0.0725
	Intercept	1.554209	0.11193	<.0001
	Inventory	0.004043	0.00209	0.0527
6	Flock age	0.00641	0.0011	<.0001
	Ambient temperature	0.022003	0.00243	<.0001
	Ambient relative humidity	0.004033	0.00082	<.0001
	Intercept	1.466425	0.15096	<.0001
	Inventory	0.001182	0.00207	0.5687
7	Flock age	0.009081	0.00112	<.0001
	Exhaust temperature	0.019527	0.00354	<.0001
	Exhaust relative humidity	0.003897	0.00129	0.0026
	Intercept	2.007307	0.10579	<.0001
0	Inventory	0.005385	0.00225	0.0168
0	Flock age	0.005979	0.00113	<.0001
	Litter age	0.000739	0.00039	0.0606
	Intercept	1.712644	0.11028	<.0001
	Inventory	0.005669	0.00222	0.0107
9	Flock age	0.006031	0.00112	<.0001
	Ambient temperature	0.019593	0.00238	<.0001
	Litter age	0.000848	0.00038	0.0274
10	Intercept	2.171642	0.07708	<.0001
10	Live animal weight	0.008597	0.00096	<.0001
	Intercept	1.928609	0.08252	<.0001
11	Live animal weight	0.008549	0.00095	<.0001
	Ambient temperature	0.018161	0.00236	<.0001
	Intercept	1.995512	0.09419	<.0001
12	Live animal weight	0.008616	0.00097	<.0001
	Ambient relative humiditv	0.002508	0.00081	0.0021

Table G-2. Parameter and estimates for broiler NH₃ emission models tested.

Model	Parameter	Estimate	Standard Error	p-value
	Intercept	1.793893	0.11027	<.0001
13	Live animal weight	0.008032	0.00096	<.0001
	Exhaust temperature	0.017361	0.0034	<.0001
	Intercept	1.9941	0.10717	<.0001
14	Live animal weight	0.010261	0.00099	<.0001
	Exhaust relative humidity	0.002428	0.00126	0.0539
	Intercept	1.60581	0.10407	<.0001
45	Live animal weight	0.008532	0.00094	<.0001
15	Ambient temperature	0.020739	0.0024	<.0001
	Ambient relative humidity	0.004038	0.00081	<.0001
	Intercept	1.490968	0.14462	<.0001
10	Live animal weight	0.009791	0.00098	<.0001
16	Exhaust temperature	0.018742	0.0035	<.0001
	Exhaust relative humidity	0.003947	0.00128	0.0021
	Intercept	2.094469	0.09157	<.0001
17	Live animal weight	0.008683	0.00096	<.0001
	Litter age	0.000492	0.00038	0.1979
	Intercept	1.836166	0.09705	<.0001
10	Live animal weight	0.008634	0.00095	<.0001
18	Ambient temperature	0.018204	0.00235	<.0001
	Litter age	0.000555	0.00037	0.1377
	Intercept	1.219981	0.132	<.0001
	House status - Empty	0.348512	0.08179	<.0001
	House status - Full	-0.19037	0.06382	0.0029
40*	House status - Transition	0		
19*	Inventory	0.023409	0.00539	<.0001
	Flock age	0.009799	0.00137	<.0001
	Ambient temperature	0.021999	0.00242	<.0001
	Ambient relative humidity	0.003947	0.00082	<.0001
	Intercept	1.611418	0.12873	<.0001
	House status - Empty	0.032309	0.08501	0.704
	House status - Full	-0.0448	0.07525	0.5518
20*	House status - Transition	0	•	•
	Live animal weight	0.009821	0.00132	<.0001
	Ambient temperature	0.020684	0.0024	<.0001
	Ambient relative humidity	0.004004	0.00082	<.0001
	Intercept	1.698344	0.14873	<.0001
	Litter condition - 0	-0.196207	0.13019	0.1336
	Litter condition - 1	-0.240014	0.13323	0.0736
	Litter condition - 2	-0.171223	0.12936	0.1877
21*	Litter condition - 3+	0		
	Inventory	0.003912	0.00209	0.0616
	Flock age	0.006468	0.0011	<.0001
	Ambient temperature	0.021878	0.00243	<.0001
	Ambient relative humidity	0.004075	0.00082	<.0001
วา *	Intercept	1.74348	0.14058	<.0001
22*	Litter condition - 0	-0.181283	0.12789	0.1582

Model	Parameter	Estimate	Standard Error	p-value
	Litter condition - 1	-0.239139	0.13262	0.0735
	Litter condition - 2	-0.155175	0.12642	0.2217
	Litter condition - 3+	0		
	Live animal weight	0.008525	0.00094	<.0001
	Ambient temperature	0.02055	0.00241	<.0001
	Ambient relative humidity	0.004058	0.00081	<.0001
	Intercept	1.826993	0.26916	<.0001
	Litter condition - 0	-0.342542	0.26248	0.195
	Litter condition - 1	-0.387448	0.2668	0.1498
	Litter condition - 2	-0.321476	0.26767	0.2329
	Litter condition - 3	-0.211192	0.29837	0.4807
^ 2*	Litter condition - 4	-0.388707	0.35539	0.2782
25	Litter condition - 5	0.233524	0.38202	0.5446
	Litter condition - 6	0		•
	Inventory	0.003996	0.00211	0.0586
	Flock age	0.006459	0.0011	<.0001
	Ambient temperature	0.022396	0.00244	<.0001
	Ambient relative humidity	0.004151	0.00082	<.0001
	Intercept	1.820799	0.26294	<.0001
	Litter condition - 0	-0.27453	0.25551	0.2855
	Litter condition - 1	-0.332466	0.26214	0.2081
	Litter condition - 2	-0.251812	0.26185	0.339
	Litter condition - 3	-0.14936	0.28944	0.607
24*	Litter condition - 4	-0.298823	0.3433	0.3875
	Litter condition - 5	0.293234	0.36577	0.4278
	Litter condition - 6	0	•	•
	Live animal weight	0.00852	0.00094	<.0001
	Ambient temperature	0.021039	0.00242	<.0001
	Ambient relative humidity	0.004121	0.00082	<.0001
	Intercept	1.55499	0.11232	<.0001
	Litter condition - 0	-0.005074	0.05939	0.9319
	Litter condition - 1+	0	•	
25*	Inventory	0.004049	0.00209	0.0525
	Flock age	0.006411	0.0011	<.0001
	Ambient temperature	0.022011	0.00243	<.0001
	Ambient relative humidity	0.004033	0.00082	<.0001
	Intercept	1.60712	0.1045	<.0001
	Litter condition - 0	-0.009296	0.06943	0.8935
26*	Litter condition - 1+	0		
20	Live animal weight	0.008537	0.00094	<.0001
	Ambient temperature	0.02075	0.00241	<.0001
	Ambient relative humidity	0.004042	0.00081	<.0001

						LNME ^a	NME ^b	ME ^b	MB ^b	NMB ^b
Model	2LogL	AIC	AICc	BIC	Corr.	(%)	(%)	(kg day⁻¹)	(kg day ⁻¹)	(%)
1	294	316	316	309	0.632	28.14	62.63	6.725	-0.488	-4.55
2	257	281	281	274	0.439	28.24	62.96	6.66	-0.333	-3.15
3	315	339	339	331	0.65	28.04	62.54	6.615	-0.504	-4.76
4	265	289	289	282	0.435	28.95	65.12	6.992	-0.301	-2.8
5	228	252	253	245	0.711	26.67	58.58	6.306	-0.673	-6.25
6	233	259	259	251	0.473	27.93	62.16	6.575	-0.37	-3.5
7	199	225	225	217	0.6	27.27	60.36	6.497	-0.547	-5.08
8	291	315	315	307	0.643	27.45	60.92	6.541	-0.531	-4.94
9	253	279	279	271	0.5	27.45	60.87	6.438	-0.382	-3.62
10	248	268	268	262	0.731	26.23	57.13	6.114	-0.727	-6.79
11	220	242	242	235	0.572	26.38	57.55	6.066	-0.564	-5.36
12	270	292	292	285	0.746	26.14	57.04	6.012	-0.738	-7.01
13	223	245	245	238	0.615	27.09	59.63	6.382	-0.577	-5.4
14	199	221	221	214	0.755	25.02	53.93	5.783	-0.829	-7.73
15	195	219	219	212	0.597	26.07	56.78	5.984	-0.599	-5.68
16	171	195	195	187	0.694	25.67	55.71	5.974	-0.729	-6.8
17	246	268	269	262	0.747	25.68	55.81	5.973	-0.772	-7.21
18	218	242	242	234	0.609	25.75	56	5.902	-0.616	-5.84
19*	215	245	245	236	0.571	26.61	58.42	6.179	-0.543	-5.13
20*	193	221	221	212	0.618	25.58	55.41	5.84	-0.647	-6.14
21*	229	261	261	251	0.475	27.51	61.09	6.462	-0.301	-2.85
22*	192	222	222	212	0.58	25.7	55.82	5.883	-0.512	-4.86
23*	225	263	263	251	0.481	27.33	60.87	6.439	-0.302	-2.85
24*	188	224	224	213	0.58	25.59	56.03	5.905	-0.495	-4.7
25*	233	261	261	252	0.475	27.93	62.15	6.574	-0.372	-3.51
26*	195	221	221	213	0.6	26.05	56.75	5.981	-0.602	-5.71

Table G-3. Fit and evaluation statistics for the broiler house NH₃ models tested.

Figure G-1. Broiler house NH₃ one-to-one plots models 1 through 9.

Figure G-2. Broiler house NH₃ one-to-one plots models 10 through 18.

Figure G-3. Broiler house NH₃ one-to-one plots models 19 through 26.

Model	Parameter	Estimate	Standard Error	p-value
	Intercept	3.238152	0.09464	<.0001
1	Inventory	0.011569	0.00185	<.0001
	Flock age	0.010331	0.00097	<.0001
	Intercept	3.047834	0.13341	<.0001
2	Inventory	0.011615	0.00185	<.0001
2	Flock age	0.010437	0.00097	<.0001
	Ambient temperature	0.012741	0.00194	<.0001
	Intercept	2.965993	0.13767	<.0001
2	Inventory	0.011729	0.00186	<.0001
3	Flock age	0.010401	0.00097	<.0001
	Ambient relative humidity	0.003932	0.00064	<.0001
	Intercept	2.799185	0.10829	<.0001
4	Inventory	0.010217	0.00184	<.0001
4	Flock age	0.010215	0.00096	<.0001
	Exhaust temperature	0.019913	0.00292	<.0001
	Intercept	2.764705	0.13682	<.0001
-	Inventory	0.012237	0.00184	<.0001
5	Flock age	0.012038	0.00099	<.0001
	Exhaust relative humidity	0.00725	0.00104	<.0001
	Intercept	2.694041	0.14161	<.0001
	Inventory	0.011817	0.00183	<.0001
6	Flock age	0.010462	0.00095	<.0001
	Ambient temperature	0.014857	0.00193	<.0001
	Ambient relative humidity	0.004681	0.00064	<.0001
	Intercept	2.122484	0.15816	<.0001
	Inventory	0.010896	0.00182	<.0001
7	Flock age	0.011818	0.00097	<.0001
	Exhaust temperature	0.024493	0.00297	<.0001
	Exhaust relative humidity	0.00892	0.00105	<.0001
	Intercept	3.072379	0.10122	<.0001
0	Inventory	0.013589	0.00197	<.0001
õ	Flock age	0.009832	0.00099	<.0001
	Litter age	0.000942	0.00033	0.0042
	Intercept	2.857648	0.12258	<.0001
	Inventory	0.01386	0.00199	<.0001
9	Flock age	0.009883	0.00099	<.0001
	Ambient temperature	0.012993	0.00194	<.0001
	Litter age	0.00105	0.00036	0.0036
10	Intercept	3.347844	0.0987	<.0001
10	Live animal weight	0.016155	0.00083	<.0001
	Intercept	3.158093	0.09372	<.0001
11	Live animal weight	0.016175	0.00081	<.0001
	Ambient temperature	0.012948	0.00189	<.0001
	Intercept	3.099418	0.09651	<.0001
12	Live animal weight	0.016193	0.00082	<.0001
	Ambient relative humidity	0.003631	0.00063	< 0001

Table G-4. Parameter and estimates for broiler H₂S emission models tested.

Model	Parameter	Estimate	timate Standard Error		
	Intercept	2.88556	0.12042	<.0001	
13	Live animal weight	0.01549	0.00082	<.0001	
	Exhaust temperature	0.020417	0.0029	<.0001	
	Intercept	2.87973	0.1043	<.0001	
14	Live animal weight	0.017817	0.00083	<.0001	
	Exhaust relative humidity	0.007376	0.00102	<.0001	
	Intercept	2.824278	0.10483	<.0001	
45	Live animal weight	0.016214	0.0008	<.0001	
15	Ambient temperature	0.015048	0.00189	<.0001	
	Ambient relative humidity	0.004429	0.00063	<.0001	
	Intercept	2.209308	0.12817	<.0001	
10	Live animal weight	0.017143	0.00082	<.0001	
16	Exhaust temperature	0.025023	0.00289	<.0001	
	Exhaust relative humidity	0.009079	0.00102	<.0001	
	Intercept	3.332486	0.10062	<.0001	
17	Live animal weight	0.016165	0.00082	<.0001	
	Litter age	0.000107	0.00035	0.7632	
	Intercept	3.129836	0.09863	<.0001	
10	Live animal weight	0.016192	0.00081	<.0001	
18	Ambient temperature	0.012988	0.00189	<.0001	
	Litter age	0.000192	0.00033	0.5656	
	Intercept	2.235582	0.13648	<.0001	
	House status - Empty	0.482262	0.07293	<.0001	
	House status - Full	-0.110419	0.05531	0.0461	
40*	House status - Transition	0			
19*	Inventory	0.031579	0.00474	<.0001	
	Flock age	0.015749	0.00119	<.0001	
	Ambient temperature	0.014811	0.00191	<.0001	
	Ambient relative humidity	0.004675	0.00063	<.0001	
	Intercept	2.720762	0.12493	<.0001	
	House status - Empty	0.095916	0.07464	0.199	
	House status - Full	0.104275	0.06536	0.1109	
20*	House status - Transition	0	•	•	
	Live animal weight	0.016247	0.00114	<.0001	
	Ambient temperature	0.015003	0.00189	<.0001	
	Ambient relative humidity	0.004457	0.00063	<.0001	
	Intercept	2.753961	0.17727	<.0001	
	Litter condition - 0	-0.082194	0.12156	0.4993	
	Litter condition - 1	-0.101087	0.12807	0.4304	
	Litter condition - 2	-0.054129	0.12188	0.6572	
21*	Litter condition - 3+	0	•		
	Inventory	0.011723	0.00183	<.0001	
	Flock age	0.010499	0.00095	<.0001	
	Ambient temperature	0.014886	0.00193	<.0001	
	Ambient relative humidity	0.004712	0.00064	<.0001	
วา *	Intercept	2.881035	0.13702	<.0001	
22*	Litter condition - 0	-0.065339	0.11293	0.5633	

Model	Parameter	Estimate	Standard Error	p-value
	Litter condition - 1	-0.115668	0.12111	0.3403
	Litter condition - 2	-0.042415	0.11265	0.7068
	Litter condition - 3+	0		
	Live animal weight	0.016218	0.0008	<.0001
	Ambient temperature	0.015035	0.00189	<.0001
	Ambient relative humidity	0.00445	0.00063	<.0001
	Intercept	3.186563	0.25008	<.0001
	Litter condition - 0	-0.553447	0.2273	0.0164
	Litter condition - 1	-0.583498	0.23409	0.014
	Litter condition - 2	-0.551932	0.23561	0.0209
	Litter condition - 3	-0.640634	0.26557	0.0171
22*	Litter condition - 4	-0.399051	0.39874	0.3216
23*	Litter condition - 5	-0.184989	0.30396	0.5444
	Litter condition - 6	0		
	Inventory	0.012393	0.00186	<.0001
	Flock age	0.010364	0.00096	<.0001
	Ambient temperature	0.015215	0.00193	<.0001
	Ambient relative humidity	0.004785	0.00064	<.0001
	Intercept	3.212841	0.21783	<.0001
	Litter condition - 0	-0.401194	0.20595	0.0542
	Litter condition - 1	-0.464505	0.21473	0.0329
	Litter condition - 2	-0.403092	0.2148	0.0636
	Litter condition - 3	-0.444981	0.24109	0.0673
24*	Litter condition - 4	-0.514205	0.34214	0.1403
	Litter condition - 5	-0.204029	0.27073	0.4536
	Litter condition - 6	0		
	Live animal weight	0.016257	0.0008	<.0001
	Ambient temperature	0.015383	0.00189	<.0001
	Ambient relative humidity	0.004516	0.00063	<.0001
	Intercept	2.696262	0.14199	<.0001
	Litter condition - 0	-0.011758	0.05415	0.8281
	Litter condition - 1+	0		
25*	Inventory	0.011838	0.00183	<.0001
	Flock age	0.010458	0.00095	<.0001
	Ambient temperature	0.014871	0.00194	<.0001
	Ambient relative humidity	0.004683	0.00064	<.0001
	Intercept	2.823781	0.10555	<.0001
	Litter condition - 0	0.002468	0.06278	0.9687
26*	Litter condition - 1+	0		
26*	Live animal weight	0.016214	0.0008	<.0001
	Ambient temperature	0.015045	0.00189	<.0001
	Ambient relative humidity	0.004428	0.00063	<.0001

						LNME ^a	NME ^b	ME ^b	MB ^b	NMB ^b
Model	2LogL	AIC	AICc	BIC	Corr.	(%)	(%)	(g day ⁻¹)	(g day⁻¹)	(%)
1	-299	-277	-277	-284	0.787	19	67.05	34.37	-5.684	-11.09
2	-315	-291	-291	-298	0.743	19.02	67.02	34.17	-5.626	-11.04
3	-309	-285	-284	-292	0.775	18.99	67.63	34.48	-5.585	-10.95
4	-344	-320	-320	-327	0.693	19.25	68.44	35.1	-5.039	-9.826
5	-374	-350	-350	-358	0.817	18.12	63.36	32.75	-6.345	-12.28
6	-370	-344	-344	-352	0.752	18.9	66.64	33.97	-5.689	-11.16
7	-443	-417	-417	-425	0.751	18.35	64.61	33.39	-5.85	-11.32
8	-307	-283	-283	-290	0.771	18.65	65.58	33.62	-5.56	-10.85
9	-324	-298	-298	-306	0.742	18.6	65.31	33.3	-5.575	-10.94
10	-386	-366	-366	-372	0.854	16.97	57.28	29.61	-7.184	-13.9
11	-403	-381	-381	-388	0.821	17.03	57.42	29.53	-7.029	-13.67
12	-389	-367	-367	-374	0.85	17	57.92	29.78	-7.152	-13.91
13	-435	-413	-413	-420	0.831	17.22	58.68	30.35	-7.055	-13.64
14	-471	-449	-449	-456	0.844	16.12	53.66	27.96	-7.175	-13.77
15	-454	-430	-430	-437	0.828	16.92	57	29.31	-7.107	-13.82
16	-545	-521	-521	-528	0.846	16.29	54.68	28.49	-7.355	-14.11
17	-386	-364	-364	-371	0.856	16.92	57.09	29.51	-7.206	-13.94
18	-404	-380	-380	-387	0.825	16.92	57.1	29.36	-7.079	-13.77
19*	-421	-391	-391	-400	0.818	17.71	61.8	31.51	-6.681	-13.1
20*	-456	-428	-428	-437	0.83	16.87	56.82	29.22	-7.137	-13.88
21*	-371	-339	-339	-349	0.754	18.83	66.21	33.75	-5.722	-11.22
22*	-455	-425	-425	-434	0.826	16.84	56.79	29.2	-7.098	-13.8
23*	-379	-341	-341	-353	0.744	18.57	65.42	33.35	-5.508	-10.8
24*	-460	-424	-424	-435	0.835	16.73	56.24	28.92	-7.203	-14.01
25*	-370	-342	-342	-351	0.753	18.89	66.62	33.96	-5.689	-11.16
26*	-454	-428	-428	-436	0.828	16.92	57	29.31	-7.106	-13.82

Table G-5. Fit and evaluation statistics for the broilerH₂S models tested.

Figure G-4. Broiler house H₂S one-to-one plots models 1 through 9.

Figure G-5. Broiler house H₂S one-to-one plots models 10 through 18.

Figure G-6. Broiler house H₂S one-to-one plots models 19 through 26.

Model	Parameter	Estimate	Standard Error	p-value
	Intercept	-83.80886	67.8092	0.2173
1	Inventory	-4.550187	3.10613	0.1434
1	Flock age	52.809659	1.88788	<.0001
	Intercept	-283.2642	74.9229	0.0002
2	Inventory	-3.771313	3.0385	0.215
	Flock age	52.216562	1.81413	<.0001
	Ambient temperature	12.912983	2.38137	<.0001
	Intercept	371.62643	92.6665	<.0001
3	Inventory	-3.635579	3.08884	0.2396
	Flock age	52.599813	1.89216	<.0001
	Ambient relative humidity	-7.088714	0.98707	<.0001
	Intercept	-189.9013	131.922	0.1507
4	Inventory	-5.018895	3.14303	0.1107
	Flock age	52.93277	1.88669	<.0001
	Exhaust temperature	4.583624	4.88499	0.3485
	Intercept	745.73411	116.978	<.0001
F	Inventory	-6.11462	3.09966	0.0489
5	Flock age	53.680718	1.94841	<.0001
	Exhaust relative humidity	-14.02385	1.60235	<.0001
	Intercept	169.3207	103.791	0.1032
	Inventory	-3.094042	3.03669	0.3086
6	Flock age	52.082748	1.82681	<.0001
	Ambient temperature	9.814411	2.42121	<.0001
	Ambient relative humidity	-6.297763	0.99786	<.0001
	Intercept	1057.2935	192.207	<.0001
	Inventory	-5.290468	3.12616	0.091
7	Flock age	53.500208	1.96072	<.0001
	Exhaust temperature	-10.47379	5.1689	0.0431
	Exhaust relative humidity	-15.16683	1.69011	<.0001
	Intercept	-121.547	80.7387	0.1334
8	Inventory	-3.797187	3.24148	0.2419
0	Flock age	52.540703	1.91708	<.0001
	Litter age	0.206477	0.23846	0.3879
	Intercept	-340.591	86.7614	0.0001
	Inventory	-2.676418	3.16359	0.3979
9	Flock age	51.782093	1.84185	<.0001
	Ambient temperature	13.109537	2.39098	<.0001
	Litter age	0.296864	0.22565	0.1902
10	Intercept	117.60904	38.3107	0.0025
10	Live animal weight	40.971581	1.32525	<.0001
	Intercept	-84.49604	48.6431	0.0836
11	Live animal weight	40.749075	1.24901	<.0001
	Ambient temperature	13.689473	2.2894	<.0001
12	Intercept	609.34006	74.5885	<.0001
12	Live animal weight	41.17374	1.2976	<.0001

Table G-6. Parameter and estimates for broiler PM₁₀ emission models tested.

Model	Parameter	Estimate	Standard Error	p-value
	Ambient relative humidity	-7.487248	0.98091	<.0001
	Intercept	-285.3281	121.874	0.0197
13	Live animal weight	41.457281	1.27635	<.0001
	Exhaust temperature	15.96895	4.6156	0.0006
14	Intercept	996.13201	95.4345	<.0001
	Live animal weight	42.144392	1.28607	<.0001
	Exhaust relative humidity	-15.51406	1.55403	<.0001
	Intercept	397.28057	87.0688	<.0001
15	Live animal weight	40.872002	1.23866	<.0001
	Ambient temperature	10.401892	2.31348	<.0001
	Ambient relative humidity	-6.584463	0.99133	<.0001
	Intercept	982.86265	179.941	<.0001
16	Live animal weight	42.153577	1.2888	<.0001
	Exhaust temperature	0.413483	4.84172	0.932
	Exhaust relative humidity	-15.46414	1.64541	<.0001
	Intercept	145.47064	46.9262	0.0023
17	Live animal weight	41.201265	1.34828	<.0001
	Litter age	-0.238567	0.22304	0.2863
	Intercept	-58.88599	55.9128	0.2934
10	Live animal weight	40.970722	1.27951	<.0001
18	Ambient temperature	13.493558	2.30203	<.0001
	Litter age	-0.195197	0.20933	0.3524
	Intercept	-316.0989	180.805	0.0813
	House status - Empty	563.86467	167.519	0.0009
	House status - Full	-465.8649	128.574	0.0003
10*	House status - Transistion	0	•	-
19	Inventory	38.278207	10.6222	0.0004
	Flock age	53.691753	1.75449	<.0001
	Ambient temperature	10.742794	2.34489	<.0001
	Ambient relative humidity	-6.637487	0.99411	<.0001
	Intercept	382.64335	205.709	0.0631
	House status - Empty	-32.79518	192.391	0.8647
	House status - Full	25.721987	187.832	0.8911
20*	House status - Transistion	0		•
	Live animal weight	40.545462	1.29077	<.0001
	Ambient temperature	10.456365	2.30976	<.0001
	Ambient relative humidity	-6.577463	0.9909	<.0001
	Intercept	238.48527	122.535	0.052
	Litter condition - 0	-108.108	77.5046	0.1648
	Litter condition - 1	-110.9751	77.2741	0.1529
	Litter condition - 2	-29.78528	74.0967	0.6882
21*	Litter condition - 3+	0		
	Inventory	-2.839369	3.04435	0.3514
	Flock age	51.897116	1.80059	<.0001
	Ambient temperature	9.567129	2.41267	<.0001
	Ambient relative humidity	-6.366502	1.00956	<.0001
22*	Intercept	319.04664	109.262	0.0036

Model	Parameter	Estimate	Standard Error	p-value
	Litter condition - 0	15.345879	72.3289	0.8322
	Litter condition - 1	71.499147	72.0183	0.3222
	Litter condition - 2	101.31801	68.44	0.1406
	Litter condition - 3+	0		
	Live animal weight	41.007404	1.23824	<.0001
	Ambient temperature	10.703613	2.31449	<.0001
	Ambient relative humidity	-6.341142	1.00653	<.0001
	Intercept	219.77046	158.674	0.1669
	Litter condition - 0	-84.55333	134.975	0.5317
	Litter condition - 1	-86.16403	136.071	0.5273
	Litter condition - 2	-5.318475	134.601	0.9685
	Litter condition - 3	-31.04718	160.547	0.8468
23*	Litter condition - 4	133.38619	180.495	0.4608
	Litter condition - 5	64.499618	163.359	0.6933
	Litter condition - 6	0		
	Inventory	-3.024136	3.04907	0.3217
	Flock age	51.905699	1.79477	<.0001
	Ambient temperature	9.604938	2.57191	0.0002
	Ambient relative humidity	-6.421984	1.01577	<.0001
	Intercept	305.44463	141.354	0.0314
	Litter condition - 0	35.963119	126.032	0.7756
	Litter condition - 1	93.225448	126.569	0.4622
	Litter condition - 2	122.75205	125	0.3272
	Litter condition - 3	-14.97887	148.794	0.9199
24*	Litter condition - 4	132.17369	167.162	0.43
	Litter condition - 5	16.277137	151.896	0.9148
	Litter condition - 6	0	•	•
	Live animal weight	40.999741	1.23527	<.0001
	Ambient temperature	10.500693	2.49321	<.0001
	Ambient relative humidity	-6.419067	1.01387	<.0001
	Intercept	176.27869	103.876	0.0901
	Litter condition - 0	-58.35568	57.7775	0.3135
	Litter condition - 1+	0	•	
25*	Inventory	-2.688256	3.05744	0.3796
	Flock age	52.015122	1.81921	<.0001
	Ambient temperature	9.8347	2.41515	<.0001
	Ambient relative humidity	-6.315387	0.99752	<.0001
	Intercept	410.48382	88.2411	<.0001
	Litter condition - 0	-50.15573	55.3468	0.3659
26*	Litter condition - 1+	0	•	
20	Live animal weight	40.864747	1.23431	<.0001
	Ambient temperature	10.389272	2.30909	<.0001
	Ambient relative humidity	-6.614124	0.99136	<.0001

						NME ^b	ME ^b	MB ^b	NMB ^b
Model	2LogL	AIC	AICc	BIC	Corr.	(%)	(g day⁻¹)	(g day⁻¹)	(%)
1	19,100	19,110	19,110	19,110	0.857	34.16	315.5	17.21	1.864
2	18,840	18,850	18,850	18,850	0.869	33.18	303.0	15.77	1.727
3	18,680	18,700	18,700	18,690	0.861	34.48	316.3	14.55	1.586
4	19,090	19,100	19,100	19,100	0.858	34.21	316.2	18.01	1.949
5	18,980	18,990	18,990	18,980	0.855	36.33	336.1	22.23	2.402
6	18,670	18,680	18,680	18,680	0.869	33.56	307.8	13.80	1.505
7	18,970	18,990	18,990	18,980	0.853	36.20	334.9	20.57	2.224
8	18,940	18,950	18,950	18,950	0.858	33.96	315.5	19.61	2.110
9	18,680	18,690	18,690	18,690	0.870	32.92	302.4	18.47	2.011
10	18,980	18,990	18,990	18,990	0.864	32.16	299.0	2.438	0.262
11	18,720	18,730	18,730	18,720	0.877	30.75	282.7	1.023	0.111
12	18,560	18,570	18,570	18,570	0.872	31.45	290.4	-1.812	-0.196
13	18,960	18,970	18,970	18,970	0.872	30.59	284.6	5.654	0.608
14	18,830	18,840	18,840	18,840	0.874	32.52	302.9	6.691	0.719
15	18,540	18,550	18,550	18,550	0.881	30.33	280.1	-2.222	-0.241
16	18,830	18,850	18,850	18,840	0.874	32.50	302.7	6.766	0.727
17	18,820	18,830	18,830	18,830	0.864	31.94	298.7	1.227	0.131
18	18,550	18,570	18,570	18,560	0.877	30.64	283.4	0.244	0.026
19*	18,650	18,670	18,670	18,670	0.880	31.76	291.3	14.36	1.565
20*	18,540	18,550	18,550	18,550	0.881	30.35	280.3	-0.393	-0.043
21*	18,660	18,680	18,680	18,680	0.872	33.08	303.4	16.31	1.778
22*	18,540	18,550	18,550	18,550	0.881	30.44	281.1	-2.407	-0.261
23*	18,660	18,690	18,690	18,680	0.873	32.93	302.0	16.51	1.800
24*	18,530	18,560	18,560	18,550	0.882	30.36	280.3	-2.139	-0.232
25*	18,670	18,680	18,680	18,680	0.870	33.46	306.9	14.81	1.615
26*	18,540	18,550	18,550	18,550	0.881	30.30	279.8	-1.568	-0.170

Table G-7. Fit and evaluation statistics for the broiler PM₁₀ models tested.

Figure G-7. Broiler house PM₁₀ one-to-one plots models 1 through 9.

Figure G-8. Broiler house PM₁₀ one-to-one plots models 10 through 18.

Figure G-9. Broiler house PM₁₀ one-to-one plots models 19 through 26.

Model	Parameter	Estimate	Standard Error	p-value
	Intercept	5.4417	10.3061	0.5992
1	Inventory	-0.7406	0.4199	0.0789
	Flock age	4.6588	0.2920	<.0001
2	Intercept	-10.9967	10.7248	0.3087
	Inventory	-0.8018	0.4138	0.0542
	Flock age	4.7939	0.2781	<.0001
	Ambient temperature	1.1448	0.2871	<.0001
	Intercept	42.2646	12.6136	0.001
2	Inventory	-0.5686	0.4238	0.1806
3	Flock age	4.5294	0.2965	<.0001
	Ambient relative humidity	-0.5474	0.1026	<.0001
	Intercept	3.5376	17.7426	0.8422
4	Inventory	-0.7413	0.4199	0.0786
	Flock age	4.6540	0.2939	<.0001
	Exhaust temperature	0.0873	0.6435	0.8922
	Intercept	71.9225	16.0508	<.0001
_	Inventory	-0.7009	0.4273	0.1016
5	Flock age	4.3833	0.3126	<.0001
-	Exhaust relative humidity	-1.0833	0.1895	<.0001
	Intercept	25.4972	13.5339	0.0613
	Inventory	-0.6283	0.4272	0.1428
6	Flock age	4.6521	0.2930	<.0001
	Ambient temperature	1.0011	0.2911	0.0007
	Ambient relative humidity	-0.5082	0.1024	<.0001
	Intercept	86.8679	23.6366	0.0003
	Inventory	-0.7145	0.4287	0.0963
7	Flock age	4.4209	0.3190	<.0001
	Exhaust temperature	-0.5883	0.6570	0.3709
	Exhaust relative humidity	-1.1165	0.1931	<.0001
	Intercept	-10.7842	12.5020	0.3909
0	Inventory	-0.5908	0.4170	0.1578
8	Flock age	4.6109	0.2824	<.0001
	Litter age	0.0626	0.0339	0.0711
	Intercept	-32.3044	11.7825	0.0074
	Inventory	-0.6196	0.3927	0.1163
9	Flock age	4.7200	0.2522	<.0001
	Ambient temperature	1.2338	0.2747	<.0001
	Litter age	0.0748	0.0288	0.0128
10	Intercept	0.0910	5.5124	0.9869
10	Live animal weight	4.0428	0.1668	<.0001
	Intercept	-18.7721	5.3252	0.0007
11	Live animal weight	4.0894	0.1334	<.0001
	Ambient temperature	1.3801	0.2330	<.0001
15	Intercept	37.1465	9.1956	<.0001
12	Live animal weight	4.0281	0.1724	<.0001

Table G-8. Parameter and estimates for broiler PM_{2.5} emission models tested.

Model	Parameter	Estimate	Standard Error	p-value
	Ambient relative humidity	-0.5146	0.1020	<.0001
	Intercept	-19.1615	13.7563	0.1652
13	Live animal weight	4.0307	0.1635	<.0001
	Exhaust temperature	0.8570	0.5598	0.127
14	Intercept	58.5277	12.6735	<.0001
14	Live animal weight	4.0024	0.1982	<.0001
	Exhaust relative humidity	-0.9776	0.1828	<.0001
15	Intercept	15.7767	9.1696	0.0862
	Live animal weight	4.0870	0.1378	<.0001
	Ambient temperature	1.3084	0.2349	<.0001
	Ambient relative humidity	-0.4641	0.1016	<.0001
	Intercept	52.2570	20.0747	0.0097
16	Live animal weight	3.9992	0.1986	<.0001
	Exhaust temperature	0.2335	0.6029	0.6987
	Exhaust relative humidity	-0.9597	0.1857	<.0001
	Intercept	-7.6487	7.8482	0.3332
17	Live animal weight	4.0120	0.1690	<.0001
	Litter age	0.0361	0.0268	0.1825
	Intercept	-27.6665	7.1418	0.0002
18	Live animal weight	4.0467	0.1353	<.0001
	Ambient temperature	1.4082	0.2336	<.0001
	Litter age	0.0374	0.0211	0.0805
	Intercept	-207.8189	39.9910	<.0001
	House status - Empty	231.5465	39.1684	<.0001
	House status - Full	0.0000	•	
19*	Inventory	8.1968	1.5647	<.0001
	Flock age	5.4681	0.2614	<.0001
	Ambient temperature	1.1660	0.2637	<.0001
	Ambient relative humidity	-0.4986	0.1028	<.0001
	Intercept	8.2529	9.4296	0.3821
	House status - Empty	16.7788	7.3790	0.0245
20*	House status - Full	0.0000		
20	Live animal weight	4.2425	0.1452	<.0001
	Ambient temperature	1.3286	0.2293	<.0001
	Ambient relative humidity	-0.4495	0.1016	<.0001
	Intercept	43.5806	12.3782	0.0006
	Litter condition - 0	-14.4795	12.2934	0.2438
	Litter condition - 1	-46.8177	9.1369	<.0001
	Litter condition - 2	-19.1363	9.0019	0.0393
21*	Litter condition - 3+	0.0000		
	Inventory	-1.2122	0.3754	0.0015
	Flock age	5.1004	0.2362	<.0001
	Ambient temperature	1.0312	0.2599	<.0001
	Ambient relative humidity	-0.5237	0.1048	<.0001
	Intercept	26.1896	10.0260	0.0095
22*	Litter condition - 0	-16.3961	10.5622	0.125
	Litter condition - 1	-21.6113	8.0188	0.0098

Model	Parameter	Estimate	Standard Error	p-value
	Litter condition - 2	-12.7092	7.1543	0.0808
	Litter condition - 3+	0.0000		
	Live animal weight	4.0500	0.1337	<.0001
	Ambient temperature	1.2395	0.2333	<.0001
	Ambient relative humidity	-0.4847	0.1023	<.0001
	Intercept	31.6412	13.4225	0.0204
23*	Litter condition - 0	4.7653	13.9604	0.7337
	Litter condition - 1	-31.0521	12.1051	0.0129
	Litter condition - 2	-1.8902	11.1277	0.866
	Litter condition - 3	26.0815	12.8499	0.0477
	Litter condition - 4	42.7670	13.1148	0.0023
	Litter condition - 5	6.8824	11.6577	0.5587
	Litter condition - 6	0.0000		•
	Inventory	-1.4277	0.3496	<.0001
	Flock age	5.3077	0.2140	<.0001
	Ambient temperature	0.6677	0.2803	0.0176
	Ambient relative humidity	-0.5483	0.1051	<.0001
	Intercept	14.2349	10.3814	0.1719
	Litter condition - 0	3.7291	11.4711	0.7458
	Litter condition - 1	-2.6776	10.1278	0.7922
	Litter condition - 2	6.5411	8.3794	0.4381
	Litter condition - 3	30.8615	10.0492	0.0029
24*	Litter condition - 4	46.1679	10.1446	<.0001
	Litter condition - 5	5.0404	8.7439	0.5668
	Litter condition - 6	0.0000	•	•
	Live animal weight	4.1235	0.1125	<.0001
	Ambient temperature	0.6931	0.2597	0.0079
	Ambient relative humidity	-0.5187	0.1015	<.0001
	Intercept	25.6043	13.4970	0.0595
	Litter condition - 0	-4.6704	11.4144	0.6841
	Litter condition - 1+	0.0000		
25*	Inventory	-0.6015	0.4374	0.1705
	Flock age	4.6385	0.3026	<.0001
	Ambient temperature	1.0038	0.2911	0.0006
	Ambient relative humidity	-0.5070	0.1023	<.0001
	Intercept	16.4615	9.2301	0.0754
	Litter condition - 0	-9.9901	9.9237	0.3178
	Litter condition - 1+	0.0000	•	•
26*	Live animal weight	4.0753	0.1380	<.0001
20	Ambient temperature	1.3067	0.2339	<.0001
	Ambient relative humidity	-0.4596	0.1015	<.0001
	Ambient temperature	10.3893	2.3091	<.0001
	Ambient relative humidity	-6.6141	0.9914	<.0001

						NME ^b	ME ^b	MB ^b	NMB ^b
Model	2LogL	AIC	AICc	BIC	Corr.	(%)	(g day⁻¹)	(g day⁻¹)	(%)
1	6,429	6,451	6,452	6,444	0.856	39.09	37.43	6.847	7.15
2	6,413	6,437	6,437	6,430	0.877	36.57	35.02	7.947	8.299
3	6,401	6,425	6,426	6,418	0.853	39.52	37.85	5.105	5.331
4	6,429	6,453	6,454	6,446	0.856	39.07	37.41	6.852	7.155
5	6,385	6,409	6,409	6,401	0.825	42.64	40.86	2.544	2.655
6	6,389	6,415	6,416	6,407	0.875	37.07	35.5	6.449	6.734
7	6,384	6,410	6,410	6,402	0.822	42.79	41	2.382	2.486
8	6,426	6,450	6,450	6,443	0.868	37.43	35.84	5.104	5.33
9	6,407	6,433	6,434	6,425	0.891	34.14	32.7	4.818	5.031
10	6,379	6,399	6,399	6,393	0.901	30.86	29.55	4.558	4.76
11	6,350	6,372	6,372	6 <i>,</i> 365	0.92	28.65	27.43	5.602	5.85
12	6,353	6,375	6,376	6,369	0.899	31.63	30.29	4.546	4.747
13	6,376	6,398	6,399	6,392	0.903	31.2	29.87	5.023	5.245
14	6,339	6,361	6,362	6 <i>,</i> 355	0.886	34.49	33.05	3.403	3.552
15	6,329	6,353	6,353	6,346	0.919	28.99	27.76	6.014	6.28
16	6,339	6,363	6,364	6 <i>,</i> 356	0.887	34.42	32.98	3.579	3.735
17	6,377	6,399	6,399	6,392	0.904	30.21	28.93	3.26	3.404
18	6,347	6,371	6,371	6,364	0.924	27.85	26.67	3.503	3.658
19*	6,362	6,390	6,391	6,382	0.895	33.61	32.18	4.261	4.449
20*	6,324	6,350	6,350	6,342	0.922	28.13	26.94	5.361	5.598
21*	6,372	6,404	6,405	6 <i>,</i> 395	0.905	32.09	30.73	3.269	3.413
22*	6,321	6,351	6,352	6,342	0.925	27.3	26.14	2.373	2.478
23*	6,362	6,400	6,401	6,389	0.907	31.37	30.04	3.265	3.409
24*	6,301	6,337	6,338	6,326	0.928	26.7	25.57	2.735	2.856
25*	6,389	6,417	6,418	6,409	0.875	36.95	35.38	6.463	6.749
26*	6,328	6,354	6,355	6,346	0.92	28.64	27.43	5.742	5.996

Table G-9. Fit and evaluation statistics for the broiler PM_{2.5} models tested.

Figure G-10. Broiler house PM_{2.5} one-to-one plots models 1 through 9.

Figure G-11. Broiler house PM_{2.5} one-to-one plots models 10 through 18.

Figure G-12. Broiler house PM_{2.5} one-to-one plots models 19 through 26.

Model	Parameter	Estimate	Standard Error	p-value
	Intercept	-9.6557	204.0760	0.9623
1	Inventory	-2.5574	9.3466	0.7846
	Flock age	104.7382	5.9317	<.0001
	Intercept	-380.3797	231.6500	0.1022
2	Inventory	-0.3446	9.3391	0.9706
	Flock age	103.7360	5.9399	<.0001
	Ambient temperature	24.7986	7.3499	0.0008
	Intercept	1477.9794	292.3240	<.0001
3	Inventory	-0.8648	9.1473	0.9247
	Flock age	104.1581	5.8657	<.0001
	Ambient relative humidity	-21.3502	3.0755	<.0001
	Intercept	-325.9016	404,1320	0.4208
4	Inventory	-3.2111	9.3623	0.7318
	Flock age	104.2022	5.9510	<.0001
	Exhaust temperature	14.6080	16.1527	0.3666
	Intercept	2617.9041	385.1960	<.0001
	Inventory	-13.0652	9.4607	0.1682
5	Flock age	106.0246	6.2596	<.0001
	Exhaust relative humidity	-40.9616	5.1387	<.0001
	Intercept	1102.1137	310.7490	0.0004
	Inventory	1.2783	9.0908	0.8883
6	Flock age	103.2483	5.8178	<.0001
	Ambient temperature	23.9744	7.1549	0.0009
	Ambient relative humidity	-21.1341	3.0515	<.0001
	Intercept	2744.2152	560.5060	<.0001
	Inventory	-12.9647	9.4716	0.1719
7	Flock age	106.2275	6.3256	<.0001
	Exhaust temperature	-4.9773	16.4485	0.7624
7	Exhaust relative humidity	-41.2396	5.2022	<.0001
	Intercept	-163.6890	248.8810	0.5119
8	Inventory	-0.6718	9.4695	0.9435
0	Flock age	104.1948	5.9202	<.0001
	Litter age	0.6786	0.6527	0.3012
	Intercept	-555.2051	274.1370	0.0447
	Inventory	1.8041	9.4682	0.849
9	Flock age	103.0882	5.9298	<.0001
	Ambient temperature	24.9863	7.3180	0.0007
	Litter age	0.7562	0.6541	0.2508
10	Intercept	327.6742	129.5490	0.0133
10	Live animal weight	85.8005	4.1694	<.0001
	Intercept	6.4904	163.0540	0.9683
11	Live animal weight	85.4128	4.1936	<.0001
	Ambient temperature	23.4891	7.1422	0.0011
	Intercept	1843.3748	250.0190	<.0001
12	Live animal weight	85.9492	4.0908	<.0001
	Ambient relative humidity	-21.4815	3.0572	<.0001

Table G-10. Parameter and estimates for broiler TSP emission models tested.

Model	Parameter	Estimate	Standard Error	p-value
	Intercept	-431.7576	374.7690	0.2504
13	Live animal weight	85.1959	4.1155	<.0001
13	Exhaust temperature	33.0818	15.3963	0.0326
	Intercept	2855.1666	316.1550	<.0001
14	Live animal weight	88.1279	4.1424	<.0001
	Exhaust relative humidity	-43.2595	4.9564	<.0001
	Intercept	1518.9199	267.4160	<.0001
15	Live animal weight	85.5983	4.0717	<.0001
	Ambient temperature	22.6329	6.9171	0.0012
	Ambient relative humidity	-21.2883	3.0338	<.0001
	Intercept	2503.2558	502.7730	<.0001
16	Live animal weight	87.8791	4.1232	<.0001
	Exhaust temperature	13.3234	15.1846	0.381
	Exhaust relative humidity	-42.4840	5.0072	<.0001
	Intercept	391.9067	166.6160	0.0208
17	Live animal weight	86.1345	4.1915	<.0001
	Litter age	-0.3794	0.6180	0.5406
	Intercept	65.7611	195.4410	0.7371
10	Live animal weight	85.7287	4.2178	<.0001
18	Ambient temperature	23.3605	7.1339	0.0012
	Litter age	-0.3401	0.6225	0.586
	Intercept	-2677.9620	826.1130	0.0016
	House status - Empty	3899.3188	802.2550	<.0001
	House status - Full	0.0000		
19*	Inventory	149.3099	31.5804	<.0001
	Flock age	115.8574	5.6819	<.0001
	Ambient temperature	24.1211	6.7049	0.0004
	Ambient relative humidity	-21.4043	3.0173	<.0001
	Intercept	1587.0139	274.6320	<.0001
	House status - Empty	-219.0261	211.4710	0.3012
20*	House status - Full	0.0000		
20*	Live animal weight	83.8690	4.3930	<.0001
	Ambient temperature	22.9664	6.9007	0.001
	Ambient relative humidity	-21.3432	3.0327	<.0001
	Intercept	1218.6906	339.3860	0.0004
	Litter condition - 0	-155.4090	218.1390	0.4778
	Litter condition - 1	-542.0937	227.5750	0.0193
	Litter condition - 2	352.5125	207.5360	0.0927
21*	Litter condition - 3+	0.0000		
	Inventory	-2.4936	8.8389	0.7781
	Flock age	106.4188	5.3411	<.0001
	Ambient temperature	22.6941	6.9219	0.0012
	Ambient relative humidity	-21.6593	3.0626	<.0001
	Intercept	1371.3155	306.2800	<.0001
	Litter condition - 0	72.6042	218.2450	0.74
22*	Litter condition - 1	-58.6745	226.9330	0.7966
	Litter condition - 2	454.6565	208.6460	0.0317
	Litter condition - 3+	0.0000		
Model	Parameter	Estimate	Standard Error	p-value
-------	---------------------------	-----------	----------------	--
	Live animal weight	85.9501	3.9354	<.0001
	Ambient temperature	24.0140	6.8982	0.0006
	Ambient relative humidity	-21.0888	3.0527	<.0001
	Intercept	1300.7101	402.9040	0.0014
	Litter condition - 0	-257.5641	330.4500	0.4373
	Litter condition - 1	-640.4650	337.7560	0.0609
	Litter condition - 2	250.4355	326.7350	0.4453
	Litter condition - 3	-317.0504	367.3360	0.3897
22*	Litter condition - 4	79.7894	412.4530	0.847
23*	Litter condition - 5	61.3553	374.2140	0.87
	Litter condition - 6	0.0000		
	Inventory	-2.7122	8.7985	0.7581
	Flock age	106.3818	5.2982	<.0001
	Ambient temperature	25.0342	7.6586	0.0012
	Ambient relative humidity	-21.8060	3.0682	<.0001
	Intercept	1456.6644	374.4280	0.0001
24*	Litter condition - 0	-22.7663	332.2200	0.9455
	Litter condition - 1	-150.8261	338.6930	0.657
	Litter condition - 2	358.1782	328.9340	0.2788
	Litter condition - 3	-264.3105	369.1710	0.4753
	Litter condition - 4	106.0031	414.7160	0.7987
	Litter condition - 5	-30.4955	375.9210	0.9355
	Litter condition - 6	0.0000	•	
	Live animal weight	85.8323	3.9117	<.0001
	Ambient temperature	25.4179	7.6325	0.0009
	Ambient relative humidity	-21.2226	3.0594	<.0001
	Intercept	1114.2398	311.0810	0.0004
	Litter condition - 0	-141.3740	220.2850	0.5225
	Litter condition - 1+	0.0000		
25*	Inventory	2.2363	9.1958	0.808
	Flock age	103.0642	5.8135	<.0001
	Ambient temperature	23.9313	7.1439	0.0009
	Ambient relative humidity	-21.1162	3.0510	0.4373 0.0609 0.4453 0.3897 0.847 0.87 0.7581 <.0001
	Intercept	1525.0217	270.5420	<.0001
	Litter condition - 0	-30.5439	206.7050	0.8828
	Litter condition - 1+	0.0000		
20*	Live animal weight	85.5890	4.0708	<.0001
26*	Ambient temperature	22.6119	6.9164	0.0012
	Ambient relative humidity	-21.2830	3.0341	<.0001
	Ambient temperature	10.3893	2.3091	<.0001
	Ambient relative humidity	-6.6141	0.9914	<.0001

* Experimental model. Not considered during model selection.

						NME ^b	ME ^b	MB ^b	NMB ^b
Model	2LogL	AIC	AICc	BIC	Corr.	(%)	(g day⁻¹)	(g day⁻¹)	(%)
1	11,240	11,250	11,250	11,250	0.841	33.42	770.6	11.80	0.512
2	11,170	11,180	11,180	11,180	0.844	33.20	763.8	11.02	0.479
3	11,130	11,140	11,140	11,140	0.848	34.13	785.1	-3.203	-0.139
4	11,240	11,250	11,250	11,250	0.842	33.42	770.6	13.29	0.576
5	11,180	11,190	11,190	11,190	0.831	36.81	848.7	10.17	0.441
6	11,120	11,130	11,130	11,130	0.853	33.08	760.9	-3.121	-0.136
7	11,180	11,200	11,200	11,190	0.830	36.90	850.8	9.557	0.414
8	11,240	11,250	11,250	11,250	0.843	33.25	766.6	18.57	0.805
9	11,170	11,180	11,180	11,180	0.847	32.98	758.6	18.83	0.818
10	11,230	11,240	11,240	11,240	0.851	32.00	737.9	-12.79	-0.555
11	11,160	11,170	11,170	11,160	0.853	31.22	718.2	-14.81	-0.644
12	11,120	11,130	11,130	11,130	0.859	31.47	723.9	-27.87	-1.212
13	11,230	11,240	11,240	11,230	0.854	30.86	711.5	-7.648	-0.332
14	11,160	11,170	11,170	11,160	0.857	33.20	765.6	-5.217	-0.226
15	11,110	11,120	11,120	11,120	0.863	30.50	701.6	-29.46	-1.281
16	11,160	11,170	11,170	11,170	0.859	32.87	757.8	-3.191	-0.138
17	11,230	11,240	11,240	11,240	0.851	31.93	736.3	-15.47	-0.671
18	11,160	11,170	11,170	11,170	0.853	31.21	717.9	-17.29	-0.752
19*	11,100	11,120	11,120	11,110	0.872	30.26	696.0	8.306	0.361
20*	11,110	11,120	11,120	11,120	0.864	30.41	699.6	-22.37	-0.972
21*	11,110	11,130	11,130	11,120	0.868	31.10	715.3	7.810	0.340
22*	11,100	11,120	11,120	11,120	0.867	30.51	701.7	-23.77	-1.033
23*	11,110	11,130	11,130	11,120	0.870	30.95	712.0	8.556	0.372
24*	11,100	11,130	11,130	11,120	0.869	30.46	700.6	-22.55	-0.98
25*	11,120	11,140	11,140	11,130	0.853	33.09	761.2	2.724	0.118
26*	11,110	11,120	11,120	11,120	0.863	30.50	701.5	-28.45	-1.237

Table G-11. Fit and evaluation statistic	s for the broiler TSP models tested
--	-------------------------------------

* Experimental model. Not considered during model selection.

Figure G-13. Broiler house TSP one-to-one plots models 1 through 9.

Figure G-14. Broiler house TSP one-to-one plots models 10 through 18.

Figure G-15. Broiler house TSP one-to-one plots models 19 through 26.

Draft document – Do not cite or quote

Appendix H - Model Performance

Evaluation

List of Tables

Table H-1. Model performance statistics, overall	H-4
Table H-2. Model performance statistics by house	H-5
Table H-3. Model performance statistics by season	H-6
Table H-4. Model performance statistics by house, by season	H-7

List of Figures

Figure H-1. Time series comparison of model (points) and observed (line) NH ₃ emissions	H - 3
Figure H-2. Scatter plots of model versus observed emissions.	H-4
Figure H-3. Scatter plots of model versus observed emissions, color coded by house.	H-5
Figure H-4. Scatter plots of model versus observed NH ₃ emissions by season	H - 6
Figure H-5. Scatter plots of model versus observed NH ₃ emissions by season, color coded by house	H-8

60 40 KY-A1 20 0 60 40 KY-A2 20 0 NH3 Emissions (kg per day) KY-A3 colour Observed . Predicted . KY-A4 0 60 KY-B3 40 20 0 60 KY-B4 40 20 0 Jul Jan Apr Oct. Date

Draft document – Do not cite or quote

Figure H-1. Time series comparison of model (points) and observed (line) NH_3 emissions.

Table H-1. Model performance statistics, overall

Figure H-2. Scatter plots of model versus observed emissions.

Pollutant	House	n	MB (kg)	ME (kg)	NMB (%)	NME (%)	r
NH₃	KY-A1	24	-7.71	11.89	-31%	48%	0.80
NH₃	KY-A2	16	-9.63	14.80	-36%	55%	0.85
NH₃	KY-A3	16	-7.07	12.58	-29%	52%	0.87
NH₃	KY-A4	16	-12.55	17.31	-42%	58%	0.93
NH ₃	KY-B3	41	-3.45	9.75	-18%	51%	0.78
NH ₃	KY-B4	41	-0.19	7.19	-1%	45%	0.82

Table H-2. Model performance statistics by house

Figure H-3. Scatter plots of model versus observed emissions, color coded by house.

Pollutant	House	n	MB (kg)	ME (kg)	NMB (%)	NME (%)	r
NH₃	spring (MAM)	36	-0.64	7.28	-4%	48%	0.82
NH ₃	summer (JJA)	60	-10.81	13.48	-36%	45%	0.81
NH ₃	autumn (SON)	40	-4.43	12.25	-22%	61%	0.74
NH ₃	winter (DJF)	18	2.60	7.45	26%	75%	0.56

 Table H-3. Model performance statistics by season

Figure H-4. Scatter plots of model versus observed NH₃ emissions by season.

Pollutant	House	Season	n	MB (kg)	ME (kg)	NMB (%)	NME (%)	r
NH₃	KY-A1	spring (MAM)	10	-2.95	10.36	-16%	56%	0.89
NH₃	KY-A1	summer (JJA)	8	-10.36	10.36	-35%	35%	0.76
NH₃	KY-A1	autumn (SON)	6	-12.13	16.48	-43%	59%	0.83
NH₃	KY-A2	spring (MAM)	2	12.33	12.33	2934%	2934%	-1.00
NH₃	KY-A2	summer (JJA)	8	-15.18	15.18	-44%	44%	0.97
NH₃	KY-A2	autumn (SON)	6	-9.54	15.12	-38%	60%	0.70
NH₃	KY-A3	spring (MAM)	2	12.32	12.32	2874%	2874%	-1.00
NH₃	KY-A3	summer (JJA)	8	-12.21	12.21	-38%	38%	0.94
NH₃	KY-A3	autumn (SON)	6	-6.68	13.18	-30%	59%	0.77
NH₃	KY-A4	spring (MAM)	2	11.87	11.87	1358%	1358%	-1.00
NH₃	KY-A4	summer (JJA)	8	-19.32	19.32	-50%	50%	0.98
NH₃	KY-A4	autumn (SON)	6	-11.67	16.43	-42%	60%	0.85
NH₃	KY-B3	spring (MAM)	10	-5.65	5.91	-28%	29%	0.87
NH₃	KY-B3	summer (JJA)	14	-8.42	14.39	-31%	54%	0.77
NH₃	KY-B3	autumn (SON)	8	2.88	8.59	22%	67%	0.96
NH₃	KY-B3	winter (DJF)	9	1.11	7.81	10%	68%	0.58
NH₃	KY-B4	spring (MAM)	10	-1.03	2.64	-7%	17%	0.87
NH₃	KY-B4	summer (JJA)	14	-5.30	10.76	-22%	45%	0.83
NH₃	KY-B4	autumn (SON)	8	4.97	6.76	46%	63%	0.95
NH₃	KY-B4	winter (DJF)	9	4.09	7.09	48%	84%	0.56
NH₃	KY-A1	spring (MAM)	10	-2.95	10.36	-16%	56%	0.89
NH₃	KY-A1	summer (JJA)	8	-10.36	10.36	-35%	35%	0.76
NH ₃	KY-A1	autumn (SON)	6	-12.13	16.48	-43%	59%	0.83
NH₃	KY-A2	spring (MAM)	2	12.33	12.33	2934%	2934%	-1.00
		\sim						

Table H-4. Model performance statistics by house, by season

Figure H-5. Scatter plots of model versus observed NH₃ emissions by season, color coded by house.